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III. Extensive-Form Games 

 

• Strategies are  “complete contingent plans" that specify the 

action to be taken in every situation (i.e. at every 

“information set”) that could arise in the course of play.  

 

• The actions  that a player actually chooses may end up 

depending actions of the others, but we can think of players 

simultaneously choosing strategies before the game is played. 

 

• Associate a unique strategic form with given extensive form. 

 



 3 

 



 4 

 

• The definition  of Nash equilibrium applies without change: 

It is a strategy profile such that no player can increase their 

payoff by changing their strategy, holding fixed the strategies 

(not  the actions) of the other players. 

 

• But the long-run outcome of learning depends on what the 

players observe when the game is played. 

 

• In the strategic form player 1 observes player 2’s strategy, 

and  learning leads to Nash equilibrium as before. 

 

• In the extensive form 1 sees only player 2’s action.   Here 

learning only leads to the larger set of self-confirming 

equilibrium.  (Fudenberg and Levine [1993]). 
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IV.  Self-Confirming Equilibrium 

Preliminaries 

 

• For a given strategy profile, an information set is “reached” if 

it has positive probability. 

• It is  “unreached” or “off-path” if it has probability zero. 

• Let probability measure iµ  describe player i’s beliefs about 

his opponents’ play. 

• Let 1( ,..., )Iσ σ σ=  denote a mixed strategy profile, where 

each iσ  corresponds to a probability distribution over the pure 

strategies of player i.  (either because player i is randomizing 

or because there are many agents in the role of player i and 

they don’t all play the same way.) 
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If players don’t observe opponents’ play at unreached 

information sets, they may not learn it, so their actions may not 

be optimal given the way that opponents respond to deviations. 

 

Self-confirming equilibrium requires that each agent’s  beliefs are 

correct at the information sets that are reached given their play;  

but not necessarily correct;   this is in the spirit of Hahn’s  [1977] 

“conjectural equilibrium.” 

 

 More formally,
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Definition: σ  is a  self-confirming equilibrium (SCE) if  for each 

player i  and each strategy is  with   ( ) 0i is >σ  there are beliefs 

( )i isµ  such that 

  

(a) is  maximizes player i’s payoff given his beliefs ( )i isµ , 

 

 and  

 

(b) ( )i isµ  is  consistent with what player i sees when he plays 

is .    (More formally, ( )i isµ  is correct at every  

information set  that is reached by  ( , )σi is − .)   
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Notes:   

 

• Nash equilibrium : play maximizes payoff given opponents’ 

strategies.  

 

This is equivalent to  

 

(a)  (play maximizes payoffs given beliefs)  

 

and a more restrictive condition on beliefs 

    

(b’)  each player’s beliefs are correct at every information set.   
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• SCE reduces to Nash equilibrium in static games, as there 

seeing an opponent’s chosen action is the same as seeing the 

opponent’s strategy.   

 

• In some cases players might not even observe play at all of 

the information sets that are reached.  

 

For example,  in a sealed-bid first-price auction players might 

observe the winning bid but neither the values of the other 

players nor the bids of the losers.    

 

This can be modeled with a generalization of SCE, that only 

requires beliefs to be consistent with a smaller set of 

observations; see Dekel, Fudenberg and Levine [2004]. 
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• The definition of SCE allows player i to use a different belief 

to rationalize each  strategy 
i
s  that has positive probability 

under  iσ .  

 

• These “heterogeneous beliefs” are important in many game 

theory experiments, possibly also important in the field.   

 

•  Following game allows a simple example of the impact of 

heterogeneous beliefs: 

 

No Nash equilibrium with outcome distribution  

( ½  Out, ½ (In, A)) 
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• “Unitary” SCE requires a single belief iµ  for each  player i. 

(relevant with a single agent per role or if agents pool their 

observations) 

 

• There can be unitary SCE that are not Nash equilibria because 

two players disagree about the play of a third… 
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• (A,a)  is the outcome of a self-confirming equilibrium. 

• It is not the outcome of a Nash equilibrium. 

• Even if players 1 and 2 know x and y, they  need 

observations to learn 3’s play if x and y have opposite 

signs. 
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• SCE: the only constraint on player’s predictions is their  

observations of play in the game.   

 

• Rationalizable SCE  (Dekel, Fudenberg, Levine [1997]) 

combines SCE with the idea that player know the payoff 

functions of their opponents and expect them to play 

rationally-provided  that the opponents haven’t yet done 

anything “irrational.”   

 

• Unitary RSCE coincides with backwards induction in 

two-stage games of perfect information, but in longer 

games it is much weaker and more like SCE. 
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Apply self-confirming equilibrium to the analysis of experiments:  

 

Play can be depart from Nash equilibrium even if players are 

fully rational. 

 

We should distinguish between play that is inconsistent with 

maximizing the agents’ presumed utility functions and play that 

is optimal for self-confirming beliefs. 
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Ultimatum bargaining:  

 

• In experiments, low offers are rejected: the rejecters are not 

maximizing money payoff in the experiment. 

• But not all  player 1’s make the payoff-maximizing choice, 

perhaps because they don’t know the exact probability that 

each offer is accepted. (which in turn suggests that here 

players do not start the experiment knowing the true 

distribution of preferences in the population.)  

• Literature has focused on the losses of the player 2’s. 

• But the “self-confirmed” losses of the player 1’s are on 

average 3-5 times greater than the losses of the second mover. 

• These losses are not consistent with Nash or Bayesian 

equilibrium with correct beliefs about the distribution of 

player 2 preferences. 
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Centipede game:  McKelvey-Palfrey [1992]  

 

• Players take turns choosing “stop” or “continue.” 

 

• If they continue, the social value doubles. 

 

• It is better to stop today if you expect the next player to stop. 

 

• If the last player only cares about money payoffs, she will 

stop; backwards induction then implies that players should 

stop at every node.   
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Given the play in the experiment, the best choice for player 1's is 

to continue at both information sets, and the player 2’s should 

continue at their first information set. 

 

Most player 1’s continue at the first information set: the ones 

who stop (and so play according to backwards induction)  are 

making a mistake given actual play. 

 

The observed heterogeneous play in this game is not consistent 

with Nash equilibrium, nor with unitary SCE, but it is consistent 

with heterogeneous SCE. For example, a player 1 who always 

plays stop  will not learn that continue  is better.    
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General Point:  Heterogeneous beliefs about off-path play are 

important in explaining data from game theory experiments, 

especially in cases where subjects have doubts about each other’s 

preferences.  

 

 

 

And in many lab settings it is hard to see how the subjects could 

know the distribution of opponents’ preferences since even the 

experimenters don’t. 
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V. Learning Off-Path Play 

 

• Self-confirming equilibrium is consistent with passive 

learning.   

• Rational learning does lead to Nash equilibrium if  subjects 

get “enough” information about off-path play, either 

exogenously or by experimenting” with off-path actions.   

 

• One simple condition for learning to rule out non-Nash 

outcomes: suppose agents “experiment” at  rate 1/t  with 

actions that don’t maximize short-run expected payoff given 

beliefs. (Fudenberg and Kreps [1988]). 
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Reason: To rule out convergence to non-Nash outcomes, it is 

enough that players have correct beliefs about play at any 

“relevant” information set- these are the information sets that can 

be reached if any one player unilaterally deviates from the 

equilibrium path.  

 

With the “1/t  experimentation rule,” these relevant information 

sets are reached infinitely often   

( 
1

1/
t

t

∞

=

= ∞∑  and Borel-Cantelli).  

 

Asymptotic empiricism and the law of large numbers: 

If players get an infinite number of observations of play at an 

information set, their beliefs about play at that information set 

become correct, which rules out the non-Nash outcome here:. 
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Although 1/t  experimentation implies that every “relevant” 

information set is hit infinitely often,  it does not imply that  

imply all  information sets are reached infinitely often,  because  

2

1

1/
t

t

∞

=

≠∞∑ . 
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Thus 1/t  experimentation leads to correct beliefs about what 

happens following a single deviation from the equilibrium path, 

but  needn’t lead to correct beliefs at every information set. 

 

Backwards induction/subgame perfection implicitly suppose that 

beliefs are correct at every information set. 

 

In last example player 2 can learn player 3’s play if 2 

experiments “more” than 1/t . 

 

Note:  Bayes-rational agents won’t choose to experiment at 

random.  

 

Question: How much experimentation will agents choose to do, 

and which information sets will they learn about? 
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Bayes-rational learning: 

• Agents are utility maximizers.  

• They know they will play the game many times, and try to 

maximize the expected discounted value of their payoffs.   

• Know the extensive form of the game (except perhaps the 

distribution of Nature’s moves) and are trying to learn the 

distribution of opponents’ play 

 

Strategic myopia: Agents believe the distribution of aggregate 

play is exogenous and they don’t try to influence it. 

 

They also believe that the distribution of play is in a steady state, 

and the prior over steady states is “non-doctrinaire.” So beliefs 

are asymptotically empirical. 
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Each agent faces a sort of “multi-armed bandit.” 

(with some additional structure from knowing the extensive form 

of the game.  e.g. if 2 and 3 move simultaneously then 1 knows 

their play is uncorrelated.) 

 

In bandit problems a patient agent will do some “experimenting” 

with choices that don’t maximize the current period’s expected 

payoff. 
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Example of one-armed bandit:    

“Out” give a sure payoff of 1;  

“In” gives either always gives 2 or always gives 0.  

 

If only play once, and the probability of “always 2” is .4, then 

choose “Out.”  (.4 2 .8 1× = < ) 

 

Now suppose play repeatedly. 

Only see the outcome if pull the arm. 

So it might be worth playing “In” once to see. 
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If future payoffs are discounted by .9δ =  per period then : 

 

• Always  Out” has payoff 1/.1=10; 
• “Always In” has expected payoff   .4x2/.1= 8, 

• “ Try In once then switch to Out forever if get 0” yields  

 

.6 .9 10 .4 20 13.4× × + × = . 

 

Here playing “In” is an experiment: it doesn’t maximize the 

current period’s expected payoff but it is worth doing for the 

information it provides. 

 

Note that for given prior and almost all discount factors, the agent 

strictly prefers  one of these choices- so will not  randomize.
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What if the true payoff distribution is stochastic? 

 

Now a  single observation doesn’t reveal the true probability, and 

the solution is more complicated.  

 

• Sufficiently patient agents will still do some “experimenting” 

with In. 

 

• A sufficiently long string of bad outcomes will make agents 

so pessimistic they switch to Out- and once they do they  

receive no further information and so “lock on” to Out. 

 

• When payoffs are stochastic agents can end up locking on to 

Out when In is optimal. 
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• The probability of this incorrect lock-on depends on the 

discount factor and the prior. 

   

• When agent is more patient it experiments more,  so there is  

lower probability of incorrect lock-on. 
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Now apply these ideas to learning in games:  

 

We could expect that once agents have enough data the play a 

myopic best response to their beliefs (since they don’t expect to 

learn much from future signals): 

asymptotic myopia.  

 

Could also hope that if agents are very patient, they  will with 

high probability learn play at relevant information sets. 

 

So conjecture that in general Bayesian learning leads to self-

confirming equilibrium, and to Nash equilibrium if there is agents 

are patient.   

To verify this,  need to be more concrete about the model of the 

overall population of agents.   
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Steady State Learning (Fudenberg-Levine [1993b, 2006] 

 

• A continuum population, with a unit mass of agents in each 

player role: aggregate behavior is deterministic. 

• Agents live T periods, in overlapping generations: 1/T  

players in each generation. 

• Every period, each agent is randomly matched with one agent 

from each of the other populations.  (So the probability of 

meeting an agent of a particular age is equal to 1/T .) Agents 

do not observe the ages of their opponents.) 

• Each time they play the game, agents observe the terminal 

node- this is all the information they get.   



 35 

• This system has steady states. (learning and forgetting) 

 

• The steady state for 1T =  isn’t very interesting. 

 

• To analyze the effect of learning we study steady states 

when T  is large. 

 

• Here most agents will have played a long time and so 

have a lot of observations. 

 

. 
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Results:  

 

• A limit of steady states as lifetimes grow to infinity must be a 

SCE. 

 

Note: Different priors can lead to different steady states. 

 

•  As lifetimes grow and the discount factor tends to 1, any 

limit of steady states  is a Nash equilibrium. 

 

Again, different priors lead to different steady states. 
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Intuition/sketch for why steady states for long lifetimes are SCE: 

 

a) If strategy s  is played in the limit,  it is played by a positive 

fraction of the population a positive fraction of their life.   

 

b) Most agents who have played this strategy many times have 

correct beliefs about its consequences, because   

i) posteriors converge to  the  empirical distribution at 

uniform rate (Diaconis and Freedman [1990]) and 

ii) empirical distribution looks like theoretical one.  

 

c)  “Lock on”: Agents eventually stop experimenting and play 

myopic BR to beliefs.  Need to account for players 

knowledge of  the extensive form… 
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Intuition for why limits with patient players are Nash equilibria:   

 

At steady state that isn’t a Nash equilibrium, some agents who 

move on the path of play have a gain to deviating.  

 

So observations are unlikely to make them believe the gain to 

deviating is very close to zero, yet patient players will keep on 

experimenting when they believe the probability of a profitable 

deviation is non-zero. 

 

So when agents are patient, and have a gain to deviating, they are 

likely to keep on experimenting until they see that their beliefs 

are wrong. 
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The converse of this result is false: Not all of the Nash equilibria 

can be limits of steady states with patient learners.  

 

Just which equilibria can arise depends on how much agents learn 

about play two or more nodes off of the path of play, and thus on 

how much experimenting the agents do at “off-path” information 

sets.  

 

The answer is only known for simple games, which are games of 

perfect information (every information set is a singleton)  where a 

no player moves more than once on any path. 

 

Node x  is one step off the path of strategy profile s if it is an 

immediate successor of a node that is reached with positive 

probability. 
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Profile s  is a subgame-confirmed equilibrium if 

  

1) It is a Nash equilibrium and  

 

2) In each subgame beginning one step off the path, the 

restriction of  s to the subgame is a self-confirming equilibrium in 

that subgame.  
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Paraphrase of Result:  In simple games,  a pure-strategy  

subgame-confirmed  equilibrium has the same outcome as  a limit 

of steady states for patient learners. 

 

Intuition: Players who move on the equilibrium path experiment, 

so they learn play at nodes one step off the path.  

 

Players one step off the path learn what happens from there on if 

no one experiments. (This is why the outcome is a  SCE in the 

continuation game. ) 

 

But these off-path players needn’t experiment, because they may 

get to play too rarely to make it worthwhile. So even with patient 

players, play does not need to be a Nash equilibrium one step off 

of the path.  
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This  may help explain the apparent durability of the one of the 

laws of Hammurabi: 

 

“If any one bring an accusation against a man, and the accused 

go to the river and leap into the river, if he sink in the river his 

accuser shall take possession of his house. But if the river prove 

that the accused is not guilty, and he escape unhurt, then he who 

had brought the accusation shall be put to death, while he who 

leaped into the river shall take possession of the house that had 

belonged to his accuser.”  

 

• This code suggests there were incentive problems with false 

accusations. 

• Seems to rely on the superstition that the guilty are more 

likely to drown than the innocent.    
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If there are no limits on superstitious, why didn’t Hammurabi  

simply assert that those who are guilty will be struck dead by 

lightning, while the innocent will not be? 

 

Our explanation: the wrong belief in the lightning-strike 

superstition is one step off of the path, and so is not robust to 

learning by patient players. 

 

But the wrong belief in the trial-by-river superstition is two steps 

off of the path: Potential accusers have wrong beliefs about the 

river, yet they only get to act when a crime takes place.  If the 

superstition is believed,  only young experimenters commit 

crimes,  so there are few crimes, and accusers only get to play 

infrequently, so there is little value to experimentation. 
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In practice, there may be other sources of experimentation in 

addition to rational learning. 

 

For example, there might be an exogenous probability that crime 

does pay… 

 

In the Hammurabi game, if the exogenous probability of crime is 

sufficiently low, then the probability of being called as a witness 

is also small, and for any fixed discount factor the incentive to 

experiment with false accusations is small.  

 

In the U.S. today,  the probability of being called as a witness at a 

trial is small; most people are not called even once in a lifetime. 

So witnesses don’t have much incentive to experiment… 
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 Summary: False beliefs two or more steps off of the equilibrium 

path are able to persist for much longer than false beliefs about 

play on or one step off of the path.  

 

This may be linked to the durability of the “appeal to the river” 

superstition. 

 

Even when long-run outcome involves enough experimenting to 

rule out non-Nash outcomes, this may take some time. 
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 Conclusions:  

If equilibrium is the result of learning, then  

 

• Just what sort of equilibrium to expect depends on what 

players observe when the game is played.   

• The nature of equilibrium should be a theorem- derived from 

assumptions about the learning process- and not an axiom. 

• If players have little prior information about opponents’ 

payoffs and do not experiment very much then learning 

theory points to self-confirming equilibria.  

• Learning plus substantial experimentation with off-path play 

leads to Nash and then subgame-confirmed Nash equilibrium  

(in simple games, but the analog for general games is open.)  

But even in this case non-Nash  but self-confirming play may 

persist for a while. 
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