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Abstract

This paper extends the cross-sectionally augmented panel unit root test (CIPS) pro-
posed by Pesaran (2007) to the case of a multifactor error structure, and proposes a new panel
unit root test based on a simple average of cross-sectionally augmented Sargan-Bhargava
statistics (C'SB). The basic idea is to exploit information regarding the m unobserved fac-
tors that are shared by k observed time series in addition to the series under consideration.
Initially, we develop the tests assuming that m?, the true number of factors is known, and
show that the limit distribution of the tests does not depend on any nuisance parameters,
so long as k > m® — 1. Small sample properties of the tests are investigated by Monte Carlo
experiments and are shown to be satisfactory. Particularly, the proposed CIPS and CSB
tests have the correct size for all combinations of the cross section (V) and time series (T')
dimensions considered. The power of both tests rise with N and T', although the C'SB test
performs better than the CIPS test for smaller sample sizes. The various testing procedures
are illustrated with empirical applications to real interest rates and real equity prices across
countries.
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1 Introduction

There is now a sizeable literature on testing for unit roots in panels where both cross section (V)
and time series (7') dimensions are relatively large. Reviews of this literature are provided in
Banerjee (1999), Baltagi and Kao (2000), Choi (2004), and in Breitung and Pesaran (2008). The
so called first generation panel unit root tests pioneered by Levin, Lin and Chu (2002) and Im,
Pesaran and Shin (2003) focussed on panels where the errors were cross-sectionally uncorrelated.
More recently, to deal with a number of applications such as testing for purchasing power parity
or cross country output convergence, the second generation panel unit root tests have focussed
on the case where the errors are allowed to be cross-sectionally correlated.

Three main approaches have been proposed. The first, pioneered by Maddala and Wu
(1999), and developed further by Chang (2004), Smith et al. (2004), Cerrato and Sarantis
(2007), and Palm et al. (2011), applies bootstrap methods to panel unit root tests. The main
idea of this approach is to approximate the distribution of the test statistic under cross section
dependence by block bootstrap resampling to preserve the pattern of cross section dependence
in the panel. This approach allows for general cross section dependence structures, however, it
is mainly suited to panels with large T' and relatively small V.

The second approach is due to Bai and Ng (2004, 2010) and proposes tests based on a
decomposition of the observed series, y;; ¢ = 1,2,...,N, t = 1,2,...,T, into two unobserved
components, common factors and idiosyncratic errors, and tests for unit roots in both of these
components. It is also tested if the unobserved common factors are cointegrated. This is known
as the PANIC (panel analysis of nonstationarity in idiosyncratic and common components)
approach, and provides indirect tests of unit roots in the observed series. The factors are
estimated from m® principal components (PC) of Ay;. It is assumed that m?, the true number
of factors, is known or estimated from the observations. If it is found that the estimated factors
contain unit roots and are not cointegrated it is then concluded that the N series are integrated
of order 1. If the presence of a unit root in the factors is rejected, in the second stage the PANIC
procedure applies panel unit root tests to the N idiosyncratic errors. Estimates of idiosyncratic
errors are obtained as defactored observations, also known as PANIC residuals. Moon and
Perron (2004) follow a similar approach in that they base their test on a principal components
estimator of common factors. In particular, their test is based on defactored observations
obtained by projecting the panel data onto the space orthogonal to the estimated factor loadings.
Bai and Ng (2010) propose two panel unit root tests which are applied to the PANIC residuals.
The first one is based on a pooled estimate of the autoregressive root fitted to the PANIC
residuals, as in Moon and Perron (2004), and the second one employs a panel version of the
modified Sargan-Bhargava test (PMSB)]]

The third approach, proposed in Pesaran (2007), augments the individual Dickey-Fuller
(DF) regressions of y;; with cross section averages, ;-1 = N _1Z‘§-V:1yj7t,1 and Ay, to take
account of error cross section dependence. These cross-sectionally augmented DF regressions
can be further augmented with lagged changes Ay; s, Ay, for s = 1,2,..., to deal with
possible serial correlation in the residuals. These doubly augmented DF regressions are referred
to as CADF regressions. The panel unit root test statistic is then computed as the average of
the CADF statistics. It is shown that the average statistic is free of nuisance parameters but,
due to non-zero cross correlation of the individual, C ADF;, statistics, the average statistic has a
non-normal limit distribution as N and T — oco. Monte Carlo experiments show that Pesaran’s

"'Westerlund and Larsson (2009) provide further theoretical results on the asymptotic validity of the pooled
versions of the PANIC procedure.



test has desirable small sample properties in the presence of a single unobserved common factor
but show size distortions if the number of common factors exceeds unityﬂ A small sample
comparison of some of these tests is provided in Gengenbach, Palm and Urbain (2009)E|

The data generating mechanisms underlying the PANIC approach differ in one important
respect from the ones considered by Moon and Perron (2004) and Pesaran (2007). The latter
studies assume that under the null of unit roots the common factor components have the same
order of integration as the idiosyncratic components, whilst the PANIC approach allows the
order of integration of the factors to differ from that of the idiosyncratic components. However,
if the primary objective of the exercise is to test for unit roots in the observed series, ¥,
the distinction between the common and idiosyncratic components of y;; is not essential. The
distinction will become relevant if the unit root null hypothesis of y;; is not rejected. In that case
it would indeed be of interest to investigate further whether the source of the non-stationarity
lies with the common factors, the idiosyncratic components, or both.

The present paper extends Pesaran’s C'IPS test to the case of a multifactor error structure.
This is a non-trivial yet important extension which is much more broadly applicable. It has
also the advantage of being intuitive and simple to implement. Following Bai and Ng (2010)
we also consider a panel unit root test based on simple averages of cross-sectionally augmented
Sargan-Bhargava type statistics, which we denote by C'SB. The presence of multiple unobserved
factors poses a number of additional challenges. In order to deal with a multifactor structure,
we propose to utilize the information contained in a number of k£ additional variables, x;;, that
together are assumed to share the common factors of the series of interest, y;. The ADF
regression for y;; is then augmented with cross-sectional averages of y;; and xitﬁ

The requirement of finding such additional variables seems quite plausible in the case of
panel data sets from economics and finance where economic agents often face common economic
environments. Most macroeconomic theories postulate the presence of the same unobserved
common factors (such as shocks to technology, tastes and fiscal policy), and it is therefore
natural to expect that many macroeconomic variables, such as interest rates, inflation and
output share the same factors. If anything, it would be difficult to find macroeconomic time
series that do not share one or more common factors. For example, in testing for unit roots in a
panel of real outputs one would expect the unobserved common shocks to output (that originate
from technology) to also manifest themselves in employment, consumption and investment. In
the case of testing for unit roots in inflation across countries, one would expect the unobserved
common factors that correlate inflation rates across countries to also affect short-term and
long-term interest rates across markets and economies. The fundamental issue is to ascertain
the nature of dependence and persistence that is observed across markets and over time. The
present paper can, therefore, be viewed as a first step in the process of developing a coherent
framework for the analysis of unit roots and multiple cointegration in large panels.

?The cross section augmentation procedure is also employed by Hadri and Kurozumi (2011) in their work on
testing the null of stationarity in panels.

3Other panel unit root tests have also been proposed by Chang (2002), who employs a non-linear IV method,
Choi and Chue (2007) who use a subsampling method to account for cross-section correlation, and Phillips and
Sul (2003) who use an orthogonalisation procedure to deal with error cross-dependence in the case of a single
common factor.

4The idea of augmenting ADF regressions with other covariates has been investigated in the unit root literature
by Hansen (1995) and Elliott and Jansson (2003). These authors consider the additional covariates in order to
gain power when testing the unit root hypothesis in the case of a single time series. In this paper we augment
ADF regressions with cross section averages to eliminate the effects of unobserved common factors in the case of
panel unit root tests.



Initially we develop the tests assuming that mP, the true number of factors is known, and
show that the limit distribution of C'IPS and CSB tests does not depend on any nuisance
parameters, so long as & > m® — 1. But, in practice m® is rarely known. Most existing
methods of estimating m®, such as the information criteria of Bai and Ng (2002), assume
that the unobserved factors are strong, in the sense discussed in Chudik, Pesaran and Tosetti
(2011). However, in many empirical applications we may not be sure that all the factors are
strong. Bailey, Kapetanios and Pesaran (2012, BKP) show that the strength of the factors is
determined by the nature of the factor loadings, and depends on the exponent of the cross-
sectional dependence, «, defined as In(n)/In(N), where n is the number of non-zero factor
loadings. The value a = 1 corresponds to the case of a strong factor, while @ < 1 gives rise
to a large set of practically plausible values ranging from semi-strong to weaker factors. BKP
find that for many macroeconomic and financial series of interest, the value of the exponent
is less than one. This result casts some doubt on the practical justification of panel unit root
tests based on estimated factors by principal components, which are discussed above. The
solution offered in this paper deals with the uncertainty surrounding the true number of factors
by assuming that there exists a sufficient number of k additional regressors that together share
at least m® — 1 of the factors in the model that influence the variable under consideration. This
approach does not require all the factors to be strong. This way, by selecting k& = mupax — 1,
where mmay is the assumed maximum number of factors, the estimation of m® will not be
needed.

For our tests, following the discussions in Im et al. (2003), we propose to use critical values
which depend on the values of k, N, T, and lag-augmentation order, p, as they are expected to
provide much better finite sample approximations. In empirical applications it is important that
the tests being considered have the correct size, otherwise their use could result in misleading
conclusions.

Small sample properties of the CIPS and CSB tests are investigated by Monte Carlo
experiments. These tests are shown to have the correct size for all combinations of N and T
considered in a number of different experiments. The experimental results also show that the
proposed C'SB test has satisfactory power, which for some combinations of N and T tends to be
higher than that of the CIPS test. Empirical applications to Fisher’s inflation parity and real
equity prices across different economies illustrate how the proposed tests perform in practice.

The plan of the paper is as follows. Section [2] sets out the panel data model, formulates the
CIPS test and derives its asymptotic distribution. Section [3| presents the C'SB test. Section [4]
discusses the proposed tests in the presence of residual serial correlation. Section [5]describes the
Monte Carlo experiments and reports the small sample results. Section [f] presents the empirical
applications, and Section [7] provides some concluding remarks.

Notation: L denotes a lag operator such that Lfx; = x,_,, K denotes a finite positive
constant such that K < oo, ||A|| = [tr(AA’)]Y/2, A+ denotes the Moore-Penrose inverse of A,
I, is a ¢ x ¢ identity matrix, 7, and 0, are ¢ X 1 vectors of ones and zeros, respectively, Oy« is a

g X r null matrix, ELN (ﬁ) denotes convergence in distribution (quadratic mean (q.m.) or mean

square errors) with 7" fixed as N — oo, = (g) denotes convergence in distribution (q.m.) with

. N,T .
N fixed (or when there is no N-dependence) as T' — oo, == denotes sequential convergence

(

NzT j . . .
in distribution with N — oo first followed by T — o0, :>)J denotes joint convergence in
distribution with N,T" — oo jointly with certain restrictions on the expansion rates of 1" and
N to be specified, if any.



2 Panel Data Model and the CIPS Test

Let y;; be the observation on the i* cross section unit at time ¢, and suppose that it is generated
as
Ayit = 6i(yi,t71 — a;ydt,l) + a;yAdt + U, 7 = 1, 2, ...,N; t= 1, 2, ...,T, (1)

where §; < 0, d; is 2 x 1 vector consisting of an intercept and a linear trend so that d; = (1,¢)".
Without loss of generality, it is assumed that dg = 0, and Ad; = (0,1)". Consider the following
multifactor error structure

Ui = ’Y;yft + Eiyt, (2)

where f; is an m" x 1 vector of unobserved common effects, Yiy is the associated vector of
factor loadings, and ey is the idiosyncratic component. This set up generalises Pesaran’s
(2007) one factor error specification. We assume that these error processes satisfy the following
assumptions:

Assumption 1 (idiosyncratic errors): The idiosyncratic shocks, €iy, ¢ = 1,2,...,N; t =
1,2,...,T, are independently distributed both across i and ¢, with zero means, variances, o2,
(0 < 02 < K), and finite fourth-order moments.

Remark 1 This assumption, which tmplies that the idiosyncratic shocks are sertally uncorre-
lated, will be relaxed in Section[f It is also possible to relax the assumption that the idiosyn-
cratic errors are cross-sectionally independent, and replace it by assuming that €;yt8 are cross-
sectionally weakly dependent in the sense of Chudik, Pesaran, and Tosetti (2011). However,
such an extension will not be considered in this paper.

Assumption 2 (factors): The m® x 1 vector f; follows a covariance stationary process, with
absolute summable autocovariances, distributed independently of e;, for all ¢,¢ and ¢'. Specif-
ically, we assume that f; = W(L)v; where v; ~ II1D(0,2,,), which has finite fourth-order mo-
ments, W(L) = Y52, ¥, Lt where {£¥,}7°, is absolute summable such that Zﬁioﬂzp%ﬂ < o0
for all r, s, with ¢§ﬁ) being the (7, 5)!" element of ¥,. Specifically, it is assumed that the inverse
of Ay defined by

Ay =0(1), (3)

exists.

Remark 2 Assumption 2 is quite general but rules out the possibility of the factors having
unit roots. In our set up this makes sense since otherwise all series in the panel could be I(1)
irrespective of whether B; = 0 or not. Also if 'ygyft is assumed to be I(1) and cointegrated with
Yit, then yu will be 1(1) even if B; = 0, and a test of 5, = 0 as a unit root test will not be
meaningful, which is also noted by Hansen (1995, p. 1159) in a similar context.

Combining and it follows that
Ay = Bi(yit—1 — aGydi—1) + o, Ady + i, fi + €iys. (4)

The hypothesis that all observed series, 3¢, have unit roots and are not cross unit cointegrated

can be expressed as
Hy : 8, =0 for all 1, (5)



against the alternative
Hy:8,<0fort=1,2,...,.N1,8;,=0fore =Ny +1,N;1 +2,..,N,

where N1/N — kand 0 <k <1 as N — oo.
Under the null hypothesis, can be solved for y;; to yield

Yit = Yi0 + afliydt + ’Y'Iiysft + Siytv 1= 1727 7N7 t= 1727 "’7T7 (6)

where
spp="F +fo+ -+ £, and sjyr = giy1 + a2 + -+ Eiyts

with y;0 being a given initial value. Therefore, under Hy and Assumptions 1 and 2, y;; is com-
posed of the initial value, 10, a common stochastic component, s¢; ~ I(1), and an idiosyncratic
component, s;,; ~ I(1), so that while all units of the panel share the common stochastic trends,
Sf¢, there is no cointegration among them. Under the alternative stationarity hypothesis, 8, <0,
we must have y;; ~ I(0), and it is therefore essential that f; is at most an 1(0) processﬁ

Remark 3 Our primary objective is to test for the presence of a unit root in the y; process,
which is observed. In contrast, Bai and Ng (2004) consider whether the source of non-
stationarity is due to the common factors and/or the idiosyncratic components, neither of which
are observed directly. To see how our approach is related to the Bai and Ng (2004, p.1130-1)
PANIC framework, consider their specification

yie = Wi+ Vi Fe + ey, (7)
AF, = C(L)vy,
(1- piL)eiyt = Eiyts

where rank (C(1)) = r, with 0 < v < m® and r is the number of factors that are I(1), and for
simplicity let €4y ~ i1d(0, 02). Bai and Ng’s objective is “to determine r and test if p; = 1 when
neither ¥y nor ey, is observed.” (Bai and Ng, 2004;p.1130). From (@) it readily follows that

Ayit = Bi (i1 — 1 — VigFe-1) + Vi, AFt + iyt (8)
where 3; = —(1 — p;). Under Hy: B; =0, (§) becomes
Ayit = ViyAF; + iyt, or Yir = Yio + Vi Fr + siye,

and since within the Bai and Ng framework Fy and sy, are both I(1) processes, then yi must
also be I(1). Under the alternative hypothesis Hy : B; < 0, it follows from (@ that if ¥y is
I(1) (and possibly cointegrated with yit), yir will be I(1), unless r = 0 and there are no common
stochastic trends. Therefore, it is meaningful to interpret a test of 5, = 0 as a panel unit root
test only if Fy is assumed to be 1(0). See also Remark[d

®One can test whether f, is I(0) by applying time series unit root tests to cross section averages, g+ =
Nt Efil yit, for t = 1,2,...,T. It can be shown that such tests are asymptotically valid as 7' and N — oo, so
long as T/N — 0. However, the power of such tests will depend on T' and the cross section dimension is only
relevant in ensuring that 7: is a good proxy for f;.



In the case where m® = 1, Pesaran (2007) proposes a test of 3, = 0 jointly with f; ~ I(0),
based on DF (or ADF) regressions augmented by current and lagged cross-sectional averages of
y;t as proxies for the unobserved f;. He shows that the resultant test is asymptotically invariant
to the factor loadings, v;,. To deal with the case where m® > 1 we assume that in addition
to yit, there exist k additional observables, say X;:, which depend on at least the same set of
common factors, sy, although with different factor loadings. For example, in the analysis of
output convergence it is reasonable to argue that output, investment, consumption, real equity
prices, and oil prices have the same set of factors in common. Similarly, short term and long term
interest rates and inflation across countries are likely to have a number of factors in common.

More specifically, suppose the k£ x 1 vector of additional regressors follow the general linear
process

Axiyp = A Ady + Tty + €50, 1= 1,2, .., N; t =1,2,...,T, (9)

where Xit = (Titt, Tiots - Tikt)'s Lio = (Via1s Via2s -+ Viak)s Aiz = (Qia1, Aiz2, .., Aigg)’, and €ig
is the idiosyncratic component of x;; which is 7(0) and distributed independently of &, for all
i,t and t'. Solving for x;; we have

Xit = X0 + Ajady + TiasSpr +8iz, 1 = 1,2, ,N; t =1,2,..., T, (10)
where s, = 2221 €izs- Combining @ and |D we obtain
zit = zijo + L'isp + Aidy + 844, (11)
where z = (yit, x},)’, T = (’Yiy, ng)l, A; = (ayy, A';'aj)/’ and si; = (Siyt, Sjyy) -

Assumption 3 (factor loadings): ||A;|| < K and ||Ty|| < K, for all ¢, with the factors
normalized such that E(fif]) = 1I,,.

Assumption 4 (initial conditions): E|[ssi|| < K, El|zi|| < K, and El|s;1|| < K, for all .

Remark 4 Assumption 8 imposes minimal conditions on the factor loadings. For example, it
does not rule out possible dependence between the factor loadings and idiosyncratic errors. Also
the normalisation of f; under Assumption 3 can be achieved by suitable transformations of T';
and f; (also note that Wy in Assumption 2 is unrestricted). Assumption 4 is also routine in the
literature on unit roots.

Averaging across ¢ we obtain
Zi = ZO—Ff‘Sft—i-Adt—i-gt, (12)

where z; = N1 Zf\il zi, A = N1 Ziil A;, and § = N1 Zf\il sit Writing , and
in matrix notation, under the null for each ¢ we have

AYi = F'-Yiy + ADaiy + Eiy, (13)
AZ; = FT; + ADA; + E;, (14)
AZ =FT' + ADA' + E, (15)

SWeighted cross section averages could also be used with appropriate granularity restrictions on the weights.



where F = (fl, fo, ... fT) , AD = (Adl, Ads, ..., AdT) ' with Ad;y = (0 1)’ Eiy =
(Eiyla €iy2, ...,Sin) AZ = (Azil, AZiQ, ceey AZiT),, E,L = (511,812, .‘.,EZ'T) with Eit = (Ezyt, zmt)
AZ = (A7, AZy, ...,AZ7) and E = N~} Zf\il E;. From , if T has full column rank m?,
follows that

~(AZ-ADA'-E)T(F'T) . (16)
However, as shown in Appendix |A| E N 0, and hence we obtain that
F-(AZ - ADA')T(I'T) ' Yo, (17)

This implies that under the null hypothesis linear combinations of AZ and AD provide valid
approximations of F for large N. This condition on the rank of the cross section average of the
factor loadings is stated as an assumption below:

Assumption 5 (rank condition): The (k+ 1) x m® matrix of factor loadings I'; is such that

rank(T) =m® <k +1, for any N and as N — oo, (18)

where I' = N1 Zf;l I';,and T A I', where T is a fixed bounded matrix with rank m?°.

Remark 5 [t is not necessary that y;; and (zi14,%i2t, .., Tikt) have the same cross-sectional di-
mensions. This is illustrated in Section[6l Also it is not necessary for the rank condition to hold
for all cross section units individually, but it must hold on average. For example, the rank con-
dition holds so long as a non-zero fraction of factor loadings, T';, are full rank as N — oco. Also,
s0 long as Assumption 5 is satisfied, we do not necessarily require that imy_ o, N1 Zf\il T,
exists and is positive definite, which is typically assumed for the identification of factors. See,
for example, Assumption A(ii) of Bai and Ng (2004) and Assumption 6 of Moon and Perron
(2004). Under our framework, a factor can be weak in the equation for y;; and strong in the
equations for X;:, and vice versa. Such cases do not invalidate the rank condition.

In view of the above we shall base our test of the panel unit root hypothesis on the ¢-
ratio of the Ordinary Least Squares (OLS) estimator of b; (b;) in the following cross-sectionally
augmented regression

Ayit = biyit_l + C;Zt_l + h;AZt + g;dt + €t (19)
The t-ratio of b; is given by
Ay My, _ VT =2k —5Ay My,

t;(N,T) = =
1 sy My, ) (AyMay) Y2 (v My,
0i \Y;,—1VYi,—1 (yi i YZ) Yi—1VYi—1

1/2°

where Ay; = (Ayit, AYio, s Ayir), yic1 = Wio Yit, o Yir—1)s M =Ip — W (V_V/W)fl W,

W = (W1, Wa, ...,V_VT),7 Wi = (Aig,dé,ié 1)/ 22 = Ay;l\_/IZAyZ/ (T — 2k —5), and M,; =1Ir —
W, (V_ngi)fl V_Vg, with W; = (W, yi7_1). For the intercept only case the degrees of freedom
adjustment for 67 is T'— 2k — 4. Using (16) in



where §; = T f"_)_l Vigs Qi = Qiy — A'§;, v; = (siy — E_)(Si) /i, it is also easily seen that
E(vvl) =17 + O(N71). Therefore,

MAy; = o;Mu;. (21)
From we also have
Zi 1 =T1rzig+S; T, + DA+ S, 1.
Taking cross-sectional averages gives
Z_=777)+S; 1 I"+D_1A"+S_4, (22)

where Sy _; = (0m07sf17--~75f,T71)/7 D_; = (02,dy,....,d7—1), Zs—1 = (2i0, Zi1, - ZiT—1)’,

Si—1 = (Opt1,8i1,,8i7-1)s Z1 = (70, Z1, ..., Zp—1) and S_; = NSNS, .
Similarly from

Yi—1=YioTr + Z_16; + D_10t; + 0;5; _1, (23)
where ~
$i—1 = (Siy—1 — S—10;) /03, (24)
Siy,—1 = (0, 8iy1, ... siy7T_1)', and Yo = yio — Z(0;. Therefore,
My; 1 = oiM5s; _. (25)
Using and (25)), t;(N,T) can be re-written as
t;(N,T) = viMei 1 (26)

= 12
viMivi 19 (21 wpe.
(755=5) 12 (87,1 Ms;

For fixed N and T, the distribution of ¢;(/N,T") will depend on the nuisance parameters through
their effects on M; and M. However, this dependence vanishes either as N — oo, for a fixed
T, or as N and T — o0, jointly. In addition, under Assumption 4 the effect of the initial cross
section mean, Zg, also vanishes asymptotically, either as N — oo for a fixed T, or as N and
T — oo, jointlym

The main results concerning the asymptotic distribution of ¢;(N,T) are summarised in the
theorem below. The proof is given in the Appendix for the case where d; = (1,0)'. The
results for the case where dy = (1,t)’ can be derived in a similar manner and are provided in a
supplement available from the authors on request.

Theorem 2.1 Suppose the series z;, fori=1,2,.... N, t = 1,2,....,T, is generated under (@
according to and dy = 1. Then under Assumptions 1-5 and as N and T — oo, such that
VT/N — 0, t;(N,T) given by (@ has the same sequential (N — oo,T — 00) and joint
[(N,T); — oo] limit distribution, is free of nuisance parameters, and is given by

1
/ Wi(r)dWi(r) — wl, Gl
CADF; = 0 (27)

1 1/27
</ W2(r)dr — nglewiv>
0

"The importance of initial values for power properties of panel unit root tests is discussed in Moon et al.
(2007), Breitung and Westerlund (2009), and Harris et al. (2010). A further investigation of this issue for the
case where the errors are cross sectionally dependent is clearly worthwhile, but will not be pursued in this paper.




where

0
1
1 [Wv(’l“)]ld’l“
1 1 /Ov
/ W ()] dr / W ()] [W ()] dr
0 0

Wi(r) is a scalar standard Brownian motion and W (1) is m°-dimensional standard Brownian
motion defined on [0,1], associated with ey, and vy, respectively. Wi(r) and W (r) are mutually
independent.

Gy =

)

See Appendix [A] for a proof.

Remark 6 Since the random variables CADFE; form an exchangeable sequence, conditional on
W, (r), CADF; and CADFj are independently distributed; see, for example, Theorem 1.2.2 in
Taylor et al. (1985, p.13). Unconditionally, however, they are correlated with the same degree
of dependence for all i # j.

Remark 7 When the factors are serially uncorrelated, namely £, = vy ~ I1D(0,1,)), (see
Assumptions 2 and 3), even for a finite T the limit distribution of t;(N,T) as N — oo, does
not depend on the factor loadings and o;. In the case where the factors are serially correlated
the limit distribution of t;(N,T) does depend on the serial correlation patterns of f, when T is
finite. However, as Theorem states, the dependence of t;(N,T') on the autocovariances of f
vanishes in the limit when T — oo and N — o0, jointly.

Remark 8 When the y;; process does not contain a linear time trend but the additional regres-
sors xj; (or some subset thereof ) do, the augmented regression (@ must include a linear trend
term in order to eliminate the effects of such a trend in X;. Alternatively, in such a case, it
can be shown that Theorem [2.1] holds when the additional regressors are replaced by a detrended
version of X;. See the empirical Section [6] for more details.

The panel unit root test can now be based on the average of the t-ratios
N
CIPSyr =N~') (N, T), (28)
i=1

which can be viewed as the cross-sectionally augmented version of the IPS test advanced in Im
et al. (2003). As in Pesaran (2007), it is theoretically more convenient to work with a suitably
truncated version of the CIPSyp test statistic defined by

N
CIPSjr=N"') #(N,T), (29)
i=1
where
ti(N, T), if —Kp< tZ(N,T) < Ko,
KZ) if tl(NuT) > K27
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and the truncation points K; and Ky are chosen using a normal approximation for ¢;(N,T).
Specifically, they are set as K; = —E(CADF;) — ® 1(¢/2)\/Var(CADF;), and Ky =
E(CADF;) + ®1(1 — ¢/2)\/Var(CADF;), where ®~1( . ) is the inverse of the cumulative
standard normal distribution function. K; and Ky can be obtained using simulated values of
E(CADF;) and Var(CADF;) with e = 1 x 107¢ for N = 200, and T' = 200. As with ¢;(N, T),
the limiting distribution of ¢}(N,T), denoted by CADF}, exists and will be free of nuisance
parameters. We have

CADF;, if — Ky <CADF; < Ko,
CADFr ={ -Ki, if CADF; < —Kj, (31)
Ko, if CADF; > Ko.

It is now straightforward to show that under the null hypothesis the asymptotic distribution of
CIPS* exists and is free from nuisance parameters. To see this, let

N
Anp = N Z [t; (N,T) — CADF}], (32)
=1

and note that CIPS%, = CADF" + A%, where CADF" = N~'S°Y CADF}. Also, by
Theorem and the relationships and , for each i, A} = t}(N,T) — CADF} —, 0,
as (N,T); — oo. Therefore, AN, = CIPSy,y — CADF" —p 0, as (N,T); — oo, since
E|t;}(N,T) — CADF}| < E|t;(N,T)| + E|CADF}| < K < oo, given the truncated nature of
the underlying random variables. Furthermore, since by construction, F |CADF| < K < oo
for each i, then conditional on Wy, (using Theorem 1.2.2 in Taylor et al. (1985, p.13)), we have

N

CADF"=N"'Y CADF; “3 E[CADF{|Wy,~K, < CADF; < Ky (33)
=1

+mo Ky — m Ky,

where m; = Pr[CADF} < —K;|Wy] and 7y = Pr[CADF} > K>|W,]. From we have
that CADF " converges in distribution as N — oo. Hence, it also follows that conditional on
Wy, the truncated statistic, CIPSy, will converge to the same distribution as the limiting
distribution of CADF". But due to the dependence of CADEF} over i, the limiting distribution
is not normal and its critical values need to be computed by stochastic simulation. Further for
suitably small choice of €, the simulated critical values of the untruncated statistic, CADF,
is very close to those of CADF . The reason for introducing the truncated version of CIPS
statistic is purely technical and is aimed at circumventing the difficult problem of establishing
that the untruncated statistics, ¢;(IN, T'), have moments. The computation of the critical values
of CADF is discussed in Section

3 The CSB Test

The cross-sectional augmentation approach can also be exploited in the case of other unit root

tests, such as the test proposed by Sargan and Bhargava (1983). In the single time series case,

the Sargan-Bhargava statistic was modified by Stock (1999) to allow for serial correlation. This

test has also been recently adopted by Bai and Ng (2010) in the panel context with good effects.
Recall that the data generating process for y;; under the null is given by

Ay = a;yAdt + 7;yft + Eiyt-
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For each i, the cross-sectionally augmented Sargan-Bhargava statistic, is given by
T
CSBi(N,T)=T"*> /67,
t=1

where

¢ T
U= &, and 67 = Y &5/[T — (k+1)],
j=1 t=1

and &;; are the OLS residuals from the regressions of Ay;; on Az, in the case of models with
an intercept only. If the underlying series are trended, £;; must be calculated from a regression
of Ay on an intercept and AZ;, with 62 computed as 62 = S\ &%/ [T — (k +2)]. The use
of cross-sectional augmentation as a way of dealing with the unobserved factors is justified
using , which renders &;; free of the nuisance parameters (namely the factor loadings). It is
now easy to prove that for each i, CSB;(N,T) statistic converges to a functional of Brownian
motions, which is independent of the factors as well as their loadingsﬁ The C'SB test is then
based on the cross-sectional average of the C'SB;(N,T') statistics, given by

N
CSByr=N"'> " CSBi(N,T). (34)
=1

Computation of the critical values for the C.SByp statistic using stochastic simulations is de-
scribed in Section (4.2

4 The Case of Residual Serial Correlation

In this section we relax Assumption 1, and consider the implications of residual serial correlation
for our proposed tests. In error factor models, residual serial correlation can be modelled in a
number of different ways, directly via the idiosyncratic components, through the factor(s), or
a mixture of the two. We focus on the serial correlation in the idiosyncratic errors and model
the residual serial correlation as

Ciyt = eic’iy,t—l—i_niyt’ ’0Z| < 17 for i = 172, 7N, t= 1,2, ...,CZ—'7 (35)

where (;,, is the idyosyncratic component of u;; = 'y;yft + Ciyt> and 7;,, is independently dis-
tributed across both ¢ and ¢, with zero means and variances, 0 < 01277 < K < o0.

To keep the exposition simple we confine our analysis to the first order stationary processes,
though the analysis readily extends to higher order processes. Under ([35) we have

Ayit = B; (i1 — gy di1) + g, Ady + i, £t 4 (0 (05), (36)

where ;,,(0;) = (1 —6;L)"'n;,;. We also assume the coefficients of the autoregressive process
to be homogeneous across i, although this could be relaxed at the cost of more complex math-
ematical details. Under the null that 8, = 0, with §; = 6 and d; = (1,0)’, reduces to

Ayit = 7;yft + Cz’yt(g)7 (37)

8 A proof of this is provided in a supplement, which is available from the authors on request.

11



and upon using under the null hypothesis we have
Ayir = 0Ay; 41 + iy (£ — 08 1) + 1. (38)

The individual CADF regressions can be written as
Ay; =biy; -1+ Wiih; + ¢, fori=1,2,...,N, (39)

where Wiy = (Ay; 1, AZ,AZ_y,77,Z_1), which is a T x (3k + 5) matrix. The t-ratio of b; in
regression is given by

Ay M1y — VT — (3k +6)Ay'M;1y; —
£(N,T) = Yi ’ 1Yi—1 = v ( ;;2) Yi _1}’, 1 - (40)
0 (YQ,_lMi1yZ‘,—1> (AyiMi1 pAy;) <ya_1Mi1Yi,—1)

where Mil = Ir — Wil(WhWﬂ)‘lwgl, 6’12 = [T — (3]{2 + 6)]_1Ay;1\_/1i1,pAyi and Mil,p =
Ir — Py (P Piy) 'P), Py = (Wi, y; ).
Combining @D with , similarly to ((14]) we obtain

AZ; = FT, + E;, (41)

where E; = (¢},(0),E},), with Ei = (€182, €ir), and (;,(0) =
(Qiyl(H),Ciyz(H),...,Cin(H)),, with the common factors F, and factor loadings I'; defined
as in the previous section. Taking cross section averages of we obtain AZ = FI' + E,
where as before E = N1 Zfil E. Therefore, assuming that the rank condition, , holds

1

F=(AZ - B)T ('F) . (42)
Writing in matrix notation and using we have
Ayz' = QAyi’_l + (AZ—HAZ_l)éz + 0iny, (43)

with

v = [my —(E - 9E—1)5i]/0im
and E(vv}) = I + O(N™!). Furthermore, from using it follows that

Yi—1 = QiyT7 + GioTT + Z_18; + 0inSic —1,

where

Sic—1 = (8ic,-1 — S-184) [oin,
Sic,—1 = (0, SiCly - 51(,T71>/ with Sict = ZZ:I Czys((g), S, = (§<,,1, S$7_1) with S¢,-1 =
N=UYN sic1 and §io = yio — 2.

The test statistic then becomes

! ./ o
'UiMil5i§,fl

t(N,T) = ——— o N1)2 _ 1/2°
v, M1 »v; o) M o
T—3k—6 8¢, —1Vhi18i¢,—1

(44)
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Theorem 4.1 Suppose the series z;, fori=1,2,.... N, t =1,2,...,T, is generated under (@
according to and |0| < 1. Then under Assumptions 1-5 and as N and T — oo, t;(N,T)
in has the same sequential (N — 00, T — o0) and joint [(N,T); — oo] limit distribution
given by obtained for 6 = 0.

The proof is provided in a supplement available from the authors on request.

For a general AR(p) error specification, the CADF regressions in (39) must also be aug-
mented by further lagged changes. More specifically, in this case the t;(N,T') statistic should
be computed as the OLS t-ratio of b; in the following p** order augmented regression:

Ay; =biyi—1+ Wiphip + €, (45)

where Wy, = (Ayi—1,Ayi -2, ..., Ayi —p; AZ,AZ_y, ... AZ_p;T7;Z 1), which is a T x (k +
2)(p + 1) data matrix. In the case where d; = (1,t)/, should include a linear trend term,
with the degrees of freedom term associated with the error variance adjusted accordingly.

Similarly it can be shown that the C'SB;(N,T') statistics have the same limiting distribution
as for = 0] and from the above it follows that in the case of first order residual serial
correlation, the cross section augmented regression should be augmented further with the term
AZ;_q, so that

Ayir = biAy; 11 + CigAZy + €1 AZ1 + €5,

which for higher order serial correlation generalises to

P P
Ayir =Y bieAyi—o+ Y ciyAZy_g + €ir, (46)
=1 =0

with .
CSBy(N,T) =T7*Y @ /6?,
t=1

where @i = Y25y &j, 67 = Yy &/[T —p— (p+1)(k +1)], and

p p
A~ 7 N —
€it = Ayir — g bieAyiz—¢ — E & yAzy_y.
=1 =0

In the case where d; = (1,t), should include an intercept term, with the degrees of freedom
term associated with the error variance adjusted accordingly.

4.1 Uncertainty Surrounding the Number of Factors

So far we have considered the case in which the true number of unobserved factors, m?, is given.
In practice mP is rarely known, although it is reasonable to assume that it is bounded by a finite
integer value, mmyax. In the case of the proposed test there are two possible ways that one could
proceed when m? is not known.

One approach would be to estimate m” using a suitable statistical technique such as the
information criteria proposed by Bai and Ng (2002). Most existing methods of estimating m°
assume that the unobserved factors are strong, in the sense discussed in Chudik, Pesaran and

0

9A proof is included in a supplement available upon request from the authors
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Tosetti (2011). However, in many empirical applications we may not be sure that all unobserved
factors are strong. Bailey, Kapetanios and Pesaran (2012) propose measuring the strength of
the factors by the exponent of the cross-section dependence, «, defined as In(n)/In(N), where
n is the number of non-zero factor loadings. The value @ = 1 corresponds to the case of a
strong factor, while values of « in the range (1/2,1) correspond to factors that are semi-strong.
Bailey et al. (2012) estimate the exponent of the cross-sectional dependence for macroeconomic
and financial series of interest, and find that mostly it is less than one. This raises interesting
technical issues concerning the determination of the number of factors and if they are strong,
as assumed by the standard theory.

Alternatively, assuming that there exists a sufficient number of additional regressors that
share at least m® — 1 of the factors included in the model for y;;, one could set k = muypax — 1
(where m® < mpax), and use the k additional regressors for augmenting the regressions when
computing CIPS and CSB statistics. This approach is likely to work in practice when myax
is relatively small (2 or 3), and does not require all the factors to be strong. However, when
Mmax 18 believed to be large, the CIPS and CSB tests are likely to lose power due to loss
of degrees of freedom. More importantly, it might be difficult to find a sufficient number of
additional regressors to deal with the adverse effects of the unobserved factors on our proposed
test statistics [

4.2 Computation of Critical Values of C'IPS and C'SB Tests

Critical values for the CIPS and C'SB tests are obtained by stochastic simulation. We propose
to use critical values which depend on the values of k, N, T', and lag-augmentation order, p,
since they are expected to provide much better finite sample approximations as discussed in Im
et al. (2003). To compute the critical values, y;; is generated as

Yit = Yit—1 + Eiyt, 1=1,2,.,N;t=1,2,....,7T, (47)

where g4, ~ #dN(0,1) with y;0 = 0. The 4t element of the k x 1 vector of the additional
regressors I, is generated as

Tijt = Tijt—1 + Eixjts L= 1725 7N7 J = 1’27 )k) t= ]-a 25 ""T7 (48)

with Eixjt ~ iidN(O, 1) and Tij0 = 0.

For the CIPS test the individual ¢;(N,T") statistic is calculated as the ¢-ratio of the coeffi-
cient on y; ;1 of the CADF regression of Ay;; on an intercept, y; 11, 21, AZ;, AZy 4, ..., AZ;_,
and Ay;y q,...,Ay;, , under Case I where the model only contains an intercept, and Case II
where the CADF regressions also include a linear time trend. The CIPS statistic is then
computed as CIPSyr = N1 Zf;l ti(N,T).

For the CSB test, the individual C'SB; statistic is computed as CSB; = T2 Zthl éit/c}?,
with 4; = 23:1 éijand 62 = ST &2 /[T —p— (p+1)(k +1)], where é; are the estimated
residuals from the regression of Ay;; on Ay g1, ..., Ayi—p and AZj, Az 4, ..., AZ;_,, under Case
I. Under Case IT, 62 = Zthl ¢%/ [T — (p+1)(k + 2)], where é;; are the estimated residuals from
the regression of Ay;; on an intercept, Ay;s—1,..., Ayi—p and Az, AZ; 4, ...,AZ;_,. The CSB
statistic is computed as CSBy7 = N1 Efil CSB;.

10Tn the presence of uncertainty regarding the integration and/or the cointegration properties of the additional
regressors, one could employ the bounds testing approach proposed by Pesaran et al. (2001). A detailed discussion
of such an approach is outside the scope of the present paper.
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The 100a% critical values of the CIPS and CSB statistics are computed for N, T =
20, 30, 50, 70, 100,200, £ = 0,1,2,3 and p = 0,1, ..., 4, as their a quantiles for o = 0.01, 0.05,0.1
based on 10,000 and 50,000 replications, respectivelyE EI, |E| The (N, T,p, k) specific critical
values for both tests are reported in Appendix B (CIPS and C'SB Critical Value Tables).

It is worth noting that the reported critical values of the C'IPS test statistics depend on k,
and not on m®. When m® < k41 the asymptotic distribution of the CIPS test depends on m?,
but the critical values depend on the number of additional regressors actually included when
simulating the critical values. A similar situation also arises when critical values are computed
for standard DF statistics with deterministics, using stochastic simulations. When carrying out
the simulations what matters is the nature of the deterministic variables and the number of
additional I(1) regressors that are added to the augmented DF and SB regressions.

5 Small Sample Performance: Monte Carlo Evidence

In what follows we investigate by means of Monte Carlo simulations the small sample properties
of the CIPS and CSB tests defined by and , using the (N, T, p, k) specific critical values
which are reported in Appendix BE Both the C'IPS and CSB tests reject the null when the
value of the statistic is smaller than the relevant critical value, at the chosen level of significance.

5.1 Monte Carlo Design

In their Monte Carlo experiments Bai and Ng (2010, Section 5) set m® = 1 and do not allow
for serial correlation in the idiosyncratic errors. Here we consider a more general set up and
allow for two factors (m® = 2), and also consider experiments where the idiosyncratic errors
are serially correlated. Following Bailey, Kapetanios and Pesaran (2012) we generate one of the
factors in the y;; equations as strong and the second factor as semi-strong. Accordingly, the
data generating process (DGP) for the {y;;} is given by

Yit = diyt + piyi,t—l + fyiylflt + 7iy2f2t + Eiytai - 17 27 ceey Nvt - _497 weey T7 (49)

with ;50 = 0, where v,;,; ~ #idU[0,2], for i = 1,2,..., N; 7,0 ~ #dU|[0,1] for i = 1,...,[N?],
and ;9 = 0 for i = [N+ 1,[N9]+2, ..., N (where [-] denotes the integer part); fy; ~ iidN (0, 1)
for ¢ = 1,2, gjyr ~ iidN(0,07) with 02 ~ idU[0.5,1.5]. The exponent of cross-sectional
dependence of the first (strong) factor is 1, and for the second (semi-strong) factor, it is set to
0.75, guided by the empirical results reported in Bailey et al. (2012). See, also Chudik et al.
(2011).

At the stage of implementing the tests, we assume that mma.x = 2, and hence set k =
Mmax — 1 = 1. The additional regressor, z;;, is generated as

Azt = diz + Vi1 f1t + it (50)

1'We used 50,000 replications to obtain the critical values of the C'SB test statistic, since we found that its
critical values based on 10,000 replications were in certain instances not precise enough especially for small sample
sizes.

121t is also possible to simulate the critical values directly using by replacing the integrals of the Brownian
motions with their simulated counterparts. Our analysis suggests that the critical values obtained from this
procedure closely match the ones tabulated in the Appendix of the paper.

1310 principle it might be possible that N and T specific critical values could also be used for the other tests
proposed in the literature but such an exercise is beyond the scope of the present paper.

"Monte Carlo comparison results with several panel unit root tests proposed in the literature are included in
a supplement available from the authors upon request.
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where
Eint = PigCizt—1 + Dixty, Tigt ~ 1WdN (0,1 — p2), (51)

i=1,2,..,N;t = —49,...,T, with €;; _50 = 0, and p;, ~ 1idU[0.2,0.4]. The factor loadings in
are generated as v;,; ~ 11dU]|0, 2], so that

1 lN—O.25
E(Fi):<1 "0 )

and hence the rank condition is satisfied when N is finite, but fails when N — oo. In this
way we also check the robustness of the CIPS and CSB tests to failure of the rank condition
for sufficiently large NNV.

We considered two specifications for the deterministics in y;; and z;z. For the case of an
intercept only, diy = (1 — p;)ayy with agy ~ iidN(1,1) and d;, = 0; for the case of an intercept
and a linear trend, diyr = p;, + (1 — p;)d;t with p;,, ~ iidU[0.0,0.02] and &; ~ iidU[0.0,0.02],
and d;, = d;; with 0,5, ~ 4dU[0.0,0.02].

To examine the impact of the residual serial correlation on the proposed tests we consider
the DGPs in which the idiosyncratic errors €;,; are generated as

(52)

Eiyt = PiyeCiyt—1 + (1 — p%ys)l/zniyt, for t = —49, —48,...,0,1,..., T, (53)

with 4,50 = 0, where 1, ~ iidN(0,0%), and o7 ~ #dU[0.5,1.5]. We considered a positively
serially correlated case, p;,. ~ @dU [0.2,0.4], as well as a negatively serially correlated case,
Piye ~ 14dU[—0.4,—0.2]. The first 50 observations are discarded.

In the case where the errors of y;; are serially correlated, lag augmentation is required for
the asymptotic validity of the C1PS and C'SB tests. In all Monte Carlo results that follow, lag
augmentation is performed and selected according to p = [4(T/ 100)1/4 | (where [-] denotes the
integer part).

The parameters y,0i,y, Oizs Piyes Vig1Viy2s Pis Vizls Pigs and o are redrawn over each
replication. The DGP is given by with p; = p = 1 for size, and p; ~ 1dU[0.90,0.99]
for power. All tests are conducted at the 5% significance level. All combinations of N, T =
20, 30, 50, 70, 100, 200 are considered, and all experiments are based on 2,000 replications each.

5.2 Results

Size and power of the tests are summarised in Tables 1 to 3. Table 1 provides the results for
the panel with serially uncorrelated idiosyncratic errors for the intercept only and linear trend
cases. For the case with an intercept, the CIPS and CSB tests have the correct size for all
combinations of sample sizes, even when 7' is small relative to V. In terms of power, the CSB
test has satisfactory power which is almost consistently higher than that of CIPS. For the case
with a linear trend, again the CIPS and CSB tests have the correct size for all combinations of
sample sizes and their power rises in N and T, as to be expected. Power discrepancies between
the CSB and CIPS tests are less pronounced in this case, with the former still showing higher
power than the latter.

Table 2 presents the results for the case where ¢;,; are positively serially correlated for
the intercept only and linear trend cases, respectively. The results for the case where g;,; are
negatively serially correlated are summarised in Table 3. The size and power of the CIPS and
CSB tests are not much affected by residual serial correlation once the underlying regressions
are augmented with lagged changes as in and . The proposed rule of choosing the lag
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augmentation order p = [4(T/ 100)1/4 ] seems to work well in our experimental designs, whether
serial correlation is present in the data generating process or not.

Overall, the CIPS and C'SB tests do not display any size distortions for all values of N
and T, irrespective of whether the idiosyncratic errors are serially correlated or not, with the
CSB test displaying higher power than the C'IPS test for smaller T'.

6 Empirical Applications

As an illustration of the proposed tests we consider two applications. One to the real interest
rates across N = 32 economies, and another to the real equity prices across N = 26 markets. For
both applications we employ quarterly observations over the period 1979Q2 — 2009Q4 (i.e. 123
data points). Under the Fisher parity hypothesis, real interest rates, defined as the difference
between the nominal short-term interest rate and the inflation rate, are stationary. The second
application is chosen as it is generally believed that real equity prices are I(1), and it would be
interesting to see if the outcomes of the tests are in line with this belief.

As noted in Section and as with other panel unit root tests that are based on principal
components, we need to decide on mpyax. In the present application we set my.x = 4. This
choice is based on the recent literature that argues that 2 to 6 unobserved common factors are
sufficient to explain variations in most macroeconomic variables. See, for example, Stock and
Watson (2002) and Eickmeier (2009), among others. This suggests that at most three additional
I(1) regressors (k = mmax — 1 = 3) are needed for the implementation of CIPS and C'SB tests.
The set of regressors that are likely to share common factors with real interest rates, r;i — Tit,
and real equity prices, eq;:, are as follows:

Yit Additional regressors (X;;)
Real Interest Rates (N = 32) | r5 — mi | poily, 7%, eqit, epit, gdpit
Real Equity Prices (N = 26) eqit poily, v mit, epit, gdpit

where

r = 0.25 % In(1 + R5/100), 7y = pir — pir—1 with py = In(CPI;), poil; = In(POILy),
riLt =0.25xIn(1 + RiLt/IOO), epit = ey — pix with e = In(Ey), eqiy = In(EQq/CPly),
gdpit = ID(GDP”/CPI”),

Rﬁ is the short-term (three month) rate of interest, measured in per annum in per cent in
country i at time ¢, CPI; the consumer price index, POIL; the price of Brent Crude oil, R{;
the long-term rate of interest per annum in per cent (typically the yield on ten year government
bonds), Ej;; the nominal exchange rate of country i in terms of US dollars, EQ;; the nominal
equity price index, and GD Py the nominal Gross Domestic Product of country ¢ during period
t in domestic currencyE

When testing for unit roots in real interest rates, pft = rist — i, we consider ADF regressions
without linear trends, and detrend the possibly trended variables poil:, eq;t, ep;: and gdp;:, before
the ADF regressions are augmented with their cross-sectional averages. See, also Remark [§
These detrended components are computed as residuals from the regressions of poil;, eq;t, epi

15The data are publicly available at: http://www-cfap.jbs.cam.ac.uk/research/gvartoolbox/download.html. A
detailed description of the data and sources can be found in the Appendix of the user guide of the gvartoolbox
by Smith, L.V. and A. Galesi (2011), available at the same web address.
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and gdp; on a linear deterministic trend which does not affect the I(1) properties of these
variables.

The 32 countries considered are: Argentina, Australia, Austria, Belgium, Brazil, Canada,
Chile, China, France, Finland, Germany, Indonesia, India, Italy, Japan, Korea, Malaysia, Mex-
ico, Netherlands, New Zealand, Norway, Peru, Philippines, Spain, Sweden, Switzerland, Singa-
pore, South Africa, Thailand, Turkey, UK, and the US. Note that not all components of x;; are
available for all countries due to data limitations. In particular, there are 26 series for eq;:, 31
series for ep;, and 18 series for TZ-IZ .

For muyax = 4, we consider the application of the CIPS and C'SB tests allowing the number
of factors, m®, to take any value between 1 and 4, as a way of dealing with the sampling
uncertainty associated with basing our tests on a particular choice of mOE To check the
robustness of the test outcomes to the choice of the additional regressors used in augmentation,
we present the results of these tests for all possible combinations of candidate regressors. For
m® = 1 no additional regressors are required for augmentation apart from 7, for m® = 2 one
additional regressor is required, and so on. We set the lag order to p = [4(T/ 100)Y/ 4], as
discussed in the previous section.

The test results for the real interest rates are reported in Table 4. As can be seen, the CIPS
test strongly rejects the null hypothesis of the panel unit root at the 1% level, for all values
of mY, and for all combinations of candidate regressors. The test results based on the CSB
test are very similar, although there are some exceptions. The C'SB test does not reject when
m® = 3 with x;; = (poily, 7F), and when m® = 4 with x;; = (poily, 77, eq;), xix = (poily, 7L, ep;)
and x;; = (poily, FtL ,gdp;), out of the twenty possible combinations. These results suggest that
for a significant number of countries the Fisher parity holds. This is in line with recent findings
reported in Westerlund (2008) using panel cointegration tests.

The results of panel unit root tests applied to real equity prices are summarised in Table 5.
The test outcomes are generally as to be expected. The null hypothesis of a panel unit root in
real equity prices cannot be rejected in most cases. When the C'IPS test is used, the null of the
panel unit root is rejected once at the 1% level (out of 26 cases), and 6 times at the 5% level.
There are fewer rejections when the C'SB test is used, namely 2 out of 26 cases. Overall, the
test results are in line with the generally accepted view that real equity prices approximately
follow random walks with a drift.

We also applied other panel unit root tests proposed in the literature. Specifically, we
consider the pooled test statistic P; of Bai and Ng (2004) based on the PANIC residuals, a panel
version of the modified Sargan—Bhargava test (denoted by PM SB) and a PANIC residual-based
Moon and Perron (2004) type test (denoted by P,), both of which are proposed by Bai and
Ng (2010), the ¢; statistic of Moon and Perron (2004) for the case of an intercept onlym a
defactored version of the optimal invariant test of Ploberger and Phillips (2002), denoted by
PP, for the case of an intercept and a linear trend, and the defactored version of the common

16Setting Mmax = 4, and using the information criterion ICy proposed by Bai and Ng (2004), the number of
factors selected was m° = 3 for the real interest rates, and m° = 4 for the real equity prices. The last result
suggests that the number of factors in real equity prices could be even higher than 4, but we did not consider
Mmax > 4 given the number of observations available and the tendency of IC4 selection criteria to over-estimate
the number of factors, particularly if some of the factors are not strong.

'"The t} test of Moon and Perron (2004) is not included since they summarise the experimental results saying
“in almost all cases, the test based on the t; statistic has better size properties.” Similarly, the P, test of Bai
and Ng (2010) is not included.
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point optimal test of Moon, Perron and Phillips (2011), denoted by 6156 Details of the

computation of the statistics P, B, t;;, PMSB, PP, and CPO are provided in a supplement,
which is available from the authors on request.

The results are summarised in Table 6. For computation of the P statistic, the lag order
p= [4(T/ 100)1/4 ] was used. Application of these tests to real interest rates yield mixed results.

The P, t; and CPO tests strongly reject the null hypothesis at the 1%, for all values of mY,
which is in accordance with the results of the CIPS and CSB tests. In contrast, the P; test
does not reject the null hypothesis, irrespective of the number of factors considered. Results
for the PMSB test are mixed. It rejects the null at the 5% level for m® = 1 and 4, but fails
to reject the null when m® = 2 and 3, illustrating the sensitivity of this test to the assumed
number of factors. For real equity prices almost all the tests considered show strong rejections
of the null hypothesis for all values of m°, which conflicts with the generally accepted view that
real equity pri/cef/approximately follow random walks with a drift, the exceptions being the P,

the PP and CPO tests (the latter two only when m® = 4), and the PMSB test only when
m0 = 1.

7 Concluding Remarks

This paper considers two simple panel unit root tests that are valid in the presence of cross-
sectional dependence induced by m' stationary common factors. The first test, CIPS, is an
extension of the test proposed in Pesaran (2007) and is based on the average of t-ratios from
ADF regressions augmented by the cross section averages of the dependent variable as well as
k additional regressors with similar common factor features. The second test, C'SB, is based
on averages of cross-sectionally augmented Sargan-Bhargava statistics. Initially we develop
the tests assuming that m°, the true number of factors is known, and show that the limit
distributions of the tests do not depend on any nuisance parameters, so long as k > m° — 1.
To deal with the uncertainty that surrounds the value of m in practice, we propose to either
choose the number of additional regressors as k = mmpax — 1, where mpax < mQ®, which avoids

"8The P; test is defined in Section 2.4 of Bai and Ng (2004, p.1140), the t} test in Section 2.2.2 of Moon
and Perron (2004, p.91), the P, and PMSB tests in Section 3, p.1094, eq. (9) and Section 3.1, p.1095, eq.(11),
respectively of Bai and Ng (2010), the PP test in Section 5.3.1, p.429, eq. (20) in Moon et al. (2007), and
the 6’—1\36 test in Section 2.2, p.4; Section 2.3, p.5, of Moon et al. (2011). In computing the 6’—]\36 test statistic
we set the constant term (the ‘¢’ term in Moon et al.) to unity. Also, following Moon and Perron (2004), the

long-run variances for the PMSB, Py, t;, PP and CPO test statistics are estimated by means of the Andrews
and Monahan (1992) method using the quadratic spectral kernel and prewhitening. See Moon and Perron (2004)
for further details.

YWe are grateful to Roger Moon and Benoit Perron for helpful email correspondence with regard to the
implementation of the tests in Moon et al. (2007). We would also like to thank Serena Ng for generously
providing her matlab codes for computation of the test statistics proposed by Bai and Ng (2010).

20The theory of the CPO test is developed by Moon et al. (2007) for the serially uncorrleated case, but
it is claimed (see Section 6.4 in Moon et al. (2007, p. 436)), that replacing variances in their C PO statistic
with long-run variances should result in a test with a correct size under quite general short memory error
autocorrelations. However, our preliminary Monte Carlo experiments suggested that this claim might not be
valid. Upon communicating these results to the authors, Moon, Perron and Phillips provided us with another
modification of the C'PO test that appropriately allows for residual serial correlation (see Moon, Perron and
Phillips, 2011). In addition to replacing the variance of the errors by the long run variance, in this recent paper
Moon et al. also adjust the centering of the statistic to accommodate for the second-order bias induced by the
correlation between the error and lagged values of the dependent variable. We only consider this modified C PO

test, denoted by 6}’6
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having to estimate m?, or to estimate m® consistently using suitable selection criteria.

Small sample properties of the proposed tests are investigated by Monte Carlo experiments,
which suggest that the proposed CIPS and CSB tests have the correct size across all combi-
nations of N and T considered. The power of the CSB and CIPS tests rises in N and T and
reaches quite acceptable levels when N and T are sufficiently large. For smaller T', the C'SB test
has higher power than that of CIPS, and should thus be preferred in such cases. In empirical
applications it is important that the tests being considered have the correct size, otherwise their
use could result in misleading conclusions.

The paper also applies the various panel unit root tests to real interest rates and real equity
prices across countries. All tests, except the P; test of Bai and Ng (2004) and the PM SB test
of Bai and Ng (2010) reject the null of a unit root in real interest rates, which is in line with
panel cointegration tests of the Fisher parity equation. For real equity prices, only our proposed
tests, CIPS and CSB, and the P; test do not reject the null of panel unit roots in real equity
prices across, which is in accordance with the generally accepted view that real equity prices
approximately follow random walks with a drift.

For our tests, following the discussions in Im et al. (2003), we propose to use critical values
which depend on the values of k, N, T, and lag-augmentation order, p, as they are expected to
provide much better finite sample approximations.

The good small sample results reported for the CIPS and CSB tests comes at a cost, as
the tests require the existence of additional I(1) regressors that share the same common factors
with 7;;. We have argued that this might not be a problem when m?, the true number of factors
in y;, is not too large. For example, if m® < 2, only one additional regressor is needed at
most to apply the test, and this is unlikely to be a problem in practice, where most macro and
finance series are often driven by a small number of common factors. For larger values of m°
a more careful consideration of the testing problem is required. In such cases it seems more
appropriate if the problem of panel unit root testing is considered as part of a more general
problem, where robustness of the panel unit root test outcomes to alternative assumptions
regarding the integration and cointegration properties of the additional regressors is considered
and evaluated.

Appendix A Mathematical Proofs

Lemmas

Lemma A.1 Under Assumptions 1-5

e, B/T = O, (T*WN*W),s;y,_liz/T:O,, (N*W), uniformly over i
§ ,ei,/T = O, (N’1/2) Sy 18.4/T% =0, (N*W) , uniformly over i
EE/T = 0,(N"'), SL.E/T=0,(N"),8.,84/T*=0,(N")
FE/T = 0, (T‘1/2N_1/2), S \F/T =0, (N‘l/z)
E/T = O, (T’1/2N’1/2), S, 7r/T = O, (T/N)
S, B/ = 0, (N12), S8 o (v,

Similar order results hold for the case of serially correlated errors.

Proof. See Appendix A.1 of Pesaran (2007). m
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Lemma A.2 Consider a full column rank m X n matrizx A (m > n) and an n X n non-singular symmetric matriz
Q. Then A'(AQA)TA = Q7! where (AQA')T is the Moore-Penrose inverse of AQA’.

Proof. Using the fact that ATA =1, and A’A’"T=1, and that (AQA)T = A’TQ AT (see Magnus and
Neudecker 1999, p.34), A'(AQA)TA = A’/ATQ'ATA = Q7! as required. =

Proof of Theorem 2.1k

In the case where d; = 1, using we have

viM$; 1
ti(N,T) = T , Al
( ) viM;v; 1/2 §7 M 1z ( )
(T—Qk—4) T2
where v = (€iy — BS;)/0i, and 81 = (sé%_l —8_.16:) Joi, N —IT - W (WW)~ "W/, and W =

(AZ Tr, 2 ) Also, since d =1, fr_om and we have AZ=FT'+Eand Z_, = = 771Z+ Sy, 4I"+S_,.
Let Wy = ( ,Tr,Sf,-1) and B = (E, OT,S_l) SO that

' o o
W' = QnW/ + &', where Qn = 0 1 o0 (A.2)
(2k+3)><(2m0+1) 0 Zo T
Consider the numerator of , and note that
U;l\_/[§¢7,1 'v;gi,fl = =l -1 BW,EL,l
Tot = Pl (0{WB) (BW WB) === (A.3)
T2, 0 . . . .
where B = 1 . Using Lemma|A.1|together with the results in Proposition 17.1
(2k+3) X (2k+3) 0 T Tkt

of Hamilton (1994; p.486) we have

ol / 1
S = oo, () MR [wiam, (A.)
where W;(r) is a standard Brownian motion defined on [0,1], associated with ;. Using it follows that
BW'v; = BQyW/v; + BE v, (A.5)
BW's; /T = BQyW}s, _1/T +BE'S; _1/T, (A.6)
BW'WB = BQ,W;W;QyB + BQ,W}EB + BE'W,;QyB + BE'EB. (A7)

From Lemma it is easily seen that, as (T, N) 2, 00 with \/T/N — 0,

(N,T); (N,T);

BE'v; "7 0, BE's _ /7 "2 0, BE'EZB 2V 0, and BQ W;EB "1V 0. (A.8)
T7Y%1,0,4 0 ) ) o
Define C = 1 , so that, using Lemma [A.1)and the results in Proposition
(2m041) x (2mO+1) 0 T 1,0
17.1 and 18.1 of Hamilton (1994; p.486, p.547-8), as (T, N) % oo with vT/N — 0 we have
BQyW/}v; = QvCW/v; i QY;y, (A.9)
° ° T
BQ,W)si_1/T = QvCW/é /T “2 Qr,,, (A.10)
(N,T);
BQyW;W;QyB = QyCW;W,;CQy =" QY,Q/, (A.11)
where
_ . o APWL(D) - 0 Y 0 . (1 0
Q = phmQw, ﬁ’f*( tww )T A TS0 asauay )0 AT =0 oA, ) AY
1
Wi(1) W, (r)dr 1 / (W (r)] dr
Wiv /1 (W ()] Wi (r) y Tiv = 170 , Gy = 1 )
, Weldw: | W wiar | / (W (r)] (W (1) dr



Ay is defined by , W,,i(1) is defined such that T-Y2 3" viei: /0 = W, i(1) with v, defined as in
Assumption 2, W (r) is an m°-dimensional standard Brownian motion associated with v; defined on [0,1], and
Wi(r) is defined as above. These two groups of Brownian motions (W (r), W;(r)) are independent of each other.
Collecting the results from to , as well as using Lemma (since Q has full column rank) we have

(viWB) (BW'WB) ' (1'BW's, 1) 22 9,,Q (QT,Q)" Qx,, (A.13)
= Y kip = Wi AT (AJGVAT) T A = wiy Gy i
Therefore, together with , and , as (T, N) 7, 0o with VT/N — 0 we have

INAS. . 1
O OB [ W i) - iy G (A14)
0

In a similar manner, noting that as (T, N) 7, 0o with VT/N =0

§i _15i,—1 _ Siy _1Siy,—1 1 WD [
T 52T +0n N = /oWi (ryr. A
it follows that A )
§; 1 MS§; 1 (N,T); -
%71 = / Wi (r)dr — iy Gy iy (A.16)
0

Ngxt7 consider vél\_/Iiv,;/(T — 2k — 4). Note that M, v; are the residuals from _the regressio_n of v; on W; =
(W, yiy_l), but from equation yi,—1 has components (Z_1,77,5;,-1). As (Z_1,77) C W, but §; _1 is not
contained in W, we have M;v; = Mjv;, where M} = Ir—H; (I?IEIjL')_1 H; with H; = (W,3; _1). Thus

viMjv; vl (viH;B.) (B*I:IQP_L'B*)_I (B.Hjwv;) A1T
T-2k—4 T-2k—4 T—2k—4 ’ (A.17)
B 0 . .
where B. = _1 |. First note that using Lemma |A.1{ we have
(2k+4) x (2k+4) 0 T
Vv /(T — 2k — 4) 5 1, (A.18)

We also have that

=/ X!/ vx =,/ o
B.H v, — ( BW'v; ),B*ﬁiﬁiB* _ ( BWWB BW'; /T )

§; _qv/T § A WB/T 8 18, 1/T?

so then using (A.4), (A.15)), and following the same line of analysis as for the results in (A.13]), it can be seen
that ('U;Ij]:iB*) (B*ItIQIinB*)f1 (B*Ijlgvi) in 1) will tend to a function of standard Brownian motions as
(T,N) L oo with v/T/N — 0. Thus, dividing by T — 2k — 4 makes the second term of |) asymptotically

Nite, (N,T);
negligible, and together with the results in (A.17)) and (A.18) we have that vV, j)] 1. Thus, as (T, N) L oo
with VT /N — 0,

T—-2k—4

VM /(T — 2k — 4) 227 1, (A.19)

Finally, from the results in l) l) 1' and 1' we have, as VT /N — 0,
1
. . —w 1l
o, [ W) = ol G

tl(N7 T) = 1 1/2°
(/ W2(r)dr — TI';vG;lﬂ'iv)
0

as required. Condition \/T/N — 0 is satisfied so long as T/N — ¢, as N and T — oo, where § is a fixed finite
non-zero positive constant. For sequential asymptotics, with N — oo, first, we note that for a fixed T and as
i.l

N,T); )
|D continues to hold (replacing D5, by ﬂﬂ) Then,

(A.20)

N — o0, Q = plimy_, . Qn, and by Lemma
letting T' — oo yields (A.20).
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1 Value Tables for CIPS and CSB tests
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Table B1 Continued
k=3

1% (CADF) 5% (CADF) 10% (CADF)
p [ (T,NY| 20 30 50 70 100 200 | 20 30 50 70 100 200 | 20 30 50 70 100 200
20 [-2.99 2.9 -2.82 -2.76 2.75 2.71[-2.73 -2.68 -2.63 -2.58 -2.57 -2.54|-2.60 -2.56 -2.52 -2.49 -2.48 -2.45
30 [-3.00 -2.89 -2.85 -2.81 -2.78 -2.73|-2.79 -2.73 -2.69 -2.66 -2.64 -2.61|-2.68 -2.63 -2.60 -2.57 -2.56 -2.54
0| 50 |[-3.01 -2.95 -2.8%8 -2.86 -2.82 -2.80|-2.83 -2.79 -2.74 -2.72 -2.70 -2.69 |-2.73 -2.70 -2.65 -2.64 -2.63 -2.62
70 |-3.04 -2.97 -2.89 -2.86 -2.84 -2.82|-2.86 -2.81 -2.77 -2.74 -2.72 -2.71|-2.76 -2.73 -2.69 -2.67 -2.66 -2.65
100 |-3.05 -2.97 -2.92 -2.88 -2.86 -2.83|-2.87 -2.82 -2.78 -2.76 -2.74 -2.73|-2.78 -2.74 -2.71 -2.69 -2.68 -2.66
200 |-3.07 -2.99 -2.92 -2.90 -2.87 -2.85|-2.89 -2.84 -2.80 -2.79 -2.76 -2.75|-2.80 -2.76 -2.72 -2.71 -2.70 -2.68
20 [-2.91 -2.77 -2.66 -2.58 -2.52 247 -2.55 247 -2.39 2.34 2.30 -2.26 | -2.37 -2.30 2.25 2.20 -2.19 -2.15
30 |-2.86 -2.77 -2.69 -2.67 -2.62 -2.59|-2.63 -2.56 -2.52 -2.49 -2.46 -2.42|-2.50 -2.45 -2.41 -2.39 -2.38 -2.35
1] 50 |-2.94 -2.88 -2.80 -2.78 -2.74 -2.72|-2.75 -2.69 -2.65 -2.62 -2.61 -2.59|-2.65 -2.60 -2.56 -2.54 -2.53 -2.52
70 |-2.99 -2.90 -2.85 -2.82 -2.79 -2.77|-2.80 -2.75 -2.70 -2.67 -2.67 -2.65|-2.70 -2.66 -2.62 -2.60 -2.59 -2.58
100 |-3.01 -2.93 -2.87 -2.84 -2.83 -2.80|-2.83 -2.78 -2.74 -2.72 -2.70 -2.68 |-2.73 -2.70 -2.66 -2.64 -2.63 -2.61
200 |-3.05 -2.96 -2.90 -2.89 -2.86 -2.82|-2.87 -2.82 -2.77 -2.76 -2.74 -2.72|-2.78 -2.74 -2.70 -2.69 -2.68 -2.66
20 - - - - - - - - - - - - - - - - - -
30 [-2.59 -2.47 -2.39 -2.35 -2.31 -2.27|-2.34 -2.27 -2.20 -2.17 -2.15 -2.11|-2.20 -2.15 -2.10 -2.07 -2.05 -2.02
2| 50 |-2.81 -2.74 -2.65 -2.63 -2.58 -2.58 |-2.60 -2.55 -2.50 -2.46 -2.45 -2.44|-2.48 -2.45 -2.40 -2.38 -2.37 -2.35
70 |-2.90 -2.81 -2.76 -2.72 -2.69 -2.67 |-2.70 -2.65 -2.60 -2.57 -2.57 -2.54 |-2.59 -2.55 -2.52 -2.49 -2.49 -2.47
100 |-2.96 -2.88 -2.81 -2.78 -2.75 -2.72|-2.76 -2.71 -2.67 -2.64 -2.63 -2.61 |-2.67 -2.62 -2.59 -2.57 -2.55 -2.54
200 |-3.01 -2.94 -2.87 -2.85 -2.83 -2.79|-2.84 -2.79 -2.74 -2.73 -2.71 -2.69|-2.75 -2.70 -2.66 -2.66 -2.65 -2.63
20 - - - - - - - - - - - - - - - - - -
30 |-2.51 -2.35 -2.19 -2.14 -2.09 -2.02|-2.15 -2.04 -1.96 -1.92 -1.89 -1.84|-1.98 -1.91 -1.85 -1.81 -1.78 -1.75
3] 50 |-2.72 -2.62 -2.54 -2.52 -2.48 -2.46|-2.49 -2.43 -2.37 -2.34 -2.34 -2.31|-2.37 -2.33 -2.28 -2.26 -2.25 -2.23
70 |-2.82 -2.77 -2.71 -2.66 -2.63 -2.60 |-2.63 -2.57 -2.53 -2.50 -2.49 -2.47 |-2.51 -2.48 -2.44 -2.41 -2.41 -2.39
100 |-2.92 -2.83 -2.76 -2.73 -2.71 -2.68 |-2.72 -2.67 -2.62 -2.59 -2.58 -2.56|-2.62 -2.58 -2.54 -2.52 -2.51 -2.49
200 |-3.00 -2.94 -2.85 -2.84 -2.82 -2.78|-2.82 -2.77 -2.72 -2.71 -2.69 -2.67|-2.72 -2.68 -2.64 -2.64 -2.62 -2.61
30 - - - - - - - - - - - - - - - - - -
4| 50 |-2.52 -2.44 -2.36 -2.33 -2.30 -2.28 |-2.32 -2.24 -2.19 -2.16 -2.14 -2.12 [-2.19 -2.13 -2.09 -2.07 -2.06 -2.03
70 |-2.73 -2.65 -2.58 -2.55 -2.52 -2.50 |-2.53 -2.46 -2.41 -2.39 -2.37 -2.35|-2.40 -2.36 -2.32 -2.29 -2.29 -2.27
100 |-2.84 -2.78 -2.71 -2.67 -2.65 -2.61|-2.65 -2.60 -2.54 -2.52 -2.51 -2.48|-2.54 -2.50 -2.46 -2.44 -2.43 -2.41
200 |-2.98 -2.90 -2.82 -2.81 -2.78 -2.74|-2.78 -2.73 -2.68 -2.68 -2.66 -2.63|-2.69 -2.64 -2.61 -2.60 -2.59 -2.57

Notes: The critical values are obtained by stochastic simulation.

yi,t—1 of the regression of Ay, on y;¢—1,

’
wit,p

The data generating process is y;s = y;,4—1 + €iyt, Where
iyt ~ 1dN(0,1), with y; _, = 0, and the jth element of the k x 1 vector of additional regressors, x;¢, is generated as
Tijt = Tijt—1 + €imjt, where €izj¢ ~ 1dN(0,1), and x5, =0,1=1,2,...,N; j =1,2,...,k; t = —p, ..., T. Critical values
for the case where k = 0 are provided in Pesaran (2007). The CADFj statistic is computed as the t-ratio of the coefficient on

= (z,_,; Az}, Az, ..., Ai;_p; AN/ Ayg_p), including an intercept,

with Z; = N—1 Zfil(y,-t,x;t)’, and the average of the individual CADF; is computed as CADF = N1 vazl CADEF;.
(100 x @)% critical values are obtained as the o quantiles of CADF for o = 0.01,0.05,0.1. Computations are based on
10,000 replications. Where values are not reported, this is due to insufficient degrees of freedom.
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Table B2: Critical Values of the Average of Individual Cross-Sectionally
Augmented Dickey-Fuller Distributions with £ Additional Regressors in the Case
of Models with an Intercept and a Linear Trend

k=1
1% (CADF) 5% (CADF) 10% (CADF)
p [ (T,NY| 20 30 50 70 100 200 | 20 30 50 70 100 200 | 20 30 50 70 100 200
20 |-3.12 -3.02 -2.94 -2.01 -2.86 -2.82|-2.00 -2.85 -2.78 -2.75 -2.73 -2.70 | -2.78 -2.74 -2.70 -2.67 -2.65 -2.63
30 [-3.07 -2.99 -2.92 -2.89 -2.86 -2.82|-2.890 -2.84 -2.78 -2.76 -2.74 -2.72|-2.79 -2.75 -2.71 -2.69 -2.68 -2.66
0| 50 |[-3.06 -2.99 -2.93 -2.88 -2.88 -2.83|-2.89 -2.85 -2.81 -2.77 -2.76 -2.73|-2.80 -2.77 -2.74 -2.71 -2.70 -2.68
70 |-3.07 -3.00 -2.93 -2.89 -2.86 -2.83|-2.91 -2.85 -2.81 -2.79 -2.77 -2.74|-2.82 -2.77 -2.75 -2.72 -2.71 -2.69
100 |-3.06 -3.00 -2.92 -2.90 -2.88 -2.83|-2.91 -2.86 -2.81 -2.79 -2.77 -2.75|-2.83 -2.79 -2.75 -2.73 -2.71 -2.70
200 |-3.06 -2.99 -2.94 -2.91 -2.88 -2.84|-291 -2.86 -2.82 -2.79 -2.78 -2.75|-2.83 -2.79 -2.75 -2.74 -2.72 -2.70
20 |-3.09 -2.99 -2.90 -2.88 -2.85 -2.81 |-2.83 -2.76 -2.72 -2.67 -2.65 -2.63|-2.69 -2.64 -2.60 -2.57 -2.56 -2.53
30 [-3.06 -2.96 -2.89 -2.88 -2.83 -2.80 |-2.85 -2.79 -2.74 -2.71 -2.70 -2.67|-2.73 -2.69 -2.65 -2.63 -2.62 -2.60
1| 50 [-3.06 -2.96 -2.90 -2.87 -2.86 -2.82|-2.87 -2.82 -2.78 -2.74 -2.73 -2.71|-2.77 -2.73 -2.70 -2.67 -2.67 -2.65
70 |-3.05 -2.99 -2.90 -2.88 -2.84 -2.82|-2.89 -2.83 -2.78 -2.76 -2.75 -2.73|-2.80 -2.75 -2.72 -2.70 -2.69 -2.67
100 |-3.06 -2.99 -2.91 -2.89 -2.87 -2.82|-2.90 -2.85 -2.80 -2.77 -2.76 -2.73 |-2.81 -2.77 -2.73 -2.71 -2.70 -2.68
200 |-3.06 -2.99 -2.93 -2.90 -2.87 -2.83|-2.90 -2.86 -2.81 -2.78 -2.77 -2.75|-2.82 -2.78 -2.75 -2.73 -2.71 -2.70
20 | 2.88 2.74 2.64 2.60 -2.56 2.52 | 2.57 249 242 2.38 2.37 234|242 236 231 227 2.26 2.24
30 [-2.93 -2.81 -2.75 -2.72 -2.68 -2.64 |-2.68 -2.62 -2.57 -2.55 -2.53 -2.50|-2.57 -2.51 -2.47 -2.46 -2.45 -2.43
2| 50 |-2.96 -2.89 -2.83 -2.79 -2.78 -2.74|-2.78 -2.73 -2.70 -2.66 -2.65 -2.62 |-2.68 -2.64 -2.61 -2.58 -2.57 -2.55
70 [-3.00 -2.94 -2.84 -2.83 -2.80 -2.77 |-2.83 -2.77 -2.72 -2.71 -2.69 -2.67 |-2.73 -2.69 -2.66 -2.64 -2.62 -2.61
100 |-3.03 -2.96 -2.88 -2.85 -2.83 -2.79|-2.85 -2.81 -2.76 -2.74 -2.71 -2.70 |-2.76 -2.72 -2.69 -2.67 -2.65 -2.64
200 |-3.03 -2.97 -2.91 -2.88 -2.85 -2.81 |-2.88 -2.83 -2.79 -2.77 -2.75 -2.72|-2.79 -2.76 -2.73 -2.71 -2.70 -2.68
20 |-2.06 -2.80 -2.65 -2.58 -2.50 -2.42 |-2.57 -2.45 -2.36 -2.31 -2.27 -2.22|-2.37 -2.29 2.21 -2.18 -2.15 -2.11
30 |-2.84 -2.76 -2.66 -2.63 -2.62 -2.56|-2.60 -2.52 -2.48 -2.46 -2.43 -2.41|-2.48 -2.41 -2.38 -2.37 -2.34 -2.33
3| 50 |-2.94 -2.86 -2.81 -2.75 -2.74 -2.71|-2.73 -2.70 -2.65 -2.61 -2.61 -2.58 |-2.63 -2.60 -2.57 -2.54 -2.53 -2.51
70 |-2.98 -2.94 -2.83 -2.81 -2.78 -2.76 |-2.81 -2.74 -2.71 -2.68 -2.66 -2.64 |-2.71 -2.66 -2.63 -2.61 -2.60 -2.58
100 |-3.00 -2.94 -2.86 -2.84 -2.82 -2.78|-2.84 -2.79 -2.74 -2.72 -2.70 -2.68 |-2.74 -2.71 -2.67 -2.65 -2.64 -2.62
200 |-3.03 -2.96 -2.90 -2.87 -2.85 -2.81 |-2.88 -2.82 -2.78 -2.76 -2.75 -2.72|-2.78 -2.75 -2.72 -2.70 -2.69 -2.67
20 - - - - - - - - - - - - - - - - - -
30 |-2.68 -2.56 -2.47 -2.43 -2.40 -2.35|-2.41 -2.34 -2.29 -2.26 -2.24 -2.20|-2.28 -2.23 -2.18 -2.16 -2.14 -2.12
4| 50 |-2.83 -2.76 -2.70 -2.67 -2.65 -2.62|-2.66 -2.59 -2.56 -2.52 -2.51 -2.48|-2.54 -2.50 -2.46 -2.44 -2.43 -2.40
70 |-2.93 -2.86 -2.77 -2.75 -2.72 -2.70 | -2.75 -2.68 -2.64 -2.62 -2.60 -2.58 |-2.65 -2.59 -2.56 -2.55 -2.53 -2.52
100 |-2.96 -2.91 -2.83 -2.81 -2.78 -2.74|-2.79 -2.75 -2.70 -2.68 -2.66 -2.64 |-2.70 -2.66 -2.62 -2.61 -2.59 -2.58
200 |-3.02 -2.94 -2.88 -2.85 -2.83 -2.79|-2.86 -2.81 -2.76 -2.74 -2.73 -2.70 | -2.77 -2.73 -2.70 -2.68 -2.67 -2.65
k=2
1% (CADF) 5% (CADF) 10% (CADF)
p|(T,N)| 20 30 50 70 100 200 | 20 30 50 70 100 200 | 20 30 50 70 100 200
20 |-3.26 -3.15 -3.00 -3.04 -3.00 -2.97|-3.00 -2.05 -2.80 -2.86 -2.84 -2.82|-2.80 2.84 2.79 -2.77 -2.75 -2.73
30 [-3.25 -3.15 -3.07 -3.03 -3.02 -2.97 |-3.04 -2.98 -2.93 -2.90 -2.88 -2.86|-2.93 -2.89 -2.84 -2.82 -2.81 -2.79
0| 50 |[-3.23 -3.16 -3.09 -3.06 -3.03 -3.01|-3.05 -3.01 -2.96 -2.94 -2.92 -2.90 |-2.97 -2.93 -2.89 -2.87 -2.86 -2.84
70 |-3.25 -3.17 -3.10 -3.06 -3.04 -3.01|-3.08 -3.03 -2.98 -2.95 -2.93 -2.92|-2.99 -2.94 -2.91 -2.89 -2.88 -2.86
100 |-3.25 -3.17 -3.11 -3.08 -3.06 -3.02|-3.09 -3.04 -2.99 -2.96 -2.95 -2.93|-3.00 -2.96 -2.92 -2.90 -2.89 -2.88
200 |-3.25 -3.18 -3.12 -3.08 -3.06 -3.03|-3.09 -3.04 -3.00 -2.97 -2.96 -2.94|-3.01 -2.97 -2.94 -2.91 -2.91 -2.89
20 |-3.18 -3.06 -2.97 -2.80 2.87 -2.84|-2.88 -2.78 -2.71 -2.68 -2.66 -2.64|-2.71 -2.64 -2.58 -2.57 -2.55 -2.52
30 [-3.16 -3.08 -3.00 -2.95 -2.93 -2.80|-2.92 -2.87 -2.82 -2.78 -2.77 -2.75|-2.81 -2.76 -2.72 -2.69 -2.68 -2.67
1] 50 |-3.21 -3.11 -3.04 -3.01 -2.99 -2.96|-3.00 -2.95 -2.90 -2.87 -2.86 -2.84|-2.90 -2.86 -2.82 -2.80 -2.79 -2.77
70 [-3.21 -3.14 -3.07 -3.03 -3.01 -2.98|-3.06 -2.99 -2.94 -2.91 -2.89 -2.87|-2.95 -2.90 -2.86 -2.84 -2.83 -2.82
100 |-3.24 -3.15 -3.09 -3.05 -3.03 -3.00|-3.06 -3.01 -2.96 -2.93 -2.92 -2.90 |-2.96 -2.93 -2.89 -2.87 -2.86 -2.85
200 |-3.25 -3.17 -3.12 -3.08 -3.05 -3.02|-3.09 -3.03 -2.99 -2.96 -2.95 -2.93|-3.00 -2.95 -2.92 -2.90 -2.89 -2.87
20 |3.43 -3.17 2.02 2.82 -2.75 -2.61|-2.77 -2.64 251 -2.45 2.41 -2.34|-252 242 2.33 2.8 2.25 2.21
30 |-2.92 -2.86 -2.76 -2.71 -2.69 -2.64 |-2.68 -2.63 -2.55 -2.53 -2.51 -2.49 |-2.56 -2.51 -2.46 -2.43 -2.42 -2.40
2| 50 |-3.09 -3.00 -2.93 -2.90 -2.87 -2.84|-2.88 -2.82 -2.77 -2.75 -2.73 -2.71 |-2.77 -2.72 -2.68 -2.67 -2.65 -2.64
70 |-3.14 -3.06 -3.00 -2.95 -2.93 -2.90|-2.96 -2.90 -2.85 -2.82 -2.81 -2.79 |-2.85 -2.81 -2.77 -2.75 -2.74 -2.72
100 |-3.18 -3.10 -3.04 -3.00 -2.98 -2.95|-3.01 -2.95 -2.90 -2.88 -2.86 -2.84|-2.91 -2.87 -2.83 -2.81 -2.80 -2.78
200 |-3.23 -3.14 -3.08 -3.04 -3.02 -2.99 |-3.05 -3.00 -2.96 -2.93 -2.92 -2.90|-2.96 -2.93 -2.89 -2.87 -2.86 -2.85
20 - - - - - - - - - - - - - - - - - -
30 |-2.81 -2.70 -2.59 -2.54 -2.50 -2.48 |-2.53 -2.45 -2.37 -2.34 -2.31 -2.30|-2.38 -2.32 -2.26 -2.24 -2.21 -2.20
3| 50 |-3.00 -2.92 -2.85 -2.83 -2.80 -2.76|-2.80 -2.74 -2.69 -2.66 -2.64 -2.63|-2.68 -2.64 -2.59 -2.57 -2.56 -2.55
70 |-3.09 -3.03 -2.95 -2.91 -2.88 -2.86|-2.91 -2.85 -2.80 -2.77 -2.76 -2.74 |-2.81 -2.75 -2.71 -2.70 -2.68 -2.67
100 |-3.16 -3.07 -3.02 -2.97 -2.96 -2.93|-2.97 -2.92 -2.87 -2.84 -2.83 -2.81|-2.87 -2.83 -2.80 -2.78 -2.76 -2.75
200 |-3.21 -3.14 -3.07 -3.03 -3.01 -2.99|-3.04 -2.99 -2.95 -2.92 -2.90 -2.89|-2.95 -2.91 -2.88 -2.85 -2.85 -2.83
20 - - - - - - - - - - - - - - - - - -
30 [-2.63 -2.47 -2.34 -2.28 -2.21 -2.18|-2.31 -2.18 -2.10 -2.06 -2.02 -1.98|-2.13 -2.04 -1.98 -1.94 -1.92 -1.89
4| 50 |-2.86 -2.79 -2.71 -2.69 -2.66 -2.61|-2.65 -2.59 -2.54 -2.52 -2.49 -2.47|-2.54 -2.49 -2.45 -2.42 241 -2.39
70 |-2.99 -2.93 -2.87 -2.83 -2.79 -2.77|-2.81 -2.75 -2.70 -2.67 -2.66 -2.64 |-2.71 -2.66 -2.62 -2.60 -2.58 -2.57
100 |-3.10 -3.02 -2.95 -2.92 -2.91 -2.87|-2.91 -2.85 -2.81 -2.79 -2.77 -2.75|-2.80 -2.76 -2.73 -2.71 -2.70 -2.68
200 |-3.19 -3.11 -3.05 -3.01 -2.98 -2.96|-3.01 -2.96 -2.92 -2.89 -2.88 -2.86|-2.92 -2.88 -2.85 -2.83 -2.81 -2.80
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Table B2 Continued

E=3
1% (CADF) 5% (CADF) 10% (CADF)
p|(TN)| 20 30 50 70 100 200 | 20 30 50 70 100 200 | 20 30 50 70 100 200
20 (339 3.29 3.10 3.13 3.09 3.085]3.10 3.03 2.7 204 2.02 2.90|2.06 -2.00 -2.87 2.84 282 2.80
30 [-3.38 -3.26 -3.20 -3.16 -3.14 -3.10|-3.16 -3.09 -3.04 -3.01 -3.00 -2.96|-3.05 -2.99 -2.95 -2.93 -2.91 -2.89
0| 50 |-3.39 -3.31 -3.25 -3.20 -3.18 -3.15|-3.20 -3.15 -3.11 -3.07 -3.06 -3.04 |-3.11 -3.07 -3.03 -3.01 -2.99 -2.98
70 |-3.41 -3.32 -3.25 -3.24 -3.19 -3.17|-3.23 -3.17 -3.13 -3.10 -3.09 -3.07 |-3.13 -3.09 -3.06 -3.04 -3.02 -3.01
100 |-3.41 -3.33 -3.28 -3.24 -3.22 -3.18|-3.25 -3.20 -3.15 -3.12 -3.10 -3.09|-3.16 -3.12 -3.08 -3.06 -3.04 -3.03
200 |-3.43 -3.34 -3.30 -3.26 -3.23 -3.20|-3.27 -3.21 -3.17 -3.14 -3.13 -3.11|-3.18 -3.13 -3.10 -3.09 -3.07 -3.05
20 [ 3.43 3.26 3.0 2.99 2.93 2.86] 2.97 285 2.74 2.68 2.65 2.61| 2.74 -2.66 2.50 2.53 2.51 -2.48
30 [-3.23 -3.13 -3.03 -3.00 -2.97 -2.93|-2.97 -2.90 -2.84 -2.81 -2.79 -2.77 |-2.83 -2.79 -2.74 -2.72 -2.70 -2.68
1| 50 |-3.31 -3.22 -3.17 -3.12 -3.09 -3.07|-3.11 -3.05 -3.00 -2.98 -2.96 -2.94|-3.00 -2.96 -2.92 -2.90 -2.89 -2.87
70 [-3.34 -3.26 -3.21 -3.18 -3.14 -3.11|-3.16 -3.11 -3.06 -3.03 -3.02 -3.00 |-3.06 -3.02 -2.99 -2.96 -2.95 -2.94
100 |-3.37 -3.29 -3.23 -3.20 -3.18 -3.15|-3.20 -3.15 -3.10 -3.08 -3.05 -3.04|-3.11 -3.07 -3.03 -3.01 -2.99 -2.98
200 |-3.42 -3.34 -3.27 -3.24 -3.22 -3.19|-3.25 -3.19 -3.15 -3.13 -3.10 -3.08 |-3.16 -3.11 -3.08 -3.06 -3.05 -3.03
20 - - - - - - - - - - - - - - - - - -
30 [-2.92 -2.77 -2.67 -2.62 -2.60 -2.55|-2.62 -2.54 -2.45 -2.43 -2.41 -2.38|-2.47 -2.41 -2.34 -2.32 231 -2.29
2] 50 [-3.17 -3.06 -2.99 -2.96 -2.92 -2.90|-2.94 -2.87 -2.83 -2.80 -2.78 -2.76 |-2.82 -2.78 -2.73 -2.71 -2.70 -2.68
70 |-3.24 -3.16 -3.09 -3.07 -3.03 -3.00 |-3.04 -2.99 -2.94 -2.91 -2.90 -2.88|-2.95 -2.90 -2.86 -2.84 -2.83 -2.81
100 |-3.30 -3.23 -3.16 -3.13 -3.10 -3.07 [-3.12 -3.07 -3.02 -3.00 -2.97 -2.96|-3.02 -2.99 -2.95 -2.93 -2.91 -2.90
200 |-3.37 -3.29 -3.24 -3.20 -3.18 -3.15|-3.21 -3.15 -3.11 -3.09 -3.07 -3.05|-3.12 -3.07 -3.04 -3.03 -3.01 -2.99
30 |-2.85 -2.75 -2.53 -2.45 -2.36 -2.31|-2.46 -2.36 -2.22 -2.18 -2.14 -2.10 |-2.27 -2.17 -2.09 -2.05 -2.02 -1.99
3| 50 [-3.04 -2.94 -2.86 -2.83 -2.79 -2.76 | -2.81 -2.74 -2.68 -2.66 -2.64 -2.61 |-2.69 -2.63 -2.59 -2.57 -2.55 -2.53
70 |-3.16 -3.11 -3.02 -2.99 -2.95 -2.93|-2.96 -2.91 -2.86 -2.84 -2.81 -2.79|-2.85 -2.81 -2.78 -2.75 -2.74 -2.72
100 |-3.26 -3.19 -3.12 -3.09 -3.06 -3.03 [-3.08 -3.02 -2.97 -2.95 -2.93 -2.91|-2.97 -2.93 -2.89 -2.87 -2.86 -2.85
200 |-3.34 -3.28 -3.22 -3.19 -3.16 -3.13|-3.18 -3.13 -3.09 -3.06 -3.05 -3.03|-3.09 -3.05 -3.02 -3.00 -2.98 -2.97
20 = - = - - - - - = = = = = - - E = E
30 - - - - - - - - - - - - - - - - - -
4| 50 |-2.83 -2.72 -2.66 -2.62 -2.58 -2.54|-2.59 -2.53 -2.47 -2.44 -242 -2.38|-2.47 -2.42 -2.37 -2.35 -2.33 -2.30
70 |-3.06 -2.97 -2.80 -2.85 -2.82 -2.80 |-2.84 -2.78 -2.73 -2.70 -2.68 -2.66 |-2.73 -2.67 -2.64 -2.61 -2.60 -2.58
100 |-3.18 -3.11 -3.05 -3.00 -2.99 -2.95|-2.98 -2.94 -2.89 -2.86 -2.84 -2.83|-2.88 -2.85 -2.81 -2.78 -2.77 -2.76
200 |-3.32 -3.24 -3.18 -3.15 -3.12 -3.10|-3.15 -3.09 -3.05 -3.03 -3.01 -2.99 |-3.05 -3.01 -2.98 -2.96 -2.94 -2.93

Notes: The critical values are obtained by stochastic simulation. The data generating process is ¥t = yi,t—1 + €iyt, Where
giyt ~ 1tdN(0,1), with y; —, = 0, and the jth element of the k x 1 vector of additional regressors, x;¢, is generated as
Tijt = Tijt—1 + Eixjt, Where €i55¢ ~ dN(0,1) and x5 _p =0,4=1,2,...,N; j =1,2,...,k; t = —p,...,T. The relevant
critical values for the case where k = 0 is provided in Pesaran (2007). The CADF; statistic is computed as the t-ratio of
the coefficient on y; +—1 of the regression of Ay;+ on y;+—1, w;t,p = (Z}_q; AZ;,AZ;flw..,AZ;i?; Ayg.t_l,...,Ay;t_p),
including an intercept and a linear trend, with z; = N1 Zév:l(yit,x;t)/, and the average of the individual statistics
is computed as CADF = N~1 Zf\jzl CADF;. (100 x )% critical values are obtained as the a quantiles of CADF for
a =0.01,0.05,0.1. Computations are based on 10,000 replications. Where values are not reported, this is due to insufficient
degrees of freedom.
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Table B3: Critical Values of the Average of Individual Cross-Sectionally
Augmented Sargan-Barghava Distributions with £ Additional Regressors in the

Case of Models with an Intercept Only

F=0
1% (CSB) 5% (CSB) 10% (CSB)
p | (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200
20 0.259 0.292 0.330 0.347 0.360 0.377 [ 0.315 0.343 0.373 0.389 0.401 0.420 [ 0.348 0.374 0.398 0.412 0.423 0.440
30 0.260 0.298 0.335 0.355 0.372 0.398 [ 0.315 0.344 0.377 0.393 0.408 0.429 | 0.348 0.373 0.401 0.414 0.427 0.445
0 50 0.259 0.295 0.334 0.358 0.378 0.409 | 0.313 0.343 0.376 0.394 0.410 0.434 | 0.345 0.372 0.400 0.415 0.428 0.448
70 0.257 0.293 0.333 0.358 0.377 0.411 [ 0.311 0.344 0.376 0.395 0.410 0.434 | 0.343 0.372 0.400 0.416 0.429 0.448
100 | 0.257 0.293 0.335 0.358 0.377 0.412 | 0.311 0.343 0.375 0.395 0.410 0.435|0.344 0.371 0.400 0.415 0.428 0.448
200 |0.257 0.293 0.333 0.356 0.378 0.411 | 0.310 0.342 0.375 0.394 0.410 0.435|0.343 0.371 0.399 0.415 0.428 0.449
20 0.220 0.238 0.258 0.266 0.271 0.274 [0.268 0.287 0.305 0.315 0.321 0.330 [ 0.296 0.314 0.331 0.340 0.346 0.355
30 0.236 0.264 0.291 0.303 0.312 0.323 | 0.284 0.308 0.332 0.344 0.354 0.368 | 0.313 0.334 0.355 0.365 0.375 0.387
50 0.247 0.279 0.312 0.330 0.346 0.368 | 0.295 0.323 0.351 0.366 0.379 0.398 | 0.325 0.349 0.373 0.385 0.397 0.413
70 0.248 0.282 0.319 0.340 0.358 0.385|0.299 0.328 0.358 0.375 0.389 0.410 | 0.330 0.355 0.381 0.395 0.406 0.424
100 |0.251 0.285 0.325 0.346 0.365 0.395|0.302 0.332 0.363 0.381 0.395 0.418 |0.334 0.360 0.387 0.401 0.413 0.431
200 |0.253 0.290 0.328 0.352 0.372 0.404 | 0.306 0.337 0.369 0.387 0.403 0.427 | 0.337 0.365 0.393 0.408 0.420 0.440
20 0.186 0.197 0.205 0.208 0.210 0.211[0.235 0.248 0.257 0.263 0.265 0.269 [ 0.264 0.276 0.287 0.294 0.297 0.302
30 0.219 0.239 0.255 0.262 0.266 0.272|0.266 0.285 0.303 0.312 0.318 0.325|0.294 0.312 0.328 0.337 0.344 0.352
2 50 0.241 0.268 0.296 0.309 0.320 0.334 [ 0.288 0.311 0.337 0.349 0.361 0.375|0.317 0.337 0.359 0.370 0.380 0.393
70 0.245 0.276 0.311 0.328 0.344 0.363 | 0.294 0.322 0.349 0.364 0.377 0.395]0.325 0.349 0.371 0.384 0.395 0.410
100 |0.249 0.283 0.321 0.340 0.356 0.383 | 0.300 0.329 0.358 0.375 0.388 0.409 | 0.331 0.355 0.380 0.394 0.405 0.422
200 |0.252 0.289 0.328 0.349 0.368 0.399 | 0.304 0.336 0.367 0.384 0.399 0.423 | 0.336 0.363 0.390 0.404 0.417 0.436
20 0.146 0.151 0.155 0.158 0.158 0.160 [0.190 0.198 0.203 0.208 0.207 0.210 [ 0.2I7 0.226 0.233 0.237 0.238 0.241
30 0.191 0.203 0.214 0.218 0.220 0.224 | 0.235 0.250 0.264 0.268 0.273 0.277 | 0.261 0.276 0.289 0.296 0.300 0.305
3 50 0.225 0.246 0.270 0.279 0.288 0.293 | 0.270 0.291 0.311 0.322 0.330 0.341 | 0.297 0.315 0.333 0.342 0.351 0.362
70 0.237 0.263 0.292 0.307 0.319 0.332|0.283 0.306 0.332 0.344 0.355 0.369 | 0.311 0.331 0.352 0.364 0.373 0.386
100 |0.243 0.274 0.309 0.327 0.340 0.362 | 0.292 0.318 0.346 0.360 0.373 0.391 | 0.322 0.343 0.367 0.380 0.390 0.405
200 |0.250 0.286 0.322 0.344 0.362 0.391 | 0.301 0.330 0.361 0.378 0.392 0.415 | 0.332 0.357 0.383 0.398 0.409 0.428
20 0.114 0.117 0.119 0.121 0.121 0.122[0.153 0.157 0.160 0.163 0.162 0.164 [ 0.178 0.183 0.I189 0.191 0.191 0.194
30 0.167 0.173 0.180 0.184 0.185 0.187 [ 0.212 0.222 0.232 0.236 0.237 0.240 | 0.238 0.249 0.260 0.264 0.267 0.271
4 50 0.214 0.232 0.250 0.255 0.261 0.264 | 0.259 0.276 0.293 0.302 0.308 0.316 | 0.285 0.301 0.318 0.325 0.332 0.341
70 0.230 0.254 0.279 0.290 0.300 0.310 | 0.276 0.298 0.321 0.331 0.341 0.352 | 0.303 0.322 0.342 0.352 0.361 0.372
100 |0.241 0.269 0.300 0.318 0.329 0.346 | 0.288 0.313 0.340 0.352 0.363 0.380 | 0.316 0.337 0.360 0.372 0.381 0.396
200 |0.249 0.283 0.319 0.340 0.358 0.385|0.299 0.328 0.358 0.374 0.389 0.410 | 0.330 0.355 0.381 0.394 0.405 0.423
k=1
1% (CSB) 5% (CSB) 10% (CSB)
p | (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200
20 0.241 0.270 0.300 0.311 0.323 0.335[0.294 0.319 0.345 0.358 0.368 0.382]0.326 0.349 0.372 0.382 0.392 0.406
30 0.248 0.284 0.319 0.338 0.353 0.373 |0.303 0.329 0.361 0.376 0.388 0.407 | 0.334 0.358 0.385 0.397 0.409 0.424
0 50 0.251 0.288 0.327 0.348 0.367 0.395|0.305 0.336 0.368 0.384 0.400 0.422|0.338 0.365 0.391 0.405 0.418 0.437
70 0.253 0.288 0.328 0.352 0.370 0.403 | 0.307 0.339 0.371 0.389 0.403 0.427 | 0.338 0.368 0.394 0.409 0.421 0.441
100 |0.254 0.290 0.329 0.353 0.374 0.406 | 0.307 0.340 0.371 0.389 0.405 0.430 | 0.340 0.368 0.395 0.411 0.424 0.443
200 |0.254 0.291 0.332 0.354 0.376 0.410]0.307 0.340 0.373 0.392 0.408 0.433 | 0.339 0.369 0.397 0.413 0.426 0.446
20 0.182 0.195 0.205 0.208 0.214 0.217[0.225 0.239 0.252 0.257 0.261 0.267 [ 0.253 0.266 0.278 0.284 0.288 0.293
30 0.211 0.236 0.255 0.265 0.273 0.277|0.257 0.279 0.298 0.307 0.315 0.324 | 0.284 0.303 0.321 0.330 0.337 0.346
50 0.233 0.264 0.293 0.310 0.322 0.338 | 0.281 0.307 0.331 0.346 0.357 0.373|0.310 0.332 0.354 0.366 0.376 0.390
70 0.240 0.273 0.308 0.325 0.341 0.365|0.289 0.318 0.346 0.361 0.374 0.393 | 0.320 0.345 0.368 0.381 0.392 0.408
100 | 0.245 0.279 0.315 0.337 0.356 0.383 | 0.296 0.325 0.354 0.372 0.386 0.408 | 0.327 0.352 0.377 0.391 0.403 0.421
200 |0.249 0.286 0.324 0.346 0.367 0.399 | 0.301 0.333 0.366 0.383 0.398 0.422 | 0.333 0.362 0.389 0.404 0.416 0.436
20 0.130 0.135 0.139 0.140 0.143 0.144 | 0.170 0.176 0.180 0.182 0.185 0.I87 [0.194 0.201 0.207 0.210 0.211 0.214
30 0.180 0.192 0.203 0.209 0.211 0.213 | 0.223 0.237 0.248 0.254 0.258 0.262 | 0.249 0.263 0.275 0.280 0.284 0.289
2 50 0.219 0.242 0.265 0.276 0.283 0.291 | 0.265 0.285 0.306 0.315 0.324 0.334|0.292 0.311 0.329 0.338 0.345 0.355
70 0.230 0.260 0.291 0.305 0.316 0.332 | 0.279 0.305 0.329 0.342 0.353 0.366 | 0.308 0.330 0.351 0.362 0.371 0.384
100 |0.239 0.273 0.305 0.324 0.341 0.363 | 0.290 0.316 0.343 0.360 0.372 0.391 | 0.319 0.343 0.366 0.379 0.389 0.406
200 |0.248 0.282 0.322 0.343 0.361 0.392|0.298 0.330 0.361 0.378 0.392 0.416 | 0.329 0.357 0.384 0.398 0.410 0.429
20 0.085 0.087 0.088 0.089 0.091 0.090[0.112 0.116 0.118 0.118 0.119 0.121]0.132 0.136 0.139 0.140 0.141 0.142
30 0.141 0.148 0.154 0.157 0.159 0.161 | 0.180 0.188 0.197 0.200 0.202 0.203 | 0.204 0.213 0.222 0.225 0.227 0.229
50 0.196 0.212 0.229 0.236 0.241 0.244 | 0.238 0.254 0.271 0.278 0.283 0.290 | 0.264 0.278 0.293 0.300 0.306 0.313
70 0.215 0.240 0.264 0.275 0.285 0.293 | 0.261 0.282 0.304 0.314 0.322 0.332|0.289 0.307 0.325 0.335 0.342 0.352
100 |0.231 0.260 0.289 0.306 0.317 0.335]0.278 0.302 0.327 0.340 0.351 0.367 | 0.305 0.327 0.348 0.360 0.369 0.383
200 |0.243 0.278 0.313 0.335 0.351 0.380|0.293 0.323 0.352 0.368 0.382 0.404 | 0.323 0.349 0.375 0.389 0.400 0.417
20 0.048 0.050 0.051 0.051 0.051 0.052[0.066 0.068 0.068 0.069 0.069 0.070[0.079 0.081 0.082 0.083 0.084 0.084
30 0.109 0.113 0.118 0.119 0.119 0.121 |0.142 0.147 0.153 0.155 0.156 0.157 | 0.165 0.170 0.176 0.179 0.180 0.181
4 50 0.176 0.187 0.199 0.204 0.207 0.208 | 0.217 0.230 0.241 0.247 0.250 0.255|0.242 0.254 0.266 0.270 0.275 0.280
70 0.203 0.224 0.243 0.250 0.257 0.262 | 0.248 0.266 0.284 0.291 0.298 0.305|0.274 0.290 0.306 0.314 0.320 0.327
100 |0.224 0.250 0.275 0.290 0.301 0.312]0.269 0.292 0.315 0.327 0.335 0.349 | 0.296 0.316 0.336 0.346 0.354 0.366
200 |0.242 0.274 0.310 0.329 0.344 0.370]0.289 0.319 0.347 0.363 0.375 0.396 | 0.319 0.345 0.369 0.383 0.393 0.410
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Table B3 Contillgueg

1% (CSB) 5% (CSB) 10% (CSB)

p | (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200
20 0.22470.250 0.272 0.2817 0.291 0.300[0.275 0.298 0.319 0.329 0.336 0.347 [ 0.304 0.326 0.345 0.354 0.362 0.372
30 0.235 ] 0.270 0.303 0.320 0.332 0.350 | 0.289 0.316 0.344 0.358 0.370 0.386 | 0.320 0.344 0.367 0.380 0.390 0.404
0 50 0.247 | 0.281 0.319 0.339 0.357 0.383]0.299 0.328 0.359 0.376 0.390 0.411|0.329 0.356 0.382 0.396 0.408 0.425
70 0.249 | 0.284 0.322 0.344 0.363 0.394 | 0.301 0.332 0.364 0.381 0.396 0.419 | 0.334 0.360 0.387 0.403 0.414 0.433
100 |0.251 | 0.286 0.328 0.350 0.370 0.401 | 0.304 0.335 0.368 0.385 0.402 0.426 | 0.336 0.363 0.391 0.406 0.420 0.439
200 |[0.250 | 0.289 0.330 0.352 0.374 0.407 | 0.306 0.338 0.372 0.389 0.406 0.431|0.338 0.367 0.395 0.411 0.424 0.444
20 0.147 1 0.157 0.164 0.166 0.168 0.171]0.186 0.197 0.205 0.208 0.212 0.214 [ 0.211 0.221 0.230 0.234 0.237 0.240
30 0.189 | 0.207 0.223 0.232 0.237 0.243|0.232 0.249 0.265 0.273 0.279 0.286 | 0.258 0.274 0.289 0.296 0.301 0.308
1 50 0.221 ] 0.249 0.277 0.290 0.301 0.313]0.266 0.292 0.314 0.326 0.335 0.349 | 0.294 0.317 0.336 0.347 0.355 0.367
70 0.23310.262 0.295 0.313 0.326 0.346 | 0.280 0.305 0.333 0.348 0.359 0.377 [ 0.309 0.331 0.355 0.368 0.377 0.392
100 | 0.240 | 0.272 0.309 0.329 0.346 0.372]0.289 0.318 0.348 0.363 0.377 0.397 | 0.320 0.344 0.369 0.382 0.394 0.411
200 |0.244 | 0.282 0.322 0.343 0.362 0.394 | 0.298 0.330 0.362 0.378 0.394 0.418 |0.330 0.357 0.384 0.399 0.411 0.431
20 0.086 | 0.088 0.091 0.092 0.093 0.093|0.114 0.118 0.120 0.121 0.123 0.123 [ 0.133 0.137 0.140 0.142 0.143 0.144
30 0.144 | 0.152 0.160 0.164 0.168 0.170|0.183 0.191 0.201 0.205 0.207 0.209 | 0.207 0.216 0.226 0.229 0.232 0.234
2 50 0.198 | 0.217 0.237 0.246 0.250 0.259 | 0.241 0.259 0.277 0.284 0.291 0.299 | 0.267 0.284 0.299 0.307 0.313 0.320
70 0.216 | 0.243 0.270 0.283 0.292 0.306 | 0.263 0.286 0.308 0.320 0.329 0.341 | 0.291 0.311 0.330 0.341 0.349 0.360
100 |0.231|0.261 0.293 0.311 0.326 0.344 | 0.279 0.304 0.331 0.345 0.357 0.374 | 0.308 0.330 0.353 0.365 0.375 0.389
200 |0.243]0.279 0.316 0.337 0.354 0.384 [ 0.294 0.324 0.355 0.371 0.385 0.408 | 0.324 0.351 0.377 0.391 0.403 0.421
20 0.03810.039 0.040 0.041 0.040 0.041]0.052 0.054 0.054 0.055 0.055 0.055[0.063 0.064 0.065 0.066 0.066 0.067
30 0.101 | 0.105 0.109 0.111 0.112 0.113|0.131 0.136 0.141 0.142 0.144 0.145|0.151 0.156 0.162 0.163 0.165 0.166
3 50 0.168 | 0.182 0.195 0.200 0.201 0.205|0.207 0.221 0.232 0.238 0.243 0.247 | 0.231 0.244 0.255 0.261 0.265 0.269
70 0.198 | 0.218 0.238 0.248 0.253 0.263 | 0.240 0.259 0.276 0.286 0.292 0.300 | 0.266 0.282 0.298 0.306 0.312 0.320
100 |0.219|0.245 0.273 0.286 0.297 0.310 | 0.263 0.285 0.309 0.321 0.331 0.344 | 0.290 0.311 0.330 0.340 0.349 0.361
200 [0.238 10.273 0.307 0.326 0.342 0.368 | 0.286 0.316 0.345 0.359 0.373 0.393|0.316 0.342 0.366 0.379 0.390 0.407
20 0.005 [ 0.005 0.006 0.006 0.006 0.006 | 0.008 0.008 0.008 0.008 0.008 0.008[0.010 0.010 0.010 0.010 0.010 0.010
30 0.065 | 0.068 0.069 0.070 0.070 0.071|0.087 0.089 0.092 0.093 0.093 0.093 | 0.102 0.105 0.108 0.109 0.109 0.110
4 50 0.142 | 0.151 0.158 0.161 0.163 0.165|0.178 0.187 0.195 0.199 0.202 0.204 | 0.200 0.210 0.218 0.221 0.225 0.227
70 0.179 | 0.195 0.211 0.216 0.221 0.227|0.220 0.235 0.249 0.256 0.260 0.266 | 0.245 0.258 0.272 0.278 0.282 0.288
100 |0.208 | 0.229 0.253 0.263 0.273 0.282 | 0.250 0.270 0.292 0.301 0.309 0.319 | 0.276 0.295 0.313 0.321 0.328 0.338
200 ]0.234]0.267 0.299 0.317 0.332 0.355|0.281 0.309 0.337 0.351 0.363 0.382]0.311 0.335 0.358 0.371 0.381 0.396

=3
1% (CSB) 5% (CSB) 10% (CSB)

p | (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200
20 0.205 0.228 0.245 0.253 0.260 0.268 [ 0.254 0.274 0.292 0.301 0.307 0.316 [ 0.284 0.301 0.318 0.326 0.331 0.341
30 0.227 0.257 0.286 0.301 0.313 0.327 | 0.277 0.302 0.328 0.340 0.350 0.365 | 0.307 0.329 0.351 0.362 0.371 0.384
0 50 0.241 0.275 0.310 0.330 0.347 0.371|0.292 0.320 0.350 0.365 0.380 0.399 | 0.323 0.348 0.374 0.386 0.398 0.415
70 0.246 0.280 0.317 0.341 0.356 0.386 | 0.297 0.329 0.358 0.375 0.389 0.412 | 0.328 0.355 0.382 0.395 0.407 0.426
100 |0.249 0.283 0.322 0.346 0.365 0.396 | 0.299 0.332 0.364 0.381 0.397 0.420|0.332 0.360 0.386 0.402 0.415 0.433
200 |0.250 0.288 0.330 0.350 0.371 0.405 | 0.303 0.337 0.369 0.388 0.404 0.428 | 0.336 0.366 0.394 0.408 0.421 0.442
20 0.116 0.121 0.128 0.129 0.131 0.131[0.150 0.156 0.163 0.165 0.165 0.168 [ 0.172 0.178 0.184 0.187 0.I88 0.191
30 0.169 0.183 0.195 0.201 0.206 0.209 | 0.207 0.222 0.234 0.241 0.246 0.250 | 0.232 0.245 0.257 0.264 0.268 0.272
1 50 0.209 0.233 0.259 0.271 0.279 0.291 | 0.253 0.274 0.296 0.307 0.315 0.326 | 0.280 0.298 0.318 0.327 0.334 0.345
70 0.222 0.254 0.283 0.300 0.311 0.330 [ 0.270 0.296 0.321 0.334 0.344 0.361|0.299 0.321 0.343 0.353 0.363 0.377
100 [0.234 0.264 0.299 0.320 0.336 0.359 | 0.282 0.309 0.339 0.354 0.367 0.386 | 0.312 0.335 0.360 0.374 0.384 0.400
200 |0.243 0.280 0.317 0.340 0.359 0.390 | 0.295 0.326 0.358 0.375 0.389 0.413 | 0.326 0.355 0.380 0.395 0.407 0.426
20 0.049 0.050 0.052 0.052 0.052 0.052[0.066 0.068 0.070 0.070 0.070 0.071 [0.079 0.081 0.083 0.083 0.083 0.084
30 0.113 0.119 0.127 0.127 0.131 0.132 {0.146 0.153 0.159 0.162 0.163 0.165|0.167 0.174 0.180 0.182 0.184 0.186
2 50 0.178 0.195 0.211 0.218 0.223 0.228 | 0.218 0.233 0.248 0.255 0.260 0.266 | 0.243 0.257 0.271 0.277 0.281 0.288
70 0.205 0.229 0.251 0.262 0.269 0.281 [ 0.248 0.269 0.289 0.298 0.306 0.317|0.276 0.293 0.310 0.318 0.326 0.336
100 |0.223 0.249 0.280 0.297 0.309 0.326 | 0.268 0.292 0.317 0.331 0.342 0.357|0.296 0.317 0.339 0.350 0.360 0.373
200 |0.239 0.273 0.310 0.332 0.347 0.375|0.289 0.319 0.348 0.365 0.378 0.400 | 0.319 0.346 0.370 0.385 0.396 0.413
20 0.005 0.005 0.005 0.005 0.005 0.005[0.007 0.007 0.008 0.008 0.008 0.008 [0.009 0.010 0.0I0 0.010 0.010 0.010
30 0.067 0.069 0.072 0.071 0.074 0.074 | 0.088 0.091 0.093 0.094 0.095 0.096 | 0.102 0.106 0.109 0.110 0.110 0.111
3 50 0.144 0.153 0.162 0.168 0.170 0.172 [ 0.178 0.189 0.198 0.202 0.205 0.209 | 0.200 0.210 0.219 0.222 0.226 0.229
70 0.180 0.198 0.213 0.222 0.224 0.232 | 0.220 0.236 0.251 0.257 0.263 0.269 | 0.244 0.258 0.272 0.278 0.284 0.290
100 |0.206 0.230 0.254 0.267 0.276 0.288 [ 0.249 0.270 0.291 0.301 0.310 0.321|0.275 0.294 0.312 0.321 0.329 0.339
200 |0.232 0.264 0.298 0.318 0.332 0.357 | 0.280 0.309 0.336 0.351 0.364 0.383|0.308 0.334 0.358 0.370 0.380 0.397

20 - - - . - . - - . . - - . - - - . .
30 0.030 0.031 0.031 0.032 0.032 0.032|0.041 0.042 0.043 0.043 0.044 0.044 | 0.049 0.050 0.051 0.051 0.052 0.052
4 50 0.111 0.118 0.122 0.126 0.127 0.128 [ 0.141 0.149 0.154 0.157 0.158 0.160 | 0.161 0.168 0.174 0.176 0.178 0.180
70 0.156 0.170 0.181 0.186 0.188 0.192 |0.193 0.206 0.217 0.222 0.225 0.230 | 0.216 0.228 0.238 0.243 0.247 0.251
100 |0.192 0.211 0.232 0.240 0.248 0.256 | 0.233 0.250 0.268 0.277 0.284 0.290 | 0.257 0.274 0.289 0.297 0.303 0.310
200 0.226 0.257 0.289 0.306 0.319 0.341 | 0.271 0.300 0.325 0.340 0.351 0.368 | 0.301 0.324 0.347 0.359 0.368 0.383

Notes: The critical values are obtained by stochastic simulation. The data generating process is y;+ = i ,t—1 + €iy¢, Where
giyt ~ 1dN(0,1), with y; _, = 0, and the jt" element of the k x 1 vector of additional regressors, x;¢, is generated as
Tijt = Tijt—1 + Eixjt, where Eixjt ™~ iidN(O, 1), and Tij,—p = 0, i = 1,2,...,N; ] = 1,2, ...,k; t = —p,...,T. The CSBi
test statistic is computed as CSB; = T2 Z?:l @it /62, with @ = E§:1 g;; and 62 = 2321 e/ r—p—@+1)(k+1)],
where &;; are the estimated residuals from the regression of Ay;; on Wi, = (Ayi¢—1,..., Ayi,t—p; AZ}, AZ)_ 4, ..., Aig_p),

it,p

with Z; = N1 Z?;l(yit, x},)’. The average of the individual CSB; is computed as CSB = N1 vazl CSB;. (100 x a)%
critical values are obtained as the a quantiles of C'SB for a = 0.01,0.05,0.1. Computations are based on 50,000 replications.
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Where values are not reported, this is due to insufficient degrees of freedom.
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Table B4: Critical Values of the Average of Individual Cross-Sectionally
Augmented Sargan-Barghava Distributions with £ Additional Regressors in the
Case of Models with an Intercept and a Linear Trend

E=0
1% (CSB) 5% (CSB) 10% (CSB)
p | (T,N) 20 30 50 70 100 200 20 30 50 70 100 200 20 30 50 70 100 200
20 0.100 | 0.108 0.116 0.121 0.124 0.128 [ 0.113 0.120 0.127 0.131 0.134 0.138 [ 0.121 0.128 0.134 0.137 0.139 0.143
30 0.101 | 0.110 0.120 0.125 0.129 0.136 | 0.115 0.123 0.131 0.134 0.138 0.14410.123 0.130 0.136 0.140 0.143 0.147
0 50 0.101 | 0.111 0.121 0.127 0.132 0.140 [ 0.116 0.124 0.132 0.137 0.141 0.147 | 0.124 0.131 0.138 0.142 0.145 0.150
70 0.102 | 0.111 0.122 0.127 0.133 0.142 | 0.116 0.124 0.133 0.137 0.142 0.148 | 0.125 0.132 0.139 0.142 0.146 0.151
100 0.102 | 0.112 0.123 0.128 0.134 0.142 | 0.116 0.125 0.133 0.138 0.142 0.148 | 0.125 0.132 0.140 0.144 0.147 0.152
200 0.101 ] 0.112 0.123 0.129 0.134 0.143 | 0.117 0.125 0.134 0.138 0.143 0.149 |1 0.125 0.133 0.140 0.144 0.147 0.153
20 [ 0.091]0.096 0.100 0.101 0.102 0.104 | 0.104 0.109 0.113 0.115 0.116 0.118 | 0.111 0.116 0.120 0.122 0.123 0.125
30 |0.098(0.105 0.112 0.114 0.116 0.1200.110 0.116 0.122 0.125 0.128 0.131|0.118 0.123 0.128 0.131 0.133 0.136
1| 50 [0.100]0.109 0.118 0.122 0.127 0.132|0.114 0.121 0.128 0.132 0.135 0.140 | 0.122 0.128 0.134 0.137 0.140 0.144
70 |0.101{0.110 0.120 0.125 0.130 0.137 | 0.115 0.122 0.130 0.134 0.138 0.143 [ 0.123 0.129 0.136 0.139 0.142 0.147
100 |0.101 |0.111 0.121 0.127 0.131 0.139 | 0.115 0.124 0.132 0.136 0.140 0.146 | 0.124 0.131 0.137 0.141 0.144 0.149
200 0.101 | 0.112 0.122 0.128 0.133 0.142 [ 0.116 0.124 0.133 0.138 0.141 0.148 [ 0.125 0.132 0.139 0.143 0.146 0.151
20 [0.081]0.084 0.085 0.085 0.086 0.087 |0.094 0.097 0.099 0.100 0.100 0.102 [ 0.102 0.105 0.108 0.109 0.109 0.110
30 ]0.094(0.099 0.103 0.105 0.106 0.108|0.107 0.112 0.117 0.118 0.120 0.121 | 0.115 0.119 0.123 0.125 0.127 0.129
2 50 0.101 ] 0.109 0.116 0.119 0.123 0.125]0.114 0.120 0.127 0.130 0.133 0.136 |1 0.122 0.127 0.133 0.136 0.138 0.141
70 ]0.102(0.110 0.120 0.124 0.128 0.133 | 0.116 0.123 0.130 0.134 0.137 0.142 | 0.124 0.130 0.136 0.139 0.142 0.146
100 0.102 | 0.111 0.122 0.127 0.131 0.138 | 0.116 0.124 0.132 0.136 0.140 0.145]0.125 0.131 0.138 0.141 0.144 0.149
200 |0.102]0.112 0.122 0.129 0.134 0.142 | 0.117 0.125 0.133 0.138 0.142 0.148 | 0.126 0.132 0.139 0.143 0.146 0.151
20 0.066 | 0.067 0.068 0.069 0.069 0.070 | 0.077 0.079 0.081 0.081 0.081 0.082]0.085 0.087 0.088 0.089 0.089 0.090
30 [ 0.085|0.088 0.091 0.092 0.093 0.093|0.098 0.102 0.105 0.106 0.107 0.107 [0.105 0.109 0.112 0.114 0.115 0.116
3 50 0.097 | 0.104 0.110 0.112 0.114 0.116 | 0.110 0.116 0.121 0.124 0.126 0.128 | 0.117 0.123 0.127 0.130 0.132 0.134
70 0.101 | 0.108 0.116 0.119 0.123 0.126 | 0.113 0.120 0.127 0.129 0.132 0.136 | 0.121 0.127 0.132 0.135 0.138 0.141
100 0.102 | 0.110 0.119 0.125 0.128 0.134 | 0.115 0.122 0.129 0.134 0.137 0.14210.123 0.129 0.135 0.139 0.141 0.145
200 0.102 | 0.112 0.122 0.128 0.132 0.140 | 0.117 0.124 0.132 0.137 0.141 0.146 | 0.125 0.132 0.138 0.142 0.145 0.150
20 [0.052[0.052 0.053 0.053 0.054 0.054 [0.061 0.062 0.063 0.063 0.063 0.063 [ 0.067 0.060 0.070 0.070 0.070 0.070
30 [0.076 | 0.078 0.080 0.081 0.081 0.081|0.089 0.091 0.094 0.094 0.095 0.095 [0.097 0.099 0.102 0.103 0.104 0.104
4| 50 ]0.094]0.100 0.104 0.106 0.107 0.108 | 0.107 0.113 0.117 0.119 0.120 0.122 [0.115 0.120 0.124 0.126 0.127 0.129
70 0.100 | 0.106 0.114 0.116 0.118 0.121 (0.112 0.119 0.125 0.127 0.130 0.133 | 0.120 0.125 0.131 0.133 0.135 0.138
100 0.102 | 0.110 0.119 0.123 0.126 0.131 | 0.115 0.122 0.129 0.133 0.136 0.140 | 0.123 0.129 0.135 0.138 0.141 0.144
200 0.103 | 0.112 0.122 0.128 0.133 0.140 | 0.117 0.125 0.133 0.137 0.141 0.146 | 0.125 0.132 0.139 0.142 0.145 0.150
F=1
1% (CSB) 5% (CSDB) 10% (CSB)
p[(TN)| 20 30 50 70 100 200 | 20 30 50 70 100 200 | 20 30 50 70 100 200
20 [0.092]0.100 0.107 0.110 0.112 0.115[0.106 0.112 0.118 0.121 0.124 0.127 [0.114 0.119 0.125 0.127 0.129 0.132
30 0.097 | 0.105 0.114 0.119 0.123 0.128 | 0.111 0.118 0.125 0.128 0.132 0.136 | 0.119 0.125 0.131 0.134 0.137 0.141
0| 50 |0.099]0.108 0.119 0.124 0.129 0.136 | 0.113 0.121 0.129 0.133 0.137 0.143 [0.121 0.128 0.135 0.139 0.142 0.146
70 0.100 | 0.109 0.120 0.126 0.131 0.139]0.114 0.122 0.131 0.135 0.139 0.145]0.123 0.130 0.137 0.141 0.144 0.149
100 |0.100 [0.110 0.121 0.127 0.132 0.141 | 0.115 0.123 0.132 0.136 0.141 0.147 [0.124 0.131 0.138 0.142 0.145 0.150
200 0.101 ] 0.111 0.122 0.128 0.134 0.142]0.116 0.124 0.133 0.138 0.142 0.149 | 0.125 0.132 0.139 0.143 0.147 0.152
20 [0.076 [ 0.079 0.081 0.082 0.083 0.084 [ 0.087 0.090 0.093 0.094 0.095 0.096 [ 0.094 0.097 0.100 0.101 0.102 0.103
30 0.088 | 0.094 0.099 0.101 0.102 0.105]0.100 0.105 0.110 0.112 0.114 0.116 | 0.107 0.112 0.116 0.118 0.120 0.122
1 50 0.095| 0.103 0.111 0.115 0.118 0.123 | 0.108 0.115 0.121 0.125 0.128 0.132]0.116 0.121 0.127 0.130 0.132 0.136
70 0.098 | 0.106 0.116 0.120 0.124 0.131 | 0.111 0.118 0.126 0.130 0.133 0.138 1 0.119 0.125 0.132 0.135 0.138 0.141
100 0.099 | 0.108 0.118 0.124 0.128 0.135]0.113 0.121 0.128 0.133 0.136 0.142 | 0.121 0.128 0.134 0.138 0.141 0.146
200 |0.100|0.110 0.121 0.126 0.132 0.140 | 0.115 0.123 0.132 0.136 0.140 0.146 | 0.124 0.130 0.138 0.141 0.145 0.150
20 [0.056 [ 0.057 0.059 0.059 0.060 0.060 | 0.066 0.068 0.069 0.070 0.070 0.071 | 0.073 0.074 0.076 0.076 0.077 0.077
30 [0.078 | 0.081 0.083 0.084 0.085 0.086|0.089 0.093 0.096 0.097 0.098 0.099 | 0.096 0.100 0.102 0.104 0.105 0.106
2 50 0.092 | 0.099 0.104 0.106 0.108 0.111|0.104 0.110 0.115 0.118 0.120 0.122 |0.112 0.117 0.121 0.124 0.126 0.128
70 0.096 | 0.104 0.112 0.116 0.119 0.123 | 0.109 0.115 0.123 0.125 0.129 0.132]0.117 0.122 0.128 0.131 0.134 0.137
100 0.099 | 0.108 0.117 0.122 0.126 0.132|0.112 0.119 0.127 0.131 0.134 0.139 | 0.120 0.127 0.133 0.136 0.139 0.143
200 0.101 | 0.110 0.121 0.126 0.131 0.139]0.115 0.123 0.131 0.136 0.139 0.145]0.124 0.130 0.137 0.141 0.144 0.149
20 [0.036 [ 0.037 0.038 0.038 0.038 0.038 | 0.043 0.044 0.045 0.045 0.045 0.045 [0.048 0.049 0.050 0.050 0.050 0.050
30 [0.063|0.065 0.067 0.067 0.068 0.068|0.074 0.076 0.078 0.078 0.079 0.079 [ 0.080 0.083 0.084 0.085 0.086 0.086
3| 50 [0.085]0.089 0.094 0.095 0.096 0.098 |0.097 0.101 0.105 0.107 0.108 0.110 | 0.104 0.108 0.112 0.113 0.114 0.116
70 0.092 | 0.099 0.105 0.108 0.110 0.113]0.104 0.110 0.116 0.118 0.121 0.123 | 0.112 0.117 0.122 0.124 0.126 0.129
100 0.097 | 0.104 0.113 0.116 0.120 0.124 | 0.110 0.116 0.123 0.126 0.129 0.133 | 0.117 0.123 0.128 0.131 0.134 0.137
200 0.100 | 0.109 0.119 0.124 0.129 0.136 | 0.114 0.122 0.130 0.134 0.137 0.143 | 0.122 0.128 0.135 0.139 0.142 0.146
20 [0.019[0.010 0.020 0.020 0.020 0.020 | 0.023 0.023 0.024 0.024 0.024 0.024 [ 0.026 0.026 0.027 0.027 0.027 0.027
30 |0.049(0.050 0.052 0.052 0.052 0.053 | 0.059 0.060 0.061 0.061 0.062 0.062|0.065 0.066 0.067 0.068 0.068 0.068
4| 50 [0.078(0.081 0.085 0.085 0.086 0.087 [0.090 0.093 0.096 0.097 0.098 0.099 | 0.097 0.100 0.103 0.104 0.105 0.106
70 | 0.088|0.094 0.099 0.101 0.103 0.105|0.101 0.106 0.110 0.112 0.114 0.116 [0.108 0.113 0.117 0.119 0.120 0.122
100 0.095 | 0.102 0.109 0.112 0.116 0.119|0.108 0.114 0.120 0.123 0.126 0.129 | 0.115 0.121 0.126 0.128 0.131 0.134
200 |0.100]0.109 0.118 0.123 0.128 0.134 | 0.113 0.121 0.129 0.133 0.136 0.141 | 0.122 0.128 0.135 0.138 0.141 0.145
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Table B4 Contizueg

1% (CSB) 5% (CSB) 10% (CSB)
p[(TN)| 20 30 50 70 100 200 | 20 30 50 70 100 200 | 20 30 50 70 100 200
20 [0.086[0.092 0.097 0.100 0.102 0.104 [0.098 0.104 0.109 0.112 0.113 0.116 [0.106 0.11T 0.116 0.118 0.120 0.122
30 |0.093]0.101 0.109 0.113 0.116 0.120 [ 0.106 0.113 0.119 0.123 0.125 0.130 | 0.114 0.119 0.125 0.128 0.131 0.134
0| 50 [0.096]0.106 0.116 0.121 0.126 0.132 [0.110 0.119 0.126 0.130 0.134 0.139 | 0.119 0.126 0.132 0.136 0.139 0.143
70 | 0.098 |0.108 0.118 0.123 0.129 0.137 | 0.112 0.120 0.129 0.133 0.137 0.143 [ 0.121 0.127 0.135 0.138 0.142 0.146
100 0.100 | 0.109 0.120 0.126 0.131 0.139]0.114 0.122 0.130 0.135 0.139 0.145]0.122 0.130 0.136 0.140 0.144 0.148
200 0.100 | 0.111 0.122 0.128 0.133 0.141 | 0.115 0.124 0.133 0.137 0.141 0.148 | 0.124 0.132 0.139 0.142 0.146 0.151
20 [0.062 [0.063 0.065 0.066 0.066 0.067 [0.071 0.074 0.076 0.076 0.077 0.078 [ 0.078 0.080 0.082 0.083 0.083 0.084
30 [0.079 | 0.083 0.087 0.089 0.090 0.092 |0.090 0.094 0.098 0.099 0.101 0.103 [ 0.097 0.100 0.104 0.106 0.107 0.109
1| 50 |0.090]0.097 0.105 0.108 0.111 0.115|0.102 0.109 0.115 0.118 0.120 0.124 | 0.110 0.115 0.121 0.123 0.125 0.128
70 0.095|0.102 0.112 0.116 0.120 0.125]0.107 0.114 0.121 0.125 0.128 0.132|0.115 0.121 0.127 0.130 0.132 0.136
100 |0.097 | 0.106 0.115 0.121 0.125 0.131]0.110 0.118 0.126 0.130 0.133 0.138 | 0.118 0.125 0.131 0.135 0.138 0.142
200 0.100 | 0.110 0.120 0.125 0.131 0.138 | 0.114 0.122 0.131 0.135 0.139 0.145]0.122 0.129 0.136 0.140 0.143 0.148
20 [0.036 [ 0.036 0.037 0.033 0.038 0.038 | 0.043 0.044 0.045 0.045 0.045 0.045 [ 0.048 0.049 0.049 0.050 0.050 0.050
30 0.063 | 0.065 0.067 0.068 0.068 0.069 | 0.073 0.075 0.077 0.078 0.078 0.079 [ 0.079 0.082 0.084 0.084 0.085 0.086
2| 50 [0.083]0.089 0.094 0.096 0.097 0.099 | 0.095 0.100 0.105 0.106 0.108 0.110 |[0.102 0.107 0.111 0.112 0.114 0.116
70 0.091 | 0.097 0.105 0.108 0.111 0.114]0.103 0.109 0.115 0.118 0.120 0.123 | 0.110 0.116 0.121 0.123 0.125 0.128
100 0.095 | 0.104 0.112 0.116 0.120 0.125|0.108 0.115 0.122 0.125 0.129 0.133]0.116 0.122 0.128 0.131 0.133 0.137
200 0.099 | 0.109 0.119 0.124 0.129 0.136 | 0.113 0.121 0.129 0.133 0.137 0.143]0.121 0.128 0.135 0.138 0.141 0.146
20 [ 0.014 [0.014 0.014 0.014 0.014 0.015 [0.017 0.017 0.0I8 0.0I8 0.018 0.0I8 [ 0.020 0.020 0.020 0.020 0.020 0.020
30 [0.045|0.045 0.047 0.047 0.047 0.048 | 0.053 0.054 0.055 0.055 0.056 0.056 | 0.058 0.059 0.060 0.061 0.061 0.061
3| 50 [0.073]0.077 0.080 0.081 0.082 0.083|0.084 0.088 0.091 0.092 0.093 0.094 [ 0.090 0.094 0.097 0.098 0.099 0.100
70 |0.084 [0.090 0.095 0.097 0.100 0.101 |0.096 0.101 0.106 0.108 0.109 0.112 [0.103 0.107 0.112 0.113 0.115 0.117
100 0.091 | 0.099 0.106 0.109 0.112 0.116 | 0.104 0.110 0.116 0.119 0.122 0.125]0.111 0.116 0.122 0.124 0.127 0.129
200 |0.098 | 0.107 0.116 0.121 0.126 0.132 [0.111 0.119 0.127 0.130 0.134 0.139 | 0.119 0.126 0.132 0.135 0.138 0.143
20 0.000 | 0.000 0.000 0.000 0.000 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000]0.000 0.000 0.000 0.000 0.000 0.000
30 [0.028|0.029 0.029 0.029 0.029 0.030 | 0.034 0.034 0.035 0.035 0.035 0.036 |0.038 0.038 0.039 0.039 0.039 0.039
4| 50 ]0.063]0.065 0.067 0.068 0.068 0.070 [0.073 0.076 0.078 0.078 0.079 0.080 | 0.079 0.082 0.084 0.085 0.085 0.086
70 |0.078 [ 0.083 0.087 0.088 0.089 0.090 | 0.089 0.093 0.097 0.099 0.100 0.101 [0.096 0.100 0.103 0.105 0.106 0.108
100 |0.088|0.095 0.100 0.103 0.105 0.108 | 0.100 0.106 0.111 0.113 0.115 0.118 [0.107 0.112 0.117 0.119 0.121 0.123
200 0.097 | 0.105 0.115 0.119 0.124 0.129 | 0.110 0.118 0.125 0.129 0.132 0.137]0.118 0.124 0.131 0.134 0.136 0.140
E=3
1% (CSB) 5% (CSB) 10% (CSB)
pI(T.NJ| 20 30 50 70 100 200 | 20 30 50 70 100 200 | 20 30 50 70 100 200
20 [0.080 [ 0.085 0.080 0.091 0.092 0.094 [0.092 0.096 0.100 0.102 0.104 0.106 [0.099 0.103 0.107 0.109 0.110 0.112
30 [0.089 |0.097 0.103 0.107 0.110 0.114 |0.101 0.108 0.114 0.117 0.119 0.123 [0.109 0.115 0.120 0.122 0.125 0.128
0 50 [0.0940.104 0.112 0.118 0.122 0.128 | 0.108 0.116 0.123 0.127 0.131 0.135 [0.116 0.123 0.129 0.132 0.135 0.139
70 [0.097 | 0.106 0.116 0.121 0.126 0.134 |0.111 0.118 0.127 0.131 0.135 0.140 | 0.119 0.126 0.133 0.136 0.139 0.144
100 0.099 | 0.109 0.119 0.124 0.129 0.137|0.113 0.121 0.129 0.133 0.137 0.143]0.121 0.128 0.135 0.139 0.142 0.147
200 |0.100|0.110 0.120 0.127 0.132 0.141 [0.115 0.123 0.132 0.136 0.140 0.147 | 0.124 0.130 0.138 0.142 0.145 0.150
20 [0.048 [0.049 0.050 0.05I 0.05] 0.052 [0.057 0.058 0.059 0.060 0.060 0.060 [ 0.062 0.063 0.065 0.065 0.066 0.066
30 [0.069 | 0.073 0.076 0.077 0.079 0.080 | 0.080 0.084 0.086 0.088 0.089 0.090 | 0.087 0.090 0.092 0.094 0.095 0.096
1| 50 |0.085]0.092 0.098 0.101 0.104 0.107 [ 0.097 0.103 0.108 0.111 0.113 0.116 | 0.104 0.109 0.114 0.116 0.118 0.121
70 0.090 | 0.099 0.107 0.111 0.115 0.119|0.103 0.110 0.117 0.120 0.123 0.127 |0.111 0.117 0.122 0.125 0.127 0.131
100 [0.095|0.104 0.113 0.118 0.121 0.128 | 0.108 0.115 0.123 0.127 0.130 0.135 [0.116 0.122 0.128 0.132 0.134 0.139
200 |0.098 | 0.108 0.118 0.124 0.129 0.137 [ 0.113 0.120 0.129 0.133 0.137 0.143 | 0.121 0.128 0.135 0.138 0.141 0.146
20 [0.010[0.010 0.019 0.020 0.020 0.020 [0.023 0.023 0.024 0.024 0.024 0.024 [ 0.026 0.026 0.027 0.027 0.027 0.027
30 [0.049 | 0.051 0.052 0.052 0.052 0.053 |0.057 0.059 0.060 0.061 0.061 0.062|0.063 0.065 0.066 0.066 0.067 0.067
2| 50 [0.075]0.080 0.084 0.085 0.087 0.088 |0.086 0.090 0.094 0.095 0.097 0.099 |0.093 0.097 0.100 0.101 0.103 0.104
70 | 0.085|0.091 0.098 0.100 0.103 0.106 | 0.097 0.102 0.108 0.110 0.112 0.115 [0.104 0.109 0.114 0.116 0.118 0.120
100 |0.092 |0.099 0.108 0.112 0.115 0.119]0.104 0.111 0.117 0.121 0.123 0.127 | 0.112 0.117 0.123 0.126 0.128 0.131
200 0.097 | 0.106 0.116 0.121 0.126 0.134 | 0.111 0.119 0.127 0.131 0.134 0.140]0.120 0.126 0.133 0.136 0.139 0.144
20 - - - - - - - - - - - - - - - - - -
30 |0.028 0.029 0.029 0.030 0.030 0.030 | 0.034 0.035 0.035 0.036 0.036 0.036 | 0.038 0.039 0.039 0.039 0.039 0.040
3| 50 |0.062]0.065 0.067 0.068 0.069 0.070|0.072 0.074 0.077 0.078 0.079 0.080 | 0.078 0.080 0.083 0.084 0.084 0.085
70 | 0.076 [ 0.081 0.086 0.087 0.089 0.091|0.087 0.092 0.096 0.097 0.099 0.101 | 0.094 0.098 0.102 0.103 0.104 0.106
100 | 0.086 |0.093 0.100 0.103 0.105 0.108 | 0.098 0.104 0.110 0.112 0.114 0.117 |0.105 0.110 0.115 0.117 0.119 0.122
200 |0.095|0.104 0.113 0.118 0.122 0.129 | 0.109 0.116 0.123 0.127 0.130 0.135 | 0.117 0.122 0.129 0.132 0.135 0.139
20 - - - - - - - - - - - - - - - - - -
30 0.011 | 0.011 0.011 0.012 0.011 0.012|0.014 0.014 0.014 0.014 0.014 0.014|0.016 0.016 0.016 0.016 0.016 0.016
4| 50 [0.049|0.051 0.052 0.053 0.053 0.054 |0.058 0.059 0.061 0.061 0.062 0.062 | 0.063 0.065 0.066 0.067 0.067 0.068
70 0.068 | 0.072 0.074 0.076 0.077 0.078 | 0.078 0.082 0.085 0.086 0.087 0.088 | 0.084 0.088 0.090 0.091 0.092 0.094
100 | 0.082 | 0.087 0.092 0.095 0.096 0.099 | 0.093 0.098 0.103 0.104 0.106 0.108 | 0.100 0.104 0.108 0.110 0.112 0.114
200 0.094 | 0.102 0.111 0.115 0.119 0.124 | 0.107 0.113 0.121 0.124 0.127 0.132|0.115 0.120 0.126 0.129 0.132 0.136

Notes: The critical values are obtained by stochastic simulation. The data generating process is y;+ = i ,t—1 + €iy¢, Where
giyt ~ 1dN(0,1), with y; _, = 0, and the jt" element of the k x 1 vector of additional regressors, x;¢, is generated as
Tijt = Tijt—1 + Eixjt, where Eixjt ~ iidN(O, 1) and ZTij,—p =0,1=1,2,..,N; j=1,2, v k;t=—p,...,T. The CSB; test
statistic is computed as CSB; = T~2 ZtT:l it /67, with @ = 23:1 g;jand 62 = Zf:l &5,/ T — (p+1)(k+ 2)], where &;
7/lt,p
an intercept, with zg = N—1 Zé\]:l(yit, x/,)’. The average of the individual CSB; is computed as CSB = N1 Zf\le CSB;.
(100 x )% critical values are obtained as the a quantiles of CSB for a = 0.01,0.05,0.1. Computations are based on 50,000

are the estimated residuals from the regression of Ay;; on w = (AYi,t—1, .o, AYs p—p; AZ], Ai;_l, vy Aié_p), including
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replications. Where values are not reported, this is due to insufficient degrees of freedom.
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Table 1: Size and Power of CIPS and C'SB Panel Unit Root Tests with Two Factors,
Factors and Idiosyncratic Errors are Serially Uncorrelated, m® = 2 Known

Intercept Only
Size: p, =p=1 Power: p, ~ 1dU[0.90,0.99]
(T,N) 200 30 50 70 100 200 | 20 30 50 70 100 200
CIPS(p,k=1)
20 5.75 6.40 5.10 5.50 5.50 6.10| 7.80 10.70 10.85 13.15 11.95 14.85
30 5.40 6.60 5.35 5.70 5.85 6.15|11.40 13.65 17.10 17.10 18.55 21.85
50 5.00 5.60 5.90 6.10 4.80 5.90|17.35 22.10 27.10 27.50 32.05 38.40
70 5.45 4.85 4.60 5.70 5.35 5.25|27.95 33.40 40.75 47.45 50.00 56.35
100 5.65 7.05 6.10 4.95 5.75 5.45|44.65 54.45 67.10 68.20 78.60 82.15
200 4.95 4.55 5.60 5.65 4.85 4.80]97.40 99.50 99.95 99.95 100.00 100.00
CSB(p,k=1)
20 6.35 6.10 5.60 4.95 5.80 6.10[14.25 15.80 18.50 23.45 24.80 3I1.20
30 5.70 5.85 5.20 5.60 5.55 4.10|20.50 24.80 31.70 36.80 40.50 46.95
50 6.35 6.00 5.80 5.85 5.55 5.5539.20 47.75 62.20 70.30 77.25 87.70
70 5.70 5.80 6.35 6.15 5.75 5.60 |61.40 75.40 89.55 94.30 98.00 99.50
100 4.55 520 5.95 6.10 5.40 6.60 | 79.05 89.65 97.95 98.70 99.60 99.95
200 6.50 4.75 6.15 5.15 6.20 5.85|94.85 97.80 99.45 99.90 99.95 100.00
Intercept and Linear Trend
CIPS(p,k=1)
20 6.45 5.20 6.30 6.30 545 550 725 6.55 7.85 7.85 5.80 8.05
30 5.30 5.40 5.90 6.80 5.85 5.45| 6.85 8.15 9.00 10.45 11.95 11.75
50 6.35 5.45 5.65 6.10 5.85 5.35|10.00 10.40 13.00 14.00 17.90 20.75
70 5.55 5.50 5.60 5.20 4.65 4.65|14.70 17.40 22.15 25.75 26.65 31.35
100 5.20 5.90 6.30 5.25 5.00 5.10|23.45 29.60 37.85 39.40 46.45 52.10
200 5.60 5.70 5.65 5.30 6.15 3.75|83.80 91.25 97.85 99.25 99.80 99.95
CSB(p,k=1)
20 6.35 5.40 5.80 5.15 5.20 5.65| 8.60 8.85 11.55 12.10 13.35 19.25
30 6.80 6.15 5.80 5.95 5.85 5.70 |10.65 12.10 14.45 18.45 20.65 25.80
50 5.95 5.80 5.20 5.60 4.50 5.80 |15.50 19.15 23.50 29.65 33.55 41.75
70 6.05 4.95 5.90 5.70 5.85 5.25|25.50 33.60 46.45 54.70 65.75 80.40
100 4.65 5.55 5.80 6.35 5.45 5.00|44.15 58.25 75.85 84.95 91.95 97.90
200 5.40 5.10 5.10 6.20 6.15 5.75|87.20 94.85 98.75 99.60 99.85 100.00

Notes: In the intercept only case, y;; is generated as yir = diyt + p;¥i,t—1 + Viy1S1t + VigaSfor + €iye, 4 = 1,2, , N5t =
—49,48,...0,1, ..., T, with y; 50 = 0, where v, ~ #dU|0,2], for i = 1,2,..., N; Viy2 ~ #dU|0,1] for 4 = 1,...,[N%] and
Yiye = 0 for i = [N*]+1,[N®]+2, ..., N (where [] denotes the integer part); fg ~ #dN(0,1) for £ = 1,2, €iy; ~ 1dN(0,07)
with 02 ~ #dU[0.5,1.5]; Azit = dig + Vig1f1t + Eint, Where, dig = 0, €igt = pip€izt—1 + Wints, Tigt ~ 11dN (0,1 — p2,),
1=1,2,...,N;t =—49,48,..0,1,...,T, with g;5, _50 = 0, and p,,, ~ #9dU[0.2,0.4]. The factor loadings in are generated
as V;p1 ~ 4dU[0,2]); diyr = (1 — p;)aviy with agy ~ iidN(1,1). The parameters iy, piyes Viy1,Viy2s Pir Vizls Piz> and o
are redrawn over each replication. The first 50 observations are discarded. The CIPS(p) and the CSB(p) tests are the
proposed panel unit root tests, defined by and , respectively, based on cross section augmentation using y;; and
z;¢ with lag-augmentation order selected according to p = [4(T/100)1/4]‘ In the intercept and linear trend case, y;¢ is
generated as described above, but diyr = py +(1—p;)d;t with By ~ 14dU|0.0,0.02] and §; ~ idU|[0.0,0.02], and d;zt = iz
with and 03, ~ 9dU[0.0,0.02]. The tests are conducted at the 5% significance level, based on the critical values for the
corresponding N, T, p and the number of additional regressors, k. All experiments are based on 2000 replications.
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Table 2: Size and Power of CIPS and C'SB Panel Unit Root Tests with Two Factors,
Factors are Serially Uncorrelated but Idiosyncratic Errors are Positively Serially Correlated, m® = 2 Known

Intercept Only
Size: p,=p=1 Power: p, ~ 4dUJ0.90, 0.99]
(T,N) 20 30 50 70 100 200 | 20 30 50 70 100 200
CIPS(p,k=1)
20 5.00 5.65 4.05 4.30 3.80 4.I5] 7.40 8.65 850 T10.70 9.25 T11.65
30 4.40 545 3.85 4.20 4.15 4.55] 9.65 11.45 14.55 14.80 16.00 18.75
50 4.30 5.30 5.25 4.70 3.90 5.15]16.55 20.40 24.05 24.65 28.75 34.60
70 4.90 5.00 4.45 5.00 4.35 4.30]26.10 30.55 37.55 44.40 45.15 51.50
100 5.45 6.20 5.60 4.10 5.55 4.95[41.95 51.10 62.85 62.65 74.60 78.25
200 4.75 4.45 5.05 5.55 4.65 4.55]96.45 99.10 99.80 100.00 100.00 100.00
CSB(p,k=1)
20 6.85 6.40 6.I5 6.30 6.75 6.20 | 1340 1530 I7.70 23.25 23.65 30.55
30 5.40 6.25 5.65 5.65 6.00 4.45|18.65 22.95 28.75 33.85 37.70 43.90
50 5.90 5.60 5.95 5.65 5.65 6.10|36.65 43.55 58.60 67.40 74.25 86.10
70 5.15 6.15 5.50 5.85 5.20 5.80|60.45 74.85 90.65 95.70 99.05 99.85
100 4.35 4.80 5.75 5.75 5.15 6.30]80.35 90.90 98.60 99.50 99.90 100.00
200 6.35 4.40 5.40 5.10 5.65 5.45]97.25 99.10 99.75 100.00 100.00 100.00
Intercept and Linear Trend
CIPS(p,k=1)
20 5.05 3.90 385 4.I5 3.50 2.75] 6.I5 4.55 550 5.65 4.10 5.05
30 4.15 5.05 4.35 4.95 3.75 3.45| 6.00 6.30 6.40 795 935  9.25
50 5.80 4.50 4.65 5.05 4.95 4.30| 8.95 9.55 11.05 12.15 16.30 19.05
70 5.10 4.65 4.45 4.65 3.95 4.00|13.85 15.60 18.95 23.30 24.55 28.70
100 5.25 550 5.30 4.70 4.05 4.50|21.70 27.60 33.65 36.60 43.00 47.15
200 5.60 4.85 5.75 4.85 5.75 3.35]79.35 89.95 96.55 98.40 99.35 99.90
CSB(p,k=1)
20 6.50 5.70 6.05 4.65 5.50 5.30[ 855 8.65 10.80 TI.I5 13.00 1I8.20
30 5.65 5.05 5.20 5.25 5.00 4.85| 8.70 9.70 12.90 15.35 18.30 22.40
50 4.80 5.25 4.25 4.45 4.20 4.65|12.40 15.70 19.35 24.45 28.15 36.10
70 490 3.65 4.70 4.20 4.35 3.80|21.65 28.75 39.10 47.85 58.50 73.10
100 4.15 4.30 5.10 4.50 4.45 4.35]40.20 55.15 72.60 82.25 90.60 98.10
200 4.45 3.95 4.10 4.70 5.10 4.80[90.40 96.90 99.50 99.95 100.00 100.00

Notes: y;; is generated as described in the notes to Table 1, except that iyt = p;ye€iyt—1 + (1 — p?y5)1/2niyt?niyt ~
14dN (0, O'lz), €iy,—50 = 0, a? ~ 4dU[0.5,1.5], p;y. ~ 19dU[0.2,0.4]. See also the notes to Table 1 for the specification of the
rest of the parameters.

Table 3: Size and Power of CIPS and C'SB Panel Unit Root Tests with Two Factors,

Factors are Serially Uncorrelated but Idiosyncratic Errors are Negatively Serially Correlated, m® = 2 Known

Intercept Only
Size: p,=p=1 Power: p; ~ #1dU[0.90,0.99]
(T,N) 20 30 50 70 100 200 | 20 30 50 70 100 200
CIPS (p,k=1)
20 6.65 7.20 6.35 6.60 7.40 6.85| 8.45 11.55 11.60 13.95 13.20 15.60
30 6.60 7.10 6.45 6.70 7.40 7.45|12.10 14.90 17.05 18.00 19.15 22.95
50 5.10 6.20 6.40 6.90 5.70 6.05|17.60 21.90 26.95 28.30 31.90 38.50
70 5.95 5.50 5.35 6.00 6.30 5.65|28.80 33.45 41.55 47.65 50.95 56.85
100 6.30 7.40 7.00 5.40 6.15 5.95|46.40 56.25 68.20 70.10 79.35 83.35
200 6.20 5.15 6.15 5.65 5.45 5.20]97.75 99.50 99.90 99.90 100.00 100.00
CSB(p,k=1)
20 6.60 5.40 5.25 4.65 6.10 5.65 | 14.45 16.40 19.30 24.60 25.80 31.30
30 6.05 5.85 5.25 5.55 5.80 4.30|21.55 25.65 32.15 36.90 41.45 47.25
50 6.55 5.95 6.35 6.50 5.40 5.80|38.70 46.65 60.95 67.50 75.50 85.15
70 6.35 6.25 6.75 6.25 6.45 5.15|58.65 71.85 84.45 90.25 94.35 97.80
100 5.60 6.00 6.20 6.40 5.60 6.50 | 74.25 85.80 94.30 95.60 98.30 99.70
200 7.05 590 6.75 6.10 7.00 6.80|91.40 94.10 97.90 98.90 99.50 100.00
Intercept and Linear Trend
CIPS(p,k=1)
20 6.65 7.15 7.95 7.60 7.35 6.I5| 6.75 7.05 9.70 9.50 890  8.00
30 6.00 6.40 6.70 7.35 7.40 7.10| 8.00 8.40 9.65 11.05 12.70 13.00
50 6.85 5.85 7.25 6.75 6.85 5.90|11.30 11.65 13.50 15.80 17.85 19.80
70 5.90 6.15 6.40 6.60 5.10 6.00 [15.30 17.85 23.55 25.75 28.55 30.80
100 6.15 6.70 5.90 6.30 5.85 5.75|24.75 29.35 36.00 42.05 45.05 55.30
200 7.20 5.80 6.85 4.50 6.00 4.65[84.20 92.35 98.20 98.95 99.80 99.95
CSB(p,k=1)
20 6.85 6.35 6.05 5.50 6.20 5.25| 8.85 8.70 11.95 11.90 15.25 18.55
30 6.75 5.65 6.90 6.65 5.95 6.60|11.35 14.45 17.45 18.15 22.55 28.70
50 5.75 7.05 6.00 6.75 5.05 6.00 [16.25 21.15 28.70 30.55 35.90 44.20
70 6.75 6.40 6.60 5.95 7.45 5.90|26.60 34.95 48.35 55.45 66.35 79.10
100 6.00 6.70 6.30 8.10 7.45 5.95|41.65 54.85 74.30 80.10 89.10 96.90
200 6.75 6.80 6.95 6.95 6.95 8.15|82.50 90.55 95.80 97.95 99.15 99.85

Notes: y;¢ is generated as described in the notes to Table 1, except that e,y = Piye€iyt—1 + 1- p?ye)l/Zmyt,myt ~
#dN (0, U?)7 €iy,—50 = 0, J? ~ 4dU[0.5,1.5], p;. ~ 4idU[—0.4, —0.2]. See also the notes to Table 1 for the specification of
the rest of the parameters.
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Table 4: Results of the CIPS and the CSB Panel Unit Root Tests Applied to Real Interest Rates for all
m® — 1 Combinations of the 5 Additional Regressors (1979Q2 — 2009Q4)

Real Interest Rates (N = 32,T = 118)
Intercept Only

md =1 m0 = m0 =
CIPS(p) CSB(p) Xz CIPS(p) CSB(p) Xz CIPS(p) CSB(p)
-2.9837  0.1577 poily, 7L | -3.603T  0.319 | poily,7r,eq, | -3.545T  0.282
poily,eq, | -3.319%  0.1667 | poily, 7L, ep, | -3.5667  0.321
md = poily,eq, | -3.2867  0.158" | poils, 7F, gdp, | -3.530T  0.284

z; |CIPS(p) CSB(p)|poils,gdp, | -3.318" 0.1611 | poils,eq,,ep, | -3.2571  0.164F
poily | -3.347F 0.163T | 7LF,eg, | -3.671%1  0.234% | poils,eq,, gdp, | -3.3257  0.1611
FEo| -3.6047  0.2431 | 7L ep, | -3.457T  0.245* | poil:,ep,, gdp, | -3.2861  0.160f
eq, | -2.878T  0.169 | 7L, gdp, | -3.504%  0.243" | 7L eg,,ep, -3.619t  0.233*
ep, | -2.8667  0.1537 | eg,ep, | -2.8051 o0.165% | 7L, eq,, gdp, | -3.684T  0.240*
gdp, | -3.117t  0.162% | eg,,gdp, | -3.3547  0.165 | 7L, ep,, gdp, | -3.365T  0.234*
ep,, gdp, | -3.129%  0.1591 | eq,,ep,,gdp, | -3.4077  o0.1611

Notes: t and x denote rejections at 1% and 5% significance levels, respectively. For the selected lag order p =
[4(T/100)1/4] , the critical values for the CTPS test in the case where m® = 1 are -2.238, and -2.106 for the 1%, and
5% significance levels, respectively. For m® = 2 they are -2.486, and -2.335, for m® = 3 they are -2.669, and -2.504, and
for m® = 4 they are -2.816, and -2.641. Similarly for the CSB test, the critical values for m® = 1 are 0.279, and 0.322,
for m® = 2 they are 0.261, and 0.304, for m® = 3 they are 0.245, and 0.287, and for m® = 4 they are 0.231, and 0.270.
The variables under the heading X: indicate the regressors used for cross section augmentation in addition to g, where
Yit = ris; — 7. In the case where m® = 1 no additional regressors are used. The variables poils,eq,,ep,, and gdp, are
detrended.

Table 5: Results of CIPS and CSB Panel Unit Root Tests Applied to Real Equity Prices for all m® — 1
Combinations of the Five Additional Regressors (1979Q2 — 2009Q4)

Real Equity Prices (N = 26,T = 118)
Intercept and Trend
mP = mY = mY =
CIPS(p) CSB(D) Xt CIPS(p) CSB(p) s CIPS(p) CSB(p)
-2.594 0.143 poily, 7L | -3.022%  0.113 | poils, 77, T -2.716 0.116
poily, Tt | -2.933*  0.125 | poily, 7F,ep, | -3.051%  0.094*
m0 = poils,ep, | -3.098%  0.122 | poily, 7L, gdp, | -2.423 0.106
z; |CIPS(p) CSB(p) |poils,gdp, | -2.416 0.118 poily, Tt, €, -3.044* 0.119
poily | -2.819*  0.125 T, R -2.567 0.136 | poily, 7, gdp, | -2.455 0.118
POl -2.791% 0.132 L, ep, -2.711 0.124 | poils,ep,, gdp, | -2.965 0.116
7y | -2.731 0.142 | 7L, gdp, | -2.433 0.116 7L, 7, ep, -2.527 0.128
ep; | -2.759 0.135 Tt, €Dy -2.664 0.135 7, T, gdp, -2.249 0.116
gdp, | -2.297 0.132 e, gdp, -2.494 0.129 | 7L, ep,, gdp, -2.624  0.101*
ep;, gdp, | -2.665 0.125 | 74, ep,, gdp, -2.580 0.122

Notes: The critical values for the CIPS test in the case where m® = 1 are -2.757, and -2.619 for the 1%, and 5%
significance levels, respectively. For m® = 2 they are -2.926, and -2.773, for m® = 3 they are -3.075, and -2.911 and for
m9 = 4 they are -3.190, and -3.006. Similarly for the C'SB test, the critical values for m9 = 1 are 0.108, and 0.121, for
mO = 2 they are 0.102, and 0.114, for m® = 3 they are 0.096, and 0.108, and for m® = 4 they are 0.090, and 0.101. See
also the notes to Table 4.

Table 6: Results for P:(p), Py, t;, PP, PMSB and 6_1\36 Panel Unit Root Tests for Real Interest Rates and Real
Equity Prices (1979Q2 — 2009Q4)

PANEL A PANEL B
Real Interest Rates (N = 32) Real Equity Prices (N = 26)
With an Intercept With an Intercept and a Linear Trend
m0 | Ps(p) P, iy PMSB CPO |P:(p) Py PP PMSB CPO
1 [9.768 -9.140T -19.187T -1.804* -4.114T[4.226 -1.776* -2.084* -1.349 -2.181*
2 18.826 -3.405% -18.230%1 -1.206 -4.124% |3.231 -2.232* -1.916* -1.689* -2.019*
3 |8.326 -3.2637 -22.527t -1.547 -4.170%|3.430 -2.788T -1.655* -1.989* -1.765*
4 19197 -6.3711 -26.6137 -2.124* 41571 [3.082 -2.427" -1.217 -1.778* -1.347

P;(p) is the test of Bai and Ng (2004) with lag-augmentation order p = [4(T/100)1/4] and PMSB and P, are the pooled
tests of Bai and Ng (2010), all of which are based on two extracted factors from y;¢,. The ¢} test is the Moon and Perron

(2004) test, and the 6'—]36 is the defactored point optimal test with serially correlated errors of Moon, Perron and Phillips

(2011), based on two extracted factors from y;:. The PMSB, Py, ty, CPO tests use the automatic lag-order selection for
the estimation of the long-run variances following Andrews and Monahan (1992). See also the notes to Table 4.
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