Avoiding collusion and market power

David Newbery
Auctioning carbon allowances in the ETS
DG Environment Brussels
22 February 2008
http://www.electricitypolicy.org.uk
The argument

• Markets to examine for market power
 – EUA market
 – electricity markets
 – gas markets

• EUA price affects electricity & gas prices
 – who has incentive to influence EUA price?
 – Who has ability to do so?

• Effect of quantity limit on gas market power
 => Stabilising EUA price desirable
Surplus EUAs collapse market

- Futures Dec 2007
- OTC Index
- Second period Dec 2008

Start of ETS

Second period

Euro/t CO2

1-Oct-04 31-Dec-04 1-Apr-05 1-Jul-05 30-Sep-05 30-Dec-05 31-Mar-06 30-Jun-06 29-Sep-06 29-Dec-06 30-Mar-07 30-Jun-07 28-Sep-07 28-Dec-07
Emission projections – large utilities
is there a risk of price collapse?

Electricity price rise higher than gas cost increase

Clean spark spread UK (50% efficient) monthly averages (profitable hours only)
Relevant markets and actors

- EUA: traders, speculators - too small
- Electricity wholesale market: generators
- Gas wholesale market: those controlling access to markets, gas suppliers, integrated gas+electricity companies

Only relevant if actors have ability to influence relevant price
Transit pipelines comprising the East-West and Benelux-Italy axes

100% booked until 2022

99% sold until 2015

D Newbery

Brussels 22/2/08
Most congested pipelines: largely sold out until 2015

Transit pipelines deny access

Refusals of capacity left the pipeline under-used

Source: Energy Sector Inquiry 2005/2006 fig 27
Price formation in 6 EU countries 2003-5

![Chart showing price formation in 6 EU countries from 2003 to 2005.](chart)

- **BE**: Belgium
- **DE**: Germany
- **ES**: Spain
- **FR**: France
- **NL**: Netherlands
- **GB**: United Kingdom

The chart illustrates the price formation across these countries from 2003 to 2005, with different colors representing different components of the price structure.
Incentives in electricity market

• Allocation of amount (large) E:
 – generators benefit from raising EUA price p_C :
 – $p_C \uparrow$ price of elec $p_e \uparrow \Rightarrow E p_C \uparrow$
 – Buy EUAs, burn coal, raise price of gas

• No allocation to ESI, full auctioning:
 – $p_C \uparrow$ benefits gencos with more infra-marginal fuel
 • Hydro, nuclear, gas if coal at margin, coal if gas at margin
 – $p_C \downarrow$ benefits gencos with less infra-marginal fuel

Evidence of more market power one way or other?
Impact on fuel choice

- CO$_2$ content of coal twice CCGT
- coal generation costs rise more than CCGT

Does it matter?
Fuel choices in UK electricity generation

- Gas cheaper than coal
- Coal 38%, gas 50%
- Coal cheaper than gas
- Coal 34%, gas 55%

- Gas price Euros/MWh
- Coal price Euros/MWh

- fuel +EUA
- Fuel post ETS
- fuel pre-ETS
Impact of ETS on gas pricing

• Suppose gas price increases
 – initially: demand falls (fuel switch gas => coal)
 => demand for EUAs rises => EUA price ↑
 => partially offsets advantage of coal
 => offsets some demand reduction for gas
 => reduces elasticity of demand for gas
 => increases market power of gas suppliers
 • EU Sector Inquiry finds gas market power
Demand for gas

Price of Gas g

Demand for gas if EUA price constant

Demand for gas if EUA price varies

EUA price rise induces some switch back to gas

Price rise

Initial demand fall (gas-coal)

Demand for gas in ESI
Impact of ETS on gas elasticity

• reduces absolute value of price elasticity of demand for gas

=> increases market power

• Lerner Index \(\frac{(p-c)}{p} = \frac{\alpha_i}{\varepsilon} \) where \(\alpha_i \) is market share of firm, \(\varepsilon \) is market demand elasticity (or \(\frac{(p-c)}{p} = \frac{1}{\varepsilon_{rd}} \) where \(\varepsilon_{rd} \) is elasticity of residual demand)
Policy implications

Fixing EUA quantity amplifies gas market power

=> delink EUA and gas prices

Stabilise \(CO_2 \) price

Can this be done by managing auctions?

Any other reasons for stabilising price?
Fixing prices or quantities?

- Aim is to mitigate climate change
 => improve efficiency & investment in low-C
- helped by stable CO$_2$ prices
- fixing quantities destabilises price
 => cost of errors higher if marginal cost of abatement steeper than marginal benefit

Stabilise CO$_2$ price
 Costs of errors setting prices or quantities

- Correct MC
- MC
- Best estimate of Marginal cost of abatement
- MB, Marginal benefit from abatement
- Efficiency loss from quota
- Efficiency loss from charge

£/tC

Q*
Q

Reductions in emissions
The case for price stabilisation

• CO$_2$ is a stock pollutant
 – CO$_2$ damage today effectively same as tomorrow
 => marginal benefit of abatement essentially flat
 – marginal cost of abatement rises rapidly
 – CCS, other renewables expensive now
 – support RD&D first, commercial deployment later
Auctions to stabilise price

- Decide on EUA price ceiling and floor
 - depends on cost of reducing CO$_2$
 - €15-20/t CO$_2$ for nuclear, wind?
- Set number EUAs to auction to achieve this
 - combined with banking and trading
 - allows ceilings and floors to be adjusted

ReQUIRES single centralised auction
Summary of interactions with gas

- present ETS imposes a quantity constraint
 - Destabilises CO$_2$ price
 - Makes gas demand less price sensitive
 => enhances market power of gas producers
- stabilising price better than fixing quantity
 - stock pollutant - damage insensitive to date
 => auction EUAs to stay within ceiling & floor
 - Stable predictable price good for investment
 - Delinks gas and CO$_2$ prices, reduces market power
Conclusion

• EUA market large, liquid, durable
 – Traders and speculators unlikely to be problem
• Some elec and gas co.s have market power
 – EUA price affects electricity price and gas WTP
• Some co.s may have incentive & ability to influence EUA price
 – Reduced by auctions for electricity
 – Reduced if EUA price delinked from gas price or gas market made more competitive
Avoiding collusion and market power

David Newbery
Auctioning carbon allowances in the ETS
DG Environment Brussels

22 February 2008
http://www.electricitypolicy.org.uk
Interactions between markets for electricity and CO$_2$

Let $\beta_i = \text{CO}_2$/MWh of firm i,
$\beta =$ that of marginal price-setting firm
$\beta_a = \text{CO}_2$/MWh of ESI
$s =$ EUA price, p be electricity price
$q_i =$ output of firm i, $Q =$ total elec output
$\alpha_i = q_i/Q$; $\varepsilon =$ elasticity of electricity demand
$S(s) =$ supply of EUAs to electricity from other sectors $= \beta_a Q,$
$\varepsilon_s = (s/S)dS/ds$, elasticity of supply of EUAs to ESI
Interactions between markets for electricity and CO$_2$

Extreme case: Cournot assumptions

Max $\Pi_j = p(Q,s)q_j - C_j(q_j) - \beta_j q_j s$,

$$\frac{\partial \Pi_j}{\partial q_j} = 0 = p - MC_j - \beta_j s + q_j \frac{\partial p}{\partial Q} + q_j \frac{\partial p}{\partial s} \frac{ds}{dQ} - \beta_j q_j \frac{ds}{dQ}$$

$$p(1 - \alpha_j / \varepsilon) = \{MC_j + \beta_j s\} - \alpha_j Q(\beta - \beta_j) \frac{ds}{dQ}$$

$$MR = MC - \alpha_j s(\beta - \beta_j) / (Q \varepsilon_s)$$

$$p = MC / (1 - \alpha_j / \varepsilon) + \alpha_j s(\beta_j - \beta) / \{Q \varepsilon_s (1 - \alpha_j / \varepsilon)\}$$
Interactions between markets for electricity and CO\textsubscript{2}

\[
\text{Max } \Pi_j = p(Q,s)q_j - C_j(q_j) - \beta_j q_j s, \\
\frac{\partial \Pi_j}{\partial s} = q_j (\frac{\partial p}{\partial s}) - \beta_j q_j \\
= q_j (\beta - \beta_j)
\]