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Game Theory:  The study of interdependent decisions 
where an agent’s payoff can depend on the decisions of other 
agents. 
 
Key: best course of action can depend on what others do. 
 
Most applications of game theory use equilibrium analysis:  
They identify the outcome of the game either with the set of Nash 
equilibria or with some subset of the Nash equilibria. 
 
But when and why should we expect observed play to 
approximate Nash or any other sort of equilibrium?   



 

Learning in Games:    Equilibria are the long-run outcome of 
non-equilibrium learning or other forms of adaptation. 
 
 This theory helps explain how and when Nash equilibrium arise 
in static simultaneous-move games.  
 
It can also suggest which Nash equilibria are more likely. 
 
Learning theory suggests that other equilibrium concepts are 
more appropriate for dynamic games. 
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I. Introduction/Review of Game Theory  

 

Informal game theory Hume [1739], Rousseau [1775], etc. 
 
First formal analysis Cournot [1838] duopoly model: 
 

• Only two firms, so they can’t neglect effect of own output on 
price. 

• Firms know how price varies with total output 

• But they need to forecast the output of the other firm 
 

Cournot’s model:   
Firms 1 and 2 simultaneously set output levels. 
Price adjusts to clear the market.  
 



 

A Cournot equilibrium is a pair of outputs  such that each firm's 
output maximizes its profit given the output of the other firm.   
 
This is an "equilibrium" in the sense that neither firm has an 
incentive to change.   
 
Cournot also proposed a dynamic adjustment process whose 
steady states are the equilibria he defined. 
 

-Important precursor of  the learning-theoretic interpretation 
of equilibrium.  

 
-But perhaps not so realistic. 

 



 

Following Cournot a number of other games were analyzed as 
special cases:  Bertrand,  Edgeworth, Hotelling  etc.  
 
Their equilibrium concepts were generalized by Nash [1950]. 
 
Before Nash:  von Neumann [1928] on the minmax theorem. 



 

von Neumann and Morgenstern [1944]  
 
The Theory of Games and Economic Behavior: 

 
"We hope to establish…that the typical problems of 

economic behavior become strictly identical with the 

mathematical notions of suitable games of strategy." 
 
This book gave the first general definition of  a “game.”   
 
It also introduced the general idea of a “strategy” as a contingent 
plan, as opposed to the uncontingent choice of output in the 
Cournot duopoly models- we will come back to this when we talk 
about extensive-form games. 
 



 

Hugely important and useful book-played a key role in the 
development of game theory and mathematical social science. 
But it has a very different  interpretation of game theory,  and 
thus of equilibrium,  than in Cournot or Nash. 
 
Von Neumann and Morgenstern saw game theory's task as 
providing  
 

"mathematically complete principles which define 'rational 

behavior' in a social economy."  
 
  



 

They also wanted their principles to have a unique, unambiguous 
prediction.   
 
In two-player constant-sum games the minmax solution does 
what they were looking for.  
 
But most of the games economists care  about are not constant 
sum. 



 

Problems with the Von Neumann-Morgenstern program: 

 

• In general, a unique prediction is too much to ask for. 
 

• The assumption of rational behavior does very little to 
restrict the possible outcomes. 

 

• Even “common knowledge of rationality”  isn’t enough to 
do what vN-M wanted. 

 

 

So we need some other way of  predicting what will happen in 
games. 
 



 

Nash [1950]  defined what we now call  "Nash equilibrium,"  
which generalizes Cournot equilibrium (and the subsequent 
equilibrium definitions of Bertrand, etc.) 
 
Think of “strategies” for now as buttons on a computer terminal- 
players push buttons simultaneously, not seeing their opponent’s 
choice. 
 
A strategy profile is simply a specification of a strategy for each 
player or player role- e.g. player 1 plays “U” and player 2 plays 
“L”.  (there may be many players in a given player role.) 
 
A game in strategic form is a collection of sets of feasible 
strategies- one feasible set per player- and a payoff function that 
specifies the payoffs of each player for each strategy profile. 



 

 
Definition: A strategy profile is a Nash equilibrium if each 
player's strategy maximizes that player's payoff given the 
strategies being used by the other players. That is, no player can 
get a higher payoff by changing his strategy, holding fixed the 
strategies of the other players.  
 
Nash Equilibria are “consistent predictions of play”: 
It is not consistent for all players to predict the same  non-Nash 
outcome, for they should all know that someone has an incentive 
to change.  
 
This consistency explains why Nash equilibria might persist  if 
for some reason players started out predicting that it would, but it 
doesn't say why they should predict it in the first place. 



 

  

L R

U 0, 0 5, 5

D 5, 5 0, 0

 



 

• Two “pure-strategy” Nash equilibria:  (U,R) and (D,L).  
(Also a “mixed-strategy” equilibrium: if half the player 1’s play 
U and half play D then the player 2’s are indifferent so half can 
play L and half play R.) 
 

• If player 1 expects (U,R)- so plays U- and player 2 expects 
(D,L)- and plays L- the result is (U,L) which is not a Nash 
equilibrium.  
 

Can’t mix-and-match parts of an equilibrium profile. 

 

• When there are multiple Nash equilibria, the outcome will only 
correspond to any  of the equilibria is if all of the players 
coordinate on the same equilibrium.  

 



 

• This coordination is not an implication of rationality,  so 
rationality does not imply equilibrium play. 

 

• Once the results are tabulated we will  play this game again- 
with a different “protocol” : each agent matched against the 
entire distribution of other side’s play, with payoffs 10p per 
game.  

 

• Nash understood equilibrium in the sense of Cournot, as the 
long-run outcome of an adjustment process. 

 

• Work on “learning in games” investigates this idea. 
 

• Implications are simplest in static Games: one shot, 
simultaneous move, like the coordination example.   



 

II. Learning and Equilibrium in Static Games 

  
Self-interested players (as opposed to players who cooperate to 
find an equilibrium.) 
 
No point in explaining  equilibrium  in a given game by assuming 
an equilibrium  of some larger “adjustment game.”  
 
Thus non-equilibrium learning models need to allow for players 
whose adjustment rules aren’t a best response to the adjustment 
rules of the others.   
 
In this sense some player may be  “making mistakes,”  so we 
can’t use “no mistakes” as a criterion for selecting learning rules. 
 



 

Instead ask that play be “plausible,” which includes “no really 
obvious mistakes.”  
 
Various adjustment processes have been analyzed, with varying 
degrees of rationality on the part of the agents. 
 
Focus here on “Belief-based” models:  
Agents form expectations about the play of their opponents and 
use beliefs to choose actions, as in fictitious play” (Brown 
[1951]), and  “smooth fictitious play” (Fudenberg-Kreps 
[1993]). 

 
The details of these models are less important than  three general   
properties:  
 



 

Passive learning, strategic myopia, and asymptotic empiricism. 

 
Passive learning: Agent’s actions have no impact on their 
observations.    
 

• In particular, assume that each time the game is played, 
agents see the strategy played by their opponent. 

 

• May see strategies of other players as well but this is 
independent of own play. 

 

• So no reason to “experiment” to gain information. 



 

 

Strategic myopia:  Agents play repeatedly without trying to 
influence the future play of their opponents- they learn to play the 
“stage game” as opposed to playing a “repeated game.” 

 

Motivation: “Large populations” with many agents in each player 
role, and anonymous random matching.   
  



 

Two versions of large populations 

 

a) anonymous random matching:  
 
Each period all agents are matched to play the game, and are  told 
only play in their own match.  Used in most experiments. 

 
b) aggregate statistic model:  

 
Each period all agents play.  At the end of each period, agents 
learn the aggregate distribution of play, and  each agent’s payoff 
is determined by this distribution. Easier to implement in …… 
 
Large-Population Interpretation of Mixed Equilibrium: each 
agent uses a pure action, but different agents play differently. 



 

Asymptotic empiricism:  Beliefs converge to the time average 
of opponents’ play. (so priors are eventually swamped by data.) 

 

Motivation:  Agents believe they face a stationary, but unknown, 
distribution of opponents strategies.  Then asymptotic empiricism 
is a consequence of Bayesian updating. (if priors are “non-

doctrinaire”) 

Note: If all agents are strategically myopic and asymptotically 
empirical, the overall distribution of play won’t be stationary 
unless initial play is a Nash equilibrium. 

So acting as if the environment is stationary is a mistake. 

But stationarity is a reasonable first hypothesis in many 
situations.   



 

People do seem likely to reject the stationarity hypothesis given 
sufficient evidence to the contrary, e.g. if the system cycles 
rapidly.   

 

For example if opponent/other side’ play has been 
H,T,H,T,H,T,H,T, 
you might expect the next plays is very likely to be H,  
as opposed to 50-50. 
 
(Such fast cycling can occur with fictitious play but not with 
smooth  fictitious play) 
 
Conversely if the system converges to a steady state then  agents 
might maintain the assumption of stationarity- as near a stable 
steady state the system is “almost stationary.” 



 

Result: With asymptotic empiricism and strategic myopia, if  the 
population converges to repeatedly playing the same strategy 
profile, that strategy profile must be a Nash equilibrium. 
 
 Reason: If  the aggregate play in the population is constant, 
beliefs come to look like the distribution of play.  
So if play isn’t a Nash equilibrium, some player(s) would change 
their strategy. 



 

Notes:   

• Asymptotic empiricism and  strategic myopia don’t require 
that the players know game theory. 

 

• Play can converge to Nash equilibrium even if the agents 
have never heard of Nash equilibrium. This is analogous to 
the fact that consumers don’t have to take economics classes 
for the market outcome to approximate a competitive 
equilibrium. 

   

• People may never play the exact same game very often, but 
they may also extrapolate  between  games and learn from the 
experiences of others. 



 

 

• History and culture can help coordinate expectations. 
 

• Schelling’s   "label salience"  (see The Strategy of Conflict, 

1960) is  an illustration of this.  



 

Consider a  single population playing a symmetric coordination 
game- everyone choose between the same two strategies 

1,1 0, 0

0, 0 1,1

 

Note that the names of the strategies aren’t displayed- they don’t 

matter for the set of Nash equilibria… 

 
Holmes and Watson on a train line 
"Heads" or "Tails"  
Meeting for lunch. 
 



 

Conclusion:  Shared history of play and/or shared culture can 
coordinate  expectations and lead to Nash equilibrium play in 
static games. 
 
The idea of culture, and playing based on what one knows about 
the other agent, seem to rely on agents not only thinking but 
having a theory of what others are thinking, a “theory of mind.” 
 
This isn’t necessary for belief-based learning. 
But asymptotic empiricism does require that agents have a 
memory and keep track of opponents’ past play. 
 
 
 



 

However,  players don’t have to be rational or have even have a 
memory for play to end up at a Nash equilibrium, as shown by 
work in evolutionary game theory. 
 
Digression in honor of Charles Darwin… 



 

Evolutionary Game Theory 

 
Payoffs correspond to reproductive fitness 
 
Players are genetically programmed to play various actions (or 
express various phenotypes). 
 
Fitter strategies/phenotypes  have more offspring so their share of 
the population increases. 
 
Fitness is not absolute, but is “frequency-dependent”: 
It can depend on the actions or phenotypes of others. 
In this case “survival of the fittest” is inherently game-theoretic- 
In the coordination game we played neither U  nor D  is “fitter” 
in an absolute sense.  



 

Replicator Dynamic   
 

• Standard evolutionary adjustment process. 

• Single continuum population 

• Deterministic adjustment in continuous time. 
(variants include adjustment in a stochastic environment as in 

Fudenberg-Harris [1992], discrete time as in Dekel-Scotchmer 

[1992], finite-population models, multiple populations...)  

 

• State of the system = fractions of the population using each 
action.  

 

• Reproduction rate of each individual= payoff in the game. 



 

• So total number of offspring of A-players at time t  is  
(Mass of agents playing A) *( Payoff to A at time t). 
 

• Can show that the fraction of the population playing A grows 
only if its current payoff is higher than the average. 

 

• At a steady state every action that has positive population 
share must be equally fit- as otherwise the share of the fitter 
ones would grow. 

 

• So  a steady state where all actions are played must be a Nash 
equilibrium. 

 
 



 

• There can be other sorts of steady states that are not Nash 
equilibria, as non-existent strategies have no offspring  and 
there is no mechanism (in this stark model) to reintroduce 
strategies that are “extinct” and. 

 

• Non-Nash states are not locally stable: if  mutation introduced 
a small number of agents playing strategy that has a higher 
payoff (given the population distribution) then the share of 
these mutants would grow so the state would  move away 
from this non-Nash point. 



 

This motivates the  idea of an “evolutionarily stable strategy,” or 
ESS:   

 

Suppose that the population is originally at some profile σ , and 
then a small  share of "mutants" start playing some other strategy 

'σ .   
 
ESS asks that the existing population gets a higher payoff against 
the resulting mixture than the mutants do.   



 

 

More formally, σ  is an ESS if  
 
 σ  is a NE: there is no other strategy 'σ  with 

( ', ) ( , )u uσ σ σ σ>  

and 
 
 If ( ', ) ( , )u uσ σ σ σ=   

(so 'σ  is an alternate best reply  to σ )  
then ( ', ') ( , ')u uσ σ σ σ< . 



 

Any strict Nash equilibrium  (where the equilibrium strategy 
yields a strictly higher strategy than any alternative) is an ESS, 
and any strict Nash equilibrium is locally stable under the 
replicator dynamic. 
 
And for typical (“generic”) static games, all pure-strategy 
equilibria are strict. For these games the pure-strategy ESS are 
the same as the pure-strategy Nash equilibria.     
 

ESS has proved useful in explaining a wide range of biological 
phenomena.  Examples include mutualisms and parasites in 
games between species, animal behaviors such as territorialism, 
and genomic  imprinting. 



 

Humans and most mammals inherit two copies of most genes, 
one from the mother and one from the father. 
 
For most genes both copies are functional, but for “imprinted” 
genes production of the corresponding protein sometimes occurs 
from only one of the two alleles, depending on which parent 
passed on the gene. Examples of this in insects, mammals, and 
plants; in mammals it seems most often associated with placental 
growth and development. 
 
Explanation:  (Haig [1997]) Genomic imprinting arise from the 
conflicting interests of the father and mother, as represented in a 
game where the players are the genes. 
 
 



 

An individual has a maternal and paternal allele that disagree 
over the amount of some factor (e.g. growth of current embryo). 
 
Suppose the amount X of the factor is the sum of the independent 
production by the maternal allele (m) and the paternal allele (p); 
X = m + p.  
 
If X increases resources devoted to this embryo (as opposed to 
saved for  future ones) then the maternal allele will 'favor' a 
smaller amount of this factor, as the mother cares (either 
somewhat or a lot) more than the father about her future 
offspring.  Suppose the maternal allele  favors X = M and 
paternal allele favors X = P>M.  
 



 

Then the ESS strategy for alleles to express P when paternally-
derived and 0 when maternally-derived. 
 
This explains why imprinting can be an all-or-none  phenomenon 
in which one allele is silenced 
 
And in some cases there is an “arms race” with the maternal 
allele triggering the release  of a buffer that soaks up the factor. 
( Wilkins and Haig [2001] ).  



 

…back to belief-based learning 

  
Just as with the replicator dynamic, we can study the stability 
properties of Nash equilibria with belief-based learning. 

1,1 0, 0

0, 0 1,1

         1, 1 1,1

1,1 1, 1

− −

− −

 

 

 
Intuitively, the mixed equilibrium in the coordination game on 
the left looks unstable. 
 
In the game  on the right (“matching pennies”)  
stability/instability of the equilibrium is less obvious.  
 



 

• Formal analysis requires more explicit dynamic model, e.g. 
smooth fictitious play. 

 

• Analysis simplest with a single agent on each side, or if all 
agents in a population have the same beliefs.  Here the mixed 
equilibrium is unstable in the coordination game and stable in 
matching pennies. (Fudenberg-Kreps [1993], Benaïm-Hirsch 
[1999].) 

 

• Single agent per side isn’t consistent with strategic myopia, 
and in large populations different agents probably receive 
different information – e.g. they might only observe play in 
own matches. 

 



 

• But stability similar results in large population with 
heterogeneous beliefs provided the  matching process is close 
enough to uniform. (Fudenberg-Takahashi [2009]). 

 

• There are games where the unique Nash equilibrium is 
unstable under standard belief-based dynamics. 

 

• Here it is not clear that the dynamics make sense, nor is it  
clear what actually happens, though there is some evidence 
that experimental play can indeed cycle  (Benaïm, Hofbauer, 
Hopkins [2009]). 

 

• There are also classes of games where play always converges 
to Nash equilibrium, for example “potential games” 
(Hofbauer-Sandholm [2002]) 



 

Consider the following game:  
 
Each player picks an integer j  between 1 and 100.   The  players 
whose choice is closest to 2/3 of the median are “winners;” the 
winner’s payoff is $10/(number of winners) . Losers all get 0. 
 
 
 
Here we have a form of the aggregate-statistic model.  
 
(survey in Nagel [1998]) 
 



 

• Unique Nash equilibrium: everyone chooses 1. 
 

• This also the implication of (some forms of) “common 
knowledge of rationality. 

 

Claim: If we repeated this  enough times most people would 
choose 1. Once again the Nash equilibrium arises from learning 
but doesn’t describe initial play. 



 

Conclusions so far: 

 

 

• No reason to expect Nash equilibrium the first time people 
play a game, especially if it is unfamiliar to them. 

 

• If play in a static game converges the long-run outcome 
should look like a Nash equilibrium. 

 

• No presumption that non-equilibrium play always converges.  
 



 

 
So far: strategies as computer keys or static choices. 
 
Next time:  
Learning and Equilibrium in Extensive Form Games. 

 

 

• Extensive-form games are used to study issues of 
commitment, signalling, reputation, etc. that are inherently 
dynamic. 

 

• Here strategies are  complete contingent plans" that specify 
the action to be taken in every situation (i.e. at every 

“information set”) that could arise in the course of play.  
 



 

  
The definition  of Nash equilibrium applies without change:  
 
A Nash equilibrium is (still) a strategy profile such that no player 
can increase their payoff by changing their strategy, holding fixed 
the strategies (not  the actions) of the other players. 

 
But the implications of learning theory are different in the 
extensive form game than if players are pushing buttons 
corresponding to the strategies in the strategic form. 
 
In  particular, play can converge to non-Nash states where the 
players have incorrect beliefs but these beliefs are consistent with 
their observations. 
 



 

So other equilibrium concepts are needed to capture the effect of 
learning… 



 

 
Consider the following extensive form game: 
 



 

 



 

 
The long-run outcome of learning depends on what the players 
observe when the game is played. 
 
So the possible long-run outcomes can be different if player 1 
observes player 2’s strategy  than if player 1 only observes 
player 2’s action. 

 
In the first case, learning leads to Nash equilibrium as before. 
 
In the second it only leads to the larger set of self-confirming 

equilibrium.  (Fudenberg and Levine [1993]). 
 



 

To define this concept,  for a given strategy profile, say that an 
information set is “reached” if it has positive probability and say 
that it is “unreached” or “off-path” if it has probability zero. 
  
If players don’t observe opponents’ play at unreached 
information sets, they may not learn it, so their actions may not 
be optimal given the way that opponents respond to deviations. 
 
Self-confirming equilibrium requires that each player’s beliefs 
are consistent with their observations, but not necessarily correct;   
this is in the spirit of Hahn’s  [1977] “conjectural equilibrium.” 
 
 



 

Definition: σ  is a  self-confirming equilibrium (SCE) if  for each 
player i  and each strategy is  with   ( ) 0i is >σ  there are beliefs 

( )i isµ  such that 

  
(a) is  maximizes player i’s payoff given his beliefs ( )i isµ , 

 
 and  
 
(b) ( )i isµ  is  consistent with what player i see when he plays 

is .    (More formally, ( )i isµ  is correct at every  

information set  that is reached under ( , )σi is
−

.)   



 

 
Convergence to self-confirming equilibrium has been shown in a 
variety of learning models, which differ in the rationality of the 
agents, interaction structure, observation structure, etc. 
And experimental play of extensive-form games often results in 
outcomes that are consistent with self-confirming equilibrium but 
not Nash equilibrium. 
 
Tomorrow: Self-Confirming Equilibrium, Learning in Extensive 

Form Games, and the Code of Hammurabi 

 
 


