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Abstract

This paper studies a social planner who chooses countries’ carbon prices so as to max-

imize global welfare. Product markets are characterized by firm heterogeneity, market

power, and international trade. Because of the market-power distortion, the planner’s op-

timal policy is second-best. The main insight is that optimal carbon prices may be highly

asymmetric: zero in some countries and above the social cost of carbon in countries with

relatively dirty production. This result obtains even though a uniform global carbon price

is always successful at reducing countries’ emissions. Competition policy that mitigates

market power may enable stronger climate action.
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1 Introduction

Carbon pricing is increasingly used as a key policy instrument to combat climate change. Yet

carbon prices around the world remain low and uneven: above $50 per ton of CO2 in Europe’s

flagship cap-and-trade system—and even higher for some national carbon taxes—but much

lower in most other jurisdictions (World Bank 2021). This picture contrasts markedly with the

Pigouvian ideal of a uniform global carbon price set at the social cost of carbon (SCC).

So far, carbon pricing has focused on power generation and emissions-intensive industrial

sectors like aluminium, cement and steel. Three characteristics of these industries are striking.

First, firms within each industry often have widely varying carbon intensities of production.

This enhances the potential for market-based regulation to enhance abatement-cost efficiency.

Second, emissions-intensive industries are often highly concentrated with long-standing con-

cerns about the exercise of market power. This makes relevant the theory of the second best.

Third, international trade is important as the scope of the product market in which regulated

firms compete is often wider than that of the carbon price they face. This has led to concerns

about leakage of emissions to less regulated jurisdictions.

This paper studies the optimal design of carbon prices in a model in which these three

characteristics are crucial. The model considers a social planner who chooses countries’ carbon

prices so as to maximize global welfare. Because of a market-power distortion in the product

market, the planner’s optimal policy is second-best. The central trade-off is that a higher

carbon price reduces a country’s domestic emissions but also increases deadweight losses in

the product market (due to pass-through of carbon costs to consumers) and leads to a degree

of carbon leakage to the other country.1 Thereby, the country with relatively clean firms is

more vulnerable to carbon leakage as a policy-induced loss in production to the dirtier country

translates into a larger increase in emissions.

The main insight is that second-best carbon prices can be extremely asymmetric across

countries. Market power, on its own, pushes countries’ optimal carbon prices downwards as

the planner seeks to cushion the increase in consumer prices. The presence of international

trade introduces a further effect: if carbon leakage for the country with relatively clean firms is

sufficiently pronounced, its optimal carbon price is zero. This, in turn, limits deadweight losses

in the product market and enables the planner to choose a higher carbon price for the dirtier

country—which creates additional climate benefits as it reshuffles production to cleaner firms.

As long as market power is not too pronounced, the dirtier country’s optimal carbon price may

lie above the SCC. This finding obtains even though a uniform global carbon price is always

successful in reducing countries’ emissions.

The result should not be overplayed given the model’s very simple welfare function.2 The

more general point is that, while carbon prices around the world today are almost certainly

far too low, failing to implement a global carbon price does not necessarily imply the wrong

1The leakage channel in the model arises from the market-share losses of more tightly regulated firms.
2The model is partial equilibrium without further distortions in factor markets or wider tax interactions.

The social planner does not have additional policy instruments to directly address the market-power distortion.
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response to climate change. Moreover, competition policy to mitigate market power may enable

stronger and more balanced climate action.

2 Model

Consider a global industry in which nk ≥ 1 firm(s) are based in country k = i, j. Country k’s

firms face a linear demand curve pk(X) = αk −X where X ≡ Xi +Xj is total industry output

(Xk ≡
∑

m xm
k for k = i, j), and αk is a measure of k’s product quality.

Firm m from country k needs to produce ymk = ξkx
m
k units to get xm

k units of output

to market, where ξk ≥ 1 is a trade cost that takes an “iceberg” form. Its emissions are

emk = zky
m
k − amk where zk is its baseline emissions intensity (emissions per unit of production)

and amk is abatement.

Faced with a carbon price τk in its country, firm m of k’s profits are Πm
k = pk(X)xm

k −
Cm

k (ymk , a
m
k ; τk), where its total costs Cm

k (ymk , a
m
k ; τk) = cky

m
k + τke

m
k + ϕk(a

m
k ) consist of a

production cost ck per unit of ymk , carbon costs, and an abatement cost ϕk(a
m
k ) =

γk
2
(amk )

2.

The product market features a generalized version of Cournot competition with a conduct

parameter θ ∈ (0, 1]. Formally, firms’ equilibrium outputs (x̂m
k )k=i,j satisfy:

x̂m
k = arg max

xm
k ≥0

{[
pk

(
θ(xm

k − x̂m
k ) +

∑
m
x̂m
i +

∑
m
x̂m
j

)
xm
k − Cm

k (ymk (x
m
k ), a

m
k )
]}

(1)

Firm m in country k, in deviating its output by (xm
k − x̂m

k ), conjectures that industry output

will change by θ(xm
k − x̂m

k ) as a result. In this “conduct equilibrium” (Weyl & Fabinger 2013),

a lower θ corresponds to more intense rivalry while competition is imperfect with θ > 0. The

Cournot-Nash equilibrium occurs where θ = 1.

The firm’s first-order conditions for output and abatement are thus:

pk − θxm
k − ckξk + γkzkξka

m
k = 0 and − γka

m
k + τk = 0 (2)

so a generalized version of marginal revenue equals the marginal cost of output while the

marginal cost of abatement is equal to the carbon price. These conditions together imply:

pk − θxm
k = (ck + τkzk)ξk. (3)

Given separability of production and abatement costs, the product-market equilibrium does not

depend on the extent of abatement. Let Xk(τi, τj), pk(τi, τj), and Ek(τi, τj) denote equilibrium

outputs, prices and emissions (with E ≡ Ei + Ej).

Global welfare W = U−
∑

k ckξkXk−sE−Φ reflects consumer utility U =
∑

k αkXk− 1
2
X2

(with ∂U
∂Xk

= pk), production and trade costs, the global SCC s, and total abatement costs Φ ≡∑
k

∑
m ϕk(a

m
k ).

3 The social planner’s problem is to maxτi,τjW (τi, τj) subject to the constraint

3Product-market revenues are a transfer from consumers to firms and carbon-pricing revenues are a transfer
from firms to governments.
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that, at equilibrium, firms make non-negative profits, Πm
k ≥ 0. Assume that W (0, 0) ≥ 0 so

the market is socially viable without carbon pricing—and the planner therefore never shuts

it down. A necessary condition is that consumers’ willingness-to-pay exceeds social costs,

mink {αk − (ck + szk)ξk} > 0.

For conciseness, the main text focuses on the case with symmetric product qualities (αi =

αj = α) and non-carbon costs (ci = cj = c, ξi = ξj = ξ) and without abatement (γi → ∞,

γj → ∞).

3 Carbon prices and global emissions

The first results characterize basic properties of carbon pricing in an international context. The

rate of carbon leakage associated with carbon pricing by country i is:

LC
i ≡ dEj(τi, τj)/dτi

−dEi(τi, τj)/dτi
. (4)

This measures the fraction of i’s emissions reduction that leaks to j. Similarly, output leakage

LO
i ≡ (dXj/dτi)/(−dXi/dτi).

Lemma 1 An increase in country i’s carbon price τi reduces its domestic production, dXi/dτi <

0 and its domestic emissions, dEi/dτi < 0, where:

(a) the rate of output leakage LO
i = nj/(nj + θ) > 0;

(b) the rate of carbon leakage LC
i = (zj/zi)[nj/(nj + θ)] > 0;

(c) the rate of carbon cost pass-through dp(τi, τj)/dτi = [ni/(ni + nj + θ)] ziξ > 0.

Output leakage is more pronounced with (i) more rivals in j engaging in “business stealing”

from those in i as a result of the unilateral cost increase (higher nj); and (ii) more competitive

conduct (lower θ).

Carbon leakage equals output leakage scaled by the relative emissions intensity zj/zi. A

higher carbon price by i increases in global emissions if its carbon leakage exceeds 100%. This

is ruled out by symmetry but occurs if j’s production is sufficiently more polluting.4

Carbon pricing reduces i’s profit margin as less than 100% of its carbon cost is passed on

to consumers; pass-through decreases with market power and with more rivals in j.

Global action “works” in the following sense:

Lemma 2 An increase in a uniform global carbon price (τk = τ for k = i, j):

(a) reduces global emissions, dE(τ, τ)/dτ < 0;

(b) reduces country k’s emissions, dEk(τ, τ)/dτ ≤ 0, if and only if LC
k ≤ 1.

A uniform tightening in carbon prices is always successful at reducing aggregate emissions—

even if it may induce higher emissions by an individual country. Intuitively, if unilateral action

4Large intra-industry heterogeneity is borne out in practice (Lyubich, Shapiro & Walker 2018). Babiker
(2005) finds carbon leakage rates up to 130% in a general-equilibrium model with similar ingredients to the
present model.
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by i has carbon leakage above 100%, then i’s firms are significantly cleaner than j’s so a higher

global carbon price improves their competitiveness and they expand production and emissions.

4 Carbon prices and global welfare

Now consider the second-best carbon prices chosen by a social planner. At a global level,

carbon pricing involves a trade-off between lower consumer utility and the potential for lower

environmental damages. Letting α̂ ≡ (α− cξ)/ξ > 0, the former dominates where:

Lemma 3 If country i’s rate of carbon leakage is sufficiently high,

LC
i ≥ 1− θ

(nj + θ)

θ

(ni + nj + θ)

α̂/s

zi
≡ LC

i ,

then a zero carbon price is welfare-dominant, W (0, τj) ≥ W (τi, τj) for all τi, τj ≥ 0 .

The result is immediate if LC
i > 1. Then a “reverse leakage” argument applies: a reduction

in i’s carbon price raises its own emissions but this is outweighed by the induced reduction in

j’s emissions. As consumers also gain, global welfare rises. Given the linear-quadratic model

structure, its leakage rate is a constant (Lemma 1) so this logic holds at any level of countries’

carbon prices. Put simply, the extent of i’s carbon leakage precludes effective climate action.

This conclusion applies as long as i’s leakage rate is sufficiently high, LC
i ≥ LC

i , where

LC
i < 1 because θ > 0. The critical value LC

i declines with the ratio α̂/s, which is a measure

of the size of market-power distortion (via α̂) relative to the climate problem (via s). If the

former is sufficiently important, LC
i turns negative.

The main interest of the paper lies in global carbon price asymmetry, so suppose that

i’s firms are cleaner with zi/zj < 1. The problem is then resolved by the three industry

characteristics described in the introduction:

Lemma 4 Suppose that country i’s carbon price τi = 0. Then an interior solution τ ∗j > 0 for

country j that maximizes W (0, τj) satisfies:

τ ∗j
s

= 1− θ

nj

(
α̂/s− zj

zj

)
︸ ︷︷ ︸

market power

+
ni

nj

[
1 +

(
ni + nj + θ

θ

)(
1− zi

zj

)]
︸ ︷︷ ︸
international competition & firm heterogeneity

.

The first deviation of τ ∗j from the SCC is driven by market power. The standard result

for a second-best domestic emissions tax is nested where τ ∗j
∣∣
ni=0

= [s− (θ/nj) (α̂/zj − s)] < s

(recalling mink {α− (c+ szk)ξ} > 0). With perfect competition, τ ∗j
∣∣
ni=0,θ=0

= s is Pigouvian.

The second deviation from the SCC instead pushes τ ∗j upwards—driven by firm heterogene-

ity and cross-border competition. An increase in j’s carbon price shifts production to i’s cleaner

firms. This has two implications. First, output leakage to i limits the contraction in industry

output due to j’s carbon price, mitigating the incremental product-market distortion. Second,

the contraction in industry output leads to a greater reduction in global emissions precisely
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because i’s firms are cleaner. These factors limit deadweight losses and amplify environmental

benefits, pushing upwards j’s optimal carbon price.

A related observation is that the social planner regards countries’ carbon prices as strategic

substitutes.5 A higher carbon price by j raises the product price and so exacerbates the market-

power distortion. This sharpens the planner’s trade-off against emissions cuts by i, and reduces

the welfare gain from i’s own carbon price.

The main result shows how this international-competition effect can dominate the planner’s

calculus and yield extreme asymmetry in global carbon prices:

Proposition 1 Suppose that country i’s firms are sufficiently cleaner than j’s, with

zi
zj

≤ 1− θnj

[(ni + θ)(ni + nj + θ) + nj(nj + θ)]
≡ δ < 1.

Then, for the range of parameter values given by
α̂

s
∈
[
Ψ,Ψ+

ni

θ

nj

θ
(zj − zi)

]
where Ψ ≡

(
1 +

ni

θ

) [
zj +

ni

θ
(zj − zi)

]
,

welfare-optimal carbon prices are τ ∗i = 0 while τ ∗j ≥ s.

Proposition 1 establishes in equilibrium the logic underlying Lemmas 3 and 4. The range

on α̂/s ensures that the market-power distortion is small enough for τ ∗j to exceed the SCC by

Lemma 4 but also large enough for j’s firms to remain profitable. The condition zi/zj ≤ δ

ensures that indeed τ ∗i = 0 because i’s leakage is sufficiently pronounced as per Lemma 3.

Illustrations. Figure 1 illustrates how Proposition 1 applies to a significant “chunk” of the

parameter space. It sets s = 50, zj = 1, and ni/θ = nj/θ = 6—corresponding, e.g., to a

relatively concentrated market ni = nj = 3 and competition “halfway” between perfect and

Cournot (θ = 1
2
). The result holds notably where i is much cleaner and α̂/s is not too large.

For example, if i’s firms are modestly cleaner with zi = 0.9, Proposition 1’s condition
zi
zj

≤ δ = 127
133

is met. With α̂ = 600, Lemma 4 gives τ ∗j = 731
3
—almost 50% above the SCC.

If instead α̂ = 560, τ ∗j = 80 makes j’s firms just indifferent about being active (Π∗
j = 0) while

τ ∗j ≥ s as long as α̂ ≤ 740. For these parameter values, LC
i = .952 and LC

j = .771 by Lemma

1, confirming that global action “works” as per Lemma 2.6

Extensions. Proposition 1’s insight obtains in the generalized model (see Appendix) with

heterogeneity in product qualities and non-carbon costs, plus abatement by firms. These het-

erogeneities have an ambiguous impact: if j has a lower-quality product or higher costs, this

strengthens the planner’s case for setting a relatively higher carbon price (and vice versa).

5Global welfare, W (τi, τj) = U(τi, τj)−
∑

k cξXk(τi, τj)−sE(τi, τj) is submodular in countries’ carbon prices:

d

dτj

[
dW (τi, τj)

dτi

]
=

d

dτj

[∑
k
[p(τi, τj)− cξ]

dXk

dτi
− s

dEi

dτi
(1− LC

i )

]
=

dp

dτj

dX

dτi
< 0,

since dXk/dτi, dEi/dτi and LC
i are all constants, dp/dτj > 0, and dX/dτi < 0 (Lemma 1).

6First-best would be restored with a global carbon price τ∗ = s plus a discriminatory output subsidy of
(θ/ni)[α− (c+ szi)ξ] to i’s cleaner firms that pushes j out of the market. Here, the planner attempts to mimic
this policy by instead skewing carbon pricing towards the dirtier country.
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Abatement pushes optimal carbon prices towards the SCC so the result is less likely—but still

applies over a significant parameter range.

5 Conclusions and related literature

The finding of extreme global asymmetry in equilibrium carbon prices—with τ ∗i = 0 but si-

multaneously τ ∗j ≥ s—differs from prior literature in several respects. First, a classic literature

(Buchanan 1969; Requate 2006) studies local environmental policy with imperfect competition

where the planner chooses a single domestic emissions price. This second-best emissions price

is typically less than Pigouvian, with τ ∗i < social marginal damage. By contrast, this paper

has studied global welfare with multiple carbon prices.

Second, the literature on international climate policy (e.g., Babiker 2005; Fowlie, Reguant &

Ryan 2016) typically examines models where a unilateral actor/coalition (e.g., OECD) pursues

carbon pricing, often with τ ∗j < s, while other countries (e.g., non-OECD) exogenously have

τi ≡ 0.7 For example, Fowlie, Reguant & Ryan (2016) also focus on impacts of market power

and international trade but from the perspective of domestic US welfare. By contrast, this paper

has studied a global planner where all carbon prices are endogenous and extreme asymmetry

with τ ∗i = 0, τ ∗j ≥ s is optimal.8

Third, it is known that cross-country differences in marginal abatement costs can be optimal

due to equity concerns—a less rich country may have a higher marginal utility of income—and

restrictions on financial transfers (Chichilnisky & Heal 1994). By contrast, this paper has

obtained an extreme version of non-uniform pricing in a model without equity concerns.

Future research could incorporate this paper’s approach—global-welfare maximization with

imperfect competition and endogenous carbon prices—into detailed simulation models that are

calibrated to global market data. This may help understand the extent to which observed asym-

metries in carbon prices around the world represent second-best policy; the present analysis

suggests that more carbon-intensive countries should have (much) higher carbon prices.

7When climate action is exogenously restricted to a subset of countries, it is second-best to set lower carbon
prices for sectors with internationally-traded products—unless corrective trade tariffs are available (Hoel 1996).

8While results with τ∗i ̸= τ∗j are not surprising, the extent of the equilibrium asymmetry shown in this paper
seems much less obvious.
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Figure 1: Parameter region for Proposition 1’s result τ ∗i = 0 and τ ∗j ≥ s

Notes: Fixes s = 50, ni/θ = nj/θ = 6, zj = 1; varies zi and α̂ ≡ (α− cξ)/ξ
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Online Appendix

This appendix solves the generalized version of the model with asymmetries in product qualities,

production costs and trade costs as well as abatement by firms. It derives generalized results,

Lemmas 1A–4A and Proposition 1A, which nest the results of the main text as a special case.

It shows how the key insight of the main text—extreme asymmetry in socially-optimal carbon

prices—is robust in this richer setting.

Define λk(τk) ≡ [αk − (ck + τkzk)ξk] > 0 as a measure of the per-unit “value-added” of

country k’s firms, that is, the wedge between consumers’ willingness-to-pay for its product and

the costs (carbon and non-carbon) of bringing it to market. A necessary condition for the

viability of the market is that minkλk(s) > 0.

It will be useful to have an intuitive metric of the potential for abatement by firms. Write

country k’s emissions as Ek = Ek−Ak where Ak =
∑

m amk is total abatement and Ek ≡ zkξkXk

are “baseline” emissions. Now define, for τk > 0, the following metric:

Γk ≡
A′

k(τk)

−dEk

dτk

≥ 0 (5)

as a measure of the extent to which emissions reductions come about by abatement relative to

cuts in baseline emissions (via production cuts). The first-order condition for abatement from

(2) implies A′
k(τk) =

nk

γk
≥ 0. So the metric is driven by the convexity of abatement costs; in

particular, there is zero abatement Γk → 0 as γk → ∞. If, for example, half of a k’s overall

emission reduction comes by way of abatement, then Γk = 1.

Lemma 1A A unilateral increase in country i’s carbon price τi reduces its domestic production,

dXi/dτi < 0 and its domestic emissions, dEi/dτi < 0, where:

(a) the rate of output leakage LO
i =

nj

(nj+θ)
> 0;

(b) the rate of carbon leakage LC
i = 1

(1+Γi)

zjξj
ziξi

nj

(nj+θ)
> 0;

(c) the rate of carbon cost pass-through dp
dτi

= ni

(ni+nj+θ)
ziξi > 0.

The qualitative features of the generalized model in terms of output, emissions and price

responses are the same as for Lemma 1 in the main text. Abatement mitigates carbon leakage,

as it leads to a stronger emissions reduction by i for any given output reduction, but not

does not alter the rates of output leakage or carbon cost pass-through. All three rates remain

constants with respect to carbon prices.

Asymmetry in trade costs has a comparable effect to asymmetry in emissions intensities.

For example, i’s rate of carbon leakage is higher if j’s trade cost is relatively higher; then j’s

induced increase in sales is associated with relatively greater production (due to higher iceberg

costs) and hence greater emissions. Asymmetries in product qualities and production costs

have no direct impact on Lemma 1A.

Proof of Lemma 1A. Faced with a carbon price τk, the first-order condition for firm m in

country k for output satisfies (3):
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pk − θxm
k = αk −X − θxm

k = (ck + τkzk)ξk (6)

Summing over all ni+nj firms shows that the industry output and product prices, respectively,

are equal to:

X(τi, τj) =
ni [αi − (ci + ziτi)ξi] + nj [αj − (cj + zjτj)ξj]

(ni + nj + θ)
=

niλi(τi) + njλj(τj)

(ni + nj + θ)
(7)

pi(τi, τj) = αi −
niλi(τi) + njλj(τj)

(ni + nj + θ)
. (8)

The optimality conditions (3) imply that θXi = ni(λi −X) for country i and so:

Xi(τi, τj) =
ni

(ni + nj + θ)

[
λi(τi) +

nj

θ
[λi(τi)− λj(τj)]

]
. (9)

For part (a), this pins down the output responses to i’s own carbon price as well as to j’s:

dXi

dτi
=

ni

(ni + nj + θ)

[
dλi

dτi
+

nj

θ

(
dλi

dτi
− dλj

dτi

)]
= − ni(nj + θ)

θ(ni + nj + θ)
ziξi < 0 (10)

dXi

dτj
= − ni

(ni + nj + θ)

nj

θ

dλj

dτj
=

ninj

θ(ni + nj + θ)
zjξj > 0 (11)

So output leakage equals LO
i ≡ (dXj/dτi)/(−dXi/dτi) = nj/(nj + θ) as claimed.

For part (b), in terms of emissions, using the definition Ek = zkξkXk − Ak (k = i, j), it

follows that:
dEi

dτi
= ziξi

dXi

dτi
− dAi

dτi
= − ni(nj + θ)

θ(ni + nj + θ)
z2i ξ

2
i −

ni

γi
< 0 (12)

dEi

dτj
= ziξi

dXi

dτj
=

ninj

θ(ni + nj + θ)
ziξizjξj > 0 (13)

So the rate of carbon leakage can be written as:

LC
i ≡ dEj/dτi

−dEi/dτi
=

zjξj
dXj

dτi

−ziξi
dXi

dτi

(
1 +

dAi
dτi

−ziξi
dXi
dτi

) =
zjξj
ziξi

nj

(nj + θ)

1

(1 + Γi)
, (14)

as claimed, where the abatement effect

Γi ≡
dAi

dτi

−ziξi
dXi

dτi

=

ni

γi
ni(nj+θ)

θ(ni+nj+θ)
z2i ξ

2
i

≥ 0 (15)

is a constant with respect to carbon prices.

Finally, for part (c), carbon cost pass-through follows directly as:

dpi
dτi

= − ni

(ni + nj + θ)

dλi

dτi
=

ni

(ni + nj + θ)
ziξi > 0, (16)
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as claimed. ■

Lemma 2A An increase in a uniform global carbon price (τk = τ for k = i, j):

(a) reduces global emissions, dE(τ, τ)/dτ < 0;

(b) reduces country k’s emissions, dEk(τ, τ)/dτ ≤ 0, if and only if carbon leakage for its

unilateral carbon price LC
k ≤ 1.

Again, the qualitative features of the special model (Lemma 2) and the generalized model

(Lemma 2A) are the same.

Proof of Lemma 2A. For part (a), global emissions in terms of carbon prices are E(τi, τj) =∑
k zkξkXk(τi, τj)−

∑
k Ak(τk), so with a uniform global carbon price τi = τj = τ :

E(τ) ≡ E(τ, τ) =
∑

k
zkξkXk(τ, τ)−

∑
k
Ak(τ) =

∑
k
Ek(τ, τ)−

∑
k
Ak(τ) (17)

As abatement is non-decreasing in the carbon price, A′
k(τ) ≥ 0 (k = i, j), a sufficient condition

for global emissions to fall is that baseline emissions fall (due to output cuts), that is:

d

dτ

∑
k
Ek(τ, τ) < 0 =⇒ E ′(τ) < 0. (18)

Using (9), country i’s output faced with a global carbon price responds according to:

dXi(τ, τ)

dτ
= − ni

(ni + nj + θ)

[
dλi

dτ
+

nj

θ

(
dλi

dτ
− dλj

dτ

)]
= − ni

(ni + nj + θ)

[
ziξi +

nj

θ
(ziξi − zjξj)

]
.

(19)

So the response of global baseline emissions is given by:

d

dτ

∑
k
Ek = ziξi

dXi(τ, τ)

dτ
+ zjξj

dXj(τ, τ)

dτ

= − niziξi
(ni + nj + θ)

[
ziξi +

nj

θ
[ziξi − zjξj]

]
− njzjξj

(ni + nj + θ)

[
zjξj +

ni

θ
[zjξj − ziξi]

]
(20)

= − 1

θ(ni + nj + θ)

[
ninj(ziξi − zjξj)

2 + θ(niz
2
i ξ

2
i + njz

2
j ξ

2
j )
]
< 0 (21)

which is always negative, as claimed.

For part (b), also noting that dAi(τ)
dτ

= dAi(τi)
dτi

, shows that country i’s emissions respond according

to:

d

dτ
Ei(τ, τ) = ziξi

dXi(τ, τ)

dτ
−dAi(τ)

dτ
= ziξi

dXi(τ, τ)

dτ
+ziξi

dXi

dτi

(
dAi(τi)

dτi

−ziξi
dXi

dτi

)
= ziξi

[
dXi

dτ
+

dXi

dτi
Γi

]
(22)

where the abatement effect Γi ≥ 0 is constant with respect to carbon prices by (15). From

above and (9), respectively, the output changes are given by:
dXi(τ, τ)

dτ
= − ni

(ni + nj + θ)

[
ziξi +

nj

θ
(ziξi − zjξj)

]
and

dXi

dτi
= − ni(nj + θ)

θ(ni + nj + θ)
ziξi < 0.

(23)
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Using these two results in the previous expression yields:

d

dτ
Ei(τ, τ) = − ni

(ni + nj + θ)
ziξi

[
ziξi +

nj

θ
(ziξi − zjξj) +

(nj + θ)

θ
ziξiΓi

]
. (24)

It follows that i’s emissions decline with a higher global carbon price whenever:

d

dτ
Ei(τ, τ) ≤ 0 ⇐⇒ LC

i =
zjξj
ziξi

nj

(nj + θ)

1

(1 + Γi)
≤ 1 (25)

recalling the result for LC
i for i’s unilateral carbon price from Lemma 1A. ■

Lemma 3A If country i’s rate of carbon leakage is sufficiently high,

LC
i ≥ 1− 1

(1 + Γi)

θ

(nj + θ)

[
θ

(ni + nj + θ)

λi(0)

sziξi
+

[
nj

θ
+

nj

(ni + nj + θ)

]
∆λi(0)

sziξi

]
≡ LC

i ,

then a zero carbon price is welfare-dominant, W (0, τj) ≥ W (τi, τj) for all τi, τj ≥ 0.

Compared to Lemma 3 in the main text, there are two additional effects. First, asymmetries

product qualities, production costs and trade costs—as captured by ∆λi(0)—have an ambiguous

effect on LC
i ; if country i’s value-added is higher, with ∆λi(0) > 0, then this pushes LC

i

downwards as the planner then cares more about avoiding production cuts from i (and vice

versa). Second, abatement—as captured by Γi > 0—pushes LC
i towards 100% and thus often

makes the condition more difficult to meet.

The condition of Lemma 3 that LC
i ≥ LC

i is grossly sufficient for W (0, τj) ≥ W (τi, τj).

Defining the social value of i’s abatement Vi(τi) ≡ ni

[
sami (τi)−

γi
2
(ami (τi))

2
]
, it uses the upper

bound on the marginal social value that V ′
i (τi) ≤ sA′

i(τi) =
ni

γi
s holds for all τi, τj ≥ 0.

Proof of Lemma 3A. Global welfare can be expressed as:

W (τi, τj) = W (τi, τj) +
∑

k
Vk(τk) (26)

where “baseline” global welfare (covering baseline emissions, without abatement) is:

W (τi, τj) ≡ U −
∑

k
ckξkXk(τi, τj)− sE(τi, τj) = U −

∑
k
[(ck + szk)ξk]Xk(τi, τj) (27)

while the social value of abatement by country k’s (symmetric) firms is:

Vk(τk) ≡ nk

[
samk (τk)−

γk
2
(amk (τk))

2
]
. (28)

The proofs proceeds in three steps: first, derive and bound baseline global welfare; second,

derive and bound the social value of abatement; third, bring the results together to obtain a

condition in terms of carbon leakage.

Step 1. Recalling that ∂U
∂Xk

= pk, the change in baseline global welfare due to i’s carbon price

is given by:

13



dW

dτi
(τi, τj) =

∑
k
[pk − (ck + szk)ξk]

dXk

dτi
(29)

=
dX

dτi

[∑
k
[pk − (ck + szk)ξk]

(
dXk

dτi

/
dX

dτi

)]
. (30)

Using the results from (9) in Lemma 1A, the relative output changes are:

dXi

dτi

/
dX

dτi
=

(nj + θ)

θ
> 0 and

dXj

dτi

/
dX

dτi
= −nj

θ
< 0 (31)

while the marginal surplus of k’s output satisfies:

pk − (ck + szk)ξk = λk(s)−
niλi(τi) + njλj(τj)

(ni + nj + θ)
. (32)

Using these results in the expression for baseline welfare yields:

dW

dτi
(τi, τj) =

dX

dτi

[∑
k
λk(s)

(
dXk

dτi

/
dX

dτi

)
− [niλi(τi) + njλj(τj)]

(ni + nj + θ)

]
(33)

=
dX

dτi

[
λi(s) +

nj

θ
∆λi(s)−

[niλi(τi) + njλj(τj)]

(ni + nj + θ)

]
(34)

where ∆λi(s) ≡ [λi(s)− λj(s)] is the difference in countries’ value-added (at the SCC) and also

d2W

dτ 2i
(τi, τj) =

dX

dτi

[
− ni

(ni + nj + θ)

dλi

dτi

]
=

dX

dτi

ni

(ni + nj + θ)
ziξi =

dX

dτi

dpi
dτi

< 0 (35)

d2W

dτidτj
(τi, τj) =

dX

dτi

[
− nj

(ni + nj + θ)

dλj

dτj

]
=

dX

dτi

nj

(ni + nj + θ)
zjξj =

dX

dτi

dpj
dτj

< 0 (36)

since dX
dτi

is constant with respect to carbon prices by Lemma 1A. It follows that the change in

baseline welfare is bounded above, for all τi, τj ≥ 0, by:

dW

dτi
(τi, τj) ≤

dW

dτi
(0, 0) =

dX

dτi

[
λi(s) +

nj

θ
∆λi(s)−

[niλi(0) + njλj(0)]

(ni + nj + θ)

]
. (37)

Recalling that λk(s) = λk(0) − szkξk, this bound can also be written in terms of emissions

intensities as:

dW

dτi
≤ dX

dτi

[
λi(0) +

nj

θ
∆λi(0)−

[niλi(0) + njλj(0)]

(ni + nj + θ)
− (nj + θ)

θ
sziξi +

nj

θ
szjξj

]
(38)

=
dX

dτi

[
θ

(ni + nj + θ)
λi(0) +

[
nj

θ
+

nj

(ni + nj + θ)

]
∆λi(0)−

(nj + θ)

θ
sziξi +

nj

θ
szjξj

]
.(39)

Step 2. As amk = τk/γk by the first-order condition from (15), the marginal impact of a higher
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carbon price on the social value of abatement by country i is:

V ′
i (τi) = ni (s− γia

m
i )

dami (τi)

dτi
= (s− τi)A

′
i(τi) =

ni

γi
(s− τi), (40)

where V ′′
i (τi) = −ni

γi
< 0 while V ′

i (0) > 0 but V ′
i (·) < 0 for a carbon price above the SCC. It

follows that the marginal social value of abatement is bounded above, for all τi, τj ≥ 0, by:

V ′
i (τi) ≤ sA′

i(τi) =
ni

γi
s. (41)

It will be useful to rewrite this, in terms of the abatement effect Γi ≡ A′
i(τi)

− dEi
dτi

≥ 0, as follows:

V ′
i (τi) ≤ sA′

i(τi) = s
A′

i(τi)
dXi

dτi

dXi

dτi
dX
dτi

dX

dτi
= sziξi

A′
i(τi)
dEi

dτi

dXi

dτi
dX
dτi

dX

dτi
= −sziξiΓi

(nj + θ)

θ

dX

dτi
. (42)

which uses the formulae of Lemma 1A.

Step 3. The final step obtains a results in terms of i’s rate of carbon leakage. Combining the

welfare bounds from the previous two steps shows that global welfare change due to i’s carbon

price is bounded, for all τi, τj ≥ 0, according to:

dW

dτi
(τi, τj) ≤ dX

dτi
×
[

θ

(ni + nj + θ)
λi(0) +

[
nj

θ
+

nj

(ni + nj + θ)

]
∆λi(0) (43)

−(nj + θ)

θ
sziξi +

nj

θ
szjξj − sziξiΓi

(nj + θ)

θ

]
(44)

So dW
dτi

(τi, τj) ≤ 0 holds whenever:

θ

(ni + nj + θ)
λi(0)+

[
nj

θ
+

nj

(ni + nj + θ)

]
∆λi(0)−

(nj + θ)

θ
sziξi

[
(1 + Γi)−

nj

(nj + θ)

szjξj
sziξi

]
≥ 0

(45)

and using the expression for carbon leakage from Lemma 1A:

θ

(ni + nj + θ)
λi(0) +

[
nj

θ
+

nj

(ni + nj + θ)

]
∆λi(0)−

(nj + θ)

θ
sziξi(1 + Γi)(1− LC

i ) ≥ 0 (46)

from which the condition on LC
i follows, as claimed. ■

Lemma 4A Suppose that country i’s carbon price τi = 0. Then an interior solution τ ∗j > 0 for

country j that maximizes W (0, τj) satisfies:

τ ∗j
s

= 1−
θ
nj

[
λj(0)−szjξj

szjξj

]
[
1 +

(ni+nj+θ)

nj

(ni+θ)
θ

Γj

]
︸ ︷︷ ︸

market power

+

ni

nj

[
1 +

(ni+nj+θ)

θ

(
1− ziξi

zjξj

)
−
[
1 +

(ni+nj+θ)

θ

]
∆λj(0)

szjξj

]
[
1 +

(ni+nj+θ)

nj

(ni+θ)
θ

Γj

]
︸ ︷︷ ︸

international competition & firm heterogeneity
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The basic structure of Lemma 4 from the main text is preserved. First, a standard-market

power effect again pushes τ ∗j below the SCC. Second, international competition and firm hetero-

geneity can have the opposite effect. In particular, they push τ ∗j upwards if j has (i) a higher

“trade-adjusted” emissions intensity (zjξj ≥ ziξi), and (ii) a lower “ex-carbon” value-added

(∆λj(0) ≤ 0). Finally, abatement by j’s firms (via Γj > 0) always pushes τ ∗j towards the SCC

but does not lead to a sign change in terms of τ ∗j ≷ s.

As expected, the Pigouvian τ ∗j = s remains optimal without international trade (ni = 0)

and market power (θ = 0).

Proof of Lemma 4A. By assumption, τi = 0 for country i and the optimal τ ∗j > 0 for

country j is interior, and the second-order condition holds (with d2W
dτ2j

(τi, τj) < 0), so it solves

the analogous expression to (43)

dW

dτj
(0, τ ∗j ) =

dX

dτj

[
λj(s)−

ni

θ
∆λj(s)−

[
niλi(0) + njλj(τ

∗
j )
]

(ni + nj + θ)
− (ni + θ)

θ
(s− τ ∗j )zjξjΓj

]
= 0

(47)

where ∆λj(s) ≡ [λj(s)− λi(s)]. Recalling that λj(τj) = λj(0) − τjzjξj, it follows that τ ∗j

satisfies:

λj(0)− szjξj +
ni

θ
∆λj(s)−

[niλi(0) + njλj(0)]

(ni + nj + θ)
+

nj

(ni + nj + θ)
τ ∗j zjξj =

(ni + θ)

θ
zjξj(s− τ ∗j )Γj

(48)

and so

nj

(ni + nj + θ)
τ ∗j zjξj = szjξj+

ni

(ni + nj + θ)
λi(0)−

(ni + θ)

(ni + nj + θ)
λj(0)−

ni

θ
∆λj(s)+

(ni + θ)

θ
zjξj(s−τ ∗j )Γj.

(49)

Therefore the optimal carbon price relative to the SCC satisfies:

τ ∗j
s

= 1+
(ni + θ)

nj

+
ni

nj

λi(0)

szjξj
−(ni + θ)

nj

λj(0)

szjξj
−(ni + nj + θ)

nj

ni

θ

∆λj(s)

szjξj
+
(ni + nj + θ)

θ

(ni + θ)

nj

(
1−

τ ∗j
s

)
Γj

(50)

Further rearranging now shows that:

τ ∗j
s

= 1− θ

nj

[
λj(0)

szjξj
− 1

]
+
ni

nj

[
1− ∆λj(0)

szjξj
− (ni + nj + θ)

θ

∆λj(s)

szjξj

]
+
(ni + nj + θ)

nj

(ni + θ)

θ

(
1−

τ ∗j
s

)
Γj

(51)

and noting that
∆λj(s)

szjξj
=

∆λj(0)

szjξj
−
(
1− ziξi

zjξj

)
(52)

yields

τ ∗j
s

= 1− θ

nj

[
λj(0)− szjξj

szjξj

]
+

ni

nj

[
1 +

(ni + nj + θ)

θ

(
1− ziξi

zjξj

)
−
[
1 +

(ni + nj + θ)

θ

]
∆λj(0)

szjξj

]
(53)

+
(ni + nj + θ)

nj

(ni + θ)

θ

(
1−

τ ∗j
s

)
Γj (54)
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from which the result follows as claimed. ■

Proposition 1A Suppose that (i) country i has higher value-added, with ∆λi(0) ≥ 0, and

(ii) country i’s firms are sufficiently cleaner than j’s according to “trade-adjusted” emissions

intensities:

ziξi
zjξj

≤
[
(ni + θ)(ni + nj + θ) + n2

j

]
+ θ2G(Γj)

[(ni + θ)(ni + nj + θ) + nj(nj + θ)] + θ2J(Γi,Γj)
≡ δ ∈ (0, 1) (55)

where

G(Γj) ≡
nj

θ

(ni + θ)

θ

(ni + nj + θ)

θ
Γj (56)

J(Γi,Γj) ≡
(nj + θ)

θ

(ni + nj + θ)

θ

{
(ni + θ)

θ
Γj +

[
1 +

(ni + θ)

θ
Γj

]
Γi

}
≥ G(Γj) (57)

with G(0) = J(0, 0) = 0, ∂
∂Γj

G(Γj) > 0, ∂
∂Γi

J(Γi,Γj) > 0, ∂
∂Γj

J(Γi,Γj) > 0. Then, for the range

of parameter values given by

λj(0)

szjξj
≤ 1 +

ni

θ

[
1 +

(ni + nj + θ)

θ

(
1− ziξi

zjξj

)]
− ni

θ

[
1 +

(ni + nj + θ)

θ

]
∆λj(0)

szjξj
≡ A (58)

λj(0)

szjξj
≥

(ni+θ)
θ

[
1 + ni

θ

(
1− ziξi

zjξj

)]
− ni

θ

[
1 + (ni+θ)

θ
(1 + Γj)

]
∆λj(0)

szjξj[
1 + (ni+θ)

θ
Γj

] ≡ B (59)

where A > B, welfare-optimal carbon prices are τ ∗i = 0 while τ ∗j ≥ s.

The key point is that Proposition 1’s insight of extreme asymmetry in socially-optimal

carbon prices continues to hold in the generalized model. If country i has higher value-added—

capturing relative product quality, production costs and trade costs—then, due to market

power, the planner is “biased” against increasing its carbon price. Moreover, if i’s firms are

sufficiently cleaner, as per ziξi
zjξj

≤ δ < 1 (which, together with ∆λi(0) > 0, implies that ∆λi(s) >

0), then the planner wishes to levy a much higher carbon price on j.

To get a sense of magnitudes, without any abatement, Γi = Γj = 0 (as γi → ∞, γj → ∞), as

in the main text, the condition has δ = 127
133

so only a small asymmetry in emissions intensities

is needed. If, instead, Γi = Γj = 1 (by appropriate choice of γi, γj) then δ ≃ .4 so the condition

is considerably tighter.9 However, regardless of i’s and j’s abatement, there always exists a

relative emissions intensity that is “sufficiently low” for the result to obtain.

Moreover, if i has no potential for abatement but j does (Γi = 0 < Γj), this pushes δ

towards 1 as J(0,Γj) = G(Γj). That is, the planner then wishes to levy a relatively higher

carbon price on j to also exploit its superior abatement opportunities.

Proof of Proposition 1A. The proof has four steps. First, to identify conditions under which

τ ∗j ≥ s. Second, to identify conditions under which j’s firms remain profitable under this τ ∗j .

9Given τ∗i = 0, country i’s firms do not engage in any abatement in equilibrium but the sufficient condition
from Lemma 3 still requires i’s “potential” abatement (via Γi) to be sufficiently small such that LC

i ≥ LC
i .
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Third, to obtain a condition under which τ ∗i = 0 is indeed socially-optimal. Fourth, to derive

overarching parameter conditions spanning those from the three previous steps.

Step 1. Suppose that τ ∗i = 0 and that optimal τ ∗j > 0. for country j is interior. If so, then τ ∗j

satisfies the expression in Lemma 4A, and therefore τ ∗j ≥ s holds if and only if:

ni

nj

[
1 +

(ni+nj+θ)

θ

(
1− ziξi

zjξj

)
−
[
1 +

(ni+nj+θ)

θ

]
∆λj(0)

szjξj

]
[
1 +

(ni+nj+θ)

nj

(ni+θ)
θ

Γj

] ≥
θ
nj

[
λj(0)−szjξj

szjξj

]
[
1 +

(ni+nj+θ)

nj

(ni+θ)
θ

Γj

] (60)

which rearranges as:

λj(0)

szjξj
≤ 1 +

ni

θ

[
1 +

(ni + nj + θ)

θ

(
1− ziξi

zjξj

)]
− ni

θ

[
1 +

(ni + nj + θ)

θ

]
∆λj(0)

szjξj
≡ A. (61)

Step 2. By the first-order condition in (3), j’s firms certainly remain profitable (with Πm
j ≥ 0)

under this τ ∗j (regardless of the extent of abatement) as long as they have a positive profit

margin, with pj(0, τ
∗
j ) ≥ (cj + zjτ

∗
j )ξj. Using the equilibrium price from Lemma 1A and

rearranging shows that this is equivalent to:

pj(0, τ
∗
j ) ≥ (cj + zjτ

∗
j )ξj ⇐⇒ λj(τ

∗
j ) ≥

[
niλi(0) + njλj(τ

∗
j )
]

(ni + nj + θ)
(62)

which, recalling that λj(τ
∗
j ) = λj(0)− τ ∗j zjξj, can be written as:

pj(0, τ
∗
j ) ≥ (cj + zjτ

∗
j )ξj ⇐⇒

τ ∗j
s

≤ θ

(ni + θ)

λj(0)

szjξj
+

ni

(ni + θ)

∆λj(0)

szjξj
(63)

so j’s carbon price cannot be too high. Now, using the expression for τ ∗j from Lemma 4A, this

condition is equivalent to:

θ

(ni + θ)

λj(0)

szjξj
+

ni

(ni + θ)

∆λj(0)

szjξj
≥ 1−

θ
nj

[
λj(0)−szjξj

szjξj

]
[
1 +

(ni+nj+θ)

nj

(ni+θ)
θ

Γj

] (64)

+

ni

nj

[
1 +

(ni+nj+θ)

θ

(
1− ziξi

zjξj

)
−
[
1 +

(ni+nj+θ)

θ

]
∆λj(0)

szjξj

]
[
1 +

(ni+nj+θ)

nj

(ni+θ)
θ

Γj

] (65)

or

λj(0)

szjξj

[
θ

nj

+
θ

(ni + θ)
+

(ni + nj + θ)

nj

Γj

]
≥ (ni + nj + θ)

nj

[
1 +

ni

θ

(
1− ziξi

zjξj

)]
(66)

−
[
ni

nj

[
1 +

(ni + nj + θ)

θ

]
+

ni

(ni + θ)
+

ni

θ

(ni + nj + θ)

nj

Γj

]
∆λj(0)

szjξj
(67)
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which rearranges as:

λj(0)

szjξj

[
θ

(ni + θ)
+ Γj

]
≥
[
1 +

ni

θ

(
1− ziξi

zjξj

)]
−
[

ni

(ni + θ)
+

ni

θ
(1 + Γj)

]
∆λj(0)

szjξj
(68)

and so:

λj(0)

szjξj
≥

(ni+θ)
θ

[
1 + ni

θ

(
1− ziξi

zjξj

)]
− ni

θ

[
1 + (ni+θ)

θ
(1 + Γj)

]
∆λj(0)

szjξj[
1 + (ni+θ)

θ
Γj

] ≡ B. (69)

Step 3. By Lemma 3A, zero carbon price τ ∗i = 0 is certainly socially-optimal if LC
i ≥ LC

i while,

by Lemma 1A, the rate of carbon leakage is given by LC
i =

zjξj
ziξi

nj

(nj+θ)
1

(1+Γi)
. Combining these

two results therefore shows that τ ∗i = 0 holds if:

zjξj
ziξi

nj

(nj + θ)

1

(1 + Γi)
≥ 1− 1

(1 + Γi)

θ

(nj + θ)

[
θ

(ni + nj + θ)

λi(0)

sziξi
+

[
nj

θ
+

nj

(ni + nj + θ)

]
∆λi(0)

sziξi

]
(70)

which can be rearranged as:

θ

(ni + nj + θ)

λi(0)

sziξi
+

[
nj

θ
+

nj

(ni + nj + θ)

]
∆λi(0)

sziξi
≥
[
1 +

nj

θ

(
1− zjξj

ziξi

)]
+
(nj + θ)

θ
Γi. (71)

To make this expression directly comparable with the condition from Step 2, note that λi(0) =

λj(0)−∆λj(0) and ∆λi(0) = −∆λj(0), and so the expression becomes:

θ

(ni + nj + θ)

λj(0)

szjξj

zjξj
ziξi

≥
[
1 +

nj

θ

(
1− zjξj

ziξi

)]
(72)

+

[
nj

θ
+

nj

(ni + nj + θ)
+

θ

(ni + nj + θ)

]
∆λj(0)

szjξj

zjξj
ziξi

+
(nj + θ)

θ
Γi(73)

Further rearranging gives:

λj(0)

szjξj
≥ (ni + nj + θ)

θ

[
ziξi
zjξj

− nj

θ

(
1− ziξi

zjξj

)]
+

[
1 +

nj

θ

[
1 +

(ni + nj + θ)

θ

]]
∆λj(0)

szjξj
(74)

+
(ni + nj + θ)

θ

(nj + θ)

θ

ziξi
zjξj

Γi ≡ C. (75)

Step 4. The final step involves (i) verifying that A > B under the assumptions of Proposition

1A, and (ii) deriving a further parameter condition that ensures B ≥ C. First, direct calculation

shows that A > B holds if and only if:

ni

θ

nj

θ

(
1− ziξi

zjξj

)
+

(ni + θ)

θ
Γj

[
(ni + θ)

θ
+

ni

θ

(ni + nj + θ)

θ

(
1− ziξi

zjξj

)]
≥ (76)

ni

θ

[
nj

θ
+

(ni + θ)

θ

(ni + nj + θ)

θ
Γj

]
∆λj(0)

szjξj
(77)

which holds under the maintained assumptions that i’s value-added is higher, ∆λi(0) ≥ 0 ⇐⇒
∆λj(0) ≤ 0, and that i’s trade-adjusted emissions intensity is lower, ziξi/zjξj < 1 ⇐⇒ ∆λj(s) <
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∆λj(0).

Second, to obtain a sufficient condition for B ≥ C, note that the maintained assumption

∆λi(0) ≥ 0 ⇐⇒ ∆λj(0) ≤ 0 implies that:

B ≥
(ni+θ)

θ

[
1 + ni

θ

(
1− ziξi

zjξj

)]
[
1 + (ni+θ)

θ
Γj

] (78)

C ≤ (ni + nj + θ)

θ

[
ziξi
zjξj

− nj

θ

(
1− ziξi

zjξj

)]
+

(ni + nj + θ)

θ

(nj + θ)

θ

ziξi
zjξj

Γi (79)

Therefore a sufficient condition is that:

(ni + θ)

θ

[
1 +

ni

θ

(
1− ziξi

zjξj

)]
≥ (ni + nj + θ)

θ

[
ziξi
zjξj

− nj

θ

(
1− ziξi

zjξj

)]
−G(Γj)+

ziξi
zjξj

J(Γi,Γj)

(80)

where the abatement terms are defined as:

G(Γj) ≡
nj

θ

(ni + θ)

θ

(ni + nj + θ)

θ
Γj (81)

J(Γi,Γj) ≡
(nj + θ)

θ

(ni + nj + θ)

θ

{
(ni + θ)

θ
Γj +

[
1 +

(ni + θ)

θ
Γj

]
Γi

}
≥ G(Γj) (82)

with G(0) = J(0, 0) = 0, ∂
∂Γj

G(Γj) > 0, ∂
∂Γi

J(Γi,Γj) > 0, ∂
∂Γj

J(Γi,Γj) > 0. Rearranging in

terms emissions intensities now gives:

(ni + θ)

θ

(ni + θ)

θ
+
nj

θ

(ni + nj + θ)

θ
+G(Γj) ≥

[
ni

θ

(ni + θ)

θ
+

(ni + nj + θ)

θ

(nj + θ)

θ
+ J(Γi,Γj)

]
ziξi
zjξj

(83)

and so:
ziξi
zjξj

≤ (ni + θ)(ni + θ) + nj(ni + nj + θ) + θ2G(Γj)

[ni(ni + θ) + (nj + θ)(ni + nj + θ) + θ2J(Γi,Γj)]
≡ δ ∈ (0, 1) (84)

as claimed. In sum, whenever λj(0)/szjξj exceeds B, and also exceeds C given that ziξi/zjξj ≤
δ, τ ∗i = 0 is indeed optimal and j’s firms remain profitable under the τ ∗j of Lemma 4A which,

as long as λj(0)/szjξj is less than A, exceeds the SCC. ■
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