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1 Introduction

This supplement to Chudik, Kapetanios, and Pesaran (2018, hereafter CKP) provides a description of the
individual methods employed in the empirical illustration, and additional empirical results. The empirical
illustration is set out in Section 6 of CKP. Section 2 below describes the forecasting exercise, and Section

3 reports additional empirical results.

2 Description of the forecasting exercise

We forecast the U.S. GDP growth and CPI inflation using a set of macroeconomic variables. We use
the smaller dataset considered in Stock and Watson (2012), which contains 109 series. The series are
transformed by taking logarithms and/or differencing following Stock and Watson (2012).! After trans-
formations, the available sample is 1960Q3:2008Q4, or 7' = 194. Let &, = (§1t7£2t7 ...,fn_u), be a vector
of the 109 transformed variables. Define the n x 1 vector x; = (£t,yt,yt,1,yt,2,yt,3)' considered below,
where y; is either the first-differenced log of real gross domestic product, or the second differenced log of

consumer price index.

We are interested in forecasting y;y1 with the predictors in x; and common factors f; extracted from
variables in z;, where zj is the standardized z; = (yt,ﬁg)’ (by subtracting its sample mean and dividing

each series by its sample standard deviation). We consider:
(a) the AR(h) model,

h
Yt = Z PeYt—e + Ut
=1

which we use as a benchmark. The lag order h is selected using the SBC criterion with the maximum

number of lags set equal to Apax = 4.

'For further details, see the online supplement of Stock and Watson (2012), in particular columns E and T of their Table
B.1.



Data-rich forecasting methods are:

(b) The factor-augmented AR,

h
Yr = szytfe +7'fi-1 + v,
=1

where f; is m X 1 vector of unobserved common factors extracted from variables in z;. We use Bai and
Ng’s PC) criterion to select the number of factors (m) with the maximum number of factors set to
5. The vector of unobserved factors, f;, is estimated using the method of principal components. Same
as in the AR case, the lag order h is selected using the SBC criterion with the maximum number of

lags set equal to hpax = 4.

(c) Lasso method, implemented in the same way as described in Section 2 of the online Monte Carlo

supplement of CKP using (x}_;,f/_;) as the vector of predictors for y;.

(d) Adaptive Lasso method, implemented in the same way as described in Section 2 of the online Monbte

Carlo supplement of CKP using (x]_;,f/_;) as the vector of predictors for y;.

(e-g) OCMT method. We use OCMT described in CKP to select the relevant variables from the vector
x¢—1 to forecasts the target variable y;. We set p = 0.01 (e), 0.05 (f) and 0.1 (g), and (4,5*) = (1,2),
and we always include ¢ (intercept) , and f;_; (lagged factors) in the testing regressions. Next, we

use the selected variables together with ¢, and f;_; in an ordinary least squares regression for y;.

We use a rolling window of 7' = 120 time periods, which leaves us with the last H = 74 out-of-sample
evaluation periods, 1990Q3-2008Q4. We also consider pre-crisis evaluation subsample, 1990Q3-2007Q2
with H = 68 periods, to evaluate the sensitivity of results to exclusion of the global financial crisis from

the sample.

3 Results

Table 1 reports the root mean squared forecasting error (RMSFE) findings for all forecasting methods.
Diebold-Mariano (DM) test statistics for testing Hy : E (0;5,) = 0, where 0;;; = éit — égz,t is the difference
between the squared forecasting errors of methods ¢ and j, are presented in Table 2. The DM statistics is

computed assuming serially uncorrelated one-step-ahead forecasting errors. Specifically

DM;; = VHS (1)
GH,ij

where H = 68 or 74 (depending on the evaluation period) is the length of the evaluation period, 51{7”- =
H! ZtT:J“Tﬁl 0;5,+ is the sample mean of ;;¢, and




Table 1: RMSFE performance of the AR, factor-augmented AR, Lasso, adaptive Lasso, and
OCMT methods

Evaluation sample: Full Pre-crisis
1990Q3-2008Q4 1990Q3-2007Q2
RMSFE Relative RMSFE Relative
(x100) RMSFE (x100) RMSFE
Real output growth

(a) AR benchmark 0.561 1.000 0.505 1.000
(b) Factor-augmented AR 0.484 0.862 0.470 0.930
(c) Lasso 0.510 0.910 0.465 0.922
(d) Adaptive Lasso 0.561 1.000 0.503 0.996
(e) OCMT, p =0.01 0.495 0.881 0.479 0.948
(f) OCMT, p = 0.05 0.477 0.850 0.461 0.912
(g) OCMT, p=0.1 0.490 0.874 0.464 0.918
Inflation
(a) AR (1) benchmark 0.601 1.000 0.435 1.000
(b) Factor-augmented AR (1) 0.557 0.927 0.415 0.954
(c) Lasso 0.599 0.997 0.462 1.063
(d) Adaptive Lasso 0.715 1.190 0.524 1.205
(e) OCMT, p =0.01 0.596 0.992 0.472 1.086
(f) OCMT, p =0.05 0.590 0.982 0.464 1.068
(g) OCMT, p=0.1 0.595 0.990 0.471 1.084

Notes: RMSFE is computed using a rolling forecasting scheme with a rolling window of 120 observations. We use the smaller
dataset considered in Stock and Watson (2012) which contains 109 series. The series are transformed by taking logarithms
and/or differencing following Stock and Watson (2012). The transformed series span 1960Q3 to 2008Q4 and are collected
in the vector &,. Set of regressors in Lasso and adaptive-Lasso contains hmax = 4 lags of y, (lagged target variables), &,_,,

and a lagged set of principal components obtained from the large dataset given by (yt,ﬁg)/. OCMT procedure is applied to
regressions of y; conditional on lagged principal components, with elements of £, _; and hmax = 4 lags of y; considered one at
a time. OCMT is reported for 4 = 1 in the first stage, and §* = 2 in the subsequent stages of the OCMT procedure, and three
choices of p, similarly to the MC section of CKP. The number of principal components in the factor-augmented AR, Lasso,
adaptive Lasso, and OCMT methods is determined in a rolling scheme by using criterion PC),; of Bai and Ng (2002) (with
the maximum number of PCs set to 5). See Section 2 for further details.



Table 2: DM statistics for the forecasting performance of the AR, factor-augmented AR,
Lasso, adaptive Lasso, and OCMT methods

DM;; test statistics

Full evaluation sample: 1990Q3-2008Q4

Real output growth Inflation
Method pair i (below), j @ 0 © @ (© 0 @& @ 0 © @ © 0 (@
(a) AR(1) 1.50 1.95 0.00 1.49 1.73 1.44 . 112 0.06 -2.55 0.12 0.28 0.14
(b) Factor-augmented AR (1) -1.50 . -0.67 -1.39 -0.59 0.43 -0.38 -1.12 . -1.89 -2.06 -2.39 -2.07 -2.09
(c) Lasso -1.95 0.67 . -1.76 0.45 0.92 0.57 -0.06 1.89 . -1.82 0.14 0.45 0.20
(d) Adaptive Lasso 0.00 1.39 1.76 . 1.29 156 1.31 2.55 2.06 1.82 1.61 1.69 1.62
(e) OCMT, p =0.01 -1.49 0.59 -0.45 -1.29 . 1.32 0.24 -0.12 2.39 -0.14 -1.61 0.49 0.08
(f) OCMT, p =0.05 -1.73 -0.43 -0.92 -1.56 -1.32 . -1.21 -0.28 2.07 -0.45 -1.69 -0.49 . -0.71
(g) OCMT, p =0.05 -1.44 0.38 -0.57 -1.31 -0.24 1.21 . -0.14 2.09 -0.20 -1.62 -0.08 0.71
Pre-Crisis evaluation sample: 1990Q3-2007Q2

(a) AR(1) 0.95 1.60 0.13 0.84 1.19 1.11 . 098 -1.13 -2.28 -1.54 -1.01 -1.18
(b) Factor-augmented AR (1) -0.95 0.14 -0.88 -0.48 0.52 0.34 -0.98 . -1.66 -2.31 -2.46 -2.21 -2.21
(c) Lasso -1.60 -0.14 . -1.39 -0.48 0.16 0.06 1.13 1.66 . -1.78 -0.47 -0.07 -0.37
(d) Adaptive Lasso -0.13 0.88 1.39 . 0.66 1.07 1.00 2.28 2.31 1.78 1.22 1.31 1.15
(e) OCMT, p=0.01 -0.84 0.48 0.48 -0.66 . 122 0.82 1.54 2.46 047 -1.22 0.46 0.05
(f) OCMT, p = 0.05 -1.19 -0.52 -0.16 -1.07 -1.22 . -0.33 1.01 2.21 0.07 -1.31 -0.46 . -0.71
(g) OCMT, p =0.05 -1.11 -0.34 -0.06 -1.00 -0.82 0.33 . 1.18 2.21 0.37 -1.15 -0.05 0.71

Notes: This table reports results for DM;;

statistics defined in (1). See also notes to Table 1.



References

Bai, J. and S. Ng (2002). Determining the number of factors in approximate factor models. Economet-
rica 70, 191-221.

Chudik, A., G. Kapetanios, and M. H. Pesaran (2018). A one-covariate at a time, multiple testing ap-

proach to variable selection in high-dimensional linear regression models. Econometrica, forthcoming.

Stock, J. H. and M. W. Watson (2012). Generalized shrinkage methods for forecasting using many

predictors. Journal of Business and Economic Statistics 30, 481-493.



