Asset purchase policy at the effective lower bound for interest rates

Richard Harrison

Bank of England

12 March 2010
Plan

- Introduction
- The model
- The policy problem
- Results
- Summary & conclusions
Plan

- Introduction
 - Motivation
 - Aims and scope
 - The key mechanism
 - Implications
- The model
- The policy problem
- Results
- Summary & conclusions
Motivation

• 2008 recession particularly severe and synchronised
• Policy reactions
 • Sharp reductions in short-term policy rates
 • Significant expansions of central bank balance sheets
 • Fiscal expansions
• Central bank balance sheet expansions
 • Associated with ‘unconventional’ monetary policies
 • Short-term policy rates reached their lower bounds
• Paper investigates one aspect of one type of these policies
Aims and scope

• Canonical New Keynesian (CNK) model:
 • Workhorse for monetary policy in recent years
 • Simplicity a virtue for delivering stark results

• CNK conventional wisdom at the lower bound:
 • Hold policy rate at lower bound for ‘prolonged period’
 • Effects on output gap and inflation relatively small

• However:
 • Results sensitive to parameterisation (Levin et al (2009))
 • No role for asset purchase policies

• Paper makes minor modification to CNK model:
 • Simple, stylised and incremental
 • Long-term and short-term bonds are imperfect substitutes
 • Can then analyse role for asset purchase policies
Households suffer ‘discomfort’ if their portfolios deviate from preferred mix of assets.

Interpret ‘discomfort’ as concern for liquidity:
- Long-bonds are, in some (unmodelled) way, less liquid
- Holding more short-term bonds reduces marginal liquidity cost

Households equate ‘liquidity adjusted’ rates of return:
- Relative rates of return depend on portfolio mix
- Asset purchases can alter relative asset supplies ...
- ... and hence bond yields ...
- ... and hence aggregate demand
Transmission mechanism of *conventional policy* weakened

- Lowering policy rate reduces liquidity
- Long rates fall by less than implied by expectations theory
- Effective lower bound more of a constraint

Welfare-based loss function changes

- Deviations of portfolio mix from target generate welfare costs
- Policy should stabilise portfolio mix, output gap and inflation

Asset purchases can help stabilise output and inflation, but:

- Constrained by feasibility bounds
- Should be at least partly directed towards stabilising portfolio
Plan

- Introduction
- The model
- The policy problem
- Results
- Summary & conclusions
Plan

- Introduction
- The model
 - Key elements
 - Households
 - Government budget constraint
 - Asset purchases
 - Fiscal policy
 - Supply
 - Parameter values
- The policy problem
- Results
- Summary & conclusions
The model: key elements

- Both long-term and short-term bonds circulate
 - Long-term bonds are consols: infinite maturity
 - Can express budget constraints in terms of one period returns
- Households have preferred portfolio mix
 - Preferences captured in utility function
 - Deviations from preferred mix reduce utility
- Preferred portfolio mix is exogenous
 - Assumed equal to government debt mix in steady-state
 - Bonds trade at same price in long run
- Adjustment costs arbitrary
 - Approximation to financial intermediation frictions?
 - Approximation to heterogeneity?
The model: households

- Households solve the following problem

\[
\max E_0 \sum_{t=0}^{\infty} \beta^t \phi_t \left[\frac{c_t^{1-\sigma^{-1}}}{1-\sigma^{-1}} - \frac{n_t^{1+\psi}}{1+\psi} + \frac{\chi_m^{-1}}{1-\sigma_m^{-1}} \left(\frac{M_t}{P_t} \right)^{1-1/\sigma_m} \right] \\
- \frac{\tilde{\nu}}{2} \left[\delta \frac{B_t}{B_{L,t}} - 1 \right]^2
\]

subject to

\[
B_{L,t} + B_t + M_t = R_{L,t} B_{L,t-1} + R_{t-1} B_{t-1} + M_{t-1} + W_t n_t + T_t + D_t - P_t c_t
\]

- Implies (log-linearised) no arbitrage relationship for bond returns:

\[
\hat{R}_{L,t}^e = \hat{R}_t - \nu \left[\hat{b}_t - \hat{b}_{L,t} \right]
\]

- Euler equation depends on both long and short rates

- \(\phi \) is ‘demand shock’
The model: government budget constraint

• Net debt issuance finances transfers to households

\[\frac{B_{L,t}^g}{P_t} + \frac{B_t}{P_t} - \frac{R_{L,t}B_{L,t-1}^g}{P_t} - \frac{R_{t-1}B_{t-1}}{P_t} + \frac{\Delta_t}{P_t} = \frac{T_t}{P_t} \]

• Written in terms of one period return on consol \((B_c)\) that sells at price \(V\):

\[B_{L,t}^g \equiv V_t B_{c,t} \]
\[R_{L,t} \equiv \frac{1 + V_t}{V_{t-1}} \]

• \(T\) are lump sum transfers to households
• \(\Delta\) is change in the central bank balance sheet
The model: asset purchases

- Change in the central bank balance sheet:

$$\frac{\Delta_t}{P_t} = \frac{M_t - M_{t-1}}{P_t} - \left[\frac{Q_t}{P_t} - \frac{R_{L,t} Q_{t-1}}{P_t} \right]$$

- Q represents purchases of long-term bonds

$$Q_t = q_t B_{L,t}^g$$

- Long-term bond market clearing

$$B_{L,t} = (1 - q_t) B_{L,t}^g$$
The model: fiscal policy

- No government procurement or production
- *Consol* stock fixed in real terms
 \[b^g_{L,t} = \bar{b} C V_t \]
- Transfers adjusted to stabilise short-term debt stock
- Log-linearised transfer rule is
 \[\frac{\tau}{b} \hat{r}_t = -\beta^{-1} \hat{R}_{t-1} - \theta \hat{b}_{t-1} \]
- Offsets direct impact of interest financing costs
- Mimics likely effect of active fiscal policy response to downturn
The model: supply

- Standard CNK assumptions
 - Firms monopolistically competitive
 - Labour is only factor of production
 - Calvo price stickiness mechanism
- Leads to conventional Phillips curve

\[\hat{\pi}_t = \kappa \hat{x}_t + \beta E_t \hat{\pi}_{t+1} \]
The model: parameter values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>Elasticity of intertemporal substitution</td>
<td>6</td>
</tr>
<tr>
<td>β</td>
<td>Discount factor</td>
<td>0.9925</td>
</tr>
<tr>
<td>κ</td>
<td>Slope of Phillips curve</td>
<td>0.024</td>
</tr>
<tr>
<td>ρ</td>
<td>Autocorrelation of natural real interest rate</td>
<td>0.85</td>
</tr>
<tr>
<td>η</td>
<td>Elasticity of substitution in consumption bundle</td>
<td>5</td>
</tr>
<tr>
<td>σ_m</td>
<td>Money demand elasticity</td>
<td>6</td>
</tr>
<tr>
<td>α</td>
<td>Calvo probability of not changing price</td>
<td>0.75</td>
</tr>
<tr>
<td>ψ</td>
<td>Labour supply elasticity</td>
<td>0.11</td>
</tr>
<tr>
<td>δ</td>
<td>Steady state ratio of long-term bonds to short-term bonds</td>
<td>3</td>
</tr>
<tr>
<td>ν</td>
<td>Elasticity of long-term bond rate with respect to portfolio mix</td>
<td>0.09</td>
</tr>
<tr>
<td>θ</td>
<td>Feedback parameter in tax/transfer rule</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Plan

• Introduction
• The model
• The policy problem
• Results
• Summary & conclusions
Plan

- Introduction
- The model
- The policy problem
 - Objective function
 - Constraints
 - The shock
- Results
- Summary & conclusions
Policy problem: objective function

\[L = \sum_{t=0}^{\infty} \beta^t \left[\hat{x}^2_t + \frac{\eta}{\kappa^2} \hat{\pi}^2_t + \frac{\nu}{(1 + \delta)(\sigma^{-1} + \psi)} \bar{b}_L \frac{1}{c} \left[\hat{b}_t - \hat{b}_{L,t} \right]^2 \right] \]

- Policy should stabilise mix of short-term and long-term bonds
- Reflects presence of adjustment costs in utility function
- Analyse policy from a ‘timeless perspective’
Policy problem: constraints

\[
\begin{align*}
\hat{x}_t &= E_t \hat{x}_{t+1} - \sigma \left[\frac{1}{1 + \delta} \hat{R}_t + \frac{\delta}{1 + \delta} \hat{R}_{L,t} - E_t \hat{\pi}_{t+1} - r_t^* \right] \\
\hat{R}_t &= \hat{R}_{L,t} + \nu \left[\hat{b}_t - \hat{b}_{L,t} \right] \\
\hat{\pi}_t &= \beta E_t \hat{\pi}_{t+1} + \kappa \hat{x}_t \\
\hat{b}_t - \delta q_t &= -\beta^{-1} (1 + \delta) \hat{\pi}_t + \left(\beta^{-1} - \theta \right) \hat{b}_{t-1} - \beta^{-1} \delta q_{t-1} \\
-q_t + \hat{V}_t &= \hat{b}_{L,t} \\
\hat{R}_{L,t} &= \beta E_t \hat{V}_{t+1} - \hat{V}_t \\
\hat{R}_t &\geq \bar{R} \\
q_t &\geq q \\
q_t &\leq \bar{q}
\end{align*}
\]
Policy problem: the shock

- Economy starts from steady state
 - Inflation at target (normalised to zero)
 - Output gap zero
- Very large and persistent fall in the natural real interest rate
 - Falls from 3% (steady-state level) to –3%
 - Unwinds with AR coefficient 0.85 (Levin et al (2009))
 - Interpreted as a large, long-lived negative demand shock
- Optimal response is to loosen policy to offset fall in demand
- But instruments are bounded
 - Lower bound on policy rate assumed to be 0.25%
 - Asset purchases bounded by $0 \leq q_t \leq 1$
Plan

- Introduction
- The model
- The policy problem
- Results
- Summary & conclusions
Plan

• Introduction
• The model
• The policy problem
• Results
 • Ignoring bounds on instruments
 • The effects of asset purchases
 • Comparison with CNK model
• Summary & conclusions
Results: ignoring bounds on instruments

• Useful thought experiment
• Implies that
 • Lower bound on policy rate more harmful than in CNK model
 • Constraints on asset purchases likely to bind
Results: ignoring bounds on instruments

- Short rate and natural real rate (dotted)
- Five-year spot rate
- Asset purchases
- Output gap
- Annualised inflation

Richard Harrison
Asset purchase policy
Results: the effects of asset purchases

- Compare cases in which lower bound on policy rate enforced
 1. Only short-term policy rate can be used
 2. Asset purchases allowed (subject to bounds)
- Asset purchases obviously improve outcomes
- Upper bound on purchases binds during loosening phase
- Lower bound binds during tightening phase
Results: the effects of asset purchases

Richard Harrison

Asset purchase policy
Results: comparison with CNK model

- Consider two cases
 1. Policymaker uses welfare-based loss function
 2. Policymaker uses CNK loss function

- Attempt to isolate effects of changes in
 - Structure of the economy from
 - Objective function

- For CNK loss function, asset purchase policies improve welfare even though
 - Effectiveness of conventional monetary policy reduced
 - Asset purchases are bounded
Results: comparison with CNK model (1)

Richard Harrison

Asset purchase policy
Results: comparison with CNK model (2)

Richard Harrison

Asset purchase policy
Plan

- Introduction
- The model
- The policy problem
- Results
- Summary & conclusions
Summary & conclusions

• Make simple, stylised and incremental addition to CNK model
 • Long-term and short-term bonds are imperfect substitutes
 • Provides role for asset purchase policies

• Despite simplicity, there are several implications

1. Transmission mechanism of conventional policy weakened
2. Welfare-based loss function should stabilise portfolio mix, output gap and inflation
3. Asset purchases can help stabilise output and inflation, even when bounded