Matrices are typically used to represent big systems of linear equations. Of course one can use calculus in such systems. Let \(f(X) \) be a scalar function of the \((n \times m)\) matrix \(X\). Then
\[
\frac{\partial f(X)}{\partial X} \text{ is an } (n \times m) \text{ matrix whose } (i,j)-\text{th element is } \frac{\partial f(X)}{\partial x_{ij}}.
\]

Exercise 1 Let \(x, a \) denote two \((n \times 1)\) vectors. Denote \(f(x) = a'x \). Show that
\[
\frac{\partial f(x)}{\partial x} = a
\]

Exercise 2 If \(A \) denotes \((n \times m)\) matrix and \(x \) is \((m \times 1)\) vector, verify that
\[
\frac{\partial (Ax)}{\partial x} = A
\]

Exercise 3 Take \(A = \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix} \). Verify
\[
\frac{\partial x'Ax}{\partial x} = (A + A')x
\]
where \(x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \) is an \((2 \times 1)\) vector.

Exercise 4 Take matrix
\[
X = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ -1 & 0 \end{bmatrix}
\]
Compute \(X'X \).

Exercise 5 Show that \(X'X \) is symmetric. Compute
\[
\frac{\partial b'(X'X)b}{\partial b}
\]
using formula from exercise 3.

Exercise 6 Suppose that for given \((n \times 1)\) vector \(y \) and \((n \times k)\) full column rank matrix \(X \) we want to find \((k \times 1)\) vector of coefficients \(b \), such that the linear combination of column vectors of \(X \) (i.e. \(Xb \)) is closest to vector \(y \), i.e. we want to minimise \(\|y - Xb\|^2 \equiv \langle y - Xb, y - Xb \rangle = (y - Xb)'(y - Xb) \). We can proceed in two ways:

(a) Use calculus: Compute \(\frac{\partial \|y - Xb\|^2}{\partial b} \) and find \(b \) for which this derivation is zero.
(b) Use so called orthogonal projection theorem, which says that:

\[
\hat{b} = \arg\min_{\mathbf{b} \in \mathbb{R}^k} \|\mathbf{y} - \mathbf{Xb}\|^2 \iff (\mathbf{y} - \mathbf{X}\hat{b}) \text{ is orthogonal to any linear combination } \mathbf{Xb}, \mathbf{b} \in \mathbb{R}^k
\]

I.e. we have to find vector \(\hat{b}\), which satisfies following orthogonality conditions

\[
\langle \mathbf{y} - \mathbf{X}\hat{b}, \mathbf{X} \rangle \equiv (\mathbf{y} - \mathbf{X}\hat{b})' \mathbf{X} = 0_k
\]