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1 Data Sources!

1.1 The Belgian CPI data set

The Belgian CPI data set contains monthly individual price records collected by the
Belgian National Statistical Institute (NSI) for the computation of the Belgian National
and Harmonized indices of Consumer Prices. In Dhyne et al. (2010), the analysis is
restricted to the product categories included in the Belgian CPI basket for the base year
1996, and the sample period starts in July 1994 and ends in February 2003. The data
set covers only the product categories for which the prices are recorded throughout the
entire year in a decentralized way, i.e. 65.5% of the Belgian CPI basket for the base year
1996. The remaining 34.5% relate to product categories that are monitored centrally,
such as housing rents, electricity, gas, telecommunications, health care, newspapers and
insurance services and to seasonal product categories. Price records take into account all
types of rebates and promotions, except those relating to the winter and summer sales
period, which typically take place in January and July. In addition to the price records,
the Belgian CPI data sets provides information on the location of the retailer, a retailer
identifier, the packaging of the product and the brand of the product. The price concept
used in this article is the price per unit. This data set has been used in Aucremanne and
Dhyne (2004, 2005) and in Dhyne and Konieczny (2007) and has been an input to Dhyne
et al. (2006). Basic descriptive statistics for the product categories covered in Dhyne et
al. (2010) are provided in Section 4 below.

As an example, Figure 1 displays 50 price trajectories® for oranges, taken from the
Belgian sample. This figure illustrates how the different price trajectories co-move over
the observation period but also the importance of idiosyncratic shocks in the pricing
pattern. A closer look at three particular price trajectories (Figure 2) also illustrates the
changes in the speed of price adjustment over time. In Figure 2, one may identify periods
of frenetic small price changes (2nd semester of 1996) and periods of no price changes (in
2000) for the same store (dashed red trajectory), which indicates that a constant (S,s)
model cannot fit this characteristic of the data and stressess the need for introducing a
stochastic range of inaction in the state dependent model as it is done in Dhyne et al.
(2010).

! Confidentiality data restrictions : We are not allowed to provide anyone with the micro price reports
underlying this work.

2A price trajectory is the sequence of price records corresponding to a product of a given brand,
quality and packaging sold in a particular outlet.
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FIGURE 1. - 50 PRICE TRAJECTORIES - ORANGES (IN EUR/Ka@) - BELGIAN CPI
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FIGURE 2. - THREE PRICE TRAJECTORIES FOR ORANGES IN BELGIUM

1.2 The French CPI data set

The French CPI data set contains monthly individual price records collected by the French
national statistical institute (INSEE) for the computation of the French National and
Harmonized Index of Consumer Prices. It covers the period July 1994 - February 2003.
This data set covers 65.5% of the French CPI basket. Indeed, the prices of some categories
of goods and services are not available: centrally collected prices - of which major items
are car prices and administered or public utility prices (e.g. electricity)- as well as other
types of products such as seasonal fresh food products and rents. At the COICOP 5-digit
level, we have access to 128 product categories out of 160 in the CPI. As a result, the
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coverage rate is above 70% for food and non-energy industrial goods, but closer to 50% in
the services, since a large part of services prices are centrally collected, e.g. for transport
or administrative and financial services. Each individual price quote consists of the exact
price level of a precisely defined product. What is meant by “product” is a particular
product, of a particular brand and quality, sold in a particular outlet. The individual
product identification number allows us to follow the price of a product through time,
and to recover information on the type of outlet (hypermarket, supermarket, department
store, specialized store, corner shop, service shop, etc.), the category of product and the
regional area where the outlet is located. Importantly, if in a given outlet a given product
is definitively replaced by a similar product of another brand or of a different quality, a
new identification number is created, and a new price trajectory is started. On top of
the above mentioned information, the following additional information is recorded: the
year and month of the record, a qualitative “type of record” code and (when relevant)
the quantity sold. When relevant, division by the indicator of the quantity is used in
order to recover a consistent price per unit. This data set has been used in Baudry et al.
(2007), Fougere et al. (2007), Fougere et al. (2010) and has been an input to Dhyne et
al. (2006). Basic descriptive statistics for the product categories covered in Dhyne et al.
(2010) are provided in Section 4.

50 price trajectories for men’ socks taken out from the French sample are presented in
Figure 3. This figure also illustrates the heterogeneity in price setting practices and the
surprizing fact of long periods of constant prices followed by small price changes. This
graph also illustrates the occurrence of temporary price changes in our data sets.
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FIGURE 3 - 50 PRICE TRAJECTORIES - MEN’S SOCKS (IN EUR) - FrRENCH CPI

1.3 Advantages of CPI price records

In the empirical literature on price adjustments, the two main sources of data are either
CPI databases (f. i. Bils and Klenow, 2004, Klenow and Kryvstov, 2008, Nakamura and
Steinsson, 2008 for the U.S, Dhyne et al., 2006 and the different individual contributions
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to the ESCB Inflation Persistence Network referenced in that paper for the Euro area,
Lach and Tsiddon, 1992, for Israél, or Gagnon, 2009, for Mexico) or scanner data (Levy
et al., 2010, Midrigan, 2010, Campbell and Eden, 2005 and Nakamura, 2008, Dossche et
al., 2006).

Compared to scanner data, the CPI data sets have a broader coverage. Indeed, CPI
data sets not only cover products sold in supermarkets, as it is the case for scanner
data, but also the prices of services. Prices in CPI data sets also concern different
types of retailers, while scanner data only concern the pricing strategy of a particular
supermarket chain. For instance, the Dominick’s data set used in many recent papers for
the US? (Levy et al., 2010, Midrigan, 2010) only contains prices collected at Dominick’s
Finer Foods). Some scanner data sets contain information for more than one supermarket
chain (f. i., Nakamura, 2008, uses a data set managed by AC Nielsen which covers 33
major distribution chains) but, still, they do not include other types of outlets.

Another advantage of the monthly CPI price data compared to scanner price data
is that scanner price data, which are typically available at higher frequencies (daily or
weekly), contain a lot of very short lived price changes, motivated mostly by strategic
behaviour. When addressing the issue of the relative impact of idiosyncratic and common
shocks on outlets’ price-setting behaviour, using scanner data naturally increases the
weight attached to the idiosyncratic components. Monthly CPI price records reflect part
of this strategic pricing,* but because prices are collected once a month, in both large and
small outlets, the relative importance of these strategic price changes is largely reduced.’

Finally, compared to some scanner data sets (Nakamura, 2008), CPI data sets are
often available for much longer time periods.

3This data set is available at http://research.chicagobooth.edu/marketing/databases/dominicks.

4When the statistical officer collects the price, it has to report the posted price that is applied when
he visits the outlet, even if the posted price is a temporary promotion.

’Nakamura and Steinsson (2008) argue that the observed difference in the frequency of price changes
obtained between the U.S. (Bils and Klenow, 2004, Klenow and Kryvstov, 2008) and the euro area (Dhyne
et al., 2006) is explained by difference in the relative importance of temporary promotions, which seems
to be more common in the US economy.



2 Some properties of the cross-sectional estimate of
ft

In Dhyne et al. (2010), the pricing behaviour of outlet i at time ¢ is given by

pit — Pit—1 = (i +x,B+vi+eiw—pir—1)I(ft + X8 +vi +eiw — piz—1 — si) (1)
+(fe + X8 + vi + € — Pig—1)I(Pig—1 — fr — XuB — v — € — Sir).

where I(a) is an indicator function that takes value 1 if @ > 0, and 0 otherwise, p;; is the
price of the product sold by outlet ¢ at time ¢, f; is the common component of the optimal
price of outlet 7 at time ¢, x;; is a set of explanatory variables of the optimal price, v; is
the outlet specific random effect component of the optimal price, € is the idiosyncratic
component of the optimal price and s;; is the stochastic range of inaction of outlet i at
time ¢, with

Sit s o2 0
Vi |(ft7X;t;pi,t—1)/ A ZZdN O s 0 O'g 0
Eit 0 0 0 Ug

The estimation of the common factor f; and of the other parameters of this model
(namely s, o, which respectively denote the mean and standard deviation of s;, o.,
the standard deviation of the idiosyncratic component ¢, o, the standard deviation of
the outlet specific random effect, v;, and 3, the parameters associated with the observed
explanatory variables, x;;) are obtained using either an iterative procedure or maximum
likelihood estimation (referred to as Full ML in Dhyne et al., 2010). To obtain fi, referred
to as the cross-sectional estimates of f;, using the iterative procedure, one needs to solve
the following non-linear equation

b= fi + %8+ g o), (2)
where
N N N
b = Z WitPit, Xy = Zwitxm Gi(fe) = Z Wit (g1t + G2it) »

i=1 i=1 i=1

G = dp |@ | A= | @ AL )

\/ 0%+ 0F \/ 0%+ 0F
O-g dit — S dit + s

Joit = o - | — |,
,/a§+a§ ,/ag—i-ag ,/0?—1—02

dit = fi +X,8— Dist-1, a§ = Uz + ai.
and {w;;,i = 1,2, .., N} represent a predetermined set of weights such that w;; = O(N™1),

N
and Zw?t =O(N).
i=1



For given values of 6, where 6 = (s,8,0% 6% 0%), and for each t, Equation (2)
provides a non-linear function in f;. This equation has a unique solution as long as s > 0.
Under the cross-sectional independence of v; and €, g; (f;) — F (gi) and fi — f; 2,0, as

N — oo.

2.1 Uniqueness of the solution of Equation (2)

Let g
Zz't(ft) = #a
\Joi+ ag
and
~ Ap; i
Apit = : s Tt — i )
o2+ ag o2 + 02
2
§ e >0, =<,
0%+ o} 05 T O¢
and note that we have
Apy = zu(f) + 2 f) [@ (2u(fi) = 3) — @ (2u(f) + 3)] (3)
+0% ¢ (zie( ) — 3) — & (zie(f2) + 3)] + Ty (4)

The cross-sectional average estimate of f; is now given by the solution of the non-linear
equation

v(f) = i walza(f) + 2a(F) | (2a(f) =3) — @ (m(f)+3)] )
8 [0 (2u(f) = 3) = ¢ (=) +3) |} — ane (6)
= 0, (7)

N N
where an; = Y., wiApy,.

First it is clear that W(f;) is a continuous and differentiable function of f;, and it is
now easily seen that

lim W(f,) — 400 and lim W¥(f,) — —oc.

ft—+oo ft——o0

Also the first derivative of ¥(f;) is given by®

6Recall that the weights, w;;, are non-zero pre-determined constants, and in particular do not depend
on ft-



where
Go =1+ @ (za(f) = 5) = @ (2a(f) +5) + (1= )zl f).
and

hzalF)) = z(F) [0 (2u(F) = 3) = ¢ (=l f) +3) |
But since 1 — ® (zzt(ﬁ) + §> = (—zit(ft) - 5), then
140 (2u(f) = 5) = @ (sl ) +5) = @ (2(f) = 5) + @ (=2l fe) = 5) >0,
and it is easily seen that h(z;(f;)) is symmetric, namely h(z(f;)) = h(—2:(f;)). Focusing
on the non-negative values of z;(f,) it is easily seen that
it
V2r

and by symmetry h(z;) > 0, for all s > 0. Hence, ¢;; > 0 for all 4 and ¢, and s > 0.
Therefore, it also follows that W'(f;) > 0, for all value of w; > 0 and s > 0. Thus, by the
fixed point theorem, W( f;) must cut the horizontal axis but only once.

h(zi) = [6_0'5(2“_5)2 — 6_0'5(2"'t+§)2] > 0, for s >0,

2.2 Consistency of f; as an estimator of f, as N — 0o

Let

U(f;) = Zwit {zie(fr) + 2z () [® (za(fr) = 5) — @ (2 fr) + 9)]

1=1

02 [6 (zalfe) = 3) — 6 (za(f) + 9]} — ans
and note that

N
U(fi) = - Zwitnit'
i=1
Consider now the mean-value expansion of ¥(f,) around f,

‘I'(ft) - \I’(J;t) = Wl(ﬁ)(ft - ft),

where f; lies on the line segment between f; and f;. Since U(f,) = 0 and W'(f,) > 0 for
all f; (as established above) we have

N ~
3 - i—1 WitT);
fi—fi= @

(fy)

Recall that 7, = (ag + 02)71/2 [Api — E (Api |hyt)], where hyy = (fi, X, pig—1), and
hence F (7;;) = 0.. Further, conditional on f; and x;;, price changes, Ap;;, being func-
tions of independent shocks v; and &;; over 7, will be cross sectionally independent. There-
fore, n,, will also be cross sectionally independent; although they need not be identically
distributed even if the underlying shocks, v; and ¢;;, are identically distributed over .
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Given the above results we now have (for each ¢ and as N — o0)

(i w;) e (7= 5) o N (0.82).

i=1

where .
2 (Zi\il w?t) Zi\; wiVar(iy)
> = lim
T N— [W/(f))?

Note that as N — oo, Zfil WMy, 2> 0, and hence fi 2 f,, since U'(f;) > 0 for all f;. It
must also be that f, = f;.
In the case where w;; = 1/N, we have

-1 N ~
_ ]\}im {N > i1 Var (i) } .

v 2
[ (f2)]

2
f

It also follows that f, — f, = O, (N71/2).



3 Proof Lemma 3.1 in Dhyne et al. (2010)

Suppose that y v~ N(u, 0?) then

Elyl(y+a)] = ch(aj%u)+ﬂ¢(a?:u),
2[o(150)] - e ()
alr(50)] - 2 ()

where ¢ () and @ (-) are, respectively, the density and the cumulative distribution function
of the standard normal variate, and I (A) is the indicator function defined above.

Proof of Lemma 3.1.
(1) To prove E [yI(y + a)] = ¢ (“2£) + pu® (“££) we note that

“+oo

Eyl(y+a)] = /yal e 3() dy

+o00 400
y—p 1 _l(u)2 /,u 1 _l(u)z
— e 2 o d _|_ Ju— e 2 o d
/ o V27 Y 021 Y

Letting z = (y — p)/o, the above expression becomes

—+o0 —+00
1 10 1 1.2
Elyl(y+a) = O'/Z e 2% dz + / e 27 dz
I (y + a)] Nors N
_atn _atp

o o

-l e e
(252 (22
) ()
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a+p

(2) To prove E [¢ (42)] = Lo ( .

1

2ro

1

2ro

ole(5)]

Setting w = bo //b? 4+ 02 and 1 = —

ol ()

(3) Finally, to prove E (@ (2)) = (

o (] [ e

1 a1
\ 2T

400 1 <<02+b2)y +(2aa 2b2u)y+a202+b2u2>
e’ dy

—+00

+0_2>, first note that

252

—00

N

b<o

(\/02 T2 y+A) 2 A24,2,242,2
)
dy

—0o0

where A = (a0® — pb®) /Vb? + 0. Let B = 3 (—2_“1,2"; W) _

1 (atp)®
2 b2402

+oo

1 5 -
27me /e

— 00

VI

( (VoTiZysa)’

T)
dy

+o00

1 _1o”+b”
2
— B le 7
2mo

— 00

(ao? — ub*) / (b* + 0%), we now have

S T
R ——
Vb2 + 0221

_ b ¢(a+u)
VRt o2\t 02

\/%) note that
l(u)Z
e 2\ ) dwdy

—00—0



Stating that # = w, the expression above becomes

ele(50)] - /

0
B 1 y+a+=z
- /bEM b )]d

Using the second part of Lemma 1,
0

y+a B 1 b Z24+a+p
EM b ﬂ - /bm¢(m>dz

—0o0

2
_1f ztatu
P\Ve2to2 ) (]

1 y 1
e
Vb2 + o2 / 27

Setting (z + a + pu) /Vb? + 0% = Z,

2 2 132 .
E{@(‘y:a)} S / VT 42
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4 Monte Carlo Simulations

This Section presents results from three sets of Monte Carlo simulations. The first set
compares the estimates of f; obtained from the non-linear cross-section average, given
in equation (7) of Dhyne et al. (2010), with that obtained from a simple cross-section
average of the observed prices. The second aims at assessing the accuracy of the estimates
proposed in Dhyne et al. (2010) under alternative data generating processes and sample
sizes. The last two evaluate the robustness of the estimation procedures to deviations
from the underlying assumptions. In particular, we consider the implications of serial
correlation and cross-sectional dependence in the idiosyncratic shock for the full ML
estimates.

We generate the log price series according to the baseline model, (1), simulating
the common factors as a first order autoregressive process. In our reference case, the
sample sizes are set at N = 50, T = 50. In Table 1, we report the average (across
1000 replications) of the point estimates of s, 0., o, and ¢, and their average standard
errors in different setups. Concerning the estimation of f;, we compute the RMSE with
respect to the true f; and compare the standard deviation of the true f; with that of
the estimated f;. Initial values for the estimation of f; are set to p,. The standard
errors of the parameter estimates are computed from the second derivatives of the full
log-likelihood function.

Table 1 reports the RMSE of estimating f; by p, and by the non-linear cross-section
average ft, under different frequencies of price changes. The results indicate that the non-
linear cross-section average, f;, outperforms the linear average, p,. and that the difference
between the RMSE of ﬁ and that of p, increases as the frequency of price changes become
smaller.

Results reported in Table 2 allow a comparison of the following cases: (i) with and
without random effects, (ii) panels of different cross-section dimensions, N small, N = 25
versus N = 50, (iii) cases with different average frequencies of price changes (0.27 versus
0.12), (iv) the case with a small idiosyncratic component and a large common factor versus
one with a large idiosyncratic component and a relatively small common component. The
last case corresponds to parameter values close to the estimates based on observed data.
Our simulations show that estimated parameters are close to their true values, and that
the band of inaction is estimated with high precision. Not surprisingly, the estimation of
the common factor gets better as the cross-section dimension increases. The results in
Table 2 also suggest that the estimation of f; improves as the frequency of price changes
and the size of the common shock increase.

Our third set of Monte Carlo simulations considers the issue of serial correlation of
the idiosyncratic component while the model is estimated assuming serial independence.
We model ¢;; as an AR(1) process where the variance of €; is identical to that of the
base case. The results, summarized in Table 3, indicate that serial correlation in the
idiosyncratic component introduces an upward bias in the estimates of s and o, and a
small downward bias in the estimates of .. The bias is negligible for low values of the
serial correlation coefficient. It remains limited for small values of p. The bias becomes
important only as serial correlation approaches the unit root case.

The fourth set of Monte Carlo simulations examines the case of cross-sectional de-
pendence. Cross-sectional dependence may be motivated on two grounds. First, local
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competition may lead outlets to be influenced by their neighbor pricing policies. Evidence
on this can be found in Pinske et al. (2002) for US wholesale gasoline markets. Second,
outlets of the same chain may have a common pricing policy, when pricing decisions are
centralized. In order to investigate this, two alternative specifications are chosen. The
first is a Spatial Moving Average Model. The second is a factor error structure where
the cross-section dependence is generated according to a finite number of unobserved
common factors. We include 10 factors for the 50 outlets considered in the experiments.
The results are summarized in Table 4.

As is well known in the literature on linear factor models (Stock and Watson, 1998, Pe-
saran, 2006), "weak" cross sectional dependence (in the sense defined in Chudik, Pesaran
and Tosetti, 2010) does not affect the consistency of the estimates of the common factors
using cross section averages or principle component approaches. The Monte Carlo exper-
iments suggest that this property also holds in the case of our non-linear factor model.
Whether this result holds more generally clearly requires further investigation.

TABLE 1 - MONTE CARLO SIMULATIONS
s freqlpu) RMSE(f)) RMSE(p,)

0.05 0.69 0.0082 0.0085
0.10 0.44 0.0100 0.0169
0.15 0.28 0.0133 0.0329
0.20 0.18 0.0177 0.0498
0.25 0.12 0.0244 0.0661
0.30 0.08 0.0331 0.0818
0.35 0.06 0.0445 0.0969

Notes: 1000 replications, estimation by full ML. f; is simulated as fi = 0.054-0.90f;_1 4w¢, w;~iid N(0,02),
with o, = 0.1. 0. is set to 0.05 and o, to 0.025 and o5 to 0.01, N=50 and T=50, ft is estimated using the
non-linear cross section average in equation (7) of Dhyne et al. (2010), s is the size of the price inaction band,

and freq(pi:) is the frequency of price changes.
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TABLE 2 - MONTE CARLO SIMULATIONS

Average frequency of price changes ~ 0.27 with random effects

S Oc O Oy
0.15 0.05 0.01 0.025
5 5. G, 6, RMSE(f,) L)
N =50,7=50 0.151 0.049 0.011 0.027 0.0137 1.0018
(0.0014) (0.0011) (0.0013)  (0.0030)
Average frequency of price changes ~ 0.27 without random effect
S Oc O Oy
0.15 0.05 0.01 0
35 5. G, 6, RMSE(f) B
N =50,7=50 0.150 0.049 0.007 0.0118 1.0018
(0.0013)  (0.0011)  (0.0013)
N =25,T=50 0.150 0.048 0.006 0.0169 1.0052

(0.0019)  (0.0015)  (0.0018)

Average frequency of price changes ~ 0.12 with random effect - large common component

S O O Oy
0.300 0.050 0.100 0.025
g 6. &, 0, RMSE(f) L)
N =50,7=50 0.302 0.047 0.103 0.029 0.0221 1.0052
(0.0071)  (0.0017)  (0.0055)  (0.0036)
Average frequency of price changes ~ 0.12 with random effect - large idiosyncratic component
S O¢ Os Oy
0.300 0.100 0.125 0.250
g 5. &, &, RMSE(f) L)
N =100, T =100 0.307 0.099 0.131 0.247 0.0676 1.1841

(0.0108)  (0.0027)  (0.0080)  (0.0246)

Notes: 1000 replications, estimation by full ML. The figures in brackets are standard errors. f; is simulated
as a first order autoregressive process with intercept equal to 0.05 and slope equal to 0.90. oy =1, except in the
last simulation exercise (large idiosyncratic component) where oy = 0.00625. s is the size of the price inaction

band, o2 is the variance of the idiosyncratic component, o2 is the variance of si the threshold parameter for

price changes, iijgzg is the ratio of the standard deviation of ﬁ over the standard deviation of the true f;.
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TABLE 3 - MONTE CARLO SIMULATIONS WITH SERIALLY CORRELATED
IDIOSYNCRATIC COMPONENT

s o’ o?
0.35 0.005625 0.010
g o2 02 RMSE(f) )
p=0 0357  0.0038 0.0011 0.0453  1.343
(0.020) (0.0005)  (0.002)
p=0.10 0.359  0.0037 0.011 0.0458  1.356
(0.021) (0.0004) (0.002)
p=050 0379  0.0033 0.013 0.0484  1.400
(0.024) (0.0004) (0.003)
p=0.90 0464  0.0022 0.023 0.0545  1.425
(0.042) (0.0004) (0.006)
p=0.95 0.510  0.0017  0.029 0.0552  1.376
(0.054) (0.0003) (0.009)
p=0.99 0574  0.0012 0.038 0.0530  1.162
(0.087) (0.0003) (0.015)

Notes: 1000 replications, N = 50, T' = 50, estimation by full ML. The figures in brackets are standard errors.
ft is simulated as a first order autoregressive process with intercept equal to 0.05 and slope equal to 0.75. &5+ is
simulated as a first order autoregressive process with zero intercept and the serial correlation coefficient given by

p. 0y =0.057 and 0. = 0.075. See also the notes to Table 2.

TABLE 4 - MONTE CARLO SIMULATIONS WITH CROSS SECTIONALLY DEPENDENT
IDIOSYNCRATIC COMPONENT

s o? o2
0.35 0.005625 0.010
5 o2 02 RMSE(f,) 2l
no cross-sectional dependence 0.357 0.0038 0.011 0.0453 1.343
(0.020) (0.0005)  (0.011)
SMA® (.357 0.0035 0.011 0.0479  1.369
(0.020) (0.0004)  (0.002)
10 factors® 0.357 0.0036 0.011 0.0480 1.375
(0.020) (0.0004)  (0.002)

Notes: Simulations are based on 1000 replications with N = 50 and T = 50. Estimation is by full ML.
The figures in brackets are standard errors. f; is simulated as f; = 0.05 + 0.75f;—1 + w;, w;"iid N(0,02), with
02 =0.0002734. See also the notes to Table 2.

M stands for the Spatial Moving Average model €;+ = it + Ti—1,+ + Tit1,¢ with z; ~iid N (0, cri.).. The value
of o, is set so that o. = 0.075. o

() stands for the multifactor error structure e;; = > YijZit + @it , where z;;~iid N(O,UJQ-) and xz;; "iid

j=1

N(O,az) are drawn independently, with 0’? = o2 = 0.0028125, v;1 = 1fori=1,....,5, and 0 otherwise, v, = 1

for ¢ =6, ..., 10, and 0 otherwise, v,3 = 1, for ¢ =11, ..., 15, and so on.
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5 Detailed results of Dhyne et al. (2010)

In this section, we reproduce the estimation results obtained for the different product cat-
egories considered in Dhyne et al. (2010). We also present some basic statistics regarding
observed price changes.

The results for Belgium are given in Table 5, and for France in Table 6.

The estimated values of the different parameters are presented in columns (2) to (7).

Column (8) provides the correlation between the estimated common component ft
and the product category price index.

Columns (9) to (12) provide descriptive statistics of the data set (the average number
of observations per month, N, the frequency of price changes, Freq, the average size

of price changes in absolute term, |Ap|, and the share of price changes which are, in
absolute terms, smaller than half of the average price change, Ap <%.
Columns (13) to (14) provide averages of the frequency of price changes, F'req, and the

average size of price changes in absolute terms, |Ap|, obtained on the basis of simulated
data generated using the estimated structural parameters and the estimated f; of each
product category. In order to assess how well the model fits the data, we compare the
realized frequency and average size of price changes with those obtained by simulating
the model. More specifically, for each product category we simulate an unbalanced panel
of price trajectories starting with p;o, the observed initial value of each price trajectory i,
using the estimate s, f; and randomly generated e;;’s and s;;’s with respective standard-
errors ., o, as well as estimated v;. Indeed, as the true initial value p;o is used as starting
value of the " price trajectory, the true v; should be used to simulate the subsequent
price observations of that trajectory. Since v; is unknown, the simulation exercise is based
on an estimated v; which is computed by re-estimating our baseline model with trajectory
specific fixed effects, given the other parameters of the model (5, 7., 75, f;). The time
dimension of the simulated trajectory for outlet 7 is set to coincide with the length of the
associated realized price trajectory and the number of price trajectories in the simulated
panels is given by the number of trajectories in the observed panels. The experiment is
repeated 1000 times for each trajectory.

The name of product categories for which the model fits the data poorly is right-
aligned.
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The above product specific estimates have been used to assess the relative contribution
of each parameter characterizing both the outlets’ environment and their price-setting
behavior: common (o,,) and idiosyncratic (o.) shocks, outlets’ specific effects (o, ), band
of inaction characteristics (its mean, s, and volatility o). More precisely, the following
quadratic surface response regressions have been estimated for explaining the log odd
ratio of the frequency of price changes, their magnitude and the log odd ratio of the
proportion of small price changes, using the estimated parameters for the 172 products
out of the 182 considered in Dhyne et al. (2010) for which the model performs reasonably
well. The regression equation including all the estimated parameters, their squares, and
their interaction terms is given by

i = Bot BrSi+ By 4 By G+ a0+ 5 0ei + o502,
+B7.00: + 68-6371‘ + B0, + 510'812/,2‘
+P11-(505); + Bra- (502); + Bus- (50w); + Bia- (50,);
+B15- (050¢); + Big- (050); + Big- (0504);
815 (0:00); + Prg- (0:04); + Bao- (0u,00); + Boy-F R +1;
Freg;

. Ap<Ap/2). o -
with y; = In T Freay OF ¥i = |Apl|,, or y; =1In w, where (Ap < Ap/2) is the

share of price changes that are, in absolute terms, smaller than one half of the average
price changes. F'R; is a dummy for the French CPI data set.

In Dhyne et al. (2010), the contribution of each of the parameter estimates (s, 7, 0,
0w,0,) to the explanation of y is assessed through the comparison of the goodness of fit
of the model above with those of restricted equations in which we successively offset a
specific factor or group of factors. The detailed estimation results of the full model are

provided in Table 7 below.
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TABLE 7 - EXPLAINING THE FREQUENCY, THE SIZE AND THE OCCURENCE OF SMALL
PRICE CHANGES.

=D}
In o hregy APl I (1—(&r<Bp/2) )
5 —3.560  —0.057 —0.741
(—=1.1) (—0.34) (—0.19)
? 2.674 0.258 2.046
(0.19) (0.35) (0.12)
s —20.597  0.303 2.915
(—2.61) (0.75) (0.31)
0’ 106.743  —1.847 —21.006
(1.47) (—0.49) (—0.24)
0. 36.548  0.471 27.276
(6.37) (1.6) (3.94)
0’ —130.270  —0.702 —138.805
(—3.89) (—0.41) (—3.44)
e 28.844  0.496 —8.371
(4.05) (1.36) (—0.97)
o2 —40.977  0.061 20.683
(-1.19) (0.03) (0.5)
G, 0.334 0.004 —3.693
(0.29) (0.07) (—2.63)
o> —0.899  0.034 1.457
(—0.36) (0.26) (0.49)
50, —32.808  —0.358 6.547
(—0.51) (—0.11) (0.08)
50. —56.882  0.810 —51.000
(—1.6) (0.45) (—1.19)
55, 136.457  6.567 42.977
(2.43) (2.28) (0.64)
56, 11.270  0.191 0.555
(1.52) (0.5) (0.06)
G40- 117.031  1.965 89.373
(1.56) (0.51) (0.99)
G50, —396.692 —8.059 —127.407
(—2.76) (—1.09) (—0.74)
Gs0y, —17.672  —1.367 6.845
(—1.04) (—1.57) (0.33)
5.0, —30.218  3.049 61.814
(—0.67) (1.32) (1.14)
5.0, —9.985 2597 —0.679
(—0.75) (3.78) (—0.04)
Guly 28.366  —2.137 10.957
(1.47) (—2.16) (0.47)
Adjusted R? 0.79 0.81 0.34

Note : t-stat in brackets. The constant term and the coefficient associated to the dummy for France
are not reported.
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6 Ability of state dependent pricing models to gen-
erate small price changes

Several recent papers point out that microeconomic price data exhibit a substantial pro-
portion of small price changes. In our data sets, for instance, the percentage of price
changes that are below half of the average price change equals 34% in the Belgian data
set and and 50% in the French one. Klenow and Kryvstov (2008) highlight the failure of
Golosov and Lucas (2007) type of models, with a fixed band of price inaction, to replicate
small price changes. Some other models developped in the literature could in principle
generate small price changes. Models with asymmetric bounds of inaction could account
for small price changes provided these are concentrated either among price increases or
among price decreases. Duration dependent models and time dependent models may
generate small price changes because the decision to change prices is independent of the
size of the desired price change. More recently, alternative state dependent models have
been proposed to account for small price changes. On the one hand, Caballero and Engel
(1999), Dotsey et al. (1999) and more recently Costain and Nakov (2008) develop models
with stochastic ranges of inaction. On the other hand, Midrigan (2010) suggests that the
synchronisation of price changes within the range of products of the same retailer helps
explaining the occurrence of small price changes but this argument may not be really
relevant when modelling the evolution of micro CPI price quotes’.

The aim of this section is to evaluate the ability of alternative state dependent price
setting models to reproduce a set of descriptive statistics, including the frequency of small
price changes, as observed in our data sets. For each competing model, we compare the
frequency and size of price changes, price increases and price decreases, and the frequency
of small price changes, as observed in the data, with the ones simulated on the basis
of estimated parameters. We perform this exercise for four products, belonging to the
categories of processed food (roast beef), durable goods (woman’s coat, and scrabble)
and services (hourly rate in a garage). We also briefly discuss alternative econometric
approaches. In short, our results clearly indicate that a model with stochastic range of
inaction, where inaction bounds vary across both outlets and time, is the best suited to
match the statistical specificities of the micro CPI data.

We consider the following five alternative specifications :
(7) a symmetric state dependent model with a fixed range of inaction

__ ) Pit—1 if |f; 4w + e — pi—1] < s
Pit fi +u; +¢€; otherwise

"Even if the product coverage of CPI dataset is large, we clearly only observe a (small) fraction of
the goods sold by any particular retailer. Moreover, the CPI data are collected at a monthly frequency
by statistical officers, in contrast with the scanner data recorded automatically and weekly. In CPI
data, what might be observed is synchronization of the collection of different prices in one outlet and
not necessarily synchronization of price changes. This makes CPI data unappropriate to test Midrigan’s
assumption.
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(77) an asymmetric state dependent model with fixed ranges of inaction

) DPit if —bs< fi+u +ei—piu1<Ss
Pit = fi +u; +¢€; otherwise

(73i) a symmetric state dependent model with seasonal ranges of inaction

11
Dy = { Dit—1 if |fi +wi+ e —pua| <s+ Zsj[ (Month (t) = j)
it =

Jet+ui+eu j=1
otherwise

where Month (t) represents the month of period ¢ and I(.) is the indicator function;

(iv) a symmetric state dependent model with duration dependent ranges of inaction®.

12
i = { Pit—1 if ‘ft +u; + i _piz‘fl’ < s+ ZSjI (DURZt = j) + 813[ (13 S DURZt S 24)
it —

Je+u +ei j=1
otherwise

where DU R;; represents the duration since the last price change;

(v) a symmetric state dependent model with a stochastic range of inaction, i.e. the
model we propose in the paper

Py = Dit—1 if | fe +wi + i — pie—a| < su
" fi +u; +€; otherwise

In the literature, models (i) to (iv) have been estimated using binary models with
observable proxies for f;. In line with this, we estimate these models with an iterative
procedure, combining a binary response model to estimate the structural parameter and
the cross-sectional average described in Section 3 of the paper to estimate the unobserved
common component. Precisely, we use the following contributions to the likelihood for
specifications (i) to (iv) :

8Given that most prices change within a year, we group durations that lie within 13 and 24 months
together.
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PlApy =0 = mu=® (pitl +by — fi — Uz) % (pitl —by— fy — Uz)

O¢ O¢

fe + U — pir—1 — 51)

O¢

P[Apy > 0] = 7T2it:<p<

i1 — by — fr —u
P[Apy <0] = ngt_q)<pt1 o — fi U)

O¢

where in

(1) : by=by=3s
(Zl) . bl = S; b2 = bs
11
(i) : by=by=s+ Y s;I (Month(t)=j)
Jj=1
12
(Z’U) : bl = b2 =S+ ZSJJ (DURZt = ]) + 813] (13 S DURZt S 24)

J=1

Such econometric models do not take advantage of the information about the size of
price changes; they rely solely on the frequency of price changes. An alternative would
be to use a Tobit model. The contribution to the likelihood would be :

P[Apzt = O] = M= P (pitl + bl - ft - Uz) _ & (pitl — b2 — ft — U’z)

O¢ O¢

1 it — — U;
P [Apit = Apft] = T = a_(b (%)

3 O’E

However, because the range of inaction only contributes to the probability of no price
changes, this parameter cannot be correctly estimated with a Tobit model.

A sample selection model in which the shocks in the selection equation and that in the
price change equation are of equal variance, might be better suited. In a sample selection
model, the different contributions to the likelihood are given by:
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it— by — — U; it — by — —
P[Ap; =0] = ﬂlit:(p(ptl‘i‘ 1= fi U>_(I)(Pt1 o — fi u)
O 7.
P[Api = Apj, [Ap, > bi] = 7oy

_ i¢(pit_ft_ui) y
UE 0-6

1— & Pit—1 + b1 — fr —ui — p(pir — fr — wi)
o1 — p?

P[Apy = Apj, |Ap;, < —by] = mai

_ ¢ (pzt ft ) %
o o
o pz‘t—l_bZ_ft_ui_p(pit_ft_ui)
o.n/1— p?

where p is the correlation coefficient between the shock in the selection equation and
the shock in the price change equation. However, in such a framework, if p is away from 1,
the "price change" decision and the magnitude of price changes are disconnected, which
contradicts the state-dependent pricing behaviour assumed in specifications (i) to (iv).
However, the sample selection framework may be used to circumvent the identification
problem of the Tobit model by estimating a so-called "Almost Tobit" model, which is a
sample selection model for which the shocks in the selection equation and the price change
equations are almost the same, i.e. they have equal variance and correlation arbitrarily
set to 0.99.

For specification (v), we consider the iterative procedure described in Section 3 of
the paper. We also estimated specification (v) by full ML. As shown in Table 12, both
estimation procedures deliver similar results.

In Tables 8 to 11, we present the estimation results obtained for specifications (i)
to (v) and compare their ability to replicate the frequency of price changes, the average
size of price changes and the percentage of small price changes, observed in the data.
We simulate price trajectories as follows. We generate 750 price trajectories using the
estimated coefficient of the different specifications and we compute the frequency, size
and share of small price changes using those simulated trajectories. We replicate this
exercise 1000 times in order to compute the average simulated statistics presented in
the Tables. To measure the goodness of fit of each estimated model, we also report the
sum of squares of the relative difference between the simulated and true statistics (i.e.,
the frequency of price changes, the frequency of price increases, the frequency of price
decreases, the average size of price changes, the average size of price increases, the average
size of price decreases, the percentage of price changes below one half of the average price,
and the frequency of price changes below one fourth of the average size).

Our results indicate that binary response methods are not well suited to estimate
state dependent pricing models with a deterministic range of inaction (specifications
(7) to (iv)). Surprisingly, these models provide bad estimates of the frequency of price
changes when the estimated parameters are used to simulate price trajectories, although
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their estimation focus on the frequency of price changes. Because binary response models
do not use the size of the observed price changes to estimate the structural parameters,
this leads to an overestimation of the volatility of the idiosyncratic shocks. In turn, this
overestimation explains the extremely poor performance of the binary response estimates
in replicating the average size of price adjustments, and the frequency of small price
changes. It also generates excessive price changes through the (too many) occurences
of price reversals. As they seem to overestimate both the range of inaction and the
magnitude of the idiosyncratic shocks, binary response models should therefore not be
used to evaluate price adjustment costs, that depend on both the range of inaction and
the size of the shocks in such models (see, Dixit, 1991).

Almost Tobit models provide more reasonable estimates of the range of inaction and
of its volatility. Nevertheless, they also perform poorly in replicating both the frequency
and the average size of price changes, except in the case of roast beef. For this product,
Almost Tobit models perform well in capturing the average size of price changes but, as
for the other products, the simulated frequency of price changes is much larger than the
one observed in the data. The high frequency of price changes generated by these models
may be due to the fact that the estimated range of inaction is very small. Because the
estimated range of inaction s is smaller than the volatility of the idiosyncratic shock, the
estimates are able to generate a small fraction of small price changes. Still, in all cases,
the Almost Tobit estimates of specifications (i) to (iv) generate a fraction of small price
changes that is far below the one observed in the data.

In order to circumvent the failure of Golosov and Lucas (2007) types of models to
replicate small price changes, one possibility is to introduce variability in the inaction
bounds. As shown in Tables 8 to 11, asymmetric inaction bounds (specificiation (ii))
does not increase the occurrence of small price changes. Introducing time variability
in the inaction bounds, either in the form of seasonal range of inaction (specification
(#ii)), or through duration dependence (specification (iv)), does not improve the models
performance either.

However, allowing for stochastic ranges of inaction, that vary both across outlets
and over time (specification (v)), substantially outperforms all other models in terms of
goodness of fit of the frequency of price changes and of the average size of price changes,
as well as regarding the ability to generate a significant fraction of small price changes.
For three of the four products considered, the stochastic range of inaction model explains
around half of small price changes observed in the data. For "scrabble", it even captures
up to 90 percent of price changes below one half of the average size and two third of
price changes below one fourth of the average size. Nevertheless, with such models, the
simulated frequency of small price change is still smaller than the observed one. This
suggests that additional mechanisms may be at play, such as synchronisation of price
changes within stores or strategic price decisions across outlets, for example. Testing the
relevance of these phenomena is beyond the scope of this paper, and would require a
different data set.”

9A higher frequency of observed price changes, a comprehensive dataset covering all products sold
within a store, and all outlets in a given geographical area would be necessary.
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TABLE 8 - DETERMINISTIC RANGE OF INACTION VERSUS STOCHASTIC RANGE OF
INACTION AND CALVO PRICING - ROAST BEEF

Deterministic r.o.1 Stoch.

Parameter CPI Binary response Almost Tobit r.o.i

Data (i) (44) (444) (iv) (4) (44) (741) (iv) (v)
s - 0275  0.245 0.289 0.407  0.045  0.039 0.047 0.064  0.216
51 - - - —0.026  —0.204 - - —0.008  —0.031 -
So - - - —0.021  —0.154 - — —0.005  —0.030 -
53 - - - —0.026  —0.136 — — —0.004 —0.026 -
54 - - - —0.016  —0.122 - - —0.002  —0.025 -
55 - — — —0.007*  —0.099 —~ - 0.001*  —0.022 -
s6 - - - —0.004*  —0.091 - - —0.001*  —0.019 -
s7 - - - 0.000*  —0.101 - - 0.000*  —0.020 -
sg - - — —0.003*  —0.086 - - 0.000*  —0.019 -
s9 - - - —0.018  —0.092 - - —0.003  —0.020 -
510 - - - —0.032  —0.072 - — —0.005  —0.017 -
511 - - - 0.005*  —0.067 - - 0.004  —0.015 -
S12 — - - — —0.081 - — - —0.016 —
513 - - - - —0.057 - - - —0.012 -
b - - 1.242 - - - 1.336 — — —
o - 0.165  0.165 0.166 0.188  0.068  0.068 0.068 0.071  0.064
ou - 0.087  0.087 0.088 0.104  0.089  0.085 0.089 0.094  0.089
os - - - - - - — - - 0.118
freq 0.116 0.239 0.235 0.238 0.283 0.643 0.638 0.641 0.737 0.134
freq™ 0.066 0.120 0.126 0.120 0.143 0.323 0.336 0.322 0.371 0.068
freq™ 0.050 0.119 0.110 0.119 0.140 0.320 0.303 0.319 0.365 0.066
Ap 0.081 0.389 0.389 0.391 0.393 0.108 0.108 0.108 0.103 0.116
Apt 0.075 0.389 0.367 0.391 0.394 0.108 0.103 0.108 0.103 0.117
Ap— 0.089 0.389 0.414 0.391 0.392 0.107 0.113 0.108 0.102 0.116
Ap <Ap/2 0.476 0.000 0.000 0.000 0.000 0.102 0.097 0.100 0.174 0.205
Ap <Ap/4 0.237 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.083
Goodness 49.2 48.2 49.7 53.4 67.6 65.2 67.1 92.5 1.5
of fit!

s is the average size of the price inaction band, o, is the standard error of the idiosyncratic component, o
the standard error of the stochastic range of inaction s, o, the standard error of the random effect; freq is the
frequency of price changes, freq™ the frequency of price increases, freq™ the frequency of price decreases, Ap
the average size of price chnages, Apt the average size of price increases, Ap— the average size of price decreases,
Ap < Ap/2 the frequency of price changes below one half of Ap, Ap < Ap/4 the frequency of price changes
below one fourth of Ap.

(7) = fixed range of inaction ; (#4) = asymmetric range of inaction ; (i44) = seasonal range of inaction ; (iv) =
duration dependent range of inaction ; (v) = stochastic range of inaction

! = sum of squares of the relative difference between the simulated and true statistics, freq, freq™, freq™,
Ap, Ap < Ap/2 and Ap < Ap/4.

*

= not statistically significant at the 5% level.
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TABLE 9 - DETERMINISTIC RANGE OF INACTION VERSUS STOCHASTIC RANGE OF
INACTION AND CALVO PRICING - COAT (WOMAN)

Deterministic r.0.1 Stoch.
Parameter CPI Binary response Almost Tobit r.o.i
Data (4) (i) (i) (iv) (4) (i) (i) (iv) (v)
s — 13.918  12.685 — — 0.088 0.071 — — 0.448
S1 — — — — — — — — — —
S2 — — — — — — — — — —
S3 — — — — — — — — — —
S4 - — — — — - - — — —
S5 — — — — — — — — — —
Se - — — — — - — — — —
S7 - — — — — - - — — —
S8 — — — — — — — — — —
S9 — — — — — — — — — —
S10 - - - - - - - - - -
S11 - - - - - - - - - -
S12 - - - - - - - - - -
S13 - - - - - - - - - -
b - - 1.812 - - — 1.533 - - -
o - 6.525 8.361 — — 0.105 0.104 — — 0.062
O - 1.745 2.025 - - 0.225 0.238 — — 0.252
o5 - - - - - - - - - 0.205
freq 0.039 0.131 0.112 — — 0.552 0.542 — — 0.038
freqt 0.024 0.066 0.067 - — 0.276 0.293 - - 0.018
freq™ 0.015 0.066 0.045 — — 0.276 0.249 — — 0.020
Ap 0.050 17.95 22.360 — — 0.180 0.179 — — 0.107
Apt 0.046 17.95 18.977 — - 0.180 0.166 - - 0.106
Ap— 0.056 17.95 27.434 - — 0.180 0.196 — - 0.108
Ap <Ap/2 0.425 0.000 0.000 - — 0.013 0.076 — — 0.238
Ap <Ap/4 0.242 0.000 0.000 - - 0.000 0.000 — — 0.105
Goodness 381196 604931 - — 620.6 566.2 — — 4.6
of fit!

s is the average size of the price inaction band, o, is the standard error of the idiosyncratic component, o
the standard error of the stochastic range of inaction s;:, o, the standard error of the random effect; freq is the
frequency of price changes, freq™ the frequency of price increases, freq~ the frequency of price decreases, Ap
the average size of price chnages, Ap* the average size of price increases, Ap— the average size of price decreases,
Ap < Ap/2 the frequency of price changes below one half of Ap, Ap < Ap/4 the frequency of price changes
below one fourth of Ap.

(¢) = fixed range of inaction ; (i¢) = asymmetric range of inaction ; (i4i) = seasonal range of inaction ; (iv) =
duration dependent range of inaction ; (v) = stochastic range of inaction

! — sum of squares of the relative difference between the simulated and true statistics, freq, freq®, freq™,
Ap, Ap < Ap/2 and Ap < Ap/4..

*

= not statistically significant at the 5% level.
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TABLE 10 - DETERMINISTIC RANGE OF INACTION VERSUS STOCHASTIC RANGE OF
INACTION AND CALVO PRICING - HOURLY RATE IN A GARAGE

Deterministic r.o.1 Stoch.

Parameter CPI Binary response Almost Tobit r.o.i

Data (i) (i) (i) (iv) (i) (i) (iid) (iv) (v)
s — 0.898 — — 0.790 0.080 0.033 — 0.083 0.347
51 - - - - 0.139 - — - 0.008 -
52 - - - - 0.201 - - - 0.010 -
s3 - - - - 0.221 - - - 0.000 -
54 - - - - 0.142 - - - —0.001 -
S5 - - - - 0.117 - - - —0.005 -
s6 - - - - 0.046 - - - —0.016 -
s7 - — - - 0.165 - - - —0.002 -
s8 - - - - 0.209 - — - 0.013 -
S9 — - - - 0.080 - - - —0.016 -
510 - - - - 0.090 - - - —0.002 -
511 - - - - —0.067 - - - —0.003 -
S12 — — — — —0.213 - - - —0.040 -
513 - - - - —0.025 - - - —0.012 -
b - — - - - - 11.424 — - -
oe — 0.391 - - 0.356 0.097 0.151 - 0.085 0.049
Ty - 0.285 - - 0.269 0.126 0.151 - 0.124 0.133
as - - - - - - - - - 0.166
freq 0.052 0.105 - - 0.104 0.562 0.327 - 0.466 0.052
freqt 0.051 0.054 - - 0.053 0.290 0.241 - 0.240 0.038
freq™ 0.001 0.051 - - 0.051 0.273 0.086 - 0.226 0.014
Ap 0.060 1.130 - - 1.068 0.165 0.256 - 0.158 0.100
Apt 0.061 1.129 — - 1.071 0.166 0.183 — 0.158 0.110
Ap— 0.024 1.131 — — 1.064 0.164 0.463 — 0.157 0.075
Ap <Ap/2 0.335 0.000 - - 0.000 0.024 0.320 - 0.006 0.230
Ap <Ap/4 0.201 0.000 — — 0.000 0.000 0.120 — 0.000 0.100
Goodness 3905 — — 3582 34955 3758 — 23952 82.1
of fit!

s is the average size of the price inaction band, o, is the standard error of the idiosyncratic component, o
the standard error of the stochastic range of inaction si:, o, the standard error of the random effect; freq is the
frequency of price changes, freq™ the frequency of price increases, freq™ the frequency of price decreases, Ap
the average size of price chnages, Apt the average size of price increases, Ap— the average size of price decreases,
Ap < Ap/2 the frequency of price changes below one half of Ap, Ap < Ap/4 the frequency of price changes
below one fourth of Ap.

(7) = fixed range of inaction ; (i4) = asymmetric range of inaction ; (i#¢) = seasonal range of inaction ; (iv) =
duration dependent range of inaction ; (v) = stochastic range of inaction

! = sum of squares of the relative difference between the simulated and true statistics, freq, freq™, freq™,
Ap, Ap < Ap/2 and Ap < Ap/4..

*

= not statistically significant at the 5% level.
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TABLE 11 - DETERMINISTIC RANGE OF INACTION VERSUS STOCHASTIC RANGE OF
INACTION AND CALVO PRICING - SCRABBLE

Deterministic r.o.1 Stoch.

Parameter CPI Binary response Almost Tobit r.o.i

Data (7) (44) (#44) (iv) (4) (44) (#41) (iv) (v)
s — 0.556 0.438 0.487 0.609 0.120 0.097 0.121 0.137 0.436
S1 — — — —0.026 —0.204 — — —0.008 —0.031 —
So — — — —0.021 —0.154 — — —0.005 —0.030 —
S3 — — — —0.026 —0.136 — — —0.004 —0.026 —
S4 — — — —0.016 —0.122 - — —0.002 —0.025 —
S5 — — — —0.007*  —0.099 — — 0.001* —0.022 —
S6 — — — —0.004* —0.091 — — —0.001* —0.019 —
S7 — — — 0.000* —0.101 — — 0.000* —0.020 —
S8 — — — —0.003* —0.086 — — 0.000* —0.019 —
Sg — — — —0.018 —0.092 — — —0.003 —0.020 —
S10 — — — —0.032 —0.072 — — —0.005 —0.017 —
S11 — — — 0.005* —0.067 - — 0.004 —0.015 —
S12 — — — — 70.081 — — — *0.016 —
S13 — — — — —0.057 — — — —0.012 —
b — — 1.242 — — — 1.336 — — —
Oc — 0.285 0.288 0.299 0.284 0.131 0.127 0.130 0.134 0.089
o — 0.120 0.120 0.118 0.112 0.128 0.122 0.128 0.109 0.114
Os — — — — — — — — — 0.208
freq 0.072 0.170 0.156 0.160 0.188 0.517 0.501 0.501 0.563 0.071
freq+ 0.043 0.086 0.090 0.079 0.095 0.260 0.273 0.252 0.284 0.038
freq™ 0.029 0.084 0.066 0.081 0.094 0.257 0.227 0.249 0.279 0.033
Tp 0.149 0.741 0.737 0.770 0.705 0.232 0.227 0.233 0.228 0.176
Tp+ 0.139 0.741 0.652 0.781 0.705 0.233 0.210 0.233 0.228 0.179
Ap— 0.165 0.741 0.852 0.759 0.705 0.232 0.248 0.232 0.227 0.173
Ap <Tp/2 0.230 0.000 0.000 0.000 0.000 0.000 0.057 0.038 0.032 0.208
Ap <Tp/4 0.128 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.085
Goodness 55.4 52.7 59.2 52.5 130.0 114.5 121.2 156.7 0.3
of fit!

s is the average size of the price inaction band, o, is the standard error of the idiosyncratic component, o
the standard error of the stochastic range of inaction s;:, o, the standard error of the random effect; freq is the
frequency of price changes, freq™ the frequency of price increases, freq™ the frequency of price decreases, Ap
the average size of price chnages, Apt the average size of price increases, Ap— the average size of price decreases,
Ap < Ap/2 the frequency of price changes below one half of Ap, Ap < Ap/4 the frequency of price changes

below one fourth of Ap.

(7) = fixed range of inaction ; (i4) = asymmetric range of inaction ; (i7¢) = seasonal range of inaction ; (iv) =

duration dependent range of inaction ; (v) = stochastic range of inaction
1

Ap, Ap < Ap/2 and Ap < Ap/4..

* = not statistically significant at the 5% level..
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TABLE 12 - STOCHASTIC RANGE OF INACTION : ITERATIVE PROCEDURE VERSUS

Fure ML
Roast beef Coat (woman) Garage Scrabble
CPI Iter. ML CPI Iter. ML CPI Iter. ML CPI Iter. ML
s - 0.216 0.217 - 0.448 0.436 - 0.347 0.351 — 0.436  0.442
o - 0.064 0.063 - 0.062 0.059 - 0.049 0.046 - 0.089 0.085
o - 0.090 0.086 - 0.252 0.274 - 0.133 0.132 - 0.114 0.115
s — 0.118 0.118 - 0.205 0.199 — 0.166 0.168 - 0.208 0.211
freq 0.116 0.134 0.134 0.039 0.038 0.038 0.052 0.052 0.052 0.072 0.071 0.070
fregt 0.066 0.068 0.069 0.024 0.018 0.020 0.051 0.038 0.038 0.043 0.038 0.038
freq~ 0.050 0.066 0.065 0.015 0.020 0.018 0.001 0.014 0.014 0.029 0.033 0.032
Ap 0.081 0.116 0.117 0.050 0.107 0.104 0.060 0.100 0.100 0.149 0.176 0.176
Ap+ 0.075 0.117 0.117 0.046 0.106 0.106 0.061 0.110 0.110 0.139 0.179 0.180
Ap— 0.089 0.116 0.116 0.056 0.108 0.102 0.024 0.075 0.074 0.165 0.173 0.172

Ap<% 0.476 0.205 0.205 0.425 0.238 0.239 0.335 0.230 0.232 0.230 0.208 0.210
Ap<% 0.237 0.083 0.083 0.242 0.105 0.107 0.201 0.100 0.101 0.128 0.085 0.087

Goodness — 1.5 1.5 — 4.6 4.1 — 82.1 795 — 0.3 0.3
of fit!

s is the average size of the price inaction band, o, is the standard error of the idiosyncratic component, o
the standard error of the stochastic range of inaction s, o, the standard error of the random effect; freq is the
frequency of price changes, freq™ the frequency of price increases, freq™ the frequency of price decreases, Ap
the average size of price chnages, Apt the average size of price increases, Ap— the average size of price decreases,

Ap < % the frequency of price changes below one half of the average price change, Ap < % the frequency of
price changes below one fourth of the average price change.
= sum of squares of the relative difference between the simulated and true statistics, freq, freq™, freq™,

Tp,Ap<%andAp<%.

* = not statistically significant at the 5% level.
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