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1 Introduction

This supplement to Chudik, Kapetanios, and Pesaran (2018, hereafter CKP) provides a description of the

individual methods employed in the empirical illustration, and additional empirical results. The empirical

illustration is set out in Section 6 of CKP. Section 2 below describes the forecasting exercise, and Section

3 reports additional empirical results.

2 Description of the forecasting exercise

We forecast the U.S. GDP growth and CPI inflation using a set of macroeconomic variables. We use

the smaller dataset considered in Stock and Watson (2012), which contains 109 series. The series are

transformed by taking logarithms and/or differencing following Stock and Watson (2012).1 After trans-

formations, the available sample is 1960Q3:2008Q4, or T = 194. Let ξt =
(
ξ1t, ξ2t, ..., ξn−1,t

)′ be a vector
of the 109 transformed variables. Define the n × 1 vector xt = (ξt, yt, yt−1, yt−2, yt−3)′ considered below,
where yt is either the first-differenced log of real gross domestic product, or the second differenced log of

consumer price index.

We are interested in forecasting yt+1 with the predictors in xt and common factors ft extracted from

variables in zst , where z
s
t is the standardized zt =

(
yt, ξ

′
t

)′ (by subtracting its sample mean and dividing
each series by its sample standard deviation). We consider:

(a) the AR(h) model,

yt =
h∑
`=1

ρ`yt−` + vt,

which we use as a benchmark. The lag order h is selected using the SBC criterion with the maximum

number of lags set equal to hmax = 4.
1For further details, see the online supplement of Stock and Watson (2012), in particular columns E and T of their Table

B.1.
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Data-rich forecasting methods are:

(b) The factor-augmented AR,

yt =
h∑
`=1

ρ`yt−` + γ
′ft−1 + vt,

where ft is m×1 vector of unobserved common factors extracted from variables in zst . We use Bai and
Ng’s PCp1 criterion to select the number of factors (m) with the maximum number of factors set to

5. The vector of unobserved factors, ft, is estimated using the method of principal components. Same

as in the AR case, the lag order h is selected using the SBC criterion with the maximum number of

lags set equal to hmax = 4.

(c) Lasso method, implemented in the same way as described in Section 2 of the online Monte Carlo

supplement of CKP using
(
x′t−1, f

′
t−1
)
as the vector of predictors for yt.

(d) Adaptive Lasso method, implemented in the same way as described in Section 2 of the online Monbte

Carlo supplement of CKP using
(
x′t−1, f

′
t−1
)
as the vector of predictors for yt.

(e-g) OCMT method. We use OCMT described in CKP to select the relevant variables from the vector

xt−1 to forecasts the target variable yt. We set p = 0.01 (e), 0.05 (f) and 0.1 (g), and (δ, δ∗) = (1, 2),

and we always include c (intercept) , and ft−1 (lagged factors) in the testing regressions. Next, we

use the selected variables together with c, and ft−1 in an ordinary least squares regression for yt.

We use a rolling window of T = 120 time periods, which leaves us with the last H = 74 out-of-sample

evaluation periods, 1990Q3-2008Q4. We also consider pre-crisis evaluation subsample, 1990Q3-2007Q2

with H = 68 periods, to evaluate the sensitivity of results to exclusion of the global financial crisis from

the sample.

3 Results

Table 1 reports the root mean squared forecasting error (RMSFE) findings for all forecasting methods.

Diebold-Mariano (DM) test statistics for testing H0 : E (v̂ij,t) = 0, where v̂ij,t = ê2i,t − ê2j,t is the difference
between the squared forecasting errors of methods i and j, are presented in Table 2. The DM statistics is

computed assuming serially uncorrelated one-step-ahead forecasting errors. Specifically

DMij =
√
H
v̂H,ij
σ̂H,ij

, (1)

where H = 68 or 74 (depending on the evaluation period) is the length of the evaluation period, v̂H,ij =

H−1
∑T+H
t=T+1 v̂ij,t is the sample mean of v̂ij,t, and

σ̂H,ij =

√√√√ 1

H

T+H∑
t=T+1

v̂2ij,t.
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Table 1: RMSFE performance of the AR, factor-augmented AR, Lasso, adaptive Lasso, and
OCMT methods

Evaluation sample: Full Pre-crisis
1990Q3-2008Q4 1990Q3-2007Q2
RMSFE Relative RMSFE Relative
(×100) RMSFE (×100) RMSFE

Real output growth
(a) AR benchmark 0.561 1.000 0.505 1.000
(b) Factor-augmented AR 0.484 0.862 0.470 0.930
(c) Lasso 0.510 0.910 0.465 0.922
(d) Adaptive Lasso 0.561 1.000 0.503 0.996
(e) OCMT, p = 0.01 0.495 0.881 0.479 0.948
(f) OCMT, p = 0.05 0.477 0.850 0.461 0.912
(g) OCMT, p = 0.1 0.490 0.874 0.464 0.918

Inflation
(a) AR (1) benchmark 0.601 1.000 0.435 1.000
(b) Factor-augmented AR (1) 0.557 0.927 0.415 0.954
(c) Lasso 0.599 0.997 0.462 1.063
(d) Adaptive Lasso 0.715 1.190 0.524 1.205
(e) OCMT, p = 0.01 0.596 0.992 0.472 1.086
(f) OCMT, p = 0.05 0.590 0.982 0.464 1.068
(g) OCMT, p = 0.1 0.595 0.990 0.471 1.084

Notes: RMSFE is computed using a rolling forecasting scheme with a rolling window of 120 observations. We use the smaller
dataset considered in Stock and Watson (2012) which contains 109 series. The series are transformed by taking logarithms
and/or differencing following Stock and Watson (2012). The transformed series span 1960Q3 to 2008Q4 and are collected
in the vector ξt. Set of regressors in Lasso and adaptive-Lasso contains hmax = 4 lags of yt (lagged target variables), ξt−1,
and a lagged set of principal components obtained from the large dataset given by (yt, ξ′t)

′. OCMT procedure is applied to
regressions of yt conditional on lagged principal components, with elements of ξt−1 and hmax = 4 lags of yt considered one at
a time. OCMT is reported for δ = 1 in the first stage, and δ∗ = 2 in the subsequent stages of the OCMT procedure, and three
choices of p, similarly to the MC section of CKP. The number of principal components in the factor-augmented AR, Lasso,
adaptive Lasso, and OCMT methods is determined in a rolling scheme by using criterion PCp1 of Bai and Ng (2002) (with
the maximum number of PCs set to 5). See Section 2 for further details.
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Table 2: DM statistics for the forecasting performance of the AR, factor-augmented AR,
Lasso, adaptive Lasso, and OCMT methods

DMij test statistics

Full evaluation sample: 1990Q3-2008Q4

Real output growth Inflation

Method pair i (below), j (on right) (a) (b) (c) (d) (e) (f) (g) (a) (b) (c) (d) (e) (f) (g)

(a) AR(1) . 1.50 1.95 0.00 1.49 1.73 1.44 . 1.12 0.06 -2.55 0.12 0.28 0.14

(b) Factor-augmented AR (1) -1.50 . -0.67 -1.39 -0.59 0.43 -0.38 -1.12 . -1.89 -2.06 -2.39 -2.07 -2.09

(c) Lasso -1.95 0.67 . -1.76 0.45 0.92 0.57 -0.06 1.89 . -1.82 0.14 0.45 0.20

(d) Adaptive Lasso 0.00 1.39 1.76 . 1.29 1.56 1.31 2.55 2.06 1.82 . 1.61 1.69 1.62

(e) OCMT, p = 0.01 -1.49 0.59 -0.45 -1.29 . 1.32 0.24 -0.12 2.39 -0.14 -1.61 . 0.49 0.08

(f) OCMT, p = 0.05 -1.73 -0.43 -0.92 -1.56 -1.32 . -1.21 -0.28 2.07 -0.45 -1.69 -0.49 . -0.71

(g) OCMT, p = 0.05 -1.44 0.38 -0.57 -1.31 -0.24 1.21 . -0.14 2.09 -0.20 -1.62 -0.08 0.71 .

Pre-Crisis evaluation sample: 1990Q3-2007Q2

(a) AR(1) . 0.95 1.60 0.13 0.84 1.19 1.11 . 0.98 -1.13 -2.28 -1.54 -1.01 -1.18

(b) Factor-augmented AR (1) -0.95 . 0.14 -0.88 -0.48 0.52 0.34 -0.98 . -1.66 -2.31 -2.46 -2.21 -2.21

(c) Lasso -1.60 -0.14 . -1.39 -0.48 0.16 0.06 1.13 1.66 . -1.78 -0.47 -0.07 -0.37

(d) Adaptive Lasso -0.13 0.88 1.39 . 0.66 1.07 1.00 2.28 2.31 1.78 . 1.22 1.31 1.15

(e) OCMT, p = 0.01 -0.84 0.48 0.48 -0.66 . 1.22 0.82 1.54 2.46 0.47 -1.22 . 0.46 0.05

(f) OCMT, p = 0.05 -1.19 -0.52 -0.16 -1.07 -1.22 . -0.33 1.01 2.21 0.07 -1.31 -0.46 . -0.71

(g) OCMT, p = 0.05 -1.11 -0.34 -0.06 -1.00 -0.82 0.33 . 1.18 2.21 0.37 -1.15 -0.05 0.71 .

Notes: This table reports results for DMij statistics defined in (1). See also notes to Table 1.
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