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Abstract
This paper develops a dynamic spatial equilibrium model of regional housing mar-

kets in which house prices are jointly determined with migration flows. Agents optimize
period-by-period and decide whether to remain where they are or migrate to a new lo-
cation at the start of each period. The gain from migration depends on the differences
in incomes, housing and migration costs. The agent’s optimal location choice and the
resultant migration process is shown to be Markovian with the transition probabilities
across all location pairs given as non-linear functions of income and housing cost differ-
entials, which are endogenously determined. On the supply side, in each location the
construction firms build new houses by combing land and residential structures. The
regional land supplies are exogenously given. When a tightening of regional land-use
regulation reduces local housing supply, upward pressure on house prices created by
excess housing demand cascades to other locations via migration. It is shown that
the deterministic version of the model has a unique equilibrium and a unique bal-
anced growth path. We estimate the state-level supplies of new residential land from
the model using housing market and urban land acreage data. These estimates are
shown to be significantly negatively correlated with the Wharton Residential Land
Use Regulatory Index. The model can simultaneously account for the rise in house
price dispersion and the interstate migration in the U.S. during the period 1976-2014.
Counterfactual simulations suggest that reducing either land supply differentials or
migration costs could significantly lower house price dispersion. The model predicts
substantially smaller impacts of land-use deregulation on population reallocation as
compared to recent existing models of housing and migration that assume population
are perfectly mobile.
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1 Introduction

The secular increase in the house price dispersion across U.S. states has been the ongoing fo-
cus of empirical and theoretical research.1 Van Nieuwerburgh and Weill (2010) and Gyourko
et al. (2013) attribute the increase in house price dispersion to rising income dispersion.2

However, the increase in income disparities across states can only explain a small fraction
of the substantial rise in house price dispersion observed since 1970s . Even after adjusting
house prices for income differences, we are still left with a substantial secular rise in the
dispersion of house prices relative to incomes.3 Glaeser and Gyourko (2003), Glaeser et al.
(2005) and Quigley and Raphael (2005) find that areas with faster than average growth in
house prices tend to have more restrictions on residential land-use. However, the positive
relationship between land-use regulation and house price growth observed across locations
cannot be rationalized by the canonical spatial equilibrium models that assume perfect pop-
ulation mobility across locations.4 When agents are perfectly mobile, migration equalizes
utility across locations and consequently differences in house prices only reflect differences in
incomes and amenities, and differences in land supplies do not impact the spatial equilibrium
of house prices. Recently, Hsieh and Moretti (2015) and Herkenhoff et al. (2018), go beyond
the analysis of house prices and examine the impact of land-use regulations on spatial labor
allocation. They argue that the tightened land-use regulations in the high-productivity U.S.
cities raise local housing costs, which deter migration flows towards these cities and lead to
labor misallocation. Their models predict that land-use deregulation can lead to substantial
population reallocations to high-productivity cities and a considerable increase in the average
labor productivity.5 However, since their models are built on the assumption of perfect labor
mobility, the effects of deregulation might be over-estimated. Degree of population mobility
is an important factor in determining the extent to which spatial heterogeneity in land-use
regulation results in rising house price dispersion and/or migration towards low housing cost
locations.

This paper contributes to the literature by developing a dynamic spatial equilibrium
model of regional housing markets in which house prices are jointly determined with mi-
gration flows. At the start of each period agents decide whether to remain where they are
or migrate to a different location. The expected gain from migration depends on the ex-
pected differences in incomes and housing costs between the origin and the destination and

1Similar increases in house price dispersion have also been documented across Metropolitan Statistical
Areas (MSAs). But a decomposition of house price dispersion within and between states clearly show that the
increases in house price dispersion at the MSA level are mainly due to increases in between-state dispersion,
as the within-state dispersion has not increased that much (see details in Appendix D.2).

2For example, Van Nieuwerburgh and Weill (2010) find that the rise in wage dispersion across MSAs is
large enough to account for the rise in house price dispersion during 1975—2004. Gyourko et al. (2013) show
that an increase in the number of high-income households nationally can lead to house price dispersion.

3See Figure 1 in Section 2.
4For example, the spatial equilibrium models studied in Glaeser and Tobio (2008) and Gyourko et al.

(2010) are built on the assumption that capital and labor are perfectly mobile.
5In addition, Parkhomenko (2016) studies how regional housing supply regulations are endogenously

determined in political processes, and the implications of rising housing supply regulations for spatial labor
allocations and aggregate output.
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the migration cost that consists of a route-specific and a stochastic idiosyncratic compo-
nent. The agent’s optimal location choice and the resultant migration process is shown to
be Markovian with the transition probabilities across all location pairs given as non-linear
functions of income and housing cost differentials, which are endogenously determined. In
each location, the construction firms build new houses by combining land and residential
structures. The regional land supplies are exogenously given. When a tightening of regional
land-use regulation reduces the local land supply, upward pressure on house prices created
by excess housing demand cascades to other locations via migration. It is shown that the
deterministic version of the model has a unique balanced growth path, on which no location
ends up with zero population.

In this paper we focus on the spatial equilibrium of regional housing markets, and abstract
from modelling the production sectors by assuming that the spatial distribution of wage rates
is given exogenously. This assumption is made for expositional simplicity and can be relaxed
by allowing for capital and agglomeration effects in location-specific production functions,
following the studies by Ciccone and Hall (1996) and Davis et al. (2014). Such an extension is
considered in Section S2 of the online supplement, where it is shown that our main theoretical
results on the existence and uniqueness of the long-run equilibrium continue to hold, and
the quantitative results obtained inclusive of capital and agglomeration effects (rendering
the wage rates endogenous) are qualitatively similar to the ones reported in the paper that
abstract from such effects.

Our modelling approach is to be distinguished from existing Rosen-Roback style static
spatial equilibrium models, such as, Gyourko et al. (2010) and Hsieh and Moretti (2015),
and from the static population allocation models adopted in the studies on spatial labor
allocations by Davis et al. (2014) and Herkenhoff et al. (2018), among others.6 These studies
abstract from the dynamics of location-to-location migration flows, and rely on static models
of population allocation as an outcome of spatial arbitrage process under perfect population
mobility, or consider a representative household that centrally allocates household members
(population) across locations. Since it is assumed that labor mobility is perfect, then in-
creases in spatial heterogeneity in land-use regulation tend to have substantial impacts on
population reallocation but little impact on house price dispersion. In contrast, we allow for
imperfect labor mobility determined by variations in migration costs across origin-destination
pairs.7 Thus, in our model, spatial heterogeneity in land-use regulation simultaneously affects
house price dispersion and migration.8 In addition, when a tightening of regional land-use
regulations reduces local housing supply, upward pressure on house prices created by excess
housing demand spills over and cascades to other locations via migration. The route-specific
migration costs determine the magnitudes and the directions of the spillover effects. Further-
more, we explicitly modelled the dynamic interactions between migration and local housing

6The models adopted in Gyourko et al. (2010) and Hsieh and Moretti (2015) are built on the static spatial
equilibrium set up developed by Rosen (1979) and Roback (1982).

7The rate of migration is not uniform across the U.S.. The extent of migration between two neighboring
states or between the East and the West Coasts is considerably higher than between other states, which
implies that mobility may vary substantially across different origin/destination state pairs.

8As shown in Section S6 of the online supplement, spatial heterogeneity in land-use regulation leads to
secular rise in house price dispersion only in the presence of non-zero migration costs.
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markets, which also distinguishes our work from their studies. The dynamic nature of our
model allows us to analyze the evolutions of the U.S. regional housing markets between the
short run and the long run equilibrium.9 To our knowledge, the present paper is the first
to explicitly model migration as the source of spatial spillover effects in regional housing
markets.

Our paper also differs from demographic studies on migration that use Markov chain
models as Fuguitt (1965) and Tarver and Gurley (1965). These studies assume that transition
probabilities across locations are exogenously given, whilst in our study we allow migration
flows to interact with local housing markets through endogenous and nonlinear variations in
transition probabilities across location pairs and over time.

We calibrate our model on a panel of 49 states (including the District of Columbia)
in the U.S. mainland over the period 1976-2014. The route-specific migration costs are
estimated using the combined state-to-state migration flows and state level incomes and
housing costs data. Parameters that govern local housing supplies are calibrated using state
level housing market data. We estimate the state-level supplies of new residential land from
the model using housing market and urban land acreage data. These estimates are shown
to be significantly negatively correlated with the Wharton Residential Land Use Regulatory
Index (WRI henceforth).

In the baseline simulation exercise, we examine the performance of the model in account-
ing for the observed rise in house price dispersion during the period 1976-2014, taking the
realized state level income processes as given. We are able to simultaneously account for
the rise in house price dispersion and the interstate migration in the U.S. during the sample
period. In addition to land supply differentials, we also consider the roles of other forms of
spatial heterogeneities in this process. The results of counterfactual exercises show that land
supply differentials are the major factor behind the rising house price dispersion in the U.S..
To examine how land supply differentials and migration costs jointly contribute to the rise
in house price dispersion, we carry out simulations assuming different levels of land supply
differentials and migration costs. The results indicate that both land supply differentials
and migration costs play significant roles in driving up price dispersion; reducing either of
them can significantly lower house price dispersion in the U.S.. In addition, increases in land
supply differentials would lead to a larger rise in house price dispersion when migration costs
are larger.

According to Gyourko et al. (2015), the residential land-use regulatory environments of
some areas in the U.S. started to become stricter from 1970s onward. Land-use regulations
can have important implications not only for local house prices, but also for the composition
of population across U.S. states. Deregulating in states with stricter land-use restrictions can
affect population movements between states through the house price channel (Herkenhoff
et al. (2018)). To examine the impacts of local land-use regulations on house prices and
populations, we consider two counterfactual exercise: a land-use deregulation in California
and a tightening of land-use regulation in Texas. These exercises show that changes in

9The U.S. regional housing markets are unlikely to be in their long run equilibrium, considering the secular
rise of house price dispersion in the U.S. since 1970s. Some parts of the observed house price differences
across locations can be due to disequilibrium, which should diminish overtime with population re-location.
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local land-use regulations can affect population allocation via the house price channel, but
its effects tend to be relatively moderate as compared to predictions obtained from recent
existing models of housing and migration, which assume population are perfectly mobile, as
in studies by Hsieh and Moretti (2015) and Herkenhoff et al. (2018), for instance. We find
that house prices are much more affected by changes in land use regulations as compared to
their effects on allocation of population. For example, our model predicts that increasing the
average land supply growth rate of California to the national average induces the population
of California to rise by one million (around 2 per cent in 2014 values), whilst such a de-
regulations could reduce the average rate of increase in real house prices from 2.5 per cent
realized during 1976-2014 to a mere 0.23 per cent counterfactually. On the opposite extreme,
reducing the average land supply growth rate of Texas to the national average reduces Texas’s
population by 0.7million (around 3 per cent in 2014 values), but increases the average growth
rate of real house prices from a realized negative value of −0.114 per cent to a positive rate
of 0.868 per cent.

The dynamic and spatial nature of our model also allows us to examine the migration
linkages between U.S. states, and their evolution over times. We investigate the impulse
responses of state level house prices and population to regional shocks, and take a negative
regional productivity shock to California as an example. As local productivity drops, agents
migrate out from California to other states, which raises housing demand and house prices
in these states. However, the responses of house prices in the neighboring states of California
are faster and stronger than those of the other states. In addition, migration flows between
California and its neighboring states are also more responsive to the shock. The impulse
responses of the model economy to regional productivity shocks to New York, Illinois, Florida
and Texas also have similar patterns. These results suggest, perhaps not surprisingly, that
migrations between states that are geographically close are more responsive to changes in
income and housing cost differentials, which tends to keep the house price differences between
them from increasing. This partially explains why the model can replicate a substantial rise
in dispersion of house prices in the U.S. at a regional level, combined with only moderate
increases of house price dispersions within the regions.

The present paper is closely related to Herkenhoff et al. (2018), which studies the im-
pacts of land-use regulations on the spatial allocations of labor and capital across U.S. states.
Tough the two papers study similar issues, they have very different theoretical underpinnings
and empirical focus. First, Herkenhoff et al. (2018) solve the problem of allocations of labor
and capital across locations, and between production and housing sectors, using a single
representative household in the economy who centrally and frictionlessly allocates labor and
capital. In contrast, the present paper explicitly models the dynamics of location-to-location
migration flows allowing for migration costs, and develops an inter-temporal model of hous-
ing supplies and considers the evolution of the model economy towards its long-run spatial
equilibrium. Also in Herkenhoff et al. (2018) the tightness of land-use regulations are mea-
sured as the productivities of existing land in the production of housing services, whilst the
present uses state level growth rates of newly released residential land to measure tightness
directly, which is shown to significantly negatively correlated with the WRI. Third, both pa-
pers consider the effects of land-use regulations on housing and spatial labor allocation over
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the past few decades; however, they have adopted very different quantitative approaches.
Herkenhoff et al. (2018) compares the different steady states of the model with the tightness
of land-use regulations being set to different historical levels. In contrast, the present pa-
per simulates the transition path of the model economy over the period 1976-2014 without
assuming steady state. We believe that the U.S. regional housing markets are unlikely to
have been in their long run equilibrium during this period, considering the secular rise of
house price dispersion. Finally, the present paper predicts substantially smaller impacts of
land-use deregulations on population reallocation as compared to Herkenhoff et al. (2018) in
which labor are reallocated frictionlessly.

In our analysis population mobility plays the key role in determining how land-use regu-
lations affect house price dispersion and migration, which relates our work to the literature
on location choice and migration. This strand of literature can be dated back to Mcfadden
(1978), who argues that population mobility can be imperfect due to the substantial varia-
tion of migration cost across individuals. Skill sorting, which is applied in some recent works
on house price dispersion, such as, Van Nieuwerburgh and Weill (2010) and Gyourko et al.
(2013), can be an example of heterogeneous migration costs. These authors assume that
workers have different skill types and high-skilled workers can better exploit their skills only
at high-productivity locations. Therefore, high-skilled workers face relatively higher costs
to move out of high productivity locations, and are thus less responsive to rising housing
costs. In this paper, we focus on the variation of mobility across space and its implications
for house price dispersion and migration, rather than the factors or mechanisms behind the
imperfect mobility, which is motivated by the observation that the extent of migration flow
varies substantially across location pairs in the U.S..10

Our paper also relates to empirical studies that find strong spatial spill-over effects in
house price changes in the U.S. Holly et al. (2010) show that house price-to-income ratios
across U.S. states are spatially correlated. Bailey et al. (2016) show that common national
and regional factors are important explanations of house prices changes across U.S. MSAs
and spatial spill-over effects are still present in de-factored house price changes. Cohen et al.
(2016) also report significant spatial effects in house price dynamics, and further find that
spatial pill-over effects are magnified in the aftermath of the 2007-2008 housing crash. Sinai
(2012) finds that the booms and busts in the U.S. regional housing markets are geographically
clustered. Cotter et al. (2011) identify the statistical jumps in house prices in the U.S. MSAs
and find that the jump correlations are especially high between MSAs in California. DeFusco
et al. (2017) finds that house prices in the neighboring MSAs have significant effects on the
local house prices. In our model, regional housing markets interact with each other via
migration flows, which function as a source of spatial spill-over effects.

The rest of the paper is organized as follows. Section 2 describes the data and summarizes
the statistical patterns of house price dispersion across U.S. states and interstate migration.
Section 3 presents the model. Section 4 characterizes the equilibrium and proves the existence

10Recently, considerable attention is paid to the effects of housing on mobility. In particular, Ferreira
et al. (2010), Head and Lloyd-Ellis (2012), Davis et al. (2013), Nenov (2015) and Sterk (2015) examine how
housing market liquidity can affect labor mobility. In addition, Ouazad and Ranciere (2017) investigate how
residents’accesses to mortgage loans can affect their mobility.
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Figure 1: Dispersions of log house prices and log house price-to-income
ratios across U.S. states

Notes: The solid line shows the standard deviation of log real house prices across U.S. states. The dashed
line shows the standard deviation of log house price-to-income ratios across U.S. states.

and the uniqueness of the equilibrium and the balanced growth path. Section 5 calibrates
the model. Section 6 presents of the compact form of the system of equations. Section 7
provides the quantitative analyses. Section 8 concludes. Extensions of the baseline model
are discussed in the online supplement.11

2 House price dispersion and migration in the U.S.

We begin by documenting several patterns of house price dispersion across U.S. states:

• Fact 1: The dispersion of house prices across U.S. states has substantially increased
during 1976-2014.

• Fact 2 : The rise in the dispersion of house prices cannot be explained in terms of
11In this paper, we focus on the reasons behind the upward trend in house price dispersion. However, our

model can also account for the cyclical fluctuations in house price dispersion after being extended to allow for
mortgage loans and credit supply shocks. The details are provided in Section S3 of the online supplement.
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Figure 2: Dispersions of log house price-to-income ratios within and between U.S. regions

Notes: The line designated with ‘o’shows the dispersion of log house price-to-income ratios across the 48
states and the District of Columbia in the U.S. mainland. The line designated with ‘+’shows the dispersion
of log house price-to-income ratios across the five U.S. regions. The line designated with ’*’ shows the
average of within-region dispersions, where within-region dispersion is the standard deviation of log house
price-to-income ratios across the states that are within a given region.

the rise in the dispersion of incomes, and the house price-to-income ratio continues to
exhibit secular trends over the 1976-2014 period.

• Fact 3 : The dynamics of house price-to-income ratios dispersion have significant cycli-
cal patterns.

• Fact 4: The rise in house price dispersion is basically a between-region phenomenon.

As shown in Figure 1, the dispersion of log real house prices across U.S. states has been
increasing over the past decades. In addition, the increases in income dispersion can only
account for a very small portion of the rise in house price dispersion since the dispersion of
log house price-to-income ratios has also been rising over the 1976-2014 period.

We divided the 49 states/districts in the U.S. main land into five groups following the
regional categorization by the National Geographic Society.12 We decomposed the dispersion
across U.S. states into dispersions within- and between- regions.13 As shown in Figure 2, the
12For further information on the regional categorization by the National Geographic Society, see http:

//www.nationalgeographic.org/maps/united-states-regions/.
13For the derivations of the dispersion decomposition formula, see Section S5 of the online supplement.
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average within-region dispersion has been increasing much slower than the between-region
dispersion. The increase in the dispersion between regions is mainly due to the increasing
differences in house price-to-income ratios between the West Coast and the Southern states.

A natural concern about using state level house price data is that it ignores price dif-
ferences between cities and rural areas, and price dispersion between cities within a state.
However, only a very small portion of U.S. population live in rural areas.14 We constructed
an alternative measure for between-state dispersion using MSA level data, where state level
house prices are measured by aggregated MSA level prices. These two measures look quite
similar during 1975-2007.15 In addition, after decomposing between-MSA dispersion into
within- and between- state dispersions, we find that the increases in within-State dispersions
contributed very little in the rise in between-MSA dispersion.16 Thus, we think it is not
necessary to impose a higher level of disaggregation beyond the state level.

In addition, we decompose population changes of U.S. states into an intrinsic component,
defined by net birth plus international migration inflows, and an extrinsic component defined
by net inflows of migrants from other states.17

• Fact 5: The Southern states have been attracting population from the rest of the country,
known as “the rise of the Sunbelt”(Glaeser and Tobio (2008)).

During recent decades, the growth of house prices in the Southern states have been
substantially lower than the average growth rate house prices at the national level. The
rate of increase in house prices in Southern states has also been below the average growth
of real incomes in these states. The relatively low housing costs in these states have been
attracting migrants from other states. However, the size of migration in-flows has not been
suffi ciently large to significantly narrow down the discrepancy of house price changes between
the southern states and the rest of the country.

• Fact 6: Migration flows between two states that are geographically close are substantially
larger than between two distant states.

Around 75% of migrants migrate to states that are within a 1000-mile radius. Around
50% of migrants migrate to adjacent states.

3 A dynamic spatial equilibrium model

In this section, we develop a dynamic spatial model of housing building on the work of
Glaeser and Tobio (2008). We extended their model in two important respects. We provide

14In the U.S., around 86% of its population live in MSAs. In the five most populated states, such as,
California, New York, Texas, Illinois, and Florida, more than 95% of their population live in MSAs.
15For further details, see Appendix D.2.
16House prices in cities that are geographically close to each other tend to co-move due to spatial contagion

effects between housing markets of neighboring MSAs (Sinai (2012),DeFusco et al. (2017)). These effects
help keep house price differences between cities within a state from increasing.
17See Appendix B.1 for further details.
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a dynamic version of Glaeser and Tobio’s static framework, and explicitly model the location-
to-location migration choices of agents at the start of each period. In this way, we provide
a simultaneously determination of house prices and migration flows over time and across
space. This theoretical model can also be viewed as an example of a dynamic network where
the strength of the connections are endogenously determined.

3.1 Geography and migration flows

Time, denoted by t, is discrete and the horizon is infinite, so that t = 0, 1, 2, .... There are n
locations, and the collection of locations is represented by I = {1, 2, ..., n}, where n is fixed
but possibly large (n ≥ 2). The economy is populated by workers who consume goods and
housing services, and live for only one period. At the start of each period, workers decide
whether to reside at locations where they are born, or migrate to a new location. Denote
by lij(t) the number of workers who are born at location i in period t, and who choose to
reside at location j, where i and j ∈ In. Denote the population of workers born at location
i at the start of period t by li·(t). Then

li·(t) =
n∑
j=1

lij(t), (1)

and the number of workers who choose to reside at location j in period t, denoted by l·j(t),
is given by

l·j(t) =
n∑
i=1

lij(t). (2)

The number of workers who are born at location i at the start of period t equals to
the number of workers at that location in period t − 1, plus an intrinsic exogenously given
population change.18 Denote the intrinsic rate of population change (growth rate if positive)
of location i in period t by gl,it. Thus, the number of workers born in location i at the start
of period t is given by

li·(t) = egl,itl·i(t− 1), (3)

where it is assumed that gl,it follows an exogenously given deterministic process, for i ∈ In,
to be specified below.

We model migration probabilities as a Markov process. The probability that an individual
worker born at location i chooses to reside at location j in period t is denoted by ρij(t), where
ρij(t) > 0 and

∑n
j=1 ρij(t) = 1. Workers’location choices are assumed to be conditionally

independent given the location-specific incomes and housing service prices. Thus, according
to the law of large numbers, the fraction of workers born in location i who choose to reside at
location j converges to ρij(t) as population tends to infinity. We ignore any randomness due
to finite population and assume the migration flow from location i to location j is determined

18The intrinsic population changes are made up of, for example, the net natural population increases (i.e.
birth minus death) and the net migration flows from foreign countries.

9



as

ρij(t) =
lij(t)

li·(t)
. (4)

Thus, the migration flows can be obtained by combining (2), (3) and (4), to obtain

l·j(t) =

n∑
i=1

li·(t)ρij(t),

=

n∑
i=1

egl,itl·i(t− 1)ρij(t), for j = 1, 2, ..., n. (5)

The above system of equations can be re-written more compactly as

l(t) = l(t− 1)G(t)R(t), (6)

where l(t) is the 1× n (row) vector of location-specific population, defined by

l(t) ≡ [l·1(t), l·2(t), ..., l·n(t)] , (7)

and G(t) is the n × n diagonal matrix of population growth rates and R(t) is the n × n
Markovian migration probability matrix, defined by

G(t) ≡


egl,1t 0 · · · 0

0 egl,2t · · · 0
...

...
. . .

...
0 0 · · · egl,nt

 , and R(t) ≡


ρ11(t) ρ12(t) · · · ρ1n(t)
ρ21(t) ρ22(t) · · · ρ2n(t)
...

...
. . .

...
ρn1(t) ρn2(t) · · · ρnn(t)

 . (8)

In the standard Markov chain model of migration, transition matrix is exogenously given.
However, in our model, we allow R(t) to be time varying and endogenously determined. We
consider the endogenous determination of R(t) in the following sections.

3.2 Location choice

At the start of each period, workers decide where to reside by maximizing their utilities in
terms of consumption and housing services across all locations, and then choose the location
that gives them the highest level of utility. Consider an individual worker τ who is born at
location i in period t, and considers moving to location j ∈ In, where j could be i (namely
not moving). We adopt a log-linear utility function and assume that if the worker decides
to reside in location j, then her utility will be given by

Uτ ,t,ij = (1− η) ln cτ ,t,ij + η ln sτ ,t,ij − ψ lnαij + ετ ,t,ij, (9)

where cτ ,t,ij and sτ ,t,ij are her consumption of goods and housing services, respectively, η
represents the relative preference for housing service to consumption goods with η ∈ (0, 1),
lnαij is the route-specific migration cost, ψ is the relative weight of migration costs in
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utility function, and ετ ,t,ij represents the idiosyncratic component of worker’s relative location
preference, over (i, j) location pair. We assume αij > 1, if j 6= i, and, αij = 1, if j = i.19 In
addition, suppose that ετ ,t,ij is distributed independently of cτ ,t,ij and sτ ,t,ij, and over time
t. Also, following the literature on utility-based multiple choice decision problem, we shall
assume that at each point in t, ετ ,t,ij are independently and identically distributed (IID) as
extreme value distribution. (see, for example, Mcfadden (1978)).

Each worker inelastically supplies one unit of labor and allocate her wage income between
consumption goods and housing services. Denoting the wage rate and the price of housing
services at location j in period t by wjt and qjt respectively, the budget constraint of the
worker is given as

cτ ,t,ij + qjtsτ ,t,ij = wjt.

The utility maximization is done in two steps. First, the worker maximizes her utility in
terms of consumption and housing services across locations. Denote by Ũτ ,t,ij the maximized
utility of worker τ if she chooses to reside at location j. It is given as

Ũτ ,t,ij = ujt − ψ lnαij + ετ ,t,ij, (10)

where ujt is the maximal utility in terms of consumption and housing services one can get
in location j, which is determined as

ujt ≡ max
{cτ,t,ij , sτ,t,ij}

(1− η) ln cτ ,t,ij + η ln sτ ,t,ij, (11)

s.t. cτ ,t,ij + qjtsτ ,t,ij = wjt.

By solving the above optimization problem, we obtain:

cjt = (1− η)wjt, (12)

sjt =
ηwjt
qjt

, (13)

where the subscripts τ and i of cτ ,t,ij and sτ ,t,ij are dropped for convenience, since the optimal
levels of consumption of goods and housing services of each worker only depend on j and t.
Thus, the indirect utility function associated with location j can be obtained by substituting
(12) and (13) into (11) to yield:

ujt = u0 + lnwjt − η ln qjt, (14)

where u0 ≡ (1−η) ln(1−η)+η ln η is a scalar. The above indirect utility function of location
j is the same as that in Glaeser and Tobio (2008).

Second, the worker chooses the location with the highest utility. Using (10), the net
utility gain of worker τ migrating to location j, denoted by vτ ,t,ij, is given by

19It is shown that allowing for migration costs is essential for our model to generate a secular rise in the
dispersion of house price-to-income ratio. See details in Section S6 of the online supplement.
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vτ ,t,ij = Ũτ ,t,ij − Ũτ ,t,ii,
= (lnwjt − lnwit)− η (ln qjt − ln qit) + (ετ ,t,ij − ετ ,t,ii)− ψ lnαij.

Given the realizations of {ετ ,t,ij}nj=1, the worker chooses the destination with the highest
vτ ,t,ij. Let j∗τ ,t,i denote the location chosen by the worker. Then,

j∗τ ,t,i = argmax
j∈In

vτ ,t,ij.

Since by assumption ετ ,t,ij is distributed as IID extreme value, it can be shown that the
probability for the worker in location i to migrate to location j is given by (see Appendix
A.1 for a derivation)

ρij(t) =
evt,ij∑n
s=1 e

vt,is
, (15)

where
vt,ij ≡ (lnwjt − lnwit)− η (ln qjt − ln qit)− ψ lnαij. (16)

Then, the migration probability matrix Rt, defined by (8), can be written as:

R(t) ≡


$1t 0 · · · 0
0 $2t · · · 0
...

...
. . .

...
0 0 · · · $nt


−1

evt,11 evt,12 · · · evt,1n

evt,21 evt,22 · · · evt,2n
...

...
. . .

...
evt,n1 evt,n2 · · · evt,nn

 ,

where $it ≡
∑n

s=1 e
vt,is and vt,ij is a function of wage rate differentials, lnwjt − lnwit, and

housing service price differentials, ln qjt − ln qit, as in (16). We will discuss how wit and qit
are determined in the following section.

3.3 Wage rates and housing service prices

3.3.1 Production and wage rates

Location-specific wage rates are competitively determined in local labor markets. We assume
the production of consumption goods is linear in labor inputs and is subject to a location-
specific productivity shock:

yit = aitl
y
i·(t), (17)

where yit is the output of consumption goods in location i in period t, ait is the location-
specific productivity shock, and lyi·(t) is the number of workers who work in the consumption
goods sector in the location i. Let wit be the wage rate at location i in period t, and assume
that in equilibrium wage rates are set by labor productivities, namely

wit = ait. (18)

Thus, wage rates, wit, are exogenously given and do not respond to migration flows or house
price changes. This assumption can be relaxed by allowing for capital and agglomeration

12



effects in the production function as in Davis et al. (2014) and Herkenhoff et al. (2018). See
Section S2 of the online supplement for details, where it is shown that such an extension
does not alter our main conclusions and that the extended model has a unique long-run
equilibrium. But to simplify the exposition we abstract from capital and agglomeration
effects, and focus on ait as the main driver of local wages. Accordingly, we adopt a relatively
general specification of ait and assume that ln ait comprises of a linear trend component,
ln ai + gat, a national common (unobserved) component, ft, and a local component za,it:

ln ait = ln ai + gat+ λift + za,it, (19)

where ga is the national growth rate of labor productivity, and λi is the location-specific
coeffi cient on the national component, with E (λi) > 0. In addition, za,it and ft are assumed
to follow first-order autoregressive (AR(1)) processes:

ft = ρfft−1 + σfεf,t, (20)

za,it = ρza,iza,i,t−1 + σza,iεza,it. (21)

where εf,t and εza,it are IID across locations and over time.

3.3.2 Housing service prices

Location-specific housing service prices are competitively determined in local rental markets.
Assume that each unit of existing houses provides a unit of housing services in each period,
while new houses begin to provide housing services a period after they are built. Thus, the
market clearing condition is given by

hi,t−1 = η

(
wit
qit

)
l·i(t). (22)

where hi,t−1 is the quantity of houses that are available for rent at location i in period t,
ηwit/qit is the per capita consumption of housing services given by (13). We will discuss how
the housing stocks hit are determined in the following sections.

3.4 Housing construction

In period t, a representative contractor is endowed with κit > 0 units of unused or reclaimed
land in location i that can be used for new house construction. New houses are constructed
by combing residential land and residential structures, denoted by stit, using a Cobb-Douglas
technology. Denote the amount of new houses built at location i in period t by xit, and note
that

xit = τx,i (κit)
ακ,i (stit)

1−ακ,i , (23)

where τx,i > 0 is a scalar constant and ακ,i ∈ (0, 1) is the share of land in construction costs.
By dividing both sides of (23) by κit, we obtain the production function of new houses per
unit of land:

13



xit
κit

= τx,i

(
stit
κit

)1−ακ,i
, (24)

where xit/κit and stit/κit are the amounts of new houses and residential structures per unit
of land, respectively. Thus, 1−ακ,i are the elasticities of new house supplies with respect to
non-land inputs on each unit of land. It is similar to the housing supply function in Glaeser
and Tobio (2008). However, we allow ακ,i to vary across locations, which reflects the fact
that it is more costly to build new houses at some locations as compared to other locations.

Residential structure stit is produced by combing construction labor, denoted by lc·i(t),
and materials, denoted by mit, using the following Cobb-Douglas technology:

stit = τ s (lc·i(t))
αl (mit)

αm , (25)

where τ s > 0 is a scalar, and αl and αm are the shares of labor and materials in the production
costs of residential structures, which are common to all locations. We assume that αl and
αm ∈ (0, 1), and αl + αm = 1.

By combing (23) and (25), we obtain the following housing construction function:

xit = τx,i (κit)
ακ,i [τ s (lc·i(t))

αl (mit)
αm ]

1−ακ,i . (26)

Contractors are assumed to be homogeneous and operate competitively across locations,
and their behavior is modelled by a ‘representative’contractor who maximizes her profits
period-by-period and consumes all realized profits at the end of each period. The profit of
the representative contractor in period t, denoted by πct , is given as

πct =
n∑
i=1

pitxit −mit − witlc·i(t).

The contractor chooses {xit,mit, l
c
·i(t)}

n
i=1 to maximize her profit subject to house construc-

tion technology, (26), while taking the new land supplies, κit, as given. The first order
conditions for mit and lc·i(t) are given by

1 =
αm(1− ακ,i)xitpit

mit

,

wit =
αl(1− ακ,i)xitpit

lc·i(t)
. (27)

By plugging the above two first order conditions into (26), we obtain the supply function for
new houses

xit = τ iκit (wit)
−αl(1−ακ,i)

ακ,i (pit)
1−ακ,i
ακ,i , (28)

where τ i is the location-specific scalar that is defined by

τ i ≡ τ
1

ακ,i

x,i [τ s(1− ακ,i)(αl)αl(αm)αm ]
1−ακ,i
ακ,i .
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We assume that contractors consume all the profits they earn in each period. Thus, cct = πct ,
where cct denotes the consumption of contractors in period t.

Finally, to close the housing construction module we assume

lnκit = lnκi + gκ,it+ zκ,it (29)

where gκ,i is the trend growth rate of new land supplies, and zκ,it is the state-specific land
supply shock assumed to follow the AR(1) process:

zκ,it = ρzκ,izκ,i,t−1 + σzκ,iεzκ,it, (30)

where εzκ,it are IID across locations and over time.

3.5 Housing investment

In each location, homogeneous landlords own local housing stocks and rent them to workers,
and derive utility from consuming their profits. The population of landlords in location i,
denoted by loit, grows over time at the common rate of gl, where gl > 0. Thus, loit = egltloi0,
where loi0 > 0 is the initial population of landlords in location i. The life time utility of
landlords (as a group) in location i is given by

Et

∞∑
s=0

(βegl)s ln(coi,t+s), (31)

where coit is the consumption of the ‘representative’landlord in location i, and βe
gl ∈ (0, 1)

is the adjusted discount factor that allows for the growing number of landlords. The realized
net return on housing investment in location i in period t, denoted by roit, is given by

roit = (1− θi)
[
qit + (1− δ)pit

pi,t−1

]
, (32)

where δ ∈ (0, 1) is the depreciation rate of housing stocks, and θi ∈ (0, 1) is the location-
specific cost of housing investment.20 Let hit denote the amount of houses owned by the
landlords in location i. The landlords’budget constraint is then given by

coitl
o
it + pithit = roit (pi,t−1hi,t−1) . (33)

Landlords maximize (31) subject to (33). The Euler equation for this optimization is given
by

Et
(
λi,t+1r

o
i,t+1

)
= 1, (34)

where λi,t+1 is the stochastic discount factor, defined by λi,t+1 = β
(
coit/c

o
i,t+1

)
. Pre-multiplying

both sides of (34) by pit, and using (32), we obtain

pit = (1− θi)Et {λi,t+1 [qi,t+1 + (1− δ)pi,t+1]} .
20The costs to own and transact houses, such as, property taxes and capital gain taxes, can vary substan-

tially across locations in the U.S..

15



Using the above equation, the house price, pit, can be expressed as the sum of the expected
present value of rents net of depreciation

pit =
∞∑
s=1

Et

[
(1− δ)s−1 (1− θi)s

(
s∏

υ=1

λi,t+υ

)
qi,t+s

]
.

Since the utility function of landlords is assumed to be logarithmic, a closed form solution
for landlords’optimization problem exists. The optimal rules for housing investment and
consumption are given by

pithit = βegl (1− θi) [qit + (1− δ)pit]hi,t−1, (35)

and

coitl
o
i0e

glt = (1− βegl) (1− θi) [qit + (1− δ)pit]hi,t−1. (36)

3.6 Market clearing and resource constraints

The market clearing condition of housing in location i is given by

hit = (1− δ)hi,t−1 + xit. (37)

where hit is equal to the housing demand in location i in period t and (1 − δ)hi,t−1 + xit is
the supply of houses in that location. The resource constraint for consumption goods in the
economy as a whole is given by:

n∑
i=1

yit =
n∑
i=1

citl·i(t) +
n∑
i=1

coitl
o
it + cct +

n∑
i=1

mit, for t = 1, 2, ...

where
∑n

i=1 yit is the total amount of consumption goods produced in the economy in period
t,
∑n

i=1 citl·i(t) is the total consumption of workers,
∑n

i=1 c
o
itl
o
it is the total consumption of

landlords, cct is the consumption of contractors and
∑n

i=1mit is the amount of goods used in
housing construction. The resource constraint for labor in location i in period t is given as

l·i(t) = ly·i(t) + lc·i(t). (38)

where as before l·i(t) is the population of workers who reside at location i in period t, and
ly·i(t) and lc·i(t) are the numbers of workers who work in the production and the housing
construction sectors respectively.

4 Equilibrium and the balanced growth path

We now consider the non-stochastic version of the model economy set out in Section 3,
characterize its short-run and long-run equilibria and prove the existence and uniqueness of
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the short-run equilibrium and the balanced growth path. The non-stochastic specification is
obtained by setting to zero the innovations to the national and location-specific components
of labor productivities (εf,t and εza,it in (20) and (21)), and the innovations to the location-
specific land supply shock ( εzκ,it in (30)), namely

εf,t = 0, εza,it = 0, and εzκ,it = 0, for i = 1, 2, ...n, and t = 1, 2, ...

In this set up, local productivities are given by

ait = egatai, for i = 1, 2, ...n, and t = 1, 2, .... (39)

In addition, to obtain a balanced growth path we assume the same intrinsic population
growth rate, gl, across locations:

gl,it = gl, for i = 1, 2, ...n, and t = 1, 2, .... (40)

Finally, we assume that the location-specific land supplies are given by

κit = eg
∗
κ,itκi, for i = 1, 2, ...n, and t = 1, 2, ..., (41)

where g∗κ,i is the state-specific land supply growth rate. To find conditions under which the
economy has a balanced growth path, using (28) we note that

ln

(
xit
xi,t−1

)
= ln

(
κit
κi,t−1

)
−
(

1− ακ,i
ακ,i

)
ln

(
wit
wi,t−1

)
+ αl

(
1− ακ,i
ακ,i

)
ln

(
pit
pi,t−1

)
,

and on the balanced growth path by definition we have ln (xit/xi,t−1) = gl, ln (wit/wi,t−1) =
ln (pit/pi,t−1) = ga, and ln (κit/κi,t−1) = g∗κ,i. Hence, for a balanced growth path to exist we
must have

g∗κ,i = gl −
(1− ακ,i)αm

ακ,i
ga, for i = 1, 2, ..., n, (42)

where αm (= 1− αl) is the share of materials in the production costs of residential structures,
and ακ,i is the location-specific share of land in housing construction costs. The above
condition states that the growth rate of new land supplies, g∗κ,i, and the growth of technical
progress in production of construction materials, ga, should ensure that enough new houses
can be produced to accommodate the housing requirements of the growing population in all
locations. The land supply regime under which land growth rates are given by (42) will be
referred to as the balanced growth path land supply regime. The analysis of the equilibrium
properties of the stochastic version of the model is complicated, and will be conducted
by simulations. The deterministic solution provides information on the local equilibrating
properties of the stochastic version for suffi ciently small-size shocks.

We use bold lowercase letters with only time subscripts to denote the vectors of prices
and quantities for all locations. For example, pt ≡ [p1t, p2t, ..., pnt], which is a 1 × n vector.
We denote the aggregate population by Lt ≡

∑n
i=1 l·i(t). In addition, we use letters with

stars and time subscripts to denote the corresponding detrended variables. Specifically,
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p∗it ≡ e−gatpit, p∗t ≡ [p∗1t, p
∗
2t, ..., p

∗
nt], q

∗
it = e−gatqit, q∗t ≡ [q∗1t, q

∗
2t, ..., q

∗
nt], h

∗
it ≡ e−glthit, and

h∗t ≡ [h∗1t, h
∗
2t, ..., h

∗
nt].

In the proof of the existence and the uniqueness of the equilibrium and the balanced
growth path, we focus only on the key variables that are related to migration and local
housing markets, including pt, qt,wt,xt,ht, l(t) and R(t), and the subset of equilibrium
conditions by which they are determined. These variables are classified into two groups:
• Migration module. The first block of equilibrium conditions, including (6) and
(15), describe how migration probabilities, R(t), and local population values, l(t), are
determined, given incomes and housing service prices across locations, i.e., wt and qt.
• Regional housing market. The second block of equilibrium conditions, including
(18), (22), (28), (35) and (37), describe how the equilibria of local housing markets are
determined given local population, l(t).

Note that equilibrium conditions (6), (15), (18), (22), (28), (35) and (37) can be re-written
in terms of the detrended variables as follows

l∗·j(t) =
n∑
i=1

ρ∗ij(t)l
∗
·i(t− 1), for j ∈ In, (43)

ρ∗ij(t) =
(w∗jt/w

∗
it)(q

∗
jt/q

∗
it)
−η(αij)

−ψ∑n
s=1(w

∗
st/w

∗
it)(q

∗
st/q

∗
it)
−η(αis)−ψ

, for i and j ∈ In, (44)

h∗it = (1− δ)h∗i,t−1 + x∗it, for i ∈ In, (45)

x∗it = τ iκi(w
∗
it)
−αl(1−ακ,i)

ακ,i (p∗it)
1−ακ,i
ακ,i , for i ∈ In, (46)

q∗it =
ηw∗itl

∗
·i(t)

h∗i,t−1
, for i ∈ In, (47)

p∗ith
∗
it = β (1− θi) [q∗it + (1− δ)p∗it]h∗i,t−1, for i ∈ In, (48)

w∗it = ai, for i ∈ In. (49)

Then the short-run and the balancd growth path equilibria of the economy can be defined
in terms of the above detrended variables as follows:

Definition 1 (Short-run equilibrium) Consider the dynamic spatial equilibrium model
set up in Section 3 by equations (6), (15), (18), (22), (28), (35) and (37), which can be
written equivalently in terms of detrended variables by equations (43) to (49). Suppose that
the vectors of exogenous processes for labor productivities, at, land supplies, κt, and the
intrinsic population growth rates, glt, for t = 1, 2, ..., are given by (39)-(41), condition (42)
holds, and the initial values for local population and housing stocks ( l0 and h0) are strictly
positive. Then, a short-run equilibrium is defined as series of non-negative prices [p∗t , q

∗
t ,w

∗
t ]

and allocations [l∗(t),x∗t ,h
∗
t ] that solve the system of equations (43)-(49), for given values

l∗·i(t− 1) and h∗i,t−1, for i ∈ In.
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Definition 2 (Balanced growth path equilibrium) Consider the dynamic spatial equi-
librium model set up in Section 3 by equations (6), (15), (18), (22), (28), (35) and (37),
which can be written equivalently in terms of detrended variables by equations (43) to (49).
Suppose that the vectors of exogenous processes for labor productivities, at, land supplies, κt,
and the intrinsic population growth rates, glt, for t = 1, 2, ..., are given by (39)-(41), condi-
tion (42) holds, and the initial values for local population and housing stocks ( l0 and h0)
are strictly positive. Then, a balanced growth path equilibrium is defined as a path on which
the economy is in short-run equilibrium in the sense set out in Definition 1 in each period,
and the de-trended prices [p∗t , q

∗
t ,w

∗
t ] and quantities [l∗(t),x∗t ,h

∗
t ] converge to non-negative

limits as t→∞.

The existence and uniqueness of the short-run equilibrium is established in the online
supplement (see Section S1). In what follows we focus on the existence and uniqueness of
the long-run balanced growth path which plays a more fundamental role in our simulation
exercises.

Proposition 1 (Existence and uniqueness of the long-run balanced growth path)
Consider the dynamic spatial equilibrium model set up in Section 3 by (6), (15), (18), (22),
(28), (35) and (37). Suppose that the vectors of exogenous processes for labor productivities,
at, land supplies, κt, and intrinsic population growth rates, glt, for t = 1, 2, ..., are given by
(39)-(41), and condition (42) holds, and the initial values for local population and housing
stocks ( l0 and h0) are strictly positive. Then the model has a unique balanced growth path
as set out in Definition 2.

Proof: We start by re-writing the equilibrium conditions in terms of detrended vari-
ables. Recall that we use letters with stars and time subscripts to denote the corresponding
detrended variables. Note that the detrended exogenous variables are time invariant by con-
struction (see (39)-(42)). For example, a∗it = ai and κ∗it = κi. Note also that in the model,
wage rates are pinned down by labor productivities, i.e. wit = ait (see (18)). Thus, the
detrended wage rates are also constant over time, i.e., w∗it = ai. Further, note that (6) can
be re-written in terms of the detrended variables as

l∗(t) = l∗(t− 1)R∗(t), (50)

where R∗(t) = (ρ∗ij(t)) is the n× n matrix with non-negative (i, j) elements

ρ∗ij(t) =
(αij)

−ψ(w∗jt/w
∗
it)(q

∗
jt/q

∗
it)
−η∑n

s=1(αis)
−ψ(w∗st/w

∗
it)(q

∗
st/q

∗
it)
−η ≥ 0, (51)

and rows that sum to unity.21 Thus, by post-multiplying both sides of (50) by τ , an n × 1
vector of ones, we have

L∗t = l∗(t)τ = l∗(t− 1)R∗(t)τ = l∗(t− 1)τ = L∗t−1,

21This result follows from (15) and (16), and using de-trended variables denoted by ∗.
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which implies
L∗t = L∗t−1, ...,= L∗1 = L0, (52)

where L0 is the detrended aggregate population for t = 0, 1, .... Using (50), l∗(t) can be
written as

l∗(t) = l(0)
[
Πt
s=1R

∗(s)
]
, (53)

where l(0) > 0 is the vector of the initial local populations, and R∗(1),R∗(2), ...,R∗(t), are
a series of stochastic matrices. Lemma A1 in Appendix A.3 establishes the existence of the
balanced growth path by showing that l∗(t) converges to some time invariant non-negative
population vector l∗, as t → ∞. To establish that l∗is unique, we note that the detrended
aggregate population remains constant over time, as shown in (52), namely

n∑
i=1

l∗·i = L0. (54)

By imposing the balance growth path conditions, the equilibrium conditions (6), (15), (18),
(28), (35), (22) and (37) can be written in terms of the detrended variables as follows

l∗·j =
n∑
i=1

ρ∗ijl
∗
·i, for j ∈ In, (55)

ρ∗ij =
(w∗j/w

∗
i )(q

∗
j/q
∗
i )
−η(αij)

−ψ∑n
s=1(w

∗
s/w

∗
i )(q

∗
s/q
∗
i )
−η(αis)−ψ

, for i and j ∈ In, (56)

x∗i = δh∗i , for i ∈ In, (57)

x∗i = τ iκi(w
∗
i )
−αl(1−ακ,i)

ακ,i (p∗i )
1−ακ,i
ακ,i , for i ∈ In, (58)

q∗i =
ηw∗i l

∗
·i

h∗i
, for i ∈ In, (59)

p∗i = β (1− θi) [q∗i + (1− δ)p∗i ] , for i ∈ In, (60)

w∗i = ai, for i ∈ In. (61)

Thus, to prove the uniqueness of the balanced growth path, in what follows we show that the
system of equations given by (54)-(61), has a unique positive solution. Note that wage rates
are pinned down by labor productivities, i.e., w∗ = a (see (61)). In the rest of the proof, we
show that given L0,κ and w∗, then p∗, q∗,x∗,h

∗, l∗ and R∗ are uniquely determined. We
first show that for given values of l∗,κ and w∗, the solution for p∗, q∗,x∗ and h∗ is unique
and can be obtained using (57), (58), (59) and (60). We first observe that the long run
rent-to-price ratio in location i can be obtained from (60) and is given by

q∗i
p∗i

= Γi, (62)
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where Γi is given by

Γi =
1

β (1− θi)
− (1− δ). (63)

Note that β and θi ∈ (0, 1), which implies β−1 (1− θi)−1 > 1. Since δ > 0, it follows that
Γi > δ > 0. Using this result in (59), we obtain the long-run demand function for housing
in location i:

h∗i =
ηw∗i l

∗
·i

Γip∗i
(64)

By substituting (57) into (58), we obtain the long-run housing supply function in location i:

h∗i = δ−1τ iκi(w
∗
i )
−αl(1−ακ,i)

ακ,i (p∗i )
1−ακ,i
ακ,i . (65)

Therefore, p∗i , q
∗
i , x

∗
i and h

∗
i can be obtained uniquely in terms of l

∗
·i, w

∗
i ,and κi using (57),

and (62) - (65):

p∗i =

(
δη

τ iκi

)ακ,i
Γ
−ακ,i
i (l∗·i)

ακ,i (w∗i )
ακ,i+αl(1−ακ,i) , (66)

q∗i =

(
δη

τ iκi

)ακ,i
Γ
1−ακ,i
i (l∗·i)

ακ,i (w∗i )
ακ,i+αl(1−ακ,i) , (67)

h∗i =

(
δ

τ iκi

)−ακ,i ( η

Γi

)1−ακ,i
(l∗·i)

1−ακ,i (w∗i )
(1−αl)(1−ακ,i) , (68)

x∗i =

(
1

τ iκi

)−ακ,i (δη
Γi

)1−ακ,i
(l∗·i)

1−ακ,i (w∗i )
(1−αl)(1−ακ,i) , (69)

where Γi is defined by (63).22 By substituting (67) into (56) for q∗i , then ρ
∗
ij can be written

as a function of l∗:

ρ∗ij =
ψij
(
l∗·j
)−ϕj∑n

s=1 ψis (l∗·s)
−ϕs , (70)

where

ϕj = ηακ,j,

ψij = α−ψij

(
δη

τ jκj

)−ηακ,j
Γ
−η(1−ακ,j)
j

(
w∗j
)1−η[ακ,j+αl(1−ακ,j)] .

Since η and ακ,j ∈ (0, 1), it follows that ϕj > 0, for any i ∈ In. In addition, note that
ψij > 0, for any i and j ∈ In, since αij, δ, η, τ j, κj and w∗j > 0, and Γj, given by (63), is
strictly positive as previously shown. Recall that R∗ is the migration probability matrix on
the balanced growth path, with a typical element ρ∗ij given by (70). Thus, R

∗ can be written
as a function of l∗, namely R∗ ≡ R(l∗). Then, (55) can be written more compactly as

l∗ = l∗R(l∗), (71)

22For the detail of the derivations, see Appendix A.2.
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which is a system of non-linear equations in l∗. Lemma A1 in the Appendix establishes that
there exists a l∗ that solves (71). Lemma A2 establishes that (71) cannot have more than
one solution. Therefore, l∗ exists and is unique. Then, using the solution of l∗, the other
variables of the model, namely, p∗, q∗,x∗,h∗and R∗, can be solved for using equations (66)
to (70).�

5 Calibration and estimation of model’s parameters

We now consider whether the model can quantitatively account for the observed rise in the
house price dispersion in the U.S.. To this end, we estimate the model using the combined
interstate migration flows and state level housing market data, and then use the estimated
model for several simulation excises in the next section. We calibrate some of the parameters,
and then estimate the rest of them using the panel data of the 49 states (including the District
of Columbia) in the U.S. mainland with yearly observations over the period 1976-2014. Thus,
the period indexed by 0 (i.e., the initial period) corresponds to 1976, and the periods indexed
by 1, 2, ..., T correspond to the years 1977 to 2014.

The model parameters can be divided into five groups, which include the parameters
that characterize preferences, migration flows, housing supplies and investment, and the
exogenous per capita incomes and new land supply processes. In what follows we consider
these five sets of parameters in turn.

5.1 Preference parameters

The relative weight of housing in workers’utility function (11), η, is set to 0.24, as estimated
by Davis and Ortalo-Magné (2011).23 The discount factor of landlord β is set to 0.98 to
match the risk-free annual real interest rate of the U.S. over the period 1962-2014, which is
estimated to be around 2 per cent. The spreads between the risk-free interest rate and the
location-specific returns on housing investments are captured by the parameters θi, which
will be calibrated in Section 5.3 below.

5.2 Migration and intrinsic population growth rates

To estimate route-specific migration cost parameters, αij, using (15), we first note that

ρij(t)

ρii(t)
=
α−ψij wjtq

−η
jt

α−ψii witq
−η
it

,⇒ αψij =

(
wjtq

−η
jt

witq
−η
it

)(
ρii(t)

ρij(t)

)
αψii.

Also from (4), we have ρij(t) = lij(t)/li·(t), and therefore

αψij =

(
wjtq

−η
jt

witq
−η
it

)(
lii(t)

lij(t)

)
αψii.

23These authors also provide evidence that the share of expenditure on housing are constant over time
and across U.S. MSAs.
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We set ψ to unity, and normalize αii to one, for i = 1, 2, ..., n. Note that the Internal
Revenue Service (IRS) migration flow data that we will be using are only available for the
period 1990-2014. Thus, we estimate αij using the above equation as follows:

α̂ij =
1

25

t2014∑
t=t1990

wjtq
−η
jt

witq
−η
it

lii(t)

lij(t)
, for i 6= j, and i and j ∈ In, (72)

where t1990 and t2014 are the time indices corresponding to 1990 and 2014, respectively, η is
calibrated in Section 5.1, and wit, qit and lij(t) are observed data.

In addition, the balanced growth path intrinsic population growth rate, gl, defined by
(40), is set to 1%, which is the average growth rate of the U.S. population over the period
1977-2014. The actual state-level intrinsic population growth rates, gl,it, over the period 1977-
2014 are measured using the IRS and the Census data. For further details, see Appendix
B.1.

5.3 Housing supplies and investment

Following Van Nieuwerburgh and Weill (2010), we estimate the housing depreciation rate,
δ, as the average ratio of aggregate depreciation to aggregate housing stock over the period
1977-2014 using the data from the Fixed Assets Tables compiled by the Bureau of Economic
Analysis (BEA), and obtain δ̂ = 2%. To calibrate the state-specific supply functions for new
houses, given by (28), we follow Davis and Heathcote (2005) and set the share of material
in the value of residential structure, αm, assumed to be common to all states, to 0.53. This
estimate matches the national share of value added of non-construction sectors in the total
value of residential investments. The share of construction labor in residential structure
value added, αl, is then set to 0.47 to ensure that αl + αm = 1. Finally, we estimate, ακ,i,
location-specific share of land in construction costs, by the state level average land values
relative to total value of housing stocks over the 1977-2014 period.24

The location-specific housing investment cost parameter, θi, is estimated as follows. Using
the rent-to-price ratio on the balanced growth path given by (62), we have

θi = 1− 1

β

[
q∗i
p∗i

+ (1− δ)
]−1

,

which suggests the following estimate

θ̂i = 1− 1

β

[
1

1
T

∑T
t=1 qit/pit + (1− δ̂)

]
, (73)

where periods 1 and T correspond to 1977 and 2014, respectively, β and δ are previously
calibrated and estimated, and qit and pit are observed data.

24The data on state level land share in home values are obtained from Davis and Heathcote (2007).
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5.4 Income processes

Wage rates are set by labor productivities in equilibrium: wit = ait, and since we abstract
from capital, wage is the only source of income for households. Thus, we measure ait using
the realized state level real per capita disposable income during the 1977-2014 period. To
estimate the stochastic process of ait, defined by (19), (20) and (21), recall that ait is given
by

ln ait = ln ai + gat+λift + za,it, (74)

where t = 1, 2, ..., T (1977-2014). To identify the unobserved common factor, ft, we impose
the following restrictions:

n−1
n∑
i=1

λi = 1. (75)

and

T−1
T∑
t=1

ft = 0, (76)

Restriction (75) is required to distinguish between scales of λi and ft, and (76) is required
to separate the linear trend from the common factor. We take the common growth rate of
state-level incomes, ga, as a known parameter, and set it to match the average annual growth
rate of the U.S. real per capita income during the period 1977-2014, which is around 0.018.
Then, in view of (76), we estimate ai by

âi = exp

[
T−1

T∑
t=1

(ln ait − ĝat)
]
. (77)

Let ea,it be the deviation of ln ait from its trend, which is given by

ea,it = λift + za,it, (78)

and estimated as
êa,it = lnait− ln âi − ĝat,

for t = 0, 1, 2, ..., T . To estimate ft, we first note that n−1
∑n

i=1 λi = 1 (see (75)). By summing
up both sides of (78), we have

n−1
n∑
i=1

ea,it = ft + n−1
n∑
i=1

za,it,

where by assumption za,it are cross-sectionally independent. As a result,

ft = n−1
n∑
i=1

êa,it +Op

(
T−

1
2

)
+Op

(
n−

1
2

)
,
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which gives a consistent estimator of ft:

f̂t = n
−1

n∑
i=1

êa,it. (79)

The parameters ρf and σf in (20) are estimated by running the OLS regression of f̂t on f̂t−1,
for t = 1, 2, ..., T . To estimate the associated loading coeffi cients, λi, for each i we run the
OLS regressions of êa,it on f̂t, and obtain the residuals, ẑa,it, for t = 0, 1, 2, ..., T . Then, we
estimate ρza,i and σza,i in (21) by running OLS regressions of ẑa,it on ẑa,i,t−1, over the period
t = 1, 2, ..., T .

5.5 Land supplies

To estimate κit, we first note that equilibrium conditions (22), (28), (35) and (37) imply

κit =
γit
τ i
, (80)

where25

γit =

{
βegl (1− θi)

[
qit
pit

+ (1− δ)
]
− (1− δ)

}
η
(
wit
qit

)
l·i(t)

(wit)
−αl(1−ακ,i)/ακ,i (pit)

(1−ακ,i)/ακ,i
. (81)

Note that β, gl, θi, η, αl, ακ,i and δ are previously calibrated and estimated, and that l·i(t), wit, qit
and pit are observed data. Thus, an estimator of γit can be obtained by evaluating (81) using
the parameter estimates and realized values of l·i(t), wit, qit and pit, for t = 0, 1, ..., T , which
corresponds to the period of 1976-2014.

We assume that used land, denoted by URit, is turned into unused land when houses on
these lands are depreciated. Thus, URit would shrink at rate δ in the absence of any new
constructions. Therefore, URit follows as:

URit = κit + (1− δ)URi,t−1. (82)

To estimate τ i in (80), we make use of published data on major land uses in the U.S.
compiled by the U.S. Department of Agriculture (USDA). We consider only the observations
from 2002 onward, which are available for the years 2002, 2007 and 2012, since earlier data
are not compatible in concept and scope.26 Thus, we estimate τ i using the USDA urban
area size data for 2002 and 2012 as follows. Note that (82) implies

URi,t2012 =

t2012∑
t=t2003

(1− δ)t2012−t κi,t + (1− δ)10 URi,t2002 , (83)

25For details of the derivations, see Appendix A.4.
26For further information on the USDA data on land uses in the U.S., see https://www.ers.usda.gov/

data-products/major-land-uses..
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where t2002, t2003 and t2012 are the time indices for 2002, 2003, and 2004. Using (80) in (83)
to eliminate κit, we obtain the following estimator of τ i:

τ̂ i =

∑t2012
t=t2003

(1− δ)t2012−t γ̂i,t
URi,t2012 −

(
1− δ̂

)10
URi,t2002

. (84)

Then, we compute κ̂it using (80) as

ln κ̂it = ln γ̂it − ln τ̂ i, for i = 1, 2, ..., n and t = 0, 1, ..., T. (85)

We estimate κi and gκ,i in (29) by running OLS regressions of ln κ̂it on a linear time trend
(including a constant), for i = 1, 2, ..., n, and obtain the residuals, ẑκ,it, for t = 0, 1, ..., T .27

Finally, for each i we estimate ρzκ,i and σzκ,i by running OLS regressions of ẑκ,it on ẑκ,i,t−1,
over the period t = 1, 2, ..., T .

Figure 3 plots ĝκ,i versus the state level Wharton Residential Land Use Regulatory Index,
which are complied by Gyourko et al. (2008) and denoted by WRIi, for the 48 states on
the U.S. mainland. Washington, D.C. is excluded since its WRI data is not available. Note
that WRIi is an index constructed from surveys carried out in 2004 and is intended to
characterizes the local residential land-use regulatory environment, which increases with the
tightness of land-use regulation.28 Therefore, the data used to construct WRIi have little
overlap with the time series data and parameter calibrations we employ to back out κit.
Thus, the significant negative correlation between ĝκ,i and WRIi, as shown in Figure 3,
indicates that the land use regulation can be an important factor that affects local house
prices through the supplies of new land. By running an OLS regression of ĝκ,i on WRIi, for
the 48 states on the U.S. mainland, we obtain

ĝκ (WRIi) = 0.0310
(0.0059)

− 0.0373
(0.0060)

WRIi, R2 = 0.46 (86)

where ĝκ (WRIi) is the fitted value, R2 is the squared correlation coeffi cient, and the figures
in brackets are standard errors of the estimated coeffi cients.

27It is worth noting that our estimates of gκ,i reflect the average tightness of state-level land-use regulations
over the period 1977-2014, and need not to be good proxies for particular years or sub-periods.
28More specifically, the Wharton Residential Land Use Regulatory Index is based on the Wharton survey

on land-use regulations conducted in 2004, and complied by Gyourko et al. (2008), who use factor analysis
to create the aggregate index, which is then standardized so that its sample mean is zero and its standard
deviation equals one. Since Alaska and Hawaii are excluded from our analysis, we re-scale the WRIs of the
remaining states so that the mean and the standard deviation of the sub-sample we use are zero and one,
respectively.
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6 Dynamic system of equations

Here we set out the equations used in simulation exercises. We first note that since location-
specific production functions are linear in labor, the wage rates are always equal to the labor
productivities, i.e., wit = ait. By substituting ait for wit, the equilibrium conditions that
define the model economy are given by:

l(t) = l(t− 1)G(t)R(t), (87)

where G(t) ≡ diag (egl,1t , egl,2t , ..., egl,nt) is the n× n diagonal matrix of intrinsic population
growth rates, R(t) ≡

(
ρij(t)

)
is the n× n matrix of migration probabilities, and

ρij(t) =
α−ψij (qjt/qit)

−η (ajt/ait)∑n
s=1 α

−ψ
is (qst/qit)

−η (ast/ait)
, (88)

and,

hi,t−1 = η

(
ait
qit

)
l·i(t), (89)

xit = τ iκit (ait)
−αl(1−ακ,i)

ακ,i (pit)
1−ακ,i
ακ,i , (90)

pithit = βegl (1− θi) [qit + (1− δ)pit]hi,t−1, (91)

hit = (1− δ)hi,t−1 + xit. (92)

To write the equilibrium conditions in a compact form, using (91), we note that

pit =
βegl (1− θi) qit

hit/hi,t−1 − βegl (1− θi) (1− δ) . (93)

Also, by substituting (90) into (92), we have

hit = (1− δ)hi,t−1 + τ iκit (ait)
−αl(1−ακ,i)

ακ,i (pit)
1−ακ,i
ακ,i . (94)

Then, substituting (93) into (94) we obtain

hit = (1− δ)hi,t−1 +

τ iκit (ait)
−αl(1−ακ,i)

ακ,i

[
βegl (1− θi) qit

hit/hi,t−1 − βegl (1− θi) (1− δ)

] 1−ακ,i
ακ,i

. (95)
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Then, by substituting (89) into (95), we can eliminate hit and hi,t−1, and after lagging the
resultant equation by one period we have

η

(
ait
qit

)
l·i(t) = (1− δ)η

(
ai,t−1
qi,t−1

)
l·i(t− 1)+

τ iκi,t−1 (ai,t−1)
−αl(1−ακ,i)

ακ,i

 βegl (1− θi) qi,t−1(
ait

ai,t−1

)(
l·i(t)
l·i(t−1)

)(
qi,t−1
qit

)
− βegl (1− θi) (1− δ)


1−ακ,i
ακ,i

.

(96)

Equations (87) and (88), together with (96), provide 2n non-linear dynamic equations in
l·i(t), i = 1, 2, ..., n, and qit, i = 1, 2, ..., n, which can be written compactly as:

ζt = f
(
ζt−1,at,at−1,κt−1, gl,t;Θ

)
, (97)

where Θ is a row vector that contains all the parameters, ζt = [l(t), qt] is a 1 × 2n vector.
In addition, using (89) in (94) and (93) to eliminate hi,t−1, we have

pit =
βegl (1− θi) qit

hitqit/ (ηaitl·i(t))− βegl (1− θi) (1− δ) , (98)

hit = (1− δ)η
(
ait
qit

)
l·i(t) + τ iκit (ait)

−αl(1−ακ,i)
ακ,i (pit)

1−ακ,i
ακ,i

.
(99)

Note that using (98) and (99), we can solve for pit and hit, for given values of l·i(t), qit, ait
and kit. Thus, pt and ht are functions of l(t), qt,at and kt:

χt = g (ζt,at,κt;Θ) , (100)

where χt = [pt,ht] is a 1× 2n vector.
The stochastic processes of at are defined as

lnat = lna +gat +λ ft+za,t,

ft = ρfft−1 + σfεf,t,

za,t = za,t−1diag(ρza,1, ρza,2, ...ρza,n) + εza,tdiag(σza,1, σza,2, ...σza,n),

and the stochastic processes of κt are given by

lnκt = lnκ+ gκt+zκ,t,

zκ,t = zκ,t−1diag(ρzκ,1, ρzκ,2, ...ρzκ,n) + εzκ,tdiag(σzκ,1, σzκ,2, ...σzκ,n).

and the values of gl,t, for t = 1, 2, ..., are exogenously given.
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7 Simulation exercises

To examine the ability of the model in explaining the observed rise in house price dispersion
in the U.S., we simulate the model using the realized state level incomes and land supplies. In
addition, we conduct a series of counterfactual exercises to examine the relative contributions
of different types of spatial heterogeneities in driving up house price dispersion. Third, to
investigate how land supply growth rate differentials and migration costs jointly contribute
to the rising house price dispersion, we carry out additional simulations by varying land
supply growth rates and levels of migration costs. Fourth, to investigate the impacts of
the land-use regulations in California and Texas on local house prices and populations, we
conduct counterfactual simulations by varying the land supply growth rates of California
and Texas, in turn.

Note that to simulate the model given by (97) and (100), we need to set the initial values,
ζ0, and the exogenous variables, at,κt and gl,t. Thus, we start each of our simulations by
specifying the values used for ζ0,at,κt and gl,t, for t = 1, 2, ...., T.

7.1 Baseline simulations

To examine the model’s ability in explaining the rise in house price dispersion, we simulate
the model using the realized state level incomes and land supplies. To do so, we take the state
level productivities and land supplies, i.e., at and κt, as deterministic exogenous variables in
the following simulations. Furthermore, we set at, for t = 0, 1, ..., T , to their realized values,
which are measured using the realized state level real per capita disposable income, and set
κt equal to the trend components of their realized values:

κt = κ̂ diag(eĝκ,1t, eĝκ,2t, ...eĝκ,nt), for t = 0, 1, ..., T ,

where κ̂ and ĝκ are estimated in Section 5.5. The state level intrinsic population growth
rates, gl,t, are set to their actual values, which are estimated in Sections 5.2. The initial
values correspond to the actual 1976 economy, and l(0) and q0 are observed data. The
simulation results are summarized as follows:

First, the model can capture the trends in the house price-to-income ratios at both the
national and the regional levels as shown in Figure 4. In particular, it captures the rise
in house price-to-income ratio in the West and the falls in the Southeast, the Midwest and
the Southwest. Due to the fast growth of land supplies, house prices in the southern states
increase at a slower pace than local incomes, leading to significant drops in house price-to-
income ratios. In addition, the model generates the slight observed decline in the national
house price-to-income ratio.

Second, the model replicates reasonably well the trends in the dispersions of house price-
to-income ratios at both national and regional levels, as shown in Figure 5. The model
generates between-state dispersion increases from 0.11 to 0.39 during the period 1976-2014,
while the counterpart realized value rises from 0.09 to 0.34 (Table 1). In addition, the model
captures the different trends at different geographical levels, i.e., the substantial increase in
the between-region dispersion and the moderate increases of within-region dispersions. As
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will be shown in Section 7.5, this can be partially due to the stronger migration linkages be-
tween states that are geographically close, which tends to prevent the house price differences
between these states from increasing.

Third, the model matches the observed trends in the interstate migration. Figure 6
compares the actual accumulated net migration inflows of the U.S. states during the period
1990-2014 with the model generated counterparts.29 As can be seen, the model captures the
significant migration outflows from states with rising house price-to-income ratios, such as
CA, IL, and NY, and the substantial inflows towards states with decreasing house price-to-
income ratios, such as, FL and TX.

1980 1990 2000 2010

1.2

1.4

1.6

1.8

2

2.2

2.4
The U.S.

1980 1990 2000 2010

1.2

1.4

1.6

1.8

2

2.2

2.4
Northeast

1980 1990 2000 2010

1.2

1.4

1.6

1.8

2

2.2

2.4
Southeast

1980 1990 2000 2010

1.2

1.4

1.6

1.8

2

2.2

2.4
Midwest

1980 1990 2000 2010

1.2

1.4

1.6

1.8

2

2.2

2.4
Southwest

1980 1990 2000 2010

1.2

1.4

1.6

1.8

2

2.2

2.4
West

Figure 4: Log house price-to-income ratios of U.S. regions
(Solid-blue: simulated; Dashed-red: data)

Notes: This figure plots the realized and simulated log house price-to-income ratios of the U.S. and U.S.
regions.

29Note that the IRS migration data are only available for the period 1990-2014.
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Figure 5: Dispersions of log house price-to-income ratios between- and within- U.S. regions
(Solid-blue: simulated; Dashed-red: data)

Notes: This figure plots the realized and simulated dispersions of log house price-to-income ratios between-
and within- U.S. regions.
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Figure 6: Net inward migration flows by states during 1990-2014
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Notes: This figure shows the realized and simulated accumulated net migration inflows towards U.S. states
during the period 1990-2014. States are arranged from top to bottom in alphabetical order.
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7.2 Spatial heterogeneities and house price dispersion

Land supply growth rates proxied by the WRI: The results of the baseline simulation
have shown that the spatial heterogeneity in the growth rate of new land supplies can explain
the trends in the house price dispersions during the period 1977-2014, given the realized
incomes and intrinsic population growth rates. In addition, the estimated state level land
supply growth rates, ĝκ,i, are highly correlated withWRIi as shown in Figure 3. To examine
the extent to which the heterogeneity in regulatory environments that are measured byWRIi
can explain the rising house price dispersion, we use WRIi to proxy the state level growth
rates of land supplies according to (86).30 Then, we conduct a counterfactual simulation
using the proxied land supply growth rates, while keeping everything else the same as in the
baseline simulation. As shown in the Panel (3) of Table 1, the results are not changed much
from those of the baseline simulation, which implies that the rising house price dispersion
can be largely explained by the spatial heterogeneity in land-use regulations.

Homogeneous land supply growth rates: To examine the importance of the spatial
heterogeneity in land supply growth rates across U.S. states in driving up the house price
dispersion, we conduct a counterfactual simulation in which land supply growth rates of all
states are set equal to their national average

gκ,i = ¯̂gκ, for i = 1, 2, ..., n,

where
¯̂gκ =

1

n

∑n
i=1 ĝκ,i, (101)

and ĝκ,i is the actual state-specific land supply growth rate estimated in Section 5.5, while
keeping everything else the same as in the baseline simulation. As shown in Panel (4) of Table
1, the model fails to capture the upward trends in house price-to-income ratio dispersions
when land supply growth rates are homogeneous, which suggests that spatial heterogeneity
in land supply growth rates is an essential factor behind the increasing house price dispersion.

Homogeneous intrinsic population growth rates: In addition, the intrinsic popu-
lation growth rate varies substantially across U.S. states. To examine the importance of the
spatial heterogeneity in intrinsic population growth rate in driving up house price dispersion,
we conduct a counterfactual simulation in which the intrinsic population growth rates of all
states are set to the national average population growth rate over the sample period:

gl,it = ĝl, for i = 1, 2, ..., n, and t = 0, 1, ..., T ,

where ĝl is the average growth rate of the national population over the period 1977-2014.
At the same time, we keep everything else the same as in the baseline simulation. However,
the results are not changed much as shown in Panel (5) of Table 1. Thus, we conclude that
heterogeneity in intrinsic population growth rate may not be an important reason for the
rise in house price dispersion.

30Since the WRI data is not available for Washington, D.C., we keep its land supply growth rate as it is
in the baseline simulation, i.e., ĝκ,DC

.

34



7.3 Land supply growth differentials, mobility and dispersion

As previously discussed, population mobility plays a key role in determining the impacts
of land supply growth differentials on house price dispersion. To examine how land supply
growth differentials and migration costs jointly contribute to the rise in house price disper-
sion, we carry out simulations assuming different levels of land supply growth differentials
and migration costs. We adjust the weight of migration costs in utility function through ψ
(see (16)). As ψ increases, population mobility drops. In addition, we adjust the degree of
land supply growth differentials by letting the state-specific land supply growth rates vary
between their actual levels and the national average. Let % denote the counterfactual land
supply regime. Under regime %, the growth rates of land supplies are given by

gκ,i(%) = (1− %)¯̂gκ + %ĝκ,i, for i = 1, 2, ..., n, (102)

where ¯̂gκ is the national average of land supply growth rate defined by (101) in Section 7.2,
% ∈ [0, 1], and a higher % corresponds to a higher level of land supply growth differentials.

We simulate the model for different pairs of (% and ψ) = (0.60, 0.80, 1, 1.2, 1.4), and
keeping everything else the same. The results are summarized in Table 2, and show that the
dispersion of log house price-to-income ratios would be significantly lower if migration costs
were reduced. For example, when % = 1, dispersion would be around 0.1 (0.2) less when ψ
is reduced to 0.8 (0.6). The decreases in ψ also lower the national log house price-to-income
ratio, since more people would move out of high price growth states as migration costs are
reduced. However, it has much smaller impacts on the level than on the dispersion of house
price-to-income ratios. In addition, both land supply growth differentials and migration
costs play important roles in driving up house price dispersion; reducing either of them can
significantly lower house price dispersion in the U.S.. Moreover, increases in land supply
growth differentials would lead to larger rises in house price dispersion when the magnitudes
of migration costs are larger. For example, when ψ = 0.6 dispersion increases by 0.255, from
0.192 to 0.447, as the level of land supply growth differentials, %, increases from 0.6 to 1.4.
But, when ψ = 1.4, dispersion would increase by 0.299, from 0.273 to 0.572, as % increases
from 0.6 to 1.4.
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7.4 Land-use regulations in California and Texas

Land-use regulations can have important implications not only for local house prices but
could also have important implications for spatial allocation of the population. Deregulating
in states with stricter land-use restrictions can affect the population allocation across U.S.
states through house price channel. According to Herkenhoff et al. (2018), loosening the
land-use restrictions in California to its 1980s level would raise its population in 2014 by
6 million, i.e., around 20% of its actual population in 2014. However, this study assumes
perfect mobility, and by not taking into account migration friction, could be overestimating
the effects of land-use deregulations on population reallocation.

Here, we investigate the impacts of local land-use regulations, which are the main factors
that determine the land supplies for housing, on house prices and population allocation. In
particular, we consider California and Texas in our counterfactual experiments, which are
at the two extreme poles of land-use regulation continuum; The former, one of the most
regulated states, has experienced considerable house price rises during the 1976-2014 period,
while the later, one of the least regulated states, has experienced little house price rise during
the same period. In the following counterfactual simulations, we let the average land supply
growth rates of California and Texas to vary between their actual values and the national
average land supply growth rate. Let gκ,CA(%) and gκ,TX(%) denote the counterfactual land
supply growth rates of California and Texas, and consider the following rates

gκ,i∗(%) = (1− %)ĝκ,i∗ + %¯̂gκ, for i∗ = CA, TX (103)

where ¯̂gκ is the national average of land supply growth rate defined by (101) in Section 7.2,
% ∈ [0, 1], and ĝκ,i∗ is the estimated actual land supply growth rate of State i∗.

We first consider a land-use deregulation in California. To this end, we simulate the
model while setting the land supply growth rate of California to gκ,CA(%), given by (103), for
% = {1/4, 1/2, 3/4, 1}, and keeping everything else the same as in the baseline simulation in
Section 7.1. Note that the estimated land growth rate of California, ĝκ,CA, is less than the
national average, ¯̂gκ. Thus, a larger % corresponds to a higher degree of deregulation. As
shown in Table 3, the land supply growth rate of California has considerable impacts on the
local house prices, but relatively small impacts on the local population. Figure 7 shows the
difference between the state level population predicted by the counterfactual simulation in
which the land supply growth rate of California is raised to the national average and those
predicted by the baseline simulation. As this figure shows, if the growth rate of land supply
in California were raised to the national average, the 2014 population of California would
increase by around 1 million, which is substantially less than the 6 million increase obtained
in the deregulation experiment conducted by Herkenhoff et al. (2018).31 In addition, the
reallocation of population towards California are mainly from Texas, and the neighboring
states of California, such as, Arizona, Nevada, Oregon, and Washington.

31But it is important to note, however, that the deregulation experiments in our paper is different from
that in Herkenhoff et al. (2018). In their paper, deregulation refers to setting the level of regulation to its
historical level.
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Table 3: Effects of loosening of land-use regulations in California

Notes: This table shows the impacts of land-use deregulation in California on the local house prices and
population. The third column reports the results from the baseline simulation. The fourth to last columns
report the results from the counterfactual simulations in which the land supply growth rate of California is
set to gκ,CA(%), given by (103), where % = {1/4, 1/2, 3/4, 1}.

We then consider a tightening of land-use regulation in Texas. To this end, we simulate
the model while setting the land supply growth rate of Texas to gκ,TX(%), given by ((103),
for % = {1/4, 1/2, 3/4, 1}, and keeping everything else the same as in the baseline simulation
in Section 7.1. Note that the estimated land growth rate of Texas, ĝκ,TX , is higher than the
national average, ¯̂gκ. Thus, a larger % corresponds to more tightened land-use regulation.
Similar to the deregulation experiment in California, tightening land-use regulation in Texas
significantly impact local house prices, but only has marginal effects on the State’s population
(see Table 4). Figure 8 shows the difference between the state level population predicted by
the counterfactual simulation in which the land supply growth rate of Texas is reduced to
the national average and those predicted by the baseline simulation. As this figure shows,
if the growth rate of land supply in Texas were reduced to the national average, the 2014
population of Texas would decrease by around 0.6 million, and the reallocation of population
from Texas are mainly towards California, Florida, and the neighboring states of Texas, such
as, Louisiana and Oklahoma.
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Table 4: Effects of tightening of land-use regulations in Texas

Notes: This table shows the impacts of tightening land-use regulation in Texas on the local house prices and
population. The third column reports the results from the baseline simulation. The fourth to last columns
report the results from the counterfactual simulations in which the land supply growth rate of Texas is set
to gκ,TX(%), given by (103), where % = {1/4, 1/2, 3/4, 1}.

Our counterfactual exercises do show that changes in local land-use regulations can af-
fect population allocation via the house price channel, but its effects tend to be relatively
moderate as compared to recent existing models of housing and migration, which assume
population are perfectly mobile, such as, Hsieh and Moretti (2015) and Herkenhoff et al.
(2018). However, changes in land use regulations affect house prices much more as com-
pared to their effects on allocation of population.
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Figure 7: Effects of loosening of land-use regulations in California on population by states

Notes: This figure shows the counterfactual changes in U.S. population by states in 2014 in response to an
exogenous increase in land supply growth rate of California to the national average.

41



Level 105
8 6 4 2 0 2 4

A
lp

ha
be

tic
al

 r
an

ki
ng

s 
of

 s
ta

te
s

0

5

10

15

20

25

30

35

40

45

50

WY
WI
WV
WA
VA
VT
UT

TX
TN
SD
SC
RI
PA
OR
OK
OH
ND
NC
NY
NM
NJ
NH
NV
NE
MT
MO
MS
MN
MI
MA
MD
ME
LA

KY
KS
IA
IN
IL

ID
GA
FL

DC
DE
CT
CO

CA
AR
AZ
AL

Figure 8: Effects of tightening of land-use regulations in Texas on population by states

Notes: This figure shows the counterfactual changes in U.S. population by states in 2014 in response to an
exogenous decrease in land supply growth rate of Texas to the national average.
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7.5 Impulse responses to a regional shock

To better understand the migration linkages between regional housing markets, we analyze
the responses of the economy to a regional shock. In particular, we assume that the economy
is initially on the balanced growth path and consider a one standard deviation negative
regional productivity shock to California. The simulated innovations used in the computation
of the impulse responses are independently drawn from the standard normal distribution.
For the details of the computation of the impulse responses, see Section S4 of the online
supplement. The impulse responses are shown in Figures 9, 11, 10 and 12. Figure 9 shows
the responses of the house price-to-income ratio (left panel) and the population (right panel)
of CA after the shock. As shown in these figures, the adjustments of population and house
price to the shock are very slow, which takes decades. This is due to the slow depreciation of
housing stocks and the sluggishness in the migration. Figures 10 and 11 show the responses
of house price-to-income ratios and populations of U.S. states (except for CA) to the negative
regional productivity shock to CA, where the states are ordered by their distances to CA.
Figure 12 shows the snapshots of the responses of house price-to-income ratios of U.S. states
(except for CA). Each panel shows the responses in the period noted at the top. In each
panel, the horizontal axis corresponds to state’s rank in terms of their geographical closeness
to CA. In response to the shock, house price-to-income ratios rise in all states. However,
the responses in the neighboring states (e.g., NV and AZ), and in some of the West Coast
states (e.g., DC and NY) are quicker and stronger. The responses in these states reach their
peaks more quickly and their peak values tend to be larger as well. Thus, the snapshots of
responses are U shaped.
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Figure 9: Reponses of CA to a negative regional shock to local productivity

Notes: This figure shows the responses of log house price-to-income ratio and log population of California
to a one standard deviation negative regional shock to local productivity.
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Figure 12: Snapshots of the responses of the log house price-to-income ratios
of U.S. states to a negative regional productivity shock to CA

Notes: Each panel shows the responses of the log house price-to-income ratios of U.S. states (except for CA)
to a one standard deviation negative regional productivity shock to CA for the period noted at the top. The
unit of t is year. States are ordered ascendingly by their distances to CA. The horizontal axis corresponds
state’s rank in terms of distance to CA. The unit on the vertical axis is per cent.
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8 Concluding remarks

This paper presents a spatial equilibrium model of regional housing markets in which regional
house prices are jointly determined with migration flows. It extends existing studies by
explicitly modelling location-to-location migration. Agent’s optimal location choice and
the resultant migration process is Markovian with the transition probabilities across all
location pairs given as non-linear functions of income and housing cost differentials, which
are endogenously determined. These features allow the model to simultaneously account for
the observed rise in the house price dispersion and the interstate migration flows over the
period 1976-2014.

Spatial heterogeneity in land-use regulation is the key driving force behind the rise in
house price dispersion. Degree of population mobility is also an important factor in deter-
mining how land-use regulations affect house price dispersion and migration. Spatial house
price dispersion tends to rise when mobility is low and fall when mobility is high. Further-
more, our model takes into account the substantial variation of mobility across the U.S..
Impulse response reported in the paper suggest that migrations between states that are ge-
ographically close are more responsive to changes in income and housing cost differentials,
which in turn help accounting for the observed differences in trends in house price dispersions
within and between regions. Our counterfactual exercises show that changes in land-use reg-
ulations do affect population allocation via the house price channel, but its effects tend to
be relatively moderate as compared to recent existing models of housing and migration that
assume population are perfectly mobile.

The analysis of this paper can be developed extended in a number of directions. The
financial side of the housing market (briefly discussed in the online supplement) can be
studied further, with the aim of investigating possible implications of rising house price
dispersion for macroeconomic fluctuations. An econometrically estimated version of the
model can also be used for the analysis and predication of house price diffusion across states
or MSAs. Finally, given the importance of labor mobility for a stable spatial house price
dispersion, it is also worth considering the factors that determine population mobility, their
nature and variations overtime and across space.
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Appendices

A Mathematical derivations and proofs

A.1 Derivation of migration probabilities

Here we derive the migration probability equation (15). For the worker τ who is born in
location i, the probability of residing in location j∗ is

Prob (j∗ is chosen) = Prob (vτ ,t,ij∗ > vτ ,t,ij ∀j 6= j∗) ,

where
vτ ,t,ij = (lnwjt − lnwit)− η (ln qjt − ln qit) + (ετ ,t,ij − ετ ,t,ii)− ψ lnαij.

Recall that ετ ,t,ij is IID for all τ , t, i and j, and has an extreme value distribution, with
the cumulative distribution function F (ε) = e−e

−ε
, and the probability density function

f(ε) = e−εe−e
−ε
. Consider the following decomposition of vτ ,t,ij,

vτ ,t,ij = vt,ij + (ετ ,t,ij − ετ ,t,ii)

where
vt,ij ≡ (lnwjt − lnwit)− η (ln qjt − ln qit)− ψ lnαij.

Note that vt,ij is known by worker τ , and will be treated as given. The probability that
worker τ selects region j∗ as her migration destination can be written as

Prob (j∗ is chosen) = Prob (vτ ,t,ij∗ + ετ ,t,ij∗ − ετ ,t,ii > vτ ,t,ij + ετ ,t,ij − ετ ,t,ii, ∀j 6= j∗) ,

= Prob (ετ ,t,ij∗ + vτ ,t,ij∗ − vτ ,t,ij > ετ ,t,ij, ∀j 6= j∗) .

Conditional on ετ ,t,ij∗ , the probability that location j∗ is chosen by worker τ is given by

Prob (j∗ is chosen |ετ ,t,ij∗) =
∏
j 6=j∗

F (ετ ,t,ij∗ + vτ ,t,ij∗ − vτ ,t,ij) .

Since ετ ,t,ij∗ is also random, the probability that location j∗ is chosen is the integral of
Prob (j∗ is chosen |ετ ,t,ij∗) over its support and weighted by its density function, namely

Prob (j∗ is chosen) =

∫ +∞

−∞

[∏
j 6=j∗

e−e
−(ε+vτ,t,ij∗−vτ,t,ij)

]
e−εe−e

−ε
dε

=

∫ +∞

−∞

[∏
j 6=j∗

e−e
−(ε+vτ,t,ij∗−vτ,t,ij)

]
e−εe−e

−(ε+vτ,t,ij∗−vτ,t,ij∗)
dε

=

∫ +∞

−∞

[∏
j

e−e
−(ε+vτ,t,ij∗−vτ,t,ij)

]
e−εdε

=

∫ +∞

−∞
exp

[
−e−ε

∑
j

e−(vτ,t,ij∗−vτ,t,ij)

]
e−εdε.
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Define s = e−ε. Thus, ds = −e−εdε. Then,

Prob (j∗ is chosen) =

∫ +∞

0

exp

[
−s
∑
j

e−(vτ,t,ij∗−vτ,t,ij)

]
ds

= −
exp

[
−s
∑

j e
−(vτ,t,ij∗−vτ,t,ij)

]
∑

j e
−(vτ,t,ij∗−vτ,t,ij)

∣∣∣∣∣∣
+∞

0

=
1∑

j e
−(vτ,t,ij∗−vτ,t,ij)

=
evτ,t,ij∗∑
j e

vτ,t,ij
.

A.2 Balanced growth paths

The long run rent-to-price ratio in location i can be obtained using (60):

q∗i
p∗i

= Γi, (A.1)

where Γi is defined as

Γi =
1

β (1− θi)
− (1− δ). (A.2)

Using this result in (59), we obtain the long-run demand function for housing in location i:

h∗i =
ηw∗i l

∗
·i

Γip∗i
. (A.3)

By substituting (57) into (58), we obtain the long-run housing supply function in location i:

h∗i = δ−1τ iκi(w
∗
i )
−αl(1−ακ,i)

ακ,i (p∗i )
1−ακ,i
ακ,i . (A.4)

By substituting (A.4) into (A.3) for h∗i , we have

δ−1τ iκi(w
∗
i )
−αl(1−ακ,i)

ακ,i (p∗i )
1−ακ,i
ακ,i =

ηw∗i l
∗
·i

Γip∗i
.

Using the above equation, we can solve for p∗i

p∗i =

(
δη

τ iκi

)ακ,i
Γ
−ακ,i
i (l∗·i)

ακ,i (w∗i )
ακ,i+αl(1−ακ,i) , (A.5)

and by substituting (A.5) into (A.1) for p∗i , we have

q∗i =

(
δη

τ iκi

)ακ,i
Γ
1−ακ,i
i (l∗·i)

ακ,i (w∗i )
ακ,i+αl(1−ακ,i) . (A.6)

Finally, substituting (A.5) into (A.4) for p∗i , we obtain

h∗i =

(
δ

τ iκi

)−ακ,i ( η

Γi

)1−ακ,i
(l∗·i)

1−ακ,i (w∗i )
(1−αl)(1−ακ,i) . (A.7)
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A.3 Lemmas: statements and proofs

Lemma A1 Consider the following Markovian process in l∗(t)

l∗(t) = l∗(t− 1)R∗(t) (A.8)

where l∗(t) = [l∗·1(t), l
∗
·2(t), ..., l

∗
·n(t)] is the 1×n row vector of detrended population values, and

R∗(t) = (ρ∗ij(t)) is the n×n transition matrix with the typical element, ρ∗ij(t) defined by (51)
that depends non-linearly on l∗(t), and n is a fixed integer. Suppose that the initial population
vector, l∗(0) = l(0), is given and satisfies the conditions l(0) > 0, and

∑n
i=1 l·i(0) = L0,

where 0 < L0 < K. Then l∗(t) converges to a finite population vector, l∗ (∞), or simply
l∗ = [l∗·1, l

∗
·2, ..., l

∗
·n], as t→∞, with l∗·i ≥ 0, and

∑n
i=1 l

∗
·i = L0

Proof: We first note that by construction 0 ≤ ρ∗ij(t) ≤ 1 for all i and j, and
∑n

j=1 ρ
∗
ij(t) =

1, for all j. Hence, for each t, R∗(t) is a right stochastic matrix with R∗(t)τ n = τ n, where
τ n is an n×1 vector of ones, for all t. Recursively solving (A.8) forward from l∗(0), we have

l∗(t) = l∗(0)
[
Πt
s=1R

∗(s)
]
,

But it is easily seen that [Πt
s=1R

∗(s)] τ n = τ n, and hence

n∑
i=1

l∗·i(t) = l∗(t)τ n = l∗(0)τ n = L0. (A.9)

Also, since l∗(0) = l(0) > 0, ρ∗ij(t) ≥ 0, and n is finite, then l∗(t) = [l∗·1(t), l
∗
·2(t), ..., l

∗
·n(t)] ≥ 0,

for all t, and in view of (A.9) we have supit(l
∗
·i(t)) ≤ L0 < K. Therefore, l∗(t) must converge

to some vector l∗ which is bounded in t, as t→∞. �

Lemma A2 Consider the system of non-linear equations in l·i, for i ∈ In:

l = lR (l) (A.10)

where l = [l·1, l·2, ..., l·n], l ≥ 0,
∑n

i=1 l·i = L0, 0 < L0 < K, n is fixed, and the typical element
of matrix R is given by

ρij =
ψij (l·j)

−ϕj∑
s∈In ψis (l·s)

−ϕs , (A.11)

where ψij and ϕj > 0, for any i and j ∈ In. Then, the solution to (A.10) must be strictly
positive, l·i > 0 for i ∈ In, and unique.

Proof. We first show that l·i > 0, and hence 1 > ρij > 0, for all i and j ∈ In. Consider
a population vector l that solves (A.10). Note that

∑n
i=1 l·i > 0, and l·i is non-negative for

any i ∈ In. Thus, l·i > 0 has to hold for at least one i. Without loss of generality, we assume

l·1 > 0. (A.12)
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Note also that since l·1 is the first element in l, then from (A.10) we have

l·1 =
n∑
i=1

ρi1l·i, (A.13)

where, upon using (A.11), ρi1 is given by

ρi1 =
1

1 +
∑

s 6=i

(
ψis
ψi1

)
(l·1)

ϕ1

(l·s)
ϕs

, for i = 1, 2, ..., n. (A.14)

Note that by assumption ψij and ϕj > 0, and it is supposed that l·1 > 0. Hence, if l·s = 0,
for any s ∈ {2, 3, ..., n}, then ρi1 = 0, for all i ∈ In, and using (A.13) it follows that l·1 = 0,
which contradicts our supposition. The same line of reasoning can be applied to any other
elements of l, and we must have l·i > 0, for any i ∈ In.

Given that l·i > 0, for all i, we now show that (A.10) cannot have more than one solution.
Suppose there exist two solutions l(1) and l(2), with l(1) and l(2) > 0, l(1) 6= l(2), such that
l(1) = l(1)R

(
l(1)
)
and l(2) = l(2)R

(
l(2)
)
. Denote the jth elements of l(1) and l(2) by l(1)·j and

l
(2)
·j , respectively. Split the locations into two groups, I+n and I−n , where I+n ≡ {j | l

(2)
·j > l

(1)
·j ,

j ∈ In}, and I−n ≡ {j | l
(2)
·j ≤ l

(1)
·j , j ∈ In}, and note that I+n ∩ I−n = ∅ and I+n ∪ I−n = In.

That is,

l
(2)
·j

{
> l

(1)
·j if j ∈ I+n

≤ l
(1)
·j if j ∈ I−n

. (A.15)

Further, since
∑n

j=1 l
(1)
j =

∑n
j=1 l

(2)
j = L0, and l

(1) 6= l(2), it also follows that neither I+n nor
I−n can be empty. Thus, we have ∑

j∈I+n

l
(2)
·j >

∑
j∈I+n

l
(1)
·j . (A.16)

Recall that ρ(1)ij and ρ
(2)
ij are the typical elements of R

(
l(1)
)
and R

(
l(2)
)
, respectively. For

any i ∈ In, using (A.11), we have (recall that l(1)·j > 0 and l(2)·j > 0)

∑
j∈I+n ρ

(2)
ij∑

j∈I−n ρ
(2)
ij

=

∑
j∈I+n ψij

(
l
(2)
·j

)−ϕj
∑

j∈I−n ψij

(
l
(2)
·j

)−ϕj , (A.17)

∑
j∈I+n ρ

(1)
ij∑

j∈I−n ρ
(1)
ij

=

∑
j∈I+n ψij

(
l
(1)
·j

)−ϕj
∑

j∈I−n ψij

(
l
(1)
·j

)−ϕj . (A.18)

Since by (A.15), l(2)·j > l
(1)
·j , if j ∈ I+n , and l

(2)
·j ≤ l

(1)
·j , if j ∈ I−n , then (recall that ψij > 0 and

ϕj > 0)
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∑
j∈I+n

ψij

(
l
(2)
·j

)−ϕj
<

∑
j∈I+n

ψij

(
l
(1)
·j

)−ϕj
,

∑
j∈I−n

ψij

(
l
(2)
·j

)−ϕj
≥

∑
j∈I−n

ψij

(
l
(1)
·j

)−ϕj
.

Hence, using the above results in (A.17) and (A.18) we have∑
j∈I+n ρ

(2)
ij∑

j∈I−n ρ
(2)
ij

<

∑
j∈I+n ρ

(1)
ij∑

j∈I−n ρ
(1)
ij

, ∀ i ∈ In,

and it follows that∑
j∈I+n ρ

(2)
ij +

∑
j∈I−n ρ

(2)
ij∑

j∈I+n ρ
(2)
ij

>

∑
j∈I+n ρ

(1)
ij +

∑
j∈I−n ρ

(1)
ij∑

j∈I+n ρ
(1)
ij

, ∀ i ∈ In.

Since ρ(1)ij and ρ
(2)
ij are migration probabilities,∑

j∈I+n

ρ
(2)
ij +

∑
j∈I−n

ρ
(2)
ij =

∑
j∈I+n

ρ
(1)
ij +

∑
j∈I−n

ρ
(1)
ij = 1.

Thus, we have ∑
j∈I+n

ρ
(2)
ij <

∑
j∈I+n

ρ
(1)
ij , ∀ i ∈ In. (A.19)

Note that l(1)·j and l(2)·j are given by

l
(1)
·j =

∑
i∈In

ρ
(1)
ij l

(1)
·i and l

(2)
·j =

∑
i∈In

ρ
(2)
ij l

(2)
·i .

Thus, we have ∑
j∈I+n

l
(2)
·j −

∑
j∈I+n

l
(1)
·j =

∑
j∈I+n

∑
i∈In

ρ
(2)
ij l

(2)
·i −

∑
j∈I+n

∑
i∈In

ρ
(1)
ij l

(1)
·i ,

=
∑
i∈In

l
(2)
·i

∑
j∈I+n

ρ
(2)
ij −

∑
i∈In

l
(1)
·i

∑
j∈I+n

ρ
(1)
ij .

Since
∑

j∈I+n ρ
(2)
ij <

∑
j∈I+n ρ

(1)
ij as previously shown in (A.19), then∑

j∈I+n

l
(2)
·j −

∑
j∈I+n

l
(1)
·j <

∑
i∈In

l
(2)
·i

∑
j∈I+n

ρ
(1)
ij −

∑
i∈In

l
(1)
·i

∑
j∈I+n

ρ
(1)
ij ,

=
∑
i∈In

(l(2)·i − l(1)·i ) ∑
j∈I+n

ρ
(1)
ij

 . (A.20)
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Since by (A.15), l(2)·i > l
(1)
·i , if i ∈ I+n , and l

(2)
·i ≤ l

(1)
·i , if i ∈ I−n , and

∑
j∈I+n ρ

(1)
ij > 0 by

construction, then

∑
i∈In

(l(2)·i − l(1)·i ) ∑
j∈I+n

ρ
(1)
ij


=

∑
i∈I+n

(l(2)·i − l(1)·i ) ∑
j∈I+n

ρ
(1)
ij

+
∑
i∈I−n

(l(2)·i − l(1)·i ) ∑
j∈I+n

ρ
(1)
ij

 ,
<

∑
i∈I+n

(l(2)·i − l(1)·i ) ∑
j∈I+n

ρ
(1)
ij

 .
Note that ρ(1)ij are migration probabilities, and

∑
j∈I+n ρ

(1)
ij < 1 by construction, and that

l
(2)
·i − l

(1)
·i > 0, if i ∈ I+n . Then, we have

∑
i∈I+n

(l(2)·i − l(1)·i ) ∑
j∈I+n

ρ
(1)
ij

 < ∑
i∈I+n

(
l
(2)
·i − l

(1)
·i

)
,

and thus ∑
i∈In

(l(2)·i − l(1)·i ) ∑
j∈I+n

ρ
(1)
ij

 < ∑
i∈I+n

l
(2)
·i −

∑
i∈I+n

l
(1)
·i ,

which contradicts (A.20). Thus, l 6= l∗ cannot hold.�

A.4 Derivation of new land supplies, κit
To derive (80), we first note that (22) can be re-written as

hi,t−1 = η

(
wit
qit

)
l·i(t). (A.21)

By using the above equation in (35) to eliminate hi,t−1, we have

hit = βegl (1− θi)
[
qit
pit

+ (1− δ)
]
η

(
wit
qit

)
l·i(t) (A.22)

Then, by using (A.21) and (A.22) in (37), we have

xit = hit − (1− δ)hi,t−1,

=

{
βegl (1− θi)

[
qit
pit

+ (1− δ)
]
− (1− δ)

}
η

(
wit
qit

)
l·i(t).
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By combing the above equation with (28), we have

κit =
xit

τ i (wit)
−αl(1−ακ,i)/ακ,i (pit)

(1−ακ,i)/ακ,i
=
γit
τ i
,

where

γit =

{
βegl (1− θi)

[
qit
pit

+ (1− δ)
]
− (1− δ)

}
η
(
wit
qit

)
l·i(t)

(wit)
−αl(1−ακ,i)/ακ,i (pit)

(1−ακ,i)/ακ,i
.

B Data sources and measurements

B.1 Interstate migration and population growth

Between states migration flows are measured using annual data from the Internal Revenue
Service (IRS).A1 The IRS compiles state-to-state migration data using year-to-year address
changes reported on individual income tax returns filed with the IRS, which are available
from 1990 to 2014.A2 Those who file income tax returns with the IRS in two consecutive
years in the same state are considered as non-migrants, and migrants otherwise. State level
population for 1976-1990 are obtained from Census data.A3 We focus on the 48 states and
the District of Columbia on the U.S. mainland, and treat Alaska and Hawaii as “foreign
countries”in our analysis.

B.1.1 Population growth rates by states

For the years 1990-2014, we compute migration flows and the intrinsic population growth
rates of U.S. states using the IRS state-to-state migration flow data. Migrants are considered
as the residents of the destination states for the year they migrate.A4 Thus, the population
of State j in year t is measured as the number of tax filers (and their dependents) who report
a home address in State j at the start of year t+1 as recorded by the IRS for the period from
t to t+ 1. We decompose the population changes of U.S. states into an intrinsic component
(due to births and deaths) and a net inward migration component. Let

li·(t) ≡
n∑
j=1

lij(t), and l·j(t) ≡
n∑
i=1

lij(t), (A.23)

where for i 6= j, lij(t) denotes the population flow from State i to State j in year t, measured
using the IRS data (see also (1) and (2)). The number that remain in State i is denoted by

A1For further information on the IRS migration flow data, see https://www.irs.gov/uac/
soi-tax-stats-migration-data.
A2The total number of exemptions recorded by the IRS each year is around 80% of the U.S. population.
A3For further information on the Census population data, see https://www.census.gov/topics/

population.html.
A4For example, suppose a person files income tax returns with the IRS at the starts of year t and year t+1,

and the two addresses reported are in State i and State j respectively. If i = j, this person is considered as
a resident in State j in year t. However, if i 6= j, the time she migrates to State j can be any point between
the starts of year t and year t+ 1. In our analysis, we consider this person as a resident in State j for year t.
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lii(t). li·(t)− lii(t) measures the outward migration from State i, and l·i(t)− lii(t), measures
the inward migration to State i. The change in population of State i in period t, defined by
l·i(t)− l·i(t− 1) can now be decomposed as:

l·i(t)− l·i(t− 1) = [l·i(t)− li·(t)] + [li·(t)− l·i(t− 1)] . (A.24)

where the first component l·i(t) − li·(t) is the net inward migration to State i, and the
reminder term, li·(t) − l·i(t − 1), which we refer to as the intrinsic population change of
State i. We decompose the population growths at both state and regional levels using the
above formula. At the regional level, the Southeast and the Southwest have been attracting
population from the rest of the country, while the West, the Midwest, and especially the
Northeast have experienced substantial population outflows, as shown in Figure 13. For
the five most populated states in the U.S., Florida and Texas have experienced considerable
population inflows, while New York and California have experienced substantial population
outflows, as shown in Figure 14.

In addition, the actual state level intrinsic population growth rates, ĝl,1t, for i = 1, 2, ..., n,
are measured as

ĝl,it =
l·i(t)− l·i(t− 1)∑n

i=1 l·i(t− 1)
(A.25)

For the period of 1976-1990, state level populations are measured using Census population
data, which are scaled such that their 1990 values match those implied by the IRS migration
flow data. The intrinsic population growth rates of U.S. states during this period are inferred
using the migration equation (6), which can be re-written as

l(t− 1)G(t)R(t) = l(t).

Note that R(t), which is a stochastic matrix, is invertible. Thus, we have

l(t− 1)G(t) = l(t)R(t)−1.

By right multiplying both sides of the above equation by a n×n identity matrix, In, we have

l(t− 1)G(t)In = l(t)R(t)−1In ⇒ diag (l(t− 1)G(t)) = diag
(
l(t)R(t)−1

)
Recall that G(t) = diag (gl,1t, gl,2t, ..., gl,nt), is a diagonal matrix, and l(t− 1) is a 1× n row
vector. Thus, diag (l(t− 1)G(t)) = diag (l(t− 1)) G(t). Thus, we have

diag (l(t− 1)) G(t) = diag
(
l(t)R(t)−1

)
,

which implies
G(t) = [diag (l(t− 1))]−1 diag

(
l(t)R(t)−1

)
.

Thus, the matrix of state level intrinsic population growth rates, G(t), is estimated as

Ĝ(t) = [diag (l(t− 1))]−1 diag
(
l(t)R̂(t)−1

)
, (A.26)
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where Ĝ(t) = diag (ĝl,1t, ĝl,2t, ..., ĝl,nt) contains the estimates of state level intrinsic popu-
lation growth rates, the state-level populations, l(t), are measured using Census data, and
the migration probability matrix, R(t) = (ρij,t), is estimated using the migration probability
equation (15):

ρ̂ij,t =
α̂−ψij (qjt/qit)

−η (wjt/wit)∑n
s=1 α̂

−ψ
is (qst/qit)

−η (wst/wit)
,

where ψ was set to one and the migration costs, αij, were estimated in Section 5.2, and the
incomes, wit, and the annual housing rents, qit, are from data.

B.1.2 Distance and population mobility

We now consider how the size of migration varies with the distance between origin and
destination of the migration flows. The distance between two states is measured as the
distance between their centers of population that are defined by Census.A5 States that are
within the x mile radius of State i are called the x-mile-neighbors of State i. Let Ii(x) be
the collection of the indices of the x-mile-neighbors of State i. The number of migrants who
migrate from State i to its x-mile-neighbors is denoted by mi(x). Thus, the share of migrants
of State i who move to its x-mile-neighbors, denoted by πit(x), is given by

πit(x) =
mit(x)

mit(∞)
, (A.27)

where mit(∞) is the total number of migrants from State i in year t. Then, at the national
level, the share of migrants who move to the x-mile-neighbor of the originating states is given
by

πt(x) =

∑n
i=1mit(x)∑n
i=1mit(∞)

. (A.28)

Figure 15 plots the average of πt(x) over the 1990-2014 period against x, along with the 5
and 95 per cent quantile bands. As the figure shows, around 70% of the U.S. migrants move
to a 1000-mile-neighbor of the originating states.

As an alternative measure, we also consider adjacency as the definition of neighborhood.
A state is an order-1 neighbor of State i if it is geographically adjacent to State i. A state is
an order-2 neighbor of State i if it is geographically adjacent to State i itself or its order-1
neighbors. For example, Nevada is an order-1 neighbor of California, Utah is an order-1
neighbor of Nevada, and Utah is in an order-2 neighbor of California. As shown in Table
5, during 1990-2014, 50% of the U.S. migrants move to order-2 neighbor of the originating
states.
A5For further details about the definitions of population centers, see https://www.census.gov/geo/

reference/centersofpop.html.
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Figure 13: Decomposition of regional population growth during 1990-2014

Notes: This figure shows the decomposition of the cumulative population growth rates of U.S. regions during
1990-2014. The cumulative population growth rate of each region is decomposed into two parts: (1) the
cumulative intrinsic population growth rate (blue bar) and (2) the ratio of the cumulative net migration
inflow to the initial population (yellow bar).
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Figure 14: Decomposition of population growth for selected U.S. states during 1990-2014

Notes: This figure shows the decomposition of the cumulative population growth rates of NY, FL, IL, TX
and CA during 1990-2014. The cumulative population growth rate of each State is decomposed into two
parts: (1) the cumulative intrinsic population growth rate (blue bar) and (2) the ratio of the cumulative net
migration inflow to the initial population (yellow bar).
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Table 5: Patterns of migration of different distance categories

Notes: The first three columns show the shares of the U.S. migrants to states within 500 miles, 1000 miles,
and 1500 miles of the states from which migrants originated. The last two columns show the shares of the
U.S. migrants who move to an order-1 and order-2 neighbor of the origin states.
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Figure 15: Patterns of migration and geographical distance

Notes: This figure plots πt(x) defined by (A.28) over the 1990-2014 period against x, along with its 5 and 95
per cent quantiles, where πt(x) is the share of the U.S. migrants who migrate to the x-miles of neighboring
states.

B.2 State level real per capita incomes

The state level per capita annual disposable incomes are obtained from the Bureau of Eco-
nomic Analysis (BEA).A6 Real incomes are computed by dividing state level nominal incomes
by state level prices of non-housing consumption goods. The relative prices of non-housing
consumption goods across U.S. states for the year 2000 are estimated following the proce-
dure in Holly et al. (2010) (see their Table A.1), where the American Chamber of Commerce
Researchers Association (ACCRA) cost of living indices for non-housing items are used at
the metropolitan statistical areas.A7 Similarly, state level non-shelter Consumer Price Index
(CPI) series are constructed using the U.S. Bureau of Labor Statistics (BLS) non-shelter
CPIs of the cities and areas according to the Holly et al. (2010) procedure.A8 Then, state
level prices of non-housing consumption goods are complied by combining the relative prices
of non-housing goods across U.S. states for 2000 and the state level non-shelter (CPI) series
over 1976-2014.
A6For further information on the BEA state level per capita annual disposable income data (Table SA51),

see https://www.bea.gov/index.htm.
A7The Cost of Living Index (COLI), formerly the ACCRA Cost of Living Index is a measure of living cost

differences among urban areas in the United States compiled by the Council for Community and Economic
Research. For further information, see http://coli.org/.
A8For further information on the BLS city level CPI data, see https://www.bls.gov/data/.
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B.3 State level real house prices and rents

The state level median house prices for 1976-2014 are complied by combining the state level
median house prices in 2000 obtained from the Historical Census of Housing Tables, and the
state level House Price Index obtained from U.S. Federal Housing Finance Agency (FHFA).A9

The FHFA House Price Index are available over the period 1976Q1 to 2015Q4. The annual
house price index is computed using the simple average of the quarter indices over the year.
Real house prices are obtained by dividing nominal house prices by prices of non-housing
consumption goods.

The state level annual housing rents are computed for 1976-2014 by combing the state
level annual housing rents for 2000 obtained from the Historical Census of Housing Tables,
and the state level shelter-CPIs.A10 We construct the state level shelter-CPI series based on
the BLS shelter-CPI data and the procedure followed by Holly et al. (2010) (Table A.1).A11

Real annual rents are obtained by dividing the nominal annual rents by the prices of non-
housing consumption goods.

B.4 Land-use regulations and supplies

The state level Wharton Residential Land Use Regulatory Index is due to Gyourko et al.
(2008), and the state level land share in house value is compiled by Davis and Heathcote
(2007).A12 The state-level data on urban area sizes are from the United States Department
of Agriculture (USDA).A13

A9For further information on the Historical Census of Housing Tables of Home Values, see https://www.
census.gov/hhes/www/housing/census/historic/values.html. For further information on the FHFA
state level house price index, see http://www.freddiemac.com/finance/fmhpi/archive.html.
A10For further information on the Historical Census of Housing Tables of Housing Rents, see https://www.
census.gov/hhes/www/housing/census/historic/grossrents.html.
A11For further information on the BLS city level CPI data, see https://www.bls.gov/data/.
A12For further information on the data of state level land share in house value, see http://datatoolkits.
lincolninst.edu/subcenters/land-values/land-prices-by-state.asp.
A13For further information on the USDA land use data, see https://www.ers.usda.gov/data-products/
major-land-uses.
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C Calibration and estimation of parameters

Table 6: Benchmark calibration and estimation of parameters

Value Description
I. Preference

η Calibrated 0.240 Share of housing in consumption; Davis and Ortalo-Magné (2011).

β Calibrated 0.980 Discount factor of landlords; Match the risk-free interest rate of 2%.

II. Migration and intrinsic population growth rates

ψ - 1.000 Weight of migration costs in utility function; Set to one.

αij Estimated See text Route-specific migration costs.

gl Estimated 0.010 Intrinsic population growth rate; Match the U.S. average population growth

rate over the period 1977-2014.

III. Housing supplies and investment

αl Calibrated 0.430 Share of labor in residential structure values; Davis and Heathcote (2005).

αm Calibrated 0.570 Share of construction material in residential structure values;

Davis and Heathcote (2005).

ακ,i Estimated See text Location-specific shares of land in house values; Set to the state level average

land values relative to total value of housing stocks over the period 1977-2014.

τ i Estimated See text Location-specific scalars in the housing supply functions.

θi Estimated See text Location-specific housing investment costs; Match the state level average

rent-to-price ratios over the period 1977-2014.

δ Estimated 0.020 Depreciation rate of housing stocks; Set to the national housing stock

depreciation rate over the period 1977-2014.

IV. Income processes

ai Estimated See text Location-specific intercepts in the income processes.

ga Estimated 0.018 Income growth rate; Set to the U.S. average growth rate of real disposable

per capita income over the period 1977-2014.

ρf Estimated 0.950 AR(1) autoregressive coeffi cient for ft.
σf Estimated 0.017 Standard deviation of the innovation to ft.
λi Estimated See text Location-specific loading coeffi cients for ft.
ρza,i Estimated See text AR(1) autoregressive coeffi cients for za,it.
σza,i Estimated See text Standard deviations of the innovations to za,it.
V. Land supply processes

ki Estimated See text Location-specific intercepts in the land supply processes.

gκ,i Estimated See text Location-specific land supply growth rates.

ρzκ,i Estimated See text AR(1) autoregressive coeffi cients for zκ,it.
σzκ,i Estimated See text Standard deviations of the innovations to zκ,it.

Notes: This table reports the benchmark estimates of the parameters that are common to all locations. The
estimates of the location-specific and route-specific parameters are reported in the remaining part of this
appendix and the supplementary data files.
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Table 7: Location-specific parameters related to housing supplies and investment
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Table 8: Location-specific parameters of the income processes
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Table 9: Location-specific parameters of the land supply processes

Notes: The average WRI is computed across the 48 states on the U.S. mainland, since Alaska and Hawaii
are excluded from our analyses. The WRIs of the states we included are re-scaled such that the mean and
the standard deviation of the sub-sample are zero and one, respectively.
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D Supplementary results

D.1 House price dispersion between U.S. states

We divide the District of the Columbia and the 48 states on the U.S. main land (referred to
as 49 U.S. states for short) into five regions following the regional categorization by National
Geographic Society. The time series plots of log house price-to-income ratios during 1976-
2014 for the 49 U.S. states separately are displayed in Figure 16. As can be seen the house
price-to-income ratios of states within the same region share similar dynamic patterns. Figure
17 shows the log house price-to-income ratios aggregated at the five U.S. regions. Regional-
level house price-to-income ratio is measured as the population weighted average of state level
house price-to-income ratios, where the population weights are computed based on state level
population data over the period 1976-2014. This figure shows that house price-to-income
ratio has significantly increased in the West, and considerably dropped in the Southwest and
the Southeast. The difference in house price-to-income ratio between the Southwest and the
West is increasing overtime. In addition, a dispersion decomposition shows that around 70%
of the between-state variance is due to the between-region differences (Figure 18).
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Figure 16: State level log house price-to-income ratios (grouped in to five U.S. regions)
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Figure 17: Log house price-to-income ratios of U.S. regions
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Figure 18: Regional decomposition of log house price-to-income ratio dispersion

Notes: This figure shows the decomposition of the variance of log house price-to-income ratio across U.S.
states. The between-state variance is decomposed into between-region variance (yellow) and weighted within-
region variances (blue, green, red, pink, cyan).
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D.2 House price dispersion between MSAs

We investigate the patterns of house price dispersions between Metropolitan Statistical Areas
(MSAs) using data from Van Nieuwerburgh and Weill (2010). As shown in Figure 19, the
dispersion of log house price-to-income ratios across MSAs has significantly increased during
1975-2007. We then decomposed the house price-to-income ratio dispersion between MSAs
into within- and between- state dispersion. In doing so, we group the MSAs in the U.S.
mainland by state. A multi-state MSA is equally split across the states shared by the MSA
in question.A14 For instance, Kansas city, which is on the Kansas-Missouri boarder, is equally
divided between Kansas and Missouri. A “state”is considered as a group of MSAs,A15 and
the dispersion across these groups is referred to as between-state dispersion and the dispersion
across MSAs within a group is referred to as within-state dispersion. Figure 19 shows the
decomposition of between-MSA dispersion of log house price-to-income ratios. It is clear that
increases in within-state dispersions contributed very little to the increases in the between-
MSA dispersions during 1975-2007.

Year
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0.1

0.2

0.3

0.4

0.5

The U.S.
Betweenstate
Withinstate

Figure 19: Dispersion of log house price-to-income ratios between- and within- U.S. states

Notes: The line designated with ’o’shows the dispersion of log house price-to-income ratio across all MSAs.
The line designated with ’+’shows the dispersion of log house price-to-income ratio across the U.S. states.
The line designated with ’*’shows the average of within-state dispersions, where within-state dispersion is
the standard deviation of log house price-to-income ratio across the MSAs that are within a given state.

A14In the sample, around 10% of the MSAs are multi-state MSAs.
A15In the US, around 86% of its population live in MSAs. In the most populated states, such as, California,
New York, Texas, Illinois, and Florida, more than 95% of their population live in MSAs.
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D.3 Results of the baseline simulation

Figure 20 shows the realized and the model simulated log populations of U.S. states. Figure
21 shows the realized and the model simulated log annual housing rents of U.S. states. Figure
22 shows the realized and the model simulated log house prices of U.S. states.
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S1 Existence and uniqueness of short-run equilibrium

Proposition S1 Consider the dynamic spatial equilibrium model set up in Section 3 by
(6), (15), (18), (22), (28), (35) and (37). Suppose that the vectors of exogenous processes
for labor productivities, at, land supplies, κt, and intrinsic population growth rates, glt, for
t = 1, 2, ..., are given by (39)-(41), condition (42) holds, and the initial values for local
population and housing stocks ( l0 and h0) are strictly positive. Then the model has a unique
short-run equilibrium in the sense set out in Definition 1.

Proof: To prove the existence and uniqueness of the short-run equilibrium, we show that
given l∗t−1 and h

∗
t−1, then w

∗
t , q
∗
t ,p

∗
t , l
∗
t ,x

∗
t ,h

∗
t and R∗t are uniquely determined by equations

(43) to (49), which are the equilibrium conditions (6), (15), (18), (22), (28), (35) and (37)
re-written in terms of detrended variables.

We first show that l∗·i(t) > 0, and hence 1 > ρ∗ij(t) > 0, for all i and j ∈ In. Consider
a population vector l∗t that solves (43) to (49). Note that

∑n
i=1 l

∗
·i(t) > 0, and l∗·i(t) is non-

negative for any i ∈ In. Thus, l∗·i(t) > 0 has to hold for at least one i. Without loss of
generality, we assume

l∗·1(t) > 0. (S.1)

Note also that since l∗·1(t) is the first element in l
∗
t , then from (43) we have

l∗·1(t) =
n∑
i=1

ρ∗i1(t)l
∗
·i(t− 1), (S.2)

where, upon using (44), (47) and (49), ρ∗i1(t) is given by

ρ∗i1(t) =
α−ψi1 a

1−η
1

(
h∗1,t−1

)η
(l∗·1(t))

−η∑n
s=1 α

−ψ
is a

1−η
s

(
h∗s,t−1

)η
(l∗·s(t))

−η (S.3)
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which implies

ρ∗i1(t) =
1

1 +
∑

s 6=i

(
α−ψis a1−ηs (h∗s,t−1)

η

α−ψi1 a1−η1 (h∗1,t−1)
η

)
(l∗·1(t))

η

(l∗·s(t))
η

, for i = 1, 2, ..., n. (S.4)

Note that since η, αis and as > 0 by assumption, and that also h∗s,t−1 > 0, for t = 1, 2, ..., since
hs0 > 0 and the depreciation rate of housing stock δ is less than one. Thus, α−ψis a

1−η
s

(
h∗s,t−1

)η
>

0. In addition, it is supposed that l∗·1(t) > 0. Hence, if l∗·s(t) = 0, for any s ∈ {2, 3, ..., n},
then ρ∗i1(t) = 0, for all i ∈ In, and using (S.4) it follows that l∗·1(t) = 0, which contradicts
our supposition. The same line of reasoning can be applied to any other elements of l∗t , and
we must have l∗·1(t) > 0, for any i ∈ In.

Second, let Lt(ε) with ε > 0, be a set of population vector:

Lt(ε) ≡
{

(l∗·1(t), ..., l
∗
·n(t))

∣∣∣∣∣L0 ≥ l∗·i(t) ≥ ε for any i, where ε > 0,
n∑
i=1

l∗·i(t) = L0

}
Consider a mapping F , define

F (l∗t ) = l∗t−1R(l∗t ;h
∗
t−1),

where l∗t−1 and h
∗
t−1 are given, and R(l∗t ,h

∗
t−1) is the migration probability matrix with

typical element ρ∗ij(t), which is given by (S.3). Thus, for (43) to hold, the above mapping
should have a fixed point. Consider a l∗t ∈ Lt(ε). Note that l∗·i(t) is the ith element of l∗t and
satisfies L0 ≥ l∗·i(t) ≥ ε, for i = 1, 2, ..., n. Then, by using (S.3), we have

ρ∗ij(t) =
α−ψij a

1−η
j

(
h∗j,t−1

)η (
l∗·j(t)

)−η∑n
s=1 α

−ψ
is a

1−η
s

(
h∗s,t−1

)η
(l∗·s(t))

−η

>
α−ψij a

1−η
j

(
h∗j,t−1

)η
(L0)

−η∑n
s=1 α

−ψ
is a

1−η
s

(
h∗s,t−1

)η
(ε)−η

=
α−ψij a

1−η
j

(
h∗j,t−1

)η
(L0)

1−η∑n
s=1 α

−ψ
is a

1−η
s

(
h∗s,t−1

)η
(ε)1−η

ε

L0
.

Since η ∈ (0, 1), then 1− η > 0. Suppose ε is small enough such that

ρ∗ij(t) >
ε

L0
, for i and j ∈ In.

Define l∗
′

t = F (l∗t ) = l∗t−1R(l∗t ;h
∗
t−1). Thus we have

l∗
′

·j (t) =
n∑
i=1

ρ∗ij(t)l
∗
·i(t− 1) >

n∑
i=1

(
ε

L0

)
L0 = ε for any j ∈In.

In addition,

n∑
j=1

l∗
′

·j (t) =
n∑
j=1

n∑
i=1

ρ∗ij(t)l
∗
·i(t− 1) =

n∑
i=1

l∗·i(t− 1)
n∑
j=1

ρ∗ij(t) =
n∑
i=1

l∗·i(t− 1) = L0.
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Therefore, when ε is small enough such that ρ∗ij(t) > ε/L0 for any i, j ∈ In, then l∗t ∈
Lt(ε) ⇒ l∗

′

t = F (l∗t ) ∈ Lt(ε). Thus, F is a continuous mapping from Lt(ε) to itself, where
Lt(ε) is a compact convex set. Thus, Brouwer Fix Point Theorem is applicable to ensure
the existence of fixed point. Then, using the solution of l∗t , the other variables of the model,
namely, p∗t , q

∗
t ,x

∗
t ,h

∗
tand R∗t , can be solved for using equations (44) to (49).

Third, to show the uniqueness, suppose there are l∗(1)t , l
∗(2)
t ∈ Lt(ε), with l∗(1)t 6= l

∗(2)
t ,

and l∗(1)t = F (l
∗(1)
t ), l∗(2)t = F (l

∗(2)
t ). Define I+n ≡ {j| l∗

(2)

·j (t) > l∗
(1)

·j (t), j ∈ In} and
I−n ≡ {j| l∗

(2)

·j (t) ≤ l∗
(1)

·j (t), j ∈ In}. Thus, neither I+n nor I−n is empty, and we have∑
j∈I+n

l∗
(2)

·j (t) >
∑
j∈I+n

l∗
(1)

·j (t). (S.5)

Note that by using (S.3), we have

∑
j∈I+n ρ

∗(2)
ij (t)∑

j∈I−n ρ
∗(2)
ij (t)

=

∑
j∈I+n α

−ψ
ij a

1−η
j

(
h∗j,t−1

)η (
l
∗(2)
·j (t)

)−η
∑

j∈I+n α
−ψ
ij a

1−η
j

(
h∗j,t−1

)η (
l
∗(2)
·j (t)

)−η ,
<

∑
j∈I+n α

−ψ
ij a

1−η
j

(
h∗j,t−1

)η (
l
∗(1)
·j (t)

)−η
∑

j∈I+n α
−ψ
ij a

1−η
j

(
h∗j,t−1

)η (
l
∗(1)
·j (t)

)−η ,
=

∑
j∈I+n ρ

∗(1)
ij (t)∑

j∈I−n ρ
∗(1)
ij (t)

.

Note also that ∑
j∈I+n

ρ
∗(2)
ij (t) +

∑
j∈I−n

ρ
∗(2)
ij (t) =

∑
j∈I+n

ρ
∗(1)
ij (t) +

∑
j∈I−n

ρ
∗(1)
ij (t) = 1.

Thus, ∑
j∈I+n

ρ
∗(2)
ij (t) <

∑
j∈I+n

ρ
∗(1)
ij (t) for any i ∈ In. (S.6)

Since l∗(1)t = F (l
∗(1)
t ), l∗(2)t = F (l

∗(2)
t ), thus for any j ∈ I

l
∗(2)
·j (t) =

∑
i∈I

ρ
∗(2)
ij (t)l∗·i(t− 1) and l

∗(1)
·j (t) =

∑
i∈I

ρ
∗(1)
ij (t)l∗·i(t− 1)
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Then, we have∑
j∈I+n

(l
∗(2)
·j (t)− l∗(1)·j (t)) =

∑
j∈I+n

∑
i∈I

ρ
∗(2)
ij (t)l∗·i(t− 1)−

∑
j∈I+n

∑
i∈I

ρ
∗(1)
ij (t)l∗·i(t− 1)

=
∑
i∈I

∑
j∈I+n

(
ρ
∗(2)
ij (t)− ρ∗(1)ij (t)

)
l∗·i(t− 1)

=
∑
i∈I

∑
j∈I+n

ρ
∗(2)
ij (t)−

∑
j∈I+n

ρ
∗(1)
ij (t)

 l∗·i(t− 1)

< 0

Thus, the above contradicts with (S.5), which implies that l∗(1)t 6= l
∗(2)
t cannot be true. �

S2 Extended model with endogenously determined wages

S2.1 Theoretical derivations

In the baseline model, wage rates are exogenously determined and pinned down by local labor
productivities, as shown by (18). This section extends the analysis by explicitly modelling
the determination of wage rates and investigates the conditions under which the extended
model has a unique long run equilibrium. We follow Davis et al. (2014) and Herkenhoff et al.
(2018), and introduce capital, denoted by χit, land for production, denoted by κy,i, and allow
for agglomeration effects in the production function, and instead of (17) we assume:

yit = ψit

[
(χit)

1−λκ (κy,i)
λκ
]1−υl

[aitl
y
·i(t)]

υl , (S.7)

where as before ly·i(t) is the labor used in the production sector and ait is the exogenous labor
productivity, υl ∈ (0, 1) is the share of labor in production costs, λκ ∈ [0, 1) is the share of
land in non-labor costs, and ψit stands for total factor productivity given by

ψit = ψ̄iy
λψ

it , (S.8)

where ψ̄i > 0, and λψ ∈ [0, 1). It is assumed that total factor productivity increases with
production scale, which captures agglomeration effects of production. Parameter λψ governs
the magnitude of agglomeration effects, with λψ = 0 corresponding to no agglomeration
effect. Individual firms are assumed to take ψit as given.

The representative goods production firm of location i is endowed with κy,i units of
production land, where κy,i > 0. It is assumed that capital can be relocated without any
cost, and thus goods production firms rent capital in a national market and face the same
common rental rate nationally. In addition, they hire labor only from local markets. The
profit of the representative firm in location i is given as

πyit = yit − r̄xχit − witl
y
·i(t), (S.9)
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where wit is the wage rate in location i as before, and r̄x > 0 is the capital rental rate that
is common to all locations and is assumed to be time invariant. The representative firm
chooses χit and l

y
·i(t) to maximize its profits (S.9) subject to (S.7). The resultant demand

functions are:

χit = (1− λκ) (1− υl)
yit
r̄x
, (S.10)

ly·i(t) = υl

(
yit
wit

)
. (S.11)

By substituting (S.10) and (S.8) into (S.7), we obtain

yit = τ y,i [aitl
y
·i(t)]

υl

(1−λψ)−(1−λκ)(1−υl) , (S.12)

where τ y,i is a scalar given by

τ y,i =
(
ψ̄iκ

λκ(1−υl)
y,i

) 1

(1−λψ)−(1−λκ)(1−υl)
[

(1− λκ) (1− υl)
r̄x

] (1−λκ)(1−υl)

(1−λψ)−(1−λκ)(1−υl)
. (S.13)

It is easily seen that τ y,i > 0, since ψ̄i, r̄x and κy,i > 0, and λκ and υl ∈ [0, 1). By substituting
(S.12) into (S.11), we obtain:

wit = υlτ y,i (ait)
τa (ly·i(t))

−τ l . (S.14)

where

τa =
υl

λκ (1− υl)− λψ + υl
, (S.15)

τ l =
λκ (1− υl)− λψ

λκ (1− υl)− λψ + υl
. (S.16)

To ensure that wage rates, wit, increase with productivities, ait, and decrease with labor
inputs, ly·i(t), we assume

λκ (1− υl)− λψ ≥ 0, (S.17)

which in turn implies τa > 0 and τ l ≥ 0.
As can be seen, the main difference between the baseline model in the paper and the

extended model is in the specification of the labor demand function, which is now given by
(S.14) instead of (18). All other equilibrium conditions continue to have the same form as
before. It is also worth noting that when we exclude production land and agglomeration
effects by setting,

λκ = 0 and λψ = 0, (S.18)

then τa = 1 and τ l = 0 (see (S.15) and (S.16)), and (S.14) simplifies to

wit = ãit, (S.19)
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where ãit = υlτ y,iait is the rescaled version of ait. The same simplified outcome follows even
if λκ and λψ > 0, so long as

λψ = λκ (1− υl) . (S.20)

Under (S.20), when labor inputs increase, the agglomeration effects that tends to raise pro-
ductivity are exactly offset by the diminishing marginal productivity of labor. In short, when
either (S.18) or (S.20) is satisfied, wit = ãit = υlτ y,iait. In these cases, the extended and the
baseline models have the same equilibrium conditions.

Note that, according to the estimates obtained by Valentinyi and Herrendorf (2008), the
share of land in non-labor costs, λκ, is around 0.15, and the share of labor in production
costs is around 0.67, which yields an estimate of 0.05 for λκ (1− υl). Also, estimates of
the agglomeration effect, λψ, ranges from 0.02 (Davis et al. (2014)) to 0.06 (Ciccone and
Hall (1996)). As a result, condition (S.17) holds for any estimate of λψ within the interval
[0.02, 0.05], and we have τa ∈ [0.96, 1] and τ l ∈ [0, 0.04] (see (S.15) and (S.16)), which
suggest wage rates, wit, are mainly driven by productivities, ait, and are not that responsive
to worker population, ly·i(t). Therefore, allowing for capital and agglomeration effects in the
production function are not likely to significantly alter our main empirical conclusions.

In addition, we are able to show that the non-stochastic version of the extended model
has a unique balanced growth path under assumption (S.17). In addition, we are able to
show that the non-stochastic version of the extended model has a unique balanced growth
path under condition (S.17). To see this, note that on the balanced growth path, the ratio of
labor force employed in local production sectors, ly·i(t), to local populations, l·i(t), should be
constant overtime, with l·i(t) and ait growing at the common rates of gl and ga, respectively.
Also, local housing service prices, qit, house prices, pit, and wage rates, wit, should all grow
at the same rate. Denoting this rate by gw, and using (S.14) it is easily seen that

gw = τaga − τ lgl. (S.21)

As a result, to ensure the existence of a balanced growth path, location-specific land supply
growth rates (which were given by (42) in the baseline model) must now be changed to

g̃∗κ,i = gl −
(1− ακ,i)αm

ακ,i
gw, for i = 1, 2, ..., n. (S.22)

Thus, in the non-stochastic version of the extended model, local productivities, ait, intrinsic
population growth rates, gl,it, are given by (39) and (40) as before, and land supplies, κit,
are given by

κit = eg̃
∗
κ,itκi, for i = 1, 2, ...n, and t = 1, 2, ..., (S.23)

where g̃∗κ,i is given by (S.22).

Proposition S2 (Existence and uniqueness) Consider the extended version of the dy-
namic spatial equilibrium model set out in Section 3, and given by equations (6), (15), (22),
(27), (28), (35), (37), (38) and (S.14). Suppose labor productivities, land supplies and intrin-
sic population growth rates across locations, i.e., at, κt and glt, are given deterministically
by (39), (S.23) and (40), and parameters λκ ≥ 0, λψ ≥ 0 and υl > 0 satisfy (S.17). Then,
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there exists a unique balanced growth path, on which prices [pt, qt,wt] grow at the common
rate of gw, where gw is given by (S.21), and quantities [l(t), ly(t), lc(t),xt,ht] grow at the
common rate of gl.

Proof. The existence of the balanced growth path of the extended model can be proved
following the same line of reasoning as in the proof of the existence of the balanced growth
path of the baseline model. To establish the uniqueness of the equilibrium, we denote the
detrended vectors on the balanced growth path by p∗ = limt→∞ p

∗
t , and q∗ = limt→∞ q

∗
t ,

etc. Recall that the detrended aggregate population remains constant over time, as shown
in (52). Also recall that by imposing the balance growth path conditions, the equilibrium
conditions (6), (15), (22), (28), (35) and (37) can be written in terms of the detrended
variables as (55)-(60) as shown in Section 4. In addition, the equilibrium conditions (27),
(38) and (S.14) can be written in terms of the detrended variables as

l∗·i = ly∗·i + lc∗·i , (S.24)

w∗i =
αl(1− ακ,i)x∗i p∗i

lc∗·i
, (S.25)

w∗i = υlτ y,i (ai)
τa (ly∗·i )

−τ l . (S.26)

In the rest of the proof, we show that given L0,κ and a, then w∗,p∗, q∗,x∗,h
∗, l∗, ly∗, lc∗

and R∗ are uniquely determined by (52), (55)-(60), and (S.24)-(S.26).S1 First, recall that for
given values of l∗,κ and w∗, the solution for p∗, q∗,x∗ and h∗ is unique and can be obtained
using (57), (58), (59) and (60), which is given by (66)-(69). Then, by using (66) and (69),
we have

x∗i p
∗
i =

δηl∗·iw
∗
i

Γi
,

where as before Γi is given by

Γi =
1

β (1− θi)
− (1− δ). (S.27)

Note that β and θi ∈ (0, 1), which implies β−1 (1− θi)−1 > 1. Since δ > 0, it follows that
Γi > δ > 0. Using the above equation in (S.25) to eliminate x∗i p

∗
i , we have

lc∗·i
l∗·i

=
αl(1− ακ,i)ηδ

Γi
. (S.28)

Let γi be the equilibrium share of labor used in the production sector. Then by (S.24) and
(S.28), we have

γi =
ly∗·i
l∗·i

= 1− lc∗·i
l∗·i

= 1− αl(1− ακ,i)ηδ
Γi

. (S.29)

S1For the baseline model, since wage rates are exogenously determined, i.e., w∗ = a∗, then p∗, x∗ and
l∗ can be solved for given w∗. Then, using the solution of p∗, x∗ and l∗, the balanced growth path labor
allocations between production and housing sectors, i.e., ly∗ and lc∗, can be solved for using (S.24) and
(S.25). However, for the extended model, ly∗, lc∗, and w∗ are jointly determined with all the other variables.
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Note that αl, ακ,i and η all lie in the interval (0, 1), and hence αl(1− ακ,i)η ∈ (0, 1). Recall
also that Γi > δ > 0 as previously shown. It follows that γi ∈ (0, 1). Thus, (S.26) can be
written as

w∗i = $i (l
∗
·i)
−τ l . (S.30)

where
$i = υlτ y,i (ai)

τa γ−τ li . (S.31)

It is now easily seen that $i > 0, since τ y,i and γi, given by (S.13) and (S.29), are strictly
positive as previously shown. Using (S.30) in (67) to eliminate w∗i , we obtain

q∗i =

(
δη

τ iκi

)ακ,i
Γ
1−ακ,i
i (l∗·i)

ακ,i−τ l[ακ,i+αl(1−ακ,i)] ($i)
ακ,i+αl(1−ακ,i) . (S.32)

By substituting (S.30) and (S.32) into (56) to eliminate w∗i and q
∗
i , then ρ

∗
ij can be written

as a function of l∗:

ρ∗ij =
ψ̃ij
(
l∗·j
)−ϕ̃j∑n

s=1 ψ̃is (l∗·s)
−ϕ̃s

, (S.33)

where

ϕ̃j = ηακ,j + τ l {1− η [ακ,j + αl(1− ακ,j)]} ,

ψ̃ij = α−ψij

(
δη

τ jκj

)−ηακ,j
Γ
−η(1−ακ,j)
j ($j)

1−η[ακ,j+αl(1−ακ,j)] .

Note that η, ακ,j and αl all lie in the interval (0, 1), and under assumption (S.17) τ l, given
by (S.16) is non-negative. It follows that ϕ̃j > 0, for any i ∈ In.S2 In addition, note that
ψ̃ij > 0, for any i and j ∈ In, since αij,δ, η,τ j and κj > 0, and Γj and $j, given by (S.27) and
(S.31), are strictly positive as previously shown. Recall that R∗ is the migration probability
matrix on the balanced growth path, with a typical element ρ∗ij given by (S.33). Thus, R∗

can be written as a function of l∗, namely R∗ ≡ R(l∗). Then, (55) can be written more
compactly as

l∗ = l∗R(l∗), (S.34)

which is a system of non-linear equations in l∗. Lemma A1 in the Appendix establishes that
there exists a l∗ that solves (S.34). Lemma A2 establishes that (S.34) cannot have more than
one solution. Therefore, l∗ exists and is unique. Then, using the solution of l∗, the other
variables of the model, namely, w∗,p∗, q∗,x∗,h∗, ly∗, lc∗ and R∗, can be solved for using
equations (66) to (69), (S.24)-(S.26) and (S.33).�

S2.2 Quantitative differences between models with and without
endogenously determined wages

To examine how the extended model quantitatively differs from the base-line model, we
carried out the simulations presented in Section 7.1 and the counterfactual experiments

S2Note that for any a and b ∈ (0, 1), it follows that a+ b(1− a) ∈ (0, 1).
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reported in Section 7.4 using the extended model. We calibrated the extended model by
setting the share of labor in production costs, υl, to 0.67, according to the estimates obtained
by Valentinyi and Herrendorf (2008). To distinguish between scale effects of ψit and ait in
(S.7), we set ψ̄i defined by (S.8) such that τ y,i = 1, where τ y,i is given by (S.13). We
experimented with different values of λψ and λκ. In particular, we considered the values
λψ = (0, 0.02, 0.05), and λκ = (0.15, 0.2, 0.25 and 0.3). Given λψ and λκ, the values of
τa and τ l are then set by (S.15) and (S.16). For each pair of λψ and λκ, we infer wit
using (S.11), where the worker population, ly·i(t), is measured using the actual state-level
population, and the state-specific output, yit, is measured by multiplying realized real per
capita disposable income of the state by its population. Labor productivities, ait, are then
inferred using (S.14). The rest of the parameters are calibrated and estimated as before (see
Section 5). The comparative simulation results for dispersion of house price-to-income ratios
are reported in Table S1, and the results of counterfactual exercises on the effects of changes
in land-use regulations in California and Texas are summarized in S2. As can be seen from
these results, allowing for capital and agglomeration effects in production have little effects
on the simulation and counterfactual outcomes. Also as to be expected when λψ = 0.05 and
λκ = 0.15, which implies τa = 1 and τ l = 0, the results of our model and the extend model
are identical. In particular, the results for the baseline and extended models are very close
even if one considers the combination of (λψ, λκ) = (0.02, 0.3) which results in the largest
differences in the outcomes. For example, for this parametrization the dispersion of house
price-to-income ratio in the U.S. falls from 0.39251 (baseline model) to 0.39232 (extended
model), with very similar small changes obtained for between and within region dispersions.
Similarly, the effects of changes to land-use regulations in California and Texas are only
marginally affected when we allow wages to be determined endogenously.
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S3 Extended model with mortgage loans

The cyclical fluctuations in house prices can have important implications for the macro
economy and thus have long been a topic of interest of economists. In particular, Ortalo-
Magne and Rady (2006), Mian and Sufi (2009), Favilukis et al. (2017), and Favara and
Imbs (2015), have shown that the supplies of mortgage credit have played an important
role in driving fluctuations in the aggregate house prices. However, much less attention is
paid to the cyclical fluctuations in house price dispersions. We contribute to this strand of
literature by examining the role of credit supply shocks in generating fluctuations in house
price dispersions using an extended version of our baseline model in which landlords are
allowed to borrow mortgage loans.

S3.1 Theoretical derivations

In this extended version of the baseline model, only the optimization problems of landlords
are changed, while all the other components are kept the same. Recall that the life time
utility of landlords in location i is given by

Et

∞∑
s=0

(βegl)s ln(coi,t+s), (S.35)

and that the realized net return on housing investment in location i in period t is given by

roit = (1− θi)
[
qit + (1− δ)pit

pi,t−1

]
. (S.36)

We introduce mortgage loans by assuming that landlords can finance housing investment
by borrowing from outside lenders, who passively lend at a time-invariant and exogenously
determined interest rate r. We assume that e−r > β, which implies that the subjective
discount rate of landlords, β, is lower than the discount rate implied by the interest rate,
e−r. Thus, landlords tend to borrow as much as possible until their borrowing constraints
bind. The outstanding balance of the mortgage debts owed by the landlord in period t is
denoted by dit. Let bit denote the amount of new mortgage loans obtained by the landlord.S3

Thus, the landlords’outstanding balance of mortgage debts evolves as:

dit = erdi,t−1 + bit (S.37)

Furthermore, following Philippon and Midrigan (2016), we assume a borrowing constraint
that limits the landlords’ability to obtain new mortgage loans:

bit ≤ φtpithit, (S.38)

where φt is the required loan-to-value (LTV henceforth) ratio for new mortgage loans, which
is assumed to be common to all locations and follow the following exogenous stochastic
process:

φt − φ∗ = ρφ
(
φt−1 − φ∗

)
+ σφεφ,t, (S.39)

S3We allow bit to be negative, and when bit < 0, the landlord is making net repayments.
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where φ∗ > 0 is the long-run LTV, ρφ ∈ (0, 1), and εφ,t ∼ IIDN(0, 1). As argued by
Philippon and Midrigan (2016), this assumption of borrowing constraints captures the idea
that a tightening of the credit limit precludes agents from obtaining new loans, but does not
force them to prepay old debts. We consider only the cases in which the borrowing constraint
(S.38) always binds in equilibrium. Thus, credit supply shocks, which refer to the exogenous
changes in φt, can affect the landlords’demand for housing via tightening or loosening the
borrowing constraint.S4

Then, the landlords’flow of funds constraint is given by

coitl
o
it + pithit = roit (pi,t−1hi,t−1) + (dit − erdi,t−1) . (S.40)

As compared to the baseline model (see (33)), the landlord now has an additional source
of funds for housing investment, which is the net borrowing from the outside lenders, i.e.,
dit − erdi,t−1. Recall that the borrowing constraint (S.38) is assumed to always bind. Thus,
using (S.37) and the binding borrowing constraint (S.38) in (S.40) to replace dit, we have

coitl
o
it + (1− φt) pithit = roit (pi,t−1hi,t−1) . (S.41)

Thus, the landlords’optimization problem is reduced to the following: choosing coit and
hit to maximize the life time utility (S.35) subject to (S.41). Similarly to the baseline model,
the optimal housing investment of the landlord is given by

pithit (1− φt) = βegl (1− θi) [qit + (1− δ)pit]hi,t−1. (S.42)

As compared to the baseline model (see (35)), the credit supply shock, φt, now has a role in
determining housing investment.

S3.2 Calibration

The values of the parameters that are common in the baseline model and the extended
model are kept the same. We only calibrate the parameters that are specific to the extended
model. The long-run ratio of new mortgage loan to house value, φ∗, in (S.39), is calibrated
as follows. Note that using (S.37), dit can be re-written as

dit = bit + erbi,t−1 + e2rbi,t−2...,+e
trbi0. (S.43)

Recall that the borrowing constraint (S.38) is assumed to always bind. Using the binding
(S.38) in (S.43) to replace bit, we have

dit = φtpithit + erφt−1pi,t−1hi,t−1 + e2rφt−2pi,t−2hi,t−2 + ...+ etrφ0pi0hi0. (S.44)

Consider the non-stochastic version of the extended model in which φt = φ∗ for any t. On the
balanced growth path, the detrended outstanding mortgage debts, housing stocks, and house

S4We focus on the role of borrowing constraints rather than that of mortgage rates in driving fluctuations in
house price dispersions because recent literature, such as, Favilukis et al. (2017), have shown that relaxation
of financing constraints can lead to booms in house prices; however, low interest rates cannot explain high
house values.
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prices are time invariant, and denoted by d∗i ≡ limt→∞ e
−(ga+gl)tdit, h∗i ≡ limt→∞ e

−glthit and
p∗i ≡ limt→∞ e

−gatpit. Thus, as t→∞, (S.44) can be written as

d∗i = φ∗h∗i p
∗
i

∞∑
s=0

e−s(ga+gl−r), (S.45)

=
φ∗h∗i p

∗
i

1− e−(ga+gl−r) ,

which can be re-written as

d∗i
h∗i p

∗
i

=
φ∗

1− e−(ga+gl−r) for all i = 1, 2, ..., n,

and since d∗i / (h∗i p
∗
i ) is constant across i, then we have∑n

i=1 d
∗
i∑n

i=1 h
∗
i p
∗
i

=
φ∗

1− e−(ga+gl−r) . (S.46)

where
∑n

i=1 d
∗
i / (
∑n

i=1 h
∗
i p
∗
i ) is the balanced growth path ratio of aggregate outstanding mort-

gage debt to aggregate house value. Note that the average ratio of the aggregate outstanding
mortgage debt to the aggregate house value of the U.S. over the period 1976-2014 is around
40%, and recall that ga and gl are calibrated to 1.94% and 1% as discussed in Section 5.
Recall that r is assumed to be small enough such that e−r > β holds. Specifically, we set r
to 0. Thus, (S.46) implies that φ∗ = 0.01.

Recall that in the model, φt is the ratio of new mortgage loan to house value in period
t, which is common to all locations. Thus, the series of φt are measured using the ratios of
the realized increases in the aggregate outstanding mortgage debt to the realized aggregate
house value, which are scaled to ensure that 1

T

∑T
t=1 φ̂t = φ∗:

φ̂t = φ∗
(
mortt −mortt−1

hvalt

)[
1

T

T∑
s=1

(
morts −morts−1

hvals

)]−1
where φ∗ is calibrated to 0.01 as previously discussed, mortt is the realized aggregate out-
standing mortgage debt in year t, and hvalt is the realized aggregate house value.S5 Figure
S1 plots the growth rates of the national house price index and the estimated credit supply
shocks φ̂t. To estimate the autoregression coeffi cient ρφ and the standard deviation of inno-
vation σφ in (S.39), we regress φ̂t − φ∗ on φ̂t−1 − φ∗, and the estimated ρφ and σφ are 0.94
and 0.004, respectively.

S5Aggregate home value and aggregate outstanding mortgage debt correspond to the line 4 and 34 of Table
B.101 in the Financial Accounts of the United States data from the Federal Reserve Board’s Z.1 release. For
further information, see https://www.federalreserve.gov/releases/z1/current/.
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Figure S1: Measured credit supply shock φ̂t and growth rate of aggregate house price

S3.3 Cyclical fluctuations of house price dispersion

Note that the extended model is exactly the same as the baseline model except that (35) is
replaced by (S.42). In addition, the stochastic processes of credit supply shock, φt, is given
by (S.39).

To examine the extended model’s ability in explaining the cyclical fluctuations of house
price dispersion during the period 1976-2014, we simulate the extended model using the
realized productivity and credit supply shocks. Though at,κt and φt, are stochastic in the
model, we take them as deterministic variables in the following simulations, and set at and
φt to their actual values, and κt as

κt = κ̂ diag(eĝκ,1t, eĝκ,2t, ...eĝκ,nt), for t = 0, 1, ..., T ,

where κ̂ and ĝκ, are estimated in Section 5.5. The realized national credit supply shock,
φt, is measured using the national mortgage data in Section S3.2. In addition, as in the
baseline simulation in Section 7.1, the state level intrinsic population growth rates, gl,t, are
set to their actual values, which are estimated in Section 5.2. The initial values, l(0) and q0
correspond to the actual 1976 economy.

Figure S2 shows the realized and the model simulated series of the aggregate house price
and the dispersion of house prices across U.S. states. As shown in the figure, the extended
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model can capture a substantial part of the cyclical fluctuations in the aggregate house price
and the dispersion of house prices.

To investigate the impacts of a national credit supply shock on the state level house prices,
we analyze the impulse responses of the economy to a one standard deviation expansionary
national credit supply shock.S6 Figure S3 shows the response of the dispersion of house price-
to-income ratio across U.S. states to the shock. Figures S4 and S5 show the responses of
house price-to-income ratios and housing stocks in U.S. states to the shock. States, ordered
by their housing supply elasticities, 1 − ακ,i, are given from top to bottom and from left
to right. As shown in the figures, states with lower housing supply elasticities experience
relatively larger increases in house prices and smaller increases in housing stocks, while those
with lower supply elasticities experienced smaller increases in prices and larger increases in
housing stocks.

Year
1980 1990 2000 2010

na
tio

na
l a

ve
ra

ge

1.4

1.6

1.8

2

Bechmark model
(without financial shock)

Year
1980 1990 2000 2010

na
tio

na
l a

ve
ra

ge

1.4

1.6

1.8

2

Extended model
(with financial shock)

Year
1980 1990 2000 2010

di
sp

er
si

on

0

0.2

0.4

0.6

Bechmark model
(without financial shock)

Year
1980 1990 2000 2010

di
sp

er
si

on

0

0.2

0.4

0.6

Extended model
(with financial shock)

Figure S2: Log house price-to-income ratio of the U.S. and the dispersion of log house
price-to-income ratios across U.S. states (Solid-blue: simulated; Dashed-red: data)

S6For the details of the computation of the impulse responses, please see Section S4 of the online supple-
ment.
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Figure S3: Reponses of the dispersion of log house price-to-income ratios across U.S. states
to a national expansionary credit supply shock
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S4 Computation of the impulse responses

The impulse responses reported in the paper are computed using the Monte Carlo techniques
developed by Koop et al. (1996). As discussed in Section 6, the model economy set out in
Section 3 can be written in a compact form as:

ζt = f
(
ζt−1,at,at−1,κt−1, gl,t;Θ

)
, (S.47)

where Θ is a row vector that contains all the parameters, ζt = [l(t), qt] is a 1 × 2n vector,
and

χt = g (ζt,at,κt;Θ) , (S.48)

where χt = [pt,ht] is a 1× 2n vector.
Define ξt = [ζt,χt], which is a 1×4n vector. Then, the (S.47) and (S.48) can be combined

and written as

ξt = ψ
(
ξt−1,at,at−1,κt,κt−1, gl,t;Θ

)
. (S.49)

The stochastic processes of at and κt, are given by

lnat = lna +gat +λ ft+za,t, (S.50)

ft = ρfft−1 + σfεf,t, (S.51)

za,t = za,t−1diag(ρza,1, ρza,2, ...ρza,n) + εza,tdiag(σza,1, σza,2, ...σza,n), (S.52)

and

lnκt = lnκ+ gκt+zκ,t, (S.53)

zκ,t = zκ,t−1diag(ρzκ,1, ρzκ,2, ...ρzκ,n) + εzκ,tdiag(σzκ,1, σzκ,2, ...σzκ,n), (S.54)

and the values of state level intrinsic population growth rates, gl,t, for t = 0, 1, 2, ..., are
exogenously given.

Impulse response function: To illustrate the computation algorithm, we take the
computation of the impulse responses to a standard deviation negative productivity shock
to State i∗ as an example. Note that the model is Markovian. Thus, the relevant history is
only the period before the start of simulation. Let the shock hits the economy in period 1.
Then, the impulse response function is given by

GIξ(t, εza,i∗1, ξ0,a0,κ0) = E(ξt|εza,i∗1, ξ0,a0,κ0)− E(ξt|ξ0,a0,κ0)
for t = 1, 2, ..., T,

where T is the horizon of the impulse response analyses, E(ξt|ξ0,a0,κ0) is the expectation
of ξt conditional only on ξ0,a0 and κ0, and E(ξt|εz,i∗1, ξ0,a0,κ0) is the expectation of ξt
conditional on both ξ0,a0,κ0 and εz,i∗1. Recall that εz,i∗1 is the innovation to the local
productivity shock in State i∗ in period 1.
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Initial values: In our impulse response simulations, we assume that the economy is
on the balanced growth path when t = 0. Recall that in Section 4, we established the
uniqueness of the balanced growth path by showing that for given values of L0,κ and a, the
steady states of the detrended variables are uniquely determined by the equation system (54)-
(61). Note that detrended variables equal non-detrended variables when t = 0. Thus, we use
the steady state values of the detrended variables as the initial values for the corresponding
non-detrended variable in the impulse response simulations, which implies that the economy
is on the balanced growth path when t = 0.

Deterministic variables: The intrinsic population growth rates of all states are set
equal to the balanced growth path level given by (40):

gl,t = [ĝl, ĝl, ..., ĝl] , for t = 1, 2, ..., T ,

where gl is the balanced growth path intrinsic population growth rate, which is assumed to
be common to all states, and estimated as the average growth rate of the national population
over the period 1976-2014.

Stochastic processes: The state level productivities and land supplies, at and κt, are
simulated using the estimated (S.50) - (S.54), where f0, za0 and zκ0 are set to 0.

We set the numbers of replications and horizons to R and T , and independently draw
innovations from the standard normal distribution. Let ε(r)f,t , ε

(r)
za,t and ε

(r)
zκ,t denote the

simulated εf,t, εz,t and εzκ,t, for replication r, where ε(r)za,t =
[
ε
(r)
za,1t, ε

(r)
za,2t, ..., ε

(r)
za,nt

]
and

ε
(r)
zκ,t =

[
ε
(r)
zκ,1t, ε

(r)
zκ,2t, ..., ε

(r)
zκ,nt

]
. The innovations, ε(r)f,t , ε

(r)
za,it

and ε
(r)
zκ,it
, for i = 1, 2, ..., n,

t = 1, 2., ..., T and r = 1, 2., ..., R, are independently drawn from the standard normal distri-
bution.

Productivity processes without shock: When there is no shock, for each replication r, we
plug the simulated innovations, ε(r)f,t and ε

(r)
za,t, into (S.50) - (S.52), and obtain a series of

simulated productivities, a(r)t , for t = 1, 2., ..., T .
Productivity processes with shock: When there is shock, for each replication r, we plug

the simulated innovations, ε(r)f,t and ε
(r)
za,t, with the i

∗th element of ε(r)za,1, i.e., ε
(r)
za,i∗1, being

replaced by -1 (a negative shock), into (S.50) - (S.52), and obtain another series of simulated
productivities, ǎ(r)t , for t = 1, 2., ..., T .

Land supply processes: For both the cases with and without shock, for each replication r,
we plug the simulated innovations, ε(r)zκ,t, into (S.53) - (S.54), and obtain a series of simulated

productivities, κ(r)t , for t = 1, 2., ..., T .
Computation: To compute E(ξt|ξ0,a0,κ0) and E(ξt|εz,i∗1, ξ0,a0,κ0) numerically, we

conduct the following two simulations.

• Simulation 1 (no shock): For each replication r, given the initial values, ξ0,a0 and
κ0, and the deterministic processes of gl,t, we simulate the model (S.49) using the

simulated productivity processes, a(r)t and κ(r)t , for t = 1, 2, ..., T , and obtain a series
of realized ξt, i.e., ξ

(r)
t , for t = 1, 2, ..., T :

ξ
(r)
t = ψ

(
ξ
(r)
t−1,a

(r)
t ,a

(r)
t−1,κ

(r)
t ,κ

(r)
t−1, gl,t; Θ

)
.
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• Simulation 2 (with shock): For each replication r, given the initial values, ξ0,a0 and
κ0, and the deterministic processes of gl,t, we simulate the model (S.49) using the

simulated productivity processes, ǎ(r)t and κ(r)t , for t = 1, 2, ..., T , and obtain a series
of realized ξt, i.e., ξ̌

(r)

t , for t = 1, 2, ..., T :

ξ̌
(r)

t = ψ
(
ξ̌
(r)

t−1, ǎ
(r)
t , ǎ

(r)
t−1,κ

(r)
t ,κ

(r)
t−1, gl,t; Θ

)
.

Here, ξ(r)t and ξ̌
(r)

t are the simulated ζt in replication r in Simulation 1 and Simulation 2,
respectively. Then, the two expectations, E(ξt|ξ0,a0,κ0) and E(ξt|εza,i∗1, ξ0,a0,κ0), are
approximated as the averages across replications:

Ê(ξt|ξ0,a0,κ0) =
1

R

R∑
r=1

ξ
(r)
t and Ê(ξt|εza,i∗1, ξ0,a0,κ0) =

1

R

R∑
r=1

ξ̌
(r)

t .

Thus, the approximated impulse response in period t is given as

GIξ(t, εz,i∗1, ξ0,a0,κ0) =
1

R

R∑
r=1

ξ̌
(r)

t −
1

R

R∑
r=1

ξ
(r)
t .

S5 Derivation of dispersion decomposition formula

Let U.S. states be indexed by i, and denote the collection of all states by I , where i ∈ I, and
I = {1, 2, ..., 49}. Let j denote the index for regions and J be the collection of all regions,
where j ∈ J and J = {1, 2, ..., 5}. Let Ij be the collection of the indices of the states in
region j, with I = ∪j∈J Ij, and Ij1 ∩ Ij2 = ∅, if j1 6= j2. Further, let ωi be the population
share of State i. Define νj ≡

∑
i∈Ij ωi to be the weight of region j in the U.S. mainland,

with
∑

j∈J νj = 1. It is now easily seen that the weight of State i in region j is ωi/νj, with
i ∈ Ij, and

∑
i∈Ij ωi/νj = 1.

The dispersion of log house price-to-income ratios across all states is given by

σ̂2xt ≡
∑
i∈I

ωi(xit − x̄t)2, where x̄t ≡
∑
i∈I

ωixit.

The dispersion of log house price-to-income ratios within region j is given by

σ̂2xjt ≡
∑
i∈Ij

ωi
νj

(xit − x̄jt)2, where x̄jt ≡
∑
i∈Ij

ωi
νj
xit,

and the dispersion of log house price-to-income ratios across regions is given by

σ̂2xrt ≡
∑
j∈J

νj(x̄jt − x̄t)2.
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It is easy to see that the following decomposition of variance holds:

σ̂2xt =
∑
j∈J

∑
i∈Ij

ωi(xit − x̄jt + x̄jt − x̄t)2

=
∑
j∈J

∑
i∈Ij

ωi
[
(xit − x̄jt)2 + (x̄jt − x̄t)2 + 2 (xit − x̄jt) (x̄jt − x̄t)

]
=

∑
j∈J

∑
i∈Ij

ωi (x̄jt − x̄t)2 +
∑
j∈J

νj
∑
i∈Ij

ωi
νj

(xit − x̄jt)2

+2
∑
j∈J

(x̄jt − x̄t)
∑
i∈Ij

ωi (xit − x̄jt) (x̄jt − x̄t)

=
∑
j∈J

νj (x̄jt − x̄t)2 +
∑
j∈J

νjσ̂
2
xjt

= σ̂2xrt +
∑
j∈J

νjσ̂
2
xjt.

Finally, the average within-region dispersion, σ̂xwt, is given by

σ̂xwt ≡
(∑
j∈J

νjσ̂
2
xjt

)0.5
,

where σ̂xjt is the standard deviation of log house price-to-income ratios across states within
region j, and νj is the population weight of region j.

S6 Baseline model with costless migration

In the baseline model, we allow for route-specific migration costs by assuming αii = 1 and
αij > 1 for all i and j ∈ In, and i 6= j, (see equation (9)). To examine the importance
of migration costs in determining house price dispersions, we consider a scenario where the
migration costs, lnαij, are set to zero, namely,

αij = 1 for any i and j ∈ In, and i 6= j. (S.55)

The values of all other parameters are kept the same as before. Note that the estimation
or calibration of other parameters do not depend on the values of αij as shown in Section
5. We then implement the baseline simulations, presented in Section 7.1, under (S.55).
As shown in Figure S6, dispersions of house price to income ratios jump in the second
period and remain relatively stable throughout the rest of the periods, regardless of the
spatial heterogeneity in land supply growth rates. These results indicate that migration
can immediately equilibrate local housing markets when it is costless. Therefore, spatial
heterogeneity in land-use regulation can lead to a secular rise in dispersion only in the
presence of non-zero migration costs.
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Figure S6: Dispersions of log house price-to-income ratios between- and within- U.S. regions
(Solid-blue: simulated by model with costless migration; Dashed-red: data)

Notes: This figure compares the realized values of the dispersions of log house price-to-income ratios between-
and within- U.S. regions with the simulated values under the baseline model with costless migration as in
(S.55).

S7 Baseline model with homogeneous housing supply
elasticity

In the baseline model, we allow ακ,i to vary across locations, where 1− ακ,i is the location-
specific elasticity of housing supply with respect to non-land inputs. To examine the effects
of spatial heterogeneity in ακ,i on the dispersion of house price-to-income ratio, we simulate
the baseline model while assuming ακ,i is the same across i, and set it to the national average
estimate:

ακ,i = ¯̂ακ = n−1
n∑
s=1

α̂κ,s, for i = 1, 2, ..., n, (S.56)
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where α̂κ,i are obtained in Section 5.3. Note that γ̂it, and thus the estimation of κi and
gκ,i, depend on the values of ακ,i (see Section 5.5). Thus, we re-estimate κi and gκ,i , for
i = 1, 2, ..., n, following the same steps as in Section 5.5, and re-do the baseline simulations
using the re-estimated model. The results are summarized in Panel (3) of Table S3, and
as can be seen, they are quite close to the results obtained when ακ,i are allowed to differ
across i. Thus, we conclude that spatial heterogeneity in housing supply elasticity is not an
important reason for the rising house price dispersion.

Table S3: The level and the dispersion of realized and simulated
log house price-to-income ratios

Notes: This table reports the levels and the dispersions of realized and simulated log house price-to-income
ratios at different geographical levels. Panel (2) reports the results from the baseline simulations. Panel
(3) reports the simulation results of the alternative model in which state level housing supply elasticity, i.e.,
ακ,i, is assumed to be the same across locations, and set to the national average ¯̂ακ, defined by (S.56).
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