An Exponential Class of Dynamic Binary Choice Panel Data Models with Fixed Effects*

Majid M. Al-Sadoon Tong Li
Universitat Pompeu Fabra and Barcelona GSE Vanderbilt University

M. Hashem Pesaran
University of Southern California and Trinity College, Cambridge

August 12, 2014

Abstract

This paper develops a model for dynamic binary choice panel data that allows for unobserved heterogeneity to be arbitrarily correlated with covariates. The model is of the exponential type. We derive moment conditions that enable us to eliminate the unobserved heterogeneity term and at the same time to identify the parameters of the model. We then propose GMM estimators that are consistent and asymptotically normally distributed at the root-N rate. We also study the conditional likelihood approach, which can only identify the effect of state dependence in our case. Monte Carlo experiments demonstrate the finite sample performance of our estimators.

JEL Classification: C23, C25

Keywords: Dynamic Discrete Choice; Fixed Effects; Panel Data; GMM; CMLE

*Al-Sadoon acknowledges financial assistance from the Spanish Ministry of Economy and Competitiveness (project ECO2012-33247). Li gratefully acknowledges support from National Science Foundation (SES-0922109). Pesaran acknowledges support from ESRC grant no. ES/I031626/1.
1 Introduction

This paper considers estimation and inference in dynamic binary choice panel data models with unobserved heterogeneity that is allowed to be arbitrarily correlated with the covariates. This type of unobserved heterogeneity is usually referred to as the fixed effect. These models are of particular interest in many applications because they can be used to distinguish between the presence of state dependence and the effect of unobserved heterogeneity, as discussed in Heckman (1981a and 1981b). These models are usually specified in terms of the distribution of the dependent variable conditional on the lagged dependent variable, a set of (possibly time-varying) covariates, and an individual specific term that represents unobserved heterogeneity.

As is well known, for dynamic panel data models with unobserved effects, an important issue is the treatment of the initial observations. While in some cases the initial observation can be viewed as a fixed constant if the actual start of the dynamic process coincides with the first time period in the data, in general, if the dynamic model under consideration has been in effect before the first period of the sample under consideration, there is an intrinsic and complex relationship between the unobserved heterogeneity and the initial observations. Therefore, in general, it is important to allow for the dependence of the initial observations on the unobserved individual effects.

For linear models with an additive unobserved effect, appropriate transformations such as differencing have been used to eliminate the unobserved effect, and GMM type estimators have been proposed to estimate the transformed model. For example, see Anderson and Hsiao (1982), Arellano and Bover (1995), Arellano and Carrasco (2003), Ahn and Schmidt (1995), Blundell and Bond (1998), Hahn (1999), and Hsiao, Pesaran, and Tahmiscioglu (2002), and among others surveyed in Arellano and Honoré (2001) and Hsiao (2003). However, for non-linear panel data models in general and binary choice models in particular the treatment becomes more complicated. When the unobserved effect is assumed to be a random effect in that it is not correlated with the strictly exogenous variables, Heckman (1981b) suggests to approximate the conditional distribution of the initial values given the exogenous variables and the unobserved individual effects so as to use the maximum likelihood estimation
to estimate the model parameters. Alternatively, Wooldridge (2005) proposes to specify an auxiliary distribution of the unobserved individual effect conditional on the initial value and the exogenous variables leading to a simple conditional maximum likelihood estimation. Both methods, while useful in addressing the initial value problem, can be best viewed as approximations of the true (conditional) distributions of the initial value, and the unobserved heterogeneity, respectively. As discussed in Honoré (2002), because of the complicated relationship between the initial value and the unobserved heterogeneity and the exogenous variables, it is almost unavoidable that modeling these two conditional distributions are inconsistent with the original model. Furthermore, as pointed out in Honoré (2002), there could be some potential incoherent problems with an ad hoc treatment of the initial values in the case of unbalanced panel data models.

Dealing with dynamic nonlinear panel data models with fixed effects, on the other hand, is further complicated by the so-called incidental parameters problem, in addition to the initial value problem. The incidental parameters problem arises because the number of parameters (unobserved effect terms) increases with the number of the individuals. As a result, the maximum likelihood estimator of the structural parameters, while consistent with both N (the number of individuals) and T (the number of time periods) going to infinity, is inconsistent with large N and fixed T. One strand of the literature has been trying to propose modified maximum likelihood estimators to obtain bias reduction for a fixed T. See, e.g. Arellano (2003) for static binary choice panel data models, and Carro (2007) as well as Bartolucci, Bellio, Salvan, and Sartori (2012) for dynamic binary choice panel data models. This approach usually requires a relatively large T to attain significant bias reduction, as demonstrated in the Monte Carlo studies in Carro (2007) and Bartolucci, Bellio, Salvan, and Sartori (2012), even in the simplest case where the initial values are fixed constants. Another approach in the literature is to eliminate the fixed effects as in the linear models. This approach, solves the incidental parameters problem, although the initial values problem remains. So far, however, there are only a few papers following this approach. Honoré and Kyriazidou (2000) consider the dynamic logit model and derive a set of conditions under which the parameters of the
model are identified. They also propose consistent estimators of the model based on the identification results, albeit the rate of convergence of the estimators is slower than the usual \sqrt{N} rate. In a more recent paper, Bartolucci and Nigro (2010) consider a version of the quadratic exponential model that closely mimics the dynamic logit model and propose a conditional maximum likelihood estimator conditioning on sufficient statistics for the individual specific terms. However, with this specification the strict exogeneity assumption usually made on the covariates in the standard dynamic panel data models is not met. Also there could be some potential incoherent problems arising from the separate model specification for the last period from the other periods if one conducts sequential estimation, or if one deals with an unbalanced panel. Arellano and Bonhomme (2011) provide a review of recent developments in the econometric analysis of nonlinear panel data models.

In this paper we introduce a binary choice panel data model where the idiosyncratic error term follows an exponential distribution. With this specification we derive moment conditions that enable us to eliminate the fixed effect term and at the same time to identify the parameters of the model. We drive appropriate moment conditions that identify the state dependent parameter as well as the coefficients of the exogenous covariates. We then propose GMM estimators that are consistent and asymptotically normally distributed at the \sqrt{N} rate. Compared with the existing approaches, our method identifies all the parameters of the model and yields simple-to-implement estimators that have standard asymptotic properties. The model, as well as the moment conditions we employ, are variants of those proposed in Wooldridge (1997). In addition to the GMM estimators, since the conditional maximum likelihood approach has been adopted in the literature in the case of the logistic distribution or the quadratic exponential distribution in order to eliminate the fixed effects, we also study the conditional likelihood approach, which can only identify the effect of state dependence.

1. Strict exogeneity typically allows us to specify the likelihood of y_{it} conditional on c_i, x_{it} and y_{it-1}. But in the Bartolucci and Nigro (2010) specification, all periods observations of x_{it} must be taken into account. On the strict exogeneity assumption and the other approaches in the literature, see Wooldridge (2002) for a survey.

2. See Remark 1 for more details.
in our case. Since our GMM estimators are general and simple to implement, we study their finite sample performance through a comprehensive simulation study and the results indicate that our estimators perform quite well in relatively small size samples.

Given that we are the first to propose explicitly the use of an exponential model in a binary choice setting, it is important that this choice is motivated and further discussed. The first point to bear in mind is that in the case of fixed effects binary choice models, the choice of the distribution is in fact secondary; fixed effects (which are totally free of any restrictions) can be used to match probability outcomes based on exponential and any other specification, including the logistic ones used in the literature. In the case of models without any covariates (x_{it}'s), the match can be performed perfectly for all distributional specifications. When the model contains covariates, the match between the exponential and other distributions, including the logistic, can be done for specific values of x_{it}, (at some t) or at the mean of x_{it}, namely at x_i, as we demonstrate later in Section 4.3. Therefore, at least in a binary choice setting the choice of the distribution is more a matter of analytical and estimation convenience. Moreover, since in analyzing a nonlinear model such as a binary choice model, a key quantity of interest is the average partial effect (APE), we will investigate through Monte Carlo simulations how well the APEs are estimated with the exponential model if the true model is the logistic. Our results show that the exponential model yields sensible estimates for the APEs even with a misspecified distribution.

The rest of the paper is organized as follows. Section 2 lays out the model of interest. Section 3 considers the case with only the lagged dependent variable but without covariates, and Section 4 generalizes and extends Section 3 to allow for time-varying covariates. Section 5 presents Monte Carlo results that demonstrate the usefulness and feasibility of our approach. Section 6 concludes. All technical proofs are included in Section 7 that serves as an appendix.
2 The General Form of the Model

Suppose that \(y_{it} \) takes the values of zero and unity, for \(i = 1, 2, \ldots, N \), and \(t = 1, 2, \ldots, T \), and \(x_{it} \) is a \(k \times 1 \) vector of strictly exogenous, time-varying regressors; common time-varying regressors, such as a time dummy, can also be included in \(x_{it} \). The standard dynamic binary panel data model with fixed effects assumes that

\[
y_{it} = 1[y_{it}^* \geq 0],
\]

\[
y_{it}^* = \rho y_{i,t-1} + \beta' x_{it} + c_i + u_{it},
\]

where \(y_{it}^* \) is a latent variable that is not observed by the econometrician, \(u_{it} \) is the random error term assumed to be i.i.d with mean zero, and \(c_i \) represents the individual unobserved effect that can be arbitrarily correlated with \(x_{it} \) and \(u_{it} \). We suppose that \(T \) is fixed and \(N \) sufficiently large. We are interested in the parameters of the covariates \(\beta \) and the state dependence parameter \(\rho \), both of which together are usually called structural parameters, while \(c_i \), for \(i = 1, \ldots, N \), are referred to as incidental parameters.

Denote the distribution of \(-u_{it}\) by \(F(\cdot) \). Then we have

\[
\Pr(y_{it} = 1 \mid y_{1,t-1}, y_{2,t-1}, \ldots, y_{N,t-1}; c_1, c_2, \ldots, c_N; x_{1t}, x_{2t}, \ldots, x_{Nt}) = F(\rho y_{i,t-1} + \beta' x_{it} + c_i),
\]

where the first equation follows from the strict exogeneity assumption on \(x_{it} \). The commonly used probit or logit models correspond to \(F(\cdot) \) being either the standard normal distribution or the logistic distribution, respectively. The model can also be thought of as an inhomogeneous Markov chain with transition probabilities

\[
y_{it} = \begin{cases}
0 & 1 - F(\beta' x_{it} + c_i) \\
1 & F(\beta' x_{it} + c_i)
\end{cases},
\]

\[
y_{i,t-1} = \begin{cases}
0 & 1 - F(\rho + \beta' x_{it} + c_i) \\
1 & F(\rho + \beta' x_{it} + c_i)
\end{cases}
\]
3 The Case of $\beta = 0$

3.1 The Likelihood Function

In the case where $\beta = 0$, the Markov chain has a *time-invariant initial distribution* which is given by (for all t)

$$\Pr(y_{it} = 1 | c_i) = \frac{F(c_i)}{1 - F(c_i + \rho) + F(c_i)} = \pi_i^*, \quad (3)$$

$$\Pr(y_{it} = 0 | c_i) = \frac{1 - F(c_i + \rho)}{1 - F(c_i + \rho) + F(c_i)} = 1 - \pi_i^*. \quad (4)$$

The joint probability distribution of $c_i, y_{it1}, y_{it2}, ..., y_{iT}$ can now be derived using the familiar decomposition

$$\Pr(c_i, y_{it1}, y_{it2}, ..., y_{iT}) = \Pr(c_i) \Pr(y_{it1} | c_i) \Pr(y_{it2} | y_{it1}, c_i) \cdots \Pr(y_{iT} | y_{iT-1}, c_i).$$

Consider now the observations y_{it} for $t = 1, 2, ..., T$, and note that the likelihood function for the i^{th} unit at time $t = 1$ is given by

$$\Pr(y_{i1} | c_i, \rho) = (\pi_i^*)^{y_{i1}} (1 - \pi_i^*)^{1-y_{i1}}, \quad (5)$$

and for time $t = 2, 3, ..., T$, by

$$\Pr(y_{it} | y_{it-1}, c_i, \rho) = [F(c_i + \rho)]^{y_{it} y_{it-1}} [1 - F(c_i + \rho)]^{(1 - y_{it}) y_{it-1}} [F(c_i)]^{y_{it}(1 - y_{it-1})} [1 - F(c_i)]^{(1 - y_{it})(1 - y_{it-1})}. \quad (6)$$

Setting $Y = (y_{it}, i = 1, ..., N; t = 1, 2, ..., T)$, the log likelihood function for the panel
It is clear that there is an incidental parameter problem here that cannot be resolved without a specification of Pr(c_i). This can be accomplished by specifying a distribution in terms of the observables. Note, however, that Pr(c_i) can be specified independently of the initial value, y_{i1}, or the other observations. The assumption that c_i are independent across i can also be relaxed to allow for simple patterns of cross-sectional dependence across i (i.e. using more general specifications of Pr(c)) although we do not pursue this here.

3.2 Exponential Distribution for F(·)

The literature on estimation of binary choice panel data models with fixed effects has focussed on a logit specification for F(·). In this paper we consider an alternative specification. We consider first the case where \(\beta = 0 \) and equations (3) and (4) hold, and focus on consistent estimation of \(\rho \). Pesaran and Timmermann (2009) show that a Markov chain can be written as a vector autoregressive (VAR) model in the indicator variables. In our context it can be easily established that

\[
\varepsilon_{it} = y_{it} - F(c_i) - [F(c_i + \rho) - F(c_i)] y_{i,t-1}
\]

is a martingale difference process with respect to \(y_{i,t-1}, y_{i,t-2}, \ldots \). This suggests the following linear binary AR(1) regression with reduced form parameters that are non-linear functions
of the parameters of the underlying model:

\[y_{it} = F(c_i) + [F(c_i + \rho) - F(c_i)] y_{i,t-1} + \varepsilon_{it}. \] \hspace{1cm} (7)

It is possible to eliminate \(c_i \) from the above regression when \(F(c + \rho) - F(c) = G(\rho)H(c) \). The only non–constant, differentiable, distribution function that satisfies this condition is the exponential distribution \(F(z) = 1 - \exp(-z) \).\(^3\) Under this specification, we have

\[F(c_i + \rho) - F(c_i) = \exp(-c_i) [1 - \exp(-\rho)] . \] \hspace{1cm} (8)

Consistent estimation of \(\rho \) can now be achieved using the conditional maximum likelihood or the GMM methods.

3.3 Conditional Maximum Likelihood Estimation

Building on an early work by Cox (1958), Chamberlain (1985) shows that it is possible to estimate \(\rho \) consistently using a conditional maximum likelihood estimator (CMLE) approach if \(F(\cdot) \) is logistic, \(\beta = 0 \) and \(T \geq 4.\(^4\) \) Honoré and Kyriazidou (2000) extend this analysis to the case where \(\beta \neq 0 \), under certain restrictions on the distribution of the covariates, \(x_{it} \), over time. In this sub-section we show similar results hold if \(F(\cdot) \) is exponential, \(\beta = 0 \) and \(T \geq 3 \).

Using (5) and (6) the likelihood function (conditional on \(c_i \)) for the \(i^{th} \) unit can be written as

\[
[1 - F(c_i + \rho) + F(c_i)] \Pr(y_{i|}\, c_i, \rho) = [F(c_i + \rho)]^{\sum_{t=2}^{T} y_{i,t-1}} [1 - F(c_i + \rho)]^{1 - y_{i,t-1} + \sum_{t=2}^{T} (1 - y_{i,t-1})} \\
\times [F(c_i)]^{y_{i,1} + \sum_{t=2}^{T} y_{i,t-1}} [1 - F(c_i)]^{1 - y_{i,1} + \sum_{t=2}^{T} (1 - y_{i,t-1})}.
\]

\(^3\)See Appendix 7.1 for a proof where it is shown that the general solution to the problem is given by \(F(z) = 1 - C \exp(-Dz) \), for \(C \), and \(D > 0 \). Since these two parameters are not identifiable, we set them both equal to 1. Similar rescaling and normalization is also used for the standard logit and probit models.

\(^4\)See Chamberlain (2010) for identification in a two-period case and Magnac (2004) for more general identification results with the conditional likelihood approach, and also Magnac (2001) for an empirical application.

8
Let \(s_{iT} = \sum_{t=1}^{T} y_{it} \) and \(p_{iT} = \sum_{t=2}^{T} y_{it} y_{i,t-1} \) write the above likelihood function as

\[
\Pr (y_{iT} \mid c_i, \rho) = \Pr (s_{iT}, p_{iT}, y_{i1}, y_{iT} \mid c_i, \rho) \frac{[F(c_i + \rho)]^{p_{iT}} [1 - F(c_i + \rho)]^{1 - y_{i1} - y_{iT} + s_{iT} - p_{iT}}}{[1 - F(c_i + \rho) + F(c_i)]}.
\]

It is clear that \(s_{iT}, p_{iT}, y_{i1}, \) and \(y_{iT} \) are minimal sufficient statistics for \(c_i \) and \(\rho \). Following Andersen (1970), we consider the likelihood function of \(\rho \) conditional on given values of \(s_{iT} = s_0 \) and \(p_{iT} = p_0 \) for all \(i \). Let \(\mathcal{B}_T(s_0, p_0) \) be the set of all sequences \(y_{i1}, y_{i2}, \ldots, y_{iT} \) that satisfy \(\sum_{t=1}^{T} y_{it} = s_0 \) and \(\sum_{t=2}^{T} y_{it} y_{i,t-1} = p_0 \), for \(s_0 = 1, \ldots, T-1 \) and \(p_0 = 0,1,\ldots, T-1 \) \((s_0 > p_0)\) There is no point considering the values of \(s_0 = 0 \) and \(T \), since for these values it is easily seen that the conditional likelihood function does not depend on \(\rho \).

In general we have

\[
\Pr (y_{i1}, y_{iT} \mid s_{iT} = s_0, p_{iT} = p_0, c_i, \rho) = \frac{\Pr (s_{iT} = s_0, p_{iT} = p_0, y_{i1}, y_{iT} \mid c_i, \rho)}{\Pr (s_{iT} = s_0, p_{iT} = p_0 \mid c_i, \rho)},
\]

where

\[
\Pr (s_{iT} = s_0, p_{iT} = p_0, y_{i1}, y_{iT} \mid c_i, \rho) = \frac{A_i(s_0, p_0) \sum_{y_{i1}, y_{iT} \in \mathcal{B}_T(s_0, p_0)} [1 - F(c_i)]^{y_{i1} + y_{iT}} [1 - F(c_i + \rho)]^{-y_{i1} - y_{iT}}}{[1 - F(c_i + \rho) + F(c_i)]},
\]

and

\[
\Pr (s_{iT} = s_0, p_{iT} = p_0 \mid c_i, \rho) = \frac{A_i(s_0, p_0) \sum_{y_{i1}, y_{iT} \in \mathcal{B}_T(s_0, p_0)} [1 - F(c_i)]^{y_{i1} + y_{iT}} [1 - F(c_i + \rho)]^{-y_{i1} - y_{iT}}}{[1 - F(c_i + \rho) + F(c_i)]}
\]

in which

\[
A_i(s_0, p_0) = [F(c_i + \rho)]^{p_0} [F(c_i)]^{1 + s_0 - p_0} [1 - F(c_i)]^{(T-1) - 2s_0 + p_0} [1 - F(c_i + \rho)]^{1 + s_0 - p_0}.
\]

Therefore

\[
\Pr (y_{i1}, y_{iT} \mid s_{iT} = s_0, p_{iT} = p_0, c_i, \rho) = \frac{[1 - F(c_i)]^{y_{i1} + y_{iT}} [1 - F(c_i + \rho)]^{-y_{i1} - y_{iT}}}{\sum_{y_{i1}, y_{iT} \in \mathcal{B}_T(s_0, p_0)} [1 - F(c_i)]^{y_{i1} + y_{iT}} [1 - F(c_i + \rho)]^{-y_{i1} - y_{iT}}}.
\]

It is clear that for a general specification of \(F(\cdot) \) the conditional distribution of \(y_{i1} \) and \(y_{iT} \) still depends on the incidental parameters \(c_i \). But in the case of the exponential distribution
we have
\[
\Pr (y_{i1}, y_{iT} \mid s_{iT} = s^0, p_{iT} = p^0, c_i, \rho) = \frac{\exp [\rho(y_{i1} + y_{iT})]}{\sum_{y_{i1}, y_{iT} \in B_{iT}(s^0, p^0)} \exp [\rho(y_{i1} + y_{iT})]},
\]
which does not depend on \(c_i\)s.

The conditional likelihood for the cross section observations \(i = 1, 2, \ldots, N\) is now given by
\[
L_c(\rho) = \prod_{i=1}^{N} \prod_{\rho = 0}^{T-2} \prod_{s^0 = 1}^{T-1} \frac{\exp [\rho(y_{i1} + y_{iT})]}{\sum_{y_{i1}, y_{iT} \in B_{iT}(s^0, p^0)} \exp [\rho(y_{i1} + y_{iT})]}.
\]

Not all the components of this conditional likelihood function will depend on \(\rho\). For example, in the case where \(T = 3\), which is derived in detail in the appendix, the only component that depends on \(\rho\) is for values of \(s^0 = 1\) and \(p^0 = 0\). When \(T = 3\) we exclude observation where \(s^0 = 3\) and \(p^0 = 2\). The remaining values are \((s^0, p^0) = (2, 0)\) and \((s^0, p^0) = (2, 1)\). Under the former we must have \(y_{i1} = 1, y_{i2} = 0\) and \(y_{i3} = 1\), and
\[
\frac{\exp [\rho(y_{i1} + y_{i3})]}{\sum_{y_{i1}, y_{i3} \in B_{i3}(2,0)} \exp [\rho(y_{i1} + y_{i3})]} = 1.
\]
Under \((s^0, p^0) = (2, 1)\) the only admissible sequences are \((110)\) and \((011)\) and we have
\[
\frac{\exp [\rho(y_{i1} + y_{i3})]}{\sum_{y_{i1}, y_{i3} \in B_{i3}(2,1)} \exp [\rho(y_{i1} + y_{i3})]} = \frac{\exp (\rho)}{2 \exp (\rho)} = \frac{1}{2}.
\]
The only set of observations for which the conditional likelihood depends on \(\rho\) is given by
\[
\frac{\exp [\rho(y_{i1} + y_{i3})]}{\sum_{y_{i1}, y_{i3} \in B_{i3}(1,0)} \exp [\rho(y_{i1} + y_{i3})]} = \begin{cases} \frac{\exp (\rho)}{2 \exp (\rho) + 1}, & \text{for } (100) \\ \frac{1}{2 \exp (\rho) + 1}, & \text{for } (010) \\ \frac{\exp (\rho)}{2 \exp (\rho) + 1}, & \text{for } (001) \end{cases}
\]
Hence, the conditional log-likelihood function for the case where \(T = 3\) can be written as
\[
\ell_c(\rho) = \rho \sum_{i=1}^{N} (y_{i1} + y_{i3}) I(s_{i3} = 1) I(p_{i3} = 0) - \log [2 \exp (\rho) + 1] \sum_{i=1}^{N} I(s_{i3} = 1) I(p_{i3} = 0)
\]
It is easily verified that this is the same as (21) obtained in the appendix. Following Andensen (1970), consistency and \(\sqrt{n}\)-asymptotic normality of the resulting conditional maximum likelihood estimator can be established.
3.4 GMM Estimation

Under the exponential distribution, the binary AR(1) model (7) can be written as

\[y_{it} = \alpha_i + (1 - \alpha_i)\gamma y_{i,t-1} + \varepsilon_{it}, \tag{10} \]

where \(\alpha_i = 1 - \exp(-c_i) \), and \(\gamma = 1 - \exp(-\rho) \). First-differencing here will not eliminate the incidental parameters since the slope also depends on \(c_i \). But since \(\alpha_i \) is time invariant it can be eliminated by using lagged observations. For example, noting that \(1 - \gamma y_{i,t-2} \) can only take the values of 1 and \(1 - \gamma \), and will not be zero for all bounded values of \(\rho \)

\[\alpha_i = \frac{y_{i,t-1} - \gamma y_{i,t-2}}{1 - \gamma y_{i,t-2}} - \frac{\varepsilon_{i,t-1}}{1 - \gamma y_{i,t-2}}, \]

then \(\alpha_i \) can be eliminated from (10) to yield the non-linear differenced equation

\[y_{it} = \gamma y_{i,t-1} + \left(\frac{1 - \gamma y_{i,t-1}}{1 - \gamma y_{i,t-2}} \right) (y_{i,t-1} - \gamma y_{i,t-2}) + v_{it}, \tag{11} \]

where

\[v_{it} = \varepsilon_{it} - \left(\frac{1 - \gamma y_{i,t-1}}{1 - \gamma y_{i,t-2}} \right) \varepsilon_{i,t-1}. \]

However, \(v_{it} \) in this specification does not have mean zero since even conditional on \(y_{i,t-2} \) we have

\[
E(v_{it} | y_{i,t-2}) = E(\varepsilon_{it} | y_{i,t-2}) - \frac{E(\varepsilon_{i,t-1} | y_{i,t-2}) - \gamma E(y_{i,t-1} \varepsilon_{i,t-1} | y_{i,t-2})}{1 - \gamma y_{i,t-2}} \\
= \frac{\gamma E(y_{i,t-1} \varepsilon_{i,t-1} | y_{i,t-2})}{1 - \gamma y_{i,t-2}}.
\]

Due to the contemporaneous dependence of \(y_{i,t-1} \) and \(\varepsilon_{i,t-1} \) in general \(E(v_{it} | y_{i,t-2}) \neq 0 \). Using further lagged values of \(y_{it} \) will not resolve this problem. However, we can consider the following alternative formulation

\[e_{it} = \left(\frac{1 - \gamma y_{i,t-2}}{1 - \gamma y_{i,t-1}} \right) \varepsilon_{it} - \varepsilon_{i,t-1} = \frac{(y_{it} - \gamma y_{i,t-1})(1 - \gamma y_{i,t-2})}{(1 - \gamma y_{i,t-1})} - (y_{i,t-1} - \gamma y_{i,t-2}), \tag{12} \]

which is obtained by multiplying both sides of (11) by \((1 - \gamma y_{i,t-2}) / (1 - \gamma y_{i,t-1}) \). It is now easily seen that

\[
E(e_{it} | y_{i,t-1}, y_{i,t-2}) = \left(\frac{1 - \gamma y_{i,t-2}}{1 - \gamma y_{i,t-1}} \right) E(\varepsilon_{it} | y_{i,t-1}, y_{i,t-2}) - E(\varepsilon_{i,t-1} | y_{i,t-1}, y_{i,t-2}).
\]
But $E(\varepsilon_{it} | y_{i,t-1}, y_{i,t-2}) = 0$ by the Markov property as established in Pesaran and Timmermann (2009). Hence

$$E(e_{it} | y_{i,t-1}, y_{i,t-2}) = -E(\varepsilon_{i,t-1} | y_{i,t-1}, y_{i,t-2}).$$

Now by chain rule of conditional expectations

$$E[E(e_{it} | y_{i,t-1}, y_{i,t-2}) | y_{i,t-1}] = -E[E(\varepsilon_{i,t-1} | y_{i,t-1}, y_{i,t-2}) | y_{i,t-1}],$$

$$E(e_{it} | y_{i,t-2}) = -E(\varepsilon_{it} | y_{i,t-2}) = 0,$$

as required. In fact we have, more generally,

$$E(e_{it} | y_{i,t-s}) = 0, \text{ for } s = 2, 3, \ldots \quad (13)$$

As a result, γ can be estimated consistently by applying the GMM to (12) using $y_{i,t-2}, y_{i,t-3}, \ldots$, as well as the constant, as instruments, very much as when GMM is applied to the first-differenced version in the linear case.

Note that the constant (i.e. the sequence of 1’s) should be used as an instrument with caution. It is easy to show that $E(e_{it}) = 0$ whenever $\gamma = 0$ or $\gamma = \gamma_0$. Thus the constant instrument fails to uniquely pin down γ_0. However, the other instruments do not suffer from this anomaly. Therefore, there is no danger in using the constant as an instrument if accompanied by some of the lags $y_{i,t-2}, y_{i,t-3}, \ldots$.

Remark 1 Wooldridge (1997) considers multiplicative panel data models of the form $\tau(y_{it}, \lambda_0) = \phi_{it}(x_{it}, \beta_0) u_{it}$, and shows that with sequential moment conditions on u_{it} as specified in Chamberlain (1992), thus allowing for lagged dependent variables such as $y_{i,t-1}$ included in x_{it}, the transformation

$$r_{it}(\theta) \equiv \tau(y_{it}, \lambda) - \left[\mu(x_{it}, \beta_0) / \mu(x_{it+1}, \beta_0) \right] \tau(y_{it}, \lambda), \quad t = 1, \ldots, T - 1,$$

satisfies the conditional moment condition

$$E[r_{it}(\theta_0) | \phi_{i,t}, x_{it}, \ldots x_{it}] = 0, \quad t = 1, \ldots, T - 1.$$
In our case, we can rewrite our model as $1 - y_{it} = \phi_i \mu(x_{it}, \beta_0) u_{it}$, where $\mu(x_{it}, \beta_0) = \exp(-\rho y_{it-1})$ and $\phi_i = \exp(-c_i)$. Noting that $\exp(\rho \Delta y_{it}) = (1 - \gamma y_{it-1})/(1 - \gamma y_{it})$, it can be shown that $r_{it}(\theta_0)$ in our case is identical to $e_{i,t+1}$. As a result, the conditional moment conditions in (13) can also be derived from those obtained by Wooldridge (1997).

Notice that since $\rho = -\ln(1 - \gamma)$, to estimate ρ consistently we must have $\gamma < 1$. Alternatively, one could consider the GMM estimation problem directly in terms of γ. In this case, the conditional moment conditions in (13) can be shown to be identical to $e_{i,t+1}$. As a result, the conditional moment conditions in (13) can also be derived from those obtained by Wooldridge (1997).

Let $y_i = (y_{i1}, y_{i2}, ..., y_{iT})'$, then these moment conditions may be written as

$$E[m_k(y_i, \gamma)] = 0, \ k = 1, 2, ..., (T + 1)(T - 2)/2$$

Note that we require $T \geq 3$ in order to use these moments. When $T = 3$, there are two moments.5 The moment conditions for $T = 5$, for example, are given by

\[
egin{align*}
 m_1(y_i, \gamma) &= \left[\frac{(y_{i3} - \gamma y_{i2}) (1 - \gamma y_{i1})}{(1 - \gamma y_{i2})} - (y_{i2} - \gamma y_{i1}) \right], \\
 m_2(y_i, \gamma) &= \left[\frac{(y_{i4} - \gamma y_{i3}) (1 - \gamma y_{i2})}{(1 - \gamma y_{i3})} - (y_{i3} - \gamma y_{i2}) \right], \\
 m_3(y_i, \gamma) &= \left[\frac{(y_{i5} - \gamma y_{i4}) (1 - \gamma y_{i3})}{(1 - \gamma y_{i4})} - (y_{i4} - \gamma y_{i3}) \right], \\
 m_4(y_i, \gamma) &= y_{i1} \left[\frac{(y_{i3} - \gamma y_{i2}) (1 - \gamma y_{i1})}{(1 - \gamma y_{i2})} - (y_{i2} - \gamma y_{i1}) \right], \\
 m_5(y_i, \gamma) &= y_{i1} \left[\frac{(y_{i4} - \gamma y_{i3}) (1 - \gamma y_{i2})}{(1 - \gamma y_{i3})} - (y_{i3} - \gamma y_{i2}) \right], \\
 m_6(y_i, \gamma) &= y_{i2} \left[\frac{(y_{i4} - \gamma y_{i3}) (1 - \gamma y_{i2})}{(1 - \gamma y_{i3})} - (y_{i3} - \gamma y_{i2}) \right], \\
 m_7(y_i, \gamma) &= y_{i1} \left[\frac{(y_{i5} - \gamma y_{i4}) (1 - \gamma y_{i3})}{(1 - \gamma y_{i4})} - (y_{i4} - \gamma y_{i3}) \right], \\
 m_8(y_i, \gamma) &= y_{i2} \left[\frac{(y_{i5} - \gamma y_{i4}) (1 - \gamma y_{i3})}{(1 - \gamma y_{i4})} - (y_{i4} - \gamma y_{i3}) \right], \\
 m_9(y_i, \gamma) &= y_{i3} \left[\frac{(y_{i5} - \gamma y_{i4}) (1 - \gamma y_{i3})}{(1 - \gamma y_{i4})} - (y_{i4} - \gamma y_{i3}) \right],
\end{align*}
\]

5In the appendix, we considered in detail the case of $T = 3$ and the moment $E(e_{i3}y_{i,1}) = 0$. In this case, the GMM estimator has a closed-form solution.
and so on.

Let \(\mathbf{m}(y_i, \gamma) = (m_1(y_i, \gamma), m_2(y_i, \gamma), \ldots, m_K(y_i, \gamma))' \), and write the \(K = (T + 1)(T - 2)/2 \) moment conditions as \(E[\mathbf{m}(y_i, \gamma)] = 0 \). Using the familiar results on GMM estimation we have

\[
\hat{\gamma}_{GMM} = \arg \min_{\gamma} [\mathbf{M}_N(\gamma)\mathbf{A}_N \mathbf{A}_N \mathbf{M}_N(\gamma)],
\]

where

\[
\mathbf{M}_N(\gamma) = N^{-1} \sum_{i=1}^{N} \mathbf{m}(y_i, \gamma),
\]

and \(\mathbf{A}_N \) is a \(1 \times K \) weight vector. An optimal choice for \(\lim_{N \to \infty} \mathbf{A}_N = \mathbf{A}(\gamma_0) \) is given by

\[
\mathbf{A}(\gamma_0) = \mathbf{D}'(\gamma_0)\mathbf{S}^{-1}(\gamma_0),
\]

where \(\gamma_0 \) is the true value of \(\gamma \), and

\[
\mathbf{S}(\gamma_0) = E[N\mathbf{M}_N(\gamma_0)\mathbf{M}_N'(\gamma_0)] \quad \text{and} \quad \mathbf{D}(\gamma_0) = E\left[N^{-1} \sum_{i=1}^{N} \frac{\partial \mathbf{m}(y_i, \gamma_0)}{\partial \gamma}\right] = N^{-1} \sum_{i=1}^{N} E\left(\frac{\partial \mathbf{m}(y_i, \gamma_0)}{\partial \gamma}\right).
\]

But (denoting \(\mathbf{c} = (c_1, c_2, \ldots, c_N)' \))

\[
E[N\mathbf{M}_N(\gamma_0)\mathbf{M}_N'(\gamma_0)] = E\left[N^{-1} \sum_{i=1}^{N} \sum_{j=1}^{N} E\left[\mathbf{m}(y_i, \gamma)\mathbf{m}'(y_j, \gamma) | \mathbf{c}\right]\right].
\]

Note that conditional \(\mathbf{c}, \mathbf{y}_i \) and \(\mathbf{y}_j \) are independently distributed, which establishes that \(\mathbf{m}(y_i, \gamma) \) and \(\mathbf{m}(y_j, \gamma) \) are also conditionally independent (since range of variations of \(\mathbf{y}_i \) does not depend on \(\gamma \)). Hence, recalling that \(E[\mathbf{m}(y_i, \gamma)] = 0 \), we have

\[
E[N\mathbf{M}_N(\gamma_0)\mathbf{M}_N'(\gamma_0)] = N^{-1} \sum_{i=1}^{N} E[\mathbf{m}(y_i, \gamma)\mathbf{m}'(y_i, \gamma)].
\]

In general, analytical expressions for \(E\left[\frac{\partial \mathbf{m}(y_i, \gamma_0)}{\partial \gamma}\right] \) and \(E[\mathbf{m}(y_i, \gamma)\mathbf{m}'(y_i, \gamma)] \) will be a complicated function of \(\mathbf{c} \). However, for a given initial consistent estimate of \(\gamma \), say \(\hat{\gamma} \), \(\mathbf{A}_N \) can be consistently estimated as

\[
\hat{\mathbf{A}}_N = \mathbf{A}_N(\hat{\gamma}) = \left[N^{-1} \sum_{i=1}^{N} \frac{\partial \mathbf{m}'(y_i, \hat{\gamma})}{\partial \gamma}\right]^{-1} \left[N^{-1} \sum_{i=1}^{N} \mathbf{m}(y_i, \hat{\gamma})\mathbf{m}'(y_i, \hat{\gamma})\right].
\]

(15)
The asymptotic variance of $\hat{\gamma}_{GMM}$ is given by

$$\text{AsyVar} \left[\sqrt{N}(\hat{\gamma}_{GMM} - \gamma_0) \right] = \left[\mathbf{D}'(\gamma_0)\mathbf{S}^{-1}(\gamma_0)\mathbf{D}(\gamma_0) \right]^{-1},$$

which can be consistently estimated as

$$\hat{\text{Var}}(\hat{\gamma}_{GMM}) = \frac{1}{N} \left[\mathbf{D}'(\hat{\gamma}_{GMM})\hat{\mathbf{S}}^{-1}(\hat{\gamma}_{GMM})(\hat{\mathbf{D}}(\hat{\gamma}_{GMM}) \right]^{-1},$$

where

$$\hat{\mathbf{D}}(\hat{\gamma}_{GMM}) = N^{-1} \sum_{i=1}^{N} \frac{\partial \mathbf{m}'(y_i; \hat{\gamma}_{GMM})}{\partial \gamma},$$

and

$$\hat{\mathbf{S}}(\hat{\gamma}_{GMM}) = N^{-1} \sum_{i=1}^{N} \mathbf{m}(y_i; \hat{\gamma}_{GMM})\mathbf{m}'(y_i; \hat{\gamma}_{GMM}).$$

The initial estimate of γ, say $\hat{\gamma}_{INI}$ can be obtained, for example, by imposing equal weights on the K moment conditions, namely

$$\hat{\gamma}_{INI} = \arg \min_{\gamma} \left[\mathbf{M}_N'(\gamma)\mathbf{M}_N(\gamma) \right].$$

This initial estimate can then be used to compute

$$\mathbf{A}_N(\hat{\gamma}_{INI}) = \left[N^{-1} \sum_{i=1}^{N} \frac{\partial \mathbf{m}'(y_i; \hat{\gamma}_{INI})}{\partial \gamma} \right] \left[N^{-1} \sum_{i=1}^{N} \mathbf{m}(y_i; \hat{\gamma}_{INI})\mathbf{m}'(y_i; \hat{\gamma}_{INI}) \right]^{-1},$$

with $\hat{\gamma}_{GMM}$ computed as

$$\hat{\gamma}_{GMM} = \arg \min_{\gamma} \left[\mathbf{M}_N'(\gamma)\hat{\mathbf{A}}_N'(\hat{\gamma}_{INI})\hat{\mathbf{A}}_N(\hat{\gamma}_{INI})\mathbf{M}_N(\gamma) \right],$$

An iterated GMM estimator, where in computation of $\hat{\mathbf{A}}_N(\hat{\gamma}_{INI})$, $\hat{\gamma}_{INI}$ is replaced by $\hat{\gamma}_{GMM}$, and a new GMM estimator is computed using $\hat{\mathbf{A}}_N(\hat{\gamma}_{GMM})$, and so on.

The following theorem illustrates the issues involved in proving the asymptotic properties of the GMM estimator when only a single instrument, namely $y_{i,t-2}$, is used. The general case where additional instruments are considered can be established along similar lines.

Theorem 1. Suppose $y_{it} = 1(c_i + \rho_0 y_{it-1} + u_{it} \geq 0)$ for $i = 1, \ldots, N, t = 1, \ldots, T$ and the following conditions hold...
(A1) \(\Pr(c_i + \rho_0 \geq 0) = 1, \Pr(c_i \geq 0) = 1, \) and \(\Pr(c_i < \infty) > 0 \) for \(i = 1, \ldots, N \).

(A2) \(\{u_{it} : i = 1, \ldots, N, t = 1, \ldots, T\} \) is an independent array of random variables. \(u_{i1} \) is uniformly distributed on \([0, 1]\), while for \(t > 1 \), \(-u_{it} \) is geometrically distributed with mean 1. \(\{u_{it}\} \) is independent of \(\{c_i\} \).

(A3) \(y_{i1} = 1 \left(u_{i1} \leq \frac{1-e^{-c_i}}{1-e^{-c_i}(1-e^{-\rho_0})} \right) \), for \(i = 1, \ldots, N \).

(A4) For all \(\rho \in \mathbb{R} \), a compact subset of \(\mathbb{R} \) containing \(\rho_0 \) in its interior, \(N^{-1} \sum_{i=1}^{N} e_{it}(\rho)y_{it-2} \rightarrow_p E[e_{it}(\rho)y_{it-2}] \).

(A5) For all \(\rho \in \mathbb{R} \), \(N^{-1} \sum_{i=1}^{N} e_{it}(\rho)y_{it-2} \rightarrow_p E[e_{it}(\rho)y_{it-2}] \).

(A6) \(N^{-1/2} \sum_{i=1}^{N} e_{it}(\rho_0)y_{it-2} \rightarrow_d N(0, V) \), where \(V = \lim_{N \rightarrow \infty} N^{-1} \sum_{i=1}^{N} E[e_{it}^2(\rho_0)y_{it-2}] > 0 \). Then \(N^{-1/2}(\hat{\rho}_{GMM} - \rho_0) \rightarrow_d N \left(0, \frac{V}{E[e_{it}(\rho_0)y_{it-2}]^2} \right) \), where \(\hat{\rho}_{GMM} \) is the GMM estimator using \(y_{it-2} \) as an instrument.

Assumption (A1) allows us to circumvent the positivity constraint on geometrically distributed random variables. Without it, \(\Pr(y_{it} = 1 | c_{i}, y_{it-1}) = 1 - \exp(-\max\{0, c_i + \rho_0 y_{it-1}\}) \), which greatly complicates the analysis. Assumption (A2) makes a distinction between the initial shocks and the shocks that occur for \(t > 1 \); together with (A3), it allows \(y_{it} \) to be stationary, conditional on \(c_{i} \). Assumptions (A4) – (A6) are high-level asymptotic conditions that hold under a variety of weak-dependence assumptions on the fixed effects. They hold when \(c_{i} \) are cross-sectionally independent but they may also allow for weak cross-sectional dependence, including spatial dependence, so long as the dependence is not too strong.\(^6\)

The variance of \(\hat{\rho}_{GMM} = -\ln(1 - \gamma_{GMM}) \) can now be obtained using the delta method as

\[
\hat{\text{Var}}(\hat{\rho}_{GMM}) = \left(\frac{1}{1 - \gamma_{GMM}} \right)^2 \hat{\text{Var}}(\gamma_{GMM}).
\]

\(^6\)The assumptions we lay out here demonstrate the fact that while the asymptotic properties of GMM estimators such as consistency and asymptotic normality are established under high level regularity conditions in Hansen (1982), whether they are satisfied in a specific nonlinear model could be a delicate matter that is often technically more involved than one would expect. It is worth noting that in the literature where GMM estimators are proposed, the conventional approach has been to derive moment conditions of the model and then claim the GMM estimators based on these moment conditions are consistent and asymptotically normally distributed implicitly assuming that the required regularity conditions are satisfied.
A test of $\rho = 0$ (or $\gamma = 0$) can be carried out using (12), or by testing $\lambda = 0$ in the first-differenced regression (assuming $\alpha_i \neq 1$)

$$\Delta y_{it} = \lambda \Delta y_{i,t-1} + \Delta \varepsilon_{it},$$

using $\Delta y_{i,t-2}, \Delta y_{i,t-3}, \ldots$ as instruments.

4 The Case of $\beta \neq 0$

4.1 Conditional ML Estimator

Consider the case when $T = 3$. Denote the set of all observations such that $y_{i1} = 0$ and $y_{i2} + y_{i3} = 1$ by D and define the sets

$$D_1 = \{y_{i1} = 0, y_{i2} = 0, y_{i3} = 1\},$$

$$D_2 = \{y_{i1} = 0, y_{i2} = 1, y_{i3} = 0\}.$$

It is now easily seen that (given the Markov property and (3))

$$\Pr(D_1 | c_i, x_{i3}, x_{i2}, x_{i1}, x_{i0}, x_{i,-1}, \ldots) = (1 - \pi_{i1}) [1 - F(\beta'x_{i2} + c_i)] F(\beta'x_{i3} + c_i),$$

$$\Pr(D_2 | c_i, x_{i3}, x_{i2}, x_{i1}, x_{i0}, x_{i,-1}, \ldots) = (1 - \pi_{i1}) F(\beta'x_{i2} + c_i)[1 - F(\rho + \beta'x_{i3} + c_i)].$$

Therefore

$$\Pr(D | c_i, x_{i3}, x_{i2}, x_{i1}, x_{i0}, x_{i,-1}, \ldots)$$

$$= \Pr(D_1 | c_i, x_{i3}, x_{i2}, x_{i1}, x_{i0}, x_{i,-1}, \ldots) + \Pr(D_2 | c_i, x_{i3}, x_{i2}, x_{i1}, x_{i0}, x_{i,-1}, \ldots)$$

$$= (1 - \pi_{i1}) [1 - F(\beta'x_{i2} + c_i)] F(\beta'x_{i3} + c_i) + (1 - \pi_{i1}) F(\beta'x_{i2} + c_i)[1 - F(\rho + \beta'x_{i3} + c_i)].$$

It then follows that when $x_{i2} = x_{i3}$

$$\Pr(D_1 | D, c_i, x_{i3}, x_{i2}, x_{i1}, x_{i0}, x_{i,-1}, \ldots) = \frac{1 - F(\beta'x_{i2} + c_i)}{1 - F(\beta'x_{i2} + c_i) + 1 - F(\rho + \beta'x_{i3} + c_i)}$$

$$= \frac{1}{1 + \exp(-\rho)},$$

17
\[
\Pr(D_2|D, c_i, x_{it}, x_{i,t-1}, \ldots x_{i1}, x_{i0}, x_{i,-1}, \ldots) = \frac{1 - F(\rho + \beta' x_{i3} + c_i)}{1 - F(\beta' x_{i2} + c_i) + 1 - F(\rho + \beta' x_{i3} + c_i)}
\]

Hence \(\rho \) can be consistently estimated when \(x_{i2} = x_{i3} \) using the sample characterized by \(D \). If \(x_{i2} \neq x_{i3} \), provided that \(x_{i2} - x_{i3} \) has support in a neighborhood of 0, then an estimator similar to Honoré and Kyriazidou (2000) can be implemented by using a kernel to give weights in the likelihood function that depend inversely on the magnitude of \(x_{i2} - x_{i3} \).

It is interesting to note that it does not seem possible to use the CMLE approach to identify \(\beta \), although it can be identified by the CMLE in a logit model as studied in Honoré and Kyriazidou (2000). A key difference to our specification is that ours has \(\Pr(y_{it} = 1| c_i, y_{it-1}, x_{it}) = 1 - \exp(-\rho y_{it-1} - \beta' x_{it} - c_i) \). \(c_i \) cannot be cancelled out from the numerator and the denominator from the terms involving \(1 - \exp(-\rho y_{it-1} - \beta' x_{it} - c_i) \). This means that we have to make \(x_{it} = x_{i-1t} \). As a result, when we try to use the conditional likelihood approach to eliminate \(c_i, \beta' x_{it} \) are also cancelled out from the numerator and the denominator. In contrast Honoré and Kyriazidou (2000) use a logistic specification, which does not have the problem we encounter with the term like \(1 - \exp(-\rho y_{it-1} - \beta' x_{it} - c_i) \). For estimation of \(\beta \) we therefore turn to the GMM procedure.

4.2 GMM Estimation

In the general case where \(\beta \neq 0 \), the dynamic non-linear autoregressive model, (7), associated to the binary choice model generalizes to

\[
y_{it} = F(\beta' x_{it} + c_i) + [F(\beta' x_{it} + c_i + \rho) - F(\beta' x_{it} + c_i)] y_{i,t-1} + \epsilon_{it},
\]

and we continue to have \(E(\epsilon_{it} | y_{i,t-1}, y_{i,t-2}, \ldots; x_{it}, x_{i,t-1}, \ldots) = 0 \). In the exponential case under consideration, the non-linear AR(1) formulation can be written as

\[
y_{it} - 1 = \exp(-\beta' x_{it} - c_i) + \exp(-\beta' x_{it} - c_i)(1 - \exp(-\rho)) y_{i,t-1} + \epsilon_{it},
\]

or setting \(\gamma = 1 - \exp(-\rho) \)

\[
\exp(\beta' x_{it})(y_{it} - 1) = -(\exp(-c_i))(1 - \gamma y_{i,t-1}) + \exp(\beta' x_{it}) \epsilon_{it}.
\]
Since $1 - \gamma y_{i,t-1}$ cannot be zero if $|\gamma| < 1$, we have

$$\frac{\exp(\beta' x_{it}) (1 - y_{it})}{1 - \gamma y_{i,t-1}} = \exp(-c_i) = \frac{\exp(\beta' x_{it}) \varepsilon_{it}}{1 - \gamma y_{i,t-1}}.$$

Now first differencing to eliminate c_i yields

$$\frac{\exp(\beta' x_{it}) (1 - y_{it})}{1 - \gamma y_{i,t-1}} - \frac{\exp(\beta' x_{i,t-1}) (1 - y_{i,t-1})}{1 - \gamma y_{i,t-2}} = -\frac{\exp(\beta' x_{it}) \varepsilon_{it}}{1 - \gamma y_{i,t-1}} + \frac{\exp(\beta' x_{i,t-1}) \varepsilon_{i,t-1}}{1 - \gamma y_{i,t-2}},$$

which after some algebra simplifies to

$$e_{it} = \exp(\beta' \Delta x_{it}) \left(\frac{1 - \gamma y_{i,t-2}}{1 - \gamma y_{i,t-1}} \right) \varepsilon_{it} - \varepsilon_{i,t-1}$$

(16)

Again, $y_{i,t-2}, y_{i,t-3}, \ldots$ and the constant can be used as instruments.\(^7\) If x_{it} is exogenous, then the regressors $x_{i,1}, x_{i,2}, \ldots, x_{i,T}$ can also be used as instruments. It is also easily seen that e_{it} given above reduces to (12) if we set $\beta = 0$, as to be expected.\(^8\)

In empirical applications of the GMM approach the choice of instruments can play an important role on the small sample properties of the estimators. The problem becomes particularly serious in panel data models where the number of instruments can rise quite rapidly with T. The pitfalls in using too many instruments in the case of linear dynamic panel data models is investigated in Roodman (2009). In the case of non-linear specifications, the use of additional instruments that involve powers of $y_{i,t-s}$ for $s \geq 2$, or powers of lagged exogenous variables, such as $y_{i,t-2}y_{i,t-3}$, $x_{i,t-s} \otimes x_{i,t-s}$, and $y_{i,t-2}x_{i,t-s}$, can also be justified which could lead to even a larger set of instruments to be used in GMM estimation. A number of procedures have been proposed to deal with this problem. Carrasco (2012) proposes using regularization techniques to invert the covariance matrix of the instruments. Mehrhoff (2009) proposes factorizing the instrument set whereby the full set of instruments is replaced by a

\(^7\)The same caveat as mentioned earlier continues to hold. $E(e_{it}) = 0$ for $(\gamma, \beta) = (0, 0)$ and for $(\gamma, \beta) = (\gamma_0, \beta_0)$. Therefore, the constant should never be used as an instrument unless accompanied by at least one lagged variable.

\(^8\)Also Remark 2 on the link between the moment conditions in (13) when $\beta = 0$ and Wooldridge (1997) applies to the case when $\beta \neq 0$ here.
few principal components of the instrument set. Both approaches rely on related choice parameters such as the extent of regularization/shrinkage in the case of Carrasco’s approach and the number of principle components to be used as instruments. The application of these basically linear techniques to the non-linear specification that we consider could also be problematic as they need not be optimal in non-linear settings. In view of these difficulties we do not recommend the use of GMM approach developed in this paper for applications where \(T \) is relatively large, say more than 6. In case of non-linear panels with moderate \(T \) samples the ML approach combined with bias correction (as proposed by Carro, 2007) might be more appropriate.

Remark 2 It is clear from the analysis above that GMM estimation can also be applied to the model with additional lags,

\[
\Pr(y_{it} = 1|c_i, y_{it-1}, y_{it-2}, \ldots, x_{it}) = F(c_i + \rho_1 y_{it-1} + \cdots + \rho_p y_{it-p} + \beta' x_{it}),
\]

with \(F \) exponential as before. Considering the way the moment conditions are obtained, it is also clear that we may also allow for time variation in \(\rho \). Finally, missing observations (so long as they are missing at random) pose no particular problem for our estimation method. One simply obtains each average \(N_j^{-1} \sum_i m_j(y_i, \gamma, \beta) \) separately, where \(N_j \) is the number of observations for which the data necessary for calculating \(m_j(y_i, \gamma, \beta) \) is available.

4.3 Discussion on Robustness of the Exponential Specification

As discussed in Section 1, various specifications of dynamic binary choice panel data models have been used in the literature depending on their convenience or/and whether they enable the researcher to resolve the incidental parameter problem. In the same vein, we propose to use the exponential specification and construct GMM estimators that are consistent and asymptotically normally distributed. As for any specification in the parametric approach, a natural question is how robust it is with regard to misspecification. The results given below show that for a distribution \(F(\cdot) \) in (2), under certain conditions, there is an exponential distribution that gives the same probabilities for \(\Pr(y_{it} = 1|y_{it-1}, c_i, x_{it}) \).
Proposition 1. Suppose that the true model is given by (2) with a distribution \(F(\cdot) \) which satisfies \(|\log[(1 - F(\beta' \bar{x}_i + c_i))/(1 - F(\rho + \beta' \bar{x}_i + c_i))]| < 1 \). Suppose also that an exponential distribution is specified so that

\[
\Pr(y_{it} = 1 | y_{i,t-1}, c_{i,e}, \bar{x}_i; M_e) = 1 - \exp(-\rho y_{i,t-1} - \beta' x_{it} - c_{i,e}).
\]

Then we can find the values of \(c_{i,e} \) and \(\rho_e \) such that

\[
\Pr(y_{it} = 1 | y_{i,t-1}, c_{i,e}, \bar{x}_i, M_e) = \Pr(y_{it} = 1 | y_{i,t-1}, c_i, \bar{x}_i) = F(\rho y_{i,t-1} + \beta' \bar{x}_i + c_i).
\]

The condition \(|\log[(1 - F(\beta' \bar{x}_i + c_i))/(1 - F(\rho + \beta' \bar{x}_i + c_i))]| < 1 \) is used to ensure that the resulting \(\rho_e \) is between \(-1\) and \(1\). Note that this condition can be written alternatively as

\[e^{-1} < \Pr(y_{it} = 0 | y_{i,t-1} = 0, c_i, \bar{x}_i) / \Pr(y_{it} = 0 | y_{i,t-1} = 1, c_i, \bar{x}_i) < e, \]

meaning that the slope of \(F(\cdot) \) cannot be too steep. It is worth noting that this condition is satisfied by the logistic distribution. Therefore, for any logistic distribution, there exists an exponential distribution that matches the logistic distribution at \(\bar{x}_i \).

5 Simulation Studies

In order to investigate the performance of the GMM and CMLE estimators we conduct a series of Monte Carlo studies, which we summarize here. We have endeavored where possible to match the Monte Carlo design employed by Honoré and Kyriazidou (2000).

5.1 The GMM Estimator

To study the GMM estimator, we generate data from the exponential dynamic binary choice model, with \(\rho = 0.5 \), and include a single exogenous regressor in the model. We draw \(c_i \sim |N(0, \sigma_c^2)| \) and \(x_{it} \sim |N(0, 1)| \), independently. We then set \(\sigma_c = \beta \) so that the fixed effects and exogenous regressors each contribute an equal amount of variation. The two parameters are solved numerically for a proportion of 1s in the population of \(\bar{\pi} = 50\% \), this gives us \(\sigma_c = \beta = 0.318815 \). The distribution of \(y_{i1} \) is set to the stationary distribution

9The full set of Monte Carlo results is available from the authors on request.
conditional on the fixed effect and x_{i1}. We generate data sets of sizes $T = 3, 4, 6, 8$ and $N = 250, 500, 1000, 2500, 5000, 10000$ and look at the mean, variance, bias, RMSE, of the estimates for ρ and β in 2000 replications for each experiment. The estimates are obtained using the moment conditions

\[E(e_{it}) = 0, \quad t = 3, \ldots, T, \]
\[E(x_{is}e_{it}) = 0, \quad t = 3, \ldots, T, \quad s = 1, \ldots, T, \]
\[E(y_{is}e_{it}) = 0, \quad t = 3, \ldots, T, \quad s = 1, \ldots, t - 2, \]

and using an estimate for the optimal choice of GMM weight matrix. There are a total of $\frac{1}{2}(3T + 1)(T - 2)$ moment conditions. We also consider the size of the tests $H_0 : \rho = 0$ and power for $H_a : \rho = 0.6$ and $H_b : \rho = 0.4$ as well as the size of the tests $H_0 : \beta = 0$ and power for $H_a : \beta = 0.418815$ and $H_b : \beta = 0.218815$, all at 5% significance. Henceforth, this setting will be referred to as the benchmark specification.

We find that the percentage of γs falling outside the admissible range can be substantial for small N. For $N = 250$ and $T = 3$, 12.3% of all estimates are inadmissible; with $T = 8$, the percentage rises to 18.2%. However, the likelihood of obtaining an inadmissible estimate decreases sharply with N, even though it increases with T. For $N \geq 500$ the likelihood of an inadmissible γ is below 5% and for for $N \geq 1000$ it is at most 1%.

Tables 1 and 2 give results for variance, bias, and RMSE in the benchmark simulations. Variance, bias, and RMSE improve with larger N. RMSE and variance improve with increased T. However, the bias of the GMM estimator of ρ increases with T.

22
Table 1. Benchmark Small Samples Results for Variance, Bias, and RMSE of $\hat{\rho}_{GMM}$.*

<table>
<thead>
<tr>
<th></th>
<th>Variance</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2500</th>
<th>5000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Variance</td>
<td>0.0571</td>
<td>0.0326</td>
<td>0.0166</td>
<td>0.0065</td>
<td>0.0031</td>
<td>0.0016</td>
</tr>
<tr>
<td></td>
<td>Bias</td>
<td>0.0032</td>
<td>-0.0014</td>
<td>0.0027</td>
<td>0.0009</td>
<td>-0.0007</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>0.2239</td>
<td>0.1767</td>
<td>0.1282</td>
<td>0.0806</td>
<td>0.0556</td>
<td>0.0394</td>
</tr>
<tr>
<td>4</td>
<td>Variance</td>
<td>0.0240</td>
<td>0.0123</td>
<td>0.0066</td>
<td>0.0025</td>
<td>0.0012</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td>Bias</td>
<td>-0.0446</td>
<td>-0.0253</td>
<td>-0.0104</td>
<td>-0.0041</td>
<td>-0.0020</td>
<td>-0.0011</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>0.1514</td>
<td>0.1110</td>
<td>0.0815</td>
<td>0.0503</td>
<td>0.0349</td>
<td>0.0248</td>
</tr>
<tr>
<td>6</td>
<td>Variance</td>
<td>0.0105</td>
<td>0.0060</td>
<td>0.0026</td>
<td>0.0010</td>
<td>0.0005</td>
<td>0.0003</td>
</tr>
<tr>
<td></td>
<td>Bias</td>
<td>-0.0889</td>
<td>-0.0442</td>
<td>-0.0209</td>
<td>-0.0057</td>
<td>-0.0026</td>
<td>-0.0011</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>0.1252</td>
<td>0.0879</td>
<td>0.0554</td>
<td>0.0328</td>
<td>0.0226</td>
<td>0.0159</td>
</tr>
<tr>
<td>8</td>
<td>Variance</td>
<td>0.0075</td>
<td>0.0042</td>
<td>0.0018</td>
<td>0.0006</td>
<td>0.0003</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td>Bias</td>
<td>-0.1557</td>
<td>-0.0774</td>
<td>-0.0309</td>
<td>-0.0081</td>
<td>-0.0032</td>
<td>-0.0014</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>0.1613</td>
<td>0.0992</td>
<td>0.0528</td>
<td>0.0267</td>
<td>0.0181</td>
<td>0.0128</td>
</tr>
</tbody>
</table>

* $\rho = 0.5$, $\beta = 0.32$, $x_{it} = |N(0,1)|$, $c_i \sim |N(0,0.32^2)|$.

23
Table 2. Benchmark Small Samples Results for Variance, Bias, and RMSE of $\hat{\beta}_{GMM}$.*

<table>
<thead>
<tr>
<th>T</th>
<th>Variance</th>
<th>Bias</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.0192</td>
<td>0.0100</td>
<td>0.1300</td>
</tr>
<tr>
<td></td>
<td>0.0078</td>
<td>0.0073</td>
<td>0.0869</td>
</tr>
<tr>
<td></td>
<td>0.0035</td>
<td>0.0024</td>
<td>0.0591</td>
</tr>
<tr>
<td></td>
<td>0.0015</td>
<td>0.0012</td>
<td>0.0384</td>
</tr>
<tr>
<td></td>
<td>0.0007</td>
<td>0.0006</td>
<td>0.0274</td>
</tr>
<tr>
<td></td>
<td>0.0004</td>
<td>0.0007</td>
<td>0.0195</td>
</tr>
</tbody>
</table>

4	0.0101	0.0024	0.0942
	0.0039	0.0016	0.0609
	0.0019	-0.0012	0.0430
	0.0008	0.0006	0.0277
	0.0004	0.0000	0.0198
	0.0002	0.0003	0.0137

6	0.0047	-0.0172	0.0653
	0.0021	-0.0040	0.0448
	0.0010	-0.0002	0.0323
	0.0004	0.0006	0.0206
	0.0002	0.0003	0.0140
	0.0001	0.0005	0.0099

8	0.0035	-0.0323	0.0607
	0.0016	-0.0128	0.0406
	0.0008	-0.0008	0.0279
	0.0003	0.0005	0.0175
	0.0001	0.0003	0.0122
			0.0085

* $\rho = 0.5$, $\beta = 0.32$, $x_{it} = |N(0, 1)|$, $c_i \sim |N(0, 0.32^2)|$.

Tables 3 and 4 give the results for size and power. For $T = 3$ and 4, size is satisfactory even for a relatively small N. However, there are large size distortions for $T = 6$ and 8, most likely owing to the rapidly (quadratically) growing number of instruments. For these cases, one needs large N to reduce the percentage of over-rejection. Notably, size for the β tests improves more rapidly than the size for the ρ tests with increased N. We need $N \geq 2500$ to bring down the size to below 10% for ρ and $N \geq 1000$ for β.
Table 3. Benchmark Small Samples Results for Size and Power of Tests Based on $\hat{\rho}_{GMM}$.*

<table>
<thead>
<tr>
<th>T \ N</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2500</th>
<th>5000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size H_0</td>
<td>0.0536</td>
<td>0.0636</td>
<td>0.0627</td>
<td>0.0600</td>
<td>0.0515</td>
<td>0.0545</td>
</tr>
<tr>
<td>Power H_a</td>
<td>0.1157</td>
<td>0.1382</td>
<td>0.1728</td>
<td>0.2811</td>
<td>0.4595</td>
<td>0.7115</td>
</tr>
<tr>
<td>Power H_b</td>
<td>0.0433</td>
<td>0.0683</td>
<td>0.1102</td>
<td>0.2331</td>
<td>0.4255</td>
<td>0.7380</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size H_0</td>
<td>0.0817</td>
<td>0.0728</td>
<td>0.0697</td>
<td>0.0540</td>
<td>0.0545</td>
<td>0.0505</td>
</tr>
<tr>
<td>Power H_a</td>
<td>0.2240</td>
<td>0.2619</td>
<td>0.3180</td>
<td>0.5560</td>
<td>0.8315</td>
<td>0.9780</td>
</tr>
<tr>
<td>Power H_b</td>
<td>0.0618</td>
<td>0.0781</td>
<td>0.1976</td>
<td>0.5045</td>
<td>0.8205</td>
<td>0.9875</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size H_0</td>
<td>0.2478</td>
<td>0.1508</td>
<td>0.0901</td>
<td>0.0625</td>
<td>0.0560</td>
<td>0.0530</td>
</tr>
<tr>
<td>Power H_a</td>
<td>0.5937</td>
<td>0.5780</td>
<td>0.6855</td>
<td>0.9045</td>
<td>0.9955</td>
<td>1.0000</td>
</tr>
<tr>
<td>Power H_b</td>
<td>0.0986</td>
<td>0.1549</td>
<td>0.3540</td>
<td>0.8525</td>
<td>0.9935</td>
<td>1.0000</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size H_0</td>
<td>0.7072</td>
<td>0.3977</td>
<td>0.1816</td>
<td>0.0750</td>
<td>0.0530</td>
<td>0.0605</td>
</tr>
<tr>
<td>Power H_a</td>
<td>0.9309</td>
<td>0.8785</td>
<td>0.9020</td>
<td>0.9875</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>Power H_b</td>
<td>0.3026</td>
<td>0.1433</td>
<td>0.4667</td>
<td>0.9630</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

* $\rho = 0.5$, $\beta = 0.32$, $x_{H} = |N(0, 1)|$, $c_{i} \sim |N(0, 0.32^2)|$.

* $H_0 : \rho = 0.5$. † $H_a : \rho = 0.6$. ‡ $H_b : \rho = 0.4$ (5% level).
Table 4. Benchmark Small Samples Results for Size and Power of Tests Based on $\hat{\beta}_{GMM}$.

<table>
<thead>
<tr>
<th>$T \backslash N$</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2500</th>
<th>5000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_0 Size</td>
<td>0.0604</td>
<td>0.0511</td>
<td>0.0541</td>
<td>0.0490</td>
<td>0.0610</td>
<td>0.0540</td>
</tr>
<tr>
<td>H_a Power</td>
<td>0.1608</td>
<td>0.2457</td>
<td>0.4184</td>
<td>0.7274</td>
<td>0.9430</td>
<td>0.9990</td>
</tr>
<tr>
<td>H_b Power</td>
<td>0.1140</td>
<td>0.2102</td>
<td>0.4149</td>
<td>0.7654</td>
<td>0.9705</td>
<td>0.9995</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_0 Size</td>
<td>0.0800</td>
<td>0.0660</td>
<td>0.0522</td>
<td>0.0545</td>
<td>0.0505</td>
<td>0.0445</td>
</tr>
<tr>
<td>H_a Power</td>
<td>0.2564</td>
<td>0.4081</td>
<td>0.6670</td>
<td>0.9400</td>
<td>0.9990</td>
<td>1.0000</td>
</tr>
<tr>
<td>H_b Power</td>
<td>0.1940</td>
<td>0.4023</td>
<td>0.6354</td>
<td>0.9675</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_0 Size</td>
<td>0.1450</td>
<td>0.0875</td>
<td>0.0641</td>
<td>0.0620</td>
<td>0.0450</td>
<td>0.0485</td>
</tr>
<tr>
<td>H_a Power</td>
<td>0.5737</td>
<td>0.7185</td>
<td>0.8848</td>
<td>0.9975</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>H_b Power</td>
<td>0.3658</td>
<td>0.6500</td>
<td>0.9049</td>
<td>0.9990</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_0 Size</td>
<td>0.2732</td>
<td>0.1376</td>
<td>0.0950</td>
<td>0.0660</td>
<td>0.0565</td>
<td>0.0590</td>
</tr>
<tr>
<td>H_a Power</td>
<td>0.8258</td>
<td>0.8842</td>
<td>0.9630</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>H_b Power</td>
<td>0.4664</td>
<td>0.7399</td>
<td>0.9750</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

* $\rho = 0.5$, $\beta = 0.32$, $x_{it} = |N(0,1)|$, $c_i \sim |N(0,0.32^2)|$.

* $H_0 : \beta = 0.3188$. † $H_a : \beta = 0.4188$. ‡ $H_b : \beta = 0.2188$ (5% level).

We next modify the benchmark DGP of y_{it}, x_{it} and c_i in various ways and look at the behavior of our estimators. A selection of the results of these alternative specifications is given in Table 5 for $T = 3$ and $N = 500$.

First, we look at the effect of changing the variance of the fixed effects. We increase σ_c so that $\pi = 0.75$ and then further so that $\pi = 0.95$. As to be expected, increasing σ_c causes a deterioration of the estimates, increasing the percentage of γs falling out of bounds, along with variance, bias, and RMSE, a rise in size and decrease in power. However, the empirical size is still generally close to the nominal size for $N \geq 5000$.

Next, we vary ρ and β individually in the benchmark simulation, choosing $\rho = \rho^{bm} \pm 0.4$ and $\beta = \beta^{bm} \pm 0.2$. These variations impart little change to the results of the benchmark. The higher value of ρ causes a fall in the percentage of γ falling out of bounds.

Next, we modify the benchmark to allow the fixed effect to be correlated with the exogenous variables. We set $c_i = b_{\omega,T}(\omega \bar{x}_{i}^{bm} + (1 - \omega)c_{i}^{bm})$, where $\bar{x}_{i}^{bm} = \frac{1}{T} \sum_{t=1}^{T} x_{it}^{bm}$ and c_{i}^{bm} is
the benchmark fixed effect, for \(\omega = 0.25, 0.50, 0.75 \). \(b_{\omega,T} \) is chosen so that \(\pi \) is equal to the benchmark value. This has little or no effect on the results.

We also consider the effect of cross-sectional heterogeneity in \(x_{it} \) by modifying the benchmark exogenous process to, \(x_{it} = h(\mu_i + \sigma_i|\varepsilon_{it}|) \), where \(\mu_i \sim U(0, 1) \), \(\sigma_i^2 \sim \chi^2_2 \), and \(\varepsilon_{it} \sim N(0, 1) \). We set \(h = 0.52444 \) to match the value of \(\pi \) in the benchmark model. We find that the results for the estimates of \(\rho \) are not much affected by the heterogeneity in the \(x_{it} \) processes. The results for \(\beta \), on the other hand, have higher variance, bias, and RMSE than the results obtained under the benchmark model. The same also applies to size and power where under heterogeneity we observe a deterioration in size and power as compared to the benchmark case.

We then consider the effect of autocorrelation in the exogenous variables on the results. In this case we modify the benchmark exogenous process to \(x_{it} = |0.1\zeta_{it} + d_T + 0.2t| \), where \(\zeta_i \) is a Gaussian AR(1) with autoregressive coefficient 0.5, variance 1, and independently distributed across \(i \). \(c_i \) are generated as in the benchmark case. The parameters are calibrated by simulation to produce an expected proportion of 1’s of \(\pi^{bm} \) in populations of size \(N = 10000 \). We find that autocorrelation in the covariates has no significant effect on the results for \(\rho \). However, the variance, bias, and RMSE of \(\hat{\beta} \) are all higher than in the benchmark. Size also deteriorates with autocorrelation, with power being significantly lower than under the benchmark case.
Table 5. Sample of Small Sample Results for GMM Estimation Under Alternative Specifications ($T = 3$ and $N = 500$).

<table>
<thead>
<tr>
<th>Specification</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>(11)</th>
<th>(12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ Results</td>
<td></td>
</tr>
<tr>
<td>% of γs ≥ 1</td>
<td>4.15</td>
<td>15</td>
<td>33.5</td>
<td>4.3</td>
<td>3.5</td>
<td>0.85</td>
<td>31.3</td>
<td>2.7</td>
<td>2.35</td>
<td>2.5</td>
<td>3.7</td>
<td>0</td>
</tr>
<tr>
<td>Average % of 1s</td>
<td>49.82</td>
<td>74.4</td>
<td>94.38</td>
<td>57.79</td>
<td>38.93</td>
<td>59.68</td>
<td>40.08</td>
<td>49.79</td>
<td>49.74</td>
<td>49.69</td>
<td>49.67</td>
<td>50.33</td>
</tr>
<tr>
<td>Variance</td>
<td>0.0326</td>
<td>0.0706</td>
<td>0.3837</td>
<td>0.0440</td>
<td>0.0257</td>
<td>0.0741</td>
<td>0.0098</td>
<td>0.0316</td>
<td>0.0312</td>
<td>0.0314</td>
<td>0.0299</td>
<td>0.0314</td>
</tr>
<tr>
<td>Bias</td>
<td>-0.0014</td>
<td>-0.0072</td>
<td>0.0050</td>
<td>-0.0026</td>
<td>-0.0043</td>
<td>0.0000</td>
<td>0.0354</td>
<td>-0.0012</td>
<td>-0.0017</td>
<td>0.0024</td>
<td>-0.0070</td>
<td>-0.0139</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.1767</td>
<td>0.2450</td>
<td>0.5052</td>
<td>0.2051</td>
<td>0.1576</td>
<td>0.2711</td>
<td>0.0873</td>
<td>0.1755</td>
<td>0.1746</td>
<td>0.1749</td>
<td>0.1698</td>
<td>0.1777</td>
</tr>
<tr>
<td>Size H_0^*</td>
<td>0.0636</td>
<td>0.0600</td>
<td>0.0534</td>
<td>0.0601</td>
<td>0.0617</td>
<td>0.0746</td>
<td>0.0189</td>
<td>0.0612</td>
<td>0.0538</td>
<td>0.0590</td>
<td>0.0571</td>
<td>0.0680</td>
</tr>
<tr>
<td>Power H_a^\dagger</td>
<td>0.1382</td>
<td>0.1024</td>
<td>0.0729</td>
<td>0.1306</td>
<td>0.1560</td>
<td>0.1140</td>
<td>0.0633</td>
<td>0.1408</td>
<td>0.1413</td>
<td>0.1277</td>
<td>0.1350</td>
<td>0.1555</td>
</tr>
<tr>
<td>Power H_b^\dagger</td>
<td>0.0683</td>
<td>0.0312</td>
<td>0.0286</td>
<td>0.0601</td>
<td>0.0622</td>
<td>0.0711</td>
<td>0.1426</td>
<td>0.0612</td>
<td>0.0681</td>
<td>0.0708</td>
<td>0.0675</td>
<td>0.0455</td>
</tr>
<tr>
<td>β Results</td>
<td></td>
</tr>
<tr>
<td>Variance</td>
<td>0.0078</td>
<td>0.0206</td>
<td>13.1853</td>
<td>0.0141</td>
<td>0.0040</td>
<td>0.0125</td>
<td>0.0052</td>
<td>0.0084</td>
<td>0.0086</td>
<td>0.0086</td>
<td>0.0196</td>
<td>0.0965</td>
</tr>
<tr>
<td>Bias</td>
<td>0.0073</td>
<td>0.0116</td>
<td>0.1297</td>
<td>0.0166</td>
<td>0.0029</td>
<td>0.0114</td>
<td>0.0088</td>
<td>0.0084</td>
<td>0.0077</td>
<td>0.0094</td>
<td>0.0130</td>
<td>0.0111</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.0869</td>
<td>0.1328</td>
<td>2.9630</td>
<td>0.1173</td>
<td>0.0623</td>
<td>0.1118</td>
<td>0.0599</td>
<td>0.0909</td>
<td>0.0918</td>
<td>0.0922</td>
<td>0.1378</td>
<td>0.3109</td>
</tr>
<tr>
<td>Size H_0^*</td>
<td>0.0511</td>
<td>0.0524</td>
<td>0.0774</td>
<td>0.0559</td>
<td>0.0534</td>
<td>0.0575</td>
<td>0.0488</td>
<td>0.0462</td>
<td>0.0471</td>
<td>0.0508</td>
<td>0.0696</td>
<td>0.0450</td>
</tr>
<tr>
<td>Power H_a^\dagger</td>
<td>0.2457</td>
<td>0.1276</td>
<td>0.1053</td>
<td>0.1594</td>
<td>0.3767</td>
<td>0.1599</td>
<td>0.2897</td>
<td>0.2199</td>
<td>0.2161</td>
<td>0.2154</td>
<td>0.1672</td>
<td>0.0685</td>
</tr>
<tr>
<td>Power H_b^\dagger</td>
<td>0.2102</td>
<td>0.1000</td>
<td>0.0624</td>
<td>0.1411</td>
<td>0.3876</td>
<td>0.1704</td>
<td>0.2933</td>
<td>0.2163</td>
<td>0.2110</td>
<td>0.2113</td>
<td>0.1345</td>
<td>0.0555</td>
</tr>
</tbody>
</table>

b (1) benchmark, (2) medium σ_c, (3) high σ_c, (4) high β, (5) low β, (6) high ρ, (7) low ρ, (8) $\omega = 0.25$, (9) $\omega = 0.50$, (10) $\omega = 0.75$, (11) heterogenous x_{it}, (12) autocorrelated x_{it}.

* $H_0 : \rho = \rho_0$, where ρ_0 is the value of ρ used in the DGP of the particular specification. $^\dagger H_a : \rho = \rho_0 + 0.1$. $^\dagger H_b : \rho = \rho_0 - 0.1$. $^{**} H_0 : \beta = \beta_0$, where β_0 is the value of β used in the DGP of the particular specification.. $^{\dagger \dagger} H_a : \beta = \beta_0 + 0.2$. $^{\dagger \dagger} H_b : \beta = \beta_0 - 0.2$ (5% level).
5.2 GMM versus CMLE

In this subsection we report comparative results for GMM and CMLE estimation methods for ρ with $\beta = 0$. Recall that CMLE method is not applicable if $\beta \neq 0$. GMM estimation uses the following moment conditions,

$$E(e_{it}) = 0, \quad t = 3, \ldots, T,$$
$$E(y_{is}e_{it}) = 0, \quad t = 3, \ldots, T, \quad s = 1, \ldots, t - 2.$$

The CMLE procedure is described in 3.3.

The results for bias and RMSE are summarized in Tables 6 and 7, and for size and power in Tables 8 and 9. In terms of RMSE, GMM outperforms CMLE for all values of T under consideration ($T = 3, 4, 6, 8$), although for $T = 6$ and 8 GMM shows a higher degree of bias than CMLE. In terms of size, CMLE does better than GMM, and matches the nominal size for all values of T, whilst GMM tends to over-reject when $T > 6$. But generally GMM outperforms CMLE in terms of power when the sizes are comparable.

<table>
<thead>
<tr>
<th>$T\setminus N$</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2500</th>
<th>5000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Variance</td>
<td>0.1000</td>
<td>0.0484</td>
<td>0.0237</td>
<td>0.0093</td>
<td>0.0044</td>
<td>0.0024</td>
</tr>
<tr>
<td>Bias</td>
<td>0.0300</td>
<td>0.0150</td>
<td>0.0107</td>
<td>0.0031</td>
<td>0.0025</td>
<td>0.0006</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.3176</td>
<td>0.2205</td>
<td>0.1543</td>
<td>0.0966</td>
<td>0.0666</td>
<td>0.0487</td>
</tr>
<tr>
<td>4 Variance</td>
<td>0.0477</td>
<td>0.0230</td>
<td>0.0116</td>
<td>0.0050</td>
<td>0.0022</td>
<td>0.0011</td>
</tr>
<tr>
<td>Bias</td>
<td>0.0078</td>
<td>0.0034</td>
<td>0.0052</td>
<td>0.0017</td>
<td>0.0009</td>
<td>0.0008</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.2186</td>
<td>0.1518</td>
<td>0.1077</td>
<td>0.0706</td>
<td>0.0474</td>
<td>0.0336</td>
</tr>
<tr>
<td>6 Variance</td>
<td>0.0300</td>
<td>0.0130</td>
<td>0.0064</td>
<td>0.0026</td>
<td>0.0013</td>
<td>0.0006</td>
</tr>
<tr>
<td>Bias</td>
<td>-0.0100</td>
<td>-0.0031</td>
<td>-0.0039</td>
<td>-0.0007</td>
<td>0.0003</td>
<td>0.0005</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.1600</td>
<td>0.1141</td>
<td>0.0804</td>
<td>0.0512</td>
<td>0.0357</td>
<td>0.0255</td>
</tr>
<tr>
<td>8 Variance</td>
<td>0.0203</td>
<td>0.0105</td>
<td>0.0055</td>
<td>0.0020</td>
<td>0.0010</td>
<td>0.0005</td>
</tr>
<tr>
<td>Bias</td>
<td>-0.0019</td>
<td>0.0009</td>
<td>-0.0008</td>
<td>-0.0004</td>
<td>-0.0006</td>
<td>0.0001</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.1427</td>
<td>0.1026</td>
<td>0.0745</td>
<td>0.0447</td>
<td>0.0318</td>
<td>0.0230</td>
</tr>
</tbody>
</table>

$\star \rho = 0.5, \beta = 0, c_i \sim |N(0,0.32^2)|$.

29
Table 7. Small Samples Results for GMM Estimates of ρ when $\beta = 0$.*

<table>
<thead>
<tr>
<th>$T \backslash N$</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2500</th>
<th>5000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Variance</td>
<td>0.0640</td>
<td>0.0325</td>
<td>0.0170</td>
<td>0.0069</td>
<td>0.0032</td>
<td>0.0017</td>
</tr>
<tr>
<td>Bias</td>
<td>0.0301</td>
<td>0.0130</td>
<td>0.0055</td>
<td>0.0005</td>
<td>0.0001</td>
<td>0.0007</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.2427</td>
<td>0.1774</td>
<td>0.1301</td>
<td>0.0828</td>
<td>0.0567</td>
<td>0.0412</td>
</tr>
<tr>
<td>4 Variance</td>
<td>0.0264</td>
<td>0.0135</td>
<td>0.0067</td>
<td>0.0027</td>
<td>0.0012</td>
<td>0.0006</td>
</tr>
<tr>
<td>Bias</td>
<td>-0.0121</td>
<td>-0.0045</td>
<td>-0.0022</td>
<td>-0.0015</td>
<td>-0.0017</td>
<td>-0.0001</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.1599</td>
<td>0.1161</td>
<td>0.0818</td>
<td>0.0522</td>
<td>0.0353</td>
<td>0.0249</td>
</tr>
<tr>
<td>6 Variance</td>
<td>0.0115</td>
<td>0.0054</td>
<td>0.0026</td>
<td>0.0010</td>
<td>0.0005</td>
<td>0.0002</td>
</tr>
<tr>
<td>Bias</td>
<td>-0.0288</td>
<td>-0.0121</td>
<td>-0.0057</td>
<td>-0.0014</td>
<td>-0.0005</td>
<td>-0.0006</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.1105</td>
<td>0.0747</td>
<td>0.0515</td>
<td>0.0318</td>
<td>0.0217</td>
<td>0.0156</td>
</tr>
<tr>
<td>8 Variance</td>
<td>0.0080</td>
<td>0.0036</td>
<td>0.0015</td>
<td>0.0006</td>
<td>0.0003</td>
<td>0.0002</td>
</tr>
<tr>
<td>Bias</td>
<td>-0.0514</td>
<td>-0.0174</td>
<td>-0.0052</td>
<td>-0.0018</td>
<td>-0.0005</td>
<td>0.0000</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.1030</td>
<td>0.0622</td>
<td>0.0394</td>
<td>0.0249</td>
<td>0.0177</td>
<td>0.0127</td>
</tr>
</tbody>
</table>

* $\rho = 0.5$, $\beta = 0$, $c_i \sim |N(0, 0.32^2)|$.

30
Table 8. Small Sample Size and Power Results for CMLE Estimation of ρ when $\beta = 0.$

<table>
<thead>
<tr>
<th>T \ N</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2500</th>
<th>5000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Size H_0^*</td>
<td>0.0445</td>
<td>0.0440</td>
<td>0.0520</td>
<td>0.0410</td>
<td>0.0430</td>
</tr>
<tr>
<td></td>
<td>Power H_a^*</td>
<td>0.0640</td>
<td>0.0730</td>
<td>0.0915</td>
<td>0.1750</td>
<td>0.2895</td>
</tr>
<tr>
<td></td>
<td>Power H_b^*</td>
<td>0.0455</td>
<td>0.0600</td>
<td>0.0900</td>
<td>0.1715</td>
<td>0.3100</td>
</tr>
<tr>
<td>4</td>
<td>Size H_0</td>
<td>0.0525</td>
<td>0.0510</td>
<td>0.0560</td>
<td>0.0600</td>
<td>0.0540</td>
</tr>
<tr>
<td></td>
<td>Power H_a</td>
<td>0.0800</td>
<td>0.0970</td>
<td>0.1490</td>
<td>0.3155</td>
<td>0.5650</td>
</tr>
<tr>
<td></td>
<td>Power H_b</td>
<td>0.0625</td>
<td>0.0900</td>
<td>0.1545</td>
<td>0.3265</td>
<td>0.5365</td>
</tr>
<tr>
<td>6</td>
<td>Size H_0</td>
<td>0.0500</td>
<td>0.0475</td>
<td>0.0500</td>
<td>0.0525</td>
<td>0.0475</td>
</tr>
<tr>
<td></td>
<td>Power H_a</td>
<td>0.1000</td>
<td>0.1530</td>
<td>0.2640</td>
<td>0.4995</td>
<td>0.7935</td>
</tr>
<tr>
<td></td>
<td>Power H_b</td>
<td>0.0900</td>
<td>0.1415</td>
<td>0.2230</td>
<td>0.4990</td>
<td>0.7990</td>
</tr>
<tr>
<td>8</td>
<td>Size H_0</td>
<td>0.0455</td>
<td>0.0520</td>
<td>0.0615</td>
<td>0.0485</td>
<td>0.0445</td>
</tr>
<tr>
<td></td>
<td>Power H_a</td>
<td>0.1090</td>
<td>0.1600</td>
<td>0.3000</td>
<td>0.6010</td>
<td>0.8710</td>
</tr>
<tr>
<td></td>
<td>Power H_b</td>
<td>0.1050</td>
<td>0.1790</td>
<td>0.2890</td>
<td>0.6025</td>
<td>0.8810</td>
</tr>
</tbody>
</table>

* $\rho = 0.5$, $\beta = 0$, $c_i \sim N(0, 0.32^2)$.

* $H_0 : \rho = 0.5$. † $H_a : \rho = 0.6$. ‡ $H_b : \rho = 0.4$ (5% level).
Table 9. Small Sample Size and Power Results for GMM Estimation of ρ when $\beta = 0$.*

<table>
<thead>
<tr>
<th>$T \setminus N$</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2500</th>
<th>5000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size H^0_0</td>
<td>0.0496</td>
<td>0.0509</td>
<td>0.0533</td>
<td>0.0510</td>
<td>0.0485</td>
<td>0.0515</td>
</tr>
<tr>
<td>Power H^1_0</td>
<td>0.0926</td>
<td>0.1081</td>
<td>0.1523</td>
<td>0.2646</td>
<td>0.4405</td>
<td>0.6915</td>
</tr>
<tr>
<td>Power H^1_b</td>
<td>0.0380</td>
<td>0.0566</td>
<td>0.1016</td>
<td>0.2216</td>
<td>0.3895</td>
<td>0.7025</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size H_0</td>
<td>0.0712</td>
<td>0.0607</td>
<td>0.0595</td>
<td>0.0650</td>
<td>0.0545</td>
<td>0.0480</td>
</tr>
<tr>
<td>Power H_a</td>
<td>0.1761</td>
<td>0.2007</td>
<td>0.2890</td>
<td>0.5305</td>
<td>0.8090</td>
<td>0.9755</td>
</tr>
<tr>
<td>Power H_b</td>
<td>0.0577</td>
<td>0.1069</td>
<td>0.2150</td>
<td>0.4840</td>
<td>0.8130</td>
<td>0.9815</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size H_0</td>
<td>0.1097</td>
<td>0.0795</td>
<td>0.0690</td>
<td>0.0545</td>
<td>0.0425</td>
<td>0.0420</td>
</tr>
<tr>
<td>Power H_a</td>
<td>0.3179</td>
<td>0.3865</td>
<td>0.5750</td>
<td>0.8795</td>
<td>0.9930</td>
<td>1.0000</td>
</tr>
<tr>
<td>Power H_b</td>
<td>0.1268</td>
<td>0.2310</td>
<td>0.4640</td>
<td>0.8840</td>
<td>0.9960</td>
<td>1.0000</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size H_0</td>
<td>0.1989</td>
<td>0.1055</td>
<td>0.0615</td>
<td>0.0490</td>
<td>0.0580</td>
<td>0.0540</td>
</tr>
<tr>
<td>Power H_a</td>
<td>0.5746</td>
<td>0.5915</td>
<td>0.7735</td>
<td>0.9785</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>Power H_b</td>
<td>0.1643</td>
<td>0.3490</td>
<td>0.7035</td>
<td>0.9840</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

* $\rho = 0.5$, $\beta = 0$, $c_i \sim |N(0,0.32^2)|$.

* $H_0 : \rho = 0.5$.

*$H_a : \rho = 0.6$.

*$H_b : \rho = 0.4$ (5% level).

5.3 Reducing the Number of Instruments

In order to address the issue of the large number of instruments, we fix the DGP to the benchmark specification and limit the number of instruments following five different procedures. (1) The first (benchmark) procedure uses all available linear instruments as detailed in subsection 5.1. Procedure (2) restricts the set of instruments, following the method proposed by Mehrhoff (2009), by utilizing only the few largest principal components (PC) of the instruments in estimation. The number of principal components is selected so that at least 95% of the total variation of the instruments under consideration is explained by the PC’s.

Procedure (3) reduces the number of instruments to two lags of y_{it} and x_{it}, as well as the

\[10\] We also tried setting the threshold at 90%. This gets rid of too much information when T is small and does not help much for large T so it does not substantively change the main results of our experiments.
constant. That is, it utilizes the following \(5T - 11\) moment conditions,

\[
E(e_{it}) = 0, \quad E(x_{it}e_{it}) = 0, \quad E(x_{i,t-1}e_{it}) = 0, \quad \text{for } t = 3, 4, \ldots, T;
\]

\[
E(y_{it-2}e_{it}) = 0, \quad \text{for } t = 3, 4, \ldots, T;
\]

\[
E(y_{it-3}e_{it}) = 0, \quad \text{for } t = 4, 5, \ldots, T.
\]

Procedure (4) applies Mehrhoff’s method to the reduced set of instruments under (3). Finally, procedure (5) reduces the number of instruments further by using two lags of \(y_{it}\), and only one lag of \(x_{it}\), as well as the constant, bringing the total number of instruments to \(4T - 9\).

Tables 10 and 11 report the results for \(T = 4, 6, 8\) and \(N = 250, 500, 2500\), as these were the sample sizes for which the GMM estimator performed worse. Reducing the number of instruments typically improves bias and size at a small cost to variance and RMSE. The benefit of the reduction in the number of instruments is most pronounced for \(T = 6, 8\), where bias and size are significantly improved. In terms of variance, procedure (1) is optimal. Procedures (4) and (5) have the lowest bias. Procedure (2) is best for the RMSE of \(\hat{\beta}\). For the RMSE of \(\hat{\rho}\), there is no clear winner among the alternative instrument selection procedures, although procedure (5) performs best in terms of RMSE for \(T = 8\). Procedures (4) and (5) have the best size properties. We conclude that the GMM estimator performs well for large \(T\) when the number of instruments is reduced by one of the methods employed here.

5.4 Average Partial Effects

To provide additional support for our choice of the exponential specification, here we present evidence of its ability to reproduce the average partial effects of a dynamic logistic model. Suppose the DGP is given by the logistic specification

\[
\Pr(y_{it} = 1 \mid y_{i,t-1}, c_{it}, x_{it}) = \frac{e^{\rho y_{i,t-1} + \beta_1 x_{it} + c_{it}}}{1 + e^{\rho y_{i,t-1} + \beta_1 x_{it} + c_{it}}};
\]

Then the marginal effect for continuous \(x_{it}\) is

\[
\frac{\partial \Pr(y_{it} = 1 \mid y_{i,t-1}, c_{it}, x_{it})}{\partial x_{it}} = \frac{\beta_1 e^{\rho y_{i,t-1} + \beta_1 x_{it} + c_{it}}}{(1 + e^{\rho y_{i,t-1} + \beta_1 x_{it} + c_{it}})^2}.
\]
Table 10. Small Sample Results for GMM Estimation with Reduced Number of Instruments (ρ results).

<table>
<thead>
<tr>
<th>N\T</th>
<th>Est. Method(d)</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>% of 3 ≥ 1</td>
<td>11.85</td>
<td>14.85</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td>Ave. # Instr's(d)</td>
<td>13</td>
<td>38</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Variance</td>
<td>0.0240</td>
<td>0.0105</td>
<td>0.0075</td>
</tr>
<tr>
<td></td>
<td>Bias</td>
<td>-0.0446</td>
<td>-0.0889</td>
<td>-0.1557</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>0.1514</td>
<td>0.1252</td>
<td>0.1613</td>
</tr>
<tr>
<td></td>
<td>Size (H_0)</td>
<td>0.0817</td>
<td>0.2478</td>
<td>0.7072</td>
</tr>
<tr>
<td></td>
<td>Power (H_0)</td>
<td>0.2240</td>
<td>0.5937</td>
<td>0.9309</td>
</tr>
<tr>
<td></td>
<td>Power (H_0)</td>
<td>0.0618</td>
<td>0.0986</td>
<td>0.3026</td>
</tr>
<tr>
<td>500</td>
<td>% of 3 ≥ 1</td>
<td>4.55</td>
<td>2.85</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>Ave. # Instr's</td>
<td>13</td>
<td>38</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Variance</td>
<td>0.0123</td>
<td>0.0060</td>
<td>0.0042</td>
</tr>
<tr>
<td></td>
<td>Bias</td>
<td>-0.0253</td>
<td>-0.0442</td>
<td>-0.0774</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>0.1110</td>
<td>0.0879</td>
<td>0.0992</td>
</tr>
<tr>
<td></td>
<td>Size (H_0)</td>
<td>0.0728</td>
<td>0.1508</td>
<td>0.1549</td>
</tr>
<tr>
<td></td>
<td>Power (H_0)</td>
<td>0.2619</td>
<td>0.5780</td>
<td>0.1433</td>
</tr>
<tr>
<td></td>
<td>Power (H_0)</td>
<td>0.0781</td>
<td>0.1549</td>
<td>0.1363</td>
</tr>
<tr>
<td>2500</td>
<td>% of 3 ≥ 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ave. # Instr's</td>
<td>13</td>
<td>38</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Variance</td>
<td>0.0025</td>
<td>0.0010</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td>Bias</td>
<td>-0.0041</td>
<td>-0.0057</td>
<td>-0.0081</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>0.0503</td>
<td>0.0328</td>
<td>0.0267</td>
</tr>
<tr>
<td></td>
<td>Size (H_0)</td>
<td>0.0540</td>
<td>0.0625</td>
<td>0.0750</td>
</tr>
<tr>
<td></td>
<td>Power (H_0)</td>
<td>0.5560</td>
<td>0.9045</td>
<td>0.9875</td>
</tr>
<tr>
<td></td>
<td>Power (H_0)</td>
<td>0.5045</td>
<td>0.8525</td>
<td>0.9630</td>
</tr>
</tbody>
</table>

\(b\) Estimation methods: (1) all linear instruments, (2) all linear instruments + Mehroff's method utilizing 95% of the variation of the instruments, (3) two lags of \(y_{it}\), \(x_{it}\), and the constant, (4) two lags of \(y_{it}\), \(x_{it}\), and the constant + Mehroff's method utilizing 95% of the variation of the instruments, (5) two lags of \(y_{it}\), one lag of \(x_{it}\), and the constant. \(d\) rounded to the nearest integer. \({*}\ H_0 : \rho = 0.5. \({^\dagger}\ H_0 : \rho = 0.6. \({^\ddagger}\ H_0 : \rho = 0.4 (5\%\ level).\)
Table 11. Small Sample Results for GMM Estimation with Reduced Number of Instruments (β results).

<table>
<thead>
<tr>
<th>β</th>
<th>Est. Method(^b)</th>
<th>250 Ave. # Inst's</th>
<th>500 Ave. # Inst's</th>
<th>2500 Ave. # Inst's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) (2) (3) (4) (5)</td>
</tr>
<tr>
<td></td>
<td>Variance</td>
<td>Bias</td>
<td>RMSE</td>
<td>Size H(^0)</td>
</tr>
<tr>
<td>4</td>
<td>0.0101 0.0102 0.0110 0.0116 0.0193</td>
<td>0.0024 0.0037 0.0054 0.0072 0.0140</td>
<td>0.0942 0.0945 0.1011 0.1044 0.1363</td>
<td>0.0800 0.0787 0.0732 0.0702 0.0623</td>
</tr>
<tr>
<td>6</td>
<td>0.0047 0.0045 0.0053 0.0054 0.0076</td>
<td>-0.0172 -0.0160 -0.0041 -0.0028 -0.0086</td>
<td>0.0653 0.0618 0.0714 0.0725 0.0867</td>
<td>0.1450 0.1232 0.0839 0.0748 0.0778</td>
</tr>
<tr>
<td>8</td>
<td>0.0035 0.0032 0.0037 0.0037 0.0051</td>
<td>-0.0323 -0.0277 -0.0028 -0.0012 -0.0094</td>
<td>0.0607 0.0543 0.0600 0.0598 0.0716</td>
<td>0.2732 0.2108 0.0984 0.0845 0.0960</td>
</tr>
</tbody>
</table>

\(^b\) Estimation methods: (1) all linear instruments, (2) all linear instruments + Mehrhoff’s method utilizing 95% of the variation of the instruments, (3) two lags of \(y_{it}\), \(x_{it}\), and the constant, (4) two lags of \(y_{it}\), \(x_{it}\), and the constant + Mehrhoff’s method utilizing 95% of the variation of the instruments, (5) two lags of \(y_{it}\), one lag of \(x_{it}\), and the constant. \(^\dagger\) rounded to the nearest integer. * \(H_0: \beta = 0.3188\). † \(H_a: \beta = 0.4188\). ‡ \(H_b: \beta = 0.2188\) (5% level).
On the other hand, the marginal effect of \(y_{i,t-1} \) is given as

\[
P[y_{it} = 1 \mid y_{i,t-1} = 1, c_{it}, x_{it}] - P[y_{it} = 1 \mid y_{i,t-1} = 0, c_{it}, x_{it}] = \frac{\beta t e^{\rho t + \beta l x_{it} + c_{il}}}{(1 + e^{\rho t + \beta l x_{it} + c_{il}})^2} - \frac{\beta l e^{\beta l x_{it} + c_{il}}}{(1 + e^{\beta l x_{it} + c_{il}})^2}.
\]

For a particular \(x_{it} \), say the average \(\bar{x} = \frac{1}{NT} \sum_{i,t} x_{it} \), we may be interested in the average marginal effect over the entire population (i.e. averaging over the fixed effects). These quantities may be calculated as,

\[
A P E X (y_{i,t-1} = 1, x_{it} = \bar{x}) = e^{\beta \bar{x} + \rho t} \beta t \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \frac{e^{c_{il}}}{(1 + e^{c_{il} + \beta \bar{x}})^2},
\]

\[
A P E X (y_{i,t-1} = 0, x_{it} = \bar{x}) = e^{\beta \bar{x}} \beta t \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \frac{e^{c_{il}}}{(1 + e^{c_{il} + \beta \bar{x}})^2},
\]

\[
A P E Y (x_{it} = \bar{x}) = e^{\beta \bar{x}} (e^{\rho t} - 1) \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \left[\frac{e^{c_{il}}}{(1 + e^{c_{il} + \beta \bar{x}})(1 + e^{c_{il} + \rho t + \beta \bar{x}})} \right],
\]

where the averages over \(i \) are obtained by drawing from the distribution of \(c_{il} \). That is, the average partial effects are obtained by stochastic integration over \(c_{il} \).

Now suppose that data from this logistic DGP are used to estimate \(\rho t \) and \(\beta e \) using the GMM procedure we have outlined above (i.e. based on the exponential specification). The question is, how well do these estimates reproduce the (true) average partial effects given above for the logistic specification? To answer this question, we must first specify how the fixed effects of the exponential specification are to be computed. We do this by deriving fixed effects under exponential specification, \(c_{ie} \), in terms of the fixed effects of the true logistic specification, \(c_{il} \), by matching the transitions from 0 to 1 given \(x_{it} = \bar{x}_i = \frac{1}{T} \sum_t x_{it} \) across the two specifications, namely\(^{11}\)

\[
1 - e^{-c_{ie} - \beta e \bar{x}_i} = \frac{e^{c_{il} + \beta \bar{x}_i}}{1 + e^{c_{il} + \beta \bar{x}_i}},
\]

which yields

\[
e^{-c_{ie}} = \frac{e^{\beta e \bar{x}_i}}{1 + e^{c_{il} + \beta \bar{x}_i}}.
\]

\(^{11}\)It is also possible to match the transitions from 1 to 1 given \(x_{it} = \bar{x}_i \). This gives slightly different exponential fixed effects. But it does not change the general conclusion of this section. The results that condition on \(\bar{x}_i \) are available from the authors on request.
We may then estimate the average partial effects as

\[
\tilde{\text{APE}}(y_{i,t-1} = 1, x_{it} = \bar{x}) = \hat{\beta} e^{-\hat{\rho}_e} \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \frac{e^{\hat{\beta} x_i}}{1 + e^{c_{it} + \hat{\beta}_l x_i}}
\]

\[
\tilde{\text{APE}}(y_{i,t-1} = 0, x_{it} = \bar{x}) = \hat{\beta} e^{-\hat{\rho}_e} \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \frac{e^{\hat{\beta} x_i}}{1 + e^{c_{it} + \hat{\beta}_l x_i}}
\]

\[
\tilde{\text{APEY}}(x_{it} = \bar{x}) = e^{-\hat{\beta}_l x} (1 - e^{-\hat{\rho}_e}) \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \frac{e^{\hat{\beta} x_i}}{1 + e^{c_{it} + \hat{\beta}_l x_i}}
\]

The benchmark APE results are computed under the logistics model employed by Honoré and Kyriazidou (2000), where \(\rho_t = 0.5, \beta_t = 1, x_{it} \sim N(0, \pi^2/3) \), and \(c_{it} \sim N(0, 1) \). To avoid any complications with initial conditions, the data are burned in for the first 100 periods in each replication, while being careful to keep \(x_{it} \) fixed across replications. The simulations are based on \(N = 1000, T = 3 \), and each experiment is repeated 2000 times to obtain the mean, variance, bias, and RMSE of the APEs. We vary the DGP and the data sets in a variety of ways (see Table 12).

The results indicate that the average partial effects obtained using the exponential specification, with matched fixed effects as explained above, are close to the true average partial effects. In particular, the \(\tilde{\text{APEY}} \) is typically quite close to \(\text{APEY} \). This provides further evidence of the robustness of the exponential specification in that it yields sensible estimates for the average partial effects even when the exponential distribution is misspecified.

6 Conclusion

In this paper we consider identification and estimation of dynamic binary response panel data models. We develop an exponential class of models and derive CML and GMM estimators that enable us to eliminate the unobserved heterogeneity and at the same time to identify the model parameters. The resulting estimators we propose are consistent and root-\(N \) asymptotically normal. As a result, our approach is simple, general, and offers several advantages over the existing estimators that will be particularly appealing for analyzing microeconomic panel data from a dynamic perspective.
<table>
<thead>
<tr>
<th>Experiment</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$APEX_1$</td>
<td>0.1987</td>
<td>0.1891</td>
<td>0.2050</td>
<td>0.2983</td>
<td>0.0993</td>
<td>0.1721</td>
<td>0.2238</td>
<td>0.1988</td>
<td>0.1987</td>
<td>0.2009</td>
<td>0.1984</td>
</tr>
<tr>
<td>Mean $APEX_1$</td>
<td>0.1349</td>
<td>0.1271</td>
<td>0.1425</td>
<td>0.1543</td>
<td>0.0860</td>
<td>0.1305</td>
<td>0.1360</td>
<td>0.1158</td>
<td>0.1564</td>
<td>0.1375</td>
<td>0.1380</td>
</tr>
<tr>
<td>Variance $APEX_1$</td>
<td>0.0003</td>
<td>0.0002</td>
<td>0.0003</td>
<td>0.0004</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0004</td>
<td>0.0004</td>
<td>0.0001</td>
</tr>
<tr>
<td>Bias $APEX_1$</td>
<td>-0.0639</td>
<td>-0.0620</td>
<td>-0.0625</td>
<td>-0.1441</td>
<td>-0.0134</td>
<td>-0.0417</td>
<td>-0.0877</td>
<td>-0.0831</td>
<td>-0.0423</td>
<td>-0.0634</td>
<td>-0.0605</td>
</tr>
<tr>
<td>RMSE $APEX_1$</td>
<td>0.0659</td>
<td>0.0640</td>
<td>0.0647</td>
<td>0.1453</td>
<td>0.0177</td>
<td>0.0444</td>
<td>0.0893</td>
<td>0.0842</td>
<td>0.0464</td>
<td>0.0637</td>
<td>0.0610</td>
</tr>
<tr>
<td>$APEX_0$</td>
<td>0.2075</td>
<td>0.2075</td>
<td>0.2075</td>
<td>0.3112</td>
<td>0.1037</td>
<td>0.1780</td>
<td>0.2364</td>
<td>0.2075</td>
<td>0.2075</td>
<td>0.2078</td>
<td>0.2068</td>
</tr>
<tr>
<td>Mean $APEX_0$</td>
<td>0.1630</td>
<td>0.1657</td>
<td>0.1602</td>
<td>0.1906</td>
<td>0.1031</td>
<td>0.1483</td>
<td>0.1751</td>
<td>0.1421</td>
<td>0.1869</td>
<td>0.1645</td>
<td>0.1643</td>
</tr>
<tr>
<td>Variance $APEX_0$</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0003</td>
<td>0.0001</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0004</td>
<td>0.0004</td>
<td>0.0001</td>
</tr>
<tr>
<td>Bias $APEX_0$</td>
<td>-0.0445</td>
<td>-0.0418</td>
<td>-0.0473</td>
<td>-0.1206</td>
<td>-0.0007</td>
<td>-0.0297</td>
<td>-0.0613</td>
<td>-0.0654</td>
<td>-0.0206</td>
<td>-0.0433</td>
<td>-0.0425</td>
</tr>
<tr>
<td>RMSE $APEX_0$</td>
<td>0.0467</td>
<td>0.0443</td>
<td>0.0492</td>
<td>0.1219</td>
<td>0.0112</td>
<td>0.0321</td>
<td>0.0634</td>
<td>0.0667</td>
<td>0.0268</td>
<td>0.0437</td>
<td>0.0431</td>
</tr>
<tr>
<td>$APEX_Y$</td>
<td>0.1022</td>
<td>0.1507</td>
<td>0.0516</td>
<td>0.1022</td>
<td>0.1021</td>
<td>0.0879</td>
<td>0.1160</td>
<td>0.1022</td>
<td>0.1022</td>
<td>0.1028</td>
<td>0.1019</td>
</tr>
<tr>
<td>Mean $APEX_Y$</td>
<td>0.0777</td>
<td>0.1052</td>
<td>0.0494</td>
<td>0.0802</td>
<td>0.0791</td>
<td>0.0546</td>
<td>0.0994</td>
<td>0.0802</td>
<td>0.0760</td>
<td>0.0768</td>
<td>0.0765</td>
</tr>
<tr>
<td>Variance $APEX_Y$</td>
<td>0.0019</td>
<td>0.0019</td>
<td>0.0019</td>
<td>0.0017</td>
<td>0.0020</td>
<td>0.0021</td>
<td>0.0018</td>
<td>0.0018</td>
<td>0.0020</td>
<td>0.0002</td>
<td>0.0003</td>
</tr>
<tr>
<td>Bias $APEX_Y$</td>
<td>-0.0245</td>
<td>-0.0456</td>
<td>-0.0023</td>
<td>-0.0220</td>
<td>-0.0231</td>
<td>-0.0333</td>
<td>-0.0167</td>
<td>-0.0220</td>
<td>-0.0262</td>
<td>-0.0261</td>
<td>-0.0255</td>
</tr>
<tr>
<td>RMSE $APEX_Y$</td>
<td>0.0500</td>
<td>0.0633</td>
<td>0.0440</td>
<td>0.0467</td>
<td>0.0506</td>
<td>0.0563</td>
<td>0.0457</td>
<td>0.0477</td>
<td>0.0517</td>
<td>0.0303</td>
<td>0.0315</td>
</tr>
</tbody>
</table>

The average partial effects are $APEX_1 = \int \frac{\partial P[y_{it}=1|y_{i,t-1}=1,c_{il},x_{it}]}{\partial x_{it}} \bigg|_{x_{it}=\bar{x}} dF_c(c_i)$, $APEX_0 = \int \frac{\partial P[y_{it}=1|y_{i,t-1}=0,c_{il},x_{it}]}{\partial x_{it}} \bigg|_{x_{it}=\bar{x}} dF_c(c_i)$, and $APEX_Y = \int \{P[y_{it} = 1|y_{i,t-1} = 1,c_{il},x_{it} = \bar{x}] - P[y_{it} = 1|y_{i,t-1} = 0,c_{il},x_{it} = \bar{x}]\} dF_c(c_i)$, where F_c is the distribution function of the fixed effects. See the discussion above for the calculation and estimation of these quantities.

The simulations are as follows: (1) the benchmark, (2) ρ increased to 0.75, (3) ρ decreased to 0.25, (4) β increased to 1.5, (5) β decreased to 0.5, (6) σ_e increased to 1.5, (7) σ_e decreased to 0.5, (8) σ_x increased by 0.5, (9) σ_x decreased by 0.5, (10) N increased to 10,000, (11) T increased to 8. Parameters are estimated using the full set of linear instruments.
As is well known, it is important to use a dynamic binary choice specification to model the state dependence in a panel setting because of the model’s ability to distinguish the state dependence from the unobserved heterogeneity among other useful features. The dynamic binary choice models, however, have been rarely used in analyzing microeconomic data, mainly due to the problems associated with the initial condition in combination with the incidental parameter problems. Our approach based on the exponential specification resolves the incidental parameter problem and the resulting estimators can be readily implemented, and also have good asymptotic properties.

Both the GMM and the CML estimators performs well under a variety of scenarios. Our results show that the estimators are robust to changes in the variance of the fixed effects, different values of ρ and β, correlation between the fixed effects and the regressors, heterogeneity in the regressors across the different units, and autocorrelation in the regressors. In each of the experiments, we considered bias, variance, RMSE, size, and power of the GMM estimators. GMM worked quite well for relatively small sample sizes. We also tested the CMLE and compared its performance to the GMM estimator. Interestingly, GMM emerges as a better estimator than CMLE for small values of T (when $\beta = 0$ and both estimators can be computed). In the case of large T we experimented with the moment reduction techniques of Mehrhoff (2009) finding significant improvements in performance in small samples. We also presented evidence of the ability of the exponential specification to match the average partial effects from a logistic dynamic binary choice model.

7 Appendix

7.1 Proof of the Uniqueness of the Exponential Distribution

Proposition A1: Suppose F is a differentiable cumulative distribution function. If there exist functions G and H such that $F(x + y) - F(x) = G(y)H(x)$ then $F = 1 - C \exp(-Dx)$ for some positive constants C and D.

Proof: Assume without loss of generality that $\text{sgn}(G(y)) = \text{sgn}(y)$ and H is non-negative.
Now take the limit as $y \to \infty$. Then $A = \lim_{y \to \infty} G(y)$ exists and $1 - F(x) = AH(x)$. Since F is a cumulative distribution function, it is non–constant and so $A \neq 0$. In particular, the non–negativity of G over positive real numbers implies that $A > 0$. This now implies that $F(x + y) - F(x) = A^{-1}(1 - F(x))G(y)$. Divide both sides by y and take the limit as $y \to 0$. The differentiability of F implies that $B = \lim_{y \to 0} G(y)/y$ exists and $F'(x) = \frac{B}{A}(1 - F(x))$. Since F is non–decreasing and bounded by 0 and 1, the sign of B cannot be negative. Since F is also non–constant $B \neq 0$ so we must have $B > 0$. The final step is to note that we have arrived at a differential equation in x that can be solved as, $F(x) = 1 - C \exp(-\frac{B}{A}x)$ for some constant C. Again, since F is a cumulative distribution function, we must have $C > 0$.

7.2 GMM in the case where $\beta = 0$ and $T = 3$

In the case where $T = 3$ we only have one moment condition with which to estimate γ (or ρ), namely

$$\sum_{i=1}^{N} e_{i3}(\gamma)y_{i1} = \sum_{i=1}^{N} y_{i1} \left[\frac{(y_{i3} - \gamma y_{i2}) (1 - \gamma y_{i1})}{(1 - \gamma y_{i2})} - (y_{i2} - \gamma y_{i1}) \right] = 0. \quad (17)$$

Note that $e_{i3}(\gamma)$ does not depend on γ if $y_{i1} + y_{i2} + y_{i3} = 0$ or $= 3$. Consider now the case where $y_{i1} + y_{i2} + y_{i3} = 2$, and note further that observations where $y_{i1} = 0$ and $y_{i2} = y_{i3} = 1$ can be dropped since $y_{i1}e_{i3}(\gamma) = 0$. The other remaining cases are $(y_{i1}, y_{i2}, y_{i3}) = (1, 0, 0), (1, 1, 0)$, and $(1, 0, 1)$. Denote the number of cross section units associated with these patterns of observations over time by n_{100}, n_{110} and n_{101}, respectively. Then the moment condition in γ can be written as

$$n_{100}\hat{\gamma}_{GMM,1} - n_{110} + n_{101} = 0.$$

Hence, if $n_{100} \neq 0$

$$\hat{\gamma}_{GMM,1} = \frac{n_{110} - n_{101}}{n_{100}}.$$

An estimate for ρ can be obtained if $n_{110} < n_{100} + n_{101}$.

In the case where $n_{100} = 0$, the above GMM estimator is not valid. But since $E(e_{it} | y_{i,t-s}) = 0$, we also have unconditionally that $E(e_{it}) = 0$. This suggests the following sample moment
condition
\[\sum_{i=1}^{N} \left[\frac{(y_{i3} - \gamma y_{i2}) (1 - \gamma y_{i1})}{(1 - \gamma y_{i2})} - (y_{i2} - \gamma y_{i1}) \right] = 0. \quad (18) \]

Once again we only need to consider observations where \(y_{i1} + y_{i2} + y_{i3} = 1 \) or \(y_{i1} + y_{i2} + y_{i3} = 2 \). Then we have
\[
\begin{align*}
n_{100} \gamma - \frac{1}{1 - \gamma} & (n_{010} + n_{001} + n_{101} - n_{110}) = 0, \quad (19) \\
- n_{100} \gamma^2 + (n_{100} + n_{110} - n_{001} - n_{101}) \gamma + n_{001} + n_{101} - n_{110} - n_{010} &= 0. \quad (20)
\end{align*}
\]

Preliminary analysis suggests that the solutions to (20) could be complex, and when real could fall outside the range \([0, 1]\), and hence might not yield sensible estimates for \(\rho \). It is, therefore, more meaningful to use the unconditional moment condition only when \(n_{100} = 0 \). In this case the solution to the unconditional moment condition is unique and is given by (obtained by setting \(n_{100} \) in (19) zero)
\[
\hat{\gamma}_{GMM,2} = 1 - \frac{n_{101}}{n_{001} + n_{101} - n_{110}}.
\]

Hence, in general we could estimate \(\gamma \) by
\[
\hat{\gamma}_{GMM} = \begin{cases}
\frac{n_{110} - n_{101}}{n_{100}}, & \text{if } n_{100} \neq 0, \\
1 - \frac{n_{101}}{n_{001} + n_{101} - n_{110}}, & \text{if } n_{100} = 0.
\end{cases}
\]

7.3 CMLE in the Case where \(\beta = 0 \) and \(T = 3 \)

Suppose we have observations \(y_{i1}, y_{i2} \) and \(y_{i3} \) on \(N \) individual units. Denote the set of all observations such that \(y_{i1} + y_{i2} + y_{i3} = 1 \) by \(\mathcal{B} \) and define the sets
\[
\begin{align*}
\mathcal{A}_1 &= \{ y_{i1} = 1, y_{i2} = 0, y_{i3} = 0 \}, \\
\mathcal{A}_2 &= \{ y_{i1} = 0, y_{i2} = 1, y_{i3} = 0 \}, \\
\mathcal{A}_3 &= \{ y_{i1} = 0, y_{i2} = 0, y_{i3} = 1 \}.
\end{align*}
\]
It is now easily seen that (given the Markov property and (3))

\[\Pr(A_1) = \Pr(y_{i_1} = 1) \Pr(y_{i_2} = 0 | y_{i_1} = 1) \Pr(y_{i_3} = 0 | y_{i_2} = 0) = \pi_i^* [1 - F(c_i + \rho)] [1 - F(c_i)] \]
\[= \frac{F(c_i) [1 - F(c_i + \rho)] [1 - F(c_i)]}{1 - F(c_i + \rho) + F(c_i)}. \]

Similarly

\[\Pr(A_2) = \frac{F(c_i) [1 - F(c_i + \rho)]^2}{1 - F(c_i + \rho) + F(c_i)}, \]
\[\Pr(A_3) = \frac{[1 - F(c_i + \rho)] [1 - F(c_i)] F(c_i)}{1 - F(c_i + \rho) + F(c_i)}, \]

and

\[\Pr(B) = \Pr(A_1) + \Pr(A_2) + \Pr(A_3). \]

Also

\[\Pr(A_i) = \Pr(A_i \cap B) = \Pr(B) \Pr(A_i | B), \]

and

\[\Pr(A_i | B) = \frac{\Pr(A_i)}{\Pr(B)} \text{ for } i = 1, 2, 3. \]

Hence

\[\Pr(A_1 | B) = \frac{[1 - F(c_i)]}{[1 - F(c_i + \rho)] + 2 [1 - F(c_i)]}, \]
\[\Pr(A_2 | B) = \frac{[1 - F(c_i + \rho)]}{[1 - F(c_i + \rho)] + 2 [1 - F(c_i)]}, \]
\[\Pr(A_3 | B) = 1 - \Pr(A_1 | B) - \Pr(A_2 | B). \]

In the exponential case, \(1 - F(c_i) = \exp(-c_i) \) and \(1 - F(c_i + \rho) = \exp(-c_i - \rho) \), and

\[\Pr(A_1 | B) = \frac{1}{\exp(-\rho) + 2}, \]
\[\Pr(A_2 | B) = \frac{\exp(-\rho)}{\exp(-\rho) + 2}, \]
\[\Pr(A_3 | B) = \frac{1}{\exp(-\rho) + 2}. \]
which do not depend on the incidental parameters. It is clear that conditioning on \(y_{i1} + y_{i2} + y_{i3} = 0\) and \(y_{i1} + y_{i2} + y_{i3} = 3\) will not help. It only remains to consider the case where the conditioning set is \(y_{i1} + y_{i2} + y_{i3} = 2\). Denoting

\[
\begin{align*}
C_1 &= \{y_{i1} = 1, y_{i2} = 1, y_{i3} = 0\}, \\
C_2 &= \{y_{i1} = 0, y_{i2} = 1, y_{i3} = 1\}, \\
C_3 &= \{y_{i1} = 1, y_{i2} = 0, y_{i3} = 1\}, \\
D &= C_1 \cup C_2 \cup C_3 = \{y_{i1} + y_{i2} + y_{i3} = 2\}
\end{align*}
\]

It is easily seen that

\[
\begin{align*}
\Pr(C_1 | D) &= \frac{F(\rho + c_i)}{2F(\rho + c_i) + F(c_i)}, \\
\Pr(C_2 | D) &= \frac{F(\rho + c_i)}{2F(\rho + c_i) + F(c_i)}, \\
\Pr(C_3 | D) &= \frac{F(c_i)}{2F(\rho + c_i) + F(c_i)}.
\end{align*}
\]

These conditional probabilities depend on \(c_i\) even if \(F(\cdot)\) has an exponential form. Consequently, the only appropriate conditioning is \(y_{i1} + y_{i2} + y_{i3} = 1\).

The conditional likelihood function for the exponential model is given by

\[
\begin{align*}
L_c(\rho) &= \prod_{i \in B} \left(\frac{1}{\exp(-\rho) + 2} \right)^{y_{i1} + y_{i2}} \prod_{i \in B} \left(\frac{\exp(-\rho)}{\exp(-\rho) + 2} \right)^{y_{i2}} \\
&= \prod_{i \in B} \left(\frac{1}{\exp(-\rho) + 2} \right)^{y_{i1} + y_{i2} + y_{i3}} \prod_{i \in B} \left(\exp(-\rho) \right)^{y_{i2}},
\end{align*}
\]

and

\[
\ln L_c(\rho) = -\sum_{i \in B} \ln [\exp(-\rho) + 2] - \rho \sum_{i \in B} y_{i2} - \sum_{i=1}^{N} \ln [\exp(-\rho) + 2] \sum_{i=1}^{N} I(y_{i1} + y_{i2} + y_{i3} = 1) - \rho \sum_{i=1}^{N} y_{i2} I(y_{i1} + y_{i2} + y_{i3} = 1), \tag{21}
\]

where \(I(A) = 1\) is \(A\) is true and \(I(A) = 0\) if \(A\) is not true. The conditional log-likelihood function can be written more compactly as

\[
\ln L_c(\rho) = n_B \{-\ln [\exp(-\rho) + 2] - \rho \hat{p}\}
\]
where \(n_B = \sum_{i=1}^N I(y_{i1} + y_{i2} + y_{i3} = 1) \), and

\[
\hat{\rho} = \frac{\sum_{i=1}^N y_{i1} I(y_{i1} + y_{i2} + y_{i3} = 1)}{\sum_{i=1}^N I(y_{i1} + y_{i2} + y_{i3} = 1)} = \frac{\sum_{i=1}^N I(y_{i1} = 0, y_{i2} = 1, y_{i3} = 0)}{\sum_{i=1}^N I(y_{i1} + y_{i2} + y_{i3} = 1)}.
\]

Also since

\[
\frac{\partial \ln L_c(\rho)}{\partial \rho} = n_B \left\{ \frac{\exp(-\rho)}{2 + \exp(-\rho)} - \hat{\rho} \right\}
\]

then the conditional maximum likelihood estimator of \(\rho \) is given by

\[
\hat{\rho} = -\ln \left(\frac{2\hat{\rho}}{1 - \hat{\rho}} \right).
\]

(22)

The standard error for \(\hat{\rho} \) can be obtained using the second derivative of the conditional log-likelihood function. We have

\[
Var(\hat{\rho}) = \frac{1}{n_B} \frac{[2 + \exp(-\rho)]^2}{2\exp(-\rho)}.
\]

7.4 Proof of Theorem 1

Given assumption (A3)

\[
\Pr(y_{i1} = 1|c_i) = \frac{1 - e^{-c_i}}{1 - e^{-c_i}(1 - e^{-\rho_0})},
\]

and it is evident that this choice of initial distribution makes \(y_{it} \) stationary conditional on \(c_i \).

Thus \(\pi_t^* = \Pr(y_{it} = 1|c_i) = \Pr(y_{i1} = 1|c_i) \) for \(t \geq 1 \).

Proof. to simplify notation we utilize the following alternative form of \(e_{it} \)

\[
e_{it} = e^{\rho \Delta y_{it-1}}(y_{it} - 1) + 1 - y_{it-1}.
\]
Let the objective function be \(f_i(\rho) = e_{it}y_{it-2} \). Then we have

\[
E(e^{\rho \Delta y_{it-1}}(y_{it} - 1)y_{it-2}) = E(E(y_{it} - 1|c_i, y_{it-1}, y_{it-2}, \ldots) e^{\rho \Delta y_{it-1}}y_{it-2})
\]

\[
= -E(e^{-c_i - \rho y_{it-1}} e^{\rho \Delta y_{it-1}}y_{it-2})
\]

\[
= -E(E(e^{-c_i - (\rho_0 - \rho) y_{it-1} - \rho y_{it-2}} y_{it-2}))
\]

\[
= -E(1 - e^{-c_i - \rho y_{it-2}} + e^{-c_i - \rho y_{it-2}}) e^{-c_i - \rho y_{it-2}} y_{it-2}
\]

\[
= -e^{-\rho_0} E(e^{-c_i \pi_t^*}) + e^{-2\rho_0} E(e^{-2c_i \pi_t^*}) - e^{-\rho_0 - \rho} E(e^{-2c_i \pi_t^*}).
\]

On the other hand

\[
E((1 - y_{it-1})y_{it-2}) = E(E(1 - y_{it-1}|c_i, y_{it-2}, y_{it-3}, \ldots)|y_{it-2})
\]

\[
= E(e^{-c_i - \rho y_{it-2}} y_{it-2})
\]

\[
= e^{-\rho_0} E(e^{-c_i \pi_t^*}).
\]

Summing up we obtain

\[
Ef_i(\rho) = (e^{-\rho_0} - e^{-\rho}) e^{-\rho_0} E(e^{-2c_i \pi_t^*}).
\]

Now \(0 \leq E(e^{-2c_i \pi_t^*}) \leq 1 \) and is equal to zero if and only if \(c_i \) is almost surely infinite, which is ruled out by assumption (A1). Thus \(Ef_i(\rho) \) is continuous in \(\rho \) and equals zero if and only if \(\rho = \rho_0 \). This satisfies Assumption 1.1 of Harris and Mátyás (1999).

The derivative is easily obtained as \(f'_i(\rho) = e^{\rho \Delta y_{it-1}} \Delta y_{it-1}(y_{it} - 1)y_{it-2} \), which is clearly continuous and bounded by \(e^{\max(R)} \) in \(R \). It follows that,

\[
|f_i(\rho) - f_i(\rho')| \leq e^{\max(R)}|\rho - \rho'|,
\]

for all \(\rho, \rho' \in R \) and so \(f \) is Lipschitz. Corollary 3.1 of Newey (1991), it then follows that \(N^{-1} \sum_{i=1}^N f_i(\rho) \) converges uniformly to \(E(f_i(\rho)) \). This satisfies Assumption 1.2 of Harris and Mátyás (1999) and it follows from the their Theorem 1.1 that \(\hat{\gamma} \) is consistent.
The continuity of \(f'_i(\rho) \) satisfies Assumption 1.7 of Harris and Mátyás (1999). \(f''_i(\rho) = e^{\rho_1 y_{it-1} - \frac{1}{2}}(y_{it-1} - 1)^2 y_{it-2} \) is bounded again by \(e^{\max(R)} \). It follows again from Newey (1991) that \(f'_i(\rho) \) itself is Lipschitz and by assumption (A5), \(N^{-1} \sum_{i=1}^{N} f'_i(\rho) \) converges uniformly to \(E(f'_i(\rho)) \). By Theorem 4.1.5 of Amemiya (1985), \(N^{-1} \sum_{i=1}^{N} f'_i(\rho) \) converges to \(E f'_i(\rho_0) \). This satisfies Assumption 1.8 of Harris and Mátyás (1999).

Now let \(i \neq j \). By assumption (A2), \(f_i(\rho) \) and \(f_j(\rho) \) are independent conditional on \(c_i \) and \(c_j \). Therefore, \(E(f_i(\rho)f_j(\rho)) = E(E(f_i(\rho)|c_i,c_j)E(f_j(\rho)|c_i,c_j)) \). Assumption (A2) again implies that \(f_i(\rho) \) is, conditional on \(c_i \), independent of \(c_j \). Thus \(E(f_i(\rho)|c_i,c_j) = E(f_i(\rho)|c_i) \). It follows that \(E(f_i(\rho)f_j(\rho)) = E(E(f_i(\rho)|c_i;E(f_j(\rho)|c_j)) \). Since \(E(f_i(\rho_0)|c_i) = 0 \), we have that \(E(f_i(\rho_0)f_j(\rho_0)) = 0 \) for \(i \neq j \) and so \(\var{\frac{1}{N} \sum_{i=1}^{N} f_i(\rho_0)} = \frac{1}{N} \sum_{i=1}^{N} E(f_i(\rho_0)) \). Thus assumption (A6) implies the last necessary assumption of Harris and Mátyás (1999), their assumption 1.9.

7.5 Proof of Proposition 1

Choose \(c_{i,e} \) and \(\rho_e \) such that \(c_{i,e} = -\beta_e' \bar{x}_i - \log(1 - F(\beta_e' \bar{x}_i + c_i)) \), and \(\rho_e = \log(1 - F(\beta_e' \bar{x}_i + c_i)) - \log(1 - F(\rho + \beta_e' \bar{x}_i + c_i)) \). Then one can verify that \(\Pr(y_{it} = 1 | y_{it-1}, c_{i,e}, \bar{x}_i; M_e) = F(p y_{it-1} + \beta_e' \bar{x}_i + c_i) = \Pr(y_{it} = 1 | y_{it-1}, c_i, \bar{x}_i) \). Also for \(\rho_e \) to be between \(-1\) and \(1\), it is equivalent that \(|\log[(1 - F(\beta_e' \bar{x}_i + c_i))/(1 - F(\rho + \beta_e' \bar{x}_i + c_i))]| < 1 \).
REFERENCES

