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Preliminary reading

The mathematics part of Paper 3 assumes that students are familiar with the material set out below

(which is basically the content of the Core Mathematics modules C1 – C4 of a standard A-Level

Mathematics course):

Sets, notation and basic facts; Definition of integers, rational and real numbers; In-

dices; Pairs of simultaneous linear equations; Quadratic equations; Graphs of linear

and quadratic equations, and simple coordinate geometry; Definition of function, do-

main, range and inverse function, composition of functions; An intuitive notion of limits

and continuity; Differentiation and its geometric interpretation, rate of change; Natural

logarithm and exponential function; Differentiation of natural log and exponential func-

tions; Product, quotient and chain rules for differentiation; Differentiation of polynomial

functions; Multi-variable functions and partial derivatives; Integrals as antiderivatives,

definite integrals; Sequences, series, sum of geometric progression; Unconstrained opti-

misation of a function of one variable; integration of 1/x and exponential function; Inte-

gration by substitution and by parts; Vectors (addition, subtraction and scalar product).

You don’t have to revise all of the above, but a careful revision of chapters 1, 2, 3 of Sydsaeter

& Hammond’s Essential Mathematics for Economics Analysis (8th edition) is essential.

1 Real numbers and real tuples

We denote by R the set of real numbers. We typically visualise real numbers as points on a line

which we will refer to as the real line. The distance between the points x and y on the real line

will be |x− y|.

1.1 The least upper bound property

A subset S of R is called bounded above if there exists a number B greater than or equal to all

elements of S. R satisfies the so-called least upper bound property which states that:

If a subset S of R is bounded above, then it has an upper bound which is smaller than all other

bounds, that is, there exists b such that

• x ≤ b for all x ∈ S, and

• if x ≤ B for all x ∈ S, then b ≤ B

This bound b is called the least upper bound (lub) of S. Another name for lub is supre-

mum.

If the supremum of a set belongs to the set itself, then it is necessarily the maximum (greatest)

element of that set. Note that a set being bounded above does not imply that the set necessarily

has a maximum. For example the open interval (0, 1) in R is bounded above, but does not have a

maximum element. 1 is its supremum.

Analogously, we can define the notion of being bounded below and the related greatest lower

bound property. The greatest lower bound of a set is also called its infimum.

Finally, a set S in R is called bounded if there exists B such that |x| ≤ B for all x ∈ S.

1.2 The set of ordered real pairs: R2

We denote an ordered pair of real numbers by (x1, x2), where x1 ∈ R is called the first entry,

and x2 ∈ R is called the second entry. The set of all ordered pairs of real numbers is nothing but

the cartesian product of R with itself. That is, R× R, also denoted by R2:

R2 = {(x1, x2) | x1 ∈ R, x2 ∈ R}
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The term ‘ordered’ is to remind us that (3, 5) is not the same as (5, 3).

Similar to our visualisation of R as a line, we will visualise R2 as a plane, and on this plane we

will often draw two lines explicitly:

• {(x1, 0) | x1 ∈ R} called the horizontal axis

• {(0, x2) | x2 ∈ R} called the vertical axis

The point (0, 0), also denoted 0 or simply 0, is called the origin.

We can appeal to geometry to extend our notion of distance from the real line (a visualisation

of the set R) to the real plane (a visualisation of the set R2). And then take that geometric notion

of distance between two points x = (x1, x2) and y = (y1, y2) (provided by Pythagoras) and use

that very notion as the distance between two points x and y in R2.

dist((x1, x2), (y1, y2)) =
(
(x1 − y1)2 + (x2 − y2)2

)1/2
This also suggests a generalisation of the notion of absolute value that applies to R2. Given two

points x = (x1, x2) and y = (y1, y2) in R2, let’s define x− y as (x1 − y2, x2 − y2). If we define the

norm of a point a = (a1, a2) in R2 as
√
a2

1 + a2
2 and denote it by ‖a‖, then

dist(x,y) = ‖x− y‖ = ‖(x1 − y1, x2 − y2)‖ =
(
(x1 − y1)2 + (x2 − y2)2

)1/2
1.3 The set of ordered n-tuples

If we can talk about pairs, why not also define n-tuples of real numbers? That is, ordered strings

of n reals:

Rn = {(x1, x2, . . . , xn) | xi ∈ R for all i = 1, . . . , n}

We will also refer to such n-tuples as points in the n-dimensional real space. We define the

following algebraic operations for points in Rn. For every x,y ∈ Rn and λ ∈ R:

• (x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)

• λ(x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn)

The norm of a point x = (x1, . . . , xn) in Rn is defined as

‖x‖ =
(
x2

1 + · · ·+ x2
n

)1/2
and the distance between two points x and y in Rn is given by

dist(x,y) = ‖x− y‖ =

(
n∑
i=1

(xi − yi)2

)1/2

Note that the norm of a point is its distance from the origin.

A convention is to treat the cartesian product Rm ×Rn as Rm+n. This is quite intuitive as the

first set is a set of ordered m-tuples, and the second set is a set of ordered n-tuples. An ordered

pair of an m-tuple and an n-tuple can be seen as an m+ n-tuple:

((x1, . . . , xm), (x̃1, . . . , x̃n)) = (x1, . . . , xm, x̃1, . . . , x̃n)

= (x1, . . . , xm, xm+1, . . . , xm+n) where xm+i = x̃i for all i = 1, . . . , n

1.4 Open, closed, and compact subsets of Rn

The ε-neighbourhood of a point a in R (also called the open ball with centre a and radius

ε) is the set of all real numbers which are less than ε away from a. In other words, it is the open

interval (a− ε, a+ ε).

This definition of a neighbourhood can be generalised to Rn word-by-word:
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The ε-neighbourhood of a point a in Rn (also called the open ball with centre a and

radius ε) is the set of all points in Rn which are less than ε away from a. In other words,

N(a, ε) = {x ∈ Rn | ‖x− a‖ < ε}

We refer to any such set as an open ball around a.

A point s is called an interior point of a set S ⊆ Rn if there exists an open ball around s all

of which is contained in S.

The set of all interior points of S is called the interior of S, and is denoted by int(S).

For example the interior of the closed interval [0, 1] is the open interval (0, 1).

A subset S of Rn is open if every point in S is an interior point of S.

In other words, S is open if and only if for every x ∈ S, there exists r > 0 such that N(x, r) ⊆ S.

Note that a set is open if and only if it is equal to its interior.

For example, open intervals in R, and more generally open balls in Rn are open sets. The empty

set is also open since the condition of being open is automatically satisfied (since there is no point

in the empty set, the condition becomes vacuous). The set Rn is open too. The union of open sets

is open.

A subset S of Rn is called closed if its complement (i.e., Rn\S) is open.

Most calculus textbooks define closed sets via limits. The above definition is, in some sense,

cleaner, but for our purposes the limit based definition is sufficient. So we will revisit closed sets

with another definition later.

It is worth noting that a set which is not open is not necessarily closed. For example the interval

[0, 1) in R is neither open nor closed. It is not open because, no neighbourhood of 0 is contained

in this set. It is not closed, because no neighbourhood of 1 is contained in its complement (which

renders the complement “not open”).

A set consisting of a single point is closed. The empty set is also closed. The empty set and Rn
are the only sets in Rn which are both open and closed.

A subset S of Rn is said to be bounded if there exists B such that ‖x‖ ≤ B for all x in S. If a

set S in Rn is both closed and bounded, then it is called compact.

1.5 Convex sets in Rn

A subset K of Rn is called convex if for every x and y in K, and every λ ∈ [0, 1], we have

λx+ (1− λ)y ∈ K.

Moreover, we call K strictly convex if for every x and y in K, and every λ ∈ (0, 1), the point

λx+ (1− λ)y is an interior point of K.
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2 Functions

Functions summarise/capture/report relationships between two or more “variables”. Writing down

a function which specifies/describes a relationship between one variable and another doe not imply

or assume causality, does not necessarily provide some structural explanation. A function simply

keeps track of the relationship.

2.1 Basic definitions

When we speak of a function, we have two sets and a “rule/mapping” in mind. That is, a function

is not only the “rule” that describes what is mapped to what (i.e. the relationship), but also the

specification of the domain and the codomain.

f : A −→ B

a 7−→ b

This notation means: for every element a of A, there is an element in B which is called the

image of a under f . We denote by f(a) the image of a under f . If b = f(a), one can also say “f

sends a to b” or “f maps a to b”, etc.

The set A is called the domain of the function f . And the set B is called the codomain.

We can also talk about the image of a set S under f , which is nothing but the collection of

the images of the elements in S. I.e., if S is a subset of the domain, then

f(S) = {f(x)| x ∈ S}.

Given a function f : A→ B, the image of the domain is called the range of f .

A function f : A→ B is called one-to-one (or 1-1, or injective) if for any a, a′ ∈ A

f(a) = f(a′) =⇒ a = a′

or equivalently

a 6= a′ =⇒ f(a) 6= f(a′)

That is, two distinct elements of the domain are never mapped to the same image.

A function f : A→ B is called onto (or surjective) if for each b ∈ B, there is a ∈ A such that

f(a) = b.

The inverse image of b under f is the set of elements in A which are mapped to b:

f−1(b) = {a | f(a) = b}

If f : A → B is 1-1 and onto, we can talk about its inverse function, denoted f−1, which is

the unique function from B to A pinned down by

f(f−1(b)) = b for all b ∈ B and f−1(f(a)) = a for all a ∈ A.

We say f : A→ B and f−1 : B → A are the inverses of each other.

Simple algebra of functions. If a set B admits basic algebraic operations such as addition and

multiplication (e.g., if B is the set of real numbers), we can extend such rules to the set of functions

from A to B. In other words, given functions f and g from A to B,

• The sum of two functions f and g is another function from A to B, denoted f+g, and defined

by (f + g)(a) = f(a) + g(a) for all a ∈ A.

Likewise,

• The product of two functions f and g is another function from A to B, denoted fg, and

defined by (fg)(a) = f(a)g(a) for all a ∈ A.

6



• The product of a function f with a scalar b in B is another function from A to B, denoted

bf , and defined by (bf)(a) = bf(a) for all b ∈ B and all a ∈ A.

Composition of functions. Given functions f : A → B and g : B → C we define the function

g ◦ f : A→ C by setting

(g ◦ f)(a) = g(f(a)) for all a ∈ A

For example, given a one-to-one and onto function f : A→ B, composing f with its inverse f−1

would yield the identity function:

f ◦ f−1 = idB : B → B where idB(b) = b for all b ∈ B

and

f−1 ◦ f = idA : A→ A where idA(a) = a for all a ∈ A

Note that unless A = B, the functions f ◦ f−1 and f−1 ◦ f are not the same functions. They

are both identity functions, but they do not have the same domain.

2.2 Sequences

A sequence with values in set A is nothing but a function f : N → A, where N stands for the

set of natural numbers (non-negative integers). The custom is to use a different notation though.

Instead of using parentheses, we will use subindices: e.g., instead of writing f(n), we will write an,

and the sequence will be denoted (an). We will refer to an as the n-th term of the sequence. (There

is nothing special about the letter “a” here. It just seems like a reasonable notation given that the

sequence takes values in a set denoted by the letter “A”.)

We will be dealing mainly with sequences with values in real numbers (or later in the course

with values in Rm for m > 1).

If (nk) is an increasing sequence of positive integers, then ank is called a subsequence of (an).

For example, if we set bn = a2n, then (bn) would be a subsequence of (an).

A real-valued sequence is non-increasing if an+1 ≤ an for all n ∈ N. Likewise, we say a

sequence is non-decreasing if an+1 ≥ an for all n. Of course, a sequence can be neither. If a

sequence is non-increasing or non-decreasing, then it is called monotone.

A real-valued sequence (an) is said to be bounded if there exists B such that |an| ≤ B for all

n. Analogously, a sequence (an) with terms in Rn is called bounded if there exists B such that

‖an‖ ≤ B for all n.

2.3 R→ R functions

When we refer to the class of R → R functions, we actually have a larger class of functions in

mind, namely real-valued functions of one real variable. The analysis we are developing will

typically concern functions whose domain might be smaller than R, for example, functions the like

f : R≥0 → R given by f(x) = 1/x.

Given a function f : D → R, where D ⊆ R, we will say

• f is non-decreasing on D if for every a, b ∈ D, we have a > b implies f(a) ≥ f(b)

• f is increasing on D if for every a, b ∈ D, we have a > b implies f(a) > f(b)

• f is non-increasing on D if for every a, b ∈ D, we have a > b implies f(a) ≤ f(b)

• f is decreasing on D if for every a, b ∈ D, we have a > b implies f(a) < f(b)

• If f satisfies any of the above, it is called monotonic
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We say f : D → R is bounded above on E ⊆ D if there exists a number b̄ such that f(x) ≤ b̄
for all x ∈ E. Likewise, we say f is bounded below on E ⊆ D if there exists a number b such

that f(x) ≥ b for all x ∈ E. If f is both bounded above and below, it is simply called bounded.

For example, f : R → R given by f(x) = −x2 is bounded above on R, is bounded below on every

finite interval I ⊂ R, but is not bounded below on R or on R− or on N.

We say f is single-peaked on D if there exists p such that f is non-decreasing on the left hand

side of p, and non-increasing on the right hand side of p. That is, for every a, b ∈ D, if a < b ≤ p

then f(a) ≤ f(b); and if p ≤ a < b, then f(a) ≥ f(b).

2.4 Graphs of R→ R functions

Plotting the graph of a function from R to R amounts to creating a visualisation, a picture of the

following subset of R2

Graph(f) = {(x, f(x)) | x ∈ R}

on the real plane.

Obviously, if the domain of f is D ⊂ R, then its graph is the picture of

Graph(f) = {(x, f(x)) | x ∈ D}

on the real plane.

A function which looks like

f(x) = ax+ b where a 6= 0

is also called a linear function, because if we plot its graph, that is, if we draw the picture of the

following set in R2

Graph(f) = {(x, ax+ b) | x ∈ R}

in the real plane, we get a line that crosses the vertical axis at (0, b) and the horizontal axis at

(−b/a, 0).

A quadratic function looks like

g(x) = mx2 + nx+ p where m 6= 0

and the graph of a quadratic function is called a parabola.

Note on graphs of inverse functions: If a function f maps a to b, and if f has an inverse

function f−1, then by definition f−1 maps b to a. Bringing this fact into the graphs, we can see

that the graph of f−1 can be obtained by reflecting the graph of f about the 45o line that goes

through the origin. In other words, in the x-y coordinate plane, the graph of f is the mirror image

of the graph of f−1 if we think of the x = y line as the mirror.

What’s the point of being able to plot graphs by hand? Especially when a cheap calculator

can plot them in an instant... we are less interested in the end product (a graph), than the

process (developing a feel for a function). For example, when sketching the graph of a function, we

examine several properties of the function: where it is increasing or decreasing, its critical points,

its behaviour for arbitrarily large values of x (i.e., asymptotic behaviour as x → ±∞), the points

around which its value grows arbitrarily (vertical asymptotes), and so on. These qualitative features

are what we care about, and we want the graph to illustrate these features (as opposed to the graph

being drawn to prefect scale).

In addition to the graphs of R → R functions, we will also be interested in the graphs of sets

(e.g., the set of points which satisfy a given set of equations of inequalities.) Take, for example,

the set C defined as the solutions (x, y) ∈ R2 to the equation x2 + y2 = 4. The graph of C is

the circle with centre at (0, 0) and radius equal to 2, and for brevity we usually refer to C as a

circle. Graphs of “constraint sets” defined by equalities or inequalities (such as budget sets and

indifference curves) can often help us understand economic problems.
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2.5 Polynomials and polynomial functions

An nth degree polynomial with real coefficients is the following object

anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where a0, a1, . . . , an ∈ R such that an 6= 0. These numbers an, . . . , a0 are called the coefficients of

the polynomial. an is called the leading coefficient of P .

Each polynomial P = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 corresponds to a polynomial function

P (·) : R→ R in an obvious manner which maps

x 7−→ P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

A number r is called a root of a polynomial P if P (r) = 0.

If P (r) = 0, then the polynomial P is divisible by (x− r), meaning it can be written as

P (x) = (x− r)Q(x)

where Q is an (n− 1)st degree polynomial.

An nth degree polynomial P has at most n roots. If P has n distinct real roots r1, . . . , rn, and

if its leading coefficient is an, then

P (x) = an(x− r1)(x− r2) · · · (x− rn)

The expression on the right hand side above is called the factorisation of polynomial P . Each

x− ri is called a factor of P .

The nth binomial (x+ 1)n is

xn +

(
n

n− 1

)
xn−1 +

(
n

n− 2

)
xn−2 + · · ·+ x2

(
n

2

)
+ x

(
n

1

)
+ 1

where (
n

k

)
=
n(n− 1)(n− 2) · · · (n− k + 1)

k(k − 1)(k − 2) · · · 1
We read the above expression as “n choose k”. Using the factorial notation

n! = n× (n− 1)× (n− 2)× · · · × 3× 2× 1

we can rewrite “n choose k” as (
n

k

)
=

n!

(n− k)!k!
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3 Limits

A-level mathematics might not discuss limits explicitly, but it does use the intuition behind limits

in its interpretation and (admittedly vague) definition of differentiation. Now, before we get into

the notion of a limit of an R → R function, there is in fact an even simpler context in which

we can formally introduce limits. When we talked about the idea that irrational numbers can be

approximated by rational numbers, we gave a constructive procedure to “get closer and closer” to a

given irrational number using only rational numbers. That actually was an example of a sequence

with a limit, and if we really wanted to construct irrational numbers formally, we could do so with

the aid of limits. But all that rests on a well-defined notion of a limit of a sequence.

3.1 Limits of R-valued and Rn-valued sequences

A real valued sequence (ak) is said to converge to L if for each ε > 0,

there exists K such that k > K =⇒ |ak − L| < ε.

That is, however small the given ε is, eventually all terms of the sequence are within the ε-

neighbourhood of L. Pay attention to the wording: after which term the sequence is trapped in to

the ε-neighbourhood of L can (and will typically) depend on ε. The smaller the ε, the bigger K

might need to be. But, the key is, for every ε > 0 , we can indeed find a K that works.1

For example, suppose a0 = 1 and ak = 1/
√
k for k > 0. It is not hard to guess that ak → 0.

Let’s prove this. Given any ε, can we find a corresponding K such that all terms of the sequence

after the K-th term are in the ε-neighbourhood of 0? Well, what does it mean for ak to be in the

ε-neighbourhood of 0? It means

|ak| < ε, that is,
1√
k
< ε which is equivalent to k >

1

ε2

If we choose K to be an integer larger than 1
ε2 , then any k larger than K is automatically larger

than 1
ε2 , and hence |ak| < ε. Done!

We say L is the limit of sequence (ak) as k approaches to infinity. There are two common

notations to express this, and you will see both, sometimes in the same text:

lim
k→∞

ak = L and ak → L both mean the same thing.

If a sequence does not converge to any L in R, we say that the sequence diverges. But it is

useful to distinguish two types of divergence:

Diverging to ∞ or to −∞. We say that (ak) diverges to infinity if

for every bound M > 0 there exists an index K > 0, such that k > K =⇒ ak > M.

Similarly, we say that (ak) diverges to minus infinity if

for every bound M < 0 there exists an index K > 0, such that k > K =⇒ ak < M.

Diverging without a clear trend. If a sequence diverges, but not to ∞ nor −∞, then we have

even less to say about its “long-run trend”. In order to illustrated this sort of divergence, consider

for instance the sequence defined by ak = (−1)k which alternates between 1 and −1.

1While ε-δ arguments are not examinable, it is crucial to have at least an intuitive/geometric understanding of
limits of sequences to be able to guess/calculate limits for the types of example we frequently encounter in our simple
economic models. In what follows, formal ε-δ arguments are included when such arguments are fairly simple and
instructive for those who are keen to understand the ideas behind the related statements.
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For Rn-valued sequences

The same definition, phrased via neighbourhoods, applies: we say an Rn-valued sequence (ak)

converges to a if

∀ε ∃K such that k > K =⇒ ‖ak − a‖ < ε

Note that we used a superscript as opposed to a subscript when referring to the kth element of the

sequence. This is simply to avoid a messy notation if we want to write each element (a point in

Rn) explicitly as in ak = (ak1 , a
k
2 , . . . , a

k
n).

A set S ⊆ Rn is closed if and only if every convergent sequence with elements in S converges

to a point in S.

The above statement can be taken as the definition of set in Rn being closed. Or alternatively,

one can take the definition as being the complement of an open set, and show that it is equivalent

to the above definition.

3.2 Limit of an R→ R function

If we evaluate a function in smaller and smaller neighbourhoods of a point a, is it the case that the

values are trapped in smaller and smaller neighbourhoods of a particular number? The existence

of a limit of a function is concerned with this question.

We say the limit of a single-real-variable, real-valued function f as x approaches to a is L if

given any neighbourhood of L, there exists a corresponding neighbourhood of a such that all x 6= a

in the latter neighbourhood are mapped to the given neighbourhood of L.

In other words the limit of a function f as x approaches to a is L if the following statement

holds:

Given whatever ε > 0, there exists a δ > 0 such that

0 < |x− a| < δ =⇒ |f(x)− L| < ε

When this is the case, we write limx→a f(x) = L.

Note that the existence of this limit as x approaches to L makes no reference to the value of the

function at a. It only requires those points “close to a” to be mapped “close to L”. In fact, it is

possible that f is not even defined at the point a.

Sometimes we focus on the behaviour of the function only on one side of the point of interest.

We might ask what happens to f(x) as x gets closer and closer to a, but always from the right hand

side. This focus motivates the weaker concept of one-sided limits.

We say the right limit of f as x approaches to a is L if

∀ε ∃δ such that 0 < x− a < δ =⇒ |f(x)− L| < ε

The notation for L being the right limit of f as x approaches to a is limx→a+ f(x) = L.

Analogously, the left limit of f as x approaches to a is L if

∀ε ∃δ such that 0 < a− x < δ =⇒ |f(x)− L| < ε

The notation for L being the left limit of f as x approaches to a is limx→a− f(x) = L.

For an example of all these concepts, consider the function

f : R<0 ∪ R>0 → R where f(x) =
|x|
x

which does not have a limit as x → 0, but its right limit at 0 is equal to 1, and left limit at 0 is

equal to −1.
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We say a function f is continuous at a if limx→a f(x) = f(a).

Moreover, we say f is continuous over a set A if it is continuous at every point a ∈ A.

Note that the definition of a limit phrased in the language of neighbourhoods can be automati-

cally extended to functions from Rn to Rm. We say the limit of f as x approaches to a is equal to

L if given any ε-neighbourhood of L, there exists a δ such that all x 6= a in the δ-neighbourhood

of a are mapped into the ε-neighbourhood of L:

∀ε ∃δ such that 0 < ‖x− a‖ < δ =⇒ ‖f(x)−L‖ < ε

The concept of limit is critical in formalising a key notion, used extensively in economics: that

is, the notion of marginal. The language of the marginal requires us to look at what happens “at

the margin” of a point of interest. For example, how does a consumer’s taste change when she is

“very close” to the point of spending all of her income? Note, however, that the adjectives “close”

or “small” have no descriptive meaning on their own. They can only make sense in relative terms.

What do we mean, then, when we say “at the margin” or “for small changes”?

3.3 Some key results about R-valued continuous functions

Back in subsection 2.3 we defined what it means for a real-valued function to be bounded.

Extreme value theorem. A continuous function f defined on a closed interval [a, b] is bounded.

Moreover, it takes its minimum and maximum values over the interval.

In order to appreciate the above statement, note that it does not hold for an open interval.

Consider (and draw the graphs for) the functions f : (0, 1)→ R with f(x) = 1/x; and g : (0, 1)→ R
with g(x) = x. Now evaluate how the conclusion of the theorem fails for these two functions.

Intermediate Value Theorem. If f is continuous on [a, b], then f takes all the values between

f(a) and f(b).

For this theorem, the interval being closed is not of importance. One implication is that if

f is defined over an interval I, and its maximum and minimum values are given by M and m,

respectively, then f takes all the values between m and M . In other words, for every µ ∈ [m,M ],

there must be c ∈ I such that f(c) = µ.

3.4 Limits of a few familiar functions

Let’s begin with constant functions. If a function takes the same value at every element of its

domain, then it is called a constant function. When talking about functions from R to R, a

function which takes the value 5 at every point is also denoted by 5 even though this notation

occasionally leads to confusion, because 5 happens to be the symbol for a number as well. Having

said that this double usage of the same symbol both for a function and a number is more often

convenient than confusing. For example, if f : R→ R is given by f(x) = 0, we will simply refer to

this function as 0. Zero everywhere! It is almost immediate to verify that a constant function c has

the limit c at every point. (Can you check this?)

Here is a more complicated function, the so-called identity function from R to R defined by

f(x) = x. Once again, we might intuit that

lim
x→a

f(x) = lim
x→a

x = a = f(a)

and thus conclude that the identity function on R is continuous everywhere! (Once again, you

might want to verify the statement formally if you want to practise the use of the definition.)
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3.5 Algebra of limits

If limx→a f(x) = L and limx→a f(x) = M , then

• limx→a(f + g)(x) = L+M .

• limx→a(fg)(x) = LM

If we also have M 6= 0, then

• limx→a(f/g)(x) = L/M

Combining these with just the knowledge of the limit of the identity function and constant

functions, we can argue:

• Polynomial functions are continuous at every point of R.

• Rational functions are continuous at every point where they are defined.

3.6 Limits of composition of functions

Limits are all about getting close! They talk about tendencies. Say g tends to L as its argument

tends to a. And say f tends to M as its argument tends to L.

Well, then what would you expect from f ◦ g as its argument tends to a:

f(g(

goes to a︷︸︸︷
2 )︸ ︷︷ ︸

goes to L

) −→M

In other words:

lim
x→a

g(x) = L and lim
x→L

f(x) = M =⇒ lim
x→a

f(g(x)) = M

Proof. Given ε > 0, we’d like to show that there exists a δ such that

0 < |x− a| < δ =⇒ |f(g(x))−M | < ε

First, we know that for the same ε given above, there exists a ∆ > 0 such that

0 < |x− L| < ∆ =⇒ |f(x)−M | < ε

So what we need from δ is to make sure that |g(x) − L| < ∆ for 0 < |x − a| < δ. But since

g(x)→ L as x→ a, it is indeed possible to find such δ. And therefore

0 < |x− a| < δ =⇒ |g(x)− L| < ∆ =⇒ |f(g(x))−M | < ε

2

3.7 A quick detour around ∞
We have already formalised what it means for the argument of a function to go to ∞. However,

we haven’t given a clear definition of what it means to say a function is approaching to ∞ as its

argument approaches to this or that.2

What is ∞? Is it a number? Does it really exist? No, and yes, respectively.

∞ is not a real number. That is, it is not a member of R. Can we just add ∞ to this set and

talk about a new and larger set of numbers? If we really want, of course we can, but we need to

be careful, because ∞ does not behave like other numbers in algebraic operations. And, therefore,

2Likewise, we have formalised what it means for the terms of a sequence to go to ∞, but we haven’t given a clear
definition of what it means to say a sequence approaching to ∞
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we can’t really treat it as if it is a number as far as algebra goes in the way we have been used to.

And so much of our analysis relies on our ability to carry out algebra as we know it so far.

Since we can’t treat ∞ as we treat real numbers, let’s just not force “numberhood” on ∞ and

carry on. One way to think about ∞ is to observe that it summarises a particular behaviour of

a set of numbers. As such ∞ is a property which really describes something about a set. What

kind of set? What kind of behaviour? For example, if we say a sequence goes (diverges) to ∞,

what we mean is that given whatever bound, the terms of the sequence will eventually exceed that

bound. To make it more precise, given any B > 0, there exists k such that an > B for all n ≥ k. All

terms of the sequence will be larger than that bound B, once we look at the kth term and beyond.

What is k? That will depend on the sequence and the bound B. For example we might need a

bigger k as B gets bigger. The key is that, for every given B, there exists such a k.

Adapting this formalism to limits of functions, we say f goes (diverges) to infinity as x

approaches to a, and write

lim
x→a

f(x) =∞

if

for every given B, there exists δ > 0 such that 0 < |x− a| < δ =⇒ f(x) > B.

In other words, if you look at points close enough to a, the values of the function at those points

will be guaranteed to exceed M . How about the point a? Well, remember again that the limit of

f as x goes to a is a concept unrelated to what happens at the point a. Note that the requirement

f(x) > M is for those points which satisfy 0 < |x− a| < δ.

While we are at it, let’s also make clear what it means to say “as the variable (or the argument)

of the function goes to infinity, such and such happens”. We say f(x) approaches to L as x

approaches to ∞, and write

lim
x→∞

f(x) = L

if

given any ε > 0, there exists B such that x > B =⇒ |f(x)− L| < ε.

Note. We never say 1
0 is equal to ∞. Instead we would say “ 1

0 is not defined”. Likewise, we

would not (at least formally) write things like 1
∞ = 0. We would say: as x goes to∞, the expression

1
x goes to 0.

3.8 Limits of rational functions P (x)/Q(x) as x→∞
Say P (x) and Q(x) are polynomial functions of degree m and n, respectively, so they have the form:

P (x) = amx
m + am−1x

m−1 + · · ·+ a1x+ a0 and Q(x) = bnx
n + bn−1x

n−1 + · · ·+ b1x+ b0

where am and bn are non-zero.

The limit of P (x)/Q(x) as x→∞ is

lim
x→∞

P (x)

Q(x)
=


am/bn if m = n

0 if m < n

∞ if m > n and am/bn > 0

−∞ if m > n and am/bn < 0

By the way, you may treat all of these results as exercises and try to verify them.

The algebra of continuity

Following the so-called algebra of limits, it is immediate to conclude that continuity is a property

preserved by addition, multiplication, division, powers, inverses, and composition. To be more

precise, if f and g are functions continuous at x, then so is f ±g, fg and fg. If, moreover, g(x) 6= 0,

then f/g too is continuous at x. If f has an inverse over a neighbourhood of x, then the inverse of

f is continuous at f−1(x). Finally, if f is continuous at x and g is continuous at f(x), then g ◦ f is

continuous at x.
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4 Differentiation

An intuitive notion of differentiation (of R → R functions) as a measure of rate of change, its

connection with the graph of the function.

4.1 The derivative of an R→ R function

The derivative of a function f with respect to its argument (variable) is a measure of the rate of

change of f(x) in relation to changes in x. For example, if the argument of the function increases

from a to a+h, then the change in the value of the function is f(a+h)− f(a). Looking at the rate

of change is to have a measure of this change f(a + h) − f(a) with respect (in proportion) to the

change h in the argument of the function. That is, the derivative of the function aims to formalise

the following ratio
f(a+ h)− f(a)

h

In order to capture what the rate of change is exactly at the point a, we look at the above ratio

for smaller and smaller changes denoted by h. And if by looking at smaller and smaller h, a unique

number emerges, that is, if

lim
h→0

f(a+ h)− f(a)

h
exists

then we say this limit is the derivative of f at a and denote it with f ′(a).

Note that we can also write this limit as

lim
x→a

f(x)− f(a)

x− a

Differentiability implies continuity. That is, if f is differentiable at a, it must be continuous

at a. Why is that? Well just have look at the definition. The denominator of the fraction goes to

0 as x → a . If the fraction has any chance of having a limit, the numerator must also be going

to 0. That is we must have f(x) → f(a) as x → a, which is nothing but the definition of f being

continuous at a.

Linear approximations. Here’s another definition (or important interpretation) of derivatives.

The function f having a derivative at the point a can also be interpreted as f having a “reasonable

linear approximation” around the point a. What does a linear approximation mean, and what does

it mean for it to be reasonable? We would like a linear function, that is, something of the form

Mx+N which is

“sufficiently close” to f(x) when x is “close” to a

But what does that really mean? Surely, we should demand something better than “f(x)−(Mx+N)

goes to 0 as x− a goes to 0”, because even the constant function with M = 0 and N = f(a) would

satisfy that since f is continuous.

So we need the error term of our approximation

f(x)− (Mx+N)

not only to go to zero, but also to go to zero at a speed an order of magnitude faster than h =

f(x)− f(a) does.

More specifically, we want

the error term

h
→ 0 as h→ 0

And this quality of approximation is possible if f is differentiable at a. The function f has a

linear approximation around a, that is

f(a+ h) ≈ f(a) + f ′(a)h
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in the sense that

f(a+ h) = f(a) + f ′(a)h+ Error(h) where lim
h→0

Error(h)

h
= 0

The derivative of f : If we have the above limit for every x in a domain D of the function f ,

we say f is differentiable over the domain D. We write f ′ for the function which associates f ′(x)

to x, and call this function f ′ the derivative of f .

Leibniz notation for derivatives: Derivative of f with respect to x can also be denoted as

df

dx

Sometimes, we’d like to keep track of the name of the variable x separately from the particular

points at which we are analysing the function. This notation is useful:

df

dx

∣∣∣∣
x=a

to stand for the derivative of f with respect to x evaluated at the point a. In other words: f ′(a).

The advantage of the Leibniz notation is in reminding us what the differentiation variable is when

lots of symbols are floating around; a reminder especially handy when we are dealing with functions

of multiple variables.

4.2 The derivatives of two simple functions

The simplest of all R→ R functions is a constant function. Is this function differentiable anywhere?

Well, let’s remember the definition of what it means to be differentiable at a point a, and rephrase

that last question. Does the following limit exist:

lim
h→0

f(a+ h)− f(a)

h

The fact that f is a constant function implies, in particular, that f(a + h) = f(a) whatever h

is. Thus the above expression is nothing but

lim
h→0

0

h
= lim

h→0
0 = 0

So, yes, constant functions are differentiable everywhere, and their derivative is 0 everywhere.

Makes sense: constant means to change. Hence zero rate of change!

Our next function of interest is the identity function on R, that is f : R→ R with f(x) = x. Is

it differentiable anywhere? Just apply the definition, and ask if the following exists:

lim
h→0

a+ h− a
h

= lim
h→0

h

h
= lim
h→0

1

which obviously exists and is equal to 1 at every a. Thus, f(x) = x is a differentiable function with

the derivative being 1 everywhere.

4.3 Basic algebra of derivatives

We have already established that the derivative of a constant function is 0, and the derivative of x

is 1.

Given f and g differentiable at a, we have the following convenient results:

• (f + g)′(a) = f ′(a) + g′(a)
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• if c is a constant, then (cf)′(a) = cf ′(a)

• (fg)′(a) = f ′(a)g(a) + f(a)g′(a)

•
(
f

g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)

(g(a))2
as long as g(a) 6= 0.

Now, use these rules with the knowledge of the derivatives of constants and the identity function,

and you can calculate the derivative of all polynomials (and rational functions)!

In particular

• (xn)′ = nxn−1 for integers n ≥ 0

•
(

1

x

)′
= (x−1)′ = − 1

x2

•
(

1

xn

)′
= (x−n)′ = −n 1

xn+1
for integer n < 0

Actually, it looks like we can summarise all of the above in one expression

(xn)′ = nxn−1 for all integers n

Note: We must acknowledge that we have been a bit lazy in our notation above. In particular,

when we were talking about the function f(x) = xn, we just wrote xn. In doing so, we are keeping

in mind that x stands for a variable. These kinds of shortcuts in notation are convenient, but

sometimes potentially confusing.

4.4 Higher order derivatives

If f is differentiable everywhere in a domain, then we can talk about its derivative f ′ as another

function on this domain. Perhaps f ′ is also differentiable. If so, the derivative of f ′ is called the

second derivative of f . In general, if exists, we can talk about the nth derivative of f and denote

it by f (n), so

f (n)(x) = (f (n−1)(x))′

i.e., the nth derivative of f is the derivative of the (n− 1)st derivative of f .

Note, for example, that the kth derivative of the function f(x) = xn with n > 0 exists:

If f(x) = xn, then f (k)(x) =

{
n(n− 1) · · · (n− k + 1)xn−k if 0 < k ≤ n
0 if 0 < n < k

4.5 Composing functions, and the chain rule

For functions f : A → B and g : B → C, we can talk about the composed function g ◦ f : A → C

defined as

(g ◦ f)(x) = g(f(x))

The Chain Rule. If f is differentiable at x, and g is differentiable at f(x), then g ◦ f is

differentiable at x and

(g ◦ f)′(x) = g′(f(x))f ′(x).

The idea behind the chain rule. How does this come about? Since this is a rule we will be using

over and over and over, it is worth developing a feel for why it indeed holds. It is actually fairly

intuitive.

For small δ, we have

f(x+ δ)− f(x) ≈ f ′(x)δ and therefore f(x+ δ) ≈ f(x) + f ′(x)δ (?)
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Likewise, for small ∆ we have

g(y + ∆)− g(y) ≈ g′(y)∆ and therefore g(y + ∆) ≈ g(y) + g′(y)∆ (??)

First, g is continuous, so when δ is small, we can appeal to (?) to infer

g(f(x+ δ)) ≈ g(f(x) + f ′(x)δ)

If δ is small, we can treat f ′(x)δ as the small ∆ in (??), and set y = f(x), so (??) becomes

g(f(x) + f ′(x)δ) ≈ g(f(x)) + g′(f(x))f ′(x)δ

Combining the last two approximate equations:

g(f(x+ δ)) ≈ g(f(x)) + g′(f(x))f ′(x)δ

Rearranging this yields

g(f(x+ δ))− g(f(x)) ≈ g′(f(x))f ′(x)δ

and therefore we must have (g ◦ f)′(x) = g′(f(x))f ′(x). 3

4.6 The first order condition for optimisation

Recall the extreme value theorem which states that if f is a continuous function on [a, b], then f

attains its maximum and minimum values over this interval. That is, there exist points c and d in

[a, b] such that f(c) ≤ f(x) ≤ f(d) for all x ∈ [a, b].

Now suppose f is also differentiable on (a, b). If those points c and d are not the end points,

that is, if they are in (a, b), let’s look at the rate of change of f around c and d.

To begin with, look at c first. The fact that f is minimised at c when x varies over [a, b] implies

that

f(c+ h)− f(c) ≥ 0 for all h 6= 0

Dividing this expression by h 6= 0:

(?)
f(c+ h)− f(c)

h
≥ 0 for h > 0

(??)
f(c+ h)− f(c)

h
≤ 0 for h < 0

The fact that

f ′(c) = lim
h→0

f(c+ h)− f(c)

h

exists means both (?) and (??) approach to that same limit as h approaches to 0. (In the case of

(?), we are talking about positive values of h approaching to 0. In the case of (??), we are talking

about negative values of h approaching to 0.)

But (?) always stays ≥ 0 because the numerator is always non-negative, and the denominator is

always positive. Therefore it cannot approach to something negative. Likewise, (??) always stays

≤ 0 because the numerator is always non-positive, and the denominator is always positive. Thus it

cannot approach to something positive. So, given that both approach to the same limit (which is

f ′(c)), that limit has to be 0.

We can tell a similar story for the point d ∈ (a, b) where the function is maximised as x varies

over [a, b]. The only difference with the above analysis would be that (?) would now be ≤ 0, whereas

(??) would be ≥ 0. But the same logic will apply: if these expressions converge to the same number,

i.e., f ′(d), that number has to be 0.

In fact we can reach this conclusion at any point e ∈ (a, b) as long as e minimises or maximises

a differentiable function in a neighbourhood around e. In other words, e does not have to be the

point at which f is minimised or maximised for the above analysis to hold. It is sufficient for e to be
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an interior local minimum or an interior local maximum. How so? Well, suppose f takes its

minimum value over (e− δ, e+ δ) at the point e. Then we can carry out all of the above reasoning,

because as we look at smaller and smaller h, the points e − h and e + h are eventually in the

δ-neighbourhood of e. Thus we have the conclusion which is known as the first order condition

for a function’s minima and maxima.3

Theorem. Suppose a function is differentiable on some open interval containing the point d.

If d is a local minimum or a local maximum, then f ′(d) = 0

Rolle’s Theorem. If f is continuous on [a, b], differentiable on (a, b), and f(a) = f(b), then there

exists a point c ∈ (a, b) such that f ′(c) = 0.

This can be seen as an application of the EVT and the FOC. If f is constant over [a, b], then

its derivative is zero for all x ∈ (a, b). If it is not constant, then there exist points in (a, b), where f

takes greater or smaller values than f(a) = f(b). Say it takes higher values. Since f is continuous,

it attains its maximum value over this domain at some point, and that point cannot be a or b since

f takes higher values somewhere between a and b. Say c 6= a, b is where f takes its maximum value.

The FOC implies that f ′(c) = 0 2

The mean value theorem

Suppose we drove from Cambridge to London. The journey was exactly 60 miles long and it took

us exactly 1 hour to complete this journey. The speedometer must have shown 60 mph at some

point of the journey. That’s what the mean value theorem (MVT) says. Denoting an hour with the

unit interval [0, 1], let x ∈ [0, 1] stand for time since departure, and let f(x) stand for the distance

travelled in the first x hours of the journey. So we have f(0) = 0 and f(1) = 60. The speed of the

car at time x is the rate of change of the distance travelled with respect to time. That is f ′(x).

The average speed over the whole journey is (f(1)− f(0))/1 = 60. To paraphrase the conclusion of

the MVT, the average (i.e., mean) speed of the car is attained at some point during the journey:

there exists c such that f ′(c) = 60.

Mean Value Theorem. Let f be continuous over [a, b], and differentiable over (a, b). There exists

c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a .

a b

(x, f(x))

(b, f(b))

(a, f(a))

The theorem suggests a point where the slope of the tangent to the graph is the same as the

slope of the dotted line that connects (a, f(a)) and (b, f(b)). It’s not hard to convince yourself

that the points on the graph whose distance from that dotted line is maximised (or even locally

3A function f is said to have a local maximum at e if there exists a non-empty neighbourhood of e in which f
attains its maximum value at e. That is, if there exists δ > 0 such that f(e) ≥ f(x) for all x ∈ (e− δ, e+ δ).
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maximised) will be the points where the tangent will be parallel to the dotted line. (The dashed

line segment marked on the graph represents the distance from the point (x, f(x)) on the graph to

the dotted line. This is clearly a point which does not maximise the distance to the dotted line.

The tangent at this point being steeper than the dotted line suggests that moving northeast further

along the curve will increase the distance to the dotted line.)

Exercise: If the derivative of a function f is 0 at every point of an interval [a, b], then f must be

constant over that interval.

4.7 The monotonicity of a function and the sign of its derivative

The derivative, remember, captures the rate of change of f with respect to its argument. So,

it should not be surprising that it carries some information regarding whether f is increasing or

decreasing. The following conclusions are fairly intuitive (can be easily verified using the mean

value theorem):

• If f ′ > 0 on an interval (a, b), then f is increasing on (a, b).

• If f ′ < 0 on an interval (a, b), then f is decreasing on (a, b).

• If f is non-decreasing on an interval, then f ′ ≥ 0 on that interval.

• If f is non-increasing on an interval, then f ′ ≤ 0 on that interval.

• f is constant on (a, b) if and only if f ′ = 0 on (a, b).

4.8 L’hôpital’s rule and variations to compute limits

Given two functions f and g such that

• limx→a f(x) = L , where L ∈ R or L = ±∞

• limx→a g(x) = M , where M ∈ R or M = ±∞

what can we say about lim
x→a

f(x)

g(x)
if L = M = 0? Or if L = ±∞ and M = ±∞.

L’Hôpital’s rule. Suppose two functions f and g are differentiable on an open interval I

except possibly at a contained in I. Suppose also that g′(x) 6= 0 for all x ∈ I with x 6= a. If

lim
x→a

f(x) = lim
x→a

g(x) = 0 or lim
x→a

f(x) = lim
x→a

g(x) =∞, and if lim
x→a

f ′(x)

g′(x)
exists, then

lim
x→a

f(x)

g(x)
= lim
x→a

f ′(x)

g′(x)

In the same fashion, here’s a list of strategies to deal with limits which resemble one of

∞0 , ∞−∞ , 00 , 1∞

• For fg where f →∞ and g → 0, look at
f

1/g
or

g

1/f
instead.

• For fg where f →∞ and g → 0, look at ln(fg) = g ln f (can be viewed as g
1/ ln f or ln f

1/g ).

• For f − g where f → ∞ and g → ∞, first try to simplify and see if you can arrive at an

expression of the form u(x)/v(x). Having exhausted options, have a look at exp(f − g) =

exp f/ exp g.

• For fg where f → 0 and g → 0, look at ln(fg) = g ln f (can be viewed as g
1/ ln f or ln f

1/g ).
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• For fg where f → 1 and g →∞, look at ln(fg) = g ln f (can be viewed as g
1/ ln f or ln f

1/g ).

In other words, try to convert the limit question to one that looks like 0/0 or ∞/∞ to be able

to apply L’hôpital’s rule.

4.9 Concavity and convexity of real valued functions

An R→ R function f is said to be concave over an interval I if for every a, b ∈ I and any λ ∈ (0, 1):

f(λa+ (1− λ)b) ≥ λf(a) + (1− λ)f(b).

Intuitively, concavity of f on interval I is equivalent to the following geometric property of its

graph: whichever two points you pick on the graph of f : I → R, and connect them with a line

segment, the graph of the function will lie above that line segment.

A function f(x) is said to be convex over an interval I if for every a, b ∈ I and any λ ∈ (0, 1):

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b).

Intuitively, the graph of the function between x = a and x = b lies below the line segment connecting

(a, f(a)) and (b, f(b)).

It is not hard to verify that f is concave if and only if −f is convex. (Treat this as an exercise

in algebra to practice your skills in writing the conditions for concavity and convexity.) Hence we

can formulate our statements for concave functions, and appropriate versions for convex functions

should follow by changing the signs in the right places, replacing maximums with minimums, and

so on.

Theorem. Let I be an open interval and f : I → R be twice differentiable such that f ′′ is

continuous. f is concave on I if and only if f ′′(x) ≤ 0 for all x ∈ I.

Moreover, if f ′′ < 0 on an interval, then f is strictly concave over that interval. If f ′′ > 0 on an

interval, then f is strictly convex over that interval.

4.10 Classifying stationary points of R→ R functions

Stationary points of a single-variable real-valued differentiable function are those points at which

the derivative is equal to zero. Each such point corresponds to one of the following:

• A local minimum (At this point f ′′ ≥ 0.)

• A local maximum (At this point f ′′ ≤ 0.)

• An inflection point, if it is neither a local min or a local max.

Knowing the second derivative at a stationary point can help identify the nature of that sta-

tionary point. Suppose f ′(a) = 0.

• If f ′′(a) > 0, then a is a local minimum.

• If f ′′(a) < 0, then a is a local maximum.

• If f ′′(a) = 0, then no conclusion can be drawn on the basis of f ′′ alone.

These conditions are also referred to as the second-order conditions (SOC) for a single-variable

function.
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Summary: studying an R→ R function

If we are given a functional expression which describes f(x) in terms x, but if we are not told what

the domain of the function is, then we can say the function is not properly described. However, you

may frequently see such incomplete descriptions, and in those circumstances, it makes sense that

the function f we are talked about has the largest possible domain. For example, if we are told to

think about the function f(x) = 1/(x2 − 4), we will usually assume that the domain is R\{−2, 2},
that is, the set of all real numbers except −2 and 2. (Because the expression 1/(x2 − 4) doesn’t

make sense for x = ±2.)

The graph of a function is often useful to get a sense for the behaviour of the function. But how

do we know where to start if we want to draw its graph? We don’t know, because there isn’t really

a correct answer to the question of where we start. However, we have a few ideas which might be

good starting points. Let’s try to answer these specific questions:

1. What is the domain of the function? (If we are not told what exactly the domain is, then we

wonder what the largest domain would be.)

2. Can we figure out if the graph intersects the vertical axis? Note that this would be the point

(0, f(0)). So, if f is not defined at 0, then no such point will exist.

3. How about intersections with the horizontal axis? The points of the graph which happen to be

on the horizontal axis are, by definition, those points x for which f(x) = 0. Such points do not

have to exist. (Take for example the constant function which takes the value 7 everywhere.)

There might be finitely many such points (e.g., f(x) = x2 − 4) or infinitely many (e.g., the

constant function 0).

Sometimes, it is not obvious where we have f(x) = 0, or if f ever takes the value 0. The

intermediate value theorem might help. It basically says if f is positive at a, and negative at

b, and if f is continuous on [a, b], then it takes the value 0 somewhere in (a, b). So the graph

must hit the horizontal axis somewhere between a and b.

4. Are there points a in R such that as x approaches a, the value f(x) approaches to ∞ or to

−∞? If so, we say the graph has a vertical asymptote at a. Put differently, the vertical line

described by the equation x = a is called a vertical asymptote of (the graph of) the function.

5. If the domain of the function is not bounded above then we can ask whether the function

approaches to a limit as x→∞. If for example f(x)→ L as x→∞, then we refer to the line

described by the equation y = L as a horizontal asymptote (on the positive side). Likewise,

if the domain of the function is not bounded below, and if f(x) → M as x → −∞, then we

call the line described by the equation y = M as its horizontal asymptote on the negative

side. The asymptotic behaviour of the functions (i.e., what happens to f(x) as x → ±∞)

could be different from a horizontal line, but might still be easy to picture. For example, it

could be that as x grows larger and larger, f(x) gets closer and closer to the graph of another

function g we are familiar with. In other words, we might have f(x) − g(x) → 0 as x → ∞,

where we know the graph/behaviour of g well. That helps us get a sense of f as x→∞.

6. Is the function increasing or decreasing anywhere? Simply knowing the sign of f ′ can say

loads. In particular, identify over which intervals the derivative is negative, and over which

intervals the derivative is positive. Remember and use the fact that f is strictly increasing on

an interval if f ′ > 0 on that interval. Likewise, we know that f is strictly decreasing on an

interval if f ′ < 0 on that interval.

7. Can we say something regarding the curvature of the graph? The second derivative is useful

in answering this question, because we also know that f is strictly convex on an interval if

f ′′ > 0 on that interval. Likewise, we know that f is strictly concave on an interval if f ′′ < 0

on that interval.
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5 Integration

We first provide a quick review of integration which involves a mechanical description of integration

(of R→ R functions) as the “inverse operator” of differentiation, and the geometric interpretation

of definite integrals as areas associated with the graphs of R → R functions. Then we will discuss

the foundations of integration to develop a more coherent view.

5.1 A quick review

If the derivative of F is f , then we say an indefinite integral (also called an antiderivative)

of f is F . Note that if F is an indefinite integral of f , so is F + c for every constant c, because

F ′ = (F + c)′ (because the derivative of any constant function is 0).

If F is an indefinite integral of f , then the definite integral of f from a to b is denoted∫ b

a

f(x)dx and is equal to F (b)− F (a).

Note that in the last expression it does not matter if we replace F with G where G = F + c and c is

a constant. Thus, “the definite integral” is a uniquely determined number, as opposed to indefinite

integrals which are functions determined up to a constant.

We can think of indefinite integration as an operator which takes as its input an integrable

function f , and returns as its output a class of differentiable functions whose derivative is f

f
integrated7−−−−−−−→ {F such that F ′(x) = f(x)}.

𝑎 𝑏 𝑥 

𝑓 𝑥  

Figure 1: The area of the shaded region is
∫ b
a
f (x) dx.

If f is non-negative on [a, b], then
∫ b
a
f (x) dx will capture the area between the graph of f , the

horizontal axis, and the vertical lines at x = a and x = b. More generally, if f is at times positive,

and at times negative over the interval [a, b], then
∫ b
a
f (x) dx will capture the sum of areas between

the graph of f and the horizontal axis, with a minus sign in front of the areas that lie below the

horizontal axis.

Basic rules

Being the inverse operation of differentiation, it is not surprising that integration will readily inherit

the basic algebraic properties of differentiation: namely, addition, subtraction and scalar multipli-

cation: given integrable functions f and g,∫
αf + βg = α

∫
f + β

∫
g
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where α and β are constants (i.e., scalars).

Again, the anti-derivative nature of integration implies that

•
∫
xndx = 1

n+1x
n+1 for n 6= −1

•
∫
x−1dx = lnx

•
∫

expxdx = expx

Remember that the above expressions are about indefinite integrals, and therefore both sides of

the equalities are functions, and the equalities are “correct up to a constant”.

5.2 Foundations of Riemann Integration

Let f be a continuous function on interval [a, b]. We’d like to partition this interval, beginning

with halving it, then halving both half intervals, and then halving all four quarter intervals, and so

on. So, if we denote by ` the length of the original interval, i.e., setting ` = b − a, first we create

two intervals of length `/2 each. Then four intervals of length `/4 each, and then eight intervals of

length `/8 each, etc. After n iterations, we have divided the interval into 2n equal sub-intervals of

length `/2n each.

Now, for this partition, let mi be the minimum value of f over ith subinterval, and Mi be

the maximum value of f over that same subinterval. So, we have mi ≤ Mi for every subinterval

i = 1, . . . , 2n.

Next, define the nth lower sum sn and nth higher sum Sn as follows

sn =
1

2n

2n∑
i=1

mi Sn =
1

2n

2n∑
i=1

Mi

Clearly sn ≤ Sn. (Geometrically speaking, if f is nonnegative over [a, b], then sn is meant to

approximate, from the inside, the area between the graph of f and the x-axis, whereas Sn is meant

to approximate, from the outside.)

One more critical observation.4 If we make the partition finer, that is, if we divide the subin-

tervals into half one more time, the lower sum gets higher, and the upper sum gets lower. That

is

sn ≤ sn+1 ≤ Sn+1 ≤ Sn.

Note that sn is a non-decreasing sequence which is bounded above. Hence it is convergent. Say

it converges to s. Likewise, Sn is a non-increasing sequence bounded below, and hence is convergent

as well, say, with limit S. The above observations tell us that s ≤ S.

If s = S, then we say that the integral of f from a to b is this number s, and we write∫ b

a

f(t)dt = s

Remark. These numbers s and S are not equal for all functions. Thus, there are non-Riemann-

integrable functions. For example think about the limits of lower and higher sums for the function

f(x) =

{
1 if x is rational

0 otherwise

over the interval [0, 1]. What do you get for s? What do you get for S?

Remark. We have discussed one particular way subdividing the interval [a, b], and then computing

the associated lower and upper sums. As the subintervals get smaller and smaller, if the lower sums

4This is something you should verify. To get an idea, simply compare, for an arbitrary function g, the following
two quantities: minx∈[0,2] g(x) versus 1

2
minx∈[0,1] g(x) + 1

2
minx∈[1,2] g(x).
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and upper sums converge to the same limit, we defined that limit as the integral. But in fact, we

could have carried out this exercise with partitions of arbitrary subdivisions as long as the length

of the longest subinterval at each iteration goes to zero as we keep subdividing.

Notational convention. For practical purposes, it will be useful to define what we mean by an

integral from b to a when f is a function on [a, b]. And we will define it as∫ a

b

f(x)dx = −
∫ b

a

f(x)dx

Remark. The interpretation of integral as the area between the graph of the function and the

horizontal axis makes sense if the function is nonnegative as can be seen in the figure. The calculation

of lower and upper sums involves multiplying values of the function with the lengths of subintervals.

When those values are positive, the products can be seen as the areas if rectangles whose heights

are given by the values of the function. If those values, however, are negative, then the products

will be negative, and we can think of rectangles below the horizontal axis having negative areas.

𝑎 𝑏 𝑥 

𝑓 𝑥  

5.3 A few basic properties of integrals

1. If a < b < c, and if f is continuous on [a, c], then∫ b

a

f(x)dx+

∫ c

b

f(x)dx =

∫ c

a

f(x)dx

2. If f and g are continuous on [a, b], and if f(x) ≤ g(x) for all x ∈ [a, b], then∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx

3. If f and g are continuous on [a, b], and if α, β are real numbers, then∫ b

a

(αf(x) + βg(x))dx = α

∫ b

a

f(x)dx+ β

∫ b

a

g(x)dx

4. [Integral Mean Value Theorem] Let f be continuous over [a, b]. There exists c ∈ [a, b]

such that

(b− a)f(c) =

∫ b

a

f(x)dx.

Proof. Since f is continuous over [a, b], it takes its minimum and maximum values over this

interval. Call these values m and M , respectively so m ≤ f(x) ≤ M , for every x ∈ [a, b].

Therefore,

m(b− a) ≤
∫ b

a

f(x)dx ≤ M(b− a).
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Hence

m ≤ 1

b− a

∫ b

a

f(x)dx ≤ M

On the other hand, by the Intermediate Value Theorem, any value between m and M is

attained by f on [a, b]. Hence there exists c ∈ [a, b], such that 1
b−a

∫ b
a
f(x)dx = f(c). 2

5.4 Integral as antiderivative

Now that we have defined definite integrals of a function f , we can look at an associated function

F defined as

F (x) =

∫ x

a

f(t)dt

(provided that f is integrable of course).

Fundamental Theorem of Calculus. Let f : [a, b] → R be a continuous function, and

F : [a, b]→ R be defined by F (x) =

∫ x

a

f(t)dt. Then

(i) F ′(x) = f(x) for all x ∈ (a, b).

(ii)

∫ d

c

f(t)dt = F (d)− F (c) for every c and d in [a, b].

Proof. (Part (i)): By definition, F ′(x) is:

lim
h→0

F (x+ h)− F (x)

h
= lim

h→0

∫ x+h

a
f(t)dt−

∫ x
a
f(t)dt

h

= lim
h→0

∫ x+h

x
f(t)dt

h
= lim

h→0
f(ch) for some ch ∈ [x, x+ h] by IMVT.

Since ch ∈ [x, x+ h], and f is continuous, we know that f(ch)→ f(x) as h→ 0.

(Part (ii)): We have by definition F (d) =
∫ d
a
f(t)dt and F (c) =

∫ c
a
f(t)dt. Writing∫ d

a

f(t)dt =

∫ c

a

f(t)dt+

∫ d

c

f(t)dt

and rearranging, we get ∫ d

c

f(t)dt =

∫ d

a

f(t)dt−
∫ c

a

f(t)dt = F (d)− F (c)

2

Thus, the Fundamental Theorem of Calculus (FTC) lets us think of integrals as sort of “an-

tiderivatives”. This antiderivative of f is unique up to a constant. It is customary to call this the

indefinite integral of f , though it is important to keep in mind that it is really an antiderivative,

and not the. After all, we can define another function G(x) as

G(x) =

∫ x

b

f(t)dt

where b is some constant. FTC applies to G as well. So G′ = f and
∫ d
c
f(t)dt = G(d) − G(c).

Note that G differs from F . More specifically, at every point x, the difference between these two

functions is

F (x)−G(x) =

∫ x

a

f(t)dt−
∫ x

b

f(t)dt =

∫ b

a

f(t)dt

Note that the last expression is independent of x. I.e., it is a constant, and this is the constant by

which F and G differ.
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5.5 Integration by parts

The so-called “integration by parts” is often expressed concisely as∫
udv = uv −

∫
vdu

In this notation, both u and v stand for functions of a variable, say x. Moreover

dv stands for v′(x)dx

and

du stands for u′(x)dx

So, what’s really meant by the above formula is∫
u(x)v′(x)dx = u(x)v(x)−

∫
v(x)u′(x)dx

In order to see where this comes from, simply rearrange it to obtain∫
u(x)v′(x)dx+

∫
v(x)u′(x)dx = u(x)v(x)∫

(u(x)v′(x) + v(x)u′(x))dx = u(x)v(x)∫
(u(x)v(x))′dx = u(x)v(x)

which is nothing but the fundamental theorem of calculus applied to the function uv.

5.6 Change of variables

Recall the chain rule: if u is defined around t and differentiable at t, and if f is defined around u(t),

and differentiable at u(t), then f ◦ u is differentiable at t with the derivative

(f ◦ u)′(t) = f ′(u(t))u′(t)

By the fundamental theorem of calculus, the integral of the left hand side is f(u(t)) +C, so we

can write

f(u(t)) + C =

∫
f ′(u(t))u′(t)dt

But, let us express the right hand side a bit differently. In particular, let’s “forget about t” for

a moment, and adopt the notation

du = u′(t)dt

so that the integral can be rewritten as ∫
f ′(u)du.

This last expression is integration with respect to u. By the fundamental theorem of calculus, it is

equal to

f(u).

But recall that u = u(t), so indeed the answer is f(u(t)).
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A long exercise on differentiation and integration

In our lectures, we have already introduced the natural logarithm function as a differentiable bijec-

tion from R>0 to R which takes the value 0 at 1, and has the derivative 1/x for every x > 0. For

completeness, we show in this section that such a function indeed exists.

The natural logarithm function

The natural logarithm is a function lnx : R>0 → R specified as

lnx =

∫ x

1

1

t
dt

Note that

• ln 1 = 0

• lnx is strictly increasing (and therefore one-to-one)

• If x ∈ (0, 1), then lnx < 0

• By the fundamental theorem of calculus:

(lnx)′ =
1

x

Question. Is ln : R>0 → R bounded above or below? Since it is an increasing function, if it is

bounded above then its least upper bound would be limx→∞ ln(x). Likewise, if it is bounded below,

its greatest lower bound would be limx→0 ln(x).

We will use the following figure to adress the above question:

4

3

2

1

1 2 3 4

Graph of y =
1

x

First let’s observe that the boxes that lie on the x-axis and below the curve y = 1/x in the

following figure all have the same width 1, and decreasing heights given by

1

2

1

3

1

4
and so on

Our next observation is that adding up the areas of n boxes from left to right would amount to

1

2
+

1

3
+

1

4
+ · · ·+ 1

n
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and this area must be smaller than the area underneath the curve∫ n

1

1

t
dt

Thus we can conclude that

lnn >
1

2
+

1

3
+

1

4
+ · · ·+ 1

n

Now, if we can show that the limit

lim
N→∞

N∑
i=2

1

i
= lim

N→∞

(
1

2
+

1

3
+

1

4
+ · · ·

)
diverges, then we can conclude that lnn→∞ as n→∞.

Now observe that

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+

1

10
+ · · ·+ 1

16
+ · · ·+ 1

N

>
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
+

1

16
+

1

16
+ · · ·+ 1

16
+ · · ·

because comparing the two sums term-by-term, the bottom sum has equal or smaller terms at every

term.

And finally, observe that as N grows, the bottom sum

1

2
+

1

4
+

1

4︸ ︷︷ ︸
1
2

+
1

8
+

1

8
+

1

8
+

1

8︸ ︷︷ ︸
1
2

+
1

16
+

1

16
+ · · ·+ 1

16︸ ︷︷ ︸
1
2

+ · · ·

will involve infinitely many groups each of which adds up to 1/2. Thus, as N grows, this bottom

sum diverges to ∞, therefore the top sum diverges, and therefore lnn diverges to ∞.

How about limx→0+ lnx? For this one, note that

lim
x→0+

lnx = −(Area underneath the curve from x = 0 to x = 1)

But that area clearly is bigger than the sum of the boxes stacked along the vertical axis. Moreover,

those boxes have the same area as the boxes lying along the horizontal boxes, and therefore their

total area, too, diverges to infinity. That means limx→0+ lnx diverges to −∞.

Thus can conclude that the range of the natural logarithm functions is the whole real line.

Other logarithm functions

Given a > 0, we will define logarithm with base a as

loga x =
lnx

ln a

The exponential function

Since the natural logarithm

ln : R>0 → R

is one-to-one and onto, it admits an inverse function from R to R>0 which we will call the expo-

nential function.

The fact that exp is the inverse of ln can be used in a fairly straightforward fashion to obtain

the following properties:
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• expx > 0 for all x

• lim
x→−∞

expx = 0 and lim
x→∞

expx =∞

• exp 0 = 1

• exp(x+ y) = expx exp y

• (expx)y = exp(xy)

Note that expx is the same as (exp 1)x. So, if we decide to denote exp 1 with e, then the

exponential function can also be denoted as ex.

Raising a number to an arbitrary power x

Now, given a real number a, let us define the function ax. We sometimes talk about raising a to a

power, but if that power x is not a rational number, it is not as easy to make sense of this with the

interpretation of multiplying a with itself x times. But the following definition does make sense

ax = exp(x ln a) = ex ln a

since we know what ln a means (the integral of 1/x from 1 to a), and we know what the exponential

of x ln a means (the inverse image of x ln a under the natural logarithm function).

Deriving the logarithm laws and the power laws

Suppose we define the natural logarithm function ln : R>0 → R as

lnx =

∫ x

1

1

t
dt

and the exponential function exp : R→ R>0 as the inverse of ln.

Exercises

1. Show that e < 3.

2. Show that (expx)′ = expx

Hint: Differentiate the function ln ◦ exp via the chain rule.

3. Show that exp(x+ y) = (expx)(exp y)

Hint: Differentiate exp(x+ y)/ expx with respect to x.

4. Show that ln(xy) = lnx+ ln y

Hint: Differentiate ln(xy)− lnx with respect to x.

5. Remember that ax is defined as exp(x ln a). Show that ax satisfies the power rules:

(a) ax+y = axay

(b) (ax)y = axy

(c) axbx = (ab)x

6. Remember that loga x is defined as
lnx

ln a
. Show that loga x is the inverse of ax, and that it

satisfies the logarithm rules:

(a) loga(xy) = loga x+ loga y

(b) loga x
y = y loga x

7. Evaluate the derivative and the integral of ax.
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6 Multi-variable functions

We have already introduced Rn, a distance notion in this set, and various algebraic operations in

Section 1.3. Before we take a closer look at functions from Rn to R, we revise the key definitions.

6.1 n-dimensional Euclidean space: Rn

In the context of consumer choice, we often talk about bundles of two goods which we represent

with pairs of real numbers. In general, we can talk about bundles of n goods, or in other contexts

we might be interested in n variables all of which have an effect on a quantity of our interest.

Therefore, we need a domain consisting of ordered n-tuples denoted by (x1, x2, . . . , xn). In this set,

we also have the algebraic operations of addition and scalar multiplication.

Addition. Given x = (x1, . . . , xn) and y = (y1, . . . , yn),

x+ y = (x1 + y1, . . . , xn + yn)

Scalar multiplication. Given x = (x1, . . . , xn) and c ∈ R,

cx = xc = (cx1, . . . , cxn)

In this last definition, the number c is referred to as a scalar, because unlike an n-dimensional

point, c is a number in R, and multiplying a point x with that number c is essentially scaling x by

c.

With the above operations, elements in Rn are also called n-dimensional vectors. xi is called

the ith entry of x.

The origin. The point 0 = (0, 0, . . . , 0) in Rn, also called the zero vector, is the standard

reference point of the n-dimensional real space, and as such deserves the special name: the origin.

For brevity, we will usually denote this point as 0 with the understanding that it really corresponds

to (0, . . . , 0) ∈ Rn.

You might also hear people referring to Rn as the n-dimensional real Euclidean space,

because Rn admits a notion of distance inspired by good old Euclidean geometry. Take, for instance,

R2 which is easy to visualise as the Euclidean plane of classical geometry. If a = (a1, a2) and

b = (b1, b2) are two points in R2, we have

The distance between (a1, a2) and (b1, b2) as
√

(a1 − b1)2 + (a2 − b2)2 .

Distance in Rn. We simply adapt the above geometric distance notion to the world of n-

dimensional points and define

the distance between two points a and b in Rn as
√

(a1 − b1)2 + · · ·+ (ai − bi)2 + · · ·+ (an − bn)2 .

Note that if a and b are not the same points, the distance between them will be positive.

The norm of a point (vector) in Rn. We refer to the distance between x and the origin as the

norm of x, and denote it by ‖x‖.

‖x‖ =
√
x2

1 + x2
2 + · · ·+ x2

n =

√√√√ n∑
i=1

x2
i

The r-neighbourhood of a point in Rn. Remember that the r-neighbourhood of a point a in

R is the open interval (a− r, a+ r). Described in the terminology of distance, this is the set of all

numbers whose distance from a is less than r. This latter distance formulation can be used in the
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same way to define the notion of the r-neighbourhood of a point a in Rn. That is, the set of all

points in Rn whose distance from a is less than r. Denoting it by N(a, r), we can also write it as

N(a, r) = {x ∈ Rn | ‖x− a‖ < r}

=
{
x ∈ Rn |

√
(x1 − a1)2 + · · ·+ (xn − an)2 < r

}
= {x ∈ Rn | (x1 − a1)2 + · · ·+ (xn − an)2 < r2}

Some people call this set the open r-ball centred at a. The qualifier open refers to the fact that

the surface of the ball (i.e., the set of points which are exactly r away from a) is not included in

the set. So, the r-ball centred at a ∈ R is the open interval (a − r, a + r). The r-ball centred at

a ∈ R2 is the open disk in the plane with centre a and radius r.

6.2 Limits and Continuity of Rn → R functions

(This subsection is a formal discussion, and is not examinable.)

We can simply take the definition of a limit of an R→ R function and adapt it to multi-variable

functions. Let’s do that first in words, then in a slightly more formal notation.

We say f approaches to L as its argument approaches to a if for every given neighbourhood of

L, there exists a neighbourhood of a such that all points in that neighbourhood a (possibly except

a itself) have their images in the given neighbourhood of L.

Wait, is this a definition for single-variable or multi-variable functions?

It applies to both single-variable and multi-variable functions! It is exactly the same definition

when expressed in the language of neighbourhoods.

Let’s write it again, this time in more formal language. We write

lim
x→a

f(x) = L

if the following condition holds:

given any ε > 0, there exists a δ > 0 such that 0 < ‖x− a‖ < δ︸ ︷︷ ︸
for every x 6= a in the

δ-neighbourhood of a in Rn

=⇒ |f(x)− L| < ε︸ ︷︷ ︸
f(x) must be in the

ε-neighbourhood of L in R

The notion of continuity is the same as before. We say

f is continuous at a if lim
x→a

f(x) = f(a).

Alternatively, we can phrase the definition more directly, and say f is continuous at a if

given any ε > 0, there exists a δ > 0 such that ‖x− a‖ < δ︸ ︷︷ ︸
for every x in the

δ-neighbourhood of a in Rn

=⇒ |f(x)− L| < ε︸ ︷︷ ︸
f(x) must be in the

ε-neighbourhood of L in R

We might also be tempted to adapt the definition of differentiability to multi-variable functions

since the derivative is defined via a limit. That is we can ask:

Does lim
x→a

f(x)− f(a)

x− a
exist?

One problem with the above question is that while f(x)− f(a) is a real number, x− a is a point

in Rn, and it doesn’t make sense to divide an element of R with an element of Rn.

Instead of looking for a way of getting around this, we will now turn to a more manageable

approach as far as differentiating multi-variable functions go.
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6.3 Partial derivatives

Let us first begin with an example. Take a two-variable function f : R2 → R given by f(x, y) = x2y3.

A key observation is that we can view and treat this object much more narrowly, by fixing one

of its variables, and letting only the other variable to actually vary. For example, suppose y is fixed

at y = 7. Then we can define a new function g : R→ R given by

g(x) = f(x, 7)

Now that we have this R→ R function, we can appeal to our earlier understanding of differen-

tiating it. In particular we can talk about the derivative of g with respect to x

dg

dx
= g′(x)

The above derivative will also be called the “partial derivative of f with respect to x, evaluated

at y = 7”. Now, of course, we can repeat the above exercise for every y. The key is to treat y as

fixed, and study how f(x, y) varies as x varies. As such we get the partial derivative of f with

respect to x given by
∂f

∂x
= h′(x) where h(x) = f(x, y)

We used the notation of h : R→ R above to emphasise that when we are differentiating with respect

to x, we treat y as a constant.

Going back to the example f(x, y) = x2y3, we must have

∂f

∂x
= 2xy3 ∂f

∂y
= 3x2y2

Defining partial derivatives in general

Given a multi-variable function f(x1, . . . , xn), viewing it as a function of x1 alone means analysing

the behaviour of the single-variable function given by

x1 7−→ f(x1, x2, . . . , xn)

The derivative of this function at x1 is called the partial derivative of f with respect to its

first variable at (x1, x2, . . . , xn).

Note that, for every specification of x2, . . . , xn, we’d get another function. For example

x1 7−→ f(x1, a2, . . . , an)

is yet another single-variable function, and the derivative of this function would then be the partial

derivative of f with respect to its first variable at (x1, a2, . . . , an).

In this fashion, we can define the partial derivative of f with respect to its first variable

as the following function from Rn to R:

∂f

∂x1
: (x1, . . . , xn) 7−→ lim

h→0

f(x1 + h, x2, . . . , xn)− f(x1, x2, . . . , xn)

h

A careful notation for the evaluation of this function at a specific point a = (a1, . . . , an) ∈ Rn is

∂f

∂x1

∣∣∣∣
x=a

Likewise we define the partial derivative of f with respect to its kth variable xk:

∂f

∂xk
= lim
h→0

f(x1, . . . , xk + h, . . . , xn)− f(x)

h
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The briefest and (usually) the preferred notation for partial derivatives.

When it is convenient to refer to the variables of a multi-variable function as first variable,

second variable, third variable, and so on, we will denote

fk = the partial derivative of f with respect to its kth variable

Higher order partial derivatives

If f : Rn → R admits partial derivatives, then fi is also an n-variable function with values in R. If

fi admits partial derivatives, then we denote these partial derivatives as

fij = (fi)j =
∂

∂xj

(
∂f

∂xi

)
=

∂2f

∂xj∂xi

Pay attention to the order of writing for i and j !

In the same vein, we can define third and higher order partial derivatives if they exist. For

example

fijk =
∂

∂xk

(
∂

∂xj

(
∂f

∂xi

))
=

∂3f

∂xk∂xj∂xi

Young’s theorem. If a function f : Rn → R has continuous second partial derivatives at a,

then

fij(a) = fji(a)

This property is sometimes quoted as mixed partials commuting. We will mostly deal with

multi-variable functions whose second partial derivatives are continuous, and therefore it won’t

matter in which order we take partial derivatives.

6.4 The chain rule with multi-variable functions

Remember that the chain rule is about relating the derivative of composition of functions to the

derivatives of the functions composed. For example, when we have two functions f and g from R to

R, say differentiable everywhere for ease of exposition, the composition f ◦ g is differentiable with

the derivative

(f ◦ g)′(x) = f ′(g(x))g′(x)

Now, we’d like to generalise this result to be able to relate the derivatives of the three functions

f : R2 → R x : R→ R y : R→ R

to the derivative of the function from R to R defined by

t 7−→ f(x(t), y(t)) (♥)

We were being very careful in not referring to f(x(t), y(t)) as a function because without any

clarification as to what the variable is, it is not obvious how this expression describes a function.

In contrast, expressing it as in (♥) above makes it clear that we are talking about a single-variable

function.

The Chain Rule in two dimensions. Suppose f : R2 → R has continuous partial derivatives

with respect to both its variables. If x and y are differentiable functions from R to R, then

d

dt
f(x(t), y(t)) =

∂f

∂x
(x(t), y(t))x′(t) +

∂f

∂y
(x(t), y(t))y′(t)
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The notation on the right hand side is prone to confusion, because when we write ∂f
∂x we are not

really referring to the function x : R → R. Rather, we are talking about partially differentiating

f : R2 → R with respect to its first variable. The symbol x in ∂x and the symbol in x(t) are not

referring to the same thing. The one in ∂x is referring to the first variable of f , whereas x(t) is a

function from R → R. It just happens that we are plugging this function into the first variable of

f . The expression of the left hand side is really the derivative (with respect to t) of the function

defined by (♥).

Sometimes, you see the chain rule expressed in the more concise Leibniz notation:

df

dt
=

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

When we read this expression, we implicitly know that we are dealing with the function t 7→
f(x(t), y(t)), and that ∂f

dx refers to the partial derivative of f with respect to its first variable, and
∂f
∂y refers to the partial derivative of f with respect to its second variable.

Yet another alternative notation for partial derivatives is to write fi for the partial derivative

of f with respect to its ith variable when we denote the ith variable by xi. So, the chain rule can

also be expressed as

d

dt
f(x1(t), x2(t)) = f1(x1(t), x2(t))x′1(t) + f2(x1(t), x2(t))x′2(t)

Or we can stick to referring to the variables of f as x and y, and denote the corresponding

partial derivatives by fx and fy. Then the chain rule will look like

d

dt
f(x(t), y(t)) = fx(x(t), y(t))x′(t) + fy(x(t), y(t))y′(t)

Challenge. In order to give an idea as to how the chain rule comes about for single-variable

functions, we gave an intuitive explanation based on the interpretation of the derivative as the slope

of a linear approximation. Can you extend that idea to the more general form of the chain rule

given above?

The Chain Rule. Suppose f : Rn → R have continuous partial derivatives with respect

to all its variables. Suppose also that we have n differentiable functions xi : R → R where

i = 1, . . . , n. Then

d

dt
(f(x1(t), x2(t), . . . , xn(t)) = f1(x(t))x′1(t) + f2(x(t))x′2(t) + · · ·+ fn(x(t))x′n(t)

where x(t) stands for (x1(t), . . . , xn(t)).
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6.5 Concavity and convexity of Rn → R functions

The notions of concavity and convexity can be extended to Rn → R functions in a fairly straightfor-

ward fashion, however f ′′ is a much more complicated concept when f is a multi-variable function.

Without getting into what f ′′ might really mean for multi-variable functions, let’s quickly define

the concepts of concavity and convexity more generally.

Convex sets in Rm

A set K in Rn is called convex if for every x,y ∈ K and for every λ ∈ (0, 1), the point λx+(1−λ)y

is also in K. Any such point is called a convex combination of x and y. It is an algebraic exercise

to verify that if we take any k points x1, . . . ,xk in a convex set K, and arbitrary real numbers

0 < λ1, . . . , λk < 1 such that λ1 + · · ·+ λk = 1, then the point λ1x
1 + · · ·+ λkx

k is also in K. Any

such point is called a convex combination of the k points x1, . . . ,xk.

Concavity of functions

Suppose f is a real-valued function defined on a convex subset K of Rn. We say f is concave over

K if for every a, b ∈ K and every λ ∈ (0, 1):

f(λa+ (1− λ)b) ≥ λf(a) + (1− λ)f(b).

If the inequality is strict for all a, b ∈ K and all λ ∈ (0, 1), then we say f is strictly concave over

K.

Theorem. Suppose K is a convex set. If f : K → R is strictly concave over K, then f takes

its maximum value at most once in K.

Proof. Suppose, for a contradiction, that f attained its maximum value at two different points

a and b in K. The fact that K is convex implies a/2 + b/2 is in K. The fact that f is strictly

concave over K implies f(a/2 + b/2) > f(a)/2 + f(b)/2 = f(a) = f(b). That is, f takes an even

higher value at a/2 + b/2 ∈ K, a contradiction with its taking its maximum value at a and b. 2

Convexity of functions

Suppose f is a real-valued function defined on a convex subset K of Rn. We say f is convex over

K if for every a, b ∈ K and every λ ∈ (0, 1):

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b).

If the inequality is strict for all a, b ∈ K and all λ ∈ (0, 1), then we say f is strictly convex over

K.

Theorem. Suppose K is a convex set. If f : K → R is strictly convex over K, then f takes its

minimum value at most once in K.
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7 Optimisation of Rn → R functions

Consider the profit-maximising firm’s problem of choosing K and L to maximise π : R2 → R given

by

π(K,L) = pf(K,L)− rK − wL

Note that the firm’s choices of K and L both have to be non-negative. Hence, we can write the

problem as

Choose K ≥ 0 and L ≥ 0 to maximise pf(K,L)− rK − wL

Once we formulate the problem as a two-variable maximisation exercise, we note that the optimal

solution (K∗, L∗) must satisfy the following two properties

(1) K∗ must be maximising the single variable function

K 7−→ pf(K,L∗)− rK − wL∗ where K ≥ 0 is the domain

(2) L∗ must be maximising the single variable function

L 7−→ pf(K∗, L)− rK∗ − wL where L ≥ 0 is the domain

Now let’s think of these two properties as two single-variable optimisation problems. Thanks to

our understanding of maximising single-variable functions: in problem (1), if the point of maximi-

sation (i.e., K∗) is an interior point of the domain, then the first order condition (FOC) applies in

that problem: the first derivative of the objective function in problem (1) is zero at that point.

What does it mean for K∗ to be an interior solution of problem (1)? Since the domain of K is

[0,∞), for K∗ to be in the interior, it must simply be positive. Likewise, L∗ being interior means

L∗ > 0 because L also has the domain [0,∞).

Combining all of these we are able to conclude that if (K∗, L∗) is a solution to

maxπ(K,L) subject to K,L ≥ 0

and if K∗ and L∗ are both positive, then

πK(K∗, L∗) = 0

πL(K∗, L∗) = 0

So, solutions to these last two equations will provide us with candidates for the solutions to our

problem. Why do we say candidates? Well, it might be that the solution involves K∗ = 0 or L∗ = 0

or both. In that case, the solution does not necessarily satisfy the first order conditions, and just

looking at the FOC won’t actually deliver the solution to the original problem. Secondly, it might

be that the FOC lead to multiple answers. If so, we will also need to compare those answers to find

out which one really maximises the objective function.

Before we proceed to the analysis of non-interior solutions, let’s state the FOC in general:

FOC for unconstrained optimisation. Suppose x∗ ∈ Rn is a local max or a local min of

a function f whose domain is D ⊆ Rn. Assume also that x∗ in an interior point of D, that is,

there exists a ball centred at x∗ all of which is contained in D. If f is partially differentiable

at x∗ for each variable, then

∂f

∂xi
(x∗1, . . . , x

∗
n) = 0 for all i.

A more concrete problem

That’s all cool, but let’s now turn to an even more concrete problem: maximise f(x, y) = xy on

the domain R2
>0. First of all, we don’t need to worry about the solution not being an interior one
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because all points in R2
>0 are interior. So, we can trust the FOC to catch all possible candidate

solutions. If (x∗, y∗) is a solution to the maximisation problem, we must have

fx(x∗, y∗) = 0 and fy(x∗, y∗) = 0

If we compute the first partial derivatives of f and evaluate them at (x∗, y∗), we obtain

fx(x∗, y∗) = y∗ and fy(x∗, y∗) = x∗

Setting these to 0 would imply (x∗, y∗) = (0, 0) which is not part of the domain of f . Therefore, no

point in the domain of f satisfies the FOC. In particular, we conclude that f cannot be maximised

on this domain. It cannot be minimised here, because, again, if there was a minimising point, the

FOC must be holding there. (Remember that all points in the domain are interior, so there are no

boundaries to speak of.)

Without further constraints on the set of alternatives, this function does not have optima. But

we recognise this as a commonly studied example of a utility function over bundles, and a natural

constraint on the domain of a utility function is that the domain is bounded due to the budget

being a finite number, and the prices of the goods being positive.

A constrained optimisation problem

So, now impose a budget constraint on the problem by requiring the solution to satisfy the familiar

affordability condition. Given a fixed income m > 0 and unit prices p1 and p1 for goods 1 and 2,

respectively, we have the problem

max f(x1, x2) subject to x1 ≥ 0 , x2 ≥ 0︸ ︷︷ ︸
non-negativity constraints

, x1p1 + x2p2 ≤ m︸ ︷︷ ︸
budget constraint

If f is an increasing function, then higher values of x1 and x2 lead to higher values of f . That

means, the optimal solution (if exists) is indeed constrained by the constraint x1p1 + x2p2 ≤ m.

If that happens, i.e., the optimal solution turns out to satisfy x1p1 + x2p2 = m, then we say the

budget constraint binds. So, for an increasing utility function f , the budget constraint will bind.

That means, we know the optimal solution (if exists) will be a solution to the following problem:

max f(x1, x2) subject to x1 ≥ 0 , x2 ≥ 0 , x1p1 + x2p2 = m

So the actual set of alternative bundles over which we are trying to maximise f is a line segment on

the coordinate plane connecting the point (0, mp2 ) to (mp1 , 0). This is a compact set. If f is continuous

on this set, then we know by the EVT that there is a solution to our problem!

x1

x2

m
p2

m
p1

0

the budget line x1p1 + x2p2 = m

the
budget
set

For concreteness, let’s continue our discussion with f(x1, x2) = x1x2 which is clearly continuous

and increasing for x1, x2 ≥ 0. We have already observed that when we impose the budget constraint,

there exists a maximising point for this function. But does the FOC approach help? Looking for

the solutions to f1(x1, x2) = f2(x1, x2) will again yield (0, 0) which is not even on the budget line,
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where we know the solution must lie. In the previous section, we said the FOC didn’t deliver

because the function didn’t even have a maximum. Here we have a compact domain, and we are

guaranteed a solution, but can’t seem to be able to make use of the FOC. What’s going on?

Well, let’s remember what the FOC was about. It was making use of the fact that if (a1, a2) is

indeed a point at which the function is maximised, and the domain of f contains a neighbourhood

around (a1, a2), i.e., this point is in the interior of the domain of the optimisation problem, then

moving away from this point in any direction will lower the value attained by f . In particular

• moving away from this point west or east lowers the value (hence f1(a1, a2) = 0)

• moving away from this point north or south lowers the value (hence f2(a1, a2) = 0)

Well, it’s not surprising that these conditions are not satisfied by any point on our domain (the

budget line). From every point on this budget line, if we move north or east, the function would

achieve higher values! But these conditions can’t be expected to hold, because if we move off the

budget line, we are leaving the domain of the optimisation problem.

7.1 Lagrange

The FOC was simply a consequence of the fact that if you are at a maximising point in the interior

of the domain, then the value of f will suffer when you move away in any direction. Can we come

up with another condition which is concise (in the spirit of the FOC) and makes the value of f

suffer when we move away from the maximising point?

Remember that for an increasing function f which we’d like to maximise, the rewards were from

going northeast. In other words, by violating the constraint

x1p1 + x2p2 ≤ m

we can achieve higher values of f .

Perhaps, says Lagrange, we can work with an adjusted version of f which incorporates a “pun-

ishment” for exceeding the budget. That is we add a term to the function f such that whenever

x1p1 +x2p2 exceeds m, this added term takes negative values to counteract the increase in the value

of f . But how can that help? Well, if you set up this additional punishing term in such a way that

• the new function (f+punishment term) is allowed to be evaluated at every (x1, x2) (and not

just on the budget),

• the optimal solution (a1, a2) to maximising f on the budget line is also an optimal (or at least

locally optimal) solution to maximising the new function

• the punishment term is differentiable

then we know that the FOC must hold for the new function at the point (a1, a2).

Here’s an idea

f(x1, x2) + λ(m− x1p1 − x2p2) (L)

The punishment term ensures that whenever (x1, x2) exceed the budget by an amount t > 0, the

function L suffers a punishment of λt.

But what is λ? It seems like it not only punishes for exceeding the budget, but also rewards for

not spending all of the budget. For example whenever (x1, x2) leaves an amount t unspent from

the budget (i.e., whenever m − x1p1 − x2p2 = t > 0), the new function gets a reward of λt. How

do we determine the correct λ such that the local optima of (L) are not moving off the budget line

towards the interior of the budget set?

It seems like the choice of the correct λ will be a delicate deal. If we set it too low, the

punishment for violating the constraint won’t be high enough, and the maximising points of (L)

will occur outside the budget. If, on the other hand, we set λ too high, then the rewards for saving

your income will exceed the value achieved by f , and the maximising points of (L) will occur in

the interior of the budget. In fact, this logic suggests that the correct λ will have to be a knife-edge
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value, like a point where a non-constant function is maximised. So, the correct λ must satisfy the

property that if we move away from the correct λ in either direction (up or down), we move away

from the knife-edge on which we want to be. What is that knife-edge? The budget line!

So it must be that:

IF (a1, a2) maximises f(x1, x2) subject to x1p1 + x2p2 −m = 0,

THEN there must exist a λ∗ such that the function L : R3 → R defined by

L(x1, x2, λ) = f(x1, x2) + λ(m− x1p1 − x2p2)

satisfies the FOC at (a1, a2, λ
∗) for its all three variables:

L1(a1, a2, λ
∗) = 0

L2(a1, a2, λ
∗) = 0

Lλ(a1, a2, λ
∗) = 0

Note that the FOC for λ is

Lλ(a1, a2, λ
∗) = 0 = m− a1p1 − a2p2

which is nothing but the requirement that (a1, a2) is on the budget line.

On the Lagrangian multiplier λ∗

λ∗ is sometimes called the Lagrangian multiplier and it admits the following interpretation:

(1) Violating the budget constraint by a small amount, say by h, increases the value achieved

by f . This increase is cancelled exactly by the Lagrangian punishment term. And that punishment

is λ∗h.

(2) Relaxing the budget constraint by h, that is, allowing the budget to increase by h means

the optimiser can violate the old budget by h without suffering any punishment. What is the added

value (increase in f) resulting from this relaxation? It must be the amount of punishment which

would exactly cancel out such added value. As argued in point (1), that amount is λ∗h.

Therefore λ∗ is the increase in f due to a marginal increase in the budget. If we interpret f as

a utility function, and m as income, then λ∗ is the marginal utility of income!

7.2 The Lagrangian Recipe

The idea we explained above can be used even when the constraint is more complicated than a

budget line. As long as a constraint can be expressed via a differentiable function, we can write a

punishment term associated with violating that constraint.

If we are trying to maximise or minimise f : Rn → R subject to the constraint that g(x1, . . . , xn) =

0, then we will set the associated Lagrangian function L : Rn+1 → L as

L(x1, . . . , xn, λ) = f(x1, . . . , xn) + λg(x1, . . . , xn)

Lagrange’s theorem. Suppose x∗ = (x∗1, . . . , x
∗
n) is a local maximum or a local minimum of

f(x) subject to the constraint g(x) = 0.

Suppose also f and g both have partial derivatives at x∗. Then there exists λ∗ such that

Li(x∗, λ∗) = 0 for all i = 1, . . . , n

Lλ(x∗, λ∗) = 0

The recipe

Well, the theorem suggests that we should search for the maxima and minima of f by solving

the n + 1 equations given by the FOC for L. Typically there will be a small number of solutions

and we will need to compare them with each other, and perhaps with values attained in their

close neighbourhood to determine which one corresponds to the minimum or the maximum of the

function.
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An example with a non-linear constraint

Suppose a firm’s production is given by f(K,L) = (K2L3)1/6 and unit prices of its inputs are

pK = 1 and pL = 3, respectively. What is the cost of producing 1 unit for the cost-minimising firm?

So, we would like to solve:

minimise K + 3L subject to (K2L3)1/6 = 1

The constraint is (K2L3)1/6 = 1, but we should probably rewrite it in the easiest to differentiate

form to make the subsequent algebra less tedious. Let’s express the constraint as K2L3− 1 = 0, so

the Lagrangian is

L(K,L, λ) = K + 3L− λ(K2L3 − 1)

A moment of reflection on λ. We are trying to make K + 3L which obviously will get smaller

as we push K and L down. But we want to ensure the production target of q to be met. So the

job of λ is to punish attempts to lower K and L off the constraint. If (K2L3)1/6 drops below 1

by an amount h, the Lagrangian punishment will change by λh, counteracting the drop in the cost

function. So we are expecting the correct λ to be positive.

Back to the recipe. The FOC says the optimal (K∗, L∗, λ∗) must be a solution to

LK(K,L, λ) = 1− 2KL3λ = 0 =⇒ KL3 = (2λ)−1

LL(K,L, λ) = 3− 3K2L2λ = 0 =⇒ K2L2 = λ−1

Lλ(K,L, λ) = K2L3 − 1 = 0 =⇒ K2L3 = 1

The last two equations imply L = λ and K = λ−3/2. Plugging these into the first equation yields

λ∗ = 2−2/5, and hence K∗ = 23/5 and L∗ = 2−2/5. Plugging these optimal values of K and L into

the cost function, we conclude that the cost of producing one unit is 23/5 + 3× 2−2/5.

But, wait a minute! What if this (K∗, L∗, λ∗) is not the cost minimiser, but the cost maximiser?

Or neither? How did we know that it was indeed the minimiser?

7.3 The second order conditions for two-variable optimisation

The Lagrangian recipe helps us identify a number of points which are the candidates for global

maxima/minima, but is not conclusive as to whether we have one or the other. In the case of

single-variable optimisation, we appealed to the second derivative to help determine whether a

critical point is a local max or a local min. For example, if c is a critical point of a differentiable

f : R→ R, then we know f ′(c) = 0. If, in addition, we know that f is twice differentiable at c and

if f ′′(c) < 0, then we conclude that c is a local max. If it happens that f ′′ < 0 everywhere, then

we know f is concave, and there is at most one point where f ′(c) = 0, and that point is a global

maximum.

What is the correct analogue of a second derivative for multi-variable functions? If there is such

an analogue, is it useful in identifying convexity/concavity of the function? Is it at least useful to

determine whether a critical point (a point where the FOC are satisfied) is a local max or a local

min?

We will answer these questions for the special case of two-variable functions.

First, remember that we defined the second partial derivatives, as the partial derivative of the

partial derivative:

fij = (fi)j =
∂

∂xj

(
∂f

∂xi

)
=

∂2f

∂xj∂xi

So, in the case of a R2 → R functions, we have four second partial derivatives:

f11, , f12, f21, f22
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But if these second partial derivatives are continuous, then Young’s theorem says f12 = f21; a

fact sometimes referred to as “mixed partials commuting”.

The Hessian of f : R2 → R (or more generally f : B → R where B is an open ball in R2) at

the point c is defined as the following 2× 2 table of four values5[
f11(c) f12(c)

f21(c) f22(c)

]
If f has continuous second partial derivatives, we know that f12(c) = f21(c).

Let f : D → R have continuous second partial derivatives, where D is a convex subset of R2.

• If f11(x)f22(x)− (f12(x))2 > 0 and f11(x) > 0 for all x ∈ D, then f is convex on D.

• If f11(x)f22(x)− (f12(x))2 > 0 and f11(x) < 0 for all x ∈ D, then f is concave on D.

• If c is a critical point of f , and if f11(c)f22(c)− (f12(c))2 > 0 and f11(c) > 0, then c is

a local min of f .

• If c is a critical point of f , and if f11(c)f22(c)− (f12(c))2 > 0 and f11(c) < 0, then c is

a local max of f .

An example.

Here is Question 2 from 2013 Exam: An agent has the utility function

U(c1, c2) = 2 + 3(c
1/3
1 − 1) + 3β(c

1/3
2 − 1)

where c1, c2 ≥ 0 are consumption in periods 1 and 2, respectively. Finally, β is the factor with

which the agent discounts the future.

(a) Solve the agent’s utility maximisation problem subject to the constraint that c1 + c2 = 1,

i.e., solve for the optimal values of c1 and c2.

(b) Assume that the agent lives for two periods, but that in addition to his utility above, he

also derives utility from leaving a bequest z. In other words, that

U(c1, c2, z) = 2 + 3(c
1/3
1 − 1) + 3β(c

1/3
2 − 1) + z

Also, assume that β = 0.4 and that utility is maximised subject to the constraint c1 + c2 +z = 1

and that c1, c2, z ≥ 0. Solve the agent’s utility maximisation problem, i.e. for the optimal values of

c1, c2, z.

Solution. (a) Let’s begin with the observation that maximising the expression U is equivalent

to the problem of maximising

V (c1, c2) = 3c
1/3
1 + 3βc

1/3
2

since the constant terms have no effect on how one should choose c1 and c2 to solve the original

problem.

Given the constraint c1 + c2 = 1, the associated Lagrangian is

L = V (c1, c2) + λ(1− c1 − c2)

with the following FOC

L1 = c
−2/3
1 − λ = 0

L2 = βc
−2/3
2 − λ = 0

Lλ = 1− c1 − c2 = 0

5At this stage we refer to this as a 2 × 2 table, but this is really a special case of a mathematical object called
matrix which we will study in more detail later in the course.
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The first two equations, together, imply

c
−2/3
1 = βc

−2/3
2

Plugging this into the third equation, we obtain

c1(1 + β3/2) = 1

which yields

c∗1 =
1

1 + β3/2
c∗2 =

β3/2

1 + β3/2

But, we are not done yet, because we haven’t really checked that the problem should have an

interior solution. One way to verify this is indeed the solution is to look at the Hessian(
− 2

3c
−5/3
1 0

0 − 2β2

3 c
−5/3
2

)

which is clearly negative definite at all interior points (c1, c2). Therefore V is strictly concave, and

the unique point identified by the FOC is necessarily the point V is maximised. 6

(b) Now we are maximising 3c
1/3
1 + 3βc

1/3
2 + z subject to c1 + c2 + z = 1 and c1, c2, z ≥ 0.

The associated Lagrangian is

L = 3c
1/3
1 + 3βc

1/3
2 + z + λ(1− c1 − c2 − z)

If there is a solution with c1, c2, z > 0, then we must have

L1 = c
−2/3
1 − λ = 0

L2 = βc
−2/3
2 − λ = 0

Lz = 1− λ = 0

Lλ = 1− c1 − c2 − z = 0

The third equation implies λ = 1. Plugging this into the first two equations, we obtain c1 = 1 and

c2 = β3/2. And finally plugging these into the last equation, we find z = −β3/2 which contradicts

with the assumption that the optimal z is positive.

Thus, the beginning assumption of a solution with c1, c2, z > 0 is wrong. At least one of c1, c1, z

is zero at the optimal choice. But which one? Before we try every possibility, we can take a moment

of reflection to have a more economic feel for the question.

The problem is set up as if a consumer has income 1, splitting this income over three goods

c1, c2, z, where each good has the same unit price of 1. But note that the MU of the first good is

c
−2/3
1 which is greater than 1 if c1 < 1 whereas the MU of z is always 1. That means, this consumer

wouldn’t spend a penny on z until she is consuming more than 1 unit of c1. The budget constraint

says, she can’t spend more than 1 on c1 anyway, so the optimal choice of z must be 0. But then

the problem reduces to the case in part (a).

6The idea of imposing the condition of MUi/pi being the same for all goods is also at heart of the Lagrangian FOC.
For these approaches to yield the solution to the optimisation problem, the solution should actually be an interior one.
By interior, we mean that the solution should be away from the boundary not reflected in the Lagrangian function.
For example, in the above analysis, L features the boundary of the domain captured by the budget constraint, and
we will be looking for solutions which actually lie on this boundary. On the other hand, the other two boundaries,
namely c1 and c2 axes do not feature in the L expression, and the above Lagrangian approach cannot guarantee
picking up solutions which might lie on those boundaries (i.e., potential solutions with c1 = 0 or c2 = 0). There is
a more generalised approach (the so-called Kuhn-Tucker Lagrangian) which can incorporate inequality constraints
along with equality constraints, but is beyond the scope of this course.
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7.4 Multiple Constraints

The Lagrangian approach to optimisation can handle a problem which involves multiple constraints

as long as each of those constraints can be expressed by a differentiable function, and these functions

satisfy some appropriate technical condition called the constraint qualification (CQ) the details of

which we won’t get into.

Consider the problem

max f(x1, . . . , xn) subject to

g1(x1, . . . , xn) = 0

g2(x1, . . . , xn) = 0
...

gm(x1, . . . , xn) = 0

So we have an objective function with n variables, and we require solutions to satisfy m different

constraints.7 In our first example, we had a single constraint which required the solution to the

maximisation problem to also satisfy a budget equation. That meant, we weren’t allowed to use

any point in Rn to maximise the objective function; rather the solution had to lie in the subset

described by the budget equation. In the more general case we have just introduced, each con-

straint gi(x1, . . . , xn) = 0 requires solutions to be in the subset of Rn described by the equation

gi(x1, . . . , xn) = 0. m constraints describe m different subsets of Rn, and for x to satisfy these

constraints, it must be in the intersection of those m sets. In order to “discipline” our choice of x,

we must have a multiplier associated with each constraint which will counteract the costs/benefits

of violating that constraint. So the Lagrangian will look like

L(x1, . . . , xn;λ1, . . . , λm) = f(x1, . . . , xn) +

m∑
j=1

λjg
j(x1, . . . , xn)

To make this look tidier, we can use the more concise notation of x and λ for (x1, . . . , xn) and

(λ1, . . . , λm), respectively, so L : Rn+m → R will look like

L(x;λ) = f(x) +

m∑
j=1

λjg
j(x)

where λj corresponds to the cost of violating (or benefit of relaxing) constraint gj .

Lagrange’s theorem. Suppose x∗ is a local max or a local min of f subject to the m equality

constraints given by g(x) = 0. Suppose also f and each gi are differentiable at x∗, and CQ is

satisfied at x∗. Then there are numbers λ∗1, . . . , λ
∗
m such that

∂L(x∗,λ∗)

∂xi
= 0 for i = 1, . . . , n

∂L(x∗,λ∗)

∂λj
= 0 for j = 1, . . . ,m.

7Is this problem guaranteed to have a solution? If the constraints are described by continuous functions, i.e., if gi

is continuous for all i = 1, . . . ,m, and if the set of points satisfying these constraints is bounded, then the constraint
set is compact. If, moreover, f is continuous, then yes, we are guaranteed to have a solution.
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8 Rn as a vector space

Reading: Sydsaeter & Hammond (4th edition), Sections 15.7 (Vectors), 15.8 (Geometric Interpre-

tation of Vectors), 15.1 (Systems of Linear Equations), 15.2 (Matrices and Matrix Operations)

We have been using the notion of n-tuples for a while now. When we talked about bundles of

n goods, we first indexed all n goods as good 1, good 2, good 3, and so on. For example, apple is

good 1, banana is good 2, etc. Then we denoted the amount of goods in a bundle with a string of

n numbers:

(x1, x2, . . . , xn)

which indicated that the bundle x contained x1 apples, x2 bananas, and so on. We have been

referring to this n-tuple as an n-dimensional point which is an element of the n-dimensional real

space Rn. Now we would like to develop a bit more machinery to use these n-dimensional points

effectively in various applications. If we can afford to write our symbols in bold face, it would be

a good practice to write multi-dimensional points in bold face, so we would write x instead of x

when we talk about (x1, . . . , xn). We won’t always do that partly because it’s not easy to stick

with that practice in handwriting. In these notes, we will try to use the bold face notation for the

beginning when we are keen to emphasise the distinction between numbers in R and points in Rn.

Later, we will trust that the reader can infer from the context when x stands for an n-dimensional

point (x1, x2, . . . , xn).

As usual, in order to take advantage of visual intuition, we will first introduce concepts for

two-dimensional vectors, and then extend them to n dimensions.

Special case: the two-dimensional vector space R2

When we are dealing with two types of goods only, the bundles represented by pairs (x1, x2) enjoy

a convenient geometric representation: points on the coordinate plane that depicts R2.

R2 = R× R = {(x1, x2) | x1, x2 ∈ R}

Another word for a point in R2 is vector, and sometimes it is useful to visualise x = (x1, x2) as

an arrow which begins at the origin (0, 0) and ends at (x1, x2). While we can use the words point

and vector interchangeably, the word vector can be particularly useful in highlighting the fact that

we are talking about a tuple, not a single number.

For vectors x,y in R2, and scalars c in R we define the following operations

• vector addition: (x1, x2) + (y1, y2) = (x1 + x2, x1 + x2)

• scalar multiplication: c(x1, x2) = (cx1, cx2)

The symbol c stands for an arbitrary number in R and in order to emphasise that it is a number,

not a vector, we sometimes use the word scalar when we refer to numbers which we multiply with

vectors.

We have already been using these operations extensively. For example, if we put together

bundles (3, 5) and (7, 1), we get another bundle (10, 6). Vector addition generalises this operation

to allow for negative entries for x1 and x2.

Multiplying a bundle by 2 is like doubling the contents of the bundle, i.e., scaling it up by 2.

That’s what scalar multiplication refers to, but of course we now have a more general operation,

because we can multiply a vector by a negative scalar. This notion might not have an immediate

interpretation in terms of scaling up a bundle (like negative numbers didn’t have an obvious inter-

pretation for cavemen), but algebraically there is nothing to stop us to multiply vector (5,−2) by

−4. (Actually, one can come up with an interpretation for multiplying (5,−2) by −4, and we will

leave that exercise to the reader.)

With these operations of vector addition and scalar multiplication, the set R2 gets a struc-

ture, called vector space, which allows us not only to add but also subtract one vector from

another. After all, subtracting y from x can be achieved by first multiplying y with the scalar −1

to obtain −y, and then add −y with x. The vector (0, 0) is the identity element of vector addition,

denoted 0, or simply 0.
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Figure 2: Adding vectors u,v ∈ R2.

More generally: vectors in Rn

In the same fashion as above, we can define the following algebraic operations for vectors.

Vector addition. Given two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn),

x+ y = (x1 + y1, . . . , xn + yn)

Scalar multiplication. Given a vector x = (x1, . . . , xn) and a scalar c ∈ R,

cx = xc = (cx1, . . . , cxn)

It is straightforward to verify that these operations satisfy the following properties

• x+ y = y + x (Commutative Law)

• x+ (y + z) = (x+ y) + z (Associative Law)

• x+ 0 = x, where 0 = (0, . . . , 0) is the zero vector

• c(x+ y) = cx+ cy, where c is a scalar (Distributive Law)

The inner product (dot product) of vectors

The vector space Rn admits a third operation, whose geometric interpretation is less obvious, but

is very convenient in capturing widely used operations in applications. Given two vectors x and y,

we define their inner product (also called dot product) as

x · y = x1y2 + x2y2 + · · ·+ xnyn =

n∑
i=1

xiyi

Note the “dot” sign in between x and y. This is another reminder that x and y refer to vectors

(not scalars). Secondly, the outcome of a dot product is not another vector, but instead a scalar,

i.e., a number in R.

What is this good for? Well, if nothing, to express concisely the cost of a bundle. If x =

(x1, . . . , xn) stands for a bundle, and if p = (p1, . . . , pn) is the vector of prices for the n goods we

have in mind, then the cost of the bundle is nothing but the dot product of p with x.

The following properties of the dot product are not hard to establish:

For all vectors x,y, z ∈ Rn and scalars c ∈ R

• x · y = y · x

• x · (y + z) = x · y + x · z

• (cx) · y = c(x · y) = x · (cy)
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The standard unit vectors for R2

Consider the unit vectors e1 = (1, 0) and e2 = (0, 1) on the coordinate plain. Together, they have

the nice property of being able to combine to express all vectors in R2. Namely, given any vector

x = (x1, x2) we can express it as a linear combination of e1 and e2:

x = (x1, x2) = x1e
1 + x2e

2

We refer to e1 and e2 as the unit vectors in R2.

The standard unit vectors for Rn

Extending the idea of unit vectors from two dimensions to n dimensions, we can use the unit

vectors in Rn listed below

e1 = (1, 0, 0, 0, . . . , 0, 0) e2 = (0, 1, 0, 0, . . . , 0, 0) e3 = (0, 0, 1, 0, . . . , 0, 0) · · · en = (0, 0, 0, . . . , 0, 1)

to express any given vector x = (x1, x2, . . . , xn) as a linear combination of e1, e2, . . . , en:

x = x1e
1 + x2e

2 + · · ·+ xne
n

9 Linear transformations

A linear transformation (also called a linear map) is a function T : Rn → Rm which satisfies

• T (0) = 0

• T (x+ y) = T (x) + T (y) for all x,y ∈ Rn

• T (cx) = cT (x) for all x ∈ Rn and all c ∈ R

Examples of linear transformations

1. The identity function from Rn to Rn.

2. The zero function from Rn to Rm which maps every vector in Rn to the zero vector in Rm.

3. The vertical-projection function from R2 to R which maps (x1, x2) to x1. Note that, geomet-

rically, this projects each point vertically onto the horizontal axis (assuming that we denote

the horizontal axis to capture x1).

4. “Scaling up by 5” from R2 to R2 which maps (x1, x2) to (5x1, 5x2).

5. Reflection (mirror image) with respect to the vertical axis in R2 is a transformation which

maps (x1, x2) to (−x1, x2).

6. Rotations of a fixed degree around the origin in R2. This one is harder to see immediately,

but visualising it helps explain why it is indeed a linear transformation. For example, let

R : R2 → R2 rotate vectors in R2 around the origin 0 by ninety degrees counterclockwise.

That is, we fix the origin, and rotate the whole plane ninety degrees counterclockwise. We

need to check the three required properties:

• R(0) = 0

Satisfied, since our rotation is fixing the origin, and rotating everything else around

this point.

• R(x+ y) = R(x) +R(y) for all x,y ∈ Rn

Satisfied since rotating the whole plane would preserve shapes, and addition of two

vectors can be viewed as a triangle. (See the last two figures to get a feel.)
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Figure 3: R maps A,B,C to A′,B′,C ′, respectively.

• R(cx) = cR(x) for all x ∈ Rn and all c ∈ R.

Whether we scale it before rotating or after rotating does not matter.

Just to be clear, the brief explanations we provided above do not constitute a proper proof,

but rather an intuitive support for the validity of the suggestion that R is indeed a linear

map.

Understanding linear transformations a bit better

Here is the key observation: in order to describe a linear transformation T , it is sufficient to describe

the image of each unit vector ej . This is because given any x, we know we can express it as

x = x1e
1 + · · ·+ xne

n

and using linearity of T , we can compute T (x) as

T (x) = T (x1e
1 + · · ·+ xne

n)

= x1T (e1) + · · ·+ xnT (en)

Example: 90◦ counterclockwise rotation about the origin

Let’s apply this simple observation to the 90◦ counterclockwise rotation mapping R : R2 → R2.

We need to figure out what the rotations of (1, 0) and (0, 1) are. Well, it is not hard to see on the

coordinate plane that

• R(e1) = R(1, 0) = (0, 1), and

• R(e2) = R(0, 1) = (−1, 0)

So, given any vector x = (x1, x2), rotating it 90◦ counterclockwise would result in

R(x) = x1R(e1) + x2R(e2)

= x1(0, 1) + x2(−1, 0)

= (−x2, x1)

So, now we have an algebraic description of our visual notion of rotating points counterclockwise

around the origin by 90◦.
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10 Matrices: a tidy notation for linear transformations

We’d like a concise and practical notation for linear transformations which will help us gather speed

in our calculations when, for example,

• we want to evaluate a linear transformation T at a particular point x

• for a given v ∈ Rm, we want to find out if there is any x ∈ Rn such that T (x) = v

• given two linear transformations T : Rn → Rm and U : Rm → Rk, we want to understand the

composition

U ◦ T : Rn T−→ Rm U−→ Rk
x 7−→ T (x) 7−→ U(T (x))

Let’s begin with an example and then generalise in a natural fashion.

Example: 90◦ counterclockwise rotation about the origin

For this linear map R : R2 → R2 we already have a neat and concise description:

R(x1, x2) = (−x2, x1)

But we will introduce another one which soon will be our standard notation. First we will adopt a

convention to express vectors as columns, so instead of writing (x1, x2), we will write[
x1

x2

]
With this new notation, the unit vectors of R2 will be written as

e1 =

[
1

0

]
and e2 =

[
0

1

]
The expression R(x1, x2) = (−x2, x1) can now be rewritten as

R

([
x1

x2

])
=

[
−x2

x1

]
But remember how we came to conclude R(x1, x2) = (−x2, x1). We first applied R to the unit

vectors e1 and e2:

R(e1) =

[
0

1

]
and R(e2) =

[
−1

0

]
Next, since we were able to express x as x1e

1 + x2e
2, we could compute R(x) as

R(x) = R(x1e
1) +R(x2e

2) = x1R(e1) + x2R(e2) = x1

[
0

1

]
+ x2

[
−1

0

]
We will remember this description of R by referring to it by[

0 −1

1 0

]
where the first column is the image of e1 under the mapping R, and the second column is the image

of e2 under the mapping R.
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More generally

In general, when we are describing a linear map T : Rn → Rm, it is sufficient to describe the images

of the unit vectors e1, . . . , en. Our matrix notation will summarise that information in the form
T (e1) T (e2) · · · T (ej) · · · T (en)



ej is the jth unit vector in Rn
and

T (ej) ∈ Rm is written as a column.

Note that each column is a vector in Rm, so the columns are of height m. Therefore, there are

m rows in the above matrix.

Second, there one column for each unit vecrtor of Rn. Hence, there are n columns.

Thus, we can express a linear transformation T : Rn → Rm simply by a matrix with m rows

and n columns. This is an “m by n matrix.”

Another example

Using the matrix 
3 −2 1

−7 0 3

0 1 1

2 0 0


we can represent a linear transformation T : R3 → R4 which maps

e1 to


3

−7

0

2

 , e2 to


−2

0

1

0

 , e3 to


1

3

1

0


We could have written

T

1

0

0

 =


3

−7

0

2

 , T

0

1

0

 =


−2

0

1

0

 , T

0

0

1

 =


1

3

1

0


And given an arbitrary vector x = (x1, x2, x3) we can express it as a linear combination of unit

vectors of R3, and use linearity property of T to obtain

T

x1

x2

x3

 = T

x1

1

0

0

+ x2

0

1

0

+ x3

0

0

1

 = x1T

1

0

0

+ x2T

0

1

0

+ x3T

0

0

1



= x1


3

−7

0

2

+ x2


−2

0

1

0

+ x3


1

3

1

0



=


3x1 − 2x2 + x3

−7x1 + 3x3

x2 + x3

2x1


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We really want to economise on notation, and we will express all of the above more concisely as

follows:


3 −2 1

−7 0 3

0 1 1

2 0 0


x1

x2

x3

 =


3x1 − 2x2 + x3

−7x1 + 3x3

x2 + x3

2x1


From linear transformations to matrices

Given a linear transformation T : Rn → Rm, we will represent it with an m×n matrix A such that

the jth column of the matrix A is T (ej), that is, the image of the jth unit vector ej under T :

A =


A11 A12 · · · A1n

A21 A22 · · · A2n

A31 A32 · · · A3n

...
...

...
...

Am1 Am2 · · · Amn

 where T (ej) =


A1j

A2j

A3j

...

Amj


︸ ︷︷ ︸

the jth column of A

When we say this is an m by n matrix, we mean it has m rows and n columns. Once again,

remember that the jth column of the matrix will be the image of ej ∈ Rn under the mapping T .

The number of columns is the dimension of the domain of T , because there is a column for each

unit vector ej of the domain Rn. The number of rows is the height of the columns, which is nothing

but the dimension of the codomain Rm, because after all, column j is the image of ej , and the

images under T are in the codomain.

We will refer to Aij as the ij-entry of matrix A.

Given matrix A representing T , let’s now write explicitly what T (x) is in the matrix notation:

A
[
x
]

=


A11 A12 · · · A1n

A21 A22 · · · A2n

A31 A32 · · · A3n

...
...

...
...

Am1 Am2 · · · Amn



x1

x2

...

xn

 =


the

first

column

of A

x1 +


the

second

column

of A

x2 + · · ·+


the

nth

column

of A

xn

=


A11x1 +A12x2 + . . .+A1nxn
A21x1 +A22x2 + . . .+A2nxn
A31x1 +A32x2 + . . .+A3nxn

...

Am1x1 +Am2x2 + . . .+Amnxn


We will think of a column vector in Rn as an n × 1 matrix. Likewise, a column vector in Rm

will be an m × 1 matrix. And we will refer to the following expression as multiplying the m × n
matrix A with the n× 1 matrix [x] to obtain the m× 1 matrix A

[
x
]
:

A
[
x
]

=


A11 A12 · · · A1n

A21 A22 · · · A2n

A31 A32 · · · A3n

...
...

...
...

Am1 Am2 · · · Amn


︸ ︷︷ ︸

An m× n matrix


x1

x2

...

xn


︸ ︷︷ ︸

An n× 1
matrix

=


A11x1 +A12x2 + . . .+A1nxn
A21x1 +A22x2 + . . .+A2nxn
A31x1 +A32x2 + . . .+A3nxn

...

Am1x1 +Am2x2 + . . .+Amnxn


︸ ︷︷ ︸

An m× 1 matrix
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Using matrix notation effectively

In order to justify introducing this whole new vocabulary and notation, we should probably show

a few more uses of matrices in capturing meaningful tasks. Let’s begin with an easy one.

Adding two linear transformations

Suppose T and U are two linear maps from Rn to Rm. Since these functions have the same

domain and codomain, we can talk about the function T + U : Rn → Rm. Is this function a

linear transformation as well? The answer is yes, and verifying this takes checking the three simple

requirements we laid out in defining linear transformations. (This is an exercise left to the reader.)

In order to understand better how T+U operates, it is sufficient to understand the image of each

unit vector under the transformation T +U . That is, we need to figure out what (T +U)(ej) is, and

simply write this as the jth column of a matrix which will then represent the linear transformation

T + U . Denoting the matrices representing T and U by A and B, respectively:

(T + U)(ej) = T (ej)︸ ︷︷ ︸
jth column of matrix A

+ U(ej)︸ ︷︷ ︸
jth column of matrix B

Thus, the jth column of the matrix which represents T + U is simply the sum of the jth columns

of the matrices representing T and U . Therefore the ij-entry of the matrix which represents T +U

is Aij +Bij , so T + U is represented by
A11 +B11 A12 +B12 · · · A1n +B1n

A21 +B21 A22 +B22 · · · A2n +B2n

A31 +B31 A32 +B32 · · · A3n +B3n

...
...

...
...

Am1 +Bm1 Am2 +Bm2 · · · Amn +Bmn


We will refer to this matrix above as the sum of matrices A and B and will denote this summation

by A + B. In other words, by adding the corresponding entries of the matrices A and B which

represent the linear maps T and U , respectively, we get the matrix A+B that represents the linear

map T + U .

So, from now on, when we talk about the sum A+B of two matrices A and B, we are necessarily

assuming that they have the same number of rows, and they have the same number of columns.

The ij-entry of the matrix A+B is Aij +Bij . Not surprisingly A+B = B +A.8

Multiplying two linear transformations?

Again, we have T and U which are two linear maps from Rn to Rm. Above, we talked about adding

these functions. Can we also talk about multiplying them? Not really! The values taken by these

functions are vectors in Rm, and what does it mean to multiply vectors in Rm and obtain another

vector? We might be tempted to think of the dot product of vectors, but that would result in

scalars. In other words, if we wanted to come up with a notion of multiplying T and U via the use

of dot product, we would not get another linear map from Rn to Rm. Bottom line: we won’t try

to make sense of “multiplying linear transformations”.

Composing two linear transformations

When can we talk about composing two linear transformations? Since they are functions, we

can do so when the codomain of one is the domain of the other. So, when we have two linear

8Since a matrix is nothing but a way of representing a linear transformation, the properties satisfied by linear
transformations will have counterparts for matrices. And vice versa. For example, we now know that if T and U
refer to linear transformations, then we have T + U = U + T .
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transformations T : Rn → Rm and U : Rk → Rn, we can talk about the composition T ◦ U defined

in the usual way we talk about composing functions:

T ◦ U : Rk U−→ Rn T−→ Rm
x 7−→ U(x) 7−→ T (U(x))

Is T ◦U : Rk → Rm a linear transformation? The answer is yes, and again, verifying this takes

checking the three simple requirements we laid out in defining linear transformations. (Another

exercise left to the reader.) Therefore, T ◦ U can be represented by an m× k matrix.

As before, let’s represent T and U by matrices A and B, respectively. How can we derive the

entries of the matrix which represents T ◦ U using the entries of matrices A and B? Let’s simply

go back to what matrices stand for: the jth column represents the image of ej . So the jth column

of the matrix that corresponds to T ◦ U will be

(T ◦ U)(ej) = T (U(ej)) = T

(
the jth column

of the matrix U

)
= T




B1j

B2j

B3j

...

Bnj




Sure, but we are not done yet. We have at the right hand side T evaluated at the vector

(B1j , B2j , B3j , . . . , Bnj). We know how to use the matrix form of T to evaluate it at any vec-

tor.
A11 A12 · · · A1n

A21 A22 · · · A2n

A31 A32 · · · A3n

...
...

...
...

Am1 Am2 · · · Amn



B1j

B2j

...

Bnj

 =


A11B1j +A12B2j + · · ·+A1nBnj
A21B1j +A22B2j + · · ·+A2nBnj
A31B1j +A32B2j + · · ·+A3nBnj

...

Am1B1j +Am2B2j + · · ·+AmnBnj


the jth column

of the matrix

representing

the linear map

T ◦ U

Note that the big expression at the right hand side is just a column vector in Rm, and writing

down the matrix that corresponds to T ◦U will involve writing its k columns corresponding, respec-

tively, to the k vectors (T ◦U)(e1), (T ◦T )(e2), . . . , (T ◦U)(ek), respectively. We can economise on

notation, and simply write the ij-entry of that matrix to describe T ◦ U :

ij-entry of the matrix for T ◦ U = Ai1B1j +Ai2B2j + · · ·+AinBnj
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10.1 Matrix multiplication

Given an m × n matrix A and a n × k matrix B, we define the product matrix AB as the m × k
matrix whose ij-entry is given by

(AB)ij = Ai1B1j +Ai2B2j + · · ·+AinBnj (MM)

Note that this is the same ij-entry of the matrix representing T ◦ U . Thus the notion of matrix

multiplication captures the composition of their corresponding linear transformations:

If matrices A and B represent linear transformations T : Rn → Rm and U : Rk → Rn,

respectively, then the product matrix AB represents T ◦ U : Rk → Rm.

A few rules regarding matrix multiplication

1. Matrix multiplication is associative: A(BC) = (AB)C

2. Matrix multiplication is distributive over matrix addition: A(B + C) = AB + AC and

(A+B)C = AC +BC

3. If α is a scalar (i.e., a real number), then α(AB) = (αA)B = A(αB)

Note 1: We didn’t write the above rules precisely, in that, we didn’t express the conditions for

A,B,C to hold for the above multiplication and addition operations to be sensible. Use the space

below to write those conditions (regarding the dimensions of the matrices) carefully.

Note 2: If we take matrix multiplication as a mechanical rule defined by (MM) on the previous

page, verifying the associative law will be a tedious exercise. (Give it a go if you like!) On the

other hand, an understanding of matrices as representations of linear transformations makes the

associative law an almost straightforward observation. (How so?)

Note 3: Unlike multiplication of scalars, matrix multiplication is not commutative, in other

words, AB is not necessarily equal to BA. In fact, BA might not even make sense when AB is

a sensible expression. Just think about the dimensions of matrices and what they must be like

for matrix multiplication to make sense. But even when we work with n × n matrices (so we can

talk about both AB and BA), it is not hard to come up with examples of A and B such that

AB 6= BA. How so? Again, think along linear transformations, and you might be able to find two

linear transformations T and U from R2 to R2 such that T ◦ U 6= U ◦ T .

10.2 Square matrices

If a matrix has the same number of rows and columns, then we call it a square matrix. An n×n
matrix corresponds to a linear transformation T from Rn to Rn, and we can raise the question of

whether that transformation has an inverse. Suppose it does, and let’s denote that inverse T−1. It

is only natural to denote the matrix corresponding to T−1 by A−1.

If we compose T with its inverse, we will get the identity transformation from Rn to Rn which

maps x to x. In particular, the identity transformation maps ej to ej for each j = 1, . . . , n, and
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therefore is represented by the matrix

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

0 0 0 · · · 0 1


which we will call the n× n identity matrix, denoted In.

Since composition of linear transformations correspond to multiplication of matrices, we imme-

diately have

T−1 ◦ T = T ◦ T−1 = the identity function from Rn to Rn =⇒ A−1A = AA−1 = In

Another word for a matrix to be invertible is non-singular.

A non-singular (i.e., invertible) matrix represents an one-to-one and onto linear transformation

from R2 to R2. Being a linear transformation, it maps 0 to 0. It maps lines to lines. So does its

inverse.

A square matrix which is not non-singular, i.e., not invertible is called singular. Such a matrix

cannot correspond to a one-to-one linear transformation. In particular, there must exist v and w

such that

T (v) = T (w) where v 6= w

and therefore

T (v −w) = 0 where v −w 6= 0

Renaming the non-zero vector v −w as z, we then have

T (λz) = 0 for all λ ∈ R

That is, the line described by scaling the vector z is mapped to the point 0 by T .

More generally, the linear transformation which corresponds to a singular n × n matrix maps

the n-dimensional space to a lower dimensional space. Projection from R2 to the vertical R is a

standard example which can be represented by[
0 1

0 0

]

For a different example, imagine T : Rn → Rn which maps every ej to e1. This mapping

collapses the whole n-dimensional space to a line, and can be represented by the matrix
1 1 · · · 1 1

0 0 · · · 0 0
...

...
...

...

0 0 · · · 0 0

0 0 · · · 0 0


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10.3 Systems of 2 linear equations with 2 unknowns

Consider the following system of equations

ax1 + bx2 = y1

cx1 + dx2 = y2

where a, b, c, d, y1, y2 are given; and x1 and x2 are unknowns. Does this system of equations have

a solution? A key observation is that we can rephrase this question in the terminology of linear

transformations:

Consider the linear transformation T : R2 → R2 represented by the matrix[
a b

c d

]
Is there a vector x = (x1, x2) ∈ R2 such that T (x) = y = (y1, y2)?

In other words, given a, b, c, d, y1, y2 ∈ R, we are wondering if there are x1, x2 ∈ R such that[
a b

c d

] [
x1

x2

]
=

[
y1

y2

]

If the matrix A =

[
a b

c d

]
has an inverse A−1, then we can multiply the above expression by

this A−1 to obtain:

A−1

[
a b

c d

] [
x1

x2

]
= A−1

[
y1

y2

]
[
x1

x2

]
= A−1

[
y1

y2

]
So solving the above system of equations is simply a matter of computing the inverse of matrix A.

Does A have an inverse?

What does it mean for A to have an inverse? It is very useful to think along linear transformations.

If T is the linear transformation that corresponds to A, then we know that T maps (1, 0) to (a, c),

and it maps (0, 1) to (b, d).

What we’d like to know is whether T maps some (x, z) to (1, 0), and some (y, t) to (0, 1), because

if it does, then the linear transformation which maps (1, 0) to (x, z), and (0, 1) to (y, t) must be

the inverse of T . This is the case where T maps R2 onto R2, i.e., the two-dimensional plane to

two-dimensional plane in a one-to-one fashion.

Failing that, T must be mapping the two-dimensional plane to either a one-dimensional line,

or to the point 0 alone. The latter case corresponds to A being the zero matrix: the matrix with

all zero entries. The case where T maps the plane to a line is where T (1, 0) and T (0, 1) are scalar

multiples of each other. In other words

(a, c) = λ(b, d) for some λ

which means

ad− bc = 0

Thus we have a simple way of checking whether A is non-singular or not:

The matrix

[
a b

c d

]
is invertible if and only if ad− bc 6= 0.

If A is not invertible, the system of equations will not have a solution (x1, x2) for every (y1, y2).
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10.4 Gaussian elimination

Now we explain an algorithm (a step-by-step procedure) to simplify systems of linear equations to

find their solution(s). At each step, we will convert the system of equations we have at hand to

another system of equations which appears easier to solve than the previous one. Our procedure

will eventually take us to a final system of equations where the first equation is x1 = a1, the second

equation is x2 = a2, and so on. In other words, the final system of equations will simply tell us the

solution. Since each system of linear equations admits a matrix representation, we will translate the

steps of our procedure to steps for matrices. The tidy nature of matrices will make the procedure

more efficient to carry out in matrix notation.

Let’s illustrate the procedure in an example. Suppose we are given three linear equations with

three unknowns:

x1 − 2x2 + 3x3 = 6

3x1 + x2 − x3 = 2

2x1 + 3x2 − 2x3 = 2

Below, we have the equations on the left hand side, their matrix formulation in the middle. At

the right hand side, we describe what we do with these equations to get to the next set of equations.

x1 − 2x2 + 3x3 = 6

3x1 + x2 − x3 = 2

2x1 + 3x2 − 2x3 = 2

1 −2 3

3 1 −1

2 3 −2

x1

x2

x3

 =

6

2

2

 Step 1:

Subtract (3 × Eq1) from Eq2

Subtract (2 × Eq1) from Eq3

x1 − 2x2 + 3x3 = 6

7x2 − 10x3 = −16

7x2 − 8x3 = −10

1 −2 3

0 7 −10

0 7 −8

x1

x2

x3

 =

 6

−16

−10

 Step 2:

Subtract Eq2 from Eq3

x1 − 2x2 + 3x3 = 6

7x2 − 10x3 = −16

2x3 = 6

1 −2 3

0 7 −10

0 0 2

x1

x2

x3

 =

 6

−16

6

 Step 3:

Divide Eq3 by 2

x1 − 2x2 + 3x3 = 6

7x2 − 10x3 = −16

x3 = 3

1 −2 3

0 7 −10

0 0 1

x1

x2

x3

 =

 6

−16

3

 Step 4:

Subtract (3 × Eq3) from Eq 1

Add (10 × Eq3) to Eq 2

x1 − 2x2 = −3

7x2 = 14

x3 = 3

1 −2 0

0 7 0

0 0 1

x1

x2

x3

 =

−3

14

3

 Step 5:

Divide Eq2 by 7

x1 − 2x2 = −3

x2 = 2

x3 = 3

1 −2 0

0 1 0

0 0 1

x1

x2

x3

 =

−3

2

3

 Step 6:

Add (2 × Eq2) to Eq1

x1 = 1

x2 = 2

x3 = 3

1 0 0

0 1 0

0 0 1

x1

x2

x3

 =

1

2

3


To summarise the above procedure, we employed simple algebraic operations of adding (or

subtracting) and re-scaling on the system of equations which eventually simplified them to reveal

the solution (x1, x2, x3). The corresponding operations on the matrices are row adding and row

re-scaling. We could have swapped the order in which present the equations, and that would corre-

spond to row swapping in the matrix. These three operations on matrices are called elementary

row operations.

Of course there are many ways of employing these operations to reach the solution. Here’s

one possible guide: If necessary, swap rows to make sure the top left entry is non-zero. Then add
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(positive or negative) multiples of this row to clear (i.e., make zero) all other entries on the first

column. Then, if necessary, swap among rows 2 to n to make sure the second diagonal entry is

non-zero. Next, add (positive or negative) multiples of this row to clear (i.e., make zero) all other

entries on the second column. Continue until you reach a diagonal matrix. Finally, rescale each

row to make sure each diagonal entry is 1. If this process does not yield a non-zero entry for each

diagonal entry, then the system of equations cannot be guaranteed to have a solution. This also

means the original matrix is not invertible. If it is invertible, then we will end up with the identity

matrix following the above procedure named after Gauss.

10.5 Computing the inverse of a non-singular matrix

Gaussian elimination does more than answering the question of whether the matrix we begin with

is invertible or not. It can be used to compute the inverse matrix if it exists. To see how, let’s

rewrite the matrix equation Ax = y by inserting the n×n identity matrix In in front of the column

matrix y: 
A11 A12 A13 · · · A1n

A21 A22 A23 · · · A2n

A31 A32 A33 · · · A3n

...
...

...

An1 An2 An3 · · · Ann




x1

x2

x3

...

xn

 =


1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1




y1

y2

y3

...

yn


Now, each elementary row operation we apply to A can be thought as a linear transformation.

So, if we list these operations as r1, r2, . . . , rk in the order we carry them out, and if we denote the

corresponding linear transformations by R1, R2, . . . , Rk, respectively, then the effect of carrying out

this sequence is nothing but computing the composition

Rk ◦Rk−1 ◦ · · ·R2 ◦R1 ◦ T

where T is the linear transformation corresponding to the matrix A (i.e., the original set of linear

equations).

These row operations applied in this order transform T into the identity mapping. Well, if we

denote the matrix corresponding to Ri by Bi, we will have

BkBk−1 · · ·B1A︸ ︷︷ ︸
we know this is In

x = BkBk−1 · · ·B1In︸ ︷︷ ︸
hence this must be A−1

y

Therefore, carrying out the same elementary row operations r1, r2, . . . , rk on the n × n identity

matrix I, we will obtain the inverse matrix A−1.

A tidy way of computing the inverse of matrix is to begin with 1 −2 3 1 0 0

3 1 −1 0 1 0

2 3 −2 0 0 1


and to carry out the elementary row operations as we did on the previous page to transform the

left half of the above matrix into the 3× 3 identity matrix. As we do so, the right half of the above

matrix will be transformed into A−1.

Cramer’s method

Another systematic procedure (algorithm) to compute the inverse of a non-singular matrix is the

so-called Cramer’s method. In terms of its computational requirements, it is probably not simpler

nor faster than the above method. Arguably, it is less intuitive since the procedure does not make

it clear why it should indeed lead to inverting a matrix. Consult Sydsaeter & Hammond or any

other textbook for the details of Cramer’s method, feel free to adopt it if you find it an attractive

method to solve matrix inversion problems.
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Example: Inverting a 2× 2 non-singular matrix[
a b 1 0

c d 0 1

]
Assuming a 6= 0, add −c/a times row 1 to row 2, and then rescale row 1 by 1/a: 1 b

a
1
a 0

0 d− bc
a − c

a 1


Rescale row 2 by a

ad−bc :  1 b
a

1
a 0

0 1 − c
ad−bc

a
ad−bc


Add −b/a times row 2 to row 1:  1 0 d

ad−bc − b
ad−bc

0 1 − c
ad−bc

a
ad−bc


Thus, as long as ad− bc 6= 0, we have[

a b

c d

]−1

=

[ d
ad−bc − b

ad−bc
− c
ad−bc

a
ad−bc

]
Note that if a = 0, then the condition ad− bc 6= 0 implies c 6= 0 and b 6= 0, and we would begin the

elementary row operations by swapping rows first, so the top left entry is non-zero, and proceed in

the same fashion.

10.6 Determinant

The determinant of a 2× 2 matrix[
a b

c d

]
is denoted by det

[
a b

c d

]
and is equal to ad− bc.

As we can see from the example above, for this 2 × 2 matrix to be invertible it is necessary and

sufficient for its determinant to be non-zero. In that case, we can write it inverse as[
a b

c d

]−1

=
1

ad− bc

[
d −b
−c a

]
The determinant of a matrices with higher dimensions is much more complicated to define.

For most purposes, we will not need the concept of a determinant, and a proper treatment of

determinants in general is beyond the scope of this course. For those who are curious, we list below

a number key facts about determinants.
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10.7 Rules for determinants

1. The determinant of a singular matrix is 0. The determinant of a non-singular matrix is

non-zero.

2. Given any two square matrices A and B of the same dimension, det(AB) = det(A) det(B).

3. Swapping two rows of a matrix changes the sign of the determinant. That is, if B is obtained

from A by swapping two rows of A, then det(B) = −det(A).

4. Given a matrix A and a scalar λ, if B is obtained from A by multiplying one row of A by λ,

then det(B) = λ det(A).

5. Given a matrix A, if B is obtained from A by adding one row of A to another row, then

det(B) = det(A).

6. Given a matrix A and a scalar λ, if B is obtained from A by adding λ times one row of A to

another row, then det(B) = det(A). (Can you derive this rule from the previous two rules?)

7. The determinant of a diagonal matrix (i.e., a square matrix whose entries off the diagonal are

all zero) is the product of the diagonal entries:

det


A11 0 0 · · · 0

0 A22 0 · · · 0

0 0 A33 · · · 0
...

. . .
...

0 0 0 · · · Ann

 = A11 ×A22 × · · · ×Ann

In particular, det(In) = 1, where In is the identity matrix.

8. The determinant of a triangular matrix is the product of the diagonal entries:
A11 0 0 · · · 0

A21 A22 0 · · · 0

A31 A32 A33 · · · 0
...

. . .
...

An1 An2 An3 · · · Ann

 = A11 ×A22 × · · · ×Ann

and 
A11 A12 A13 · · · A1n

0 A22 A23 · · · A2n

0 0 A33 · · · A3n

...
...

. . .
...

0 0 0 · · · Ann

 = A11 ×A22 × · · · ×Ann

(Can you derive this rule from the previous rules?)

9. Finally, taking advantage of the above rules, we can use Gaussian elimination to compute the

determinant of any square matrix.

Going back to the example through which we introduced Gaussian elimination, recall1 −2 3

3 1 −1

2 3 −2


Think of Steps 1 to 6 as applying transformations T1 to T6, with the associated matrices B1

to B6 so

B6B5B4B3B2B1A = I3 and detB6 detB5 detB4 detB3 detB2 detB1 detA = det I3 = 1

Only two of the operations B1, . . . , B6 would change the determinant: dividing by 2 and 7 in

Steps 3 and 5, respectively, so 1
14 detA = 1, and therefore detA = 14.
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10.8 Positive/Negative Definiteness of a 2× 2 Matrix

Studying what it means for a square matrix to be definite (or semi-definite) in arbitrary dimensions

is beyond the scope of this course. Instead, we will restrict our attention to 2× 2 matrices.

Positive Definite. We say a 2× 2 matrix A is positive definite if

[
h1 h2

] [A11 A12

A21 A22

] [
h1

h2

]
> 0 for all (h1, h2) 6= 0 ∈ R2

Positive Semi-Definite. We say a 2× 2 matrix A is positive semi-definite if

[
h1 h2

] [A11 A12

A21 A22

] [
h1

h2

]
≥ 0 for all (h1, h2) ∈ R2

Negative Definite. We say a 2× 2 matrix A is negative definite if

[
h1 h2

] [A11 A12

A21 A22

] [
h1

h2

]
< 0 for all (h1, h2) 6= 0 ∈ R2

Negative Semi-Definite. We say a 2× 2 matrix A is negative semi-definite if

[
h1 h2

] [A11 A12

A21 A22

] [
h1

h2

]
≤ 0 for all (h1, h2) ∈ R2

Now remember that we defined the Hessian of a twice-partially differentiable function f : R2 → R
at the point a as [

f11(a) f12(a)

f21(a) f22(a)

]

Convexity/concavity of a function f : R2 → R is closely related to its Hessian:

Theorem. Let f have continuous second partial derivatives on an open, convex set K ⊆ R2.

1. f is convex on K iff its Hessian matrix is positive semi-definite for all x ∈ K.

2. If its Hessian matrix is positive definite for all x ∈ K, then f is strictly convex on K.

3. f is concave on K iff its Hessian matrix is negative semi-definite for all x ∈ K.

4. If its Hessian matrix is negative definite for all x ∈ K, then f is strictly concave on K.

The second order condition (SOC) at a critical (stationary) point of f :

Theorem. Let a be a critical point of f : R2 → R, that is, suppose f1(a) = f2(a) = 0. If the

second partial derivatives of f are continuous (so Young’s theorem holds), then we have the

following SOC:

1. if a is a local max, then the Hessian at a is negative semi-definite;

2. if the Hessian at a is negative definite, then a is a local max;

3. if a is a local min, then the Hessian at a is positive semi-definite;

4. if the Hessian at a is positive definite, then a is a local min.
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10.9 Checking whether the Hessian is definite or not

The following result makes it fairly easy to determine if a 2× 2 matrix is positive/negative definite

or not.

Given a twice-continuously partial differentiable f : R2 → R, its Hessian matrix[
f11 f12

f12 f22

]
is definite if and only if f11f22 − (f12)2 > 0. If, in addition, f11 > 0, then it is positive

definite; whereas if f11 < 0, then it is negative definite. By the way, note that if the matrix

is definite, f11 and f22 has the same sign. If the inequalities are not strict, then the matrix is

semi-definite.

Example

Consider the problem of identifying minima and maxima of the function f : R>0 × R→ R defined

as

f(x, y) = x3y +
2

3
lnx+ y2 − xy

Note that all points of the domain of the function are interior points9, therefore the solutions to

our problem, if they exist,10 will need to satisfy the first order conditions. In other words, any local

minimum or maximum must also be a solution to the following system of equations:

∂f

∂x
= 0 and

∂f

∂y
= 0

that is,

3x2y +
2

3x
− y = 0 and x3 + 2y − x = 0

These are not linear equations, and therefore we cannot appeal to the linear algebraic techniques

we have developed earlier. Instead, we will first use the second equation to write y = (x − x3)/2,

and plug this in the first equation to obtain

3x2

(
x− x3

2

)
+

2

3x
− x− x3

2
= 0

Multiplying this by 6x, we get

9x3(x− x3) + 4− 3x(x− x3) = 12x4 − 9x6 + 4− 3x2 = 0

which simplifies to

3x4(4− 3x2) + 4− 3x2 = (3x4 + 1)(4− 3x2) = 0

There are only two solutions to the above equation: x = 2/
√

3 or x = −2/
√

3. Since the domain of

f is R>0 × R, we need to have x > 0. Hence the only feasible solution is x∗ = 2/
√

3 which implies

y∗ =
x− x3

2
=
x

2
(1− x2) =

1√
3

(
1− 4

3

)
= − 1

3
√

3

In order to check the SOC, we take the second partial derivatives

fxx =
∂

∂x

(
3x2y +

2

3x
− y
)

= 6xy − 2

3x2

fxy =
∂

∂y

(
3x2y +

2

3x
− y
)

= 3x2 − 1

fyy =
∂

∂y

(
x3 + 2y − x

)
= 2

9Remember that a point P is an interior point of a domain D if there is a neighbourhood of P which is contained
in the domain.

10The domain of f is not compact, so we are not guaranteed that f will attain its minimum or maximum values.
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which yields the Hessian as

H(x, y) =

[
6xy − 2

3x2 3x2 − 1

3x2 − 1 2

]
At the point (x∗, y∗) = (2/

√
3,−1/3

√
3)

H(2/
√

3,−1/3
√

3) =

[
−11/6 3

3 2

]
which is not semi-definite, so (x∗, y∗) = (2/

√
3,−1/3

√
3) is neither a local max nor a local min.

Thus it is a saddle point.

Example. Determine the convexity/concavity of f : R2 → R given by

f(x, y) = x4 − 6x3 + 12x2 + y2 + 6y + 9

Solution. One approach is to write the Hessian matrix and examine where it is positive/negative

definite.

fxx = 12x2 − 36x+ 24

fxy = fyx = 0

fyy = 2

One diagonal entry, namely fyy, is positive. Therefore, when the determinant is positive over a part

of the domain, then we can conclude that f is convex over that region. If, however, the determinant

is negative over some other part of the domain, then we conclude that f is neither convex or concave

over that part of the domain. The determinant of the Hessian is 2fxx:

24(x2 − 3x+ 2) = 24(x− 1)(x− 2)

which is negative if and only if 1 < x < 2. So, we conclude that

if x < 1 then f(x, y) is strictly convex

if 1 < x < 2 then the determinant of the Hessian is negative

if 2 < x then f(x, y) is strictly convex

Example. Let f(x, y) = (y−x2)(y−2x2). Fixing an arbitrary (h, k), we can define a single-variable

function g : R→ R as

g(t) = f(th, tk)

First, note that g(0) = f(0, 0) = 0. Now verify the following:

(a) The function g admits a local minimum at the point t = 0.

(b) The function f does not admit a local minimum at the point (0, 0).

(c) Offer an explanation as to why (a) does not imply (0, 0) being a local minimum for f .

Last note on notation: transpose

The transpose of an m×n matrix A is defined as the n×m matrix denoted by A
ᵀ

whose ij-entry

is the ji-entry of A, that is

A
ᵀ

=


A11 A21 · · · Am1

A12 A22 · · · Am2

A13 A23 · · · Am3

...
...

...
...

A1n A2n · · · Amn


row i of A becomes column i of A

ᵀ

column j of A becomes row j of A
ᵀ
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11 The envelope theorems

Recommended reading and exercises: Chapter 13.7 (Comparative Statics and the Envelope Theorem)

and Chapter 14.7 (Comparative Statics) of Sydsaeter & Hammond (4th Edition).

11.1 The envelope theorem for unconstrained optimisation

Consider the unconstrained optimisation problem

max
x

f(x;α)

where α is an exogenous parameter, i.e., a variable of f , but not a choice variable of the optimisation

problem. Therefore, solving the above problem is solving for optimal x for a given α. Hence, we will

denote the solution by x∗(α) to keep in mind that it indeed depends on the value of the parameter

α. Let us denote by v(α) the achieved value of the function when the maximisation problem is

solved for a given α.

If the maximiser x∗ (α) is differentiable, then:

dv

dα
=

∂f

∂α

∣∣∣∣
x=x∗(α)

The rate of change of the optimal value with respect to the exogenous parameter

=

The rate of change of the objective function with respect to the parameter, evaluated at the

optimal solution

Proof. Given parameter α, the optimal value of the objective function is

v(α) = f(x∗(α);α)

where x∗(α) is the solution to

max
x

f(x;α)

Differentiating v(α) using the Chain Rule

dv

dα
=
∂f

∂x

∣∣∣∣
x=x∗

dx∗

dα
+
∂f

∂α

∣∣∣∣
x=x∗

dα

dα

We know that the FOC is satisfied at the solution, that is,

∂f

∂x

∣∣∣∣
x=x∗

= 0,

and dα/dα = 1, hence the expression for dv/dα simplifies to

dv

dα
=

∂f

∂α

∣∣∣∣
x=x∗

2

An example

A firm’s production function is

Q(L) = AL2 −BL3

where A and B are positive constants, and L denotes the number of workers with L ≤ A/B.
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(a) Find the size of workforce L∗ that maximises output Q(L). Find the maximum output Q∗.

(b) Suppose A = 12 and B = 1/20. If A increases by 0.1, what is the change in the firm’s output?

(c) In order to answer the last question, calculate dQ∗/dA, and obtain an approximate value for

the change in the firm’s maximum output. Compare this answer with your previous answer.

(d) Compute, without using a calculator, an approximate value of the change in maximum output

when B increases by 0.001.

Solution.

(a) L∗ will either be a corner solution (0 or A/B) or it will have to satisfy the FOC. It is easy

to verify that the corners yield zero output. Let’s look at the FOC then, that is, let’s solve

Q′(L) = 0, which implies

Q′(L) = 2AL− 3BL2 = 0

which has a unique non-zero solution L∗ = 2A
3B . We should now check that this choice of L

results in positive production (to make sure it beats the zero output obtained at the corners).

We can thus compute the maximum output of the firm (as a function of the parameters A

and B):

Q∗(A,B) = A

(
2A

3B

)2

−B
(

2A

3B

)3

=

(
2A

3B

)2(
A− 2A

3

)
=

4A3

27B2

(b) Plugging in A = 12 and B = 1/20 would yield

L∗(12, 1/20) = 160 and Q∗(12, 1/20) = 102400

If A were to increase to 12.1, the new maximum output Q∗(12.1, 1/20) can be computed with

a calculator to be ≈ 104981, and thus the change in maximum output is

Q∗(12.1, 1/20)−Q∗(12, 1/20) ≈ 2581

(The actual change is somewhere between 2581 and 2582.)

(c) On the margin, increasing A changes Q∗ at a rate of dQ∗/dA which can be computed as

dQ∗

dA
=

d

dA

(
4A3

27B2

)
=

4A2

9B2

To the extent that 0.1 is small enough for the purposes of approximation, the effect on

maximum output of increasing A by 0.1 will be approximately

0.1 × dQ∗

dA

∣∣∣∣
A=12,B=1/20

= 0.1× 4× 122

9× (1/20)2
= 2560

Comparing this with our answer above, we can confirm that the linear approximation (based

on the first derivative) is not too far off the real value of the change.

(d) The whole exercise of studying dQ∗/dB can be carried out without having to calculate the

function Q∗(A,B) if we remember the envelope theorem which states: The rate of change of

the optimal value with respect to the exogenous parameter is equal to the rate of change of the

objective function with respect to the parameter, evaluated at the optimal solution.

dQ∗

dB

∣∣∣∣
A=12,B=1/20

=
∂Q(L,A,B)

∂B

∣∣∣∣L=L∗(12,1/20)
A=12,B=1/20

= − L3
∣∣

L=160
A=12,B=1/20

= −212 × 103

and hence the change in maximum output is approximately 0.001× (−212 × 103) = −4096.
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11.2 The envelope theorem for constrained optimisation

Consider the constrained optimisation problem

max
x

f(x;α) s.t. g(x;α) = 0

Once again, α is not a choice variable. From the perspective of solving the above problem, α

is exogenously fixed. Different values of α correspond to different optimisation problems, and we

denote by x∗(α) the solution that corresponds to α. Note that as α changes both the objective

function and the constraint might change. Again, we denote by v(α) the achieved value of the

function when the maximisation problem is solved for a given α.

If the maximiser x∗ (α) is differentiable, then:

dv

dα
=
∂L
∂α

∣∣∣∣
λ=λ∗
x=x∗

where L(x, λ, α) = f(x;α) + λg(x;α).

The rate of change of the optimal value with respect to the parameter

=

The rate of change of the Lagrangian function with respect to the parameter, evaluated at the

optimal solution

Proof. Given parameter α, the optimal value of the objective function is

v(α) = f(x∗(α);α)

where x∗(α) is the solution to

max
x

f(x;α) subject to g(x;α) = 0

Lagrange’s theorem says that there must be a λ∗(α) such that (x∗(α), λ∗(α)) satisfy the FOC

associated with

L(x, λ, α) = f(x;α) + λg(x;α)

that is,

Lx = Lλ = 0 at (x∗(α), λ∗(α), α)

Evaluating L at (x∗(α), λ∗(α), α)

L(x∗(α), λ∗(α), α) = f(x∗(α), α) + λ∗(α)g(x∗(α), α)

= v(α)

since v(α) = f(x∗(α), α) and x∗(α) is known to satisfy the constraint g(x;α) = 0.

Differentiating v(α) using the Chain Rule

dv

dα
=

d

dα
L(x∗(α), λ∗(α), α) =

∂L
∂x

∣∣∣∣
λ=λ∗
x=x∗

dx∗

dα
+
∂L
∂λ

∣∣∣∣
λ=λ∗
x=x∗

dλ∗

dα
+
∂L
∂α

∣∣∣∣
λ=λ∗
x=x∗

dα

dα

We know that the FOC is satisfied for L at (x∗(α), λ∗(α)), that is,

∂L
∂x

∣∣∣∣
λ=λ∗
x=x∗

= 0 and
∂L
∂λ

∣∣∣∣
λ=λ∗
x=x∗

= 0

Moreover dα/dα = 1, hence the expression for dv/dα simplifies to

dv

dα
=
∂L
∂α

∣∣∣∣
λ=λ∗
x=x∗

2
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An example

A profit-maximising firm uses labour, L and capital, K, to produce output, Q, according to the

production function:

Q = L0.5 +K0.5

The firm pays a wage rate w for labour and a rental rate r for capital. The unit price of the output

is p.

(a) What is the firm’s level of output if (w, r, p) = (1, 3, 60)?

(b) Suppose the firm can sell no more than 20 units of output at the price of 60. Write down the

Lagrangian function for the firm’s profit maximisation problem subject to the constraint on

output sold. Calculate the value of the firm’s profit-maximising output, and the value of the

Lagrange multiplier. Offer an interpretation for the value of the Lagrangian multiplier.

(c) What is the marginal cost of producing an extra unit at Q = 20?

(d) Suppose the firm can sell a small amount of additional units of output in the “black market”

(but can sell no more than 20 units in the “official” economy). What price would the firm be

willing to accept for these additional “black market” units of output?

Solution sketch.

(a) Unconstrained optimal output is 40.

(b) Since the unique unconstrained solution violates the constraint Q ≤ 20, the constraint must

be binding, and therefore the constrained optimal output is 20. The Lagrangian for profit

maximisation subject to output being 20 is

L(L,K, λ,w, r, p) = (L0.5 +K0.5)p− Lw −Kr + λ(20− L0.5 −K0.5)

which have the FOCs given as LL = LK = Lλ = 0.

When (w, r, p) = (1, 3, 60), the FOC lead to λ∗ = 30. This is the price the firm is willing to

pay to relax the output constraint by a unit. So the marginal profit at the point the firm is

optimally producing (subject to the constraint) is 30.

(c) The price of the output is 60, so the marginal cost is 60 minus the marginal profit, thus 30.

(d) Any price higher than 30 for the first marginal unit. But note that the production function is

DRS, so the AC is increasing. The more units to be sold, the higher the price the firm would

charge.
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Multiple exogenous parameters

We might have multiple endogenous variables and exogenous parameters that feature in an optimi-

sation problem as in

max
x1,...,xn

f(x1, . . . , xn;α1, . . . , αm) s.t. g(x1, . . . , xn;α1, . . . , αm) = 0

Here, the agent faces the exogenous parameters α1, . . . , αm, and chooses x1, . . . , xn to solve the

above maximisation problem. This choice depends on α1, . . . , αm. If there is a unique solution to

the optimisation problem, we can talk about the optimal choice as a function of the parameters,

and denote it as x∗(α) = (x∗1(α1, . . . , αm), . . . , x∗n(α1, . . . , αm)).

As before, let’s denote by v(α1, . . . , αm) the optimal value achieved by the agent when he faces

the exogenous parameters α1, . . . , αm. That is

v(α1, . . . , αm) = f(x∗1(α1, . . . , αm), . . . , x∗n(α1, . . . , αm);α1, . . . , αm)

The envelope theorem is about the rate of change of v with respect to the exogenous parameters

α1, . . . , αm, looking at the effect of a change in one parameter at a time.

∂v

dαi
=

∂L
∂αi

∣∣∣∣
x=x∗(α),λ=λ∗(α)

where

L(x,α, λ) = f(x1, . . . , xn;α1, . . . , αm) + λg(x1, . . . , xn;α1, . . . , αm)

and x∗1(α1, . . . , αm), . . . , x∗n(α1, . . . , αm), λ∗(α1, . . . , αm) satisfy the FOC for L.
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12 Series

Recall that a real-valued sequence is nothing but a function a : N→ R, where N stands for the set of

natural numbers. Since the standard notation for sequences uses subindices instead of parentheses,

we will write an instead of a(n). Moreover, we will refer to an as the nth term of the sequence (an)

instead of calling it the value of the function a at the point n.

Associated with the notion of a real-valued sequence (an), we sometimes would like to talk about

the sum of its terms. But there are infinitely many terms, and it is not obvious how we add up

infinitely many numbers in a meaningful way. In fact an attempt to add up all terms of a sequence

will certainly fail at times. Take, for example, a constant sequence whose terms are all equal to 1.

How can we talk about adding up infinitely many ones and expect to get a number as an answer?

Before we jump to any major conclusion, let’s think how we may try to conceptualise a notion

of adding up infinitely many terms of a sequence. Remember that infinity, to begin with, was a

property of a set. Namely, the property of not being finite, not ever ending when we tried to count

the elements of a set. But then we talked about the limit of a sequence (sn) as n approaches to

infinity. There is no such thing as s∞, but if the sequence (sn) is convergent, then there is such a

thing as limn→∞ sn.

Ah, maybe we should formalise what we mean by “adding up infinitely many numbers” as a

“limit of adding up finitely many numbers”. The terms of the sequence are neatly indexed and it

feels only natural to list them beginning from the lowest index to higher indices

a0, a1, a2, a3, . . .

so perhaps we have in mind a summation which looks like

a0 + a1 + a2 + a3 + · · ·

Of course, this last expression doesn’t make sense yet since it suggests adding up infinitely many

terms. On the other hand, it also suggests which “finite groups of numbers” we might begin thinking

about when we are trying to make sense of an “infinite sum”. Let’s do the summation step-by-step,

adding one term at a time, going from left to right. And let’s denote the answer to step k by Sk so

we have

S0 = a0

S1 = a0 + a1

S2 = a0 + a1 + a2

S3 = a0 + a1 + a2 + a3

...
...

...

Sn = a0 + a1 + a2 + a3 + · · ·+ an

As n gets bigger and bigger, we have more and more terms added up, and we will think of the

desired summation of all terms of (an) as the limit of these finite sums. We will refer to

∞∑
i=0

ai = a0 + a1 + a2 + a3 + · · ·

as the series whose nth term is an, and whose nth partial sum is Sn.

Clearly (Sn) is a sequence on its own account, and we can talk about the limit of Sn as n

approaches to infinity. This is what the series is meant to capture. If Sn converges to L, then we

say the series
∑∞
i=0 ai converges to L. If Sn diverges to ∞, we say the series

∑∞
i=0 ai diverges to

∞. And so on.

For example, if ai = 1 for all i = 1, 2, . . ., then
∑
ai diverges to ∞. If bi = (−1)i, then

∑
bi

diverges because its partial sums alternate between 1 and 0. Does a series ever converge? Well, if

zi = 0, then
∑
zi converges to 0. Sure, but is there any series which involves adding up non-zero

terms and still converges?
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12.1 Geometric sequences and series

A geometric sequence is one where the consecutive terms have a fixed ratio, that is, when there

exists a constant c such that

for every n ∈ N, we have
an+1

an
= c

The sort of expressions which relate the n + 1st term of a sequence to its nth (and perhaps

a few earlier terms) are sometimes referred to as a recursive expression. For example, we say the

expression an+1 = can describes the sequence (an) recursively. If we also know the value of a0, then

we can figure out every term of the sequence.11 In order to see why, simply observe that

a1 = c× a0

a2 = c× a1 = c× c× a0 = c2 × a0

a3 = c× a2 = c× c2 × a0 = c3 × a0

...
...

an = cn × a0

One conclusion of the above argument also provides us with an alternative definition of what it

means for a sequence to be a geometric sequence. A geometric sequence is one whose terms can be

listed as:

a, ac, ac2, ac3, . . .

Convergence properties of a geometric sequence are fairly straightforward to explore, and they

depend on the value of c. Take for example the geometric sequence given by an = acn, where a 6= 0.

• an → 0 if |c| < 1

• an → a if c = 1

• an diverges if c = −1. More specifically, it fluctuates between a and −a.

• an diverges to ∞ if c > 1

• an diverges if c < −1, with its magnitude growing without bound, but its sign fluctuating

between positive and negative.

A geometric series is a series associated with a geometric sequence, and hence looks like

∞∑
i=0

aci

Here are two quick observations regarding the partial sums of this geometric series:

Sn+1 = Sn + acn+1 and Sn+1 = cSn + a

which imply

Sn + acn+1 = cSn + a

When c 6= 1, this last equation allows us to solve for Sn:

Sn = a
1− cn+1

1− c

That is

11In general, one might have more complicated recursive expressions. For example, a very famous example is the
Fibonacci sequence which begins as F0 = 0 and F1 = 1, and then described by the recursive expression Fn+2 =
Fn+1 + Fn.
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If c 6= 1, then

n∑
i=0

aci = a+ ac+ ac2 + · · ·+ acn = a
1− cn+1

1− c
.

But we know that if |c| < 1, then cn → 0 as n→∞. Thus we have the following result:

If |c| < 1, then the geometric series

∞∑
i=0

aci converges to
a

1− c
.

12.2 Some applications

Geometric sequences naturally emerge in the context of compound interest. For instance, suppose

an amount a is deposited into a savings account which promises an annual interest rate of r ∈ [0, 1].

(By the way, the banks cite the number 100r and use the word “percent”. So, what the bank calls

5% means a rate of 0.05.) If this rate stays constant over n years, and if the interest earned every

year is simply added to the capital, how much would the total yield be? Denoting ci with the total

yield after i years, we know that

c0 = a and ci+1 = ci︸︷︷︸
yield after i years

+ rci︸︷︷︸
interest earned in year i+ 1

= (1 + r)ci

which implies

cn = (1 + r)na

When the bank tells you that they’ll pay your interest monthly into your account, but quote an

annual rate of 12% (that is 0.12), how much do you really get at the end of, say, the first month?

Do you get 1% of your deposit? You should probably read the small print. The bank’s real monthly

rate m is set such that if you were to deposit 1£, and left that capital to appreciate for 12 months,

where the monthly interest (earned at the real monthly rate of m) were added to the pot every

month (so you can get interest on those added bits as well), your original 1£ would become (1+r)£

after 12 months. In other words, the real monthly rate m satisfies

(1 +m)12 = 1 + r = 1.12

While it might not be obvious from this equation that m is less than 1% (that is 0.01), we know

it must be. Because, if the bank were to reward us with a monthly interest rate of 1%, and if we

were to withdraw the interest earned in month i at the end of the month, and left only the original

deposit to earn interest next month, we would collect exactly 12% in one year. That’s without

compounding, because we withdrew the monthly interest every month. So, with compounding

(that is leaving the interest to earn further interest and so on), we would be earning more. And if

we would be earning more than 12% with compound interest, your average bank would probably

boast about that number.

Geometric series or partial sums of geometric series appear frequently in models of exponential

discounting of future or models of regular saving (as in building a retirement pot) in the presence of

one or more interest rate. For example, the value of 1£ saved in a piggy bank today will typically

be less than 1£ because in one year, its purchasing power will be lower due to inflation and the

today’s decision maker’s valuation of money available in a distant future might be lower than money

available now. The first effect will incorporate the expected inflation rate, whereas the latter effect

will feature the decision maker’s so-called discount factor. Now, throw in also the possibility of a

proper bank paying an annual interest rate, and compute the value (seen from today) of a 30-year

saving plan where our decision maker pays in a fixed amount into the bank every year.
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12.3 Taylor polynomials

Suppose f is differentiable at least n times around the point a. Define the n-th degree Taylor

polynomial of f around the point a as

Pn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·+ f (n)(a)

n!
(x− a)n

Observation 0. The function Pn agrees with f at a. That is, Pn(a) = f(a).

Observation 1. The derivative of the function Pn agrees with the derivative of f at a. That is,

P ′n(a) = f ′(a), because

P ′n(x) = f ′(a) + f ′′(a)(x− a) +
f ′′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

(n− 1)!
(x− a)n−1

Observation 2. Differentiating P ′n, we get

P ′′n (x) = f ′′(a) + f ′′′(a)(x− a) + · · ·+ f (n)(a)

(n− 2)!
(x− a)n−2

and evaluating this at the point a, we end up with f ′′(a).

...

Observation k. Continuing in the same fashion, we will find that

P (k)
n (a) = f (k)(a) for each k = 1, . . . , n.

If we know the values f(a), f ′(a), f ′′(a), . . . , f (n)(a), we can construct an nth degree polynomial

Pn which has this same “local information” as f in the sense that Pn and f have the same 1st

to nth order derivatives at a.

QUESTION. Is using Taylor polynomials a good way to approximate a function?

Sometimes, but not always!

12.4 Taylor series

If f is infinitely differentiable at a point a, then we can construct Taylor polynomials of all degrees

n > 0, and talk about their limit:

When f has derivatives of all orders at x = a, its Taylor series about the point x = a is

∞∑
k=0

f (k)(a)

k!
(x−a)k = f(a)+f ′(a)(x−a)+

f ′′(a)

2!
(x−a)2+

f ′′′(a)

3!
(x−a)3+· · ·+f (k)(a)

k!
(x−a)k+· · ·

A few possibilities for the above series:

1. The series diverges for some x. If so, the Taylor polynomials Pn do not provide a good ap-

proximation to f at x.

2. The series converges for x, but to a value other than f(x). If so, once again, the Taylor poly-

nomials Pn do not provide a good approximation to f at x.
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3. The series at x converges to f(x). If so, the Taylor polynomials provide a method to approx-

imate the function at x.

We will mostly deal with Case 3: when dealing with a Taylor series expansion around a point

a, this series will indeed converge to f(x) for those x which are in some neighbourhood of a. Such

functions are called analytic.

How good is such an approximation? That is, can we say anything about how far off the

Taylor polynomial is from the original function?

That is,

How large is the error term Rn(x) = f(x)− Pn(x) ?

Taylor’s Remainder Theorem.

If f is n times continuously differentiable on [a, x], and n+ 1 times differentiable on (a, x),

then

Rn(x) =

∫ x

a

f (n+1)(t)

n!
(x− t)ndt =

f (n+1)(c)

(n+ 1)!
(x− a)n+1 for some c ∈ [a, x]

Example. Let’s look at f(x) = ln(1 + x) around the point 0.

In order to explore its Taylor series around x = 0, we will evaluate f(0), f ′(0), f ′′(0), . . ..

First, note that

f ′(x) =
1

1 + x

f ′′(x) =
−1

(1 + x)2

f ′′′(0) =
2

(1 + x)3

...
...

...

f (k)(x) =
(−1)k+1(k − 1)!

(1 + x)k

Evaluating the above expressions at x = 0, and plugging them into the Taylor series

∞∑
k=0

f (k)(0)

k!
xk =

∞∑
k=1

(−1)k+1(k − 1)!

k!
xk =

∞∑
k=1

(−1)k+1

k
xk = x− x2

2
+
x3

3
− x4

4
+ · · ·

Using Taylor polynomials for ln(1 + x), we can estimate ln(1.01).

Note that ln(1.01) = ln(1 + 0.01) = f(0.01). So, using the second degree Taylor polynomial of

the function ln(1 + x), the remainder theorem tells us that

|f(0.01)− P2(0.01)| =

∣∣∣∣f (3)(c)

3!
(0.01)3

∣∣∣∣ for some c ∈ [0, 0.01]

=
1

3(1 + c)3
(0.01)3

≤ 0.34× 0.000001 = 0.00000034
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P2(x) = x− x2

2 , so we can easily compute P2(0.01):

P2(0.01) = 0.01− 0.0001

2
= 0.01− 0.00005 = 0.00995

Thus we can conclude

ln(1.01) ≈ 0.00995 with an accuracy level of 0.00000034

Reading. Sydsaeter & Hammond: Section 7.5 (Polynomial Approximations), Section 7.6

(Taylor’s Formula), Section 10.8 (A Glimpse at Difference Equations)

Example. Find an estimate for
√

100.1 which you can be sure to be correct up to a maximum

error of 0.0001.

The Taylor series expansion of f(x) =
√

100 + x around the point x = 0 can be useful if the

error term Rn(0.1) indeed goes to zero quickly as n grows.

After all,

|
√

100 + 0.1︸ ︷︷ ︸
actual value

−Pn(0.1)︸ ︷︷ ︸
estimate

| = |Rn(0.1)| =

∣∣∣∣f (n+1)(c)

(n+ 1)!
(0.1)n+1

∣∣∣∣︸ ︷︷ ︸
want this to be small

for some c ∈ [0, 0.1]

How small? We are asked to provide an estimate which we know to be correct up to a maximum

error of 0.0001. So, if we can make the error term smaller than 0.0001, then we should be OK.

What remains is to evaluate the derivatives of f at 0, and to provide a not-too-relaxed upper

bound for f (n+1)(c) where c ∈ [0, 0.1].

f ′(x) =
1

2
(x+ 100)−1/2 f ′(0) =

1

20

f ′′(x) = −1

4
(x+ 100)−3/2 f ′′(0) = − 1

4000

Looks like R1(0.1) might already be small enough for our purposes.

First, let’s quickly observe that |f ′′(x)| = 1

4(x+ 100)3/2
is decreasing on [0, 1].

That implies |f ′′(c)| ≤ |f ′′(0)| for all c ∈ [0, 1], which can be used to conclude

R1(0.1) =

∣∣∣∣f ′′(c)2
(0.1)2

∣∣∣∣ ≤ ∣∣∣∣f ′′(0)

2
(0.1)2

∣∣∣∣ =
1

800000
< 0.0001

Thus, our estimate for
√

100.1 is

P1(0.1) = f(0) + f ′(0)× 0.1 = 10 +
1

200
= 10.005
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13 Difference equations

Suppose a quantity (e.g., one’s mortgage debt to a bank) changes over time where

• we measure time in discrete terms (e.g., in years or in months)

• the relationship between the quantity in time t has a cleanly expressed relationship to the

quantity in time t− 1.

For example, denoting by Dt the total debt after t years

Dt = (1 + r)Dt−1 − p

where r is the annual interest rate and p is the annual payment back.

The previous year’s debt grows by the interest rate (so Dt−1 grows by a rate r), and declines

by the payment p made at the end of the year.

To make things appear more concrete, suppose the original loan (D0) is £200K and the annual

interest rate is 3%.

If the mortgage needs to be cleared in exactly 30 years, what should be the payment p be?

We can rephrase the question as follows: if we know that

D0 = 200000

Dt = 1.03Dt−1 − p for all t = 1, 2, . . .

D30 = 0

then what is p?

We will approach such problems by trying to express Dt as a function of t.

Equations of the following sort are called linear, first-order, autonomous difference equations:

xt = bxt−1 + a where a and b real constants

• linear, because xt is a linear function of xt−1

• first-order, because the largest difference between the indices (namely t and t− 1) is 1

• autonomous, because a and b are independent of t

13.1 Solving a linear, first-order, autonomous difference equation

Given the value of x0 and constants a and b, in order to solve

xt = bxt−1 + a

begin with x1 and x0, and try to express all xt for t > 1 in terms of x0:

x1 = bx0 + a

x2 = bx1 + a = b(bx0 + a) + a = b2x0 + (b+ 1)a

x3 = bx2 + a = b(b2x0 + (b+ 1)a) + a = b3x0 + (b2 + b+ 1)a

x4 = bx3 + a = b(b3x0 + (b2 + b+ 1)a) + a = b4x0 + (b3 + b2 + b+ 1)a

...
...

xt = btx0 + (bt−1 + bt−2 + · · ·+ b2 + b+ 1)a

Note that the geometric sum bt−1 + bt−2 + · · ·+ b2 + b+ 1 is equal to
1− bt

1− b
as long as b 6= 1.
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Thus, the solution to the equation xt = bxt−1 + a can be expressed simply as

xt =


btx0 +

1− bt

1− b
a if b 6= 1

x0 + ta if b = 1

Back to the mortgage example. We had the difference equation Dt = 1.03Dt−1 − p, and the

specific values D0 = 200000 and D30 = 0. Using these with the formula we derived above

0 = D30 = (1.03)30200000 +
1− (1.03)30

1− 1.03
× (−p)

which implies

p =
(1.03)30200000× (1− 1.03)

1− (1.03)30
≈ 10204

as the annual payment required to clear the debt in 30 years.

An exercise. Consider a twist of the mortgage problem above: suppose the annual payments go

up by the same interest rate of 3%. What is the relevant difference equation? How can we solve it?

13.2 Steady states

If xn+1 = xn for some n, then note that

xn+2 = bxn+1 + a = bxn + a = xn+1

and therefore xn = xn+1 = xn+2 = xn+3 = · · ·

In other words, once t reaches n, the quantity xt does not change any more, and this value is

referred to as a steady state of the difference equation.

• Does every difference equation have a steady state?

Not necessarily! Take for example xt = xt−1 + 1.

• If a difference equation has a steady state, will xt eventually reach that state?

Not necessarily! Take for example xt = 1
2xt−1, where x0 = 1. Clearly 0 is a steady state, and

the values of xt will evolve as 1 1
2

1
4

1
8 · · · 1

2n · · · and will never take the value 0. But

note that xt converges to 0 as t→∞.

• If a difference equation has a steady state, will xt converge to that state as t→∞?

Not necessarily! Take for example xt = 2xt−1, where x0 = 1. Clearly 0 is a steady state, and

the values of xt will evolve as 1 2 4 8 · · · 2n · · · and therefore will diverge as t→∞.

Convergence

If xt → x as t→∞, the steady state x is easy to calculate because we can simply take the limit as

t→∞ of the following

xt = bxt−1 + a

to conclude that x = bx+ a, and therefore x =
a

1− b
.
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Remember the general solution to xt = bxt−1 + a we derived on the previous page

xt =


btx0 +

1− bt

1− b
a if b 6= 1

x0 + ta if b = 1

Note that xt converges to x =
a

1− b
if and only if |b| < 1.

What if |b| ≥ 1 and a 6= 0?

13.3 More examples on difference equations

Reading. Pemberton & Rau, Section 23.4: Difference Equations

Example 1. A fixed population of users subscribe to one of the two music streaming apps (Spotify

or Deezer) such that at any given time each user is subscribed to exactly one app. At the end

of every month, each user has the option to cancel her contract and switch to the other app, and

indeed it just happens that every month 20% of Spotify users switch to Deezer, while 10% of Deezer

users switch to Spotify. Suppose at time 0, everybody is a Spotify user.

Denoting by (S0, D0) the respective percentages of Spotify and Deezer users at time 0, let

(Sk, Dk) be those percentages after k months. So

Sk+1 = 0.8Sk + 0.1Dk

Dk+1 = 0.2Sk + 0.9Dk

The dynamics of the changes in user subscription percentages can then be summarised as[
Sk+1

Dk+1

]
=

[
0.8 0.1

0.2 0.9

] [
Sk
Dk

]
which allows us to obtain a general formula as[

Sn
Dn

]
=

[
0.8 0.1

0.2 0.9

]n [
S0

D0

]
Is there a steady state for the market shares of these apps? Secondly, do they converge to this

steady state as n→∞?

Let’s first check for a steady state. If (S∗, D∗) is one, then

S∗ = 0.8S∗ + 0.1D∗

D∗ = 0.2S∗ + 0.9D∗

Note that both equations imply 2S∗ = D∗. Since we know these percentages add up to 1, we

conclude that the unique steady state is (1/3, 2/3) where one third of the population use Spotify,

and the rest use Deezer.

Will we reach this steady state beginning from an initial state in which everyone used Spotify?

Put differently, does (Sn, Dn) converge to (1/3, 2/3)?

Note that Sk +Dk = 1 at every k, so

Sk+1 = 0.8Sk + 0.1Dk = 0.8Sk + 0.1(1− Sk) = 0.7Sk + 0.1

By using the formula we have developed earlier, we can write the solution immediately:

Sn = (0.7)nS0 + 0.1× 1− (0.7)n

1− 0.7

which converges to 1/3. Therefore Dn converges to 2/3.
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The cobweb model

In the so-called cobweb model, we have a market where supply decisions of producers follow the

observed prices with a lag due to the time required in adjusting supplies. In particular, supply

decisions in period t are in response to prices in period t− 1:

St = g(pt−1) where

g is the aggregate supply function

St is the aggregate quantity supplied in period t

pt−1 is the market price observed in period t− 1

Unlike production, consumers’ demand decisions respond to prices immediately, so the demand

in period t is in response to price observed in that period, and this relationship is summarised by

the aggregate market demand function

Dt = f(pt) where

f is the aggregate demand function

Dt is the aggregate quantity demanded in period t

pt is the market price observed in period t

And finally, in each period the market clears, meaning demand equals supply:

Dt = St

f(pt) = g(pt−1)

which is nothing but a difference equation for price pt.

A steady state for pt is obtained when the supply and the demand have stabilised. A natural

question is whether this system would converge to such a steady state if it begins from a non-steady

state.

Special case: linear demand and supply.

Let’s try to answer this question for a special case where the aggregate supply and demand

functions are linear:

f(p) = A+Bp and g(p) = M +Np

so the market clearing condition Dt = St becomes

A+Bpt = M +Npt−1

which can then be written in the form of a difference equation we are familiar with:

pt =
N

B
pt−1 +

M −A
B

whose solution is

pt =

(
N

B

)t
p0 +

M −A
B

× 1− (N/B)t

1−N/B
Rewrite the solution as

pt =

(
N

B

)t
p0 +

M −A
B −N

× (1− (N/B)t)

and remember that

• demand D(p) = A+Bp decreases in price, so B < 0

• supply S(p) = M +Np increases in price, so N > 0

Therefore N/B < 0.

As far as convergence of price is concerned, we have three separate cases for N/B:
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• if N/B < −1, then pt diverges because pt is unbounded.

• if −1 < N/B < 0, then pt converges to p∗ =
M −A
B −N

.

• if N/B = −1, then price oscillates between p0 and 2p∗ − p0.

Note that convergence is obtained when the demand function is steeper than the supply function.

(Put differently, when the inverse supply curve is steeper than the inverse demand curve.)

Another special case: constant elasticity demand and supply.

Assume a constant price elasticity of demand ε < 0, and a constant price elasticity of supply

ϕ > 0.

That means (to be verified as an exercise) demand and supply are given by

D(p) = Bpε and S(p) = Npϕ

Price dynamics and market clearing imply

Bpεt = Npϕt−1

Taking the natural log:

lnB + ε ln pt = lnN + ϕ ln pt−1

Denoting yt = ln pt and rearranging yield the following familiar form of a difference equation:

yt =
ϕ

ε
yt−1 +

ln(N/B)

ε

which converges to a steady state if and only if |ϕ| < |ε|, that is, demand is more price elastic than

supply.
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14 Differential equations

Reading. Sydsaeter & Hammond: Section 9.8 (A Glimpse at Difference Equations). Pemberton &

Rau: Section 23.1 (Differential equations), Section 23.2 (Linear differential equations with constant

coefficients)

A differential equation is a “functional equation” which relates a function to its derivatives. For

example

f(x) lnx+ 2f ′(x) + xf ′′(x) = x2

is one such equation. We refer to this as a functional equation since this is assumed to hold not

only at some particular point x, but for all x in the domain of f . It is a second degree differential

equation because it involves f and its second derivative f ′′, but no higher order derivative.

Solving the above differential equation means identifying all functions f for which the equation

holds. We will be dealing with simpler differential equations which happen to appear frequently

in economic applications. Having said that, an economic problem may well involve a differential

equation for which we don’t necessarily have a recipe. So it is worth keeping in mind that there

are differential equations which might require techniques beyond the scope of this course (or even

beyond what’s known to mathematicians). Part IIA Paper 6 will explore further than what we

cover in this course.

Example 1. Suppose the price elasticity of the aggregate demand for a good is constant and equal

to ε. What can we say about the aggregate demand function?

Remembering the definition of price elasticity of demand for a demand function D, we can write

lim
∆D
D
∆p
p

=
D′(p)

D(p)
× p = ε

which gives us the following first degree differential equation for the function D:

D′(p)

D(p)
=

ε

p

Integrating both sides with respect to p yields

ln(D(p)) = ε ln p+ C for some constant C.

Taking the exp of both sides in the above equation leads to:

D(p) = pεeC for some constant C.

Thus a demand function whose price elasticity is the constant ε must be of the form

D(p) = Apε where A is a positive constant.

Example 2. The ratio x′(t)/x(t) is sometimes referred to as the relative rate of change of x and it

captures the proportional change in x(t) since it is nothing but

x′(t)

x(t)
= lim

h→0

1

h

x(t+ h)− x(t)

x(t)

Now, suppose the relative rate of change of x is constant and equal to r. Can we obtain a functional

expression for x(t) which does not feature its derivative?

That is, we need to solve the differential equation x′(t)
x(t) = r, which is even easier than the

example above. Integrating both sides yields

ln(x(t)) = rt+ C

and therefore x(t) = ert+C .

Thus, a quantity x(t) which exhibits constant relative rate of change r has the form

x(t) = Aert where A is a positive constant.
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14.1 Linear, autonomous, first-order differential equations

This is a class of simple differential equations of the form

(?) x′(t) = bx(t) + a where a and b are constants.

Observation 1. The constant function −a/b is a solution to (?).

Observation 2. If x(t) and y(t) are two different solutions to the equation (?), then z(t) =

x(t)− y(t) satisfies

(??) z′(t) = bz(t)

But we have already solved equations of type (??):

z′(t) = bz(t) =⇒ z′(t)

z(t)
= b =⇒ z(t) = Aebt where A > 0 is a constant.

So, putting together the above observations. If x(t) is a solution to the equation (?), then

both x(t) + a/b and −a/b− x(t) satisfy (??). That suggests

x(t) +
a

b
= Aebt OR − a

b
− x(t) = Aebt where A > 0 is a constant.

Or put differently

x(t) = −a
b
±Aebt where A > 0 is a constant.

Hence, solutions to (?) look like:

x(t) = −a
b

+Aebt where A is an arbitrary constant

Note that Example 1 above is not in this class of differential equations, but we still managed to

solve it.

14.2 Stationary solutions of differential equations

A constant solution of a differential equation is called a stationary solution (or stationary

state). Obviously, such a solution will have its derivatives equal to 0 everywhere, and therefore

can be easily computed from the differential equation. For example, given a differential equation

f ′(t) = bf(t) + a, a stationary solution necessarily satisfies f ′(t) = 0 for all t. Plugging this in to

the differential equation, we obtain the only stationary state as −a/b.

Recall that a quantity, say f(t), which changes with time t is said to converge when lim
t→∞

f(t)

exists. If a differential equation has a unique stationary state, and if every solution approaches to

this stationary state as t→∞, then we say the stationary state is stable.

We have already seen that the solution to the differential equation f ′(t) = bf(t) + a has the

form f(t) = Aebt − a
b , where A is a constant (which will be uniquely pinned down if we know the

value of f at some point). Clearly, limt→∞ f(t) is equal to the stationary state −a/b if b < 0, and

this state is stable.

Example. As the bid price pD for a stock exceeds the asking price pS , then we’d expect to see

the volume of trade of this stock to go up. Suppose these prices change with time t, resulting in a

volatile volume of trade q(t) given by

q′(t) = α(pD(t)− pS(t))

For this to make sense, let’s first observe that α > 0. In other words, as the wedge between the bid

price and the asking price goes up, so does the trade volume.
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Let’s suppose the prices pD and pS are related to the volume q of trade as follows:

pD = c+ dq pS = g + hq

Note that these describe the demand function (with slope 1/d) and the supply function (with slope

1/h for the stock. So realistically we’d expect d < 0 and h > 0.

If the initial volume of trade is denoted by q0, what can we say about the volume at time t? Is

there convergence? What does convergence mean?

Putting all of the above together

q′(t) = α(c+ dq(t)− g − hq(t)) = α(d− h)q(t) + α(c− g)

whose solution is

q(t) = Aeα(d−h)t − c− g
d− h

where the constant A can be evaluated by using the assumption that q(0) = q0:

q0 = A− c− g
d− h

=⇒ A = q0 +
c− g
d− h

Hence

q(t) =

(
q0 +

c− g
d− h

)
eα(d−h)t︸ ︷︷ ︸

converges if d−h<0

− c− g
d− h

If indeed d < 0 and h > 0, convergence will be obtained as t→∞.

Note that stability in this application corresponds to q′(t) being equal to zero, which means the

bid price pD converging to ask price pS .

An example of a non-autonomous differential equation

Those who have worked on the twist of the mortgage question from Lecture 16 might remember

that the relevant differential equation was

Dt = 1.03Dt−1 − (1.03)t−1p

where p is the first payment made at the end of period 1. The formula we developed for first-degree,

linear, autonomous difference equations would not apply here because the expression (1.03)t−1p

depends on t. But a solution could still be obtained.12

Likewise, for differential equations, suppose we have to tackle one of the form

f ′(t) = bf(t) + a(t)

This equation differs from the one we solved earlier in that a(t) is not a constant. It turns out this

equation is solvable with a little trick: multiply the equation with e−bt and rearrange to obtain

f ′(t)e−bt − bf(t)e−bt = a(t)e−bt

Exercise. Observe that the LHS is the derivative of f(t)e−bt, and proceed with integrating the

equation to reach the solution

f(t) = Cebt + ebt
∫
a(t)e−btdt

12Simply write D1, and then D2, and D3, and so on until you notice a pattern emerging which allows you pin
down a formula for Dn.
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A past exam question

Consider a market for an ordinary good where the price in each period is determined by the standard

market clearing condition: supply equals demand. Let the demand curve for this good be f(p) and

the supply curve be g(p).

(a) You are told that at every price p, the price elasticity of market demand for this good is ap2

and the price elasticity of market supply is bp2 where a and b are given constants. If both the

market demand and the market supply at p = 1 are 100, derive the demand curve f and the

supply curve g.

(b) Suppose demand Dt and supply St in period t are determined according to

Dt = f(pt) and St = g(pt−1)

where pt is the market price in period t. Obtain a difference equation for pt, and evaluate all

steady states if there are any.

(c) Obtain a formula which expresses the price in period t as a function of t and p0.

(d) Determine the conditions under which pt converges, and whether there is a stable long run

equilibrium. Comment on the nature of the convergence path.

Answer.

(a) The price elasticity of demand is f ′(p)p/f(p). The price elasticity of supply is g′(p)p/g(p).

These are given to be equal to ap2 and bp2, respectively. Hence we have two differential

equations
f ′(p)p

f(p)
= ap2 and

g′(p)p

g(p)
= bp2

which can be rewritten as

f ′(p)

f(p)
= ap and

g′(p)

g(p)
= bp

Integrating with respect to p, we obtain

ln f(p) =
ap2

2
+ α and ln g(p) =

bp2

2
+ β

where α and β are constants. Taking the exponential yields

f(p) = A exp(ap2/2) and g(p) = B exp(bp2/2)

where A and B are positive constants.

We are told that f(1) = g(1) = 100, which imply

A = 100 exp(−a/2) and B = 100 exp(−b/2)

and therefore

f(p) = 100 exp(−a/2 + ap2/2) and g(p) = 100 exp(−b/2 + bp2/2)

(b) Simply imposing Dt = St, i.e., f(pt) = g(pt−1) yields

exp

(
−a

2
+
ap2
t

2

)
= exp

(
− b

2
+
bp2
t−1

2

)
which implies

a(1− p2
t ) = b(1− p2

t−1)
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A steady state p∗ implies pt = pt−1 = p∗, and hence

(a− b)(1− (p∗)2) = 0

Demand is downward sloping, so a < 0, whereas supply is upward sloping, so b > 0. In

particular a− b 6= 0, and therefore (p∗)2 = 1, and p∗ = 1 since price cannot be negative.

(c) In order to make the above difference equation look like a first order linear autonomous

difference equation, we can set qt = 1− p2
t , so

aqt = bqt−1

and therefore qt = (b/a)tq0, which means

1− p2
t = (b/a)t(1− p2

0)

and therefore

pt =

(
1−

(
b

a

)t
(1− p2

0)

)1/2

=

((
b

a

)t
p2

0 + 1−
(
b

a

)t)1/2

(d) pt converges if and only if |b/a| < 1 and the limit is the unique stationary point p∗ = 1.

The stationary price p∗ = 1 is stable if there is convergence pt → p∗, and this happens if and

only if |b| < |a|. The demand and the supply functions have the “same shape”, and when

|b| < |a|, demand is more elastic than supply. If supply were to be more elastic than demand

(|a| < |b|) the prices would go further and further away from p∗ as t→∞.

Note also that a < 0 < b since we are talking about an ordinary good: demand is downward

sloping, supply is upward sloping. The price will fluctuate about p∗. For b < |a|, the movement

of price-quantity pairs on supply and demand curves lead to the so-called cobweb picture

spiralling around the intersection point of the demand and supply curves (which happens at

(1, 100).)
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