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Abstract

This paper extends the cross-sectionally augmented panel unit root test (CIPS) pro-
posed by Pesaran (2007) to the case of a multifactor error structure, and proposes a new panel
unit root test based on a simple average of cross-sectionally augmented Sargan-Bhargava
statistics (CSB). The basic idea is to exploit information regarding the m unobserved fac-
tors that are shared by k observed time series in addition to the series under consideration.
Initially, we develop the tests assuming that m0, the true number of factors is known, and
show that the limit distribution of the tests does not depend on any nuisance parameters,
so long as k ≥ m0− 1. Small sample properties of the tests are investigated by Monte Carlo
experiments and are shown to be satisfactory. Particularly, the proposed CIPS and CSB
tests have the correct size for all combinations of the cross section (N) and time series (T )
dimensions considered. The power of both tests rise with N and T , although the CSB test
performs better than the CIPS test for smaller sample sizes. The various testing procedures
are illustrated with empirical applications to real interest rates and real equity prices across
countries.
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1 Introduction

There is now a sizeable literature on testing for unit roots in panels where both cross section (N)
and time series (T ) dimensions are relatively large. Reviews of this literature are provided in
Banerjee (1999), Baltagi and Kao (2000), Choi (2004), and in Breitung and Pesaran (2008). The
so called first generation panel unit root tests pioneered by Levin, Lin and Chu (2002) and Im,
Pesaran and Shin (2003) focussed on panels where the errors were cross-sectionally uncorrelated.
More recently, to deal with a number of applications such as testing for purchasing power parity
or cross country output convergence, the second generation panel unit root tests have focussed
on the case where the errors are allowed to be cross-sectionally correlated.

Three main approaches have been proposed. The first, pioneered by Maddala and Wu
(1999), and developed further by Chang (2004), Smith et al. (2004), Cerrato and Sarantis
(2007), and Palm et al. (2011), applies bootstrap methods to panel unit root tests. The main
idea of this approach is to approximate the distribution of the test statistic under cross section
dependence by block bootstrap resampling to preserve the pattern of cross section dependence
in the panel. This approach allows for general cross section dependence structures, however, it
is mainly suited to panels with large T and relatively small N .

The second approach is due to Bai and Ng (2004, 2010) and proposes tests based on a
decomposition of the observed series, yit; i = 1, 2, ..., N , t = 1, 2, ..., T, into two unobserved
components, common factors and idiosyncratic errors, and tests for unit roots in both of these
components. It is also tested if the unobserved common factors are cointegrated. This is known
as the PANIC (panel analysis of nonstationarity in idiosyncratic and common components)
approach, and provides indirect tests of unit roots in the observed series. The factors are
estimated from m0 principal components (PC) of ∆yit. It is assumed that m0, the true number
of factors, is known or estimated from the observations. If it is found that the estimated factors
contain unit roots and are not cointegrated it is then concluded that the N series are integrated
of order 1. If the presence of a unit root in the factors is rejected, in the second stage the PANIC
procedure applies panel unit root tests to the N idiosyncratic errors. Estimates of idiosyncratic
errors are obtained as defactored observations, also known as PANIC residuals. Moon and
Perron (2004) follow a similar approach in that they base their test on a principal components
estimator of common factors. In particular, their test is based on defactored observations
obtained by projecting the panel data onto the space orthogonal to the estimated factor loadings.
Bai and Ng (2010) propose two panel unit root tests which are applied to the PANIC residuals.
The first one is based on a pooled estimate of the autoregressive root fitted to the PANIC
residuals, as in Moon and Perron (2004), and the second one employs a panel version of the
modified Sargan-Bhargava test (PMSB).1

The third approach, proposed in Pesaran (2007), augments the individual Dickey-Fuller
(DF) regressions of yit with cross section averages, ȳt−1 = N−1ΣN

j=1yj,t−1 and ∆ȳt, to take
account of error cross section dependence. These cross-sectionally augmented DF regressions
can be further augmented with lagged changes ∆yi,t−s, ∆ȳt−s, for s = 1, 2, ..., to deal with
possible serial correlation in the residuals. These doubly augmented DF regressions are referred
to as CADF regressions. The panel unit root test statistic is then computed as the average of
the CADF statistics. It is shown that the average statistic is free of nuisance parameters but,
due to non-zero cross correlation of the individual, CADFi, statistics, the average statistic has a
non-normal limit distribution as N and T →∞. Monte Carlo experiments show that Pesaran’s

1Westerlund and Larsson (2009) provide further theoretical results on the asymptotic validity of the pooled
versions of the PANIC procedure.
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test has desirable small sample properties in the presence of a single unobserved common factor
but show size distortions if the number of common factors exceeds unity.2 A small sample
comparison of some of these tests is provided in Gengenbach, Palm and Urbain (2009).3

The data generating mechanisms underlying the PANIC approach differ in one important
respect from the ones considered by Moon and Perron (2004) and Pesaran (2007). The latter
studies assume that under the null of unit roots the common factor components have the same
order of integration as the idiosyncratic components, whilst the PANIC approach allows the
order of integration of the factors to differ from that of the idiosyncratic components. However,
if the primary objective of the exercise is to test for unit roots in the observed series, yit,
the distinction between the common and idiosyncratic components of yit is not essential. The
distinction will become relevant if the unit root null hypothesis of yit is not rejected. In that case
it would indeed be of interest to investigate further whether the source of the non-stationarity
lies with the common factors, the idiosyncratic components, or both.

The present paper extends Pesaran’s CIPS test to the case of a multifactor error structure.
This is a non-trivial yet important extension which is much more broadly applicable. It has
also the advantage of being intuitive and simple to implement. Following Bai and Ng (2010)
we also consider a panel unit root test based on simple averages of cross-sectionally augmented
Sargan-Bhargava type statistics, which we denote by CSB. The presence of multiple unobserved
factors poses a number of additional challenges. In order to deal with a multifactor structure,
we propose to utilize the information contained in a number of k additional variables, xit, that
together are assumed to share the common factors of the series of interest, yit. The ADF
regression for yit is then augmented with cross-sectional averages of yit and xit.4

The requirement of finding such additional variables seems quite plausible in the case of
panel data sets from economics and finance where economic agents often face common economic
environments. Most macroeconomic theories postulate the presence of the same unobserved
common factors (such as shocks to technology, tastes and fiscal policy), and it is therefore
natural to expect that many macroeconomic variables, such as interest rates, inflation and
output share the same factors. If anything, it would be diffi cult to find macroeconomic time
series that do not share one or more common factors. For example, in testing for unit roots in a
panel of real outputs one would expect the unobserved common shocks to output (that originate
from technology) to also manifest themselves in employment, consumption and investment. In
the case of testing for unit roots in inflation across countries, one would expect the unobserved
common factors that correlate inflation rates across countries to also affect short-term and
long-term interest rates across markets and economies. The fundamental issue is to ascertain
the nature of dependence and persistence that is observed across markets and over time. The
present paper can, therefore, be viewed as a first step in the process of developing a coherent
framework for the analysis of unit roots and multiple cointegration in large panels.

2The cross section augmentation procedure is also employed by Hadri and Kurozumi (2011) in their work on
testing the null of stationarity in panels.

3Other panel unit root tests have also been proposed by Chang (2002), who employs a non-linear IV method,
Choi and Chue (2007) who use a subsampling method to account for cross-section correlation, and Phillips and
Sul (2003) who use an orthogonalisation procedure to deal with error cross-dependence in the case of a single
common factor.

4The idea of augmenting ADF regressions with other covariates has been investigated in the unit root literature
by Hansen (1995) and Elliott and Jansson (2003). These authors consider the additional covariates in order to
gain power when testing the unit root hypothesis in the case of a single time series. In this paper we augment
ADF regressions with cross section averages to eliminate the effects of unobserved common factors in the case of
panel unit root tests.
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Initially we develop the tests assuming that m0, the true number of factors is known, and
show that the limit distribution of CIPS and CSB tests does not depend on any nuisance
parameters, so long as k ≥ m0 − 1. But, in practice m0 is rarely known. Most existing
methods of estimating m0, such as the information criteria of Bai and Ng (2002), assume
that the unobserved factors are strong, in the sense discussed in Chudik, Pesaran and Tosetti
(2011). However, in many empirical applications we may not be sure that all the factors are
strong. Bailey, Kapetanios and Pesaran (2012, BKP) show that the strength of the factors is
determined by the nature of the factor loadings, and depends on the exponent of the cross-
sectional dependence, α, defined as ln(n)/ ln(N), where n is the number of non-zero factor
loadings. The value α = 1 corresponds to the case of a strong factor, while α < 1 gives rise
to a large set of practically plausible values ranging from semi-strong to weaker factors. BKP
find that for many macroeconomic and financial series of interest, the value of the exponent
is less than one. This result casts some doubt on the practical justification of panel unit root
tests based on estimated factors by principal components, which are discussed above. The
solution offered in this paper deals with the uncertainty surrounding the true number of factors
by assuming that there exists a suffi cient number of k additional regressors that together share
at least m0− 1 of the factors in the model that influence the variable under consideration. This
approach does not require all the factors to be strong. This way, by selecting k = mmax − 1,
where mmax is the assumed maximum number of factors, the estimation of m0 will not be
needed.

For our tests, following the discussions in Im et al. (2003), we propose to use critical values
which depend on the values of k, N , T , and lag-augmentation order, p, as they are expected to
provide much better finite sample approximations. In empirical applications it is important that
the tests being considered have the correct size, otherwise their use could result in misleading
conclusions.

Small sample properties of the CIPS and CSB tests are investigated by Monte Carlo
experiments. These tests are shown to have the correct size for all combinations of N and T
considered in a number of different experiments. The experimental results also show that the
proposed CSB test has satisfactory power, which for some combinations of N and T tends to be
higher than that of the CIPS test. Empirical applications to Fisher’s inflation parity and real
equity prices across different economies illustrate how the proposed tests perform in practice.

The plan of the paper is as follows. Section 2 sets out the panel data model, formulates the
CIPS test and derives its asymptotic distribution. Section 3 presents the CSB test. Section 4
discusses the proposed tests in the presence of residual serial correlation. Section 5 describes the
Monte Carlo experiments and reports the small sample results. Section 6 presents the empirical
applications, and Section 7 provides some concluding remarks.

Notation: L denotes a lag operator such that L`xt = xt−`, K denotes a finite positive
constant such that K <∞, ||A|| = [tr(AA′)]1/2, A+ denotes the Moore-Penrose inverse of A,
Iq is a q×q identity matrix, τ q and 0q are q×1 vectors of ones and zeros, respectively, 0q×r is a

q× r null matrix, N
=⇒ (N→) denotes convergence in distribution (quadratic mean (q.m.) or mean

square errors) with T fixed as N →∞, T
=⇒ ( T→) denotes convergence in distribution (q.m.) with

N fixed (or when there is no N -dependence) as T → ∞, N,T=⇒ denotes sequential convergence

in distribution with N → ∞ first followed by T → ∞, (N,T )j
=⇒ denotes joint convergence in

distribution with N ,T → ∞ jointly with certain restrictions on the expansion rates of T and
N to be specified, if any.
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2 Panel Data Model and the CIPS Test

Let yit be the observation on the ith cross section unit at time t, and suppose that it is generated
as

∆yit = βi(yi,t−1 −α′iydt−1) +α′iy∆dt + uit, i = 1, 2, ..., N ; t = 1, 2, ..., T, (1)

where βi ≤ 0, dt is 2× 1 vector consisting of an intercept and a linear trend so that dt = (1, t)′.
Without loss of generality, it is assumed that d0 ≡ 0, and ∆d1 ≡ (0, 1)′. Consider the following
multifactor error structure

uit = γ ′iyft + εiyt, (2)

where ft is an m0 × 1 vector of unobserved common effects, γiy is the associated vector of
factor loadings, and εiyt is the idiosyncratic component. This set up generalises Pesaran’s
(2007) one factor error specification. We assume that these error processes satisfy the following
assumptions:

Assumption 1 (idiosyncratic errors): The idiosyncratic shocks, εiyt, i = 1, 2, ..., N ; t =
1, 2, ..., T , are independently distributed both across i and t, with zero means, variances, σ2

i ,
(0 < σ2

i ≤ K), and finite fourth-order moments.

Remark 1 This assumption, which implies that the idiosyncratic shocks are serially uncorre-
lated, will be relaxed in Section 4. It is also possible to relax the assumption that the idiosyn-
cratic errors are cross-sectionally independent, and replace it by assuming that ε′iyts are cross-
sectionally weakly dependent in the sense of Chudik, Pesaran, and Tosetti (2011). However,
such an extension will not be considered in this paper.

Assumption 2 (factors): The m0 × 1 vector ft follows a covariance stationary process, with
absolute summable autocovariances, distributed independently of εiyt′ for all i, t and t′. Specif-
ically, we assume that ft = Ψ(L)vt where vt ∼ IID(0,Ωm), which has finite fourth-order mo-
ments, Ψ(L) =

∑∞
`=0 Ψ`L

`, where {`Ψ`}∞`=0 is absolute summable such that
∑∞

`=0 `|ψ
(`)
rs | <∞

for all r, s, with ψ(`)
rs being the (r, s)th element of Ψ`. Specifically, it is assumed that the inverse

of Λf defined by
Λf = Ψ(1), (3)

exists.

Remark 2 Assumption 2 is quite general but rules out the possibility of the factors having
unit roots. In our set up this makes sense since otherwise all series in the panel could be I(1)
irrespective of whether βi = 0 or not. Also if γ ′iyft is assumed to be I(1) and cointegrated with
yit, then yit will be I(1) even if βi = 0, and a test of βi = 0 as a unit root test will not be
meaningful, which is also noted by Hansen (1995, p. 1159) in a similar context.

Combining (1) and (2) it follows that

∆yit = βi(yi,t−1 −α′iydt−1) +α′iy∆dt + γ ′iyft + εiyt. (4)

The hypothesis that all observed series, yit, have unit roots and are not cross unit cointegrated
can be expressed as

H0 : βi = 0 for all i, (5)
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against the alternative

H1 : βi < 0 for i = 1, 2, ..., N1, βi = 0 for i = N1 + 1, N1 + 2, .., N ,

where N1/N → κ and 0 < κ ≤ 1 as N →∞.
Under the null hypothesis, (4) can be solved for yit to yield

yit = yi0 +α′iydt + γ ′iysft + siyt, i = 1, 2, ..., N ; t = 1, 2, ..., T, (6)

where
sft = f1 + f2 + · · ·+ ft, and siyt = εiy1 + εiy2 + · · ·+ εiyt,

with yi0 being a given initial value. Therefore, under H0 and Assumptions 1 and 2, yit is com-
posed of the initial value, yi0, a common stochastic component, sft ∼ I(1), and an idiosyncratic
component, siyt ∼ I(1), so that while all units of the panel share the common stochastic trends,
sft, there is no cointegration among them. Under the alternative stationarity hypothesis, βi < 0,
we must have yit ∼ I(0), and it is therefore essential that ft is at most an I(0) process.5

Remark 3 Our primary objective is to test for the presence of a unit root in the yit process,
which is observed. In contrast, Bai and Ng (2004) consider whether the source of non-
stationarity is due to the common factors and/or the idiosyncratic components, neither of which
are observed directly. To see how our approach is related to the Bai and Ng (2004, p.1130-1)
PANIC framework, consider their specification

yit = µi + γ ′iyFt + eiyt, (7)

∆Ft = C(L)vt,

(1− ρiL)eiyt = εiyt,

where rank (C(1)) = r, with 0 ≤ r ≤ m0 and r is the number of factors that are I(1), and for
simplicity let εiyt ∼ iid(0, σ2

ε). Bai and Ng’s objective is “to determine r and test if ρi = 1 when
neither Ft nor eiyt, is observed." (Bai and Ng, 2004;p.1130). From (7) it readily follows that

∆yit = βi(yi,t−1 − µi − γ ′iyFt−1) + γ ′iy∆Ft + εiyt, (8)

where βi = −(1− ρi). Under H0 : βi = 0, (8) becomes

∆yit = γ ′iy∆Ft + εiyt, or yit = yi0 + γ ′iyFt + siyt,

and since within the Bai and Ng framework Ft and siyt are both I(1) processes, then yit must
also be I(1). Under the alternative hypothesis H1 : βi < 0, it follows from (8) that if Ft is
I(1) (and possibly cointegrated with yit), yit will be I(1), unless r = 0 and there are no common
stochastic trends. Therefore, it is meaningful to interpret a test of βi = 0 as a panel unit root
test only if Ft is assumed to be I(0). See also Remark 2.

5One can test whether ft is I(0) by applying time series unit root tests to cross section averages, ȳt =
N−1∑N

i=1 yit, for t = 1, 2, ..., T . It can be shown that such tests are asymptotically valid as T and N → ∞, so
long as T/N → 0. However, the power of such tests will depend on T and the cross section dimension is only
relevant in ensuring that ȳt is a good proxy for ft.
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In the case where m0 = 1, Pesaran (2007) proposes a test of βi = 0 jointly with ft ∼ I(0),
based on DF (or ADF) regressions augmented by current and lagged cross-sectional averages of
yit as proxies for the unobserved ft. He shows that the resultant test is asymptotically invariant
to the factor loadings, γiy. To deal with the case where m

0 > 1 we assume that in addition
to yit, there exist k additional observables, say xit, which depend on at least the same set of
common factors, sft, although with different factor loadings. For example, in the analysis of
output convergence it is reasonable to argue that output, investment, consumption, real equity
prices, and oil prices have the same set of factors in common. Similarly, short term and long term
interest rates and inflation across countries are likely to have a number of factors in common.

More specifically, suppose the k × 1 vector of additional regressors follow the general linear
process

∆xit = Aix∆dt + Γixft + εixt, i = 1, 2, ..., N ; t = 1, 2, ..., T, (9)

where xit = (xi1t, xi2t, ..., xikt)
′, Γix = (γix1,γix2, ...,γixk)

′, Aix = (aix1,aix2, ...,aixk)
′, and εixt

is the idiosyncratic component of xit which is I(0) and distributed independently of εiyt′ for all
i, t and t′. Solving for xit we have

xit = xi0 + Aixdt + Γixsft + sixt, i = 1, 2, ..., N ; t = 1, 2, ..., T, (10)

where sixt =
∑t

s=1 εixs. Combining (6) and (10) we obtain

zit = zi0 + Γisft + Aidt + sit, (11)

where zit = (yit,x
′
it)
′, Γi =

(
γiy,Γ

′
ix

)′, Ai = (αiy,A
′
ix)′, and sit = (siyt, s

′
ixt)
′.

Assumption 3 (factor loadings): ‖Ai‖ ≤ K and ‖Γi‖ ≤ K, for all i, with the factors
normalized such that E(ftf

′
t) ≡ Im.

Assumption 4 (initial conditions): E||sf1|| ≤ K, E||zi0|| ≤ K, and E||si1|| ≤ K, for all i.

Remark 4 Assumption 3 imposes minimal conditions on the factor loadings. For example, it
does not rule out possible dependence between the factor loadings and idiosyncratic errors. Also
the normalisation of ft under Assumption 3 can be achieved by suitable transformations of Γi
and ft (also note that Ψ0 in Assumption 2 is unrestricted). Assumption 4 is also routine in the
literature on unit roots.

Averaging (11) across i we obtain

z̄t = z̄0 + Γ̄sft + Ādt + s̄t, (12)

where z̄t = N−1
∑N

i=1 zit, Ā = N−1
∑N

i=1 Ai, and s̄t = N−1
∑N

i=1 sit.6 Writing (4), (11) and
(12) in matrix notation, under the null for each i we have

∆yi = Fγiy + ∆Dαiy + εiy, (13)

∆Zi = FΓ′i + ∆DA′i + Ei, (14)

∆Z̄ = FΓ̄
′
+ ∆DĀ

′
+ Ē, (15)

6Weighted cross section averages could also be used with appropriate granularity restrictions on the weights.
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where F = (f1, f2, ..., fT ) ′, ∆D = (∆d1,∆d2, ...,∆dT ) ′, with ∆d1 = (0, 1)′, εiy =
(εiy1, εiy2, ..., εiyT )′, ∆Zi = (∆zi1,∆zi2, ...,∆ziT )′, Ei = (εi1, εi2, ..., εiT )′ with εit = (εiyt, ε

′
ixt)
′

∆Z̄ = (∆z̄1,∆z̄2, ...,∆z̄T )′ and Ē = N−1
∑N

i=1 Ei. From (15), if Γ̄ has full column rank m0, it
follows that

F =
(

∆Z̄−∆DĀ
′ − Ē

)
Γ̄
(
Γ̄′Γ̄

)−1
. (16)

However, as shown in Appendix A, Ē
N→ 0, and hence we obtain that

F−
(

∆Z̄−∆DĀ
′
)

Γ̄
(
Γ̄′Γ̄

)−1 N→ 0. (17)

This implies that under the null hypothesis linear combinations of ∆Z̄ and ∆D provide valid
approximations of F for large N . This condition on the rank of the cross section average of the
factor loadings is stated as an assumption below:

Assumption 5 (rank condition): The (k+ 1)×m0 matrix of factor loadings Γi is such that

rank(Γ̄) = m0 ≤ k + 1, for any N and as N →∞, (18)

where Γ̄ = N−1
∑N

i=1 Γi, and Γ̄
N→ Γ, where Γ is a fixed bounded matrix with rank m0.

Remark 5 It is not necessary that yit and (xi1t,xi2t, ...,xikt) have the same cross-sectional di-
mensions. This is illustrated in Section 6. Also it is not necessary for the rank condition to hold
for all cross section units individually, but it must hold on average. For example, the rank con-
dition holds so long as a non-zero fraction of factor loadings, Γi, are full rank as N →∞. Also,
so long as Assumption 5 is satisfied, we do not necessarily require that limN→∞N

−1
∑N

i=1 Γ′iΓi
exists and is positive definite, which is typically assumed for the identification of factors. See,
for example, Assumption A(ii) of Bai and Ng (2004) and Assumption 6 of Moon and Perron
(2004). Under our framework, a factor can be weak in the equation for yit and strong in the
equations for xit, and vice versa. Such cases do not invalidate the rank condition.

In view of the above we shall base our test of the panel unit root hypothesis on the t-
ratio of the Ordinary Least Squares (OLS) estimator of bi (b̂i) in the following cross-sectionally
augmented regression

∆yit = biyit−1 + c′iz̄t−1 + h′i∆z̄t + g′idt + εit. (19)

The t-ratio of b̂i is given by

ti(N,T ) =
∆y′iM̄yi,−1

σ̂i

(
y′i,−1M̄yi,−1

)1/2
=

√
T − 2k − 5∆y′iM̄yi,−1(

∆y′iM̄i∆yi
)1/2 (

y′i,−1M̄yi,−1

)1/2
,

where ∆yi = (∆yi1,∆yi2, ...,∆yiT )′, yi,−1 = (yi0, yi1, ..., yi,T−1)′, M̄ = IT − W̄
(
W̄′W̄

)−1
W̄′,

W̄ = (w̄1, w̄2, ..., w̄T )′, w̄t =
(
∆z̄′t,d

′
t, z̄
′
t−1

)′, σ̂2
i = ∆y′iM̄i∆yi/ (T − 2k − 5) , and M̄i = IT −

W̄i

(
W̄′

iW̄i

)−1
W̄′

i, with W̄i =
(
W̄,yi,−1

)
. For the intercept only case the degrees of freedom

adjustment for σ̂2
i is T − 2k − 4. Using (16) in (13)

∆yi = ∆Z̄δi + ∆Dαi + σiυi, (20)
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where δi = Γ̄
(
Γ̄′Γ̄

)−1
γiy, αi = αiy − Ā′δi, υi =

(
εiy − Ēδi

)
/σi, it is also easily seen that

E(υiυ
′
i) = IT +O(N−1). Therefore,

M̄∆yi = σiM̄υi. (21)

From (14) we also have

Zi,−1 = τT z′i0 + Sf,−1Γ
′
i + D−1A

′
i + Si,−1.

Taking cross-sectional averages gives

Z̄−1 = τT z̄′0 + Sf,−1Γ̄
′ + D−1Ā

′ + S̄−1, (22)

where Sf,−1 = (0m0 , sf1, ..., sf,T−1)′, D−1 = (02,d1, ...,dT−1)′, Zi,−1 = (zi0, zi1, ..., ziT−1)′,

Si,−1 = (0k+1, si1, ..., si,T−1)′, Z̄−1 = (z̄0, z̄1, ..., z̄T−1)′ and S̄−1 = N−1
∑N

i=1 Si,−1.
Similarly from (20)

yi,−1 = ẙi0τT + Z̄−1δi + D−1αi + σi̊si,−1, (23)

where
s̊i,−1 = (siy,−1 − S̄−1δi)/σi, (24)

siy,−1 = (0, siy1, ..., siy,T−1)′ , and ẙi0 = yi0 − z̄′0δi. Therefore,

M̄yi,−1 = σiM̄s̊i,−1. (25)

Using (21) and (25), ti(N,T ) can be re-written as

ti(N,T ) =
υ′iM̄s̊i,−1

(
υ′iM̄iυi
T−2k−5)1/2

(̊
s′i,−1M̄s̊i,−1

)1/2
. (26)

For fixed N and T , the distribution of ti(N,T ) will depend on the nuisance parameters through
their effects on M̄i and M̄. However, this dependence vanishes either as N → ∞, for a fixed
T , or as N and T →∞, jointly. In addition, under Assumption 4 the effect of the initial cross
section mean, z̄0, also vanishes asymptotically, either as N → ∞ for a fixed T , or as N and
T →∞, jointly.7

The main results concerning the asymptotic distribution of ti(N,T ) are summarised in the
theorem below. The proof is given in the Appendix for the case where dt = (1, 0)′. The
results for the case where dt = (1, t)′ can be derived in a similar manner and are provided in a
supplement available from the authors on request.

Theorem 2.1 Suppose the series zit, for i = 1, 2, ..., N , t = 1, 2, ..., T , is generated under (5)
according to (11) and dt = 1. Then under Assumptions 1-5 and as N and T → ∞, such that√
T/N → 0, ti(N,T ) given by (26) has the same sequential (N → ∞, T → ∞) and joint

[(N,T )j →∞] limit distribution, is free of nuisance parameters, and is given by

CADFi =

∫ 1

0
Wi(r)dWi(r)− ω′ivG−1

v πiv(∫ 1

0
W 2
i (r)dr − π′ivG−1

v πiv

)1/2
, (27)

7The importance of initial values for power properties of panel unit root tests is discussed in Moon et al.
(2007), Breitung and Westerlund (2009), and Harris et al. (2010). A further investigation of this issue for the
case where the errors are cross sectionally dependent is clearly worthwhile, but will not be pursued in this paper.
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where

ωiv =

 Wi(1)∫ 1

0
[Wv(r)] dWi(r)

 , πiv =


∫ 1

0
Wi(r)dr∫ 1

0
[Wv(r)]Wi(r)dr

 ,

Gv =

 1

∫ 1

0
[Wv(r)]′ dr∫ 1

0
[Wv(r)] dr

∫ 1

0
[Wv(r)] [Wv(r)]′ dr

 ,

Wi(r) is a scalar standard Brownian motion and Wv(r) is m0-dimensional standard Brownian
motion defined on [0,1], associated with εiyt and vt, respectively. Wi(r) and Wv(r) are mutually
independent.

See Appendix A for a proof.

Remark 6 Since the random variables CADFi form an exchangeable sequence, conditional on
Wv(r), CADFi and CADFj are independently distributed; see, for example, Theorem 1.2.2 in
Taylor et al. (1985, p.13). Unconditionally, however, they are correlated with the same degree
of dependence for all i 6= j.

Remark 7 When the factors are serially uncorrelated, namely ft ≡ vt ∼ IID(0, Im), (see
Assumptions 2 and 3), even for a finite T the limit distribution of ti(N,T ) as N → ∞, does
not depend on the factor loadings and σi. In the case where the factors are serially correlated
the limit distribution of ti(N,T ) does depend on the serial correlation patterns of ft when T is
finite. However, as Theorem 2.1 states, the dependence of ti(N,T ) on the autocovariances of ft
vanishes in the limit when T →∞ and N →∞, jointly.

Remark 8 When the yit process does not contain a linear time trend but the additional regres-
sors xit (or some subset thereof) do, the augmented regression (19) must include a linear trend
term in order to eliminate the effects of such a trend in x̄t. Alternatively, in such a case, it
can be shown that Theorem 2.1 holds when the additional regressors are replaced by a detrended
version of x̄t. See the empirical Section 6 for more details.

The panel unit root test can now be based on the average of the t-ratios

CIPSNT = N−1
N∑
i=1

ti(N,T ), (28)

which can be viewed as the cross-sectionally augmented version of the IPS test advanced in Im
et al. (2003). As in Pesaran (2007), it is theoretically more convenient to work with a suitably
truncated version of the CIPSNT test statistic defined by

CIPS∗NT = N−1
N∑
i=1

t∗i (N,T ), (29)

where

t∗i (N,T ) =


ti(N,T ), if −K1 < ti(N,T ) < K2,
−K1, if ti(N,T ) ≤ −K1,
K2, if ti(N,T ) ≥ K2,

(30)
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and the truncation points K1 and K2 are chosen using a normal approximation for ti(N,T ).
Specifically, they are set as K1 = −E(CADFi) − Φ−1(ε/2)

√
V ar(CADFi), and K2 =

E(CADFi) + Φ−1(1 − ε/2)
√
V ar(CADFi), where Φ−1( . ) is the inverse of the cumulative

standard normal distribution function. K1 and K2 can be obtained using simulated values of
E(CADFi) and V ar(CADFi) with ε = 1× 10−6 for N = 200, and T = 200. As with ti(N,T ),
the limiting distribution of t∗i (N,T ), denoted by CADF ∗i , exists and will be free of nuisance
parameters. We have

CADF ∗i =


CADFi, if −K1 < CADFi < K2,
−K1, if CADFi ≤ −K1,
K2, if CADFi ≥ K2.

(31)

It is now straightforward to show that under the null hypothesis the asymptotic distribution of
CIPS∗ exists and is free from nuisance parameters. To see this, let

∆∗NT = N−1
N∑
i=1

[t∗i (N,T )− CADF ∗i ] , (32)

and note that CIPS∗NT = CADF
∗

+ ∆∗NT , where CADF
∗

= N−1
∑N

i=1CADF
∗
i . Also, by

Theorem 2.1 and the relationships (30) and (31), for each i, ∆∗i = t∗i (N,T ) − CADF ∗i →p 0,
as (N,T )j → ∞. Therefore, ∆∗NT = CIPS∗NT − CADF

∗ →p 0, as (N,T )j → ∞, since
E |t∗i (N,T )− CADF ∗i | ≤ E |t∗i (N,T )| + E |CADF ∗i | < K < ∞, given the truncated nature of
the underlying random variables. Furthermore, since by construction, E |CADF ∗i | < K < ∞
for each i, then conditional on Wv, (using Theorem 1.2.2 in Taylor et al. (1985, p.13)), we have

CADF
∗

= N−1
N∑
i=1

CADF ∗i
a.s.→ E [CADF ∗1 |Wv,−K1 < CADF1 < K2] (33)

+π2K2 − π1K1,

where π1 = Pr[CADF ∗i ≤ −K1|Wv] and π2 = Pr[CADF ∗i ≥ K2|Wv]. From (33) we have
that CADF

∗
converges in distribution as N → ∞. Hence, it also follows that conditional on

Wv, the truncated statistic, CIPS∗NT , will converge to the same distribution as the limiting
distribution of CADF

∗
. But due to the dependence of CADF ∗i over i, the limiting distribution

is not normal and its critical values need to be computed by stochastic simulation. Further for
suitably small choice of ε, the simulated critical values of the untruncated statistic, CADF ,
is very close to those of CADF

∗
. The reason for introducing the truncated version of CIPS

statistic is purely technical and is aimed at circumventing the diffi cult problem of establishing
that the untruncated statistics, ti(N,T ), have moments. The computation of the critical values
of CADF is discussed in Section 4.2.

3 The CSB Test

The cross-sectional augmentation approach can also be exploited in the case of other unit root
tests, such as the test proposed by Sargan and Bhargava (1983). In the single time series case,
the Sargan-Bhargava statistic was modified by Stock (1999) to allow for serial correlation. This
test has also been recently adopted by Bai and Ng (2010) in the panel context with good effects.

Recall that the data generating process for yit under the null is given by

∆yit = α′iy∆dt + γ ′iyft + εiyt.
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For each i, the cross-sectionally augmented Sargan-Bhargava statistic, is given by

CSBi(N,T ) = T−2
T∑
t=1

û2
it/σ̂

2
i ,

where

ûit =

t∑
j=1

ε̂ij , and σ̂2
i =

T∑
t=1

ε̂2
it/ [T − (k + 1)] ,

and ε̂it are the OLS residuals from the regressions of ∆yit on ∆z̄t, in the case of models with
an intercept only. If the underlying series are trended, ε̂it must be calculated from a regression
of ∆yit on an intercept and ∆z̄t, with σ̂2

i computed as σ̂
2
i =

∑T
t=1 ε̂

2
it/ [T − (k + 2)]. The use

of cross-sectional augmentation as a way of dealing with the unobserved factors is justified
using (17), which renders ε̂it free of the nuisance parameters (namely the factor loadings). It is
now easy to prove that for each i, CSBi(N,T ) statistic converges to a functional of Brownian
motions, which is independent of the factors as well as their loadings.8 The CSB test is then
based on the cross-sectional average of the CSBi(N,T ) statistics, given by

CSBNT = N−1
N∑
i=1

CSBi(N,T ). (34)

Computation of the critical values for the CSBNT statistic using stochastic simulations is de-
scribed in Section 4.2.

4 The Case of Residual Serial Correlation

In this section we relax Assumption 1, and consider the implications of residual serial correlation
for our proposed tests. In error factor models, residual serial correlation can be modelled in a
number of different ways, directly via the idiosyncratic components, through the factor(s), or
a mixture of the two. We focus on the serial correlation in the idiosyncratic errors and model
the residual serial correlation as

ζiyt = θiζiy,t−1+ηiyt, |θi| < 1, for i = 1, 2, ..., N ; t = 1, 2, ..., T, (35)

where ζiyt is the idyosyncratic component of uit = γ ′iyft + ζiyt, and ηiyt is independently dis-
tributed across both i and t, with zero means and variances, 0 < σ2

iη < K <∞.
To keep the exposition simple we confine our analysis to the first order stationary processes,

though the analysis readily extends to higher order processes. Under (35) we have

∆yit = βi(yi,t−1 −α′iydt−1) +α′iy∆dt + γ ′iyft + ζiyt(θi), (36)

where ζiyt(θi) = (1 − θiL)−1ηiyt. We also assume the coeffi cients of the autoregressive process
to be homogeneous across i, although this could be relaxed at the cost of more complex math-
ematical details. Under the null that βi = 0, with θi = θ and dt = (1, 0)′, (36) reduces to

∆yit = γ ′iyft + ζiyt(θ), (37)

8A proof of this is provided in a supplement, which is available from the authors on request.
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and upon using (35) under the null hypothesis we have

∆yit = θ∆yi,t−1 + γ ′iy(ft − θft−1) + ηiyt. (38)

The individual CADF regressions can be written as

∆yi = biyi,−1 + W̄i1hi + εi, for i = 1, 2, ..., N, (39)

where W̄i1 = (∆yi,−1,∆Z̄,∆Z̄−1, τT , Z̄−1), which is a T × (3k+ 5) matrix. The t-ratio of b̂i in
regression (39) is given by

ti(N,T ) =
∆y′iM̄i1yi,−1

σ̂i

(
y′i,−1M̄i1yi,−1

)1/2
=

√
T − (3k + 6)∆y′iM̄i1yi,−1(

∆y′iM̄i1,p∆yi
)1/2 (

y′i,−1M̄i1yi,−1

)1/2
, (40)

where M̄i1 = IT − W̄i1(W̄′
i1W̄i1)−1W̄′

i1, σ̂
2
i = [T − (3k + 6)]−1∆y′iM̄i1,p∆yi and M̄i1,p =

IT −Pi1(P′i1Pi1)−1P′i1, Pi1 = (W̄i1,yi,−1).
Combining (9) with (37), similarly to (14) we obtain

∆Zi = FΓ′i + Ei, (41)

where Ei = (ζ′iy(θ),E
′
ix)′, with Eix = (εix1, εix2, ..., εixT )′, and ζiy(θ) =(

ζiy1(θ), ζiy2(θ), ..., ζiyT (θ)
)′, with the common factors F, and factor loadings Γi defined

as in the previous section. Taking cross section averages of (41) we obtain ∆Z̄ = FΓ̄
′
+ Ē,

where as before Ē = N−1
∑N

i=1 E. Therefore, assuming that the rank condition, (18), holds

F =
(
∆Z̄− Ē

)
Γ̄
(
Γ̄′Γ̄

)−1 . (42)

Writing (38) in matrix notation and using (42) we have

∆yi = θ∆yi,−1 + (∆Z̄−θ∆Z̄−1)δi + σiηυi, (43)

with
υi = [ηiy − (Ē− θĒ−1)δi]/σiη,

and E(υiυ
′
i) = IT +O(N−1). Furthermore, from (37) using (42) it follows that

yi,−1 = αiyτT + ẙi0τT + Z̄−1δi + σiη̊siζ,−1,

where
s̊iζ,−1 =

(
siζ,−1 − S̄−1δi

)
/σiη,

siζ,−1 = (0, siζ1, ..., siζ,T−1)′ with siζt =
∑t

s=1 ζiys(θ), S̄−1 = (̄sζ,−1, S̄x,−1) with s̄ζ,−1 =

N−1
∑N

i=1 siζ,−1 and ẙi0 = yi0 − z̄′0δi.
The test statistic (40) then becomes

ti(N,T ) =
υ′iM̄i1̊siζ,−1(

υ′iM̄i1,pυi
T−3k−6

)1/2 (̊
s′iζ,−1M̄i1̊siζ,−1

)1/2
. (44)
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Theorem 4.1 Suppose the series zit, for i = 1, 2, ..., N , t = 1, 2, ..., T , is generated under (5)
according to (41) and |θ| < 1. Then under Assumptions 1-5 and as N and T → ∞, ti(N,T )
in (44) has the same sequential (N →∞, T →∞) and joint [(N,T )j →∞] limit distribution
given by (27) obtained for θ = 0.

The proof is provided in a supplement available from the authors on request.

For a general AR(p) error specification, the CADF regressions in (39) must also be aug-
mented by further lagged changes. More specifically, in this case the ti(N,T ) statistic should
be computed as the OLS t-ratio of bi in the following pth order augmented regression:

∆yi = biyi,−1 + W̄iphip + εi, (45)

where W̄ip = (∆yi,−1,∆yi,−2, ...,∆yi,−p; ∆Z̄,∆Z̄−1, ...,∆Z̄−p; τT ; Z̄−1), which is a T × (k +
2)(p + 1) data matrix. In the case where dt = (1, t)′, (45) should include a linear trend term,
with the degrees of freedom term associated with the error variance adjusted accordingly.

Similarly it can be shown that the CSBi(N,T ) statistics have the same limiting distribution
as for θ = 0,9 and from the above it follows that in the case of first order residual serial
correlation, the cross section augmented regression should be augmented further with the term
∆z̄t−1, so that

∆yit = bi∆yi,t−1 + c′i0∆z̄t + c′i1∆z̄t−1 + εit,

which for higher order serial correlation generalises to

∆yit =

p∑
`=1

bi`∆yit−` +

p∑
`=0

c′i`∆z̄t−` + εit, (46)

with

CSBi(N,T ) = T−2
T∑
t=1

û2
it/σ̂

2
i ,

where ûit =
∑t

j=1 ε̂ij , σ̂
2
i =

∑T
t=1 ε̂

2
it/[T − p− (p+ 1)(k + 1)], and

ε̂it = ∆yit −
p∑
`=1

b̂i`∆yit−` −
p∑
`=0

ĉ′i`∆z̄t−`.

In the case where dt = (1, t)′, (46) should include an intercept term, with the degrees of freedom
term associated with the error variance adjusted accordingly.

4.1 Uncertainty Surrounding the Number of Factors

So far we have considered the case in which the true number of unobserved factors, m0, is given.
In practice m0 is rarely known, although it is reasonable to assume that it is bounded by a finite
integer value, mmax. In the case of the proposed test there are two possible ways that one could
proceed when m0 is not known.

One approach would be to estimate m0 using a suitable statistical technique such as the
information criteria proposed by Bai and Ng (2002). Most existing methods of estimating m0

assume that the unobserved factors are strong, in the sense discussed in Chudik, Pesaran and

9A proof is included in a supplement available upon request from the authors
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Tosetti (2011). However, in many empirical applications we may not be sure that all unobserved
factors are strong. Bailey, Kapetanios and Pesaran (2012) propose measuring the strength of
the factors by the exponent of the cross-section dependence, α, defined as ln(n)/ ln(N), where
n is the number of non-zero factor loadings. The value α = 1 corresponds to the case of a
strong factor, while values of α in the range (1/2, 1) correspond to factors that are semi-strong.
Bailey et al. (2012) estimate the exponent of the cross-sectional dependence for macroeconomic
and financial series of interest, and find that mostly it is less than one. This raises interesting
technical issues concerning the determination of the number of factors and if they are strong,
as assumed by the standard theory.

Alternatively, assuming that there exists a suffi cient number of additional regressors that
share at least m0 − 1 of the factors included in the model for yit, one could set k = mmax − 1
(where m0 ≤ mmax), and use the k additional regressors for augmenting the regressions when
computing CIPS and CSB statistics. This approach is likely to work in practice when mmax

is relatively small (2 or 3), and does not require all the factors to be strong. However, when
mmax is believed to be large, the CIPS and CSB tests are likely to lose power due to loss
of degrees of freedom. More importantly, it might be diffi cult to find a suffi cient number of
additional regressors to deal with the adverse effects of the unobserved factors on our proposed
test statistics.10

4.2 Computation of Critical Values of CIPS and CSB Tests

Critical values for the CIPS and CSB tests are obtained by stochastic simulation. We propose
to use critical values which depend on the values of k, N , T , and lag-augmentation order, p,
since they are expected to provide much better finite sample approximations as discussed in Im
et al. (2003). To compute the critical values, yit is generated as

yit = yit−1 + εiyt, i = 1, 2, ..., N ; t = 1, 2, ..., T , (47)

where εiyt ∼ iidN(0, 1) with yi0 = 0. The jth element of the k × 1 vector of the additional
regressors xit, is generated as

xijt = xij,t−1 + εixjt, i = 1, 2, ..., N ; j = 1, 2, ..., k; t = 1, 2, ..., T , (48)

with εixjt ∼ iidN(0, 1) and xij0 = 0.
For the CIPS test the individual ti(N,T ) statistic is calculated as the t-ratio of the coeffi -

cient on yi,t−1 of the CADF regression of∆yit on an intercept, yi,t−1, z̄′t−1, ∆z̄′t,∆z̄′t−1, ...,∆z̄′t−p,
and ∆y′i,t−1, ...,∆y

′
i,t−p under Case I where the model only contains an intercept, and Case II

where the CADF regressions also include a linear time trend. The CIPS statistic is then
computed as CIPSNT = N−1

∑N
i=1 ti(N,T ).

For the CSB test, the individual CSBi statistic is computed as CSBi = T−2
∑T

t=1 ê
2
it/σ̂

2
i ,

with ûit =
∑t

j=1 êij and σ̂
2
i =

∑T
t=1 ê

2
it/ [T − p− (p+ 1)(k + 1)] , where êit are the estimated

residuals from the regression of∆yit on∆yi,t−1, ...,∆yi,t−p and∆z̄′t,∆z̄′t−1, ...,∆z̄′t−p, under Case

I. Under Case II, σ̂2
i =

∑T
t=1 ê

2
it/ [T − (p+ 1)(k + 2)] , where êit are the estimated residuals from

the regression of ∆yit on an intercept, ∆yi,t−1, ...,∆yi,t−p and ∆z̄′t,∆z̄′t−1, ...,∆z̄′t−p. The CSB

statistic is computed as CSBNT = N−1
∑N

i=1CSBi.

10 In the presence of uncertainty regarding the integration and/or the cointegration properties of the additional
regressors, one could employ the bounds testing approach proposed by Pesaran et al. (2001). A detailed discussion
of such an approach is outside the scope of the present paper.
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The 100α% critical values of the CIPS and CSB statistics are computed for N,T =
20, 30, 50, 70, 100, 200, k = 0, 1, 2, 3 and p = 0, 1, ..., 4, as their α quantiles for α = 0.01, 0.05, 0.1
based on 10, 000 and 50, 000 replications, respectively.11, 12, 13 The (N,T, p, k) specific critical
values for both tests are reported in Appendix B (CIPS and CSB Critical Value Tables).

It is worth noting that the reported critical values of the CIPS test statistics depend on k,
and not on m0. When m0 ≤ k+1 the asymptotic distribution of the CIPS test depends on m0,
but the critical values depend on the number of additional regressors actually included when
simulating the critical values. A similar situation also arises when critical values are computed
for standard DF statistics with deterministics, using stochastic simulations. When carrying out
the simulations what matters is the nature of the deterministic variables and the number of
additional I(1) regressors that are added to the augmented DF and SB regressions.

5 Small Sample Performance: Monte Carlo Evidence

In what follows we investigate by means of Monte Carlo simulations the small sample properties
of the CIPS and CSB tests defined by (28) and (34), using the (N,T, p, k) specific critical values
which are reported in Appendix B.14 Both the CIPS and CSB tests reject the null when the
value of the statistic is smaller than the relevant critical value, at the chosen level of significance.

5.1 Monte Carlo Design

In their Monte Carlo experiments Bai and Ng (2010, Section 5) set m0 = 1 and do not allow
for serial correlation in the idiosyncratic errors. Here we consider a more general set up and
allow for two factors (m0 = 2), and also consider experiments where the idiosyncratic errors
are serially correlated. Following Bailey, Kapetanios and Pesaran (2012) we generate one of the
factors in the yit equations as strong and the second factor as semi-strong. Accordingly, the
data generating process (DGP) for the {yit} is given by

yit = diyt + ρiyi,t−1 + γiy1f1t + γiy2f2t + εiyt, i = 1, 2, ..., N ; t = −49, ..., T, (49)

with yi,−50 = 0, where γiy1 ∼ iidU [0, 2], for i = 1, 2, ..., N ; γiy2 ∼ iidU [0, 1] for i = 1, ..., [Nα],
and γiy2 = 0 for i = [Nα]+1, [Nα]+2, ..., N (where [·] denotes the integer part); f`t ∼ iidN(0, 1)
for ` = 1, 2, εiyt ∼ iidN(0, σ2

i ) with σ2
i ∼ iidU [0.5, 1.5]. The exponent of cross-sectional

dependence of the first (strong) factor is 1, and for the second (semi-strong) factor, it is set to
0.75, guided by the empirical results reported in Bailey et al. (2012). See, also Chudik et al.
(2011).

At the stage of implementing the tests, we assume that mmax = 2, and hence set k =
mmax − 1 = 1. The additional regressor, xit, is generated as

∆xit = dix + γix1f1t + εixt, (50)
11We used 50,000 replications to obtain the critical values of the CSB test statistic, since we found that its

critical values based on 10,000 replications were in certain instances not precise enough especially for small sample
sizes.
12 It is also possible to simulate the critical values directly using (27) by replacing the integrals of the Brownian

motions with their simulated counterparts. Our analysis suggests that the critical values obtained from this
procedure closely match the ones tabulated in the Appendix of the paper.
13 In principle it might be possible that N and T specific critical values could also be used for the other tests

proposed in the literature but such an exercise is beyond the scope of the present paper.
14Monte Carlo comparison results with several panel unit root tests proposed in the literature are included in

a supplement available from the authors upon request.
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where
εixt = ρixεixt−1 +$ixt, , $ixt ∼ iidN(0, 1− ρ2

ix), (51)

i = 1, 2, ..., N ; t = −49, ..., T , with εix,−50 = 0, and ρix ∼ iidU [0.2, 0.4]. The factor loadings in
(50) are generated as γix1 ∼ iidU [0, 2], so that

E(Γi) =

(
1 1

2N
−0.25

1 0

)
, (52)

and hence the rank condition (18) is satisfied when N is finite, but fails when N →∞. In this
way we also check the robustness of the CIPS and CSB tests to failure of the rank condition
for suffi ciently large N .

We considered two specifications for the deterministics in yit and xit. For the case of an
intercept only, diyt = (1− ρi)αiy with αiy ∼ iidN(1, 1) and dix = 0; for the case of an intercept
and a linear trend, diyt = µiy + (1 − ρi)δit with µiy ∼ iidU [0.0, 0.02] and δi ∼ iidU [0.0, 0.02],
and dix = δix with δix ∼ iidU [0.0, 0.02].

To examine the impact of the residual serial correlation on the proposed tests we consider
the DGPs in which the idiosyncratic errors εiyt are generated as

εiyt = ρiyεεiyt−1 + (1− ρ2
iyε)

1/2ηiyt, for t = −49,−48, ..., 0, 1, ..., T, (53)

with εiy,−50 = 0, where ηiyt ∼ iidN(0, σ2
i ), and σ

2
i ∼ iidU [0.5, 1.5]. We considered a positively

serially correlated case, ρiyε ∼ iidU [0.2, 0.4], as well as a negatively serially correlated case,
ρiyε ∼ iidU [−0.4,−0.2]. The first 50 observations are discarded.

In the case where the errors of yit are serially correlated, lag augmentation is required for
the asymptotic validity of the CIPS and CSB tests. In all Monte Carlo results that follow, lag
augmentation is performed and selected according to p̂ =

[
4(T/100)1/4

]
(where [·] denotes the

integer part).
The parameters αiy,δi,µiy, δix, ρiyε, γiy1,γiy2, ρi, γix1, ρix, and σi are redrawn over each

replication. The DGP is given by (49) with ρi = ρ = 1 for size, and ρi ∼ iidU [0.90, 0.99]
for power. All tests are conducted at the 5% significance level. All combinations of N,T =
20, 30, 50, 70, 100, 200 are considered, and all experiments are based on 2,000 replications each.

5.2 Results

Size and power of the tests are summarised in Tables 1 to 3. Table 1 provides the results for
the panel with serially uncorrelated idiosyncratic errors for the intercept only and linear trend
cases. For the case with an intercept, the CIPS and CSB tests have the correct size for all
combinations of sample sizes, even when T is small relative to N . In terms of power, the CSB
test has satisfactory power which is almost consistently higher than that of CIPS. For the case
with a linear trend, again the CIPS and CSB tests have the correct size for all combinations of
sample sizes and their power rises in N and T , as to be expected. Power discrepancies between
the CSB and CIPS tests are less pronounced in this case, with the former still showing higher
power than the latter.

Table 2 presents the results for the case where εiyt are positively serially correlated for
the intercept only and linear trend cases, respectively. The results for the case where εiyt are
negatively serially correlated are summarised in Table 3. The size and power of the CIPS and
CSB tests are not much affected by residual serial correlation once the underlying regressions
are augmented with lagged changes as in (45) and (46). The proposed rule of choosing the lag
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augmentation order p̂ =
[
4(T/100)1/4

]
seems to work well in our experimental designs, whether

serial correlation is present in the data generating process or not.
Overall, the CIPS and CSB tests do not display any size distortions for all values of N

and T , irrespective of whether the idiosyncratic errors are serially correlated or not, with the
CSB test displaying higher power than the CIPS test for smaller T .

6 Empirical Applications

As an illustration of the proposed tests we consider two applications. One to the real interest
rates across N = 32 economies, and another to the real equity prices across N = 26markets. For
both applications we employ quarterly observations over the period 1979Q2− 2009Q4 (i.e. 123
data points). Under the Fisher parity hypothesis, real interest rates, defined as the difference
between the nominal short-term interest rate and the inflation rate, are stationary. The second
application is chosen as it is generally believed that real equity prices are I(1), and it would be
interesting to see if the outcomes of the tests are in line with this belief.

As noted in Section 4.1, and as with other panel unit root tests that are based on principal
components, we need to decide on mmax. In the present application we set mmax = 4. This
choice is based on the recent literature that argues that 2 to 6 unobserved common factors are
suffi cient to explain variations in most macroeconomic variables. See, for example, Stock and
Watson (2002) and Eickmeier (2009), among others. This suggests that at most three additional
I(1) regressors (k = mmax−1 = 3) are needed for the implementation of CIPS and CSB tests.
The set of regressors that are likely to share common factors with real interest rates, rSit − πit,
and real equity prices, eqit, are as follows:

yit Additional regressors (xit)
Real Interest Rates (N = 32) rSit − πit poilt, r

L
it, eqit, epit, gdpit

Real Equity Prices (N = 26) eqit poilt, r
L
it, πit, epit, gdpit

where

rSit = 0.25 ∗ ln(1 +RSit/100), πit = pit − pit−1 with pit = ln(CPIit), poilt = ln(POILt),
rLit = 0.25 ∗ ln(1 +RLit/100), epit = eit − pit with eit = ln(Eit), eqit = ln(EQit/CPIit),
gdpit = ln(GDPit/CPIit),

RSit is the short-term (three month) rate of interest, measured in per annum in per cent in
country i at time t, CPIit the consumer price index, POILt the price of Brent Crude oil, RLit
the long-term rate of interest per annum in per cent (typically the yield on ten year government
bonds), Eit the nominal exchange rate of country i in terms of US dollars, EQit the nominal
equity price index, and GDPit the nominal Gross Domestic Product of country i during period
t in domestic currency.15

When testing for unit roots in real interest rates, ρSit = rSit−πit, we consider ADF regressions
without linear trends, and detrend the possibly trended variables poilt, eqit, epit and gdpit, before
the ADF regressions are augmented with their cross-sectional averages. See, also Remark 8.
These detrended components are computed as residuals from the regressions of poilt, eqit, epit
15The data are publicly available at: http://www-cfap.jbs.cam.ac.uk/research/gvartoolbox/download.html. A

detailed description of the data and sources can be found in the Appendix of the user guide of the gvartoolbox
by Smith, L.V. and A. Galesi (2011), available at the same web address.
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and gdpit on a linear deterministic trend which does not affect the I(1) properties of these
variables.

The 32 countries considered are: Argentina, Australia, Austria, Belgium, Brazil, Canada,
Chile, China, France, Finland, Germany, Indonesia, India, Italy, Japan, Korea, Malaysia, Mex-
ico, Netherlands, New Zealand, Norway, Peru, Philippines, Spain, Sweden, Switzerland, Singa-
pore, South Africa, Thailand, Turkey, UK, and the US. Note that not all components of xit are
available for all countries due to data limitations. In particular, there are 26 series for eqit, 31
series for epit, and 18 series for rLit.

For mmax = 4, we consider the application of the CIPS and CSB tests allowing the number
of factors, m0, to take any value between 1 and 4, as a way of dealing with the sampling
uncertainty associated with basing our tests on a particular choice of m0.16 To check the
robustness of the test outcomes to the choice of the additional regressors used in augmentation,
we present the results of these tests for all possible combinations of candidate regressors. For
m0 = 1 no additional regressors are required for augmentation apart from ȳt, for m0 = 2 one
additional regressor is required, and so on. We set the lag order to p̂ =

[
4(T/100)1/4

]
, as

discussed in the previous section.
The test results for the real interest rates are reported in Table 4. As can be seen, the CIPS

test strongly rejects the null hypothesis of the panel unit root at the 1% level, for all values
of m0, and for all combinations of candidate regressors. The test results based on the CSB
test are very similar, although there are some exceptions. The CSB test does not reject when
m0 = 3 with xit = (poilt, r̄

L
t ), and when m0 = 4 with xit = (poilt, r̄

L
t , eqt), xit = (poilt, r̄

L
t , ept)

and xit = (poilt, r̄
L
t , gdpt), out of the twenty possible combinations. These results suggest that

for a significant number of countries the Fisher parity holds. This is in line with recent findings
reported in Westerlund (2008) using panel cointegration tests.

The results of panel unit root tests applied to real equity prices are summarised in Table 5.
The test outcomes are generally as to be expected. The null hypothesis of a panel unit root in
real equity prices cannot be rejected in most cases. When the CIPS test is used, the null of the
panel unit root is rejected once at the 1% level (out of 26 cases), and 6 times at the 5% level.
There are fewer rejections when the CSB test is used, namely 2 out of 26 cases. Overall, the
test results are in line with the generally accepted view that real equity prices approximately
follow random walks with a drift.

We also applied other panel unit root tests proposed in the literature. Specifically, we
consider the pooled test statistic Pê of Bai and Ng (2004) based on the PANIC residuals, a panel
version of the modified Sargan—Bhargava test (denoted by PMSB) and a PANIC residual-based
Moon and Perron (2004) type test (denoted by Pb), both of which are proposed by Bai and
Ng (2010), the t∗b statistic of Moon and Perron (2004) for the case of an intercept only,

17 a
defactored version of the optimal invariant test of Ploberger and Phillips (2002), denoted by
PP, for the case of an intercept and a linear trend, and the defactored version of the common

16Setting mmax = 4, and using the information criterion IC1 proposed by Bai and Ng (2004), the number of
factors selected was m̂0 = 3 for the real interest rates, and m̂0 = 4 for the real equity prices. The last result
suggests that the number of factors in real equity prices could be even higher than 4, but we did not consider
mmax > 4 given the number of observations available and the tendency of IC1 selection criteria to over-estimate
the number of factors, particularly if some of the factors are not strong.
17The t∗a test of Moon and Perron (2004) is not included since they summarise the experimental results saying

“in almost all cases, the test based on the t∗b statistic has better size properties.” Similarly, the Pa test of Bai
and Ng (2010) is not included.
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point optimal test of Moon, Perron and Phillips (2011), denoted by C̃PO.18 19 20 Details of the

computation of the statistics Pê, Pb, t∗b , PMSB, PP , and C̃PO are provided in a supplement,
which is available from the authors on request.

The results are summarised in Table 6. For computation of the Pê statistic, the lag order
p̂ =

[
4(T/100)1/4

]
was used. Application of these tests to real interest rates yield mixed results.

The Pb, t∗b and C̃PO tests strongly reject the null hypothesis at the 1%, for all values of m0,
which is in accordance with the results of the CIPS and CSB tests. In contrast, the Pê test
does not reject the null hypothesis, irrespective of the number of factors considered. Results
for the PMSB test are mixed. It rejects the null at the 5% level for m0 = 1 and 4, but fails
to reject the null when m0 = 2 and 3, illustrating the sensitivity of this test to the assumed
number of factors. For real equity prices almost all the tests considered show strong rejections
of the null hypothesis for all values of m0, which conflicts with the generally accepted view that
real equity prices approximately follow random walks with a drift, the exceptions being the Pê,
the PP and C̃PO tests (the latter two only when m0 = 4), and the PMSB test only when
m0 = 1.

7 Concluding Remarks

This paper considers two simple panel unit root tests that are valid in the presence of cross-
sectional dependence induced by m0 stationary common factors. The first test, CIPS, is an
extension of the test proposed in Pesaran (2007) and is based on the average of t-ratios from
ADF regressions augmented by the cross section averages of the dependent variable as well as
k additional regressors with similar common factor features. The second test, CSB, is based
on averages of cross-sectionally augmented Sargan-Bhargava statistics. Initially we develop
the tests assuming that m0, the true number of factors is known, and show that the limit
distributions of the tests do not depend on any nuisance parameters, so long as k ≥ m0 − 1.
To deal with the uncertainty that surrounds the value of m0 in practice, we propose to either
choose the number of additional regressors as k = mmax − 1, where mmax ≤ m0, which avoids

18The Pê test is defined in Section 2.4 of Bai and Ng (2004, p.1140), the t∗b test in Section 2.2.2 of Moon
and Perron (2004, p.91), the Pb and PMSB tests in Section 3, p.1094, eq. (9) and Section 3.1, p.1095, eq.(11),
respectively of Bai and Ng (2010), the PP test in Section 5.3.1, p.429, eq. (20) in Moon et al. (2007), and

the C̃PO test in Section 2.2, p.4; Section 2.3, p.5, of Moon et al. (2011). In computing the C̃PO test statistic
we set the constant term (the ‘c’term in Moon et al.) to unity. Also, following Moon and Perron (2004), the

long-run variances for the PMSB, Pb, t∗b , PP and C̃PO test statistics are estimated by means of the Andrews
and Monahan (1992) method using the quadratic spectral kernel and prewhitening. See Moon and Perron (2004)
for further details.
19We are grateful to Roger Moon and Benoit Perron for helpful email correspondence with regard to the

implementation of the tests in Moon et al. (2007). We would also like to thank Serena Ng for generously
providing her matlab codes for computation of the test statistics proposed by Bai and Ng (2010).
20The theory of the CPO test is developed by Moon et al. (2007) for the serially uncorrleated case, but

it is claimed (see Section 6.4 in Moon et al. (2007, p. 436)), that replacing variances in their CPO statistic
with long-run variances should result in a test with a correct size under quite general short memory error
autocorrelations. However, our preliminary Monte Carlo experiments suggested that this claim might not be
valid. Upon communicating these results to the authors, Moon, Perron and Phillips provided us with another
modification of the CPO test that appropriately allows for residual serial correlation (see Moon, Perron and
Phillips, 2011). In addition to replacing the variance of the errors by the long run variance, in this recent paper
Moon et al. also adjust the centering of the statistic to accommodate for the second-order bias induced by the
correlation between the error and lagged values of the dependent variable. We only consider this modified CPO
test, denoted by C̃PO.
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having to estimate m0, or to estimate m0 consistently using suitable selection criteria.
Small sample properties of the proposed tests are investigated by Monte Carlo experiments,

which suggest that the proposed CIPS and CSB tests have the correct size across all combi-
nations of N and T considered. The power of the CSB and CIPS tests rises in N and T and
reaches quite acceptable levels when N and T are suffi ciently large. For smaller T, the CSB test
has higher power than that of CIPS, and should thus be preferred in such cases. In empirical
applications it is important that the tests being considered have the correct size, otherwise their
use could result in misleading conclusions.

The paper also applies the various panel unit root tests to real interest rates and real equity
prices across countries. All tests, except the Pê test of Bai and Ng (2004) and the PMSB test
of Bai and Ng (2010) reject the null of a unit root in real interest rates, which is in line with
panel cointegration tests of the Fisher parity equation. For real equity prices, only our proposed
tests, CIPS and CSB, and the Pê test do not reject the null of panel unit roots in real equity
prices across, which is in accordance with the generally accepted view that real equity prices
approximately follow random walks with a drift.

For our tests, following the discussions in Im et al. (2003), we propose to use critical values
which depend on the values of k, N , T , and lag-augmentation order, p, as they are expected to
provide much better finite sample approximations.

The good small sample results reported for the CIPS and CSB tests comes at a cost, as
the tests require the existence of additional I(1) regressors that share the same common factors
with yit. We have argued that this might not be a problem when m0, the true number of factors
in yit, is not too large. For example, if m0 ≤ 2, only one additional regressor is needed at
most to apply the test, and this is unlikely to be a problem in practice, where most macro and
finance series are often driven by a small number of common factors. For larger values of m0

a more careful consideration of the testing problem is required. In such cases it seems more
appropriate if the problem of panel unit root testing is considered as part of a more general
problem, where robustness of the panel unit root test outcomes to alternative assumptions
regarding the integration and cointegration properties of the additional regressors is considered
and evaluated.

Appendix A Mathematical Proofs

Lemmas
Lemma A.1 Under Assumptions 1-5

ε′iyĒ/T = Op
(
T−1/2N−1/2

)
, s′iy,−1Ē/T = Op

(
N−1/2

)
, uniformly over i

S̄′−1εiy/T = Op
(
N−1/2

)
, s′iy,−1S̄−1/T

2 = Op
(
N−1/2

)
, uniformly over i

Ē′Ē/T = Op
(
N−1) , S̄′−1Ē/T = Op

(
N−1) , S̄′−1S̄−1/T

2 = Op
(
N−1)

F′Ē/T = Op
(
T−1/2N−1/2

)
, S̄′−1F/T = Op

(
N−1/2

)
τ ′T Ē/T = Op

(
T−1/2N−1/2

)
, S̄′−1τT /T = Op (T/N)

S′f,−1Ē/T = Op
(
N−1/2

)
,

S′f,−1S̄−1

T 2
= Op

(
N−1/2

)
.

Similar order results hold for the case of serially correlated errors.

Proof. See Appendix A.1 of Pesaran (2007).
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Lemma A.2 Consider a full column rank m×n matrix A (m > n) and an n×n non-singular symmetric matrix
Ω. Then A′(AΩA′)+A = Ω−1, where (AΩA′)+ is the Moore-Penrose inverse of AΩA′.

Proof. Using the fact that A+A = In and A′A′+= In and that (AΩA′)+ = A′+Ω−1A+ (see Magnus and
Neudecker 1999, p.34), A′(AΩA′)+A = A′A′+Ω−1A+A = Ω−1, as required.

Proof of Theorem 2.1:
In the case where dt = 1, using (26) we have

ti(N,T ) =

υ′iM̄s̊i,−1
T(

υ′iM̄iυi
T−2k−4

)1/2
(
s̊′i,−1M̄s̊i,−1

T2

)1/2
, (A.1)

where υi = (εiy − Ēδi)/σi, and s̊i,−1 =
(
s′iy,−1 − S̄−1δi

)
/σi, M̄ = IT − W̄

(
W̄′W̄

)−1
W̄′, and W̄ =(

∆Z̄, τT , Z̄−1

)
. Also, since dt = 1, from (15) and (22) we have ∆Z̄ = FΓ̄

′
+ Ē and Z̄−1 = τT z̄′0 + Sf,−1Γ̄

′+ S̄−1.
Let Wf = (F, τT ,Sf,−1) and Ξ̄ =

(
Ē,0T , S̄−1

)
so that

W̄′ = QNW′
f + Ξ̄′, where QN

(2k+3)×(2m0+1)

=

 Γ̄ 0 0
0 1 0
0 z̄0 Γ̄

 . (A.2)

Consider the numerator of (A.1), and note that

υ′iM̄s̊i,−1

T
=
υ′i̊si,−1

T
−
(
υ′iW̄B

) (
BW̄

′
W̄B

)−1
(

BW̄
′
s̊i,−1

T

)
, (A.3)

where B
(2k+3)×(2k+3)

=

(
T−1/2Ik+2 0

0 T−1Ik+1

)
. Using Lemma A.1 together with the results in Proposition 17.1

of Hamilton (1994; p.486) we have

s̊′i,−1υi

T 3/2
=

s′iy,−1εiy

σ2
iT

3/2
+Op

(
1√
NT

)
(N,T )j
=⇒

∫ 1

0

Wi(r)dWi(r). (A.4)

where Wi(r) is a standard Brownian motion defined on [0,1], associated with εiyt. Using (A.2) it follows that

BW̄
′
υi = BQNW′

fυi + BΞ̄
′
υi, (A.5)

BW̄
′
s̊i,−1/T = BQNW′

f s̊i,−1/T + BΞ̄
′
s̊i,−1/T, (A.6)

BW̄
′
W̄B = BQNW′

fWfQ
′
NB + BQNW′

f Ξ̄B + BΞ̄
′
WfQ

′
NB + BΞ̄

′
Ξ̄B. (A.7)

From Lemma A.1, it is easily seen that, as (T,N)
j→∞ with

√
T/N → 0,

BΞ̄
′
υi

(N,T )j→ 0, BΞ̄
′
s̊i,−1/T

(N,T )j→ 0, BΞ̄
′
Ξ̄B

(N,T )j→ 0, and BQNW′
f Ξ̄B

(N,T )j→ 0. (A.8)

Define C
(2m0+1)×(2m0+1)

=

(
T−1/2Im0+1 0

0 T−1Im0

)
, so that, using Lemma A.1 and the results in Proposition

17.1 and 18.1 of Hamilton (1994; p.486, p.547-8), as (T,N)
j→∞ with

√
T/N → 0 we have

BQNW′
fυi = QNCW′

fυi
(N,T )j
=⇒ Qϑif , (A.9)

BQNW′
f s̊i,−1/T = QNCW′

f s̊i,−1/T
(N,T )j
=⇒ Qκif , (A.10)

BQNW′
fWfQ

′
NB = QNCW′

fWfCQ′N
(N,T )j
=⇒ QΥfQ

′, (A.11)

where

Q = plim
N→∞

QN , ϑif=

(
ΛfWv,i(1)

Λ∗fωiv

)
, κif =

(
0

Λ∗fπiv

)
, Υf =

(
Im0 0
0 Λ∗fGvΛ∗′f

)
, Λ∗f =

(
1 0
0 Λf

)
, (A.12)

ωiv =

 Wi(1)∫ 1

0

[Wv(r)] dWi(r)

 , πiv =


∫ 1

0

Wi(r)dr∫ 1

0

[Wv(r)]Wi(r)dr

 , Gv =

 1

∫ 1

0

[Wv(r)]′ dr∫ 1

0

[Wv(r)] dr

∫ 1

0

[Wv(r)] [Wv(r)]′ dr

 ,
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Λf is defined by (3), Wv,i(1) is defined such that T−1/2∑T
t=1 vtεiyt/σi

T
=⇒ Wv,i(1) with vt defined as in

Assumption 2, Wv(r) is an m0-dimensional standard Brownian motion associated with vt defined on [0,1], and
Wi(r) is defined as above. These two groups of Brownian motions (Wv(r),Wi(r)) are independent of each other.
Collecting the results from (A.5) to (A.11), as well as using Lemma A.2 (since Q has full column rank) we have(

υ′iW̄B
) (

BW̄
′
W̄B

)−1 (
T−1BW̄

′
s̊i,−1

)
(N,T )j
=⇒ ϑ′ifQ

′ (QΥfQ
′)+ Qκif (A.13)

= ϑ′ifΥ
−1
f κif = ω′ivΛ∗′f

(
Λ∗fGvΛ∗′f

)−1
Λ∗fπiv = ω′ivG−1

v πiv.

Therefore, together with (A.3), (A.4) and (A.13), as (T,N)
j→∞ with

√
T/N → 0 we have

υ′iM̄s̊i,−1

T

(N,T )j
=⇒

∫ 1

0

Wi(r)dWi(r)− ω′ivG−1
v πiv. (A.14)

In a similar manner, noting that as (T,N)
j→∞ with

√
T/N → 0

s̊′i,−1̊si,−1

T 2
=

s′iy,−1siy,−1

σ2
iT

2
+Op

(
1√
N

)
(N,T )j
=⇒

∫ 1

0

W 2
i (r)dr, (A.15)

it follows that
s̊′i,−1M̄s̊i,−1

T

(N,T )j
=⇒

∫ 1

0

W 2
i (r)dr − π′ivG−1

v πiv. (A.16)

Next, consider υ′iM̄iυi/(T − 2k − 4). Note that M̄iυi are the residuals from the regression of υi on W̄i =
(W̄,yi,−1), but from equation (23) yi,−1 has components (Z̄−1, τT , s̊i,−1). As (Z̄−1, τT ) ⊂ W̄, but s̊i,−1 is not

contained in W̄, we have M̄iυi = M̄∗
iυi, where M̄∗

i = IT−H̄i

(
H̄′iH̄i

)−1
H̄′i with H̄i = (W̄,̊si,−1). Thus

υ′iM̄
∗
iυi

T − 2k − 4
=

υ′iυi
T − 2k − 4

−
(
υ′iH̄iB∗

) (
B∗H̄

′
iH̄iB∗

)−1 (
B∗H̄

′
iυi
)

T − 2k − 4
, (A.17)

where B∗
(2k+4)×(2k+4)

=

(
B 0
0 T−1

)
. First note that using Lemma A.1 we have

υ′iυi/(T − 2k − 4)
(N,T )j→ 1. (A.18)

We also have that

B∗H̄
′
iυi =

(
BW̄

′
υi

s̊′i,−1υi/T

)
, B∗H̄

′
iH̄iB∗ =

(
BW̄

′
W̄B BW̄

′
s̊i,−1/T

s̊′i,−1W̄B/T s̊′i,−1̊si,−1/T
2

)
,

so then using (A.4), (A.15), and following the same line of analysis as for the results in (A.13), it can be seen
that

(
υ′iH̄iB∗

) (
B∗H̄

′
iH̄iB∗

)−1 (
B∗H̄

′
iυi
)
in (A.17) will tend to a function of standard Brownian motions as

(T,N)
j→ ∞ with

√
T/N → 0. Thus, dividing by T − 2k − 4 makes the second term of (A.17) asymptotically

negligible, and together with the results in (A.17) and (A.18) we have that υiM̄
∗
i υi

T−2k−4

(N,T )j→ 1. Thus, as (T,N)
j→∞

with
√
T/N → 0,

υ′iM̄iυi/(T − 2k − 4)
(N,T )j→ 1. (A.19)

Finally, from the results in (A.1), (A.14), (A.16) and (A.19), we have, as
√
T/N → 0,

ti(N,T )
(N,T )j
=⇒

∫ 1

0

Wi(r)dWi(r)− ω′ivG−1
v πiv(∫ 1

0

W 2
i (r)dr − π′ivG−1

v πiv

)1/2
, (A.20)

as required. Condition
√
T/N → 0 is satisfied so long as T/N → δ, as N and T → ∞, where δ is a fixed finite

non-zero positive constant. For sequential asymptotics, with N → ∞, first, we note that for a fixed T and as

N → ∞, Q = plimN→∞QN , and by Lemma A.1, (A.8) continues to hold (replacing ‘
(N,T )j→ ’by ‘N→’). Then,

letting T →∞ yields (A.20).
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Appendix B: Critical Value Tables for CIPS and CSB tests

Table B1: Critical Values of the Average of Individual Cross-Sectionally
Augmented Dickey-Fuller Distributions with k Additional Regressors in the Case

of Models with an Intercept Only
k = 1

1% (CADF ) 5% (CADF ) 10% (CADF )
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 -2.64 -2.56 -2.51 -2.45 -2.42 -2.39 -2.44 -2.38 -2.34 -2.30 -2.29 -2.26 -2.33 -2.28 -2.25 -2.22 -2.21 -2.19
30 -2.64 -2.55 -2.48 -2.46 -2.44 -2.40 -2.45 -2.39 -2.35 -2.33 -2.31 -2.29 -2.34 -2.30 -2.27 -2.25 -2.24 -2.22

0 50 -2.62 -2.56 -2.49 -2.46 -2.44 -2.42 -2.45 -2.40 -2.36 -2.34 -2.32 -2.30 -2.35 -2.32 -2.28 -2.27 -2.26 -2.25
70 -2.64 -2.55 -2.49 -2.46 -2.45 -2.43 -2.46 -2.40 -2.37 -2.35 -2.33 -2.32 -2.36 -2.32 -2.30 -2.28 -2.27 -2.26
100 -2.63 -2.56 -2.51 -2.47 -2.45 -2.43 -2.47 -2.41 -2.38 -2.35 -2.34 -2.32 -2.37 -2.33 -2.31 -2.28 -2.28 -2.26
200 -2.63 -2.56 -2.50 -2.48 -2.46 -2.43 -2.46 -2.42 -2.38 -2.36 -2.35 -2.33 -2.37 -2.34 -2.31 -2.29 -2.29 -2.27
20 -2.63 -2.54 -2.45 -2.41 -2.40 -2.35 -2.38 -2.32 -2.27 -2.23 -2.22 -2.19 -2.26 -2.20 -2.17 -2.14 -2.12 -2.10
30 -2.61 -2.52 -2.46 -2.43 -2.41 -2.36 -2.41 -2.34 -2.30 -2.28 -2.26 -2.24 -2.29 -2.24 -2.22 -2.19 -2.18 -2.17

1 50 -2.62 -2.55 -2.48 -2.44 -2.43 -2.40 -2.43 -2.37 -2.33 -2.31 -2.30 -2.28 -2.33 -2.29 -2.25 -2.24 -2.23 -2.21
70 -2.62 -2.54 -2.47 -2.45 -2.43 -2.41 -2.45 -2.39 -2.35 -2.33 -2.32 -2.29 -2.35 -2.30 -2.27 -2.26 -2.24 -2.23
100 -2.62 -2.54 -2.50 -2.46 -2.44 -2.41 -2.45 -2.40 -2.37 -2.34 -2.32 -2.31 -2.36 -2.32 -2.30 -2.27 -2.26 -2.24
200 -2.62 -2.55 -2.50 -2.47 -2.46 -2.43 -2.46 -2.41 -2.37 -2.36 -2.34 -2.32 -2.37 -2.33 -2.30 -2.28 -2.28 -2.26
20 -2.44 -2.34 -2.25 -2.21 -2.17 -2.12 -2.18 -2.11 -2.05 -2.01 -1.99 -1.96 -2.03 -1.98 -1.94 -1.91 -1.89 -1.88
30 -2.50 -2.41 -2.33 -2.30 -2.28 -2.24 -2.27 -2.21 -2.17 -2.14 -2.12 -2.10 -2.15 -2.11 -2.07 -2.05 -2.04 -2.03

2 50 -2.55 -2.49 -2.40 -2.37 -2.35 -2.32 -2.35 -2.31 -2.25 -2.24 -2.22 -2.20 -2.25 -2.22 -2.17 -2.16 -2.15 -2.13
70 -2.57 -2.49 -2.43 -2.41 -2.39 -2.36 -2.39 -2.34 -2.29 -2.27 -2.26 -2.24 -2.30 -2.25 -2.22 -2.20 -2.19 -2.18
100 -2.59 -2.51 -2.46 -2.42 -2.40 -2.38 -2.41 -2.37 -2.33 -2.30 -2.29 -2.27 -2.32 -2.28 -2.26 -2.23 -2.22 -2.20
200 -2.61 -2.54 -2.48 -2.46 -2.43 -2.40 -2.43 -2.39 -2.35 -2.34 -2.33 -2.30 -2.35 -2.31 -2.28 -2.26 -2.27 -2.24
20 -2.45 -2.32 -2.21 -2.13 -2.09 -2.02 -2.12 -2.05 -1.97 -1.90 -1.89 -1.85 -1.96 -1.90 -1.83 -1.80 -1.77 -1.74
30 -2.43 -2.34 -2.28 -2.24 -2.21 -2.18 -2.21 -2.13 -2.09 -2.07 -2.05 -2.03 -2.09 -2.02 -1.99 -1.97 -1.96 -1.94

3 50 -2.53 -2.45 -2.38 -2.36 -2.33 -2.30 -2.32 -2.27 -2.22 -2.20 -2.19 -2.17 -2.21 -2.18 -2.13 -2.12 -2.11 -2.09
70 -2.56 -2.47 -2.42 -2.39 -2.37 -2.35 -2.37 -2.31 -2.27 -2.25 -2.24 -2.22 -2.27 -2.23 -2.19 -2.18 -2.16 -2.15
100 -2.59 -2.50 -2.46 -2.42 -2.39 -2.37 -2.39 -2.35 -2.32 -2.29 -2.27 -2.25 -2.30 -2.26 -2.24 -2.21 -2.20 -2.19
200 -2.61 -2.54 -2.47 -2.45 -2.43 -2.40 -2.43 -2.39 -2.34 -2.33 -2.32 -2.30 -2.34 -2.31 -2.27 -2.26 -2.26 -2.24
20 - - - - - - - - - - - - - - - - - -
30 -2.29 -2.20 -2.12 -2.06 -2.05 -2.03 -2.05 -1.99 -1.94 -1.91 -1.89 -1.86 -1.93 -1.87 -1.84 -1.81 -1.79 -1.78

4 50 -2.44 -2.37 -2.30 -2.28 -2.23 -2.21 -2.24 -2.19 -2.14 -2.12 -2.11 -2.08 -2.13 -2.09 -2.05 -2.04 -2.02 -2.01
70 -2.52 -2.43 -2.37 -2.34 -2.32 -2.30 -2.32 -2.26 -2.22 -2.20 -2.19 -2.17 -2.22 -2.17 -2.14 -2.12 -2.11 -2.10
100 -2.54 -2.48 -2.42 -2.38 -2.35 -2.33 -2.36 -2.31 -2.28 -2.25 -2.23 -2.22 -2.26 -2.23 -2.20 -2.17 -2.17 -2.15
200 -2.60 -2.52 -2.46 -2.44 -2.42 -2.39 -2.41 -2.37 -2.33 -2.30 -2.30 -2.28 -2.32 -2.29 -2.26 -2.24 -2.24 -2.22

k = 2

1% (CADF ) 5% (CADF ) 10% (CADF )
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 -2.84 -2.78 -2.68 -2.65 -2.59 -2.57 -2.60 -2.56 -2.49 -2.48 -2.45 -2.43 -2.48 -2.45 -2.40 -2.39 -2.37 -2.35
30 -2.84 -2.76 -2.68 -2.65 -2.63 -2.59 -2.64 -2.58 -2.53 -2.51 -2.50 -2.47 -2.53 -2.49 -2.45 -2.43 -2.42 -2.40

0 50 -2.84 -2.77 -2.70 -2.67 -2.66 -2.62 -2.66 -2.61 -2.56 -2.55 -2.53 -2.51 -2.57 -2.52 -2.48 -2.48 -2.46 -2.45
70 -2.86 -2.78 -2.72 -2.68 -2.67 -2.64 -2.67 -2.62 -2.58 -2.56 -2.55 -2.53 -2.58 -2.54 -2.50 -2.49 -2.48 -2.47
100 -2.85 -2.79 -2.72 -2.69 -2.67 -2.64 -2.68 -2.64 -2.59 -2.57 -2.56 -2.54 -2.59 -2.56 -2.52 -2.50 -2.49 -2.48
200 -2.87 -2.80 -2.74 -2.70 -2.68 -2.66 -2.69 -2.65 -2.61 -2.58 -2.56 -2.55 -2.60 -2.57 -2.53 -2.52 -2.50 -2.49
20 -2.78 -2.68 -2.55 -2.53 -2.48 -2.46 -2.47 -2.40 -2.33 -2.32 -2.30 -2.27 -2.33 -2.27 -2.23 -2.21 -2.19 -2.17
30 -2.76 -2.69 -2.61 -2.57 -2.56 -2.51 -2.54 -2.49 -2.43 -2.41 -2.39 -2.36 -2.42 -2.38 -2.34 -2.32 -2.31 -2.29

1 50 -2.80 -2.74 -2.67 -2.64 -2.61 -2.58 -2.61 -2.56 -2.51 -2.50 -2.47 -2.45 -2.50 -2.47 -2.43 -2.42 -2.40 -2.38
70 -2.83 -2.75 -2.68 -2.65 -2.64 -2.60 -2.65 -2.59 -2.53 -2.52 -2.51 -2.49 -2.54 -2.49 -2.46 -2.44 -2.44 -2.42
100 -2.84 -2.78 -2.70 -2.67 -2.65 -2.62 -2.65 -2.61 -2.57 -2.54 -2.53 -2.51 -2.56 -2.52 -2.49 -2.47 -2.46 -2.45
200 -2.85 -2.80 -2.72 -2.69 -2.67 -2.65 -2.69 -2.64 -2.60 -2.57 -2.56 -2.54 -2.59 -2.56 -2.52 -2.50 -2.49 -2.48
20 -2.71 -2.51 -2.33 -2.27 -2.21 -2.16 -2.29 -2.17 -2.08 -2.03 -1.99 -1.95 -2.08 -2.01 -1.93 -1.90 -1.87 -1.84
30 -2.58 -2.50 -2.41 -2.36 -2.34 -2.30 -2.35 -2.30 -2.22 -2.20 -2.18 -2.15 -2.21 -2.17 -2.12 -2.10 -2.10 -2.07

2 50 -2.70 -2.63 -2.55 -2.53 -2.50 -2.47 -2.50 -2.45 -2.39 -2.39 -2.37 -2.34 -2.38 -2.35 -2.30 -2.30 -2.28 -2.26
70 -2.75 -2.68 -2.61 -2.58 -2.57 -2.53 -2.57 -2.51 -2.46 -2.44 -2.44 -2.41 -2.45 -2.42 -2.38 -2.37 -2.36 -2.34
100 -2.79 -2.72 -2.65 -2.62 -2.60 -2.57 -2.60 -2.56 -2.51 -2.49 -2.47 -2.46 -2.51 -2.46 -2.44 -2.42 -2.40 -2.39
200 -2.84 -2.77 -2.69 -2.66 -2.65 -2.62 -2.67 -2.62 -2.57 -2.54 -2.53 -2.51 -2.56 -2.53 -2.49 -2.48 -2.46 -2.45
20 - - - - - - - - - - - - - - - - - -
30 -2.47 -2.37 -2.27 -2.21 -2.19 -2.16 -2.20 -2.14 -2.07 -2.04 -2.02 -2.00 -2.07 -2.02 -1.96 -1.94 -1.93 -1.90

3 50 -2.64 -2.57 -2.49 -2.48 -2.44 -2.41 -2.43 -2.38 -2.32 -2.31 -2.29 -2.27 -2.31 -2.28 -2.23 -2.23 -2.21 -2.19
70 -2.72 -2.65 -2.56 -2.54 -2.53 -2.49 -2.51 -2.47 -2.42 -2.40 -2.39 -2.36 -2.41 -2.37 -2.33 -2.32 -2.31 -2.30
100 -2.77 -2.69 -2.63 -2.60 -2.58 -2.54 -2.58 -2.53 -2.49 -2.46 -2.45 -2.43 -2.48 -2.44 -2.41 -2.39 -2.37 -2.36
200 -2.82 -2.76 -2.68 -2.65 -2.63 -2.61 -2.65 -2.61 -2.55 -2.53 -2.52 -2.50 -2.55 -2.52 -2.48 -2.46 -2.44 -2.44
20 - - - - - - - - - - - - - - - - - -
30 -2.28 -2.15 -2.04 -2.01 -1.97 -1.89 -2.00 -1.90 -1.83 -1.81 -1.78 -1.72 -1.85 -1.77 -1.72 -1.70 -1.68 -1.64

4 50 -2.53 -2.45 -2.38 -2.35 -2.31 -2.28 -2.31 -2.25 -2.20 -2.19 -2.16 -2.14 -2.19 -2.15 -2.10 -2.10 -2.08 -2.06
70 -2.64 -2.59 -2.50 -2.48 -2.45 -2.41 -2.45 -2.38 -2.34 -2.32 -2.31 -2.29 -2.33 -2.29 -2.25 -2.24 -2.23 -2.21
100 -2.71 -2.65 -2.58 -2.55 -2.53 -2.49 -2.53 -2.47 -2.44 -2.41 -2.39 -2.37 -2.43 -2.38 -2.35 -2.33 -2.32 -2.30
200 -2.80 -2.74 -2.66 -2.63 -2.60 -2.58 -2.62 -2.58 -2.53 -2.51 -2.49 -2.47 -2.52 -2.49 -2.45 -2.43 -2.42 -2.41
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Table B1 Continued
k = 3

1% (CADF ) 5% (CADF ) 10% (CADF )
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 -2.99 -2.91 -2.82 -2.76 -2.75 -2.71 -2.73 -2.68 -2.63 -2.58 -2.57 -2.54 -2.60 -2.56 -2.52 -2.49 -2.48 -2.45
30 -3.00 -2.89 -2.85 -2.81 -2.78 -2.73 -2.79 -2.73 -2.69 -2.66 -2.64 -2.61 -2.68 -2.63 -2.60 -2.57 -2.56 -2.54

0 50 -3.01 -2.95 -2.88 -2.86 -2.82 -2.80 -2.83 -2.79 -2.74 -2.72 -2.70 -2.69 -2.73 -2.70 -2.65 -2.64 -2.63 -2.62
70 -3.04 -2.97 -2.89 -2.86 -2.84 -2.82 -2.86 -2.81 -2.77 -2.74 -2.72 -2.71 -2.76 -2.73 -2.69 -2.67 -2.66 -2.65
100 -3.05 -2.97 -2.92 -2.88 -2.86 -2.83 -2.87 -2.82 -2.78 -2.76 -2.74 -2.73 -2.78 -2.74 -2.71 -2.69 -2.68 -2.66
200 -3.07 -2.99 -2.92 -2.90 -2.87 -2.85 -2.89 -2.84 -2.80 -2.79 -2.76 -2.75 -2.80 -2.76 -2.72 -2.71 -2.70 -2.68
20 -2.91 -2.77 -2.66 -2.58 -2.52 -2.47 -2.55 -2.47 -2.39 -2.34 -2.30 -2.26 -2.37 -2.30 -2.25 -2.20 -2.19 -2.15
30 -2.86 -2.77 -2.69 -2.67 -2.62 -2.59 -2.63 -2.56 -2.52 -2.49 -2.46 -2.42 -2.50 -2.45 -2.41 -2.39 -2.38 -2.35

1 50 -2.94 -2.88 -2.80 -2.78 -2.74 -2.72 -2.75 -2.69 -2.65 -2.62 -2.61 -2.59 -2.65 -2.60 -2.56 -2.54 -2.53 -2.52
70 -2.99 -2.90 -2.85 -2.82 -2.79 -2.77 -2.80 -2.75 -2.70 -2.67 -2.67 -2.65 -2.70 -2.66 -2.62 -2.60 -2.59 -2.58
100 -3.01 -2.93 -2.87 -2.84 -2.83 -2.80 -2.83 -2.78 -2.74 -2.72 -2.70 -2.68 -2.73 -2.70 -2.66 -2.64 -2.63 -2.61
200 -3.05 -2.96 -2.90 -2.89 -2.86 -2.82 -2.87 -2.82 -2.77 -2.76 -2.74 -2.72 -2.78 -2.74 -2.70 -2.69 -2.68 -2.66
20 - - - - - - - - - - - - - - - - - -
30 -2.59 -2.47 -2.39 -2.35 -2.31 -2.27 -2.34 -2.27 -2.20 -2.17 -2.15 -2.11 -2.20 -2.15 -2.10 -2.07 -2.05 -2.02

2 50 -2.81 -2.74 -2.65 -2.63 -2.58 -2.58 -2.60 -2.55 -2.50 -2.46 -2.45 -2.44 -2.48 -2.45 -2.40 -2.38 -2.37 -2.35
70 -2.90 -2.81 -2.76 -2.72 -2.69 -2.67 -2.70 -2.65 -2.60 -2.57 -2.57 -2.54 -2.59 -2.55 -2.52 -2.49 -2.49 -2.47
100 -2.96 -2.88 -2.81 -2.78 -2.75 -2.72 -2.76 -2.71 -2.67 -2.64 -2.63 -2.61 -2.67 -2.62 -2.59 -2.57 -2.55 -2.54
200 -3.01 -2.94 -2.87 -2.85 -2.83 -2.79 -2.84 -2.79 -2.74 -2.73 -2.71 -2.69 -2.75 -2.70 -2.66 -2.66 -2.65 -2.63
20 - - - - - - - - - - - - - - - - - -
30 -2.51 -2.35 -2.19 -2.14 -2.09 -2.02 -2.15 -2.04 -1.96 -1.92 -1.89 -1.84 -1.98 -1.91 -1.85 -1.81 -1.78 -1.75

3 50 -2.72 -2.62 -2.54 -2.52 -2.48 -2.46 -2.49 -2.43 -2.37 -2.34 -2.34 -2.31 -2.37 -2.33 -2.28 -2.26 -2.25 -2.23
70 -2.82 -2.77 -2.71 -2.66 -2.63 -2.60 -2.63 -2.57 -2.53 -2.50 -2.49 -2.47 -2.51 -2.48 -2.44 -2.41 -2.41 -2.39
100 -2.92 -2.83 -2.76 -2.73 -2.71 -2.68 -2.72 -2.67 -2.62 -2.59 -2.58 -2.56 -2.62 -2.58 -2.54 -2.52 -2.51 -2.49
200 -3.00 -2.94 -2.85 -2.84 -2.82 -2.78 -2.82 -2.77 -2.72 -2.71 -2.69 -2.67 -2.72 -2.68 -2.64 -2.64 -2.62 -2.61
20 - - - - - - - - - - - - - - - - - -
30 - - - - - - - - - - - - - - - - - -

4 50 -2.52 -2.44 -2.36 -2.33 -2.30 -2.28 -2.32 -2.24 -2.19 -2.16 -2.14 -2.12 -2.19 -2.13 -2.09 -2.07 -2.06 -2.03
70 -2.73 -2.65 -2.58 -2.55 -2.52 -2.50 -2.53 -2.46 -2.41 -2.39 -2.37 -2.35 -2.40 -2.36 -2.32 -2.29 -2.29 -2.27
100 -2.84 -2.78 -2.71 -2.67 -2.65 -2.61 -2.65 -2.60 -2.54 -2.52 -2.51 -2.48 -2.54 -2.50 -2.46 -2.44 -2.43 -2.41
200 -2.98 -2.90 -2.82 -2.81 -2.78 -2.74 -2.78 -2.73 -2.68 -2.68 -2.66 -2.63 -2.69 -2.64 -2.61 -2.60 -2.59 -2.57

Notes: The critical values are obtained by stochastic simulation. The data generating process is yit = yi,t−1 + εiyt, where
εiyt ∼ iidN(0, 1), with yi,−p = 0, and the jth element of the k × 1 vector of additional regressors, xit, is generated as
xijt = xij,t−1 + εixjt, where εixjt ∼ iidN(0, 1), and xij,−p = 0, i = 1, 2, ..., N ; j = 1, 2, ..., k; t = −p, ..., T . Critical values
for the case where k = 0 are provided in Pesaran (2007). The CADFi statistic is computed as the t-ratio of the coeffi cient on
yi,t−1 of the regression of ∆yit on yi,t−1, w′it,p = (z̄′t−1; ∆z̄′t,∆z̄′t−1, ...,∆z̄′t−p; ∆y′t−1, ...,∆y

′
t−p), including an intercept,

with z̄t = N−1
∑N
i=1(yit,x

′
it)
′, and the average of the individual CADFi is computed as CADF = N−1

∑N
i=1 CADFi.

(100 × α)% critical values are obtained as the α quantiles of CADF for α = 0.01, 0.05, 0.1. Computations are based on
10,000 replications. Where values are not reported, this is due to insuffi cient degrees of freedom.
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Table B2: Critical Values of the Average of Individual Cross-Sectionally
Augmented Dickey-Fuller Distributions with k Additional Regressors in the Case

of Models with an Intercept and a Linear Trend
k = 1

1% (CADF ) 5% (CADF ) 10% (CADF )
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 -3.12 -3.02 -2.94 -2.91 -2.86 -2.82 -2.90 -2.85 -2.78 -2.75 -2.73 -2.70 -2.78 -2.74 -2.70 -2.67 -2.65 -2.63
30 -3.07 -2.99 -2.92 -2.89 -2.86 -2.82 -2.89 -2.84 -2.78 -2.76 -2.74 -2.72 -2.79 -2.75 -2.71 -2.69 -2.68 -2.66

0 50 -3.06 -2.99 -2.93 -2.88 -2.88 -2.83 -2.89 -2.85 -2.81 -2.77 -2.76 -2.73 -2.80 -2.77 -2.74 -2.71 -2.70 -2.68
70 -3.07 -3.00 -2.93 -2.89 -2.86 -2.83 -2.91 -2.85 -2.81 -2.79 -2.77 -2.74 -2.82 -2.77 -2.75 -2.72 -2.71 -2.69
100 -3.06 -3.00 -2.92 -2.90 -2.88 -2.83 -2.91 -2.86 -2.81 -2.79 -2.77 -2.75 -2.83 -2.79 -2.75 -2.73 -2.71 -2.70
200 -3.06 -2.99 -2.94 -2.91 -2.88 -2.84 -2.91 -2.86 -2.82 -2.79 -2.78 -2.75 -2.83 -2.79 -2.75 -2.74 -2.72 -2.70
20 -3.09 -2.99 -2.90 -2.88 -2.85 -2.81 -2.83 -2.76 -2.72 -2.67 -2.65 -2.63 -2.69 -2.64 -2.60 -2.57 -2.56 -2.53
30 -3.06 -2.96 -2.89 -2.88 -2.83 -2.80 -2.85 -2.79 -2.74 -2.71 -2.70 -2.67 -2.73 -2.69 -2.65 -2.63 -2.62 -2.60

1 50 -3.06 -2.96 -2.90 -2.87 -2.86 -2.82 -2.87 -2.82 -2.78 -2.74 -2.73 -2.71 -2.77 -2.73 -2.70 -2.67 -2.67 -2.65
70 -3.05 -2.99 -2.90 -2.88 -2.84 -2.82 -2.89 -2.83 -2.78 -2.76 -2.75 -2.73 -2.80 -2.75 -2.72 -2.70 -2.69 -2.67
100 -3.06 -2.99 -2.91 -2.89 -2.87 -2.82 -2.90 -2.85 -2.80 -2.77 -2.76 -2.73 -2.81 -2.77 -2.73 -2.71 -2.70 -2.68
200 -3.06 -2.99 -2.93 -2.90 -2.87 -2.83 -2.90 -2.86 -2.81 -2.78 -2.77 -2.75 -2.82 -2.78 -2.75 -2.73 -2.71 -2.70
20 -2.88 -2.74 -2.64 -2.60 -2.56 -2.52 -2.57 -2.49 -2.42 -2.38 -2.37 -2.34 -2.42 -2.36 -2.31 -2.27 -2.26 -2.24
30 -2.93 -2.81 -2.75 -2.72 -2.68 -2.64 -2.68 -2.62 -2.57 -2.55 -2.53 -2.50 -2.57 -2.51 -2.47 -2.46 -2.45 -2.43

2 50 -2.96 -2.89 -2.83 -2.79 -2.78 -2.74 -2.78 -2.73 -2.70 -2.66 -2.65 -2.62 -2.68 -2.64 -2.61 -2.58 -2.57 -2.55
70 -3.00 -2.94 -2.84 -2.83 -2.80 -2.77 -2.83 -2.77 -2.72 -2.71 -2.69 -2.67 -2.73 -2.69 -2.66 -2.64 -2.62 -2.61
100 -3.03 -2.96 -2.88 -2.85 -2.83 -2.79 -2.85 -2.81 -2.76 -2.74 -2.71 -2.70 -2.76 -2.72 -2.69 -2.67 -2.65 -2.64
200 -3.03 -2.97 -2.91 -2.88 -2.85 -2.81 -2.88 -2.83 -2.79 -2.77 -2.75 -2.72 -2.79 -2.76 -2.73 -2.71 -2.70 -2.68
20 -2.96 -2.80 -2.65 -2.58 -2.50 -2.42 -2.57 -2.45 -2.36 -2.31 -2.27 -2.22 -2.37 -2.29 -2.21 -2.18 -2.15 -2.11
30 -2.84 -2.76 -2.66 -2.63 -2.62 -2.56 -2.60 -2.52 -2.48 -2.46 -2.43 -2.41 -2.48 -2.41 -2.38 -2.37 -2.34 -2.33

3 50 -2.94 -2.86 -2.81 -2.75 -2.74 -2.71 -2.73 -2.70 -2.65 -2.61 -2.61 -2.58 -2.63 -2.60 -2.57 -2.54 -2.53 -2.51
70 -2.98 -2.94 -2.83 -2.81 -2.78 -2.76 -2.81 -2.74 -2.71 -2.68 -2.66 -2.64 -2.71 -2.66 -2.63 -2.61 -2.60 -2.58
100 -3.00 -2.94 -2.86 -2.84 -2.82 -2.78 -2.84 -2.79 -2.74 -2.72 -2.70 -2.68 -2.74 -2.71 -2.67 -2.65 -2.64 -2.62
200 -3.03 -2.96 -2.90 -2.87 -2.85 -2.81 -2.88 -2.82 -2.78 -2.76 -2.75 -2.72 -2.78 -2.75 -2.72 -2.70 -2.69 -2.67
20 - - - - - - - - - - - - - - - - - -
30 -2.68 -2.56 -2.47 -2.43 -2.40 -2.35 -2.41 -2.34 -2.29 -2.26 -2.24 -2.20 -2.28 -2.23 -2.18 -2.16 -2.14 -2.12

4 50 -2.83 -2.76 -2.70 -2.67 -2.65 -2.62 -2.66 -2.59 -2.56 -2.52 -2.51 -2.48 -2.54 -2.50 -2.46 -2.44 -2.43 -2.40
70 -2.93 -2.86 -2.77 -2.75 -2.72 -2.70 -2.75 -2.68 -2.64 -2.62 -2.60 -2.58 -2.65 -2.59 -2.56 -2.55 -2.53 -2.52
100 -2.96 -2.91 -2.83 -2.81 -2.78 -2.74 -2.79 -2.75 -2.70 -2.68 -2.66 -2.64 -2.70 -2.66 -2.62 -2.61 -2.59 -2.58
200 -3.02 -2.94 -2.88 -2.85 -2.83 -2.79 -2.86 -2.81 -2.76 -2.74 -2.73 -2.70 -2.77 -2.73 -2.70 -2.68 -2.67 -2.65

k = 2

1% (CADF ) 5% (CADF ) 10% (CADF )
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 -3.26 -3.15 -3.09 -3.04 -3.00 -2.97 -3.01 -2.95 -2.89 -2.86 -2.84 -2.82 -2.89 -2.84 -2.79 -2.77 -2.75 -2.73
30 -3.25 -3.15 -3.07 -3.03 -3.02 -2.97 -3.04 -2.98 -2.93 -2.90 -2.88 -2.86 -2.93 -2.89 -2.84 -2.82 -2.81 -2.79

0 50 -3.23 -3.16 -3.09 -3.06 -3.03 -3.01 -3.05 -3.01 -2.96 -2.94 -2.92 -2.90 -2.97 -2.93 -2.89 -2.87 -2.86 -2.84
70 -3.25 -3.17 -3.10 -3.06 -3.04 -3.01 -3.08 -3.03 -2.98 -2.95 -2.93 -2.92 -2.99 -2.94 -2.91 -2.89 -2.88 -2.86
100 -3.25 -3.17 -3.11 -3.08 -3.06 -3.02 -3.09 -3.04 -2.99 -2.96 -2.95 -2.93 -3.00 -2.96 -2.92 -2.90 -2.89 -2.88
200 -3.25 -3.18 -3.12 -3.08 -3.06 -3.03 -3.09 -3.04 -3.00 -2.97 -2.96 -2.94 -3.01 -2.97 -2.94 -2.91 -2.91 -2.89
20 -3.18 -3.06 -2.97 -2.89 -2.87 -2.84 -2.88 -2.78 -2.71 -2.68 -2.66 -2.64 -2.71 -2.64 -2.58 -2.57 -2.55 -2.52
30 -3.16 -3.08 -3.00 -2.95 -2.93 -2.89 -2.92 -2.87 -2.82 -2.78 -2.77 -2.75 -2.81 -2.76 -2.72 -2.69 -2.68 -2.67

1 50 -3.21 -3.11 -3.04 -3.01 -2.99 -2.96 -3.00 -2.95 -2.90 -2.87 -2.86 -2.84 -2.90 -2.86 -2.82 -2.80 -2.79 -2.77
70 -3.21 -3.14 -3.07 -3.03 -3.01 -2.98 -3.06 -2.99 -2.94 -2.91 -2.89 -2.87 -2.95 -2.90 -2.86 -2.84 -2.83 -2.82
100 -3.24 -3.15 -3.09 -3.05 -3.03 -3.00 -3.06 -3.01 -2.96 -2.93 -2.92 -2.90 -2.96 -2.93 -2.89 -2.87 -2.86 -2.85
200 -3.25 -3.17 -3.12 -3.08 -3.05 -3.02 -3.09 -3.03 -2.99 -2.96 -2.95 -2.93 -3.00 -2.95 -2.92 -2.90 -2.89 -2.87
20 -3.43 -3.17 -2.92 -2.82 -2.75 -2.61 -2.77 -2.64 -2.51 -2.45 -2.41 -2.34 -2.52 -2.42 -2.33 -2.28 -2.25 -2.21
30 -2.92 -2.86 -2.76 -2.71 -2.69 -2.64 -2.68 -2.63 -2.55 -2.53 -2.51 -2.49 -2.56 -2.51 -2.46 -2.43 -2.42 -2.40

2 50 -3.09 -3.00 -2.93 -2.90 -2.87 -2.84 -2.88 -2.82 -2.77 -2.75 -2.73 -2.71 -2.77 -2.72 -2.68 -2.67 -2.65 -2.64
70 -3.14 -3.06 -3.00 -2.95 -2.93 -2.90 -2.96 -2.90 -2.85 -2.82 -2.81 -2.79 -2.85 -2.81 -2.77 -2.75 -2.74 -2.72
100 -3.18 -3.10 -3.04 -3.00 -2.98 -2.95 -3.01 -2.95 -2.90 -2.88 -2.86 -2.84 -2.91 -2.87 -2.83 -2.81 -2.80 -2.78
200 -3.23 -3.14 -3.08 -3.04 -3.02 -2.99 -3.05 -3.00 -2.96 -2.93 -2.92 -2.90 -2.96 -2.93 -2.89 -2.87 -2.86 -2.85
20 - - - - - - - - - - - - - - - - - -
30 -2.81 -2.70 -2.59 -2.54 -2.50 -2.48 -2.53 -2.45 -2.37 -2.34 -2.31 -2.30 -2.38 -2.32 -2.26 -2.24 -2.21 -2.20

3 50 -3.00 -2.92 -2.85 -2.83 -2.80 -2.76 -2.80 -2.74 -2.69 -2.66 -2.64 -2.63 -2.68 -2.64 -2.59 -2.57 -2.56 -2.55
70 -3.09 -3.03 -2.95 -2.91 -2.88 -2.86 -2.91 -2.85 -2.80 -2.77 -2.76 -2.74 -2.81 -2.75 -2.71 -2.70 -2.68 -2.67
100 -3.16 -3.07 -3.02 -2.97 -2.96 -2.93 -2.97 -2.92 -2.87 -2.84 -2.83 -2.81 -2.87 -2.83 -2.80 -2.78 -2.76 -2.75
200 -3.21 -3.14 -3.07 -3.03 -3.01 -2.99 -3.04 -2.99 -2.95 -2.92 -2.90 -2.89 -2.95 -2.91 -2.88 -2.85 -2.85 -2.83
20 - - - - - - - - - - - - - - - - - -
30 -2.63 -2.47 -2.34 -2.28 -2.21 -2.18 -2.31 -2.18 -2.10 -2.06 -2.02 -1.98 -2.13 -2.04 -1.98 -1.94 -1.92 -1.89

4 50 -2.86 -2.79 -2.71 -2.69 -2.66 -2.61 -2.65 -2.59 -2.54 -2.52 -2.49 -2.47 -2.54 -2.49 -2.45 -2.42 -2.41 -2.39
70 -2.99 -2.93 -2.87 -2.83 -2.79 -2.77 -2.81 -2.75 -2.70 -2.67 -2.66 -2.64 -2.71 -2.66 -2.62 -2.60 -2.58 -2.57
100 -3.10 -3.02 -2.95 -2.92 -2.91 -2.87 -2.91 -2.85 -2.81 -2.79 -2.77 -2.75 -2.80 -2.76 -2.73 -2.71 -2.70 -2.68
200 -3.19 -3.11 -3.05 -3.01 -2.98 -2.96 -3.01 -2.96 -2.92 -2.89 -2.88 -2.86 -2.92 -2.88 -2.85 -2.83 -2.81 -2.80
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Table B2 Continued
k = 3

1% (CADF ) 5% (CADF ) 10% (CADF )
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 -3.39 -3.29 -3.19 -3.13 -3.09 -3.08 -3.10 -3.03 -2.97 -2.94 -2.92 -2.90 -2.96 -2.90 -2.87 -2.84 -2.82 -2.80
30 -3.38 -3.26 -3.20 -3.16 -3.14 -3.10 -3.16 -3.09 -3.04 -3.01 -3.00 -2.96 -3.05 -2.99 -2.95 -2.93 -2.91 -2.89

0 50 -3.39 -3.31 -3.25 -3.20 -3.18 -3.15 -3.20 -3.15 -3.11 -3.07 -3.06 -3.04 -3.11 -3.07 -3.03 -3.01 -2.99 -2.98
70 -3.41 -3.32 -3.25 -3.24 -3.19 -3.17 -3.23 -3.17 -3.13 -3.10 -3.09 -3.07 -3.13 -3.09 -3.06 -3.04 -3.02 -3.01
100 -3.41 -3.33 -3.28 -3.24 -3.22 -3.18 -3.25 -3.20 -3.15 -3.12 -3.10 -3.09 -3.16 -3.12 -3.08 -3.06 -3.04 -3.03
200 -3.43 -3.34 -3.30 -3.26 -3.23 -3.20 -3.27 -3.21 -3.17 -3.14 -3.13 -3.11 -3.18 -3.13 -3.10 -3.09 -3.07 -3.05
20 -3.43 -3.26 -3.05 -2.99 -2.93 -2.86 -2.97 -2.85 -2.74 -2.68 -2.65 -2.61 -2.74 -2.66 -2.59 -2.53 -2.51 -2.48
30 -3.23 -3.13 -3.03 -3.00 -2.97 -2.93 -2.97 -2.90 -2.84 -2.81 -2.79 -2.77 -2.83 -2.79 -2.74 -2.72 -2.70 -2.68

1 50 -3.31 -3.22 -3.17 -3.12 -3.09 -3.07 -3.11 -3.05 -3.00 -2.98 -2.96 -2.94 -3.00 -2.96 -2.92 -2.90 -2.89 -2.87
70 -3.34 -3.26 -3.21 -3.18 -3.14 -3.11 -3.16 -3.11 -3.06 -3.03 -3.02 -3.00 -3.06 -3.02 -2.99 -2.96 -2.95 -2.94
100 -3.37 -3.29 -3.23 -3.20 -3.18 -3.15 -3.20 -3.15 -3.10 -3.08 -3.05 -3.04 -3.11 -3.07 -3.03 -3.01 -2.99 -2.98
200 -3.42 -3.34 -3.27 -3.24 -3.22 -3.19 -3.25 -3.19 -3.15 -3.13 -3.10 -3.08 -3.16 -3.11 -3.08 -3.06 -3.05 -3.03
20 - - - - - - - - - - - - - - - - - -
30 -2.92 -2.77 -2.67 -2.62 -2.60 -2.55 -2.62 -2.54 -2.45 -2.43 -2.41 -2.38 -2.47 -2.41 -2.34 -2.32 -2.31 -2.29

2 50 -3.17 -3.06 -2.99 -2.96 -2.92 -2.90 -2.94 -2.87 -2.83 -2.80 -2.78 -2.76 -2.82 -2.78 -2.73 -2.71 -2.70 -2.68
70 -3.24 -3.16 -3.09 -3.07 -3.03 -3.00 -3.04 -2.99 -2.94 -2.91 -2.90 -2.88 -2.95 -2.90 -2.86 -2.84 -2.83 -2.81
100 -3.30 -3.23 -3.16 -3.13 -3.10 -3.07 -3.12 -3.07 -3.02 -3.00 -2.97 -2.96 -3.02 -2.99 -2.95 -2.93 -2.91 -2.90
200 -3.37 -3.29 -3.24 -3.20 -3.18 -3.15 -3.21 -3.15 -3.11 -3.09 -3.07 -3.05 -3.12 -3.07 -3.04 -3.03 -3.01 -2.99
20 - - - - - - - - - - - - - - - - - -
30 -2.85 -2.75 -2.53 -2.45 -2.36 -2.31 -2.46 -2.36 -2.22 -2.18 -2.14 -2.10 -2.27 -2.17 -2.09 -2.05 -2.02 -1.99

3 50 -3.04 -2.94 -2.86 -2.83 -2.79 -2.76 -2.81 -2.74 -2.68 -2.66 -2.64 -2.61 -2.69 -2.63 -2.59 -2.57 -2.55 -2.53
70 -3.16 -3.11 -3.02 -2.99 -2.95 -2.93 -2.96 -2.91 -2.86 -2.84 -2.81 -2.79 -2.85 -2.81 -2.78 -2.75 -2.74 -2.72
100 -3.26 -3.19 -3.12 -3.09 -3.06 -3.03 -3.08 -3.02 -2.97 -2.95 -2.93 -2.91 -2.97 -2.93 -2.89 -2.87 -2.86 -2.85
200 -3.34 -3.28 -3.22 -3.19 -3.16 -3.13 -3.18 -3.13 -3.09 -3.06 -3.05 -3.03 -3.09 -3.05 -3.02 -3.00 -2.98 -2.97
20 - - - - - - - - - - - - - - - - - -
30 - - - - - - - - - - - - - - - - - -

4 50 -2.83 -2.72 -2.66 -2.62 -2.58 -2.54 -2.59 -2.53 -2.47 -2.44 -2.42 -2.38 -2.47 -2.42 -2.37 -2.35 -2.33 -2.30
70 -3.06 -2.97 -2.89 -2.85 -2.82 -2.80 -2.84 -2.78 -2.73 -2.70 -2.68 -2.66 -2.73 -2.67 -2.64 -2.61 -2.60 -2.58
100 -3.18 -3.11 -3.05 -3.00 -2.99 -2.95 -2.98 -2.94 -2.89 -2.86 -2.84 -2.83 -2.88 -2.85 -2.81 -2.78 -2.77 -2.76
200 -3.32 -3.24 -3.18 -3.15 -3.12 -3.10 -3.15 -3.09 -3.05 -3.03 -3.01 -2.99 -3.05 -3.01 -2.98 -2.96 -2.94 -2.93

Notes: The critical values are obtained by stochastic simulation. The data generating process is yit = yi,t−1 + εiyt, where
εiyt ∼ iidN(0, 1), with yi,−p = 0, and the jth element of the k × 1 vector of additional regressors, xit, is generated as
xijt = xij,t−1 + εixjt, where εixjt ∼ iidN(0, 1) and xij,−p = 0, i = 1, 2, ..., N ; j = 1, 2, ..., k; t = −p, ..., T . The relevant
critical values for the case where k = 0 is provided in Pesaran (2007). The CADFi statistic is computed as the t-ratio of
the coeffi cient on yi,t−1 of the regression of ∆yit on yi,t−1, w′it,p = (z̄′t−1; ∆z̄′t,∆z̄′t−1, ...,∆z̄′t−p; ∆y′i.t−1, ...,∆y

′
i.t−p),

including an intercept and a linear trend, with z̄t = N−1
∑N
i=1(yit,x

′
it)
′, and the average of the individual statistics

is computed as CADF = N−1
∑N
i=1 CADFi. (100 × α)% critical values are obtained as the α quantiles of CADF for

α = 0.01, 0.05, 0.1. Computations are based on 10,000 replications. Where values are not reported, this is due to insuffi cient
degrees of freedom.
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Table B3: Critical Values of the Average of Individual Cross-Sectionally
Augmented Sargan-Barghava Distributions with k Additional Regressors in the

Case of Models with an Intercept Only
k = 0

1% (CSB) 5% (CSB) 10% (CSB)
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 0.259 0.292 0.330 0.347 0.360 0.377 0.315 0.343 0.373 0.389 0.401 0.420 0.348 0.374 0.398 0.412 0.423 0.440
30 0.260 0.298 0.335 0.355 0.372 0.398 0.315 0.344 0.377 0.393 0.408 0.429 0.348 0.373 0.401 0.414 0.427 0.445

0 50 0.259 0.295 0.334 0.358 0.378 0.409 0.313 0.343 0.376 0.394 0.410 0.434 0.345 0.372 0.400 0.415 0.428 0.448
70 0.257 0.293 0.333 0.358 0.377 0.411 0.311 0.344 0.376 0.395 0.410 0.434 0.343 0.372 0.400 0.416 0.429 0.448
100 0.257 0.293 0.335 0.358 0.377 0.412 0.311 0.343 0.375 0.395 0.410 0.435 0.344 0.371 0.400 0.415 0.428 0.448
200 0.257 0.293 0.333 0.356 0.378 0.411 0.310 0.342 0.375 0.394 0.410 0.435 0.343 0.371 0.399 0.415 0.428 0.449
20 0.220 0.238 0.258 0.266 0.271 0.274 0.268 0.287 0.305 0.315 0.321 0.330 0.296 0.314 0.331 0.340 0.346 0.355
30 0.236 0.264 0.291 0.303 0.312 0.323 0.284 0.308 0.332 0.344 0.354 0.368 0.313 0.334 0.355 0.365 0.375 0.387

1 50 0.247 0.279 0.312 0.330 0.346 0.368 0.295 0.323 0.351 0.366 0.379 0.398 0.325 0.349 0.373 0.385 0.397 0.413
70 0.248 0.282 0.319 0.340 0.358 0.385 0.299 0.328 0.358 0.375 0.389 0.410 0.330 0.355 0.381 0.395 0.406 0.424
100 0.251 0.285 0.325 0.346 0.365 0.395 0.302 0.332 0.363 0.381 0.395 0.418 0.334 0.360 0.387 0.401 0.413 0.431
200 0.253 0.290 0.328 0.352 0.372 0.404 0.306 0.337 0.369 0.387 0.403 0.427 0.337 0.365 0.393 0.408 0.420 0.440
20 0.186 0.197 0.205 0.208 0.210 0.211 0.235 0.248 0.257 0.263 0.265 0.269 0.264 0.276 0.287 0.294 0.297 0.302
30 0.219 0.239 0.255 0.262 0.266 0.272 0.266 0.285 0.303 0.312 0.318 0.325 0.294 0.312 0.328 0.337 0.344 0.352

2 50 0.241 0.268 0.296 0.309 0.320 0.334 0.288 0.311 0.337 0.349 0.361 0.375 0.317 0.337 0.359 0.370 0.380 0.393
70 0.245 0.276 0.311 0.328 0.344 0.363 0.294 0.322 0.349 0.364 0.377 0.395 0.325 0.349 0.371 0.384 0.395 0.410
100 0.249 0.283 0.321 0.340 0.356 0.383 0.300 0.329 0.358 0.375 0.388 0.409 0.331 0.355 0.380 0.394 0.405 0.422
200 0.252 0.289 0.328 0.349 0.368 0.399 0.304 0.336 0.367 0.384 0.399 0.423 0.336 0.363 0.390 0.404 0.417 0.436
20 0.146 0.151 0.155 0.158 0.158 0.160 0.190 0.198 0.203 0.208 0.207 0.210 0.217 0.226 0.233 0.237 0.238 0.241
30 0.191 0.203 0.214 0.218 0.220 0.224 0.235 0.250 0.264 0.268 0.273 0.277 0.261 0.276 0.289 0.296 0.300 0.305

3 50 0.225 0.246 0.270 0.279 0.288 0.293 0.270 0.291 0.311 0.322 0.330 0.341 0.297 0.315 0.333 0.342 0.351 0.362
70 0.237 0.263 0.292 0.307 0.319 0.332 0.283 0.306 0.332 0.344 0.355 0.369 0.311 0.331 0.352 0.364 0.373 0.386
100 0.243 0.274 0.309 0.327 0.340 0.362 0.292 0.318 0.346 0.360 0.373 0.391 0.322 0.343 0.367 0.380 0.390 0.405
200 0.250 0.286 0.322 0.344 0.362 0.391 0.301 0.330 0.361 0.378 0.392 0.415 0.332 0.357 0.383 0.398 0.409 0.428
20 0.114 0.117 0.119 0.121 0.121 0.122 0.153 0.157 0.160 0.163 0.162 0.164 0.178 0.183 0.189 0.191 0.191 0.194
30 0.167 0.173 0.180 0.184 0.185 0.187 0.212 0.222 0.232 0.236 0.237 0.240 0.238 0.249 0.260 0.264 0.267 0.271

4 50 0.214 0.232 0.250 0.255 0.261 0.264 0.259 0.276 0.293 0.302 0.308 0.316 0.285 0.301 0.318 0.325 0.332 0.341
70 0.230 0.254 0.279 0.290 0.300 0.310 0.276 0.298 0.321 0.331 0.341 0.352 0.303 0.322 0.342 0.352 0.361 0.372
100 0.241 0.269 0.300 0.318 0.329 0.346 0.288 0.313 0.340 0.352 0.363 0.380 0.316 0.337 0.360 0.372 0.381 0.396
200 0.249 0.283 0.319 0.340 0.358 0.385 0.299 0.328 0.358 0.374 0.389 0.410 0.330 0.355 0.381 0.394 0.405 0.423

k = 1

1% (CSB) 5% (CSB) 10% (CSB)
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 0.241 0.270 0.300 0.311 0.323 0.335 0.294 0.319 0.345 0.358 0.368 0.382 0.326 0.349 0.372 0.382 0.392 0.406
30 0.248 0.284 0.319 0.338 0.353 0.373 0.303 0.329 0.361 0.376 0.388 0.407 0.334 0.358 0.385 0.397 0.409 0.424

0 50 0.251 0.288 0.327 0.348 0.367 0.395 0.305 0.336 0.368 0.384 0.400 0.422 0.338 0.365 0.391 0.405 0.418 0.437
70 0.253 0.288 0.328 0.352 0.370 0.403 0.307 0.339 0.371 0.389 0.403 0.427 0.338 0.368 0.394 0.409 0.421 0.441
100 0.254 0.290 0.329 0.353 0.374 0.406 0.307 0.340 0.371 0.389 0.405 0.430 0.340 0.368 0.395 0.411 0.424 0.443
200 0.254 0.291 0.332 0.354 0.376 0.410 0.307 0.340 0.373 0.392 0.408 0.433 0.339 0.369 0.397 0.413 0.426 0.446
20 0.182 0.195 0.205 0.208 0.214 0.217 0.225 0.239 0.252 0.257 0.261 0.267 0.253 0.266 0.278 0.284 0.288 0.293
30 0.211 0.236 0.255 0.265 0.273 0.277 0.257 0.279 0.298 0.307 0.315 0.324 0.284 0.303 0.321 0.330 0.337 0.346

1 50 0.233 0.264 0.293 0.310 0.322 0.338 0.281 0.307 0.331 0.346 0.357 0.373 0.310 0.332 0.354 0.366 0.376 0.390
70 0.240 0.273 0.308 0.325 0.341 0.365 0.289 0.318 0.346 0.361 0.374 0.393 0.320 0.345 0.368 0.381 0.392 0.408
100 0.245 0.279 0.315 0.337 0.356 0.383 0.296 0.325 0.354 0.372 0.386 0.408 0.327 0.352 0.377 0.391 0.403 0.421
200 0.249 0.286 0.324 0.346 0.367 0.399 0.301 0.333 0.366 0.383 0.398 0.422 0.333 0.362 0.389 0.404 0.416 0.436
20 0.130 0.135 0.139 0.140 0.143 0.144 0.170 0.176 0.180 0.182 0.185 0.187 0.194 0.201 0.207 0.210 0.211 0.214
30 0.180 0.192 0.203 0.209 0.211 0.213 0.223 0.237 0.248 0.254 0.258 0.262 0.249 0.263 0.275 0.280 0.284 0.289

2 50 0.219 0.242 0.265 0.276 0.283 0.291 0.265 0.285 0.306 0.315 0.324 0.334 0.292 0.311 0.329 0.338 0.345 0.355
70 0.230 0.260 0.291 0.305 0.316 0.332 0.279 0.305 0.329 0.342 0.353 0.366 0.308 0.330 0.351 0.362 0.371 0.384
100 0.239 0.273 0.305 0.324 0.341 0.363 0.290 0.316 0.343 0.360 0.372 0.391 0.319 0.343 0.366 0.379 0.389 0.406
200 0.248 0.282 0.322 0.343 0.361 0.392 0.298 0.330 0.361 0.378 0.392 0.416 0.329 0.357 0.384 0.398 0.410 0.429
20 0.085 0.087 0.088 0.089 0.091 0.090 0.112 0.116 0.118 0.118 0.119 0.121 0.132 0.136 0.139 0.140 0.141 0.142
30 0.141 0.148 0.154 0.157 0.159 0.161 0.180 0.188 0.197 0.200 0.202 0.203 0.204 0.213 0.222 0.225 0.227 0.229

3 50 0.196 0.212 0.229 0.236 0.241 0.244 0.238 0.254 0.271 0.278 0.283 0.290 0.264 0.278 0.293 0.300 0.306 0.313
70 0.215 0.240 0.264 0.275 0.285 0.293 0.261 0.282 0.304 0.314 0.322 0.332 0.289 0.307 0.325 0.335 0.342 0.352
100 0.231 0.260 0.289 0.306 0.317 0.335 0.278 0.302 0.327 0.340 0.351 0.367 0.305 0.327 0.348 0.360 0.369 0.383
200 0.243 0.278 0.313 0.335 0.351 0.380 0.293 0.323 0.352 0.368 0.382 0.404 0.323 0.349 0.375 0.389 0.400 0.417
20 0.048 0.050 0.051 0.051 0.051 0.052 0.066 0.068 0.068 0.069 0.069 0.070 0.079 0.081 0.082 0.083 0.084 0.084
30 0.109 0.113 0.118 0.119 0.119 0.121 0.142 0.147 0.153 0.155 0.156 0.157 0.165 0.170 0.176 0.179 0.180 0.181

4 50 0.176 0.187 0.199 0.204 0.207 0.208 0.217 0.230 0.241 0.247 0.250 0.255 0.242 0.254 0.266 0.270 0.275 0.280
70 0.203 0.224 0.243 0.250 0.257 0.262 0.248 0.266 0.284 0.291 0.298 0.305 0.274 0.290 0.306 0.314 0.320 0.327
100 0.224 0.250 0.275 0.290 0.301 0.312 0.269 0.292 0.315 0.327 0.335 0.349 0.296 0.316 0.336 0.346 0.354 0.366
200 0.242 0.274 0.310 0.329 0.344 0.370 0.289 0.319 0.347 0.363 0.375 0.396 0.319 0.345 0.369 0.383 0.393 0.410
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Table B3 Continued
k = 2

1% (CSB) 5% (CSB) 10% (CSB)
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 0.224 0.250 0.272 0.281 0.291 0.300 0.275 0.298 0.319 0.329 0.336 0.347 0.304 0.326 0.345 0.354 0.362 0.372
30 0.235 0.270 0.303 0.320 0.332 0.350 0.289 0.316 0.344 0.358 0.370 0.386 0.320 0.344 0.367 0.380 0.390 0.404

0 50 0.247 0.281 0.319 0.339 0.357 0.383 0.299 0.328 0.359 0.376 0.390 0.411 0.329 0.356 0.382 0.396 0.408 0.425
70 0.249 0.284 0.322 0.344 0.363 0.394 0.301 0.332 0.364 0.381 0.396 0.419 0.334 0.360 0.387 0.403 0.414 0.433
100 0.251 0.286 0.328 0.350 0.370 0.401 0.304 0.335 0.368 0.385 0.402 0.426 0.336 0.363 0.391 0.406 0.420 0.439
200 0.250 0.289 0.330 0.352 0.374 0.407 0.306 0.338 0.372 0.389 0.406 0.431 0.338 0.367 0.395 0.411 0.424 0.444
20 0.147 0.157 0.164 0.166 0.168 0.171 0.186 0.197 0.205 0.208 0.212 0.214 0.211 0.221 0.230 0.234 0.237 0.240
30 0.189 0.207 0.223 0.232 0.237 0.243 0.232 0.249 0.265 0.273 0.279 0.286 0.258 0.274 0.289 0.296 0.301 0.308

1 50 0.221 0.249 0.277 0.290 0.301 0.313 0.266 0.292 0.314 0.326 0.335 0.349 0.294 0.317 0.336 0.347 0.355 0.367
70 0.233 0.262 0.295 0.313 0.326 0.346 0.280 0.305 0.333 0.348 0.359 0.377 0.309 0.331 0.355 0.368 0.377 0.392
100 0.240 0.272 0.309 0.329 0.346 0.372 0.289 0.318 0.348 0.363 0.377 0.397 0.320 0.344 0.369 0.382 0.394 0.411
200 0.244 0.282 0.322 0.343 0.362 0.394 0.298 0.330 0.362 0.378 0.394 0.418 0.330 0.357 0.384 0.399 0.411 0.431
20 0.086 0.088 0.091 0.092 0.093 0.093 0.114 0.118 0.120 0.121 0.123 0.123 0.133 0.137 0.140 0.142 0.143 0.144
30 0.144 0.152 0.160 0.164 0.168 0.170 0.183 0.191 0.201 0.205 0.207 0.209 0.207 0.216 0.226 0.229 0.232 0.234

2 50 0.198 0.217 0.237 0.246 0.250 0.259 0.241 0.259 0.277 0.284 0.291 0.299 0.267 0.284 0.299 0.307 0.313 0.320
70 0.216 0.243 0.270 0.283 0.292 0.306 0.263 0.286 0.308 0.320 0.329 0.341 0.291 0.311 0.330 0.341 0.349 0.360
100 0.231 0.261 0.293 0.311 0.326 0.344 0.279 0.304 0.331 0.345 0.357 0.374 0.308 0.330 0.353 0.365 0.375 0.389
200 0.243 0.279 0.316 0.337 0.354 0.384 0.294 0.324 0.355 0.371 0.385 0.408 0.324 0.351 0.377 0.391 0.403 0.421
20 0.038 0.039 0.040 0.041 0.040 0.041 0.052 0.054 0.054 0.055 0.055 0.055 0.063 0.064 0.065 0.066 0.066 0.067
30 0.101 0.105 0.109 0.111 0.112 0.113 0.131 0.136 0.141 0.142 0.144 0.145 0.151 0.156 0.162 0.163 0.165 0.166

3 50 0.168 0.182 0.195 0.200 0.201 0.205 0.207 0.221 0.232 0.238 0.243 0.247 0.231 0.244 0.255 0.261 0.265 0.269
70 0.198 0.218 0.238 0.248 0.253 0.263 0.240 0.259 0.276 0.286 0.292 0.300 0.266 0.282 0.298 0.306 0.312 0.320
100 0.219 0.245 0.273 0.286 0.297 0.310 0.263 0.285 0.309 0.321 0.331 0.344 0.290 0.311 0.330 0.340 0.349 0.361
200 0.238 0.273 0.307 0.326 0.342 0.368 0.286 0.316 0.345 0.359 0.373 0.393 0.316 0.342 0.366 0.379 0.390 0.407
20 0.005 0.005 0.006 0.006 0.006 0.006 0.008 0.008 0.008 0.008 0.008 0.008 0.010 0.010 0.010 0.010 0.010 0.010
30 0.065 0.068 0.069 0.070 0.070 0.071 0.087 0.089 0.092 0.093 0.093 0.093 0.102 0.105 0.108 0.109 0.109 0.110

4 50 0.142 0.151 0.158 0.161 0.163 0.165 0.178 0.187 0.195 0.199 0.202 0.204 0.200 0.210 0.218 0.221 0.225 0.227
70 0.179 0.195 0.211 0.216 0.221 0.227 0.220 0.235 0.249 0.256 0.260 0.266 0.245 0.258 0.272 0.278 0.282 0.288
100 0.208 0.229 0.253 0.263 0.273 0.282 0.250 0.270 0.292 0.301 0.309 0.319 0.276 0.295 0.313 0.321 0.328 0.338
200 0.234 0.267 0.299 0.317 0.332 0.355 0.281 0.309 0.337 0.351 0.363 0.382 0.311 0.335 0.358 0.371 0.381 0.396

k = 3

1% (CSB) 5% (CSB) 10% (CSB)
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 0.205 0.228 0.245 0.253 0.260 0.268 0.254 0.274 0.292 0.301 0.307 0.316 0.284 0.301 0.318 0.326 0.331 0.341
30 0.227 0.257 0.286 0.301 0.313 0.327 0.277 0.302 0.328 0.340 0.350 0.365 0.307 0.329 0.351 0.362 0.371 0.384

0 50 0.241 0.275 0.310 0.330 0.347 0.371 0.292 0.320 0.350 0.365 0.380 0.399 0.323 0.348 0.374 0.386 0.398 0.415
70 0.246 0.280 0.317 0.341 0.356 0.386 0.297 0.329 0.358 0.375 0.389 0.412 0.328 0.355 0.382 0.395 0.407 0.426
100 0.249 0.283 0.322 0.346 0.365 0.396 0.299 0.332 0.364 0.381 0.397 0.420 0.332 0.360 0.386 0.402 0.415 0.433
200 0.250 0.288 0.330 0.350 0.371 0.405 0.303 0.337 0.369 0.388 0.404 0.428 0.336 0.366 0.394 0.408 0.421 0.442
20 0.116 0.121 0.128 0.129 0.131 0.131 0.150 0.156 0.163 0.165 0.165 0.168 0.172 0.178 0.184 0.187 0.188 0.191
30 0.169 0.183 0.195 0.201 0.206 0.209 0.207 0.222 0.234 0.241 0.246 0.250 0.232 0.245 0.257 0.264 0.268 0.272

1 50 0.209 0.233 0.259 0.271 0.279 0.291 0.253 0.274 0.296 0.307 0.315 0.326 0.280 0.298 0.318 0.327 0.334 0.345
70 0.222 0.254 0.283 0.300 0.311 0.330 0.270 0.296 0.321 0.334 0.344 0.361 0.299 0.321 0.343 0.353 0.363 0.377
100 0.234 0.264 0.299 0.320 0.336 0.359 0.282 0.309 0.339 0.354 0.367 0.386 0.312 0.335 0.360 0.374 0.384 0.400
200 0.243 0.280 0.317 0.340 0.359 0.390 0.295 0.326 0.358 0.375 0.389 0.413 0.326 0.355 0.380 0.395 0.407 0.426
20 0.049 0.050 0.052 0.052 0.052 0.052 0.066 0.068 0.070 0.070 0.070 0.071 0.079 0.081 0.083 0.083 0.083 0.084
30 0.113 0.119 0.127 0.127 0.131 0.132 0.146 0.153 0.159 0.162 0.163 0.165 0.167 0.174 0.180 0.182 0.184 0.186

2 50 0.178 0.195 0.211 0.218 0.223 0.228 0.218 0.233 0.248 0.255 0.260 0.266 0.243 0.257 0.271 0.277 0.281 0.288
70 0.205 0.229 0.251 0.262 0.269 0.281 0.248 0.269 0.289 0.298 0.306 0.317 0.276 0.293 0.310 0.318 0.326 0.336
100 0.223 0.249 0.280 0.297 0.309 0.326 0.268 0.292 0.317 0.331 0.342 0.357 0.296 0.317 0.339 0.350 0.360 0.373
200 0.239 0.273 0.310 0.332 0.347 0.375 0.289 0.319 0.348 0.365 0.378 0.400 0.319 0.346 0.370 0.385 0.396 0.413
20 0.005 0.005 0.005 0.005 0.005 0.005 0.007 0.007 0.008 0.008 0.008 0.008 0.009 0.010 0.010 0.010 0.010 0.010
30 0.067 0.069 0.072 0.071 0.074 0.074 0.088 0.091 0.093 0.094 0.095 0.096 0.102 0.106 0.109 0.110 0.110 0.111

3 50 0.144 0.153 0.162 0.168 0.170 0.172 0.178 0.189 0.198 0.202 0.205 0.209 0.200 0.210 0.219 0.222 0.226 0.229
70 0.180 0.198 0.213 0.222 0.224 0.232 0.220 0.236 0.251 0.257 0.263 0.269 0.244 0.258 0.272 0.278 0.284 0.290
100 0.206 0.230 0.254 0.267 0.276 0.288 0.249 0.270 0.291 0.301 0.310 0.321 0.275 0.294 0.312 0.321 0.329 0.339
200 0.232 0.264 0.298 0.318 0.332 0.357 0.280 0.309 0.336 0.351 0.364 0.383 0.308 0.334 0.358 0.370 0.380 0.397
20 - - - - - - - - - - - - - - - - - -
30 0.030 0.031 0.031 0.032 0.032 0.032 0.041 0.042 0.043 0.043 0.044 0.044 0.049 0.050 0.051 0.051 0.052 0.052

4 50 0.111 0.118 0.122 0.126 0.127 0.128 0.141 0.149 0.154 0.157 0.158 0.160 0.161 0.168 0.174 0.176 0.178 0.180
70 0.156 0.170 0.181 0.186 0.188 0.192 0.193 0.206 0.217 0.222 0.225 0.230 0.216 0.228 0.238 0.243 0.247 0.251
100 0.192 0.211 0.232 0.240 0.248 0.256 0.233 0.250 0.268 0.277 0.284 0.290 0.257 0.274 0.289 0.297 0.303 0.310
200 0.226 0.257 0.289 0.306 0.319 0.341 0.271 0.300 0.325 0.340 0.351 0.368 0.301 0.324 0.347 0.359 0.368 0.383

Notes: The critical values are obtained by stochastic simulation. The data generating process is yit = yi,t−1 + εiyt, where
εiyt ∼ iidN(0, 1), with yi,−p = 0, and the jth element of the k × 1 vector of additional regressors, xit, is generated as
xijt = xij,t−1 + εixjt, where εixjt ∼ iidN(0, 1), and xij,−p = 0, i = 1, 2, ..., N ; j = 1, 2, ..., k; t = −p, ..., T . The CSBi
test statistic is computed as CSBi = T−2

∑T
t=1 ûit/σ̂

2
i , with ûit =

∑t
j=1 ε̂ij and σ̂

2
i =

∑T
t=1 ε̂

2
it/ [T − p− (p+ 1)(k + 1)] ,

where ε̂it are the estimated residuals from the regression of ∆yit on w′it,p = (∆yi,t−1, ...,∆yi,t−p; ∆z̄′t,∆z̄′t−1, ...,∆z̄′t−p),

with z̄t = N−1
∑N
i=1(yit,x

′
it)
′. The average of the individual CSBi is computed as CSB = N−1

∑N
i=1 CSBi. (100×α)%

critical values are obtained as the α quantiles of CSB for α = 0.01, 0.05, 0.1. Computations are based on 50,000 replications.
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Where values are not reported, this is due to insuffi cient degrees of freedom.
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Table B4: Critical Values of the Average of Individual Cross-Sectionally
Augmented Sargan-Barghava Distributions with k Additional Regressors in the

Case of Models with an Intercept and a Linear Trend
k = 0

1% (CSB) 5% (CSB) 10% (CSB)
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 0.100 0.108 0.116 0.121 0.124 0.128 0.113 0.120 0.127 0.131 0.134 0.138 0.121 0.128 0.134 0.137 0.139 0.143
30 0.101 0.110 0.120 0.125 0.129 0.136 0.115 0.123 0.131 0.134 0.138 0.144 0.123 0.130 0.136 0.140 0.143 0.147

0 50 0.101 0.111 0.121 0.127 0.132 0.140 0.116 0.124 0.132 0.137 0.141 0.147 0.124 0.131 0.138 0.142 0.145 0.150
70 0.102 0.111 0.122 0.127 0.133 0.142 0.116 0.124 0.133 0.137 0.142 0.148 0.125 0.132 0.139 0.142 0.146 0.151
100 0.102 0.112 0.123 0.128 0.134 0.142 0.116 0.125 0.133 0.138 0.142 0.148 0.125 0.132 0.140 0.144 0.147 0.152
200 0.101 0.112 0.123 0.129 0.134 0.143 0.117 0.125 0.134 0.138 0.143 0.149 0.125 0.133 0.140 0.144 0.147 0.153
20 0.091 0.096 0.100 0.101 0.102 0.104 0.104 0.109 0.113 0.115 0.116 0.118 0.111 0.116 0.120 0.122 0.123 0.125
30 0.098 0.105 0.112 0.114 0.116 0.120 0.110 0.116 0.122 0.125 0.128 0.131 0.118 0.123 0.128 0.131 0.133 0.136

1 50 0.100 0.109 0.118 0.122 0.127 0.132 0.114 0.121 0.128 0.132 0.135 0.140 0.122 0.128 0.134 0.137 0.140 0.144
70 0.101 0.110 0.120 0.125 0.130 0.137 0.115 0.122 0.130 0.134 0.138 0.143 0.123 0.129 0.136 0.139 0.142 0.147
100 0.101 0.111 0.121 0.127 0.131 0.139 0.115 0.124 0.132 0.136 0.140 0.146 0.124 0.131 0.137 0.141 0.144 0.149
200 0.101 0.112 0.122 0.128 0.133 0.142 0.116 0.124 0.133 0.138 0.141 0.148 0.125 0.132 0.139 0.143 0.146 0.151
20 0.081 0.084 0.085 0.085 0.086 0.087 0.094 0.097 0.099 0.100 0.100 0.102 0.102 0.105 0.108 0.109 0.109 0.110
30 0.094 0.099 0.103 0.105 0.106 0.108 0.107 0.112 0.117 0.118 0.120 0.121 0.115 0.119 0.123 0.125 0.127 0.129

2 50 0.101 0.109 0.116 0.119 0.123 0.125 0.114 0.120 0.127 0.130 0.133 0.136 0.122 0.127 0.133 0.136 0.138 0.141
70 0.102 0.110 0.120 0.124 0.128 0.133 0.116 0.123 0.130 0.134 0.137 0.142 0.124 0.130 0.136 0.139 0.142 0.146
100 0.102 0.111 0.122 0.127 0.131 0.138 0.116 0.124 0.132 0.136 0.140 0.145 0.125 0.131 0.138 0.141 0.144 0.149
200 0.102 0.112 0.122 0.129 0.134 0.142 0.117 0.125 0.133 0.138 0.142 0.148 0.126 0.132 0.139 0.143 0.146 0.151
20 0.066 0.067 0.068 0.069 0.069 0.070 0.077 0.079 0.081 0.081 0.081 0.082 0.085 0.087 0.088 0.089 0.089 0.090
30 0.085 0.088 0.091 0.092 0.093 0.093 0.098 0.102 0.105 0.106 0.107 0.107 0.105 0.109 0.112 0.114 0.115 0.116

3 50 0.097 0.104 0.110 0.112 0.114 0.116 0.110 0.116 0.121 0.124 0.126 0.128 0.117 0.123 0.127 0.130 0.132 0.134
70 0.101 0.108 0.116 0.119 0.123 0.126 0.113 0.120 0.127 0.129 0.132 0.136 0.121 0.127 0.132 0.135 0.138 0.141
100 0.102 0.110 0.119 0.125 0.128 0.134 0.115 0.122 0.129 0.134 0.137 0.142 0.123 0.129 0.135 0.139 0.141 0.145
200 0.102 0.112 0.122 0.128 0.132 0.140 0.117 0.124 0.132 0.137 0.141 0.146 0.125 0.132 0.138 0.142 0.145 0.150
20 0.052 0.052 0.053 0.053 0.054 0.054 0.061 0.062 0.063 0.063 0.063 0.063 0.067 0.069 0.070 0.070 0.070 0.070
30 0.076 0.078 0.080 0.081 0.081 0.081 0.089 0.091 0.094 0.094 0.095 0.095 0.097 0.099 0.102 0.103 0.104 0.104

4 50 0.094 0.100 0.104 0.106 0.107 0.108 0.107 0.113 0.117 0.119 0.120 0.122 0.115 0.120 0.124 0.126 0.127 0.129
70 0.100 0.106 0.114 0.116 0.118 0.121 0.112 0.119 0.125 0.127 0.130 0.133 0.120 0.125 0.131 0.133 0.135 0.138
100 0.102 0.110 0.119 0.123 0.126 0.131 0.115 0.122 0.129 0.133 0.136 0.140 0.123 0.129 0.135 0.138 0.141 0.144
200 0.103 0.112 0.122 0.128 0.133 0.140 0.117 0.125 0.133 0.137 0.141 0.146 0.125 0.132 0.139 0.142 0.145 0.150

k = 1

1% (CSB) 5% (CSB) 10% (CSB)
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 0.092 0.100 0.107 0.110 0.112 0.115 0.106 0.112 0.118 0.121 0.124 0.127 0.114 0.119 0.125 0.127 0.129 0.132
30 0.097 0.105 0.114 0.119 0.123 0.128 0.111 0.118 0.125 0.128 0.132 0.136 0.119 0.125 0.131 0.134 0.137 0.141

0 50 0.099 0.108 0.119 0.124 0.129 0.136 0.113 0.121 0.129 0.133 0.137 0.143 0.121 0.128 0.135 0.139 0.142 0.146
70 0.100 0.109 0.120 0.126 0.131 0.139 0.114 0.122 0.131 0.135 0.139 0.145 0.123 0.130 0.137 0.141 0.144 0.149
100 0.100 0.110 0.121 0.127 0.132 0.141 0.115 0.123 0.132 0.136 0.141 0.147 0.124 0.131 0.138 0.142 0.145 0.150
200 0.101 0.111 0.122 0.128 0.134 0.142 0.116 0.124 0.133 0.138 0.142 0.149 0.125 0.132 0.139 0.143 0.147 0.152
20 0.076 0.079 0.081 0.082 0.083 0.084 0.087 0.090 0.093 0.094 0.095 0.096 0.094 0.097 0.100 0.101 0.102 0.103
30 0.088 0.094 0.099 0.101 0.102 0.105 0.100 0.105 0.110 0.112 0.114 0.116 0.107 0.112 0.116 0.118 0.120 0.122

1 50 0.095 0.103 0.111 0.115 0.118 0.123 0.108 0.115 0.121 0.125 0.128 0.132 0.116 0.121 0.127 0.130 0.132 0.136
70 0.098 0.106 0.116 0.120 0.124 0.131 0.111 0.118 0.126 0.130 0.133 0.138 0.119 0.125 0.132 0.135 0.138 0.141
100 0.099 0.108 0.118 0.124 0.128 0.135 0.113 0.121 0.128 0.133 0.136 0.142 0.121 0.128 0.134 0.138 0.141 0.146
200 0.100 0.110 0.121 0.126 0.132 0.140 0.115 0.123 0.132 0.136 0.140 0.146 0.124 0.130 0.138 0.141 0.145 0.150
20 0.056 0.057 0.059 0.059 0.060 0.060 0.066 0.068 0.069 0.070 0.070 0.071 0.073 0.074 0.076 0.076 0.077 0.077
30 0.078 0.081 0.083 0.084 0.085 0.086 0.089 0.093 0.096 0.097 0.098 0.099 0.096 0.100 0.102 0.104 0.105 0.106

2 50 0.092 0.099 0.104 0.106 0.108 0.111 0.104 0.110 0.115 0.118 0.120 0.122 0.112 0.117 0.121 0.124 0.126 0.128
70 0.096 0.104 0.112 0.116 0.119 0.123 0.109 0.115 0.123 0.125 0.129 0.132 0.117 0.122 0.128 0.131 0.134 0.137
100 0.099 0.108 0.117 0.122 0.126 0.132 0.112 0.119 0.127 0.131 0.134 0.139 0.120 0.127 0.133 0.136 0.139 0.143
200 0.101 0.110 0.121 0.126 0.131 0.139 0.115 0.123 0.131 0.136 0.139 0.145 0.124 0.130 0.137 0.141 0.144 0.149
20 0.036 0.037 0.038 0.038 0.038 0.038 0.043 0.044 0.045 0.045 0.045 0.045 0.048 0.049 0.050 0.050 0.050 0.050
30 0.063 0.065 0.067 0.067 0.068 0.068 0.074 0.076 0.078 0.078 0.079 0.079 0.080 0.083 0.084 0.085 0.086 0.086

3 50 0.085 0.089 0.094 0.095 0.096 0.098 0.097 0.101 0.105 0.107 0.108 0.110 0.104 0.108 0.112 0.113 0.114 0.116
70 0.092 0.099 0.105 0.108 0.110 0.113 0.104 0.110 0.116 0.118 0.121 0.123 0.112 0.117 0.122 0.124 0.126 0.129
100 0.097 0.104 0.113 0.116 0.120 0.124 0.110 0.116 0.123 0.126 0.129 0.133 0.117 0.123 0.128 0.131 0.134 0.137
200 0.100 0.109 0.119 0.124 0.129 0.136 0.114 0.122 0.130 0.134 0.137 0.143 0.122 0.128 0.135 0.139 0.142 0.146
20 0.019 0.019 0.020 0.020 0.020 0.020 0.023 0.023 0.024 0.024 0.024 0.024 0.026 0.026 0.027 0.027 0.027 0.027
30 0.049 0.050 0.052 0.052 0.052 0.053 0.059 0.060 0.061 0.061 0.062 0.062 0.065 0.066 0.067 0.068 0.068 0.068

4 50 0.078 0.081 0.085 0.085 0.086 0.087 0.090 0.093 0.096 0.097 0.098 0.099 0.097 0.100 0.103 0.104 0.105 0.106
70 0.088 0.094 0.099 0.101 0.103 0.105 0.101 0.106 0.110 0.112 0.114 0.116 0.108 0.113 0.117 0.119 0.120 0.122
100 0.095 0.102 0.109 0.112 0.116 0.119 0.108 0.114 0.120 0.123 0.126 0.129 0.115 0.121 0.126 0.128 0.131 0.134
200 0.100 0.109 0.118 0.123 0.128 0.134 0.113 0.121 0.129 0.133 0.136 0.141 0.122 0.128 0.135 0.138 0.141 0.145

30



Table B4 Continued
k = 2

1% (CSB) 5% (CSB) 10% (CSB)
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 0.086 0.092 0.097 0.100 0.102 0.104 0.098 0.104 0.109 0.112 0.113 0.116 0.106 0.111 0.116 0.118 0.120 0.122
30 0.093 0.101 0.109 0.113 0.116 0.120 0.106 0.113 0.119 0.123 0.125 0.130 0.114 0.119 0.125 0.128 0.131 0.134

0 50 0.096 0.106 0.116 0.121 0.126 0.132 0.110 0.119 0.126 0.130 0.134 0.139 0.119 0.126 0.132 0.136 0.139 0.143
70 0.098 0.108 0.118 0.123 0.129 0.137 0.112 0.120 0.129 0.133 0.137 0.143 0.121 0.127 0.135 0.138 0.142 0.146
100 0.100 0.109 0.120 0.126 0.131 0.139 0.114 0.122 0.130 0.135 0.139 0.145 0.122 0.130 0.136 0.140 0.144 0.148
200 0.100 0.111 0.122 0.128 0.133 0.141 0.115 0.124 0.133 0.137 0.141 0.148 0.124 0.132 0.139 0.142 0.146 0.151
20 0.062 0.063 0.065 0.066 0.066 0.067 0.071 0.074 0.076 0.076 0.077 0.078 0.078 0.080 0.082 0.083 0.083 0.084
30 0.079 0.083 0.087 0.089 0.090 0.092 0.090 0.094 0.098 0.099 0.101 0.103 0.097 0.100 0.104 0.106 0.107 0.109

1 50 0.090 0.097 0.105 0.108 0.111 0.115 0.102 0.109 0.115 0.118 0.120 0.124 0.110 0.115 0.121 0.123 0.125 0.128
70 0.095 0.102 0.112 0.116 0.120 0.125 0.107 0.114 0.121 0.125 0.128 0.132 0.115 0.121 0.127 0.130 0.132 0.136
100 0.097 0.106 0.115 0.121 0.125 0.131 0.110 0.118 0.126 0.130 0.133 0.138 0.118 0.125 0.131 0.135 0.138 0.142
200 0.100 0.110 0.120 0.125 0.131 0.138 0.114 0.122 0.131 0.135 0.139 0.145 0.122 0.129 0.136 0.140 0.143 0.148
20 0.036 0.036 0.037 0.038 0.038 0.038 0.043 0.044 0.045 0.045 0.045 0.045 0.048 0.049 0.049 0.050 0.050 0.050
30 0.063 0.065 0.067 0.068 0.068 0.069 0.073 0.075 0.077 0.078 0.078 0.079 0.079 0.082 0.084 0.084 0.085 0.086

2 50 0.083 0.089 0.094 0.096 0.097 0.099 0.095 0.100 0.105 0.106 0.108 0.110 0.102 0.107 0.111 0.112 0.114 0.116
70 0.091 0.097 0.105 0.108 0.111 0.114 0.103 0.109 0.115 0.118 0.120 0.123 0.110 0.116 0.121 0.123 0.125 0.128
100 0.095 0.104 0.112 0.116 0.120 0.125 0.108 0.115 0.122 0.125 0.129 0.133 0.116 0.122 0.128 0.131 0.133 0.137
200 0.099 0.109 0.119 0.124 0.129 0.136 0.113 0.121 0.129 0.133 0.137 0.143 0.121 0.128 0.135 0.138 0.141 0.146
20 0.014 0.014 0.014 0.014 0.014 0.015 0.017 0.017 0.018 0.018 0.018 0.018 0.020 0.020 0.020 0.020 0.020 0.020
30 0.045 0.045 0.047 0.047 0.047 0.048 0.053 0.054 0.055 0.055 0.056 0.056 0.058 0.059 0.060 0.061 0.061 0.061

3 50 0.073 0.077 0.080 0.081 0.082 0.083 0.084 0.088 0.091 0.092 0.093 0.094 0.090 0.094 0.097 0.098 0.099 0.100
70 0.084 0.090 0.095 0.097 0.100 0.101 0.096 0.101 0.106 0.108 0.109 0.112 0.103 0.107 0.112 0.113 0.115 0.117
100 0.091 0.099 0.106 0.109 0.112 0.116 0.104 0.110 0.116 0.119 0.122 0.125 0.111 0.116 0.122 0.124 0.127 0.129
200 0.098 0.107 0.116 0.121 0.126 0.132 0.111 0.119 0.127 0.130 0.134 0.139 0.119 0.126 0.132 0.135 0.138 0.143
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
30 0.028 0.029 0.029 0.029 0.029 0.030 0.034 0.034 0.035 0.035 0.035 0.036 0.038 0.038 0.039 0.039 0.039 0.039

4 50 0.063 0.065 0.067 0.068 0.068 0.070 0.073 0.076 0.078 0.078 0.079 0.080 0.079 0.082 0.084 0.085 0.085 0.086
70 0.078 0.083 0.087 0.088 0.089 0.090 0.089 0.093 0.097 0.099 0.100 0.101 0.096 0.100 0.103 0.105 0.106 0.108
100 0.088 0.095 0.100 0.103 0.105 0.108 0.100 0.106 0.111 0.113 0.115 0.118 0.107 0.112 0.117 0.119 0.121 0.123
200 0.097 0.105 0.115 0.119 0.124 0.129 0.110 0.118 0.125 0.129 0.132 0.137 0.118 0.124 0.131 0.134 0.136 0.140

k = 3

1% (CSB) 5% (CSB) 10% (CSB)
p (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200

20 0.080 0.085 0.089 0.091 0.092 0.094 0.092 0.096 0.100 0.102 0.104 0.106 0.099 0.103 0.107 0.109 0.110 0.112
30 0.089 0.097 0.103 0.107 0.110 0.114 0.101 0.108 0.114 0.117 0.119 0.123 0.109 0.115 0.120 0.122 0.125 0.128

0 50 0.094 0.104 0.112 0.118 0.122 0.128 0.108 0.116 0.123 0.127 0.131 0.135 0.116 0.123 0.129 0.132 0.135 0.139
70 0.097 0.106 0.116 0.121 0.126 0.134 0.111 0.118 0.127 0.131 0.135 0.140 0.119 0.126 0.133 0.136 0.139 0.144
100 0.099 0.109 0.119 0.124 0.129 0.137 0.113 0.121 0.129 0.133 0.137 0.143 0.121 0.128 0.135 0.139 0.142 0.147
200 0.100 0.110 0.120 0.127 0.132 0.141 0.115 0.123 0.132 0.136 0.140 0.147 0.124 0.130 0.138 0.142 0.145 0.150
20 0.048 0.049 0.050 0.051 0.051 0.052 0.057 0.058 0.059 0.060 0.060 0.060 0.062 0.063 0.065 0.065 0.066 0.066
30 0.069 0.073 0.076 0.077 0.079 0.080 0.080 0.084 0.086 0.088 0.089 0.090 0.087 0.090 0.092 0.094 0.095 0.096

1 50 0.085 0.092 0.098 0.101 0.104 0.107 0.097 0.103 0.108 0.111 0.113 0.116 0.104 0.109 0.114 0.116 0.118 0.121
70 0.090 0.099 0.107 0.111 0.115 0.119 0.103 0.110 0.117 0.120 0.123 0.127 0.111 0.117 0.122 0.125 0.127 0.131
100 0.095 0.104 0.113 0.118 0.121 0.128 0.108 0.115 0.123 0.127 0.130 0.135 0.116 0.122 0.128 0.132 0.134 0.139
200 0.098 0.108 0.118 0.124 0.129 0.137 0.113 0.120 0.129 0.133 0.137 0.143 0.121 0.128 0.135 0.138 0.141 0.146
20 0.019 0.019 0.019 0.020 0.020 0.020 0.023 0.023 0.024 0.024 0.024 0.024 0.026 0.026 0.027 0.027 0.027 0.027
30 0.049 0.051 0.052 0.052 0.052 0.053 0.057 0.059 0.060 0.061 0.061 0.062 0.063 0.065 0.066 0.066 0.067 0.067

2 50 0.075 0.080 0.084 0.085 0.087 0.088 0.086 0.090 0.094 0.095 0.097 0.099 0.093 0.097 0.100 0.101 0.103 0.104
70 0.085 0.091 0.098 0.100 0.103 0.106 0.097 0.102 0.108 0.110 0.112 0.115 0.104 0.109 0.114 0.116 0.118 0.120
100 0.092 0.099 0.108 0.112 0.115 0.119 0.104 0.111 0.117 0.121 0.123 0.127 0.112 0.117 0.123 0.126 0.128 0.131
200 0.097 0.106 0.116 0.121 0.126 0.134 0.111 0.119 0.127 0.131 0.134 0.140 0.120 0.126 0.133 0.136 0.139 0.144
20 - - - - - - - - - - - - - - - - - -
30 0.028 0.029 0.029 0.030 0.030 0.030 0.034 0.035 0.035 0.036 0.036 0.036 0.038 0.039 0.039 0.039 0.039 0.040

3 50 0.062 0.065 0.067 0.068 0.069 0.070 0.072 0.074 0.077 0.078 0.079 0.080 0.078 0.080 0.083 0.084 0.084 0.085
70 0.076 0.081 0.086 0.087 0.089 0.091 0.087 0.092 0.096 0.097 0.099 0.101 0.094 0.098 0.102 0.103 0.104 0.106
100 0.086 0.093 0.100 0.103 0.105 0.108 0.098 0.104 0.110 0.112 0.114 0.117 0.105 0.110 0.115 0.117 0.119 0.122
200 0.095 0.104 0.113 0.118 0.122 0.129 0.109 0.116 0.123 0.127 0.130 0.135 0.117 0.122 0.129 0.132 0.135 0.139
20 - - - - - - - - - - - - - - - - - -
30 0.011 0.011 0.011 0.012 0.011 0.012 0.014 0.014 0.014 0.014 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.016

4 50 0.049 0.051 0.052 0.053 0.053 0.054 0.058 0.059 0.061 0.061 0.062 0.062 0.063 0.065 0.066 0.067 0.067 0.068
70 0.068 0.072 0.074 0.076 0.077 0.078 0.078 0.082 0.085 0.086 0.087 0.088 0.084 0.088 0.090 0.091 0.092 0.094
100 0.082 0.087 0.092 0.095 0.096 0.099 0.093 0.098 0.103 0.104 0.106 0.108 0.100 0.104 0.108 0.110 0.112 0.114
200 0.094 0.102 0.111 0.115 0.119 0.124 0.107 0.113 0.121 0.124 0.127 0.132 0.115 0.120 0.126 0.129 0.132 0.136

Notes: The critical values are obtained by stochastic simulation. The data generating process is yit = yi,t−1 + εiyt, where
εiyt ∼ iidN(0, 1), with yi,−p = 0, and the jth element of the k × 1 vector of additional regressors, xit, is generated as
xijt = xij,t−1 + εixjt, where εixjt ∼ iidN(0, 1) and xij,−p = 0, i = 1, 2, ..., N ; j = 1, 2, ..., k; t = −p, ..., T . The CSBi test
statistic is computed as CSBi = T−2

∑T
t=1 ûit/σ̂

2
i , with ûit =

∑t
j=1 ε̂ij and σ̂

2
i =

∑T
t=1 ε̂

2
it/ [T − (p+ 1)(k + 2)] , where ε̂it

are the estimated residuals from the regression of ∆yit on w′it,p = (∆yi,t−1, ...,∆yi,t−p; ∆z̄′t,∆z̄′t−1, ...,∆z̄′t−p), including

an intercept, with z̄t = N−1
∑N
i=1(yit,x

′
it)
′. The average of the individual CSBi is computed as CSB = N−1

∑N
i=1 CSBi.

(100×α)% critical values are obtained as the α quantiles of CSB for α = 0.01, 0.05, 0.1. Computations are based on 50,000
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replications. Where values are not reported, this is due to insuffi cient degrees of freedom.
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Table 1: Size and Power of CIPS and CSB Panel Unit Root Tests with Two Factors,
Factors and Idiosyncratic Errors are Serially Uncorrelated, m0 = 2 Known

Intercept Only
Size: ρi = ρ = 1 Power: ρi ∼ iidU [0.90, 0.99]

(T,N) 20 30 50 70 100 200 20 30 50 70 100 200
CIPS(p̂, k = 1)

20 5.75 6.40 5.10 5.50 5.50 6.10 7.80 10.70 10.85 13.15 11.95 14.85
30 5.40 6.60 5.35 5.70 5.85 6.15 11.40 13.65 17.10 17.10 18.55 21.85
50 5.00 5.60 5.90 6.10 4.80 5.90 17.35 22.10 27.10 27.50 32.05 38.40
70 5.45 4.85 4.60 5.70 5.35 5.25 27.95 33.40 40.75 47.45 50.00 56.35
100 5.65 7.05 6.10 4.95 5.75 5.45 44.65 54.45 67.10 68.20 78.60 82.15
200 4.95 4.55 5.60 5.65 4.85 4.80 97.40 99.50 99.95 99.95 100.00 100.00

CSB(p̂, k = 1)
20 6.35 6.10 5.60 4.95 5.80 6.10 14.25 15.80 18.50 23.45 24.80 31.20
30 5.70 5.85 5.20 5.60 5.55 4.10 20.50 24.80 31.70 36.80 40.50 46.95
50 6.35 6.00 5.80 5.85 5.55 5.55 39.20 47.75 62.20 70.30 77.25 87.70
70 5.70 5.80 6.35 6.15 5.75 5.60 61.40 75.40 89.55 94.30 98.00 99.50
100 4.55 5.20 5.95 6.10 5.40 6.60 79.05 89.65 97.95 98.70 99.60 99.95
200 6.50 4.75 6.15 5.15 6.20 5.85 94.85 97.80 99.45 99.90 99.95 100.00

Intercept and Linear Trend
CIPS(p̂, k = 1)

20 6.45 5.20 6.30 6.30 5.45 5.50 7.25 6.55 7.85 7.85 5.80 8.05
30 5.30 5.40 5.90 6.80 5.85 5.45 6.85 8.15 9.00 10.45 11.95 11.75
50 6.35 5.45 5.65 6.10 5.85 5.35 10.00 10.40 13.00 14.00 17.90 20.75
70 5.55 5.50 5.60 5.20 4.65 4.65 14.70 17.40 22.15 25.75 26.65 31.35
100 5.20 5.90 6.30 5.25 5.00 5.10 23.45 29.60 37.85 39.40 46.45 52.10
200 5.60 5.70 5.65 5.30 6.15 3.75 83.80 91.25 97.85 99.25 99.80 99.95

CSB(p̂, k = 1)
20 6.35 5.40 5.80 5.15 5.20 5.65 8.60 8.85 11.55 12.10 13.35 19.25
30 6.80 6.15 5.80 5.95 5.85 5.70 10.65 12.10 14.45 18.45 20.65 25.80
50 5.95 5.80 5.20 5.60 4.50 5.80 15.50 19.15 23.50 29.65 33.55 41.75
70 6.05 4.95 5.90 5.70 5.85 5.25 25.50 33.60 46.45 54.70 65.75 80.40
100 4.65 5.55 5.80 6.35 5.45 5.00 44.15 58.25 75.85 84.95 91.95 97.90
200 5.40 5.10 5.10 6.20 6.15 5.75 87.20 94.85 98.75 99.60 99.85 100.00

Notes: In the intercept only case, yit is generated as yit = diyt + ρiyi,t−1 + γiy1f1t + γiy2f2t + εiyt, i = 1, 2, ..., N ; t =
−49, 48, ...0, 1, ..., T, with yi,−50 = 0, where γiy1 ∼ iidU [0, 2], for i = 1, 2, ..., N ; γiy2 ∼ iidU [0, 1] for i = 1, ..., [Nα] and
γiy2 = 0 for i = [Nα]+1, [Nα]+2, ..., N (where [·] denotes the integer part); f`t ∼ iidN(0, 1) for ` = 1, 2, εiyt ∼ iidN(0, σ2

i )

with σ2
i ∼ iidU [0.5, 1.5]; ∆xit = dix + γix1f1t + εixt, where, dix = 0, εixt = ρixεixt−1 + $ixt,, $ixt ∼ iidN(0, 1 − ρ2

ix),
i = 1, 2, ..., N ; t = −49, 48, ...0, 1, ..., T , with εix,−50 = 0, and ρix ∼ iidU [0.2, 0.4]. The factor loadings in (50) are generated
as γix1 ∼ iidU [0, 2]; diyt = (1 − ρi)αiy with αiy ∼ iidN(1, 1). The parameters αiy , ρiyε, γiy1,γiy2, ρi, γix1, ρix, and σi
are redrawn over each replication. The first 50 observations are discarded. The CIPS(p̂) and the CSB(p̂) tests are the
proposed panel unit root tests, defined by (28) and (34), respectively, based on cross section augmentation using yit and
xit with lag-augmentation order selected according to p̂ =

[
4(T/100)1/4

]
. In the intercept and linear trend case, yit is

generated as described above, but diyt = µiy+(1−ρi)δit with µiy ∼ iidU [0.0, 0.02] and δi ∼ iidU [0.0, 0.02], and dixt = δix
with and δix ∼ iidU [0.0, 0.02]. The tests are conducted at the 5% significance level, based on the critical values for the
corresponding N,T, p̂ and the number of additional regressors, k. All experiments are based on 2000 replications.
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Table 2: Size and Power of CIPS and CSB Panel Unit Root Tests with Two Factors,
Factors are Serially Uncorrelated but Idiosyncratic Errors are Positively Serially Correlated, m0 = 2 Known

Intercept Only
Size: ρi = ρ = 1 Power: ρi ∼ iidU [0.90, 0.99]

(T,N) 20 30 50 70 100 200 20 30 50 70 100 200
CIPS(p̂, k = 1)

20 5.00 5.65 4.05 4.30 3.80 4.15 7.40 8.65 8.50 10.70 9.25 11.65
30 4.40 5.45 3.85 4.20 4.15 4.55 9.65 11.45 14.55 14.80 16.00 18.75
50 4.30 5.30 5.25 4.70 3.90 5.15 16.55 20.40 24.05 24.65 28.75 34.60
70 4.90 5.00 4.45 5.00 4.35 4.30 26.10 30.55 37.55 44.40 45.15 51.50
100 5.45 6.20 5.60 4.10 5.55 4.95 41.95 51.10 62.85 62.65 74.60 78.25
200 4.75 4.45 5.05 5.55 4.65 4.55 96.45 99.10 99.80 100.00 100.00 100.00

CSB(p̂, k = 1)
20 6.85 6.40 6.15 6.30 6.75 6.20 13.40 15.30 17.70 23.25 23.65 30.55
30 5.40 6.25 5.65 5.65 6.00 4.45 18.65 22.95 28.75 33.85 37.70 43.90
50 5.90 5.60 5.95 5.65 5.65 6.10 36.65 43.55 58.60 67.40 74.25 86.10
70 5.15 6.15 5.50 5.85 5.20 5.80 60.45 74.85 90.65 95.70 99.05 99.85
100 4.35 4.80 5.75 5.75 5.15 6.30 80.35 90.90 98.60 99.50 99.90 100.00
200 6.35 4.40 5.40 5.10 5.65 5.45 97.25 99.10 99.75 100.00 100.00 100.00

Intercept and Linear Trend
CIPS(p̂, k = 1)

20 5.05 3.90 3.85 4.15 3.50 2.75 6.15 4.55 5.50 5.65 4.10 5.05
30 4.15 5.05 4.35 4.95 3.75 3.45 6.00 6.30 6.40 7.95 9.35 9.25
50 5.80 4.50 4.65 5.05 4.95 4.30 8.95 9.55 11.05 12.15 16.30 19.05
70 5.10 4.65 4.45 4.65 3.95 4.00 13.85 15.60 18.95 23.30 24.55 28.70
100 5.25 5.50 5.30 4.70 4.05 4.50 21.70 27.60 33.65 36.60 43.00 47.15
200 5.60 4.85 5.75 4.85 5.75 3.35 79.35 89.95 96.55 98.40 99.35 99.90

CSB(p̂, k = 1)
20 6.50 5.70 6.05 4.65 5.50 5.30 8.55 8.65 10.80 11.15 13.00 18.20
30 5.65 5.05 5.20 5.25 5.00 4.85 8.70 9.70 12.90 15.35 18.30 22.40
50 4.80 5.25 4.25 4.45 4.20 4.65 12.40 15.70 19.35 24.45 28.15 36.10
70 4.90 3.65 4.70 4.20 4.35 3.80 21.65 28.75 39.10 47.85 58.50 73.10
100 4.15 4.30 5.10 4.50 4.45 4.35 40.20 55.15 72.60 82.25 90.60 98.10
200 4.45 3.95 4.10 4.70 5.10 4.80 90.40 96.90 99.50 99.95 100.00 100.00

Notes: yit is generated as described in the notes to Table 1, except that εiyt = ρiyεεiyt−1 + (1− ρ2
iyε)

1/2ηiyt, ηiyt ∼
iidN(0, σ2

i ), εiy,−50 = 0, σ2
i ∼ iidU [0.5, 1.5], ρiyε ∼ iidU [0.2, 0.4]. See also the notes to Table 1 for the specification of the

rest of the parameters.

Table 3: Size and Power of CIPS and CSB Panel Unit Root Tests with Two Factors,
Factors are Serially Uncorrelated but Idiosyncratic Errors are Negatively Serially Correlated, m0 = 2 Known

Intercept Only
Size: ρi = ρ = 1 Power: ρi ∼ iidU [0.90, 0.99]

(T,N) 20 30 50 70 100 200 20 30 50 70 100 200
CIPS (p̂, k = 1)

20 6.65 7.20 6.35 6.60 7.40 6.85 8.45 11.55 11.60 13.95 13.20 15.60
30 6.60 7.10 6.45 6.70 7.40 7.45 12.10 14.90 17.05 18.00 19.15 22.95
50 5.10 6.20 6.40 6.90 5.70 6.05 17.60 21.90 26.95 28.30 31.90 38.50
70 5.95 5.50 5.35 6.00 6.30 5.65 28.80 33.45 41.55 47.65 50.95 56.85
100 6.30 7.40 7.00 5.40 6.15 5.95 46.40 56.25 68.20 70.10 79.35 83.35
200 6.20 5.15 6.15 5.65 5.45 5.20 97.75 99.50 99.90 99.90 100.00 100.00

CSB(p̂, k = 1)
20 6.60 5.40 5.25 4.65 6.10 5.65 14.45 16.40 19.30 24.60 25.80 31.30
30 6.05 5.85 5.25 5.55 5.80 4.30 21.55 25.65 32.15 36.90 41.45 47.25
50 6.55 5.95 6.35 6.50 5.40 5.80 38.70 46.65 60.95 67.50 75.50 85.15
70 6.35 6.25 6.75 6.25 6.45 5.15 58.65 71.85 84.45 90.25 94.35 97.80
100 5.60 6.00 6.20 6.40 5.60 6.50 74.25 85.80 94.30 95.60 98.30 99.70
200 7.05 5.90 6.75 6.10 7.00 6.80 91.40 94.10 97.90 98.90 99.50 100.00

Intercept and Linear Trend
CIPS(p̂, k = 1)

20 6.65 7.15 7.95 7.60 7.35 6.15 6.75 7.05 9.70 9.50 8.90 8.00
30 6.00 6.40 6.70 7.35 7.40 7.10 8.00 8.40 9.65 11.05 12.70 13.00
50 6.85 5.85 7.25 6.75 6.85 5.90 11.30 11.65 13.50 15.80 17.85 19.80
70 5.90 6.15 6.40 6.60 5.10 6.00 15.30 17.85 23.55 25.75 28.55 30.80
100 6.15 6.70 5.90 6.30 5.85 5.75 24.75 29.35 36.00 42.05 45.05 55.30
200 7.20 5.80 6.85 4.50 6.00 4.65 84.20 92.35 98.20 98.95 99.80 99.95

CSB(p̂, k = 1)
20 6.85 6.35 6.05 5.50 6.20 5.25 8.85 8.70 11.95 11.90 15.25 18.55
30 6.75 5.65 6.90 6.65 5.95 6.60 11.35 14.45 17.45 18.15 22.55 28.70
50 5.75 7.05 6.00 6.75 5.05 6.00 16.25 21.15 28.70 30.55 35.90 44.20
70 6.75 6.40 6.60 5.95 7.45 5.90 26.60 34.95 48.35 55.45 66.35 79.10
100 6.00 6.70 6.30 8.10 7.45 5.95 41.65 54.85 74.30 80.10 89.10 96.90
200 6.75 6.80 6.95 6.95 6.95 8.15 82.50 90.55 95.80 97.95 99.15 99.85

Notes: yit is generated as described in the notes to Table 1, except that εiyt = ρiyεεiyt−1 + (1 − ρ2
iyε)

1/2ηiyt, ηiyt ∼
iidN(0, σ2

i ), εiy,−50 = 0, σ2
i ∼ iidU [0.5, 1.5], ρiyε ∼ iidU [−0.4,−0.2]. See also the notes to Table 1 for the specification of

the rest of the parameters.
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Table 4: Results of the CIPS and the CSB Panel Unit Root Tests Applied to Real Interest Rates for all
m0 − 1Combinations of the 5 Additional Regressors (1979Q2− 2009Q4)

Real Interest Rates (N = 32, T = 118)
Intercept Only

m0 = 1 m0 = 3 m0 = 4
CIPS(p̂) CSB(p̂) x̄t CIPS(p̂) CSB(p̂) x̄t CIPS(p̂) CSB(p̂)
-2.983† 0.157† poilt, r̄Lt -3.603† 0.319 poilt, r̄Lt , eqt -3.545† 0.282

poilt, eqt -3.319† 0.166† poilt, r̄Lt , ept -3.566† 0.321
m0 = 2 poilt, eqt -3.286† 0.158† poilt, r̄Lt , gdpt -3.530† 0.284

x̄t CIPS(p̂) CSB(p̂) poilt, gdpt -3.318† 0.161† poilt, eqt, ept -3.257† 0.164†

poilt -3.347† 0.163† r̄Lt , eqt -3.671† 0.234† poilt, eqt, gdpt -3.325† 0.161†

r̄Lt -3.604† 0.243† r̄Lt , ept -3.457† 0.245∗ poilt, ept, gdpt -3.286† 0.160†

eqt -2.878† 0.169† r̄Lt , gdpt -3.504† 0.243† r̄Lt , eqt, ept -3.619† 0.233∗

ept -2.866† 0.153† eqt, ept -2.805† 0.165† r̄Lt , eqt, gdpt -3.684† 0.240∗

gdpt -3.117† 0.162† eqt, gdpt -3.354† 0.165† r̄Lt , ept, gdpt -3.365† 0.234∗

ept, gdpt -3.129† 0.159† eqt, ept, gdpt -3.407† 0.161†

Notes: † and ∗ denote rejections at 1% and 5% significance levels, respectively. For the selected lag order p̂ =[
4(T/100)1/4

]
, the critical values for the CIPS test in the case where m0 = 1 are -2.238, and -2.106 for the 1%, and

5% significance levels, respectively. For m0 = 2 they are -2.486, and -2.335, for m0 = 3 they are -2.669, and -2.504, and
for m0 = 4 they are -2.816, and -2.641. Similarly for the CSB test, the critical values for m0 = 1 are 0.279, and 0.322,
for m0 = 2 they are 0.261, and 0.304, for m0 = 3 they are 0.245, and 0.287, and for m0 = 4 they are 0.231, and 0.270.
The variables under the heading x̄t indicate the regressors used for cross section augmentation in addition to ȳt, where
yit = rSit − πit. In the case where m0 = 1 no additional regressors are used. The variables poilt, eqt, ept, and gdpt are
detrended.

Table 5: Results of CIPS and CSB Panel Unit Root Tests Applied to Real Equity Prices for all m0 − 1
Combinations of the Five Additional Regressors (1979Q2− 2009Q4)

Real Equity Prices (N = 26, T = 118)
Intercept and Trend

m0 = 1 m0 = 3 m0 = 4
CIPS(p̂) CSB(p̂) x̄t CIPS(p̂) CSB(p̂) x̄t CIPS(p̂) CSB(p̂)
-2.594 0.143 poilt, r̄Lt -3.022∗ 0.113 poilt, r̄Lt , π̄t -2.716 0.116

poilt, π̄t -2.933∗ 0.125 poilt, r̄Lt , ept -3.051∗ 0.094∗

m0 = 2 poilt, ept -3.098† 0.122 poilt, r̄Lt , gdpt -2.423 0.106
x̄t CIPS(p̂) CSB(p̂) poilt, gdpt -2.416 0.118 poilt, π̄t, ept -3.044∗ 0.119
poilt -2.819∗ 0.125 r̄Lt , π̄t -2.567 0.136 poilt, π̄t, gdpt -2.455 0.118
r̄Lt -2.791∗ 0.132 r̄Lt , ept -2.711 0.124 poilt, ept, gdpt -2.965 0.116
π̄t -2.731 0.142 r̄Lt , gdpt -2.433 0.116 r̄Lt , π̄t, ept -2.527 0.128
ept -2.759 0.135 π̄t, ept -2.664 0.135 r̄Lt , π̄t, gdpt -2.249 0.116
gdpt -2.297 0.132 π̄t, gdpt -2.494 0.129 r̄Lt , ept, gdpt -2.624 0.101∗

ept, gdpt -2.665 0.125 π̄t, ept, gdpt -2.580 0.122

Notes: The critical values for the CIPS test in the case where m0 = 1 are -2.757, and -2.619 for the 1%, and 5%
significance levels, respectively. For m0 = 2 they are -2.926, and -2.773, for m0 = 3 they are -3.075, and -2.911 and for
m0 = 4 they are -3.190, and -3.006. Similarly for the CSB test, the critical values for m0 = 1 are 0.108, and 0.121, for
m0 = 2 they are 0.102, and 0.114, for m0 = 3 they are 0.096, and 0.108, and for m0 = 4 they are 0.090, and 0.101. See
also the notes to Table 4.

Table 6: Results for Pê(p̂), Pb, t∗b , PP, PMSB and C̃PO Panel Unit Root Tests for Real Interest Rates and Real
Equity Prices (1979Q2− 2009Q4)

PANEL A PANEL B
Real Interest Rates (N = 32) Real Equity Prices (N = 26)

With an Intercept With an Intercept and a Linear Trend

m0 Pê(p̂) Pb t∗b PMSB C̃PO Pê(p̂) Pb PP PMSB C̃PO

1 9.768 -9.140† -19.187† -1.804∗ -4.114† 4.226 -1.776∗ -2.084∗ -1.349 -2.181∗

2 8.826 -3.405† -18.230† -1.206 -4.124† 3.231 -2.232∗ -1.916∗ -1.689∗ -2.019∗

3 8.326 -3.263† -22.527† -1.547 -4.170† 3.430 -2.788† -1.655∗ -1.989∗ -1.765∗

4 9.197 -6.371† -26.613† -2.124∗ -4.157† 3.082 -2.427
†

-1.217 -1.778∗ -1.347

Pê(p̂) is the test of Bai and Ng (2004) with lag-augmentation order p̂ =
[
4(T/100)1/4

]
and PMSB and Pb are the pooled

tests of Bai and Ng (2010), all of which are based on two extracted factors from yit,. The t∗b test is the Moon and Perron

(2004) test, and the C̃PO is the defactored point optimal test with serially correlated errors of Moon, Perron and Phillips

(2011), based on two extracted factors from yit. The PMSB, Pb, t∗b , C̃PO tests use the automatic lag-order selection for
the estimation of the long-run variances following Andrews and Monahan (1992). See also the notes to Table 4.
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