Part I Paper 3 Quantitative Methods in Economics
Paper Co-ordinator: Prof. T Lawson, tl27@cam.ac.uk

Paper Content
Although this paper has two components (Mathematics and Statistics) the unifying principle is the application of simple analytical techniques to a range of empirical and theoretical problems in Economics. The paper outline sets out the lecture courses for the two components of the paper separately. Candidates are required to cover both components of the paper: they will not be able to pass by concentrating exclusively either on Mathematics or on Statistics. The three-hour written examination for the paper will contain separate sections on Mathematics and Statistics, each carrying 50% of the mark for the whole course: candidates will be required to answer questions from all sections of the paper. This examination paper has an additional 15 minute reading time.

Mathematics - Aims
Mathematical techniques are an indispensable tool of economics. Using mathematics, an economist can formalise and solve problems that cannot be addressed in other ways. The aim of this component of the paper is to cover the key areas of mathematical economics needed to allow candidates to tackle the compulsory papers of the Economics Tripos successfully. The general level of the mathematics concerned is roughly equivalent to A level Further Maths, but some of the techniques, and almost all the applications to economics, are new for the majority of students.

Mathematics - Objectives
By the end of the paper, students should have a good understanding of key mathematical concepts and techniques and be able to apply these to economic problems. It is not expected that students will be able to carry out rigorous mathematical derivations.

Mathematics - Content
The mathematics teaching for the paper will assume that candidates are familiar with the material set out below (which is basically the content of the Core Mathematics modules of a standard A-Level Mathematics course). Candidates who took mathematics qualifications other than A-level (for example, IB or European qualifications) should check that they have covered all of these topics: If they have not, they should contact their Director of Studies for further information and advice on reading.

Module C1
- Definition of integers, rationals and real numbers
- Indices
- pairs of simultaneous linear equations
- quadratic equations
- graphs of linear and quadratic equations, and simple coordinate geometry
- differentiation of polynomial functions
- simple integration

Module C2
- sum of geometric progression
- unconstrained optimisation of a function of one variable
definite integrals

Module C3

definition of function, domain, range and inverse function

natural logarithm and exponential function

Differentiation of \(\ln x \) and \(e^x \)

product, quotient and chain rules for differentiation

Module C4

rates of change

integration of \(x^{-1} \) and \(e^x \)

simple integration by substitution and by parts

vectors – addition, subtraction and scalar product

Students may find it helpful to bring their A-Level (or equivalent) notes, and any textbooks, with them to Cambridge.

The specific mathematical concepts and techniques covered in the course are:

Calculus and optimisation

Applications of natural logarithm and exponential functions in Economics – elasticities and growth rates. Applications of unconstrained optimisation in Economics – the profit maximising firm.

Functions: Definition of convex and concave functions of a single variable.

Functions of more than one variable: Partial derivatives and total differentials – isoquants and indifference curves. Utility and production functions. Unconstrained optimisation of functions of more than one variable. Homogenous functions and Euler’s theorem. Concave and convex functions of more than one variable.

Optimisation of functions of more than one variable subject to equality constraints: Lagrange multipliers. Applications of constrained optimisation – the Lagrange multiplier as a shadow price.

Economic and statistical problems involving integration, integrals and probability distributions. Approximations and 1st order Taylor series; McLaurin series for \(e^x \) and \(\ln x \) – approximation of \(\ln(1 + x) \) for small \(x \).

Linear algebra

Difference and differential equations

Simple difference and differential equations, models of price and quantity adjustment. Complex numbers and cyclical solutions.

Lecture courses

There are 20 lectures across the first two terms.

Mathematics for Economists: Intro to Calculus, Partial Differentiation, Constrained Optimisation (Prof. T Lawson, 12 lectures, weeks 1-8 Michaelmas Term)

Mathematics for Economists: Linear Algebra (Prof. T Lawson, 4 lectures, weeks 5-8, Michaelmas Term)
Mathematics for Economists: Extended Calculus – Envelope Theorem, Comparative Statics, Integration (Prof. T Lawson, 4 lectures, weeks 1-4, Lent Term)
Mathematics for Economists: Difference and Differential Equations (Prof. T Lawson, 4 lectures, weeks 5-8, Lent Term)

Reading (* denotes primary text)
Pemberton, M & N Rau, Mathematics for Economists, (3rd edition), Manchester University Press. Also more difficult, but a good text for those who have done Further Maths modules at A Level, or who plan to take the optional Mathematics paper in Part IIA. Some material (roughly, Chapters 21-30) goes beyond the course syllabus.

Examination
The Mathematics component of the 3-hour examination for this paper has two sections, labelled A and B: section A questions are short answer questions, testing mathematical techniques, while section B questions have a more economic structure and are more complex. Candidates must answer all four questions from section A, and one question (out of two) from section B.
Past examination papers for this paper are available on the Faculty website. Note that for examinations up to and including 2008 candidates were offered a choice of questions in Section A: in 2009 and thereafter only four questions were set, and candidates were required to answer all of these.

The examination questions set will focus on testing the understanding of and familiarity with the mathematical techniques covered in the lectures, their application to economic problems, and the interpretation of results. They will not require complex numerical calculations. Although candidates are permitted to use approved electronic calculators in the examination, examiners will not set numerical questions (for example, questions requiring the numerical inversion of matrices) which can be answered purely by using 'built-in' features of the calculator.

Statistics - Aims
The statistical analysis of data is essential for the study of economic and social problems, and the discussion of issues of public policy. The aim of this component of the paper is to cover a range of basic statistical techniques which are both useful in their own right, and important in providing a foundation for the compulsory paper in Econometrics in Part IIA of the Tripos.

Statistics - Objectives
By the end of the course, students should be in possession of a good grasp of the elementary tools of descriptive statistics; should understand elementary principles of probability and statistical theory; should be competent in applying basic methods of statistical inference; and should be familiar with the use of spreadsheets to undertake graphical and statistical analysis of economic data.

Statistics - Content
The statistics teaching for the paper will assume that candidates are familiar with the basic material set out below (which is covered in the GCSE Mathematics paper). Candidates who took other mathematics qualifications should check that they have covered all of these topics: if they have not, they should contact their Director of Studies for further information and advice on reading.
GCSE
Graphical techniques for representing data
Histograms, scatter diagrams, time series plots
Measures of central tendency for a dataset
Mean, median and mode

The specific statistical concepts and techniques covered in the course are:

Descriptive statistics
The use of tables, graphs, diagrams and frequency distributions in summarizing and organizing statistical data; summary measures of central tendency, dispersion and skewness; simple measures of association.

Probability and distribution theory
Probability - events, outcomes and sample space; Venn diagrams; unions, intersections and complements; simple combinatorial formulae for sampling with and without replacement; conditional probability and Bayes’ Theorem; the concept of a random variable; Probability distributions – univariate discrete and continuous distributions; probability mass functions; cumulative distribution functions and probability density functions; expectations, variances and higher moments; expectation and variance of sums of independent random variables; Bernoulli trials and the Binomial distribution; simple discrete and continuous probability distributions, particularly Uniform and Normal distributions; Chi-squared, t and F distributions.
Sampling distributions - the use of sample statistics: the concept of an estimator; unbiasedness and efficiency; sampling distributions (large samples) - Law of Large Numbers and Central Limit Theorem (proofs not required); sample mean, sample variance, difference between sample means, difference between sample proportions; sampling distributions (small samples from parent normal populations) - sample mean.

Estimation and inference
Estimation and hypothesis testing - a simple treatment of point and confidence interval estimation and hypothesis testing (in each case the sample statistics used are those enumerated above under ‘sampling distributions’); null and alternative hypotheses; critical regions; one-tailed and two-tailed tests; Type I and Type II errors; power functions.
Bivariate distributions and bivariate regression - bivariate probability distributions; the bivariate Normal distribution; conditional and marginal probability distributions; conditional expectation; statistical estimation of bivariate models where errors are independently and normally distributed with common variance; sampling distributions of regression coefficients under these assumptions; testing of simple hypotheses about regression coefficients; distribution of correlation coefficient under the null of zero correlation, and associated tests for significance.
Multiple regression - interpretation of multiple regression coefficients; dummy variables; significance tests for individual regression coefficients; graphical analysis of regression residuals.
Computational statistics - the use of spreadsheet packages to store and organise economic data, to generate simple graphs, and to compute the statistics outlined above.

Many of the concepts and techniques set out above are covered in Modules S1-S4 of the A-level courses in Mathematics and Further Mathematics. Students may find it helpful to bring their A-Level (or equivalent) notes, and any textbooks, with them to Cambridge. A detailed syllabus, which relates the material set out above to the content of Modules S1-S4, is available on the course website.

Lecture courses
There are 20 lectures across the first two terms. There are also 4 Faculty classes (repeated twice) in the Michaelmas Term.

Introduction to Probability and Statistics – Probability and Distributions, Hypothesis Testing (Dr D Robertson, 12 lectures, weeks 1-8, Michaelmas Term)

Classes Mr G Paez, Statistics Classes 4 classes (repeated twice), weeks 2, 4, 6 and 8, Michaelmas Term. Statistics Revision Class Easter Term weeks 1-2, (Mr G Paez).

Introduction to Statistical Inference – Correlation and Regression (Dr M Crowley, 8 lectures, weeks 1-8, Lent Term)

Reading

The following texts are recommended for the Statistics component of this paper: since they all cover broadly the same material you should choose one text which you feel is at the appropriate level for you.

Larsen, R J and M L Marx, *An Introduction to Mathematical Statistics and its Applications* (5th edition), Pearson. This text adopts a more formal mathematical approach, and is therefore more suitable for those with Further Maths A level.

* Goldberger, A, *Introductory Econometrics*, Harvard University Press. This is the recommended text for the section of the course which covers correlation and regression analysis.

Examination

The Statistics component of the 3-hour examination for this paper has two sections, labelled C and D: section C questions are short questions, while section D questions are longer and require more detailed answers. Candidates must answer all four questions from section C, and one question (out of two) from section D.

Past examination papers for this paper are available on the Faculty website. Note that for examinations up to and including 2008 candidates were offered a choice of questions in Section C: in 2009 and thereafter only four questions were set, and candidates were required to answer all of these.

You should also note that for examinations up to and including 2012 candidates were supplied with a formula sheet containing a selection of basic statistical formulae. The Faculty Board agreed that such a sheet would not be supplied in 2013 and subsequent years.

The examination questions set will focus on testing the understanding of and familiarity with the statistical techniques covered in the lectures, their application to economic data, and the interpretation of results. They will not require the entry of large datasets, or long and complex numerical calculations. Although candidates are permitted to use approved electronic calculators in the examination, examiners will not set numerical questions (for example, the calculation of correlation or regression coefficients from raw data) which can be answered purely by using ‘built-in’ features of the calculator.