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Abstract

This paper considers testing the hypothesis that errors in a panel data model are weakly
cross sectionally dependent, using the exponent of cross-sectional dependence �, introduced
recently in Bailey, Kapetanios and Pesaran (2012). It is shown that the implicit null of the
CD test depends on the relative expansion rates of N and T . When T = O (N �), for some
0 < � � 1; then the implicit null of the CD test is given by 0 � � < (2 � �)=4, which gives
0 � � < 1=4, when N and T tend to in�nity at the same rate such that T=N ! �; with �
being a �nite positive constant. It is argued that in the case of large N panels, the null of weak
dependence is more appropriate than the null of independence which could be quite restrictive
for large panels. Using Monte Carlo experiments, it is shown that the CD test has the correct
size for values of � in the range [ 0; 1=4], for all combinations of N and T , and irrespective of
whether the panel contains lagged values of the dependent variables, so long as there are no
major asymmetries in the error distribution.
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1 Introduction

This paper is concerned with tests of error dependence in the case of large linear regression panels
where N (the cross section dimension) is large. In the case of panels where N is small (say 10 or less)
and the time dimension of the panel (T ) is su¢ ciently large the cross correlations of the errors can
be modelled (and tested statistically) using the seemingly unrelated regression equation (SURE)
framework originally developed by Zellner (1962). In such panels where N is �xed as T ! 1,
traditional time series techniques, including log-likelihood ratio tests, can be applied. A simple
example of such a test is the Lagrange multiplier (LM) test of Breusch and Pagan (1980) which is
based on the average of the squared pair-wise correlation coe¢ cients of the residuals. However, in
cases where N is large standard techniques will not be applicable and other approaches must be
considered.
In the literature on spatial statistics the extent of cross-sectional dependence is measured with

respect to a given �connection or spatial matrix� that characterizes the pattern of spatial depen-
dence according to a pre-speci�ed set of rules. For example, the (i; j) elements of a connection
matrix, wij , could be set equal to 1 if the ith and jth regions are joined, and zero otherwise. See
Moran (1948) and further elaborations by Cli¤ and Ord (1973, 1981). More recent accounts and
references can be found in Anselin (1988, 2001), and Haining (2003, Ch. 7). This approach, apart
from being dependent on the choice of the spatial matrix, is not appropriate in many economic
applications where space is not a natural metric and economic and sociopolitical factors could be
more appropriate.1

In the absence of ordering, tests of cross-sectional independence in the case of largeN panels have
been considered in Frees (1995), Pesaran (2004), Pesaran, Ullah and Yamagata (2008), Sara�dis,
Yamagata, Robertson (2009), and Baltagi, Feng and Kao (2011). Recent surveys are provided by
Moscone and Tosetti (2009), and Sara�dis and Wansbeek (2012). The null hypothesis of these tests
is the cross-sectional independence of the errors in the panel regressions, and the tests are based
on pair-wise correlation coe¢ cients of the residuals, �̂ij , for the (i; j) units, computed assuming
homogeneous or heterogeneous slopes.
The original LM test of Breusch and Pagan (1980), and its modi�ed version for large N panels

by Pesaran, Ullah and Yamagata (2008), are based on �̂2ij , and test the hypothesis that all pair-
wise error covariances, Cov (uit; ujt), are equal to zero for i 6= j. In contrast, we show that the
implicit null of the CD test, proposed in Pesaran (2004), which is based on �̂ij , is weak cross-
sectional dependence discussed in Chudik, Pesaran and Tosetti (2011), and further developed in
Bailey, Kapetanios and Pesaran (2012, BKP). More speci�cally, we show that the implicit null of
the CD test depends on the relative expansion rates of N and T . In general, if T = O (N �) for some
� in the range (0; 1], then the implicit null of the CD test is given by 0 � � < (2 � �)=4; where �
is the exponent of cross-sectional dependence de�ned by ��N = [2=(N(N � 1))]

PN�1
i=1

PN
j=i+1 �ij =

O(N2��2), with �ij denoting the population correlation coe¢ cient of uit and ujt. � measures the
degree of cross-sectional dependence amongst the errors and attains its highest value of unity if the
number of non-zero pair-wise error correlations tend to in�nity at the same rate as N2. This is
related to the rate at which the largest eigenvalue of the correlation matrix of the errors, �max(R),
expands with N , where R = (�ij). � = 1 corresponds to the strong cross-sectional dependence case
where �max(R) rises at the same rate as N . (see, for example, Chamberlain, 1983). The value of
� = 0 corresponds to the opposite extreme where �max(R) is �xed in N . Intermediate values of �

1For empirical applications where economic distance such as trade patterns are used in modelling of spatial
correlations see Conley and Topa (2002) and Pesaran, Schuermann, and Weiner (2004).
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in the range (0; 1) correspond to cases where �max(R) changes with N but at a slower rate. There
is also a correspondence between the rate of expansion of �max(R) and the number of non-zero
factor loadings in a factor representation of the errors which is discussed in the literature, although
the focus has been on the extreme values of � = 0 and � = 1. (see, for example, Chudik, Pesaran
and Tosetti (2011)).
BKP show that � is identi�ed and can be estimated consistently if 1=2 < � � 1. This paper

complements BKP by showing that the null hypothesis that � lies in the range [0; 1=2) can be tested
using the CD statistic if � is close to zero (T almost �xed as N !1), but in the case where � = 1
(N and T !1 at the same rate) then the implicit null of the CD test is given by � < 1=4.
The null of weak cross-sectional dependence also seems more appropriate than the null of cross-

sectional independence in the case of large panel data models where only pervasive cross dependence
is of concern. For example, in portfolio analysis full diversi�cation of idiosyncratic errors is achieved
if the errors are weakly correlated, and cross-sectional error independence is not required. In esti-
mation of panels only strong cross-sectional error dependence can pose real problems, and in most
applications weak cross-sectional error dependence does not pose serious estimation and inferential
problems.
The small sample properties of the CD test for di¤erent values of � and sample sizes are

investigated by means of a number of Monte Carlo experiments. It is shown that the CD test has
the correct size for values of � in the range [0; 1=4], for all combinations of N and T , and irrespective
of whether the panel contains lagged values of the dependent variables, so long as there are not
major asymmetries in the error distributions. This is in contrast to the LM based tests (such as
the one proposed by Pesaran, Ullah and Yamagata, 2008) that require the regressors to be strictly
exogenous. In line with the theoretical results, the CD test tends to over-reject if T is large relative
to N and � is within the interval (1=4; 1=2]. The CD test also has satisfactory power for all values
of � > 1=2 and rises with N

p
T so long as � > 1=2.

The rest of the paper is organized as follows. The panel data model and the LM tests of
error cross-sectional independence are introduced in Section 2. The concept of weak cross-sectional
dependence is introduced and discussed in Section 3. The use of CD statistic for testing weak
cross-sectional dependence is discussed in Section 4, where the asymptotic distribution of the test
is rigorously established under the null of independence. The distribution of CD statistic under the
more general null of weak dependence is considered in Section 5, and the conditions under which
it tends to N(0; 1) are derived. The application of the test to heterogeneous dynamic panels is
discussed in Section 6. Small sample evidence on the performance of the test is provided in Section
7. Section 8 concludes.

2 Panel Data Models and the LM Type Tests of Cross-
Sectional Error Independence

Consider the following panel data model

yit = �
0
ixit + uit, for i = 1; 2; :::; N ; t = 1; 2; :::; T; (1)

where i indexes the cross section dimension and t the time series dimension, xit is a (k + 1) �
1 vector of observed time-varying regressors (individual-speci�c as well as common regressors).
An individual-speci�c intercept can be included by setting the �rst element of xit to unity. The
coe¢ cients, �i, are de�ned on a compact set and allowed to vary across i. For each i, uit s
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IID(0; �2i ), for all t, although they could be cross-sectionally correlated.
2 The dependence of uit

across i could arise in a number of di¤erent ways. It could be due to spatial dependence, omitted
unobserved common components, or idiosyncractic pair-wise dependence of uit and ujt (i 6= j) with
no particular pattern of spatial or common components. The regressors could contain lagged values
of yit, be either stationary (or integrated of order zero, I(0)) or have unit roots (or integrated of
order 1, I(1)). But in the derivations below we assume xit s I(0), and distinguish between the
static and dynamic cases where the regressors are strictly exogenous and when they are weakly
exogenous, speci�cally when xit = (1; yi;t�1; :::; yi;t�p). The testing procedure is applicable to �xed
and random e¤ects models as well as to the more general heterogeneous slope or random coe¢ cient
speci�cations.

2.1 LM Type Tests

In the SURE context with N �xed and T ! 1, Breusch and Pagan (1980) proposed a Lagrange
multiplier (LM) statistic for testing the null of zero cross equation error correlations which is
particularly simple to compute and does not require the system estimation of the SURE model.
The test is based on the following LM statistic

CDlm = T

N�1X
i=1

NX
j=i+1

�̂2ij ;

where �̂ij is the sample estimate of the pair-wise correlation of the residuals. Speci�cally,

�̂ij = �̂ji =

PT
t=1 eitejt�PT

t=1 e
2
it

�1=2 �PT
t=1 e

2
jt

�1=2 ; (2)

and eit is the Ordinary Least Squares (OLS) estimate of uit de�ned by

eit = yit � �̂
0
ixit; (3)

with �̂i being the OLS estimator of �i computed using the regression of yit on xit for each i;
separately. The LM test is valid for N relatively small and T su¢ ciently large. In this setting
Breusch and Pagan show that under the null hypothesis of no cross-sectional dependence, speci�ed
by

Cov (uit; ujt) = 0; for all t, i 6= j; (4)

CDlm is asymptotically distributed as chi-squared with N(N � 1)=2 degrees of freedom. As it
stands this test is not applicable when N ! 1. However, noting that under H0, T �̂

2
ij

as �21 with
�̂2ij , i = 1; 2; ::; N � 1, j = i + 1; 2; :::; N , being asymptotically independent, the following scaled
version of CDlm can be considered for testing the hypothesis of cross dependence even for N and
T large:

CDlm =

s
1

N(N � 1)

N�1X
i=1

NX
j=i+1

(T �̂2ij � 1): (5)

2The assumption that uit�s are serially uncorrelated is not restrictive and can be accommodated by including a
su¢ cient number of lagged values of yit amongst the regressors.
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It is now easily seen that under H0 with T !1 �rst followed by N !1 we would have CDlm
as

N(0; 1). However, this test is likely to exhibit substantial size distortions for N large and T small,
a situation that can frequently arise in empirical applications. This is primarily due to the fact that
for a �nite T , E(T �̂2ij � 1) will not be correctly centered at zero, and with N large the incorrect
centering of the LM statistic is likely to be accentuated, resulting in size distortions that tend to
get worse with N . A bias corrected version of CDlm is proposed in Pesaran, Ullah and Yamagata
(2008) under the assumptions that the regressors are strongly exogenous and the errors are normally
distributed. In what follows we propose a test of weak cross-sectional dependence, which we argue
to be more appropriate for large panels, where mere incidence of isolated dependencies are of little
consequence for estimation or inference.

3 Weak Error Cross-Sectional Dependence

As noted in the introduction when N is large it is often more appropriate to consider the extent
of error cross-sectional dependence rather than the extreme null hypothesis of error independence
that underlies the LM type tests. This is in line, for example, with the assumption of approximate
factor models discussed in Chamberlain (1983) in the context of capital asset pricing models. To
this end we consider the following factor model for the errors

uit = !i (

0
ift + "it) ; (6)

where ft = (f1t; f2t; :::; fmt)0 is the m�1 vector of unobserved common factors (m being �xed) with
E(ft) = 0, and Cov(ft) = Im, 
i = (
i1; 
i2; :::; 
im)

0 is the associated vector of factor loadings, "it
are idiosyncratic errors that are cross-sectionally and serially independent with mean zero and a
unit variance, namely "it s IID(0; 1), and !i is a scaler that controls the variance of uit. The degree
of cross-sectional dependence of the errors, uit, is governed by the rate at which the average pair-
wise error correlation coe¢ cient, ��N = [2=N(N � 1)]

PN�1
i=1

PN
j=i+1 �ij , tends to zero in N , where

�ij = Corr(uit; ujt). In the case of the above factor model we have, V ar(uit) = �2i = !2i (1+ 

0
i
i);

�ij = �
0
i�j , for i 6= j, where

�i =

ip

1 + 
0i
i
: (7)

Then it is easily seen that

��N =

�
N

N � 1

� 
��
0
N
��N �

PN
i=1 �

0
i�i

N2

!
; (8)

where ��N = N�1PN
i=1 �i.

Consider now the e¤ects of the jth factor, fjt, on the ith error, uit, as measured by 
ij , and
suppose that these factor loadings take non-zero values for Mj out of the N cross-section units
under consideration. Then following BKP, the degree of cross-sectional dependence due to the jth

factor can be measured by �j = ln(Mj)= ln(N), and the overall degree of cross-sectional dependence
of the errors by � = maxj(�j). BKP refer to � as the exponent of cross-sectional dependence. �
can take any value in the range 0 to 1, with 1 indicating the highest degree of cross-sectional
dependence. Considering that 
0i
i = O(m) where m is �xed as N ! 1, the exponent of cross-
sectional dependence of the errors can be equivalently de�ned in terms of the scaled factor loadings,
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�i = (�i1; �i2; :::; �im)
0. Without loss of generality, suppose that only the �rst Mj elements of �ij

over i are non-zero, and note that3

��j;N =
1

N

0@MjX
i=1

�ij +
NX

i=Mj+1

�ij

1A =
Mj

N

0@M�1
j

MjX
i=1

�ij

1A = N�j�1�j = O(N�j�1);

where �j =
�
M�1
j

PMj

i=1 �ij

�
6= 0, for a �nite Mj and as Mj ! 1. Similarly, N�2PN

i=1 �
2
ij =

O(N�j�2), and using (8) we have
��N = O(N2��2):

In what follows we develop a test of the null hypothesis that � < 1=2. The case where � > 1=2
is covered in BKP. The values of � in the range [0; 1=2) correspond to di¤erent degrees of weak
cross-sectional dependence, as compared to values of � in the range (1=2; 1] that relate to di¤erent
degrees of strong cross-sectional dependence.

4 A Test of Weak Cross-Sectional Dependence

Given that � is de�ned by the contraction rate of ��N , we base the test of weak cross-sectional error
dependence on its sample estimate, given by

b��N = 2

N(N � 1)

N�1X
i=1

NX
j=i+1

�̂ij ; (9)

where �̂ij is already de�ned by (2). The CD test of Pesaran (2004) is in fact a scaled version of b��N
which can be written as

CD =

�
TN(N � 1)

2

�1=2 b��N : (10)

In what follows we consider the distribution of the CD statistic under three di¤erent null hypotheses.
To establish comparability and some of the basic results we begin with CD statistic under hypothesis
of cross-sectional independence de�ned by

H0 : 
i = 0; for all i: (11)

We then consider the asymptotic distribution of the CD statistic as N and T ! 1, such that
T = O(N �), for 0 < � � 1, and show that the implicit null of the CD test is given by

Hw
0 : � < (2� �)=4: (12)

As argued earlier, such a null is much less restrictive for large N panels than the pair-wise error
independence assumption that underlies the LM type tests which are based on �̂2ij .
Initially, we derive the asymptotic distribution of the CD test in the case of the standard panel

data model, (1) subject to the following assumptions:

3The main results in the paper remain valid even if
PN
i=Mj+1

�ij = O(1). But for expositional simplicity we

maintain the assumption that
PN
i=Mj+1

�ij = 0.
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Assumption 1: The factor model, (6), holds. The idiosyncratic errors, "it, are serially and
cross-sectionally independent with mean zero and a unit variance, and are symmetrically distributed
around 0 for all i and t. ft s IID(0; Im), ft and "i;t0 are distributed independently for all t and t0,
and 0 < !2i < K <1. The factor loadings, 
i, are independently distributed across i:
Assumption 2a: The regressors, xit, are strictly exogenous such that

E ("it j Xj) = 0, for all i; j and t; (13)

where Xi = (xi1;xi2; :::;xiT )
0. Also T�1X0

iXi is a positive de�nite matrix for any �xed T ,
T�1X0

iXi !p �ii; as T ! 1, with �ii being a positive de�nite matrix, and T�1X0
iXj !p �ij =

O(1).
Assumption 2b: The following standardized errors

�it;T = "it=(T
�1"0iMi"i)

1=2; for i = 1; 2; :::; N ; t = 1; 2; :::; T (14)

where "i = ("i1; "i2; :::; "iT )
0; are cross-sectionally and serially independent and have fourth-order

moments, namely
E
�
�4it;T

�
< K <1. (15)

It is also assumed that the regressors are suitably bounded such that

hit;T = �x0it
�
X0
iXi

T

��1�
X0
i�iTp
T

�
; (16)

have fourth-order moments, namely E
�
h4it;T

�
< K < 1, where �iT = (�i1;T ; �i2;T ; :::; �iT;T ), and

Mi = IT �Xi (X
0
iXi)

�1
X0
i.

Assumption 3: T > k + 4 and the OLS residuals, eit, de�ned by (3), are not all zero.
Assumption 4: The factor loadings, 
i, de�ned by (6) satisfy the �-summability condition

NX
i=1


i = O(N�): (17)

Remark: Assumption 1 is standard in the literature on multi-factor models, except for the
assumption that the idiosyncratic errors are symmetrically distributed. This assumption is needed
to ensure that the standardized errors, �it;T , also have mean zero. The �rst part of Assumption 2b
is met if supiE("

6
it) < K < 1, and T > k + 4. This result can be established using Lemmas in

Lieberman (1994). For future use it is also worth noting that

E
�
�2it;T

�
= E

�
"2it

T�1"0iMi"i

�
= 1 +O

�
1

T

�
: (18)

In fact when "it are normally distributed we have the following exact result

E
�
�2it;T

�
=

T

T � k � 3 ;

which follows since (T � k � 1)"2it="0iMi"i has an F distribution with 1 and T � k � 1 degrees
of freedom. In the case where "it are non-Guassian, the moment conditions in (18) follow from
standard application of results in Lieberman (1994), assuming the regressors are suitably bounded.
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Theorem 1 Consider the regression model, (1), and suppose that Assumptions 1-3 hold, and the
idiosyncratic errors, "it, are symmetrically distributed around 0, then under H0 : 
i = 0, and for
all N > 1 and T > k + 1 we have

E
�
�̂ij
�
= 0; for all i 6= j; (19)

E
�
�̂ij �̂is

�
= 0, for all i 6= j 6= s; (20)

E (CD) = 0; (21)

V ar(CD) = 1 +
T �aN

(T � k � 1)2
� (k + 1)

2

(T � k � 1)2
; (22)

�aN =
2
PN�1

i=1

PN
j=i+1 Tr (AiAj)

N(N � 1) < k + 1; (23)

where Ai = Xi(X
0
iXi)

�1X0
i ; �̂ij and CD are de�ned by (2) and (10), respectively.4

Proof:. First note that the pair-wise correlation coe¢ cients can be written as

�̂ij = T�1
TX
t=1

�it�jt; (24)

where �it are the scaled residuals de�ned by

�it =
eit

(T�1e0iei)
1=2

; (25)

eit is the OLS residuals from the individual-speci�c regressions, de�ned by (3), and ei = (ei1; ei2; :::; eiT )0.
Also under H0, ei = !iMi"i, where "i = ("i1; "i2;:::; "iT )

0. Therefore, conditional on xit, the scaled
residuals, �it, are odd functions of the disturbances, "it, and under Assumption 2 we have

E (�it j Xi) = 0; for all i and t.

Hence, unconditionally we also have

E (�it) = 0, for all i and t.

Using this result in (24) now yields (recall that under H0 the errors, "it; are cross-sectionally
independent),

E
�
�̂ij
�
= 0;

which in turn establishes that (using (10))

E(CD) = 0,

4Similar results can also be obtained for �xed or random e¤ects models. It su¢ ces if the OLS residuals used in
the computation of �̂ij are replaced with associated residuals from �xed or random e¤ects speci�cations. But the
CD test based on the individual-speci�c OLS residuals are robust to slope and error-variance heterogeneity whilst
the �xed or random e¤ects residuals are not.
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for any N , and all T > k + 1. Under H0 and Assumptions 1-3, �̂ij and �̂is are cross-sectionally
uncorrelated for i; j and s, such that i 6= j 6= s. More speci�cally

E
�
�̂ij �̂is

�
= T�2

TX
t=1

TX
t0=1

E
�
�it�jt�it0�st0

�
= T�2

TX
t=1

TX
t0=1

E (�it�it0)E
�
�jt
�
E (�st0) = 0; for i 6= j 6= s:

Also since the regressors are assumed to be strictly exogenous, we further have5

V ar
�p

T �̂ij

�
= E

�
T �̂2ij

�
= T Tr(MiMj)=(T � k � 1)2:

Using this result in (10) we have

V ar(CD) =
2T

N(N � 1)(T � k � 1)2

0@N�1X
i=1

NX
j=i+1

[T � 2(k + 1) + Tr (AiAj)]

1A
=

T [T � 2(k + 1)]
(T � k � 1)2

+
2T

N(N � 1)(T � k � 1)2

0@N�1X
i=1

NX
j=i+1

Tr (AiAj)

1A :

Hence

V ar(CD) = 1 +
T �aN

(T � k � 1)2
� (k + 1)

2

(T � k � 1)2
= 1 +O

�
1

T

�
;

where

�aN =
2
PN�1

i=1

PN
j=i+1 Tr (AiAj)

N(N � 1) :

But Tr (AiAj) <
�
Tr(A2

i )Tr(A
2
j )
�1=2

= k+1, and we must also have �aN < k+1. This completes
the proof of the theorem.
The above results also suggest the following modi�ed version of CD,

gCD =
CDh

1 + T �aN
(T�k�1)2 �

(k+1)2

(T�k�1)2

i1=2 ; (26)

which is distributed exactly with a zero mean and a unit variance. In cases where T � k � 1 is
relatively large, and the regressors, xit; are cross-sectionally weakly correlated, the term involving
�aN in the expression for the variance of CD will be small and both statistics are likely to perform
very similarly, and the CD test is recommended on grounds of its simplicity. To keep the analysis
simple, and without of loss generality, in what follows we shall focus on the CD test.

5For a proof see Appendix A.2 in Pesaran, Ullah, and Yamagata, (2008, pp. 123-124).
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4.1 The distribution of the CD test under H0
Consider now the distribution of the CD test. As shown in (20), the elements in the double sum-
mation that forms the CD statistic are uncorrelated but they need not be independently distributed
when T is �nite. Therefore, when T is �nite the standard central limit theorems can not be ex-
ploited in order to derive the distribution of the CD statistic.6 To resolve the problem we �rst
re-write the CD statistic (de�ned by (10)) as

CDNT =

s
2

N(N � 1)

0@N�1X
i=1

NX
j=i+1

p
T �̂ij

1A ; (27)

and recall that �̂ij = T�1
PT

t=1 �it�jt; where �it is de�ned by (25). Now under H0 : 
i = 0, using
standard results from regression analysis, we have

�it = �it + T
�1=2hit;T ; (28)

hit;T = �x0it
�
X0
iXi

T

��1�X0
i�i;Tp
T

�
; (29)

where �it;T = "it=("
0
iMi"i=T )

1=2, and �iT = (�i1; �i2; :::; �iT )
0. To simplify the notations we abstract

from the dependence of �it;T on T . It will also prove helpful to recall that under Assumptions 1,
2a and 2b, E(�it;T ) = 0, Cov(�it;T ; �jt;T ) = 0, for all i 6= j, and for each i; V ar(�it;T ) = �2�i =

1 +O(T�1).
Before deriving the asymptotic distribution of CDNT we present some preliminary results in

the following lemma and provide the proofs in the Appendix.
Lemma 1: Consider

wt;NT = N�1=2
NX
i=1

�it;T , and ht;NT = N�1=2
NX
i=1

hit;T , (30)

where �it;T and hit;T are de�ned by (14) and (16), and suppose that Assumptions 1 and 2 hold.
Then

E (wt;NT ) = 0; E(w2t;NT ) = 1 +O

�
1

T

�
; (31)

E (ht;NT ) = 0; E
�
h2t;NT

�
= N�1

NX
i=1

x0it

�
X0
iXi

T

��1
xit +O

�
1

T

�
= Op(1); (32)

Cov (ht;NT ; wt0;NT ) = O(T�1=2), Cov (wt;NT ; wt0;NT ) = O(T�1), for t 6= t0; (33)

wt;NT = Op(1), ht;NT = Op(1), and
1

T

TX
t=1

wt;NTht;NT !p 0: (34)

6This corrects the statement made in error in Pesaran (2004).
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With these results in mind, we write CDNT as

CDNT =

s
2

N(N � 1)

N�1X
i=1

NX
j=i+1

1p
T

TX
t=1

�it�jt; (35)

and note that
N�1X
i=1

NX
j=i+1

�it�jt =
1

2

24 NX
i=1

�it

!2
�

NX
i=1

�2it

35 ; (36)

and hence

CDNT =

s
N

2(N � 1)
1p
T

TX
t=1

24 PN
i=1 �itp
N

!2
�
PN

i=1 �
2
it

N

35 : (37)

However, using (28), 
N�1=2

NX
i=1

�it

!2
=

 
N�1=2

NX
i=1

�it

!2
+

 
(NT )

�1=2
NX
i=1

hit;T

!2
(38)

+2

 
N�1=2

NX
i=1

�it

! 
(NT )

�1=2
NX
i=1

hit;T

!
;

and

N�1
NX
i=1

�2it = N�1
NX
i=1

�2it + (NT )
�1

NX
i=1

h2it;T + (39)

2T�1=2

 
N�1=2

NX
i=1

hit;T

! 
N�1=2

NX
i=1

�it

!
:

Consider now the terms involving hit;T , and note that

1p
T

TX
t=1

 
(NT )

�1=2
NX
i=1

hit;T

!2
=

1p
T

1

T

TX
t=1

h2t;NT = Op

�
T�1=2

�
(40)

1p
T

1

NT

TX
t=1

NX
i=1

h2it;T = Op

�
T�1=2

�
: (41)

Further,

1p
T

TX
t=1

 
N�1=2

NX
i=1

�it

! 
(NT )

�1=2
NX
i=1

hit;T

!
=
1

T

TX
t=1

wtNht;NT ; (42)

where wtN , and ht;NT are de�ned by (30). Therefore, using (40), (41) and (42) in (38) and (39)
and then substituting the results back in (37) we have

CDNT = ZNT + op(1); (43)

10



where

ZNT =

s
N

2(N � 1)
1p
T

TX
t=1

24 PN
i=1 �itp
N

!2
�
PN

i=1 �
2
it

N

35 (44)

and op(1) indicates terms that tend to zero in probability as N and T !1, in any order.
To derive the distribution of ZNT ; recall that wt;NT = N�1=2PN

i=1 �it, and write ZNT as

ZNT =

s
N

(N � 1) (UNT � VNT ) ; (45)

where

UNT =
1p
T

TX
t=1

 
w2t;NT � E(w2t;NT )p

2

!
;

and

VNT =

PT
t=1

PN
i=1

�
�2it � E(�2it)

�
N
p
2T

=

PT
t=1

PN
i=1 �it

N
p
2T

;

where �it = �2it � E(�2it), and E(w
2
t;NT ) = 1 + O

�
T�1

�
. Under our assumptions, �it are cross-

sectionally independently distributed with mean 0 and a �nite variance V ar (�it) = E(�4it) � �4�i ,
such that supi V ar (�it) < K <1. Furthermore, �it are serially uncorrelated as T !1 (see (33)).
Hence, it readily follows that

E(VNT ) = 0; V ar (VNT ) =
1

2TN2

TX
t=1

NX
i=1

V ar (�it) <
1

2N
sup
i
V ar (�it) = O

�
N�1� : (46)

Consider now UNT , and recall that w2t;NT is asymptotically temporally uncorrelated with E(wt;NT ) =
0; and E(w2t;NT ) = 1 +O

�
T�1

�
. Hence,

E(UNT ) = 0;

V ar(UNT ) =
1

2T

TX
t=1

V ar
�
w2t;NT

�
=

1

2T

TX
t=1

h
E
�
w4t;NT

�
�
�
E
�
w2t;NT

��2i
: (47)

But, noting that �it;T are cross-sectionally independent, we have

E
�
w4t;NT

�
=

1

N2

NX
i=1

NX
j=1

NX
r=1

NX
s=1

E
�
�it�jt�rt�st

�
=

3

N2

"
NX
i=1

E
�
�2it
�#2

+
1

N2

NX
i=1

E
�
�4it
�

= 3
�
E(w2t;NT )

�2
+

1

N2

NX
i=1

E
�
�4it
�
; (48)
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and substituting (48) into (47) we obtain

V ar(UNT ) =
1

T

TX
t=1

�
E
�
w2t;NT

��2
+

1

2N2T

TX
t=1

NX
i=1

E
�
�4it
�
:

Now using (46) in (44), and then in (43), we have

CDNT = UNT +Op

�
N�1=2

�
+ o(1):

Also, since E(w2t;NT ) = 1 +O
�
T�1

�
, we have

UNT =
1p
T

TX
t=1

 
w2t;NT � E(w2t;NT )p

2

!
=

1p
T

TX
t=1

 
w2t;NT � 1p

2

!
+Op

�
1p
T

�
:

But for any t and as N !1; wt;NT = N�1=2PN
i=1 �it !d N(0; 1); and therefore w2t;NT !d �

2
t (1);

where �2t (1), for t = 1; 2; :::; T are independent chi-square variates with 1 degree of freedom. This in
turn implies that as N ! 1, 1p

2

�
w2t;NT � 1

�
; for t = 1; 2; :::; T , are independent random variates

with mean zero and a unit variance. Hence, UNT !d N(0; 1); as N and T ! 1, noting also that
the term Op

�p
T=N

�
vanishes with N ! 1, considering that

p
T=N = O(N�1+�=2) and � < 1.

To summarize:

Theorem 2 Consider the panel data model (1), and suppose that Assumptions 1 to 4 hold. Then
under the null hypothesis of cross-sectional error independence,(11), the CD statistic de�ned by
(10) has the limiting N(0; 1) distribution as N and T !1, in any order.

It is also clear that since the mean of CD is exactly equal to zero for all �xed T > k + 1 and
N; the test is likely to have good small sample properties (for both N and T small), a conjecture
which seems to be supported by extensive Monte Carlo experiments to be reported in Section 7.
We now show that the CD test is in fact applicable even if the errors are weakly correlated,

namely the implicit null of the CD test is weak cross-sectional error dependence, rather than
independence. We argue that when N is large the null hypothesis that all pairs of errors are
independently distributed is rather restrictive. What is needed is a less restrictive null that postulate
a su¢ ciently large number of pairs of errors are independently distributed. The analysis below
formalizes what is meant by "a su¢ ciently large number".

5 Asymptotic Distribution of the CDTest UnderWeak Cross-
Sectional Error Dependence

In this section we consider the asymptotic distribution of the CD statistic under the null of weak
cross-sectional dependence, Hw

0 de�ned by (12). To this end we assume that for each i(
T�1

PT
t=1 "itft = Op

�
T�1=2

�
, T�1

PT
t=1 xitf

0
t = Op

�
T�1=2

�
,

T�1
PT

t=1 ftf
0
t = Im +Op

�
T�1=2

�
:

(49)
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We also make the following standard assumptions about the regressors7�
X0
iXj

T

�
= �ij +Op(T

�1=2),
�
X0
i"i
T

�
= Op(T

�1=2); for all i and j; (50)

where �ii is a positive de�nite matrix.
Consider now the CD test statistic de�ned by (10) and note that under Hw

0 , the vector of the
OLS residuals is given by

ei = !i (Mi"i +MiF
i) ;

where F = (f1; f2; :::; fT )
0; and as before Mi = IT �Xi (X

0
iXi)

�1
X0
i. In this case the distribution

of �̂ij is quite complicated and depends on the magnitude of the factor loadings and the cross
correlation patterns of the regressors and the unobserved factors. It does not, however, depend on
the error variances, !2i . Under H

w
0 ; �it de�ned by (25), can be written as

�it =

0ift + "it

(T�1"0iMi"i + 2T�1"0iMiF
i + T
�1
0iF

0MiF
i)
1=2

� x0it (X
0
iXi)

�1
X0
i (F
i + "i)

(T�1"0iMi"i + 2T�1"0iMiF
i + T
�1
0iF

0MiF
i)
1=2

;

or more compactly
�it =

~�it + T
�1=2~hit;T + ~git;T (51)

where

~�it =
"it
 iT

; ~hit;T = �x0it
�
X0
iXi

T

��1 
X0
i
~�ip
T

!
;

 iT =
�
T�1"0iMi"i + 2T

�1"0iMiF
i + T
�1
0iF

0MiF
i
�1=2

;

and

~git;T =

0ift � x0it (X0

iXi)
�1
X0
iF
i

 iT
: (52)

Using (51) in (37), we now have

CDNT =

s
N

2(N � 1)
1p
T

TX
t=1

264 PN
i=1

~�it + T
�1=2~hit;T + ~git;Tp
N

!2
�

PN
i=1

�
~�it + T

�1=2~hit;T + ~git;T

�2
N

375 :
(53)

Following the derivations in the previous section, it is possible to show that under Assumptions 1-4,
(49), and (50), the null of weak cross-sectional dependence given by (12), then the CDNT statistics
tends to N(0; 1) if

N�1
NX
i=1

E(~�
2

it)! 1, (54)

7These assumptions allow for the inclusion of lagged dependent variables amongst the regressors and can be
relaxed further to take account of non-stationary I(1) regressors.

13



1p
T

TX
t=1

 PN
i=1 ~git;Tp
N

!2
!p 0; and

1

N
p
T

TX
t=1

NX
i=1

~g2it;T !p 0: (55)

To establish these results, we �rst note that under Assumptions (49), and (50)

 2iT = 1 + 

0
i
i +Op(T

�1=2):

Using this result we have

N�1
NX
i=1

E(~�
2

it) = N�1
NX
i=1

E

�
"2it
 2iT

�
! N�1

NX
i=1

1

1 + 
0i
i
= 1�N�1

NX
i=1


0i
i
1 + 
0i
i

:

But under (17),
PN

i=1

0i
i
1+
0i
i

= O(N�); and N�1PN
i=1E(

~�
2

it)! 1, if � < 1.
Consider now the two expressions in (55), and note that

1p
T

TX
t=1

 PN
i=1 ~git;Tp
N

!2
=

1p
T

TX
t=1

 PN
i=1 ~


0
ift �

PN
i=1 x

0
it (X

0
iXi)

�1
X0
iF~
ip

N

!2
(56)

=

p
T

N

 
NX
i=1

~
0i

!�
F0F

T

� NX
i=1

~
i

!

+
1

N
p
T

TX
t=1

 
NX
i=1

x0it (X
0
iXi)

�1
X0
iF~
i

!2
(57)

�2 1

N
p
T

 
NX
i=1

~
0i

!
NX
i=1

(F0Xi) (X
0
iXi)

�1
(X0

iF) ~
i

where ~
i = ~
i= iT . But under (49) and (17) and setting T = O (N �), we have

p
T

N

 
NX
i=1

~
0i

!�
F0F

T

� NX
i=1

~
i

!
= Op

�
N2��1+�=2

�
;

and
p
T
N

�PN
i=1 ~


0
i

��
F0F
T

��PN
i=1 ~
i

�
!p 0, as N ! 1, if 2� � 1 + �=2 < 0, or if � < (2 � �)=4.

Similarly,

1

N
p
T

TX
t=1

 
NX
i=1

x0it (X
0
iXi)

�1
X0
iF~
i

!2

=
1

N
p
T

TX
t=1

NX
i=1

NX
j=1

~
0iF
0Xi (X

0
iXi)

�1
xitx

0
jt

�
X0
jXj

��1
X0
jF~
j

=
1

N
p
T

NX
i=1

NX
j=1

~
0i (F
0Xi) (X

0
iXi)

�1
(X0

iXj)
�
X0
jXj

��1 �
X0
jF
�
~
j

=
1

N
p
T

 
NX
i=1

~
0iF
0Ai

! 
NX
i=1

~
0iF
0Ai

!0
;
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where Ai = Xi (X
0
iXi)

�1
Xi. But (using the norm kAk2 = Tr(A0A))






NX
i=1

~
0iF
0Ai






 �
NX
i=1



~
0i

 kF0Aik �
NX
i=1

�
~
0i~
i

�1=2
[Tr(F0AiF)]

1=2
;

and F0AiF =
�
F0Xip
T

��
X0
iXi

T

��1 �
XiFp
T

�
= Op(1), by Assumption (49). Hence

PN
i=1 ~


0
iF

0Ai =

Op

�PN
i=1

�
~
0i~
i

�1=2�
= Op (N

�) ; and for T = O(N �),8

1

N
p
T

TX
t=1

 
NX
i=1

x0it (X
0
iXi)

�1
X0
iF~
i

!2
=

1

N
p
T

 
NX
i=1

~
0iF
0Ai

! 
NX
i=1

~
0iF
0Ai

!0
= O

�
N2��1��=2

�
:

Thus, the second term of (57) vanishes if � < (2+ �)=4, which is satis�ed if � < (2� �)=4. It is also
easily established that the third term in (56) will also vanish if � < (2 + �)=4.
Finally, consider the second expression in (55) and note that

1

N
p
T

TX
t=1

NX
i=1

~g2it;T

=
1

N
p
T

TX
t=1

NX
i=1

h
~
0ift � x0it (X0

iXi)
�1
X0
iF~
i

i2
;

=
1

N
p
T

TX
t=1

NX
i=1

�
~
0iftf

0
t~
i + ~


0
iF

0Xi (X
0
iXi)

�1
xitx

0
it (X

0
iXi)

�1
X0
iF~
i�

2~
0iftx
0
it (X

0
iXi)

�1
X0
iF~
i

�
;

=
1

N
p
T

NX
i=1

�
~
0iF

0F~
i � ~
0iF0AiF~
i
�
:

Using similar lines of reasoning as above, it is easily established that 1
N
p
T

PT
t=1

PN
i=1 ~g

2
it;T !p 0,

if � < (2� �)=2, which is satis�ed if � < (2� �)=4, considering that � � 1.
The above results are summarized in the following theorem:

Theorem 3 Consider the panel data model (1), and suppose that Assumptions 1 to 4, (49), and
(50) hold. Suppose further that N and T ! 1, such that T=N � ! �, where � lies in the range
(0; 1] and � is a �nite positive non-zero constant. Then the CD statistic de�ned by (10) has the
limiting N(0; 1) distribution as N and T ! 1, so long as �, the exponent of cross- sectional
dependence of the errors, uit, is less than (2� �)=4. In the case where N and T tend to in�nity at
the same rate the CD statistic tends to N(0; 1) if � < 1=4. The CD test is consistent for all values
of � > 1=2, with the power of the test rising in � and N

p
T .

This theorem provides a full characterization of the distribution of the CD test under di¤erent
degrees of cross-sectional dependence, ranging from independence, weak dependence, to strong
dependence. The theorem also establishes the asymptotic power distribution of the CD test and
shows that the test has su¢ cient power when � > 1=2, with the power rising in N

p
T .

8Note that since  iT > 0 then the order of
PN
i=1 
i and

PN
i=1 ~
i will be the same.
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6 Cross Section Dependence in Heterogeneous Dynamic Pan-
els

The analyses of the previous sections readily extend to models with lagged dependent variables. As
an example consider the following �rst-order dynamic panel data model

yit = ai + �iyi;t�1 + �iuit, i = 1; 2; :::; N ; t = 1; 2; :::; T; (58)

where ai = �i(1 � �i), yi0 = �i + ciui0, and for each i the errors, uit, t = 0; 1; :::; T are serially
uncorrelated with a zero mean and a unit variance but could be cross-sectionally correlated. The
above speci�cation is quite general and allows the underlying AR(1) processes to be stationary for
some individuals and have a unit root for some other individuals in the panel. In the stationary
case E(yit) = �i, and if the process has started a long time in the past we would have ci =

�i
�
1� �2i

��1=2
. In the unit root case where �i = 1, ci could still di¤er across i depending on the

number of periods that the ith unit root process has been in operation before the initial observation,
yi0.
Given the complicated nature of the dynamics and the mix of stationary and unit root processes

that could prevail in a given panel, testing for cross-sectional dependence is likely to be complicated
and in general might require N and T to be large. As it is well known the OLS estimates of ai
and �i for the individual series, as well as the �xed and random e¤ects panel estimates used under
slope homogeneity (�i = �) are biased when T is small. The bias could be substantial for values
of �i near unity. Nevertheless, as it turns out in the case of pure autoregressive panels (without
exogenous regressors) the CD test is still valid for all values of �i including those close to unity.
The main reason lies in the fact that despite the small sample bias of the parameter estimates, the
OLS or �xed e¤ects residuals have exactly mean zero even for a �xed T , so long as uit, t = 0; 1; :::; T
are symmetrically distributed. To see this we �rst write the individual AR(1) processes, (58), in
matrix notation as

�i(y
�
i � �i�T+1) = Diu

�
i ; (59)

where y�i = (yi0; yi1; :::; yiT )
0, u�i = (ui0; ui1; :::; uiT )

0, �T+1 is a (T + 1) � 1 vector of ones, Di is
a (T + 1) � (T + 1) diagonal matrix with its �rst element equal to ci and the remaining elements
equal to �i, and

�i =

0BBBBBBB@

1 0 0 � � � 0 0
��i 1 0 0 0
0 ��i 1 0 0
...

...
... � � �

...
...

0 0 0 � � � 1 0
0 0 0 � � � ��i 1

1CCCCCCCA
:

The OLS estimates of individual intercepts and slopes can now be written as

�̂i =
u�0i H

0
iG

0
1M�G0Hiu

�
i

u�0i H
0
iG

0
1M�G1Hiu�i

;

âi = �i (1� �i) +
�
� 0TG0Hiu

�
i

T

�
�
�
� 0TG1Hiu

�
i

T

�
�̂i;
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whereM� = IT �� (� 0� )�1� , Hi = �
�1
i Di, G0 = (0T�1; IT ), G1 = (IT ;0T�1), and 0T�1 is a T�1

vector of zeros. Using these results we now have the following expression for the OLS residuals,
eit = yit � âi � �̂iyi;t�1, for t = 1; 2; :::; T;

eit = �
�
�̂i � �i

�
(yi;t�1 � �i) + �iuit �

�
� 0TG0Hiu

�
i

T

�
+

�
� 0TG1Hiu

�
i

T

�
�̂i:

Using (59) we also note that yi;t�1 � �i = s
0
t�1Hiu

�
i , where st�1 is a (T + 1) � 1 selection vector

with zero elements except for its tth element which is unity. Therefore, eit; and hence �it =�
T�1e0iei

��1=2
eit will be an odd function of u�i , and we have E(�it) = 0, t = 1; 2; ::; T , under the

assumption that u�i has a symmetric distribution. Thus, under the null hypothesis that uit and
ujt are cross-sectionally independent we have E(�̂ij) = 0, and the CD test continues to hold for
pure dynamic heterogeneous panel data models. Under weak cross-sectionally dependent errors it
is easily seen that the conditions (54) and (55) are satis�ed under (12) as N and T !1. Finally,
the CD test will be robust to structural breaks so long as the unconditional mean of the process
remains unchanged, namely if E(yit) = �i; for all t. For proofs and further discussions see Pesaran
(2004).9

7 Small Sample Evidence

In investigating the small sample properties of the CD test we consider two basic panel data
regression models, a static model with a single exogenous regressor, and a dynamic second-order
autoregressive speci�cation. Both models allow for heterogeneity of slopes and error variances and
include two unobserved factors for modelling di¤erent degrees of cross-sectional dependence in the
errors, as measured by the maximal cross-sectional exponents of the unobserved factors.
The observations for the static panel are generated as

yit = �i + �ixit + uit; for i = 1; 2; :::; N ; t = 1; 2; :::; T;

where �i s IIDN(1; 1);

xit = �ixxit�1 + �it; i = 1; 2; :::N for t = 1; 2; :::; T;

�it s IIDN(0; 1); and xi0 = (1� �2x)�1=2�i0; for i = 1; 2; :::N . We do not expect the small sample
properties of the CD test to depend on the nature of the regressors, and throughout the experiments
we set �ix = 0:9. We allow for heterogeneous slopes by generating them as �i s IIDN(1; 1), for
i = 1; 2; :::; N .
The errors, uit, are generated as a serially uncorrelated multi-factor process:

uit = 
i1f1t + 
i2f2t + "it;

with "it s IIDN(0;�2i"), �
2
i" s IID �2(2)=2, for i = 1; 2; :::; N . The factors are generated as

fjt s IIDN(0; 1), for j = 1 and 2. The factor loadings are generated as:


ji = vji; for i = 1; 2; :::;Mj and j = 1; 2;


ji = �i�Mj

 ; for i =Mj + 1;Mj + 2; :::; N and j = 1; 2

9 In the more general case where the panel data model contains lagged dependent variables as well as exogenous
regressors, the symmetry of error distribution does not seem to be su¢ cient for the symmetry of the residuals, and
the problem requires further investigation.
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where Mj = [N�j ] for j = 1; 2; vji s IIDU(�vj � 0:5; �vj + 0:5). We set �vj = 1 for j = 1; 2.
We set �
 = 0, since our preliminary analysis suggested that the results are not much a¤ected by
the choice of �
 , although one would expect that the performance of the CD test to deteriorate if
values of �
 close to unity are considered. In such cases larger sample sizes (N) are needed. Here by
setting �
 = 0, we are also able to consider the baseline case where the errors are cross-sectionally
independent, which corresponds to setting the exponent of cross-sectional dependence to zero, � = 0
if �
 = 0. But if �
 6= 0 one does not obtain error cross-sectional independence by setting � = 0.
We considered a one-factor as well as a two-factor speci�cation. In the one-factor case we set

� = (0; 0:1; 0:2; 0:25; 0:35; 0:5; 0:65; 0:75; 0:85; 0:9; 1):

In the two-factor case �1 � �2, and � = max(�1; �2). More speci�cally, we set

(�1; �2) =

�
(0; 0); (0:1; 0); (0:2; 0:1); (0:25; 0:15); (0:35; 0:25); (0:50; 0:25);
(0:65; 0:25); (0:75; 0:25); (0:85; 0:25); (0:90; 0:25); (1:0; 0:25)

�
;

so that in the case of the two-factor model we also have

� = max(�1; �2) = (0; 0:1; 0:2; 0:25; 0:35; 0:5; 0:65; 0:75; 0:85; 0:9; 1):

The dynamic panel data model was generated as a second-order autoregressive process with
heterogeneous slopes:

yit = (1� �i1 � �i2)�i + �i1yi;t�1 + �i2yi;t�2 + uit:

�i and uit were generated exactly as in the case of the static speci�cation. The autoregressive
coe¢ cients, �i1 and �i2, were generated as �i1 s IIDU(0; 0:4);and �i2 = 0:2, for all i, and �xed
across replications.
All experiments were carried out for N = 20; 50; 100; 250; 500 and T = 20; 50; 100, to evaluate

the applicability of the CD test to panels whereN is much larger than T . The number of replications
was set to 2; 000.
The results are summarized in Tables 1 and 2 for the static and dynamic speci�cations, respec-

tively. The tables give the rejection frequencies of the CD test for di¤erent values of �, sample sizes,
N and T . The left panels of the tables refer to the one-factor error models and the right panels to
the two-factor case. For all values of N and T the rejection frequencies are around 5% (the nominal
size of the CD test) when � < 1=4 and start to rise signi�cantly as � approaches and exceed the 0:5
threshold, and attains its maximum of unity for � � 0:75. These �ndings hold equally for static and
dynamic models. However, at � = 1=4, there is some evidence of over rejection (7% as compared
to 5%) when N is small relative to T , namely for N = 20 and T = 100.
The Monte Carlo evidence matches the asymptotic theory remarkably well, and suggests that

the test can be used fruitfully as a prelude to the estimation and inference concerning the values of
� in the range [0:70; 1] which are typically identi�ed with strong factor dependence. See also Bailey,
Kapetanios and Pesaran (2012).

8 Concluding Remarks

This paper provides a rigorous proof of the validity of the CD test proposed in Pesaran (2004), and
further establishes that the CD test is best viewed as a test of weak cross-sectional dependence.
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The null hypothesis of the CD test is shown to be � < (2 � �)=4, where � is the exponent of
cross-sectional dependence introduced in Bailey, Kapetanios and Pesaran (2012), and � measures
the degree to which T expands relative to N , as de�ned by T = O(N �), for values of 0 < � � 1. It is
shown that the CD test is particularly powerful against � > 1=2; and its power rises with � and inp
TN . As a test of weak cross-sectional dependence, the CD test continues to be valid under fairly

general conditions even when T is small and N large. The test can be applied to balanced and
unbalanced panels and is shown to have a standard normal distribution assuming that the errors
are symmetrically distributed. The Monte Carlo evidence reported in the paper shows that the
CD statistic provides a simple and powerful test of weak cross-sectional dependence in the case of
static as well as dynamic panels.
As a possible area of further research it would be interesting to investigate if the test of cross-

sectional independence proposed in Hsiao, Pesaran and Pick (2012) for non-linear panel data models
can also be viewed as a test of weak-cross-sectional dependence, and in particular determine the
range of values of � for which the test has power.
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Appendix: Proof of the Lemma 1
Using (16) and (14) we �rst note that (conditional on Xi)

E(hit;T ) = 0, V ar(hit;T ) = �2�ix
0
it

�
X0
iXi

T

��1
xit < K <1, for all i, (60)

Cov(hit;T ; hjt;T ) = O(T�1), for all i and j;

Cov(hit;T ; �jt;T ) = 0, for all i 6= j,

Cov(hit;T ; �it;T ) = E
�
hit;T �it;T

�
= �T�1=2�2�ix

0
it

�
X0
iXi

T

��1
xit = O

�
1p
T

�
; (61)

and by (18), we have

�2�i = 1 +O

�
1

T

�
:

Furthermore, since conditional on Xi, �it and hit;T are cross-sectionally independent we also have

V ar(ht;NT ) = N�1
NX
i=1

V ar (hit;T ) = N�1
NX
i=1

x0it

�
X0
iXi

T

��1
xit +O(T

�1) = O(1); (62)

V ar (wt;NT ) = N�1
NX
i=1

V ar
�
�it;T

�
= 1 +O(T�1) = O(1); (63)

and similarly

E (wt;NTht;NT ) = N�1
NX
i=1

E
�
hit;T �it;T

�
= O

�
T�1=2

�
; (64)

Cov (ht;NT ; wt0;NT ) = E (ht;NTwt0;NT ) = N�1
NX
i=1

E (hit;T �it0) = O
�
T�1=2

�
; for t 6= t0;

Cov (wt;NT ; wt0;NT ) = E (wt;NTwt0;NT ) = N�1
NX
i=1

E (�it�it0) = N�1
NX
i=1

E

�
"it"it0

"0iMi"i=T

�
= O(T�1); for t 6= t0:

Now let qt;NT = wt;NTht;NT , and consider the limiting properties of

�qNT =
1

T

TX
t=1

qt;NT :

First, using (64) we note that E (qt;NT ) = O
�
T�1=2

�
, and E (�qNT ) = O

�
T�1=2

�
. Also

Cov (qt;NT ; qt0;NT ) = E (wt;NTht;NTwt0;NTht0;NT )� E (wt;NTht;NT )E (wt0;NTht0;NT )
= E (wt;NTht;NT )E (wt0;NTht0;NT ) + E (wt;NTwt0;NT )E (ht;NTht0;NT )

+E (wt;NTht0;NT )E (ht;NTwt0;NT )� E (wt;NTht;NT )E (wt0;NTht0;NT )
= E (wt;NTwt0;NT )E (ht;NTht0;NT ) + E (wt;NTht0;NT )E (ht;NTwt0;NT ) , for t 6= t0:

= O(T�1);
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and

E
�
q2t;NT

�
= E

�
w2t;NTh

2
t;NT

�
= N�2

NX
i=1

NX
j=1

NX
r=1

NX
s=1

E
�
�it;T �jt;Thrt;Thst;T

�
= N�2

NX
i=1

E
�
�2it;Th

2
it;T

�
+

"
N�1

NX
i=1

E
�
�2it;T

�# "
N�1

NX
i=1

E
�
h2it;T

�#
:

But by assumption (see (18)), E
�
�2it;Th

2
it;T

�
�
r
E
�
�4it;T )E(h

4
it;T

�
< K < 1, and using (62)

and (63) we have E
�
q2t;NT

�
= O(1). Recalling also that E (qNT ) = O

�
T�1=2

�
it follows that

V ar(qt;NT ) = O(1). Using this result in conjunction with Cov (qt;NT ; qt0;NT ) = O(T�1), established
we have

V ar (�qNT ) =
1

T 2

TX
t=1

V ar(qt;NT ) +
2

T 2

TX
t=1

TX
t0=1

Cov (qt;NT ; qt0;NT ) = O(T�1);

Therefore, recalling that E (�qNT ) = O
�
T�1=2

�
, we �nally have

�qNT !p 0; (65)

as N and T tend to in�nity (in any order). We also note that ,

T�1=2

 
N�1=2

NX
i=1

�it

! 
N�1=2

NX
i=1

hit;T

!
= T�1=2qt;TN = Op

�
T�1=2

�
: (66)
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Table 1: Rejection frequencies of the CD test at 5% signi�cance level for static heterogeneous
panels with one exogenous regressor
One factor Two factors

� N\T= 20 50 100 � N\T= 20 50 100

0.00 20 0.060 0.049 0.061 0.00 20 0.056 0.057 0.054
0.10 0.060 0.049 0.061 0.10 0.056 0.057 0.054
0.20 0.060 0.049 0.061 0.20 0.056 0.057 0.054
0.25 0.082 0.063 0.091 0.25 0.071 0.072 0.080
0.35 0.082 0.063 0.091 0.35 0.080 0.086 0.097
0.50 0.263 0.428 0.664 0.50 0.236 0.364 0.598
0.65 0.831 0.996 1.000 0.65 0.781 0.973 1.000
0.75 0.988 1.000 1.000 0.75 0.981 0.999 1.000
0.85 1.000 1.000 1.000 0.85 1.000 1.000 1.000
0.90 1.000 1.000 1.000 0.90 1.000 1.000 1.000
1.00 1.000 1.000 1.000 1.00 1.000 1.000 1.000

0.00 50 0.059 0.049 0.055 0.00 50 0.063 0.051 0.055
0.10 0.059 0.049 0.055 0.10 0.063 0.051 0.055
0.20 0.069 0.054 0.067 0.20 0.074 0.060 0.056
0.25 0.069 0.054 0.067 0.25 0.074 0.060 0.056
0.35 0.083 0.074 0.096 0.35 0.085 0.078 0.086
0.50 0.383 0.546 0.756 0.50 0.297 0.576 0.716
0.65 0.907 0.997 1.000 0.65 0.883 0.995 1.000
0.75 1.000 1.000 1.000 0.75 1.000 1.000 1.000
0.85 1.000 1.000 1.000 0.85 1.000 1.000 1.000
0.90 1.000 1.000 1.000 0.90 1.000 1.000 1.000
1.00 1.000 1.000 1.000 1.00 1.000 1.000 1.000

0.00 100 0.062 0.056 0.061 0.00 100 0.048 0.048 0.049
0.10 0.062 0.056 0.061 0.10 0.048 0.048 0.049
0.20 0.064 0.062 0.066 0.20 0.054 0.054 0.052
0.25 0.069 0.071 0.079 0.25 0.054 0.060 0.060
0.35 0.094 0.125 0.178 0.35 0.078 0.107 0.135
0.50 0.306 0.646 0.886 0.50 0.302 0.647 0.774
0.65 0.955 1.000 1.000 0.65 0.960 1.000 1.000
0.75 1.000 1.000 1.000 0.75 1.000 1.000 1.000
0.85 1.000 1.000 1.000 0.85 1.000 1.000 1.000
0.90 1.000 1.000 1.000 0.90 1.000 1.000 1.000
1.00 1.000 1.000 1.000 1.00 1.000 1.000 1.000

0.00 250 0.059 0.049 0.050 0.00 250 0.055 0.052 0.052
0.10 0.059 0.049 0.050 0.10 0.055 0.052 0.052
0.20 0.061 0.052 0.053 0.20 0.061 0.058 0.056
0.25 0.061 0.052 0.053 0.25 0.059 0.059 0.055
0.35 0.085 0.084 0.090 0.35 0.075 0.079 0.095
0.50 0.317 0.541 0.816 0.50 0.302 0.464 0.841
0.65 0.994 1.000 1.000 0.65 0.996 1.000 1.000
0.75 1.000 1.000 1.000 0.75 1.000 1.000 1.000
0.85 1.000 1.000 1.000 0.85 1.000 1.000 1.000
0.90 1.000 1.000 1.000 0.90 1.000 1.000 1.000
1.00 1.000 1.000 1.000 1.00 1.000 1.000 1.000

0.00 500 0.054 0.052 0.050 0.00 500 0.061 0.060 0.058
0.10 0.054 0.052 0.050 0.10 0.061 0.060 0.058
0.20 0.056 0.053 0.047 0.20 0.062 0.055 0.058
0.25 0.056 0.053 0.050 0.25 0.064 0.064 0.063
0.35 0.074 0.081 0.087 0.35 0.081 0.091 0.091
0.50 0.402 0.690 0.849 0.50 0.350 0.622 0.827
0.65 1.000 1.000 1.000 0.65 1.000 1.000 1.000
0.75 1.000 1.000 1.000 0.75 1.000 1.000 1.000
0.85 1.000 1.000 1.000 0.85 1.000 1.000 1.000
0.90 1.000 1.000 1.000 0.90 1.000 1.000 1.000
1.00 1.000 1.000 1.000 1.00 1.000 1.000 1.000
� is maximal cross-sectional exponent of the errors uit in the panel data model
yit = �i + �ixit + uit, uit = 
i1f1t + 
i2f2t + �i""it, i = 1; :::; N , t = 1; :::; T .
� = max(�j), where �j corresponds to the rate at which

PN
i=1 


2
ij rises with N (O (N�j )),

for j = 1; 2 factors.



Table 2: Rejection frequencies of the CD test at 5% signi�cance level for AR(2) heterogeneous
panels

One factor Two factors
� N\T= 20 50 100 � N\T= 20 50 100

0.00 20 0.058 0.052 0.050 0.00 20 0.051 0.047 0.056
0.10 0.058 0.052 0.050 0.10 0.051 0.047 0.056
0.20 0.058 0.052 0.050 0.20 0.051 0.047 0.056
0.25 0.070 0.072 0.076 0.25 0.059 0.071 0.088
0.35 0.070 0.072 0.076 0.35 0.064 0.078 0.115
0.50 0.213 0.370 0.577 0.50 0.188 0.345 0.583
0.65 0.809 0.993 0.999 0.65 0.758 0.979 0.999
0.75 0.977 1.000 1.000 0.75 0.971 1.000 1.000
0.85 0.999 1.000 1.000 0.85 0.999 1.000 1.000
0.90 1.000 1.000 1.000 0.90 1.000 1.000 1.000
1.00 1.000 1.000 1.000 1.00 1.000 1.000 1.000

0.00 50 0.055 0.045 0.049 0.00 50 0.047 0.051 0.055
0.10 0.055 0.045 0.049 0.10 0.047 0.051 0.055
0.20 0.059 0.052 0.057 0.20 0.049 0.054 0.061
0.25 0.059 0.052 0.057 0.25 0.049 0.054 0.061
0.35 0.080 0.070 0.087 0.35 0.062 0.076 0.092
0.50 0.261 0.599 0.771 0.50 0.217 0.492 0.750
0.65 0.815 0.997 1.000 0.65 0.758 0.996 1.000
0.75 0.997 1.000 1.000 0.75 0.995 1.000 1.000
0.85 1.000 1.000 1.000 0.85 1.000 1.000 1.000
0.90 1.000 1.000 1.000 0.90 1.000 1.000 1.000
1.00 1.000 1.000 1.000 1.00 1.000 1.000 1.000

0.00 100 0.059 0.046 0.051 0.00 100 0.054 0.050 0.054
0.10 0.059 0.046 0.051 0.10 0.054 0.050 0.054
0.20 0.065 0.050 0.051 0.20 0.059 0.054 0.053
0.25 0.067 0.051 0.061 0.25 0.068 0.067 0.066
0.35 0.098 0.089 0.139 0.35 0.094 0.113 0.155
0.50 0.319 0.523 0.860 0.50 0.264 0.610 0.867
0.65 0.957 1.000 1.000 0.65 0.866 1.000 1.000
0.75 1.000 1.000 1.000 0.75 1.000 1.000 1.000
0.85 1.000 1.000 1.000 0.85 1.000 1.000 1.000
0.90 1.000 1.000 1.000 0.90 1.000 1.000 1.000
1.00 1.000 1.000 1.000 1.00 1.000 1.000 1.000

0.00 250 0.060 0.047 0.044 0.00 250 0.056 0.048 0.052
0.10 0.060 0.047 0.044 0.10 0.056 0.048 0.052
0.20 0.057 0.053 0.047 0.20 0.059 0.055 0.055
0.25 0.057 0.053 0.047 0.25 0.059 0.052 0.055
0.35 0.076 0.081 0.088 0.35 0.071 0.077 0.089
0.50 0.311 0.577 0.808 0.50 0.254 0.525 0.851
0.65 0.996 1.000 1.000 0.65 0.992 1.000 1.000
0.75 1.000 1.000 1.000 0.75 1.000 1.000 1.000
0.85 1.000 1.000 1.000 0.85 1.000 1.000 1.000
0.90 1.000 1.000 1.000 0.90 1.000 1.000 1.000
1.00 1.000 1.000 1.000 1.00 1.000 1.000 1.000

0.00 500 0.050 0.047 0.053 0.00 500 0.049 0.050 0.050
0.10 0.050 0.047 0.053 0.10 0.049 0.050 0.050
0.20 0.052 0.046 0.056 0.20 0.049 0.050 0.053
0.25 0.058 0.047 0.060 0.25 0.050 0.052 0.055
0.35 0.066 0.077 0.099 0.35 0.064 0.069 0.083
0.50 0.308 0.571 0.803 0.50 0.313 0.533 0.789
0.65 0.998 1.000 1.000 0.65 0.998 1.000 1.000
0.75 1.000 1.000 1.000 0.75 1.000 1.000 1.000
0.85 1.000 1.000 1.000 0.85 1.000 1.000 1.000
0.90 1.000 1.000 1.000 0.90 1.000 1.000 1.000
1.00 1.000 1.000 1.000 1.00 1.000 1.000 1.000
� is maximal cross-sectional exponent of the errors uit in the panel data model
yit = (1� �i1 � �i2)�i + �i1yi;t�1 + �i2yi;t�2 + uit, uit = 
i1f1t + 
i2f2t + �i""it,
i = 1; :::; N , t = 1; :::; T . � = max(�j), where �j corresponds to the rate at whichPN

i=1 

2
ij rises with N (O (N�j )), for j = 1; 2 factors.


