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Abstract
This paper is concerned with the problem of variable selection and forecasting in

the presence of parameter instability. There are a number of approaches proposed
for forecasting in the presence of time-varying parameters, including the use of rolling
windows and exponential down-weighting. However, these studies start with a given
model specification and do not consider the problem of variable selection, which is
complicated by time variations in the effects of signals on target variables. In this
study we investigate whether or not we should use weighted observations at the vari-
able selection stage in the presence of parameter instability, particularly when the
number of potential covariates is large. Amongst the extant variable selection ap-
proaches we focus on the recently developed One Covariate at a time Multiple Testing
(OCMT) method. This procedure allows a natural distinction between the selection
and forecasting stages. We establish three main theorems on selection, estimation post
selection, and in-sample fit. These theorems provide justification for using the full
(not down-weighted) sample at the selection stage of OCMT and down-weighting of
observations only at the forecasting stage (if needed). The benefits of the proposed
method are illustrated by empirical applications to forecasting monthly stock market
returns and quarterly output growths.
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1 Introduction

“When you have eliminated the impossible, whatever remains, however improbable, must be

the truth” Sir Arthur Conan Doyle, The Sign of the Four (1890)

There is mounting evidence that models fitted to many statistical relationships are subject

to breaks. In an extensive early study, [25] find that a large majority of time series regressions

in economics are subject to breaks. [4] consider parameter instability to be one of the main

sources of forecast failure. This problem has been addressed at the estimation stage given

a set of selected regressors. However, the issue of variable selection in the presence of time-

varying parameters is still largely underdeveloped. In this study, we investigate whether

or not we should use weighted observations at the variable selection stage in the presence

of parameter instability, particularly when the number of potential covariates is large. We

provide theoretical arguments in favor of using the full (unweighted) sample at the selection

stage, and suggest that one should only consider weighting the observations post selection,

at the estimation and forecasting stages.

Studies on breaks at the estimation stage usually assume a number of different model

specifications that allow for parameter instability. Typical solutions are either to use rolling

windows or exponential down-weighting. For instance, [22], [18] and [11] consider the choice

of an observation window, and [10] and [19], respectively consider exponential and non-

exponential down-weighting of the observations. There are also Bayesian approaches to

prediction that allow for a possibility of breaks over the forecast horizon, e.g. [2], [15], and

[17]. [23] provides a review of the literature on forecasting under instability. There are

also related time varying parameter (TVP) and regime switching models that are used for

forecasting. See, for example, [9] and [5]. All these studies take the model specification as

given and then consider different ways of modeling and allowing for parameter instability.

But, to the best of our knowledge, none of these studies considers the problem of variable

selection in the presence of parameter instability.
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In the absence of instability, it is optimal to weigh the observations equally for both

variable selection and estimation purposes. Yet, in the presence of instability, the literature

does not discuss whether or not weighted observations should be used at the variable selection

stage, particularly when the number of potential covariates is large. There are a number of

recent studies that consider predicting stock returns using penalized regression, especially

the Least Absolute Shrinkage and Selection Operator (Lasso) initially proposed by [26] -

for example, [1] and [14]. But they do not allow for parameter instability at the Lasso

stage and suggest recursive application of Lasso using rolling windows. [16] have proposed

a Lasso procedure that allows for a threshold effect. [12] have proposed a time-varying

Lasso procedure, where all the parameters of the model vary locally. These are interesting

extensions of Lasso, but are likely to suffer from the over-fitting problem, and could be

sensitive to how cross validation is carried out. Also recently, [29] propose an interesting

boosting procedure for the estimation of high-dimensional models with locally time varying

parameters. It is important to note that, in the case of both penalized regression and

boosting procedures, variable selection and estimation are carried out in one stage.

[3] propose an alternative procedure called one covariate at a time multiple testing

(OCMT). In the absence of parameter instability, the authors establish that the suggested

procedure asymptotically selects all the relevant covariates and none of the pure noise co-

variates under general assumptions. Moreover, they show that the estimation errors of

coefficients and prediction loss converge to zero. Finally, their Monte Carlo studies indicate

that OCMT tends to perform better than penalized regression or boosting procedures under

various designs. [24] has recently generalized the OCMT procedure to allow the covariates

under consideration to be highly correlated, while penalized regression methods require the

covariates to be weakly correlated (see e.g. [30]). One clear advantage of OCMT is its natu-

ral separation of the two problems of variable selection and estimation/forecasting. One can,

therefore, decide whether to use the weighted observations at the variable selection stage or
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not. In this paper we argue that in the presence of parameter instability full (unweighted)

sample should be used for variable selection using the OCMT procedure. Forecasting can

then be carried out conditional on the selected variables, using available techniques such

as rolling or exponential downweighting techniques post selection. Also existing theoretical

results from the forecasting literature can be applied to the post OCMT selected model to

test for breaks and decide on the optimal choice of the estimation window or down-weighting

among the remaining true covariates.

We provide three main theorems to back up our proposed selection/forecasting strategy.

Under certain fairly general regularity conditions we show that the probability of selecting

the true approximating model that contains all the signals and none of the noise variable

tends to unity as the number of time series observations (T ) and the number of covariates

under consideration (N) tend to infinity. We also establish that least squares estimates of

the coefficients of the selected covariates will tend to zero unless they are (true) signals.

Lastly, we show that the mean square error of the selected model achieves the oracle rate

for regression models with time-varying coefficients. These theoretical findings provide a

formal justification for application of statistical techniques from the time-varying parameters

literature to the post OCMT selected model.

Finally, we consider two empirical applications: forecasting monthly returns of stocks in

Dow Jones and output growths across 33 countries, to illustrate the benefits of the OCMT

procedure with full unweighted sample at the selection stage. Our results consistently sug-

gest that using down-weighted observations at the selection stage of the OCMT procedure

worsens forecast accuracy in terms of mean square forecast error and mean directional fore-

cast accuracy. Moreover, our results suggest that overall OCMT with no down-weighting at

the selection stage outperforms penalized regression methods, such as Lasso and/or Adaptive

Lasso, which are prone to the over-fitting problem.

The rest of the paper is organized as follows: Section 2 sets out the model specification.
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Section 3 explains the basic idea behind using the OCMT procedure with no down-weighting

for variable selection in the presence parameter instability. Section 4 discusses the technical

assumptions and the asymptotic properties of the OCMT procedure under parameter insta-

bility. Section 5 presents the empirical applications, and Section 6 concludes. Mathematical

proofs are provided in the appendix.

Notations: Generic finite positive constants are denoted by Ci for i = 1, 2, · · · . ‖A‖2

and ‖A‖F denote the spectral and Frobenius norms of matrix A, respectively. λi(A) denotes

the ith eigenvalue of a square matrix A. ‖x‖ denotes the `2 norm of vector x. If {fn}∞n=1 and

{gn}∞n=1 are both positive sequences of real numbers, then fn = 	(gn) if there exist n0 ≥ 1

and positive constants C0 and C1, such that infn≥n0 (fn/gn) ≥ C0 and supn≥n0
(fn/gn) ≤ C1.

2 Model specification under parameter instability

Consider the following data generating process (DGP) for the target variable, yt, in terms

of the signal variables (xit, for i = 1, 2, ..., k)

yt = z′tat +
∑k

i=1 βitxit + ut, for t = 1, 2, · · · , T (1)

with time-varying parameters, at = (a1t, a2t, · · · , amt)′ and {βit, i = 1, 2, ..., k}, where zt is

an m× 1 vector of pre-selected covariates, and ut is an error term. Since the parameters are

time-varying we refer to the covariate i as “ signal” if the average value of its coefficient,

β̄i,T = T−1
∑T

t=1 E(βit), does not tend to zero very fast, namely such that β̄i,T = 	(T−ϑi) for

some 0 ≤ ϑi < 1/2.

Parameters can vary continuously following a stochastic process as in the standard ran-

dom coefficient model, βit = βi + σitξit, or could be fixed and change at discrete intervals:

βit = β
[s]
i , if t ∈ [Ts−1, Ts) for s = 1, 2, · · · , S, where T0 = 1 and TS = T . The vector zt can

contains deterministic components such as a constant, dummy variables, and a deterministic

time trend as well as stochastic variables including observed common factors. The problem is

that both the structure of the breaks and the identity of the k signals are unknown. The task
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facing the investigator is to select the signals from a set of covariates under consideration,

SNt = {x1t, x2t, · · · , xNt}, known as the active set, with N , the number of covariates in the

active set, possibly much larger than T , the number of data points available for estimation

prior to forecasting. We assume the coefficients (at, and βit, for i = 1, 2, ..., k) are indepen-

dently distributed of the pre-selected covariates (zt) and all the covariates in the active set

SNt.

The application of penalized regression techniques to variable selection is theoretically

justified under two key parameter stability assumptions: the stability of βit and the stability

of the correlation matrix of the covariates in the active set. Under these assumptions, the

application of the penalized regression to the active set can proceed using the full sample

without down-weighting or separating the variable selection from the forecasting stage. How-

ever, in the presence parameter instability, it is not clear how the use of penalized regressions

could be justified. The problem has been recognized in the empirical literature focusing on

slowly varying parameters and/or the use of rolling windows without making a distinction

between variable selection and forecasting. It is also worth highlighting that in this paper,

we relax the assumption of fixed correlation among the covariates in the active set, which is

very common in the penalized regression studies, and allow for time-varying correlations.

In this paper we follow [3] and consider the application of the OCMT procedure for

variable selection stage using the full unweighted sample, and provide theoretical arguments

to justify such an approach. We first recall that OCMT’s variable selection is based on the

net effect of xit on yt conditional zt. However, when the regression coefficients and/or the

correlations across the covariates in the active set are time-varying, the net effects will also

be time-varying and we need to base our selection on average net effects. Also, we need to

filter out the effects of the pre-selected covariates, zt, from xit and yt, before defining average

net effects. To this end consider the following auxiliary regressions of xit and yt on zt:

ỹt = yt − z′tψ̄y,T , and x̃it = xit − z′tψ̄i,T (2)
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where ψ̄y,T and ψ̄i,T are the m × 1 vectors of projection coefficients defined by ψ̄y,T ≡(
T−1

T∑
t=1

E (ztz
′
t)

)−1(
T−1

T∑
t=1

E(ztyt)

)
and ψ̄i,T ≡

(
T−1

T∑
t=1

E (ztz
′
t)

)−1(
T−1

T∑
t=1

E(ztxit)

)
.

Given the filtered series, x̃it and ỹt, we now define the average net effect of covariate xit

on yt, conditional on zt, as

θ̄i,T = T−1
∑T

t=1 E(x̃itỹt). (3)

Substituting for ỹt = yt− z′t ψ̄y,T in the above and noting that θ̄i,T is a given constant, then

θ̄i,T = T−1
∑T

t=1 E(x̃ityt)− ψ̄
′
y,T

[
T−1

∑T
t=1 E(x̃itzt)

]
.

Also,

T∑
t=1

E(x̃itzt) =
T∑
t=1

E(xitzt)−

[
T∑
t=1

E(ztz
′
t)

]
ψ̄i,T =

T∑
t=1

E(xitzt)−
T∑
t=1

E(xitzt) = 0. (4)

Hence, θ̄i,T = T−1
∑T

t=1 E(x̃ityt). Now by substituting yt from (1) we can further write,

θ̄i,T = T−1
∑T

t=1 E(x̃ityt) = T−1
∑T

t=1 E
[
x̃it

(
z′tat +

∑k
j=1 βjtxjt + ut

)]
= a′T−1

∑T
t=1 E(x̃itzt) + T−1

∑T
t=1

∑k
j=1 E(βjt)E(x̃itxjt) + T−1

∑T
t=1 E(x̃itut)

=
∑k

j=1

[
T−1

∑T
t=1 E(βjt)E(x̃itxjt)

]
+ T−1

∑T
t=1 E(x̃itut).

Therefore, the average net effect can be written simply as

θ̄i,T =
∑k

j=1

[
T−1

∑T
t=1 E(βjt)σij,t(z)

]
+ σ̄iu,T (z), (5)

where σij,t(z) = E(x̃itxjt), and σ̄iu,T (z) = T−1
∑T

t=1 E(x̃itut). Furthermore, σ̄iu,T (z) =

T−1
∑T

t=1 E(xitut) − ψ̄
′
i,T

(
T−1

∑T
t=1 E(ztut)

)
, which will be identically zero if the covari-

ates and the conditioning variables are weakly exogenous with respect to ut. In what fol-

lows we allow for a mild degree of correlation between (xit, zt) and ut by assuming that

σ̄iu,T (z) = 	(T−εi), for some εi > 1/2. It is also easily seen that when the parameters and

the cross covariate covariances are time-invariant the above average net effect reduces to

θi = Σk
j=1E(βj)σij(z).
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Given the average net effect of xit on yt, the covariates in the active set can be categorized

into three groups: signals, pseudo-signals and noise variables. As mentioned before, signals

are those covariates with average value of their coefficient, namely β̄iT = T−1
∑T

t=1 E(βit),

which does not approach zero too fast, namely β̄i,T = 	(T−ϑi), for some 0 ≤ ϑi < 1/2.

Pseudo-signals are the covariates that do not enter the DGP but have average net effects, θ̄i,T ,

that do not converge to zero sufficiently fast, namely θ̄i,T = 	(T−ϑi), for some 0 ≤ ϑi < 1/2.

Finally, noise variables are those covariates that do not enter the DGP and at the same

time have either zero or sufficiently small average net effects in the sense that θ̄i,T = 	(T−εi),

for some εi > 1/2.

In what follows, we first describe the OCMT procedure and then discuss the conditions

under which the approximating model that includes all the signals and none of the noise

variables is selected by OCMT.

3 Parameter instability and OCMT

The OCMT procedure considers the following N regressions of yt on each of the covariates

in the active set SNt one at a time, conditional on zt :

yt = %′i,Tzt + φi,Txit + ηit, for t = 1, 2, · · · , T ; i = 1, 2, ..., N, (6)

where φi,T =
[
T−1

∑T
t=1 E (x̃2

it)
]−1 [

T−1
∑T

t=1 E (x̃itỹt)
]

= [σ̄ii,T (z)]−1 θ̄i,T , with σ̄ii,T (z) =

T−1
∑T

t=1 σii,t(z). [3] assume parameter stability, and set βit = βi for all t, where βi is

deterministic, and assume zero conditional correlation between the signals and the error

term, namely σiu,t = 0 for all t. Under parameter stability the average net effects can be

simplified to the net effects defined by θi,T =
∑k

j=1 βjσ̄ij,T (z), for i = 1, 2, · · · , N , where

σ̄ij,T (z) = T−1
∑T

t=1 σij,t(z). Hence,

φi,T =
θi,T

σ̄ii,T (z)
=

∑k
j=1 βjσ̄ij,T (z)

σ̄ii,T (z)
. (7)
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However, in the more general set up of DGP (1), the net effect of xit on yt is time-varying.

Therefore, by running one at a time regressions of yt on each of the covariates: xit, i =

1, 2, · · · , N , we focus on average net effect of xit on yt, defined over the full sample, denoted

by θ̄i,T and given by (5).

Due to non-zero correlations between the covariates, knowing whether θ̄i,T is zero or not

does not necessarily allow us to establish whether β̄i,T is sufficiently close to zero or not.

There are four possibilities:

(I) Signals β̄i,T = 	(T−ϑi) and θ̄i,T = 	(T−ϑi)

(II) Hidden Signals β̄i,T = 	(T−ϑi) and θ̄i,T = 	(T−εi)

(III) Pseudo-signals β̄i,T = 	(T−εi) and θ̄i,T = 	(T−ϑi)

(IV) Noise variables β̄i,T = 	(T−εi) and θ̄i,T = 	(T−εi)

for some 0 ≤ ϑi < 1/2, and εi > 1/2. Notice, if the covariate xit is a noise variable, then θ̄i,T ,

the average net effect of xit on yt, converges to zero very fast. Therefore, down-weighting

of observations at the variable selection stage is likely to be inefficient for eliminating the

noise variables. Moreover, for a signal to remain hidden, we need the terms of higher order,

	(T−ϑj) with 0 ≤ ϑi < 1/2, to exactly cancel out such that θi,T becomes a lower order,

i.e. 	(T−εi), that tends to zero at a sufficiently fast rate (with εi > 1/2). This combination

of events seem quite unlikely, and to simplify the theoretical derivations in what follows

we abstract from such a possibility and assume that there are no hidden signals and only

consider the first stage of the OCMT procedure for variable selection.1

The OCMT procedure

1. For i = 1, 2, · · · , N , regress y = (y1, y1, ..., yT )′ on Z = (z1, z2, ..., zT )′ and xi =

(xi1, xi2, ..., xiT )′; y = Z%i,T + φi,Txi + ηi; and compute the t-ratio of φi,T , given

by

ti,T =
φ̂i,T

s.e.
(
φ̂i,T

) =
x′iMzy

σ̂i
√

x′iMzxi
,

1To allow for hidden signals, [3] extend the OCMT method to have multiple stages.
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where φ̂i,T = (x′iMzxi)
−1 (x′iMzy) is the Ordinary Least Square (OLS) estimator of

φi,T , σ̂2
i = η̂′iη̂i/T , and η̂i is a T × 1 vector of regression residuals.

2. Consider the critical value function, cp(N, δ), defined by

cp(N, δ) = Φ−1
(
1− p/2N δ

)
, (8)

where Φ−1(.) is the inverse of a standard normal distribution function; δ is a finite

positive constant; and p is the nominal size of the tests to be set by the investigator.

3. Given cp(N, δ), the selection indicator is given by

Ĵi = I [|ti,T | > cp(N, δ)] , for i = 1, 2, · · · , N. (9)

The covariate xit is selected if Ĵi = 1.

The main goal of OCMT is to use the t-ratio of the estimated φi,T to select all the signals

and none of the noise variables, the selected model is referred to as an approximating model

since it can include pseudo-signals. To deal with the multiple testing nature of the problem,

the critical value of the tests is chosen to be an appropriately increasing function of N .

4 Asymptotic properties of OCMT under parameter instability

We now provide the theoretical justification for using the OCMT procedure for variable

selection in models with time-varying parameters. It is assumed that m = dim(zt) and k, the

number of signals, are finite fixed integers. But we allow the number of pseudo-signals, which

we denote by k∗T , to grow at a sufficiently slow rate relative to N and T . Finally, we define

the approximating model to be a model that contains all the signals, {xit : i = 1, 2, · · · , k},

and none of the noise variables, {xit : k + k∗T + 1, k + k∗T + 2, · · · , N}. Clearly, such a model

can contain one or more of the pseudo-signals, {xit : k+ 1, k+ 2, · · · , k+ k∗T}. We start with

some technical assumptions in Section 4.1 and then provide the asymptotic properties of the

OCMT procedure under parameter instability in Section 4.2.
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4.1 Technical assumptions

Let qt = (z1t, z2t, · · · , zmt, x1t, x2t, · · · , xNt)′ be an (m + N) × 1 vector that include all the

covariates. In what follows we make use of the following filtrations: F qt = σ(qt,qt−1, · · · ),

Fa
t = σ(at, at−1, · · · ), Fβjt = σ(βjt, βj,t−1, · · · ) for j = 1, 2, · · · , k and Fut = σ(ut, ut−1, · · · ).

Moreover, we set Fβt = ∪kj=1F
β
jt and Ft = F qt ∪ Fa

t ∪ F
β
t ∪ Fut .

Assumption 1 (Martingale difference processes) enter

(a) E [qtq
′
t − E(qtqt′)|Ft−1] = 0 for t = 1, 2, · · · , T .

(b) E [u2
t − E (u2

t ) |Ft−1] = 0 for t = 1, 2, · · · , T .

(c) E [qtut − E(qtut)|Ft−1] = 0 for t = 1, 2, · · · , T .

(d) E [a`t − E(a`t)|Ft−1] = 0 for ` = 1, 2, · · · ,m and t = 1, 2, · · · , T .

(e) E [βit − E(βit)|Ft−1] = 0 for i = 1, 2, · · · , k and t = 1, 2, · · · , T .

Assumption 2 (Exponential decaying probability tails) enter

There exist sufficiently large positive constants C0 and C1, and s > 0 such that

(a) supj,t Pr(|qjt| > α) ≤ C0 exp(−C1α
s), for all α > 0.

(b) sup`,t Pr(|a`t| > α) ≤ C0 exp(−C1α
s), for all α > 0.

(c) supi,t Pr(|βit| > α) ≤ C0 exp(−C1α
s), for all α > 0.

(d) supt Pr(|ut| > α) ≤ C0 exp(−C1α
s), for all α > 0.

Assumption 3 (Coefficients of signals) enter

(a) The number of signals, k, is a finite fixed integer.

(b) βit, i = 1, 2, · · · , k, are independent of qjt′, j = 1, · · · ,m+N , and ut′ for all t and t′.

(c) β̄i,T ≡ T−1
∑T

t=1 E(βit) = 	(T−ϑi), for some 0 ≤ ϑi < 1/2.
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Assumption 4 (Coefficients of conditioning variables) enter

(a) The number of conditioning variables, m, is finite.

(b) a`t, ` = 1, 2, · · · ,m, are independent of qjt′,j = 1, · · · ,m+N , and ut′ for all t and t′.

(c) E(a`t) = a` for ` = 1, 2, · · · ,m and all t.

Before presenting the theoretical results, we briefly mention pros and cons of our assump-

tions and compare them with the assumptions typically made in the high-dimensional linear

regression and the time-varying parameters literature.

Assumptions 1 allows the variables z`t, a`t , xit, βit and ut to follow martingale difference

processes, which is weaker than the IID assumption typically made in the literature. Follow-

ing a similar line of argument as in Section 4.2 of [3], we can relax some of these assumptions

somewhat to allow for weak serial correlation in z`t, a`t, xit, βit and ut.

Assumption 2 imposes the variables z`t, a`t, xit, βit and ut to have exponentially decaying

probability tails to ensure all moments exist. This assumption is stronger than those needed

in the studies on breaks, but it is required to drive upper and lower probability bounds for

selection of the approximating model. It is common in the high-dimensional linear literature

to assume some form of exponentially decaying probability bound for the variables. For

example, see [31], [8] and [3].

Assumptions 3(a) and 4(a) are required to establish that the target variable, yt, has the

exponentially decaying probability tail of the same order as the other random variables.

Assumptions 3(b) and 4(b) ensure the distribution of time-varying parameters a`t and βit to

be independent of the observed covariates (xit and z`t) and ut, which is a standard assumption

in the literature on time-varying parameters. Assumptions 3(c) ensures the average value of

the coefficients of the signal variables does not approach zero too fast. It is an identification

assumption that allows distinguishing signal from noise variables. Finally, Assumption 4(c)

constrains the expected values of coefficients of pre-selected covariates to be time-invariant.

12



4.2 Theoretical findings

As mentioned in Section 1, the purpose of this paper is to provide the theoretical argument

for applying the OCMT procedure with no down-weighting at the variable selection stage in

linear high-dimensional settings subject to parameter instability. We now show that under

certain conditions discussed in Section 4.1, the OCMT procedure selects the approximating

model that contains all the signals; {xit : i = 1, 2, · · · , k}; and none of the noise variables;

{xit : k + k∗T + 1, k + k∗T + 2, · · · , N}. The event of choosing the approximating model is

defined by

A0 =
{∑k

i=1 Ĵi = k
}
∩
{∑N

i=k+k∗T+1 Ĵi = 0
}
. (10)

Note the the approximate model can contain pseudo-signals variables. In what follows, we

show that Pr(A0)→ 1, as N, T →∞.

Theorem 1 Let yt for t = 1, 2, · · · , T be generated by (1), and let T = 	(Nκ1) with κ1 > 0,

and SNt = {x1t, x2t, · · · , xNt} which contains k signals, k∗T pseudo-signals, and N − k − k∗T

noise variables. Consider the OCMT procedure with the critical value function cp(N, δ) given

by (8), for some δ > 0. Then under Assumptions 1-4, there exist finite positive constants

C0, and C1 such that, the probability of selecting the approximating model, A0, defined by

(10), is given by

Pr (A0) = 1−O(N1−2C0δ)−O[exp(−NC1κ1)]. (11)

See Appendix A.1 for a proof.

It is interesting that the asymptotic results regarding the probability of selecting the

approximating model are unaffected by parameter instability, so long as the average net

effects of the signals are non-zero or tend to zero sufficiently slowly in T , as defined formally

by Assumption 3. In the next step, we focus on estimation of the coefficients of the selected

model. To simply the exposition assume that there are no pre-selected covariates, in which
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case, the DGP (1) simplifies to

yt =
∑k

i=1 βitxit + ut = β′txkt + ut, for t = 1, 2, · · · , T, (12)

where xkt = (x1t, x2t, · · · , xkt)′ and βt = (β1t, β2t, · · · , βkt)′. For the next set of results the

following additional assumption is also needed.

Assumption 5 (Eigenvalues) Let xkk∗T ,t =
(
x1t, x2t, · · · , xkt, xk+1,t, xk+2,t, · · · , xk∗T t

)′
be a

(k+k∗T )×1 vector of signals and pseudo-signals, then λmin

[
T−1

T∑
t=1

E(xkk∗T ,tx
′
kk∗T ,t

)

]
> c > 0.

This assumption ensures that the post OCMT selected model can be estimated and the

associated regressions coefficients can be consistently estimated subject to certain regularity

conditions to be discussed above. This assumption rules out perfect multicollinearity among

the signals and selected pseudo signals. It also requires that k∗T < T , which will be met

for sufficiently large T , under our assumption, namely that k∗T/T → 0, as T → ∞, at a

sufficiently fast rate.

The post OCMT selected model can be written as

yt =
∑N

i=1 Ĵixitbi + ηt (13)

where Ĵi = I [|ti,T | > cp(N, δ)] , defined by (9). Also
∑N

i=1 Ĵi = k̂T , where k̂T is the number

of covariates selected by OCMT. By Theorem 1 the probability that the selected model

contains the signals tends to unity as T →∞. We can further write

yt =
∑N

i=1 Ĵixitbi + ηt =
∑k̂T

`=1 γ`w`t + ηt, (14)

where wt =
(
w1t, w2t, · · · , wk̂T t

)′
. The least squares (LS) estimator of selected coefficients,

γT =
(
γ1, γ2, · · · , γk̂T

)′
, is given by

γ̂T =
(
T−1

∑T
t=1 wtw

′
t

)−1 (
T−1

∑T
t=1 wtyt

)
, (15)

In establishing the rate of convergence of γ̂T we distinguish between two cases: when the
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vector of signals, xk,t = (x1t, x2t, · · · , xkt) is included in wt as a subset, and when this

is not the case. But we know by Theorem 1 the probability of the latter tends to zero

at a sufficiently fast rate. The following theorem provides the conditions under which the

estimator of the coefficients of the selected pseudo-signals and signals tend to their mean

values, defined formally below.

Theorem 2 Let the DGP for yt, t = 1, 2, · · · , T be given by (12) and write down the re-

gression model selected by the OCMT procedure as (14). Suppose that Assumptions 1-5 hold

and the number of pseudo-signals, k∗T , grow with T such that k∗T = 	(T d) with 0 ≤ d < 1
2
.

Consider the LS estimator of γT =
(
γ1, γ2, · · · , γk̂T

)′
, given by (15).

(i) If E(βit) = βi for all t, then,

‖γ̂T − γ∗T‖ = Op

(
T
d−1
2

)
, (16)

where γ∗T = (γ∗1 , γ
∗
2 , · · · , γ∗k̂T )′, andγ∗` ∈ β = (β1, β2, · · · , βk)′, if w`t ∈ xkt

γ∗` = 0, otherwise.

(17)

(ii) If E
(
xkk∗T ,tx

′
kk∗T ,t

)
= Σ is a fixed matrix, then,

‖γ̂T − γ�T‖ = Op

(
T
d−1
2

)
, (18)

where γ�T = (γ�1T , γ
�
2T , · · · , γ�k̂T ,T )′ , andγ

�
`,T ∈ β̄T = (β̄1T , β̄2T , · · · , β̄kT )′, if w`t ∈ xkt

γ�`,T = 0, otherwise,
(19)

and β̄iT = T−1
∑T

t=1 E(βit), i = 1, 2, · · · , k.

See Appendix A.2 for a proof.

Remark 1 The above theorem builds on Theorem 1 and establishes that in the post OCMT

selected model only signals will end up having non-zero limiting values, as N and T →∞, so
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long as 0 ≤ d < 1/2 and δ is sufficiently large. d controls the rate at which number of pseudo-

signals is allowed to rise with T . The latter condition rules out the possibility of true and

pseudo-signals sharing the same unobserved common factors. To deal with such a possibility,

following [24], one can first filter out the common factors using principle components (PC)

and then apply the OCMT procedure to the least squares residuals of the regressions of the

covariates on one or more of their top PCs.

Remark 2 The conditions of Theorem 2 are met in the case of random coefficient models

where βit = βi + σitξit, and ξit are distributed independently of the signals (and of the pre-

selected covariates, if any), and the LS estimator of γ∗T is consistent, so long as 0 ≤ d < 1/2.

Interestingly, if signal and pseudo-signal variables are generated by a stationary process, and

hence they satisfy condition (ii) of Theorem 2, then we can extend the random coefficient

model to have time-variant means, and still estimate γ∗T consistently by LS.

Lastly, we provide our finding about the mean square error (MSE) of the selected model

estimated by LS. Here, we need one more assumption as described below.

Assumption 6 (Cross product variations in signal coefficients) enter

E [βitβjt − E(βitβjt)|Ft−1] = 0 for i = 1, 2, · · · , k, j = 1, 2, · · · , k, and t = 1, 2, · · · , T .

Remark 3 Assumption 6 ensures that the MSE of the oracle model that contains only the

signals, exists. This assumption can be relaxed to allow for weak time dependence in xitβit.

The in-sample error of post OCMT selected model can be written as

η̂t = yt −
∑k̂T

`=1 γ̂`w`t. (20)

The following theorem establishes the limiting property of MSE of the selected model, given

by T−1
∑T

t=1 η̂
2
t .

Theorem 3 Let the DGP for yt, t = 1, 2, · · · , T be given by (12) and write down the re-

gression model selected by the OCMT procedure as (14). The error of the selected model,

16



estimated by LS, is given by (20). Suppose that Assumptions 1-6 hold and the number of

pseudo-signals, k∗T , grow with T such that k∗T = 	(T d) with 0 ≤ d < 1
2
.

(i) If E(βit) = βi for all t, then

T−1
∑T

t=1 η̂
2
t =

∑k
i=1

∑k
j=1

(
T−1

∑T
t=1 σijt,xσijt,β

)
+σ̄2

u,T+Op

(
T−

1
2

)
+Op

(
T d−1

)
, (21)

where σijt,x = E (xitxjt), σijt,β = E [(βit − βi)(βjt − βj)], and σ̄2
u,T = T−1E (u′u).

(ii) If E
(
xkk∗T ,tx

′
kk∗T ,t

)
= Σ is a fixed matrix, then,

T−1
∑T

t=1 η̂
2
t =

∑k
i=1

∑k
j=1

(
T−1

∑T
t=1 σijt,xσ

∗
ijt,β

)
+σ̄2

u,T+Op

(
T−

1
2

)
+Op

(
T d−1

)
, (22)

where σ∗ijt,β = E
[
(βit − β̄i,T )(βjt − β̄j,T )

]
.

See Appendix A.3 for a proof.

Remark 4 The condition d < 1
2

in Theorem 3 ensures that the number of pseudo-signals

grows sufficiently slowly relative to T , and as a result, T 1−d < T−
1
2 and hence from equations

(21) and (22), we can conclude that the MSE of the Post OCMT selected model convergences

at the same rate of T−
1
2 under both scenarios (i) and (ii).

Remark 5 Results (21) and (22) show that the MSE of the selected model depends on (i)

pure uncertainty due to the unobserved error term, ut, of the DGP, as given by the term

σ̄2
u,T , (ii) the traditional Op

(
T−1/2

)
sampling uncertainty, which dominates the additional

Op

(
T d−1

)
uncertainty due to inclusion of k∗T = 	(T d) pseudo-signals, and (iii) an additional

term that depends on the product of σijt,x and σijt,β (or σ∗ijt,β), which represents the cost

(in terms of fit) of ignoring the time variation in the coefficients of the signals, βit, i =

1, 2, · · · , k. This cost is larger when the time variation in the coefficients of the signals (as

measured by σijt,β or σ∗ijt,β) is larger, and, for a given σijt,β 6= 0, it increases with σijt,x. This

finding for the in-sample fit is similar to the results for mean square forecast errors (MSFE)

in the presence of breaks in the literature, such as Proposition 2 of [22] or equation (20) of

[19], where the main focus is to minimize the MSFE by mitigating the cost from the time
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variation in parameters at the expense of increased sampling uncertainty by weighting the

observations, such as the use of optimal estimation windows or exponential downweighting

of observations.

Remark 6 The above three theorems require the exponent δ in the critical value function,

(8), to be sufficiently large such that δ > 1
2C0

, for some positive constant C0. The extensive

Monte Carlo Studies in [3] suggest that setting δ = 1 preforms well in practice.

5 Empirical applications

The rest of the paper considers a number of empirical applications whereby the forecast

performance of the proposed OCMT approach with no down-weighting at the selection stage

is compared with those of Lasso and Adaptive Lasso. In particular, we consider the following

two applications:2

� Forecasting monthly rate of price changes for 28 (out of 30) stocks in Dow Jones using

a relatively large number of financial, economic, as well as technical indicators.

� Forecasting quarterly output growth rates across 33 countries using macro and financial

variables.

In each application, we first compare the performance of OCMT with and without down-

weighted observations at the selection stage. We then consider the comparative performance

of OCMT (with variable selection carried out without down-weighting) relative to Lasso and

Adaptive Lasso, with and without down-weighting. For down-weighting we make use of ex-

ponentially down-weighted observations, namely x̂it(λ) = λT−txit, and ŷt(λ) = λT−tyt, where

yt is the target variable to be forecasted, xit, for i = 1, 2, ..., N are the covariates in the active

set, and λ is the exponential decay coefficient. We consider two sets of values for the degree of

exponential decay, λ: (1) Light down-weighting with λ = 0.975, 0.98, 0.985, 0.99, 0.995, 1, and

2We also consider forecasting Euro Area quarterly output growth using the European Central Bank (ECB)
survey of professional forecasters as our third application. The results of this application can be found in
Section S-4 of the online empirical supplement.
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(2) Heavy down-weighting with λ = 0.95, 0.96, 0.97, 0.98, 0.99, 1. For each of the above two

sets of exponential down-weighting schemes we focus on simple average forecasts computed

over the individual forecasts obtained for each value of λ in the set under consideration.

For forecast evaluation we consider Mean Squared Forecasting Error (MSFE) and Mean

Directional Forecast Accuracy (MDFA), together with related pooled versions of Diebold-

Mariano (DM), and Pesaran-Timmermann (PT) test statistics. A panel version of [6] test is

proposed by [20]. Let qlt ≡ e2
ltA − e2

ltB be the difference in the squared forecasting errors of

procedures A and B, for the target variable ylt (l = 1, 2, ..., L) and t = 1, 2, ..., T fl , where T fl

is the number of forecasts for target variable l (could be one or multiple step ahead) under

consideration. Suppose qlt = αl + εlt with εlt ∼ N (0, σ2
l ). Then under the null hypothesis of

H0 : αl = 0 for all l we have

DM =
q̄√
V (q̄)

a∼ N (0, 1), for TLf →∞, where TLf =
L∑
l=1

T fl , q̄ = T−1
Lf

∑L
l=1

∑T fl
t=1 qlt, and

V (q̄) =
1

T 2
Lf

L∑
l=1

T fl σ̂
2
l , with σ̂2

l =
1

T fl

T fl∑
t=1

(qlt − q̄l)2 and q̄l =
1

T fl

T fl∑
t=1

qlt.

Note that V (q̄) needs to be modified in the case of multiple-step ahead forecast errors,

due to the serial correlation that results in the forecast errors from the use of over-lapping

observations. There is no adjustment needed for one-step ahead forecasting, since it is

reasonable to assume that in this case the loss differentials are serially uncorrelated. However,

to handle possible serial correlation for h-step ahead forecasting with h > 1, we can modify

the panel DM test by using the Newey-West type estimator of σ2
l .

The MDFA statistic compares the accuracy of forecasts in predicting the direction (sign)

of the target variable, and is computed as

MDFA = 100

 1

TLf

L∑
l=l

T fl∑
t=1

1[sgn(ylty
f
lt) > 0]

 ,

where 1(w > 0) is the indicator function takes the value of 1 when w > 0 and zero otherwise,
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sgn(w) is the sign function, ylt is the actual value of dependent variable at time t and yflt

is its corresponding predicted value. To evaluate statistical significance of the directional

forecasts for each method, we also report a pooled version of the test suggested by [21]:

PT =
P̂ − P̂ ∗√

V̂ (P̂ )− V̂ (P̂ ∗)
,

where P̂ is the estimator of the probability of correctly predicting the sign of ylt, computed

by

P̂ =
1

TLf

L∑
l=1

T fl∑
t=1

1[ sgn(ylty
f
lt) > 0], and P̂ ∗ = d̄yd̄yf + (1− d̄y)(1− d̄yf ), with

d̄y =
1

TLf

L∑
l=1

T fl∑
t=1

1[sgn(ylt) > 0], and d̄yf =
1

TLf

L∑
l=1

T fl∑
t=1

1[sgn(yflt) > 0].

Finally, V̂ (P̂ ) = T−1
Lf P̂

∗(1− P̂ ∗), and

V̂ (P̂ ∗) =
1

TLf
(2d̄y−1)2d̄yf (1− d̄yf )+

1

TLf
(2d̄fy−1)2d̄y(1− d̄y)+

4

T 2
Lf

d̄yd̄yf (1− d̄y)(1− d̄yf ).

The last term of V̂ (P̂ ∗) is negligible and can be ignored. Under the null hypothesis, that

prediction and realization are independently distributed, PT is asymptotically distributed

as a standard normal distribution.

5.1 Forecasting monthly returns of stocks in Dow Jones

In this application the focus is on forecasting one-month ahead stock returns, defined as

monthly change in natural logarithm of stock prices. We consider stocks that were part of

the Dow Jones index in 2017m12, and have non-zero prices for at least 120 consecutive data

points (10 years) over the period 1980m1 and 2017m12. We ended up forecasting 28 blue chip

stocks.3 Daily close prices for all the stocks are obtained from Data Stream. For stock i, the

price at the last trading day of each month is used to construct the corresponding monthly

3Visa and DwoDuPont are excluded since they have less than 10 years of historical price data.
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stock prices, Pit. Finally, monthly returns are computed by ri,t+1 = 100 ln(Pi,t+1/Pit), for

i = 1, 2, ..., 28. For all 28 stocks we use an expanding window starting with the observations

for the first 10 years (T = 120). The active set for predicting ri,t+1 consists of 40 finan-

cial, economic, and technical variables.4 The full list and the description of the indicators

considered can be found in Section S-1 of online empirical supplement.

Overall we computed 8,659 monthly forecasts for the 28 target stocks. The results are

summarized as average forecast performances across the different variable selection proce-

dures. Table 1 reports the effects of down-weighting at the selection stage of the OCMT

procedure. It is clear that down-weighting worsens the predictive accuracy of OCMT. From

the Panel DM tests, we can also see that down-weighting at the selection stage worsens the

forecasts significantly. Panel DM test statistics is -5.606 (-11.352) for light (heavy) versus no

down-weighing at the selection stage. Moreover, Table 2 shows that the OCMT procedure

with no down-weighting at the selection stage dominates Lasso and Adaptive Lasso in terms

of MSFE and the differences are statistically highly significant.

Further, OCMT outperforms Lasso and Adaptive Lasso in terms of Mean Directional

Forecast Accuracy (MDFA), measured as the percent number of correctly signed one-month

ahead forecasts across all the 28 stocks over the period 1990m2-2017m12. See Table 3. As

can be seen from this table, OCMT with no down-weighting performs the best; correctly

predicting the direction of 56.057% of 8,659 forecasts, as compared to 55.33%, which we

obtain for Lasso and Adaptive Lasso forecast, at best. This difference is highly significant

considering the very large number of forecasts involved. It is also of interest that the better

of performance of OCMT is achieved with a much fewer number of selected covariates as

compared to Lasso and Adaptive Lasso. As can be seen from the last column of Table 3,

Lasso and Adaptive Lasso on average select many more covariates than OCMT (1-3 variables

as compared to 0.072 for OCMT).

So far we have focussed on average performance across all the 28 stocks. Table 4 provides

4All regressions include the intercept as the only conditioning (pre-selected) variable.
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the summary results for individual stocks, showing the relative performance of OCMT in

terms of the number of stocks, using MSFE and MDFA criteria. The results show that

OCMT performs better than Lasso and Adaptive Lasso in the majority of the stocks in

terms of MSFE and MDFA. OCMT outperforms Lasso in 23 out of 28 stocks in terms of

MSFE, under no down-weighting, and almost universally when Lasso or Adaptive Lasso are

implemented with down-weighting. Similar results are obtained when we consider MDFA

criteria, although the differences in performance are somewhat less pronounced. Overall, we

can conclude that the better average performance of OCMT (documented in Tables 2 and

3) is not driven by a few stocks and holds more generally.

5.2 Forecasting quarterly output growth rates across 33 countries

We consider one and two years ahead predictions of output growth for 33 countries (20

advanced and 13 emerging). We use quarterly data from 1979Q2 to 2016Q4 taken from the

GVAR dataset.5 We predict ∆4yit = yit− yi,t−4, and ∆8yit = yit− yi,t−8, where yit, is the log

of real output for country i. We adopt the following direct forecasting equations:

∆hyi,t+h = yi,t+h − yit = αih + λih∆1yit + β′ihxit + uiht,

where we consider h = 4 (one-year-ahead forecasts) and h = 8 (two-years-ahead forecasts).

Given the known persistence in output growth, in addition to the intercept in the present

application we also condition on the most recent lagged output growth, denoted by ∆1yit =

yit − yi,t−1, and confine the variable selection to list of variables set out in Table S.2 in

the online empirical supplement. Overall, we consider a maximum of 15 covariates in the

active set covering quarterly changes in domestic variables such as real output growth, real

short term interest rate, and long-short interest rate spread and quarterly change in the

corresponding foreign variables.

We use expanding samples, starting with the observations on the first 15 years (60 data

5The GVAR dataset is available at https://sites.google.com/site/gvarmodelling/data.
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points), and evaluate the forecasting performance of the three methods over the period

1997Q2 to 2016Q4.

Tables 5 and 6, respectively, report the MSFE of OCMT for one-year and two-year

ahead forecasts of output growth, with and without down-weighting at the selection stage.

Consistent with the previous two applications, down-weighting at the selection stage worsens

the forecasting accuracy. Moreover, in Tables 7 and 8, we can see that OCMT (without

down-weighting at the selection stage) outperforms Lasso and Adaptive Lasso in two-year

ahead forecasting. In the case of one-year ahead forecasts, OCMT and Lasso are very close

to each other and both outperform Adaptive Lasso. Table 9 summarizes country-specific

MSFE and DM findings for OCMT relative to Lasso and Adaptive Lasso. The results show

OCMT under-performs Lasso in more than half of the countries for one-year ahead horizon,

but outperforms Lasso and Adaptive Lasso in more than 70 percent of the countries in the

case of two-year ahead forecasts. It is worth noting that while Lasso generally outperforms

OCMT in the case of one-year ahead forecasts, overall its performance is not significantly

better. See Panel DM test of Table 7. On the other hand we can see from Table 8 that

overall OCMT significantly outperforms Lasso in the case of the two-year ahead forecasts.

Finally in Tables 10 and 11 we reports MDFA and PT test statistics for OCMT, Lasso

and Adaptive Lasso. Overall, OCMT has a slightly higher MDFA and hence predicts the

direction of real output growth better than Lasso and Adaptive Lasso in most cases. The PT

test statistics suggest that while all the methods perform well in forecasting the direction

of one-year ahead real output growth, none of the methods considered are successful at

predicting the direction of two-year ahead output growth.

It is also worth noting that as with the previous applications, OCMT selects very few

variables from the active set (0.1 on average for both horizons, with the maximum number

of selected variables being 2 for h = 4 and 8). On the other hand, Lasso on average selects

2.7 variables from the active set for h = 4, and 1 variable on average for h = 8. Maximum
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number of variables selected by Lasso is 9 and 13 for h = 4, 8, respectively (out of possible

15). Again as to be expected, Adaptive Lasso selects a fewer number of variables as compared

to Lasso (2.3 and 0.8 on average for h = 4, 8, respectively), but this does not lead to a better

forecast performance in comparison with Lasso.

In conclusion, down-weighting at both selection and forecasting stages deteriorates OCMT’s

MSFE for both one–year and two-years ahead forecast horizons, as compared to down-

weighting only at the forecasting stage. Moreover, light down-weighting at the forecasting

stage improves forecasting performance for both horizons. Statistically significant evidence

of forecasting skill is found for OCMT relative to Lasso only in the case of two-years ahead

forecasts. However, it is interesting that none of the big data methods can significantly beat

the simple (light down-weighted) AR(1) baseline model.

6 Conclusion

The penalized regression approach has become the de facto benchmark in the literature in

the context of linear regression models without breaks. These studies (with few exceptions,

including 12) do not consider the problem of variable selection when breaks are present.

Recently, [3] proposed OCMT as an alternative procedure to penalized regression. One

clear advantage of the OCMT procedure is the fact that the problem of variable selection

is separated from the forecasting stage, which is in contrast to the penalized regression

techniques where the variable selection and estimation are carried out simultaneously. Using

OCMT one can decide whether to use the weighted observations at the variable selection

stage or not, without preempting a different down-weighting procedure at the forecasting

stage.

We have provided theoretical arguments for using the full (not down-weighted) sample at

the selection stage of OCMT, and down-weighted observations (if needed) at the forecasting

stage of OCMT. The benefits of the proposed method are illustrated by a number of empirical
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applications to forecasting output growth and stock market returns. Our results consistently

suggests that using down-weighted observations at the selection stage of OCMT deteriorate

the forecasting accuracy in terms of mean square forecast error and mean directional forecast

accuracy. Moreover, our results suggest that overall OCMT with no down-weighting at the

selection stage outperforms penalized regression methods, i.e. Lasso and Adaptive Lasso,

which are prone to over-fitting.

Table 1: Mean square forecast error (MSFE) and panel DM test of OCMT of one-month ahead monthly

return forecasts across the 28 stocks in Dow Jones index between 1990m2 and 2017m12 (8659 forecasts)

Down-weighting at†

Selection stage Forecasting stage MSFE

(M1) no no 61.231

Light Down-weighting, λ = {0.975, 0.98, 0.985, 0.99, 0.995, 1}
(M2) no yes 61.641

(M3) yes yes 68.131

Heavy Down-weighting, λ = {0.95, 0.96, 0.97, 0.98, 0.99, 1}
(M4) no yes 62.163

(M5) yes yes 86.073

Pair-wise panel DM tests

Light down-weighting Heavy down-weighting

(M2) (M3) (M4) (M5)

(M1) -1.528 -5.643 (M1) -2.459 -11.381

(M2) - -5.606 (M4) - -11.352

Notes: The active set consists of 40 covariates. The conditioning set only contains an intercept.
†For each of the two sets of exponential down-weighting (light/heavy) forecasts of the target variable are
computed as the simple average of the forecasts obtained using the down-weighting coefficient, λ, in the
“light” or the “heavy” down-weighting set under consideration. See footnote to Table S.3.
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Table 2: Mean square forecast error (MSFE) and panel DM test of OCMT versus Lasso and Adaptive Lasso

of one-month ahead monthly return forecasts across the 28 stocks in Dow Jones index between 1990m2 and

2017m12 (8659 forecasts)

MSFE under different down-weighting scenarios

No down-weighting Light down-weighting† Heavy down-weighting‡

OCMT 61.231 61.641 62.163

Lasso 61.849 63.201 69.145

A-Lasso 63.069 65.017 72.038

Selected pair-wise panel DM tests

No down-weighting Light down-weighting Heavy down-weighting

Lasso A-Lasso Lasso A-Lasso Lasso A-Lasso

OCMT -1.533 -4.934 -2.956 -6.025 -7.676 -10.261

Lasso - -4.661 - -6.885 - -9.569

Notes: The active set consists of 40 covariates. The conditioning set contains only the intercept.
† Light down-weighted forecasts are computed as simple averages of forecasts obtained using the
down-weighting coefficient, λ = {0.975, 0.98, 0.985, 0.99, 0.995, 1}.
‡ Heavy down-weighted forecasts are computed as simple averages of forecasts obtained using the
down-weighting coefficient, λ = {0.95, 0.96, 0.97, 0.98, 0.99, 1}.

Table 3: Mean directional forecast accuracy (MDFA) and the average number of selected variables (k̂) of

OCMT, Lasso and Adaptive Lasso of one-month ahead monthly return forecasts across the 28 stocks in Dow

Jones index between 1990m2 and 2017m12 (8659 forecasts).

Down-weighting MDFA k̂

OCMT No 56.057 0.072

Light† 55.330 0.072

Heavy‡ 54.302 0.072

Lasso No 55.364 1.659

Light 54.221 2.133

Heavy 53.205 3.794

Adaptive Lasso No 54.648 1.312

Light 53.840 1.623

Heavy 52.951 2.855

Notes: The active set consists of 40 variables. The conditioning set contains an intercept.
† Light down-weighted forecasts are computed as simple averages of forecasts obtained using the
down-weighting coefficient, λ = {0.975, 0.98, 0.985, 0.99, 0.995, 1}.
‡ Heavy down-weighted forecasts are computed as simple averages of forecasts obtained using the
down-weighting coefficient, λ = {0.95, 0.96, 0.97, 0.98, 0.99, 1}.
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Table 4: The number of stocks out of the 28 stocks in Dow Jones index where OCMT outper-

forms/underperforms Lasso, and Adaptive Lasso in terms of mean square forecast error (MSFE), panel

DM test and mean directional forecast accuracy (MDFA) between 1990m2 and 2017m12 (8659 forecasts).

MSFE
Down- OCMT OCMT significantly OCMT OCMT significantly

weighting outperforms outperforms underperforms underperforms
Lasso No 23 4 5 2

Light† 25 5 3 0
Heavy‡ 26 14 2 0

A-Lasso No 24 9 4 2
Light 27 10 1 0
Heavy 28 24 0 0

MDFA
Down- OCMT OCMT

weighting outperforms underperforms
Lasso No 14 6

Light 24 4
Heavy 17 10

A-Lasso No 18 4
Light 21 3
Heavy 19 7

Notes: The active set consists of 40 variables. The conditioning set only contains an intercept.
† Light down-weighted forecasts are computed as simple averages of forecasts obtained using the
down-weighting coefficient, λ = {0.975, 0.98, 0.985, 0.99, 0.995, 1}.
‡ Heavy down-weighted forecasts are computed as simple averages of forecasts obtained using the
down-weighting coefficient, λ = {0.95, 0.96, 0.97, 0.98, 0.99, 1}.

Table 5: Mean square forecast error (MSFE) and panel DM test of OCMT of one-year ahead output growth

forecasts across 33 countries over the period 1997Q2-2016Q4 (2607 forecasts)

Down-weighting at† MSFE (×104)
Selection stage Forecasting stage All Advanced Emerging

(M1) no no 11.246 7.277 17.354
Light down-weighting, λ = {0.975, 0.98, 0.985, 0.99, 0.995, 1}

(M2) no yes 10.836 6.913 16.871
(M3) yes yes 10.919 6.787 17.275

Heavy down-weighting, λ = {0.95, 0.96, 0.97, 0.98, 0.99, 1}
(M4) no yes 11.064 7.187 17.028
(M5) yes yes 11.314 6.906 18.094

Pair-wise panel DM tests (all countries)
Light down-weighting Heavy down-weighting

(M2) (M3) (M4) (M5)
(M1) 2.394 1.662 (M1) 0.668 -0.204
(M2) - -0.780 (M4) - -1.320

Notes: There are up to 15 macro and financial variables in the active set.
†For each of the two sets of exponential down-weighting (light/heavy) forecasts of the target variable are

computed as the simple average of the forecasts obtained using the down-weighting coefficient, λ, in the

”light” or the ”heavy” down-weighting set under consideration.
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Table 6: Mean square forecast error (MSFE) and panel DM test of OCMT of two-year ahead output growth

forecasts across 33 countries over the period 1997Q2-2016Q4 (2343 forecasts)

Down-weighting at† MSFE (×104)

Selection stage Forecasting stage All Advanced Emerging

(M1) no no 9.921 7.355 13.867

Light down-weighting, λ = {0.975, 0.98, 0.985, 0.99, 0.995, 1}
(M2) no yes 9.487 6.874 13.505

(M3) yes yes 9.549 6.848 13.704

Heavy down-weighting, λ = {0.95, 0.96, 0.97, 0.98, 0.99, 1}
(M4) no yes 9.734 7.027 13.898

(M5) yes yes 10.389 7.277 15.177

Pair-wise panel DM test (all countries)

Light down-weighting Heavy down-weighting

(M2) (M3) (M4) (M5)

(M1) 3.667 2.827 (M1) 0.943 -1.664

(M2) - -1.009 (M4) - -3.498

Notes: There are up to 15 macro and financial variables in the active set.
†For each of the two sets of exponential down-weighting (light/heavy) forecasts of the target variable are

computed as the simple average of the forecasts obtained using the down-weighting coefficient, λ, in the

”light” or the ”heavy” down-weighting set under consideration..

Table 7: Mean square forecast error (MSFE) and panel DM test of OCMT versus Lasso, and Adaptive

Lasso for one-year ahead output growth forecasts across 33 countries over the period1997Q2-2016Q4 (2607

forecasts)

MSFE under different down-weighting scenarios

No down-weighting Light down-weighting† Heavy down-weighting‡

All Adv.∗ Emer.∗∗ All Adv. Emer. All Adv. Emer.

OCMT 11.246 7.277 17.354 10.836 6.913 16.871 11.064 7.187 17.028

Lasso 11.205 6.975 17.714 10.729 6.427 17.347 11.749 7.186 18.769

A-Lasso 11.579 7.128 18.426 11.153 6.548 18.236 12.254 7.482 19.595

Pair-wise panel DM tests (All countries)

No down-weighting Light down-weighting Heavy down-weighting

Lasso A-Lasso Lasso A-Lasso Lasso A-Lasso

OCMT 0.220 -1.079 0.486 -1.007 -1.799 -2.441

Lasso - -2.625 - -3.626 - -3.157

Notes: There are up to 15 macro and financial covariates in the active set.
† Light down-weighted forecasts are computed as simple averages of forecasts obtained using the

down-weighting coefficient, λ = {0.975, 0.98, 0.985, 0.99, 0.995, 1}.
‡ Heavy down-weighted forecasts are computed as simple averages of forecasts obtained using the

down-weighting coefficient, λ = {0.95, 0.96, 0.97, 0.98, 0.99, 1}.
∗ Adv. stands for advanced economies.
∗∗ Emer. stands for emerging economies.
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Table 8: Mean square forecast error (MSFE) and panel DM test of OCMT versus Lasso, and Adaptive

Lasso of two-year ahead output growth forecasts across 33 countries over the period1997Q2-2016Q4 (2343

forecasts)

MSFE under different down-weighting scenarios
No down-weighting Light down-weighting† Heavy down-weighting‡

All Adv.∗ Emer.∗∗ All Adv. Emer. All Adv. Emer.
OCMT 9.921 7.355 13.867 9.487 6.874 13.505 9.734 7.027 13.898

Lasso 10.151 7.583 14.103 9.662 7.099 13.605 10.202 7.428 14.469
A-Lasso 10.580 7.899 14.705 10.090 7.493 14.087 11.008 8.195 15.336

Pair-wise panel DM tests (All countries)
No down-weighting Light down-weighting Heavy down-weighting
Lasso A-Lasso Lasso A-Lasso Lasso A-Lasso

OCMT -2.684 -4.200 -2.137 -4.015 -3.606 -4.789
Lasso - -5.000 - -4.950 - -4.969

Notes: There are up to 15 macro and financial covariates in the active set.
† Light down-weighted forecasts are computed as simple averages of forecasts obtained using the

down-weighting coefficient, λ = {0.975, 0.98, 0.985, 0.99, 0.995, 1}.
‡ Heavy down-weighted forecasts are computed as simple averages of forecasts obtained using the

down-weighting coefficient, λ = {0.95, 0.96, 0.97, 0.98, 0.99, 1}.
∗ Adv. stands for advanced economies. ∗∗ Emer. stands for emerging economies.

Table 9: The number of countries out of the 33 countries where OCMT outperforms/underperforms Lasso,

and Adaptive Lasso in terms of mean square forecast error (MSFE) and panel DM test over the period

1997Q2 -2016Q4

OCMT OCMT
Down- OCMT significantly OCMT significantly

weighting outperforms outperforms underperforms underperforms
One-year-ahead horizon (h = 4 quarters)

Lasso No 13 0 20 3
Light† 12 1 21 3
Heavy‡ 17 1 16 3

Adaptive Lasso No 16 1 17 2
Light 14 2 19 2
Heavy 19 1 14 0

Two-years-ahead horizon (h = 8 quarters)
Lasso No 24 1 9 0

Light 25 1 8 1
Heavy 25 1 8 0

Adaptive Lasso No 25 2 8 0
Light 28 3 5 1
Heavy 30 3 3 0

Notes: There are up to 15 macro and financial covariates in the active set.
†Light down-weighted forecasts are computed as simple averages of forecasts obtained using the

down-weighting coefficient, λ = {0.975, 0.98, 0.985, 0.99, 0.995, 1}.
‡ Heavy down-weighted forecasts are computed as simple averages of forecasts obtained using the

down-weighting coefficient, λ = {0.95, 0.96, 0.97, 0.98, 0.99, 1}.
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Table 10: Mean directional forecast accuracy (MDFA) and PT test of OCMT, Lasso and Adaptive Lasso

for one-year ahead output growth forecasts over the period 1997Q2-2016Q4 (2607 forecasts)

Down- MDFA PT tests

weighting All Advanced Emerging All Advanced Emerging

OCMT No 87.6 87.4 88.0 8.12 7.40 3.48

Light† 87.4 87.1 87.8 7.36 6.95 2.53

Heavy‡ 86.8 86.3 87.5 6.25 5.93 1.95

Lasso No 87.0 86.9 87.2 9.64 9.15 3.80

Light 87.1 87.1 87.1 8.12 8.22 2.26

Heavy 86.0 85.8 86.4 6.24 6.43 1.40

Adaptive Lasso No 87.3 87.3 87.2 10.80 9.91 4.75

Light 86.5 86.6 86.4 8.25 8.36 2.48

Heavy 85.5 85.3 85.7 6.84 6.92 1.88

Notes: There are up to 15 macro and financial variables in the active set.
† Light down-weighted forecasts are computed as simple averages of forecasts obtained using the

down-weighting coefficient, λ = {0.975, 0.98, 0.985, 0.99, 0.995, 1}.
‡ Heavy down-weighted forecasts are computed as simple averages of forecasts obtained using the

down-weighting coefficient, λ = {0.95, 0.96, 0.97, 0.98, 0.99, 1}.

Table 11: Mean directional forecast accuracy (MDFA) and PT test of OCMT, Lasso and Adaptive Lasso

for two-year ahead output growth forecasts over the period 1997Q2-2016Q4 (2343 forecasts)

Down- MDFA PT tests

weighting All Advanced Emerging All Advanced Emerging

OCMT No 88.0 86.7 89.9 0.52 0.00 0.47

Light† 87.7 86.6 89.3 1.11 0.39 0.94

Heavy‡ 87.0 85.8 88.8 0.50 0.89 0.34

Lasso No 87.6 86.6 89.2 0.77 0.60 0.66

Light 87.5 86.3 89.4 0.07 0.79 0.88

Heavy 86.8 85.5 88.8 1.54 1.87 0.34

Adaptive Lasso No 87.0 85.6 89.2 0.33 0.13 1.00

Light 87.1 85.9 88.9 1.03 1.82 1.10

Heavy 86.2 84.8 88.4 1.53 1.92 0.62

Notes: There are up to 15 macro and financial variables in the active set.
†Light down-weighted forecasts are computed as simple averages of forecasts obtained using the

down-weighting coefficient, λ = {0.975, 0.98, 0.985, 0.99, 0.995, 1}.
‡ Heavy down-weighted forecasts are computed as simple averages of forecasts obtained using the

down-weighting coefficient, λ = {0.95, 0.96, 0.97, 0.98, 0.99, 1}.
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A Appendix A: Mathematical Derivations

This appendix provides the proofs of Theorems 1 to 3. The proofs are based on lemmas

presented in the online theory supplement. Among these, Lemmas S-1.6 and S-1.7 are

key. For each covariate i = 1, 2, · · · , N , Lemmas S-1.6 establishes exponential probability

inequalities for the t-ratio multiple tests conditional on the average net effect, θ̄i,T , being

either of the order 	(T−εi) for some εi > 1/2, or of the order 	(T−ϑi), for some 0 ≤ ϑi < 1/2.

For DGP given by (12), Lemma S-1.7 provides asymptotic properties of LS estimator of

coefficients and MSE of a regression model that includes all the signals and pseudo-signals.

This lemma establishes that the coefficients of pseudo-signals estimated by LS converges to

zero so long as k∗T = 	(T d) grows at a slow rate relative to T , i.e. 0 ≤ d < 1/2. This lemma

also shows that the MSE of the regression model converges to that of the oracle model, which

includes only the signals.

Additional notations and definitions: Throughout this appendix we consider the

following events:

A0 = H ∩ G, where H =
{∑k

i=1 Ĵi = k
}

and G =
{∑N

i=k+k∗T+1 Ĵi = 0
}
, (A.1)

where {Ĵi for i = 1, 2, · · · , N} are the selection indicators defined by (9). A0 is the event of

selecting the approximating model, defined by H, is the event that all signals are selected,

and G is the event that no noise variable is selected. To simplify the exposition, with slight

abuse of notation, we denote the probability of an event E conditional on θ̄i,T being of

order 	(T−a) by Pr[E|θ̄i,T = 	(T−a)],where a is a nonnegative constant.

A.1 Proof of Theorem 1

To establish result (11), first note that Ac0 = Hc∪Gc and hence (Hc denotes the complement

of H)

Pr(Ac0) = Pr(Hc) + Pr(Gc)− Pr(Hc ∩ Gc) ≤ Pr(Hc) + Pr( Gc), (A.2)

where H and G are given by (A.1). We also have Hc = {
∑k

i=1 Ĵi < k} and Gc =

{
∑N

i=k+k∗T+1 Ĵi > 0}. Let’s consider Pr (Hc) and Pr ( Gc) in turn. We have Pr(Hc) ≤∑k
i=1 Pr(Ĵi = 0). But for any signal

Pr(Ĵi = 0) = Pr
[
|ti,T | < cp(N, δ)|θ̄i,T = 	(T−ϑi)

]
= 1−Pr

[
|ti,T | > cp(N, δ)|θ̄i,T = 	(T−ϑi)

]
,
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where 0 ≤ ϑi < 1/2 and hence by Lemma S-1.6, we can conclude that there exist sufficiently

large positive constants C0 and C1 such that Pr(Ĵi = 0) = O
[
exp(−C0T

C1)
]
. Since by

Assumption 3, the number of signals is finite we can further conclude that

Pr(Hc) = O
[
exp(−C0T

C1)
]

(A.3)

for some finite positive constants C0 and C1. In the next step note that

Pr(Gc) = Pr
(∑N

i=k+k∗T+1 Ĵi > 0
)
≤
∑N

i=k+k∗T+1 Pr
(
Ĵi = 1

)
.

But for any noise variable Pr(Ĵi = 1) = Pr
[
|ti,T | > cp(N, δ)|θ̄i,T = 	(T−εi)

]
, where εi > 1/2

and hence by Lemma S-1.6, we can conclude that there exist sufficiently large positive con-

stants C0, C1 and C2 such that Pr(Ĵi = 1) ≤ exp
[
−C0c

2
p(N, δ)

]
+ exp(−C1T

C2). Therefore,

Pr(Gc) ≤ N exp
[
−C0c

2
p(N, δ)

]
+N exp(−C1T

C2),

and by result (II) of Lemma S-2.2 in online theory supplement we can further write

Pr(Gc) = O(N1−2C0δ) +O
[
N exp(−C1T

C2)
]
. (A.4)

Using (A.3) and (A.4) in (A.2), we obtain Pr(Ac0) = O(N1−2C0δ) +O
[
N exp(−C1T

C2)
]

and

Pr(A0) = 1−O(N1−2C0δ)−O
[
N exp(−C1T

C2)
]
, which completes the proof.

A.2 Proof of Theorem 2

For any B > 0,

Pr
(
T

1−d
2 ‖γ̂T − γ∗T‖ > B

)
= Pr

(
T

1−d
2 ‖γ̂T − γ∗T‖ > B|A0

)
Pr (A0) +

Pr
(
T

1−d
2 ‖γ̂T − γ∗T‖ > B|Ac0

)
Pr (Ac0) .

Since Pr
(
T

1−d
2 ‖γ̂T − γ∗T‖ > B|Ac0

)
and Pr (A0) are less than or equal to one, we can further

write,

Pr
(
T

1−d
2 ‖γ̂T − γ∗T‖ > B

)
≤ Pr

(
T

1−d
2 ‖γ̂T − γ∗T‖ > B|A0

)
+ Pr (Ac0) .

By conditioning on A0 the dimension of vector γ̂T is at most equal to k + k∗T and by

assumption k∗T = 	(T d) where 0 ≤ d < 1/2. Therefore, by Lemma S-1.7 in online theory

supplement, conditional on A0, ‖γ̂T − γ∗T‖ is Op

(
T
d−1
2

)
. By Theorem 1, we also have
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limT→∞ Pr (Ac0) = 0. Hence, for any ε > 0, there exists Bε > 0 and Tε > 0 such that

Pr
(
T

1−d
2 ‖γ̂T − γ∗T‖ > Bε|A0

)
+ Pr (Ac0) < ε for all T > Tε,

Therefore, Pr
(
T

1−d
2 ‖γ̂T − γ∗T‖ > Bε

)
< ε for all T > Tε, and we conclude that

‖γ̂T − γ∗T‖ = OP

(
T
d−1
2

)
, (A.5)

as required. Similar lines of arguments can be used to show that if E
(
xkk∗T ,tx

′
kk∗T ,t

)
= Σ is

a fixed matrix, then ‖γ̂T − γ�T‖ = OP

(
T
d−1
2

)
, which completes the proof.

A.3 Proof of Theorem 3

Let DT = T−1
∑T

t=1 η̂
2
t −

[∑k
i=1

∑k
j=1

(
T−1

∑T
t=1 σijt,xσijt,β

)
+ σ̄2

u,T

]
. For any B > 0,

Pr
(
T

1
2 |DT | > B

)
= Pr

(
T

1
2 |DT | > B|A0

)
Pr (A0) + Pr

(
T

1
2 |DT | > B|Ac0

)
Pr (Ac0) .

Since Pr
(
T

1
2 |DT | > B|Ac0

)
and Pr (A0) are less than or equal to one, we can further write,

Pr
(
T

1
2 |DT | > B

)
≤ Pr

(
T

1
2 |DT | > B|A0

)
+ Pr (Ac0) .

By conditioning on A0 the number of selected covariates is at most equal to k + k∗T and

by assumption k∗T = 	(T d), where 0 ≤ d < 1/2. Therefore, by Lemma S-1.7 in online

theory supplement, conditional on A0, DT is Op

(
T−

1
2

)
. By Theorem 1, we also have

limT→∞ Pr (Ac0) = 0. Hence, for any ε > 0, there exists Bε > 0 and Tε > 0 such that

Pr
(
T

1
2 |DT | > Bε|A0

)
+ Pr (Ac0) < ε, for all T > Tε. Therefore, Pr

(
T

1
2 |DT | > Bε

)
<

ε for all T > Tε, and we conclude that

T−1

T∑
t=1

η̂2
t −

[
k∑
i=1

k∑
j=1

(
T−1

T∑
t=1

σijt,xσijt,β

)
+ σ̄2

u,T

]
= Op

(
T−

1
2

)
,

as required. Following similar lines of argument we get that if E
(
xkk∗T ,tx

′
kk∗T ,t

)
= Σ is a fixed

matrix, then,

T−1

T∑
t=1

η̂2
t −

[
k∑
i=1

k∑
j=1

(
T−1

T∑
t=1

σijt,xσ
∗
ijt,β

)
+ σ̄2

u,T

]
= Op

(
T−

1
2

)
,

which completes the proof.
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This online theory supplement has two sections. Section S-1 provides the main lemmas

needed for the proofs of Theorems 1-3 in Appendix A of the paper. Section S-2 contains the

complementary lemmas needed for the proofs of the main lemmas in the previous section.

Notations: Generic finite positive constants are denoted by Ci for i = 1, 2, · · · and c.

They can take different values in different instances. ‖A‖2, ‖A‖F , ‖A‖∞ and ‖A‖1 denote

the spectral, Frobenius, row, and column norms of matrix A, respectively. λi(A) denotes

the ith eigenvalue of a square matrix A. ‖x‖ denotes the `2 norm of vector x. If {fn}∞n=1 is

any real sequence and {gn}∞n=1 is a sequence of positive real numbers, then fn = O(gn), if

there exists a positive constant C0 and n0 such that |fn|/gn ≤ C0 for all n > n0. fn = o(gn)

if fn/gn → 0 as n → ∞. If {fn}∞n=1 and {gn}∞n=1 are both positive sequences of real

numbers, then fn = 	(gn) if there exist n0 ≥ 1 and positive constants C0 and C1, such that

infn≥n0 (fn/gn) ≥ C0 and supn≥n0
(fn/gn) ≤ C1. respectively. If {fn}∞n=1 is a sequence of

random variables and {gn}∞n=1 is a sequence of positive real numbers, then fn = Op(gn), if

for any ε > 0, there exists a positive constant Bε and nε such that Pr (|fn| > gnBε) < ε for

all n > nε.

S-1 Main lemmas

Lemma S-1.1 Let yt be a target variable generated by equation (1), zt = (z1t, z2t, · · · , zmt)′

be the m× 1 vector of conditioning covariates in DGP(1) and xit be a covariate in the active
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set SNt = {x1t, x2t, · · · , xNt}. Under Assumptions 1, 3, and 4 we have

E [ytxit − E(ytxit)|Ft−1] = 0,

for i = 1, 2, · · · , N ,

E [ytz`t − E(ytz`t)|Ft−1] = 0,

for ` = 1, 2, · · · ,m, and

E
[
y2
t − E(y2

t )|Ft−1

]
= 0.

Proof. Note that yt can be written as

yt = z′tat + x′k,tβt + ut =
∑m

`=1 a`tz`t +
∑k

j=1 βjtxjt + ut,

where xk,t = (x1t, x2t, · · · , xkt)′, and βt = (β1t, β2t, · · · , βkt)′. Moreover, By Assumption 4,

a`t is independent of xit′ and z`′t′ for all i, `′, and t′. Hence, for i = 1, 2, · · · , N , we have

E(ytxit|Ft−1) =
∑m

`=1 E(a`t|Ft−1)E(z`txit|Ft−1)+
∑k

j=1 E(βjt|Ft−1)E(xjtxit|Ft−1)+E(utxit|Ft−1).

By Assumption 1, we have E(a`t|Ft−1) = E(a`t), E(z`txit|Ft−1) = E(z`txit), E(βjt|Ft−1) =

E(βjt), E(xjtxit|Ft−1) = E(xjtxit), and E(utxit|Ft−1) = E(utxit). Therefore,

E(ytxit|Ft−1) =
∑m

`=1 E(a`t)E(z`txit) +
∑k

j=1 E(βjt)E(xjtxit) + E(utxit) = E(ytxit).

Similarly, we can show that for ` = 1, 2, · · · ,m,

E(ytz`t|Ft−1) =
∑m

`′=1 E(a`′t|Ft−1)E(z`′tz`t|Ft−1) +
∑k

j=1 E(βjt|Ft−1)E(xjtz`t|Ft−1) + E(utz`t|Ft−1)

=
∑m

`′=1 E(a`′t)E(z`′tz`t) +
∑k

j=1 E(βjt)E(xjtz`t) + E(utz`t) = E(ytz`t).

Also to establish the last result, we can write yt as yt = q′tδt + ut, where qt = (z′t,x
′
k,t)
′

and δt = (a′t,β
′
t)
′. We have,

E(y2
t |Ft−1) = E( δ′t|Ft−1)E(qtq

′
t|Ft−1)E(δt|Ft−1) + E(u2

t |Ft−1) + 2E(δ′t|Ft−1)E(qtut|Ft−1)

= E(δ′t)E(qtq
′
t)E(δt) + E(u2

t ) + 2E(δ′t) E(qtut) = E(y2
t ).

Lemma S-1.2 Let yt be a target variable generated by equation (1). Under Assumptions

2-4, for any value of α > 0, there exist some positive constants C0 and C1 such that

sup
t

Pr(|yt| > α) ≤ C0 exp(C1α
s/2)
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Proof. Note that

|yt| ≤
∑m

`=1|a`tz`t|+
∑k

j=1|βjtxjt|+ |ut|.

Therefore,

Pr(|yt| > α) ≤ Pr(
∑m

`=1|a`tz`t|+
∑k

j=1|βjtxjt|+ |ut| > α),

and by Lemma S-2.3 for any 0 < πi < 1, i = 1, 2, · · · , k + m + 1, with
∑k+m+1

i=1 πj = 1, we

can further write

Pr(|yt| > α) ≤
∑m

`=1 Pr(|a`tz`t| > π`α) +
∑k

j=1 Pr(|βjtxjt| > πjα) + Pr(|ut| > πk+m+1α).

Moreover, by Lemma S-2.4, we have

Pr(|a`tz`t| > π`α) ≤ Pr[|z`t| > (π`α)1/2] + Pr[|a`t| > (π`α)1/2],

Pr(|βjtxjt| > πjα) ≤ Pr[|xjt| > (πjα)1/2] + Pr[|βjt| > (πiα)1/2],

and hence

Pr(|yt| > α) ≤
∑m

`=1 Pr[|z`t| > (π`α)1/2] +
∑m

`=1 Pr[|a`t| > (π`α)1/2]+∑k
j=1 Pr[|xjt| > (πjα)1/2] +

∑k
j=1 Pr[|βjt| > (πjα)1/2] + Pr(|ut| > πk+1α),

Therefore, under Assumptions 2-4, we can conclude that for any value of α > 0, there

exist some positive constants C0 and C1 such that

sup
t

Pr(|yt| > α) ≤ C0 exp(C1α
s/2).

Lemma S-1.3 Let xit be a covariate in the active set, SNt = {x1t, x2t, · · · , xNt} and zt =

(z1t, z2t, · · · , zmt)′ be the m × 1 vector of conditioning covariates in the DGP, given by (1).

Define the projection regression of xit on zt as

xit = ψ̄
′
izt + x̃it,

where ψ̄i = (ψ1, · · · , ψm)′ is the m × 1 vector of projection coefficients which is equal to

[T−1
∑T

t=1 E(ztz
′
t)
−1][T−1

∑T
t=1 E(ztxit)]. Under Assumptions 1, 2, and 4, there exist some

finite positive constants C0, C1 and C2 such that if 0 < λ ≤ (s+ 2)/(s+ 4), then

Pr(|x′iMzxj − E(x̃′ix̃j)| > ζT ) ≤ exp(−C0T
−1ζ2

T ) + exp(−C1T
C2)
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and if λ > (s+ 2)/(s+ 4), then

Pr(|x′iMzxj − E(x̃′ix̃j)| > ζT ) ≤ exp(−C0ζ
s/(s+1)
T ) + exp(−C1T

C2)

for all i and j, where x̃i = (x̃i1, x̃i2, · · · , x̃iT )′, xi = (xi1, xi2, · · · , xiT )′, and Mz = I −
T−1ZΣ̂

−1

zz Z′ with Z = (z1, z2, · · · , zT )′ and Σ̂zz = T−1
∑T

t=1(ztz
′
t).

Proof. By Assumption 1 we have

E [z`tz`′t − E(z`tz`′t)|Ft−1] = 0.

for `, `′ = 1, 2, · · · ,m,

E [xitxjt − E(xitxjt)|Ft−1] = 0,

for i, j = 1, 2, · · · , N , and

E [z`txit − E(z`txit)|Ft−1] = 0,

for ` = 1, 2, · · · ,m, i = 1, 2, · · · , N . Moreover, by Assumption 2, for all i, `, and t, xit, and

z`t have exponential decaying probability tails. Additionally, by Assumption 4 the number of

pre-selected covariates m is finite. Therefore by Lemma S-2.20, we can conclude that there

exist sufficiently large positive constants C0, C1, and C2 such that if 0 < λ ≤ (s+ 2)/(s+ 4),

Pr(|x′iMzxj − E(x̃′ix̃j)| > ζT ) ≤ exp(−C0T
−1ζ2

T ) + exp(−C1T
C2)

and if λ > (s+ 2)/(s+ 4)

Pr(|x′iMzxj − E(x̃′ix̃j)| > ζT ) ≤ exp(−C0ζ
s/(s+1)
T ) + exp(−C1T

C2)

for all i and j.

Lemma S-1.4 Let yt be a target variable generated by the DGP given by (1), zt = (z1t, z2t, · · · , zmt)′

be the m× 1 vector of conditioning covariates in DGP(1) and xit be a covariate in the active

set, SNt = {x1t, x2t, · · · , xNt}. Define the projection regression of xit on zt as

xit = z′tψ̄i,T + x̃it,

where ψ̄i,T = (ψ1i,T , · · · , ψmi,T )′ is the m× 1 vector of projection coefficients which is equal

to
[
T−1

∑T
t=1 E(ztz

′
t)
]−1

[T−1
∑T

t=1 E(ztxit)]. Additionally define the projection regression of
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yt on zt as

yt = z′tψ̄y,T + ỹt,

where ψ̄y,T = (ψ1y,T , · · · , ψmy,T )′ is equal to
[
T−1

∑T
t=1 E(ztz

′
t)
]−1

[T−1
∑T

t=1 E(ztyt)]. Un-

der Assumptions 1- 4, if 0 < λ ≤ (s+ 2)/(s+ 4),

Pr(|x′iMzy − θi,T | > ζT ) ≤ exp(−C0T
−1ζ2

T ) + exp(−C1T
C2),

and if λ > (s+ 2)/(s+ 4)

Pr(|x′iMzy − θi,T | > ζT ) ≤ exp(−C0ζ
s/(s+1)
T ) + exp(−C1T

C2),

for all i = 1, 2, · · · , N ; where xi = (xi1, xi2, · · · , xiT )′, y = (y1, y2, · · · , yT )′, θi,T = T θ̄i,T =

E( x̃′iỹ), x̃i = (x̃i1, x̃i2, · · · , x̃iT )′ , ỹ = (ỹ1, ỹ2, · · · , ỹT )′, Mz = I − T−1ZΣ̂
−1

zz Z′, Z = (z1, z2,

· · · , zT )′ and Σ̂zz = T−1
∑T

t=1 ztz
′
t.

Proof. Note that by Assumption 1 and Lemma S-1.1, for all i and `, cross products of xit,

z`t and yt minus their expected values are martingale difference processes with respect to

filtration Ft−1. Moreover, by Assumption 2 and Lemma S-1.2 , for all i, `, and t, xit, z`t and

yt have exponential decaying probability tails. Additionally, by Assumption 4 the number of

pre-selected covariates m is finite. Therefore by Lemma S-2.20, we can conclude that there

exist sufficiently large positive constants C0, C1, and C2 such that if 0 < λ ≤ (s+ 2)/(s+ 4),

then

Pr(|x′iMzy − θi,T | > ζT ) ≤ exp(−C0T
−1ζ2

T ) + exp(−C1T
C2),

and if λ > (s+ 2)/(s+ 4), then

Pr(|x′iMzy − θi,T | > ζT ) ≤ exp(−C0ζ
s/(s+1)
T ) + exp(−C1T

C2),

for all i = 1, 2, · · · , N .

Lemma S-1.5 Let yt be a target variable generated by equation ( 1), zt be the m × 1 vec-

tor of conditioning covariates in DGP(1) and xit be a covariate in the active set, SNt =

{x1t, x2t, · · · , xNt}. Define the projection regression of yt on qt ≡ (z′t, xit)
′ as

yt = φ̄
′
i,Tqt + ηit,

where φ̄i,T ≡
[
T−1

∑T
t=1 E(qtq

′
t)
]−1

[T−1
∑T

t=1 E(qtyt)] is the projection coefficients. Under

Assumptions 1-4, there exist sufficiently large positive constants C0, C1 and C2 such that if

S.5



0 < λ ≤ (s+ 2)/(s+ 4), then

Pr [|η′iMq ηi − E(η′iηi)| > ζT ] ≤ exp(−C0T
−1ζ2

T ) + exp(−C1T
C2),

and if λ > (s+ 2)/(s+ 4), then

Pr [|η′iMq ηi − E(η′iηi)| > ζT ] ≤ exp(−C0ζ
s/(s+1)
T ) + exp(−C1T

C2),

for all i = 1, 2, · · · , N ; where ηi = (ηi1, ηi2, · · · , ηiT )′, Mq = IT − Q(Q′Q)−1Q′, and

Q = (q1,q2, · · · ,qT )′.

Proof. Note that η′iMqηi = y′Mqy where y = (y1, y2, · · · , yT )′. By Lemma S-1.1 we have

E [ytxit − E(ytxit)|Ft−1] = 0,

for i = 1, 2, · · · , N ,

E [ytz`t − E(ytz`t)|Ft−1] = 0,

for ` = 1, 2, · · · ,m, and

E
[
y2
t − E(y2

t )|Ft−1

]
= 0.

Moreover, by Assumption 2 and Lemma S-1.2, for all i, `, and t, xit, z`t and yt have expo-

nential decaying probability tails. Additionally, by Assumption 4 the number of pre-selected

covariates m is finite. Therefore by Lemma S-2.20, we can conclude that there exist suf-

ficiently large positive constants C0, C1, and C2 such that if 0 < λ ≤ (s + 2)/(s + 4),

then

Pr [|η′iMq ηi − E(η′iηi)| > ζT ] ≤ exp(−C0T
−1ζ2

T ) + exp(−C1T
C2),

and if λ > (s+ 2)/(s+ 4), then

Pr [|η′iMq ηi − E(η′iηi)| > ζT ] ≤ exp(−C0ζ
s/(s+1)
T ) + exp(−C1T

C2),

for all i = 1, 2, · · · , N .

Lemma S-1.6 Let yt be a target variable generated by equation ( 1), zt be the m × 1 vec-

tor of conditioning covariates in DGP(1) and xit be a covariate in the active set SNt =

{x1t, x2t, · · · , xNt}. Define the projection regression of xit on zt as

xit = z′tψ̄i,T + x̃it,
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where ψ̄i,T = (ψ1i,T , · · · , ψmi,T )′ is the m× 1 vector of projection coefficients which is equal

to [T−1
∑T

t=1 E(ztz
′
t)
−1][T−1

∑T
t=1 E(ztxit)] . Additionally define the projection regression of

yt on zt as

yt = z′tψ̄y,T + ỹt,

where ψ̄y,T = (ψ1y,T , · · · , ψmy,T )′ is equal to
[
T−1

∑T
t=1 E(ztz

′
t)
]−1

[T−1
∑T

t=1 E(ztyt)]. Lastly,

define the projection regression of yt on qt ≡ (z′t, xit)
′ as

yt = φ̄
′
i,Tqt + ηit,

where φ̄i,T ≡
[
T−1

∑T
t=1 E(qtq

′
t)
]−1

[T−1
∑T

t=1 E(qtyt)] is the vector of projection coefficients.

Consider

ti,T =
T−1/2x′iMzy√

T−1η′iMqηi
√
T−1x′iMzxi

,

for all i = 1, 2, · · · , N ; where xi = (xi1, xi2, · · · , xiT )′, y = (y1, y2, · · · , yT )′, ηi = (ηi1, ηi2

, · · · , ηiT )′, Mz = I − Z(Z′Z)−1Z′, Z = (z1, z2, · · · , zT )′ , Mq = I − Q(Q′Q)−1Q′, Q =

(q1,q2, · · · ,qT )′. Under Assumptions 1-4, there exist sufficiently large positive constants

C0, C1 and C2 such that

Pr
[
|ti,T | > cp(N, δ)|θi,T = 	(T 1−εi)

]
≤ exp

[
−C0c

2
p(N, δ)

]
+ exp(−C1T

C2), for εi >
1

2

where cp(N, δ) is defined by (8), θi,T = T θ̄i,T = E(x̃′iỹ), x̃i = (x̃i1, x̃i2, · · · , x̃iT )′, and ỹ =

(ỹ1, ỹ2, · · · , ỹT )′. Moreover, if cp(N, δ) = o(T 1/2−ϑ−c) for any 0 ≤ ϑ < 1/2 and a finite

positive constant c, then there exist some finite positive constants C0 and C1 such that,

Pr
[
|ti,T | > cp(N, δ)|θi,T = 	(T 1−ϑi)

]
≥ 1− exp(−C0T

C1), for 0 ≤ ϑi <
1
2
.

Proof. Let σ2
ηi

= E(T−1η′iηi), and σ2
x̃i

= E(T−1x̃′ix̃i). We have |ti,T | = AiTBiT , where,

AiT =
|T−1/2xiMzy|

σηiσx̃i
,

and

BiT =
σηiσx̃i√

T−1η′iMqηi
√
T−1x′iMzxi

.
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In the first case where θi,T = 	(T 1−εi) for some εi > 1/2, by using Lemma S-2.4 we have

Pr
[
|ti,T | > cp(n, δ)|θi,T = 	(T 1−εi)

]
≤ Pr

[
AiT > cp(N, δ)/(1 + dT )|θi,T = 	(T 1−εi)

]
+

Pr
[
BiT > 1 + dT |θi,T = 	(T 1−εi)

]
,

where dT → 0 as T →∞. By using Lemma S-2.6,

Pr
[
BiT > 1 + dT |θi,T = 	(T 1−εi)

]
= Pr

(
| σηiσx̃i√

T−1η′iMqηi
√
T−1x′iMzxi

− 1| > dT |θi,T = 	(T 1−εi)

)

≤ Pr

(
|(T

−1η′iMqηi)(T
−1x′iMzxi)

σ2
ηi
σ2
x̃i

− 1| > dT |θi,T = 	(T 1−εi)

)
= Pr [MiT +RiT +MiTRiT > dT |θi,T = 	(T 1−εi)]

where RiT = |(T−1η′iMqηi)/σ
2
ηi
− 1| and MiT = |(T−1x′iMzxi)/σ

2
x̃i
− 1|. By using Lemmas

S-2.3 and S-2.4 , for any values of 0 < πi < 1 with
∑3

i=1 πi = 1 and a strictly positive

constant, c, we have

Pr
[
BiT > 1 + dT |θi,T = 	(T 1−εi)

]
≤ Pr [MiT > π1dT |θi,T = 	(T 1−εi)] + Pr [RiT > π2dT |θi,T = 	(T 1−εi)] +

Pr
[
MiT >

π3
c
dT |θi,T = 	(T 1−εi)

]
+ Pr [RiT > c|θi,T = 	(T 1−εi)] .

First, consider Pr [MiT > π1dT |θi,T = 	(T 1−εi)], and note that

Pr
[
MiT > π1dT |θi,T = 	(T 1−εi)

]
= Pr

[
|x′iMzxi − E(x̃′ix̃i)| > π1σ

2
x̃i
TdT |θi,T = 	(T 1−εi)

]
.

Therefore, by Lemma S-1.3, there exist some constants C0 and C1 such that,

Pr
[
MiT > π1dT |θi,T = 	(T 1−εi)

]
≤ exp(−C0T

C1).

Similarly,

Pr
[
MiT >

π3
c
dT |θi,T = 	(T 1−εi)

]
≤ exp(−C0T

C1).

Also note that

Pr
[
RiT > π2dT |θi,T = 	(T 1−εi)

]
= Pr

[
|η′iMqηi − E(η′iηi)| > π2σ

2
ηi
TdT |θi,T = 	(T 1−εi)

]
.

Therefore, by Lemma S-1.5, there exist some constants C0 and C1 such that,

Pr
[
RiT > π2dT |θi,T = 	(T 1−εi)

]
≤ exp(−C0T

C1).
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Similarly,

Pr [RiT > c|θi,T = 	(T 1−εi)] ≤ exp(−C0T
C1).

Therefore, we can conclude that there exist some constants C0 and C1 such that,

Pr
[
BiT > 1 + dT |θi,T = 	(T 1−εi)

]
≤ exp(−C0T

C1)

Now consider Pr [AiT > cp(N, δ)/(1 + dT )|θi,T = 	(T 1−εi)], which is equal to

Pr

(
|x′iMz y − θi,T + θi,T |

σηiσx̃i
> T 1/2 cp(N, δ)

1 + dT
|θi,T = 	(T 1−εi)

)
≤ Pr

(
|x′iMzy − θi,T | >

σηiσx̃i
1 + dT

T 1/2cp(N, δ)− |θi,T ||θi,T = 	(T 1−εi)

)
.

Note that since εi > 1/2 the first term on the right hand side of the inequality dominate the

second one. Moreover, Since cp(N, δ) = o(T λ) for all values of λ > 0, by Lemma S-1.4, there

exists a finite positive constant C0 such that

Pr
[
|x′iMzy| > k1T

1/2cp(N, δ)|θi,T = 	(T 1−εi)
]
≤ exp

[
−C0c

2
p(N, δ)

]
,

where k1 =
σηiσx̃i
1+dT

.

Given the probability upper bound for AiT and BiT , we can conclude that there exist

some finite positive constants C0, C1 and C2 such that

Pr
[
|ti,T | > cp(N, δ)|θi,T = 	(T 1−εi)

]
≤ exp

[
−C0c

2
p(N, δ)

]
+ exp(−C1T

C2).

Let’s consider the next case where θi,T = 	(T 1−ϑi) for some 0 ≤ ϑi < 1/2. We know that

Pr
[
|ti,T | > cp(N, δ)|θi,T = 	(T 1−ϑi)

]
= 1− Pr

[
ti,T < cp(N, δ)|θi,T = 	(T 1−ϑi)

]
.

By Lemma S-2.8,

Pr
[
|ti,T | < cp(N, δ)|θi,T = 	(T 1−ϑi)

]
≤ Pr

[
AiT <

√
1 + dT cp(N, δ)|θi,T = 	(T 1−ϑi)

]
+

Pr
[
BiT < 1/

√
1 + dT |θi,T = 	(T 1−ϑi)

]
.

Since θi,T = 	(T 1−ϑi), for some 0 ≤ ϑi < 1/2 and cp(N, δ) = o(T 1/2−ϑ−c), for any 0 ≤ ϑ <
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1/2, |θi,T | − σηiσx̃i [(1 + dT )T ]1/2cp(N, δ) = 	(T 1−ϑi) > 0 and by Lemma S-2.5, we have

Pr
[
AiT <

√
1 + dT cp(N, δ)|θi,T = 	(T 1−ϑi)

]
= Pr

[
|T−1/2x′iMzy − T−1/2θi,T + T−1/2θi,T |

σηiσx̃i
<
√

1 + dT cp(N, δ)|θi,T = 	(T 1−ϑi)

]
≤ Pr

[
|x′iMzy − θi,T | > |θi,T | − σηiσx̃i [(1 + dT )T ]1/2cp(N, δ)|θi,T = 	(T 1−ϑi)

]
.

Therefore, by Lemma S-1.4, there exist some finite positive constants C0 and C1 such that,

Pr
[
|x′iMzy − θi,T | > |θi,T | − σηiσx̃i [(1 + dT )T ]1/2cp(N, δ)|θi,T = 	(T 1−ϑi)

]
≤ exp(−C0T

C1),

and therefore

Pr
[
AiT <

√
1 + dT cp(N, δ)|θi,T = 	(T 1−ϑi)

]
≤ exp(−C0T

C1).

Now let consider the probability of BiT ,

Pr
(
BiT < 1/

√
1 + dT |θi,T = 	(T 1−ϑi)

)
= Pr

(
σηiσx̃i√

T−1η′iMqηi
√
T−1x′iMzxi

<
1√

1 + dT
|θi,T = 	(T 1−ϑi)

)

= Pr

(
(T−1η′iMqηi)(T

−1x′iMzxi)

σ2
ηi
σ2
x̃i

> 1 + dT |θi,T = 	(T 1−ϑi)

)
≤ Pr(MiT +RiT +MiTRiT > dT |θi,T = 	(T 1−ϑi)),

where RiT = |(T−1η′iMqηi)/σ
2
ηi
− 1| and MiT = |(T−1x′iMzxi)/σ

2
x̃i
− 1|. By using Lemmas

S-2.3 and S-2.4 , for any values of 0 < πi < 1 with
∑3

i=1 πi = 1 and a positive constant, c,

we have

Pr
[
BiT < 1/

√
1 + dT |θi,T = 	(T 1−ϑi)

]
≤ Pr

[
MiT > π1dT |θi,T = 	(T 1−ϑi)

]
+ Pr

[
RiT > π2dT |θi,T = 	(T 1−ϑi)

]
+

Pr
[
MiT >

π3
c
dT |θi,T = 	(T 1−ϑi)

]
+ Pr

[
RiT > c|θi,T = 	(T 1−ϑi)

]
.

Let’s first consider the Pr
[
MiT > π1dT |θi,T = 	(T 1−ϑi)

]
. Note that

Pr
[
MiT > π1dT |θi,T = 	(T 1−ϑi)

]
= Pr

[
|x′iMzxi − E(ν ′iνi)| > π1σ

2
x̃i
TdT |θi,T = 	(T 1−ϑi)

]
.

So, by Lemma S-1.3, we know that there exist some constants C0 and C1 such that,

Pr
[
MiT > π1dT |θi,T = 	(T 1−ϑi)

]
≤ exp(−C0T

C1).
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Similarly,

Pr
[
MiT >

π3
c
dT |θi,T = 	(T 1−ϑi)

]
≤ exp(−C0T

C1).

Also note that

Pr
[
RiT > π2dT |θi,T = 	(T 1−ϑi)

]
= Pr

[
|η′iMqηi − E(η′iηi)| > π2σ

2
ηi
TdT |θi,T = 	(T 1−ϑi)

]
.

Therefore, by Lemma S-1.5, there exist some constants C0 and C1 such that,

Pr(RiT > π2dT |θi,T 6= 0) ≤ exp(−C0T
C1).

Similarly,

Pr(RiT > c|θi,T 6= 0) ≤ exp(−C0T
C1).

Therefore, we can conclude that there exist some constants C0 and C1 such that,

Pr
[
BiT < 1/

√
1 + dT |θi,T = 	(T 1−ϑi)

]
≤ exp(−C0T

C1).

So, overall we conclude that

Pr
[
|ti,T | > cp(N, δ)|θi,T = 	(T 1−ϑi)

]
= 1− Pr

[
ti,T < cp(N, δ)|θi,T = 	(T 1−ϑi)

]
≥ 1− exp(−C0T

C1).

Lemma S-1.7 Consider the following data generating process (DGP) for yt:

yt =
k∑
i=1

xitβit + ut for t = 1, 2, · · · , T. (S.1)

Estimate the following regression

yt =
k∑
i=1

xitφi +

lT∑
j=1

xk+j,tδj + ηt = q′tφ+ s′tδT + ηt, (S.2)

by least squares (LS), where qt = (x1t, x2t, · · · , xkt)′, φ = (φ1, φ2, · · · , φk)′, st = (xk+1,t, xk+2,t,

· · · , xk+lT ,t)
′, and δ = (δ1, δ2, · · · , δlT )′. The LS estimator of γT = (φ′, δ′T )′ is

γ̂T =
(
T−1W′W

)−1 (
T−1W′y

)
, (S.3)
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where W = (w1,w2, · · · ,wT )′, wt = (q′t, s
′
t)
′ and y = (y1, y2, · · · , yT )′. The model error is

η̂ = y −Wγ̂T . (S.4)

Suppose that λmin [T−1E(W′W)] > c > 0, and lT = 	(T d), where 0 ≤ d < 1
2
. Moreover

suppose that Assumptions 1-4 holds. Now,

(i) If E(βit) = βi for all t, then

‖γ̂T − γ∗T‖ = Op

(
T
d−1
2

)
, (S.5)

where γ∗T = (β′, 0′lT )′ and β = (β1, β2, · · · , βk)′. If Assumption 6 also holds, then

T−1η̂′η̂ =
k∑
i=1

k∑
j=1

(
T−1

T∑
t=1

σijt,xσijt,β

)
+ σ̄2

u,T +Op

(
1√
T

)
+Op

(
lT
T

)
, (S.6)

where σijt,x = E (xitxjt), σijt,β = E [(βit − βi)(βjt − βj)], and σ̄2
u,T = T−1E (u′u).

(ii) If E (wtw
′
t) is time invariant, then

‖γ̂T − γ�T‖ = Op

(
T
d−1
2

)
, (S.7)

where γ�T = (β̄
′
T ,0

′
lT

)′, β̄T = (β̄1T , β̄2T , · · · , β̄kT )′, and β̄iT = T−1
∑T

t=1 E(βit). If

Assumption 6 also holds, then

T−1η̂′η̂ =
k∑
i=1

k∑
j=1

(
T−1

T∑
t=1

σijt,xσ
∗
ijt,β

)
+ σ̄2

u,T +Op

(
1√
T

)
+Op

(
lT
T

)
, (S.8)

where σ∗ijt,β = E
[
(βit − β̄i,T )(βjt − β̄j,T )

]
.

Proof. In the first scenario, where E(βit) = βi for all t , we can write (S.1) as

yt =
k∑
i=1

xitβi +
k∑
i=1

xit (βit − βi) + ut =
k∑
i=1

xitβi +
k∑
i=1

rit + ut = q′tβ + r′tτ + ut,

where rit = xit (βit − βi), rt = (r1t, r2t, · · · , rkt)′, and τ is a k × 1 vector of ones. We can

further write the DGP in a following matrix format,

y = Qβ + Rτ + u, (S.9)

where Q = (q1,q2, · · · ,qT )′, R = (r1, r2, · · · , rT )′ and u = (u1, u2, · · · , uT )′. By substitut-
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ing (S.9) into (S.3), we obtain

γ̂T =
(
T−1W′W

)−1 (
T−1W′Qβ

)
+
(
T−1W′W

)−1 (
T−1W′Rτ

)
+
(
T−1W′W

)−1 (
T−1W′u

)
,

(S.10)

where W = (Q,S), and S = (s1, s2, · · · , sT )′. Since γ∗T = (β′,0′lT )′, Qβ = Qβ + S0lT =

Wγ∗T , which in turn allows us to write the above result as:

γ̂T =
(
T−1W′W

)−1 (
T−1W′W

)
γ∗T+

(
T−1W′W

)−1 (
T−1W′Rτ

)
+
(
T−1W′W

)−1 (
T−1W′u

)
,

and hence

γ̂T − γ∗T =
(
T−1W′W

)−1 (
T−1W′Rτ

)
+
(
T−1W′W

)−1 (
T−1W′u

)
. (S.11)

We can further write

γ̂T − γ∗T =
{(
T−1W′W

)−1 −
[
E
(
T−1W′W

)]−1
}{

T−1 [(W′Rτ )− E (W′Rτ )]
}

+{(
T−1W′W

)−1 −
[
E
(
T−1W′W

)]−1
} [
T−1E (W′Rτ )

]
+[

E
(
T−1W′W

)]−1 {
T−1 [(W′R τ )− E (W′R τ )]

}
+{(

T−1W′W
)−1 −

[
E
(
T−1W′W

)]−1
}{

T−1 [(W′u)− E (W′u)]
}

+{(
T−1W′W

)−1 −
[
E
(
T−1W′W

)]−1
} [
T−1E (W′u)

]
+[

E
(
T−1W′W

)]−1 {
T−1 [(W′u)− E (W′u)]

}
.

Hence, by the sub-additive property of norms and Lemma S-2.9, we have

‖γ̂T − γ∗T‖ ≤
∥∥∥(T−1W′W

)−1 −
[
E
(
T−1W′W

)]−1
∥∥∥
F

∥∥T−1 [( W′Rτ )− E (W′Rτ )]
∥∥+∥∥∥(T−1W′W

)−1 −
[
E
(
T−1W′W

)]−1
∥∥∥
F

∥∥T−1E (W′Rτ )
∥∥+∥∥∥[E (T−1W′W

)]−1
∥∥∥

2

∥∥T−1 [( W′Rτ )− E (W′Rτ )]
∥∥+∥∥∥(T−1W′W

)−1 −
[
E
(
T−1W′W

)]−1
∥∥∥
F

∥∥T−1 [(W′u)− E (W′u)]
∥∥
F

+∥∥∥(T−1W′W
)−1 −

[
E
(
T−1W′W

)]−1
∥∥∥
F

∥∥T−1E (W′u)
∥∥+∥∥∥[E (T−1W′W

)]−1
∥∥∥

2

∥∥T−1 [( W′u)− E (W′ u)]
∥∥ .
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Since, by Assumption 3, βit for i = 1, 2, · · · , k are distributed independently of wt for

t = 1, 2, · · · , T ,

T−1E (W′Rτ ) =
k∑
i=1

[
T−1

T∑
t=1

E(wtrit)

]
=

k∑
i=1

[
T−1

T∑
t=1

E(wtxit (βit − βi))

]

=
k∑
i=1

[
T−1

T∑
t=1

E(wtxit)E (βit − βi)

]
= 0.

Also,

T−1E (W′u) = T−1

T∑
t=1

E(wtut) = 0.

Hence,

‖γ̂T − γ∗T‖ ≤
∥∥∥(T−1W′W

)−1 −
[
E
(
T−1W′W

)]−1
∥∥∥
F

∥∥T−1W′Rτ
∥∥+∥∥∥[E (T−1W′W

)]−1
∥∥∥

2

∥∥T−1W′Rτ
∥∥+∥∥∥(T−1W′W

)−1 −
[
E
(
T−1W′W

)]−1
∥∥∥
F

∥∥T−1W′u
∥∥+∥∥∥[E (T−1W′W

)]−1
∥∥∥

2

∥∥T−1W′u
∥∥ .

Since Assumptions 1 and 2 imply that W, and u satisfy condition (i) and (ii) of Lemma

S-2.12, by Lemmas S-2.12 and S-2.13, we have

∥∥T−1W′u
∥∥ = Op

(√
lT
T

)
.

Similarly,

∥∥T−1 [(W′W)− E (W′W)]
∥∥
F

= Op

(
lT√
T

)
,

and since lT = 	(T d) with 0 ≤ d < 1/2, by Lemma S-2.14,∥∥∥(T−1W′W
)−1 −

[
E
(
T−1W′W

)]−1
∥∥∥
F

= Op

(
lT√
T

)
.

Now consider ‖T−1W′R τ‖. Note that the row j and column i of lT × p matrix T−1W′R

is equal to T−1
∑T

t=1wjtrit. Hence the jth element of lT × 1 vector T−1W′Rτ is equal

T−1
∑k

i=1

∑T
t=1 wjtrit. In other words, T−1W′Rτ = T−1

∑k
i=1

∑T
t=1 wtrit. Therefore, (re-
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calling that rit = xit (βit − βi))

∥∥T−1W′Rτ
∥∥2

=

∥∥∥∥∥T−1

k∑
i=1

T∑
t=1

(wtrit)

∥∥∥∥∥
2

≤
k∑
i=1

∥∥∥∥∥T−1

T∑
t=1

wtxit (βit − βi)

∥∥∥∥∥
2

=T−2

k∑
i=1

T∑
t=1

T∑
t′=1

w′twt′xitxit′ (βit − βi) (βit′ − βi)

=T−2

k∑
i=1

T∑
t=1

T∑
t′=1

k+lT∑
`=1

w`tw`t′xitxit′ (βit − βi) (βit′ − βi) .

Since, by Assumption 1, βit for i = 1, 2, · · · , k are distributed independently of wt for

t = 1, 2, · · · , T , we can further write,

E
∥∥T−1W′Rτ

∥∥2 ≤ T−2

k∑
i=1

T∑
t=1

T∑
t′=1

k+`T∑
`=1

E (w`tw`t′xitxit′)E [(βit − βi) (βit′ − βi)]

≤ T−2

k∑
i=1

T∑
t=1

T∑
t′=1

k+`T∑
`=1

|E (w`tw`t′xitxit′)| × |E [(βit − βi) (βit′ − βi)]|

≤ T−2 (k + `T ) supi,`,t,t′ |E (w`tw`t′xitxit′)|
k∑
i=1

T∑
t=1

T∑
t′=1

|E [(βit − βi) (βit′ − βi)]|

Since W satisfy condition (i) of Lemma S-2.12, we have supi,`,t,t′ |E(w`tw`t′xitxit′)| < C <∞.

Also, note that for any t′ < t,

E [(βit − βi) (βit′ − βi)] = E [(βit′ − βi)E (βit − βi|Ft−1)] ,

and by Assumption 1, E (βit − βi|Ft−1) = 0. Therefore,

T∑
t=1

T∑
t′=1

|E [(βit − βi) (βit′ − βi)]| =
T∑
t=1

∣∣E [(βit − βi)2]∣∣+ 2
T∑
t=2

t∑
t′=1

|E [(βit − βi) (βit′ − βi)]|

=
T∑
t=1

∣∣E [(βit − βi)2]∣∣ = O(T ).

Since, by Assumption 3, k is also a finite fixed integer, we conclude that

E
∥∥T−1W′Rτ

∥∥2
= O

(
lT
T

)
,
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and hence, by Lemma S-2.13,

∥∥T−1W′Rτ
∥∥ = Op

(√
lT
T

)
.

So, we can conclude that

‖γ̂T − γ∗T‖ = Op

(√
lT
T

)
,

as required.

In the next step, consider the mean square error of the model, T−1η̂′T η̂T . By substituting

y from (S.9) into equation (S.4) for the model error, we have

η̂ = y −Wγ̂T = Qβ + Rτ + u−Wγ̂T .

Since Qβ = Wγ∗T , where γ∗T = (β′,0′lT )′, we can further write,

η̂ = Rτ + u− W (γ̂T − γ∗T ) .

Therefore,

T−1η̂′η̂ = T−1 [Rτ + u−W ( γ̂T − γ∗T )]′ [Rτ + u−W (γ̂T − γ∗T )]

= T−1 (Rτ + u)′ (Rτ + u) + T−1 [W (γ̂T − γ∗T )]′ [W ( γ̂T − γ∗T )]−

2T−1 [W (γ̂T − γ∗T )]′ (Rτ + u)

= T−1 (τ ′R′Rτ + u′u) + 2T−1τ ′R′u + (γ̂T − γ∗T )′
(
T−1W′W

)
(γ̂T − γ∗T )−

2 (γ̂T − γ∗T )′
[
T−1 (W′ Rτ + W′u)

]
.

By substituting for γ̂T − γ∗T from (S.11), we get

T−1η̂′η̂ = T−1 (τ ′R′R τ + u′u) + 2T−1τ ′R′u+[
T−1 (W′Rτ + W′u)

]′ (
T−1W′W

)−1 [
T−1 (W′Rτ + W′u)

]
−

2
[
T−1 (W′R τ + W′u)

]′ (
T−1W′W

)−1 [
T−1 (W′Rτ + W′u)

]
= T−1 (τ ′R′Rτ + u′u) + 2T−1τ ′R′u−[

T−1 (W′Rτ + W′u)
]′ (

T−1W′W
)−1 [

T−1 (W′Rτ + W′u)
]
.
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we can further write

T−1η̂′η̂ = T−1E (τ ′R′Rτ + u′u) + T−1 {[τ ′R′R τ − E (τ ′R′Rτ )] + [u′u− E (u′u)]}+

2T−1τ ′R′u−
[
T−1 (W′Rτ + W′u)

]′ [E (T−1W′W
)]−1 [

T−1 (W′Rτ + W′u)
]
−[

T−1 (W′Rτ + W′u)
]′ {(

T−1W′W
)−1 −

[
E
(
T−1W′W

)]−1
} [
T−1 (W′Rτ + W′u)

]
.

Therefore,

T−1η̂′η̂ − T−1E (τ ′R′Rτ + u′u) ≤

T−1 [τ ′R′ Rτ − E (τ ′R′Rτ )] + T−1 [u′u− E (u′u)] +

2T−1τ ′R′u +
∥∥T−1W′ (Rτ + u)

∥∥2
∥∥∥[E (T−1W′W

)]−1
∥∥∥

2
+∥∥T−1W′ (Rτ + u)

∥∥2
∥∥∥(T−1W′W

)−1 −
[
E
(
T−1W′W

)]−1
∥∥∥
F
.

(S.12)

First, consider T−1 [τ ′R′Rτ − E (τ ′R′Rτ )]. Note that

τ ′R′Rτ = τ ′

(
T∑
t=1

rtr
′
t

)
τ =

T∑
t=1

( τ ′rt) (r′tτ ) =
T∑
t=1

(
k∑
i=1

rit

)(
k∑
j=1

rjt

)
=

k∑
i=1

k∑
j=1

T∑
t=1

ritrjt.

Recalling that rit = xit(βit − βi), and hence,

T−1 [τ ′R′Rτ − E (τ ′R′Rτ )] =
k∑
i=1

k∑
j=1

(
T−1

T∑
t=1

aij,t

)
,

where

aij,t = xitxjt(βit − βi)(βjt − βj)− E (xitxjt)E [(βit − βi)(βjt − βj)] .

Now consider E
(
T−1

∑T
t=1 aij,t

)2

and note that

E

(
T−1

T∑
t=1

aij,t

)2

= T−2

T∑
t=1

E
(
a2
ij,t

)
+ 2T−2

T∑
t=2

t∑
t′=1

E (aij,taij,t′)

= T−2

T∑
t=1

E
(
a2
ij,t

)
+ 2T−2

T∑
t=2

t∑
t′=1

E [aij,t′E (aij,t|Ft−1)] .

But, by Assumptions 1, 3, and 6,

E (aij,t|Ft−1) = E (xitxjt|Ft−1)E [(βit − βi)(βjt − βj)|Ft−1]− E (xitxjt)E [(βit − βi)(βjt − βj)]

= E (xitxjt)E [(βit − βi)(βjt − βj)]− E (xitxjt)E [(βit − βi)(βjt − βj)] = 0.
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Therefore,

E

(
T−1

T∑
t=1

aij,t

)2

= T−2

T∑
t=1

E
(
a2
ij,t

)
= O

(
1

T

)
,

and by Lemma S-2.13 we conclude that∣∣∣∣∣T−1

T∑
t=1

aij,t

∣∣∣∣∣ = Op

(
1√
T

)
.

Since by Assumption 3, k is a finite fixed integer, we can further conclude that

T−1 [τ ′R′Rτ − E (τ ′R′Rτ )] =
k∑
i=1

k∑
j=1

(
T−1

T∑
t=1

aij,t

)
= Op

(
1√
T

)
. (S.13)

Now, consider, T−1τ ′R′u. Note that

T−1τ ′R′u = T−1τ ′

(
T∑
t=1

rtut

)
= T−1

T∑
t=1

τ ′rtut = T−1

T∑
t=1

k∑
i=1

ritut =
k∑
i=1

(
T−1

T∑
t=1

ritut

)
.

We have

E

(
T−1

T∑
t=1

ritut

)2

= T−2

T∑
t=1

E
(
r2
itu

2
t

)
+ 2T−2

T∑
t=2

t∑
t′=1

E (ritrit′utut′) .

Since rit = xit(βit − βi), and βit for i = 1, 2, · · · , k are distributed independently of xjs,

j = 1, 2, · · · , N , and us for all t and s, we can further write for any t′ < t

E (ritrit′utut′) = E (xitutxit′ut′)E [(βit − βi)(βit′ − βi)]

= E (xitutxit′ut′)E {(βit′ − βi)E [(βit − βi)|Ft−1]} .

But, by Assumption 1, E [(βit − βi)| F t−1] = 0 and thus E (ritrit′utut′) = 0 for any t′ < t.

Therefore,

E

(
T−1

T∑
t=1

ritut

)2

= T−2

T∑
t=1

E
(
r2
itu

2
t

)
= O

(
1

T

)
.

Hence, by Lemma S-2.13,
∣∣∣T−1

∑T
t=1 ritut

∣∣∣ = Op

(
1√
T

)
. Since, by Assumption 3, k is a finite

fixed integer, we conclude that

T−1τ ′R′u =
k∑
i=1

(
T−1

T∑
t=1

ritut

)
= Op

(
1√
T

)
. (S.14)
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By substituting (S.13) and (S.14) into (S.12), and noting that ‖T−1W′ (Rτ + u)‖2
= Op(lT/T ),∥∥∥(T−1W′W)

−1 − [E (T−1W′W)]
−1
∥∥∥
F

= Op(lT/
√
T ), and T−1 [u′u− E ( u′u)] = Op(1/

√
T ),

we conclude that

T−1η̂′η̂ =
k∑
i=1

k∑
j=1

(
T−1

T∑
t=1

σijt,xσijt,β

)
+ σ̄2

u,T +Op

(
1√
T

)
+Op

(
lT
T

)
,

where σijt,x = E (xitxjt), σijt,β = E [(βit − βi)(βjt − βj)], and σ̄2
u,T = T−1E (u′u).

In the second scenario, where E (wtw
′
t) is time invariant, we can write (S.1) as

yt =
k∑
i=1

xitβ̄iT +
k∑
i=1

xit
(
βit − β̄iT

)
+ ut =

k∑
i=1

xitβ̄iT +
k∑
i=1

hit + ut = q′tβ̄ + h′tτ + ut,

where hit = xit
(
βit − β̄iT

)
, and ht = (h1t, h2t, · · · , hkt)′. We can further write the DGP in a

following matrix format,

y = Qβ̄ + H τ + u,

where H = (h1,h2, · · · ,hT )′. Now, by using the similar lines of arguments as in the first

scenario, we get

γ̂T − γ�T =
(
T−1W′W

)−1 (
T−1W′Hτ

)
+
(
T−1W′W

)−1 (
T−1W′ u

)
.

Notice that

T−1E (W′Hτ ) =
k∑
i=1

[
T−1

T∑
t=1

E(wthit)

]
=

k∑
i=1

{
T−1

T∑
t=1

E[wtxit(βit − β̄iT )]

}

=
k∑
i=1

[
T−1

T∑
t=1

E(wtxit)E(βit − β̄iT )

]

=
k∑
i=1

[
E(wtxit)T

−1

T∑
t=1

E(βit − β̄iT )

]
= 0.

Hence, we can further use the similar lines of arguments as in the first scenario and conclude
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that

‖γ̂T − γ�T‖ ≤
∥∥∥(T−1W′W

)−1 −
[
E
(
T−1W′W

)]−1
∥∥∥
F

∥∥T−1W′Hτ
∥∥+∥∥∥[E (T−1W′W

)]−1
∥∥∥

2

∥∥T−1W′Hτ
∥∥+∥∥∥(T−1W′W

)−1 −
[
E
(
T−1W′W

)]−1
∥∥∥
F

∥∥T−1W′u
∥∥+∥∥∥[E (T−1W′W

)]−1
∥∥∥

2

∥∥T−1W′u
∥∥ .

We know that

∥∥T−1W′u
∥∥ = Op

(√
lT
T

)
,

and ∥∥∥(T−1W′W
)−1 −

[
E
(
T−1W′W

)]−1
∥∥∥
F

= Op

(
lT√
T

)
.

Now consider ‖T−1W′H τ‖. By using the similar lines of arguments as in the first scenario,

we have

∥∥T−1W′Hτ
∥∥2 ≤ T−2

k∑
i=1

k+lT∑
`=1

T∑
t=1

T∑
t′=1

w`tw`t′xitxit′
(
βit − β̄i

) (
βit′ − β̄i

)
.

Since, by Assumption 3, βit for i = 1, 2, · · · , k are distributed independently of wt for

t = 1, 2, · · · , T , we can further write,

E
∥∥T−1W′Hτ

∥∥2 ≤ T−2

k∑
i=1

k+lT∑
`=1

T∑
t=1

T∑
t′=1

E (w`tw`t′xitxit′)E
[(
βit − β̄i

) (
βit′ − β̄i

)]
= T−2

k∑
i=1

k+lT∑
`=1

T∑
t=1

E
(
w2
`tx

2
it

)
E
[(
βit − β̄i

)2
]

+

T−2

k∑
i=1

k+lT∑
`=1

T∑
t=1

∑
t′ 6=t

E (w`tw`t′xitxit′)E
[(
βit − β̄i

) (
βit′ − β̄i

)]
.

Since, by Assumption 1, E [w`tw`′t − E(w`tw`′t)|Ft−1] = 0 for all `, `′ and t = 1, 2, · · · , T , we

have for any t′ 6= t

E (w`tw`t′xitxit′) = E (w`txit)E (w`t′xit′) .
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Therefore,

T∑
t=1

∑
t′ 6=t

E (w`tw`t′xitxit′)E
[(
βit − β̄i

) (
βit′ − β̄i

)]
=

T∑
t=

∑
t′ 6=t

E (w`txit)E (w`t′xit′)E
[(
βit − β̄i

) (
βit′ − β̄i

)]
.

Since E (wtw
′
t) is time invariant, we can further write

T∑
t=1

∑
t′ 6=t

E (w`tw`t′xitxit′)E
[(
βit − β̄i

) (
βit′ − β̄i

)]
= E (w`txit)

2
T∑
t=1

∑
t′ 6=t

E
[(
βit − β̄i

) (
βit′ − β̄i

)]
.

Note that, by Assumption 1, for any t′ 6= t, E
[(
βit − β̄i

) (
βit′ − β̄i

)]
=
[
E (βit)− β̄i

] [
E (βit′)− β̄i

]
.

Therefore

T∑
t=1

∑
t′ 6=t

E (w`tw`t′xitxit′)E
[(
βit − β̄i

) (
βit′ − β̄i

)]
= [E (w`txit)]

2
T∑
t=1

∑
t′ 6=t

[
E (βit)− β̄i

] [
E (βit′)− β̄i

]
.

We can further write,

T∑
t=1

∑
t′ 6=t

E (w`tw`t′xitxit′)E
[(
βit − β̄i

) (
βit′ − β̄i

)]
= [E (w`txit)]

2

{
T∑
t=1

T∑
t′=1

[
E (βit)− β̄i

] [
E (βit′)− β̄i

]
−

T∑
t=1

[
E (βit)− β̄i

]2}

= [E (w`txit)]
2

{
T∑
t=1

[
E (βit)− β̄i

]}{ T∑
t′=1

[
E (βit′)− β̄i

]}
−

[E (w`txit)]
2

T∑
t=1

[
E (βit)− β̄i

]2
.

But,
∑T

t=1

[
E (βit)− β̄i

]
= 0, and therefore,

T∑
t=1

∑
t′ 6=t

E (w`tw`t′xitxit′)E
[(
βit − β̄i

) (
βit′ − β̄i

)]
= − [E (w`txit)]

2
T∑
t=1

[
E (βit)− β̄i

]2
.
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So,

E
∥∥T−1W′Hτ

∥∥2

≤ T−2

p∑
i=1

p+lT∑
`=1

T∑
t=1

{
E
(
w2
`tx

2
it

)
E
[(
βit − β̄i

)2
]
− [E (w`txit)]

2 [E (βit)− β̄i
]2}

= O

(
lT
T

)
,

and hence, by Lemma S-2.13,

∥∥T−1W′Hτ
∥∥ = Op

(√
lT
T

)
.

So, we conclude that

‖γ̂T − γ�T‖ = Op

(√
lT
T

)
.

Lastly, consider the model mean square error for the second scenario. Following the same

lines of argument as in the first scenario, we can write,

T−1η̂′η̂ − T−1E (τ ′H′Hτ + u′u) ≤

T−1 [τ ′H′ Hτ − E (τ ′H′Hτ )] + T−1 [u′u− E (u′u)] +

2T−1τ ′H′u +
∥∥T−1W′ (Hτ + u)

∥∥2
∥∥∥[E (T−1W′W

)]−1
∥∥∥

2
+∥∥T−1W′ (Hτ + u)

∥∥2
∥∥∥(T−1W′W

)−1 −
[
E
(
T−1W′W

)]−1
∥∥∥
F
.

(S.15)

First, consider T−1 [τ ′H′Hτ − E (τ ′H′Hτ )]. Note that

τ ′H′Hτ = τ ′

(
T∑
t=1

hth
′
t

)
τ =

T∑
t=1

( τ ′rt) (r′tτ ) =
T∑
t=1

(
k∑
i=1

hit

)(
k∑
j=1

hjt

)
=

k∑
i=1

k∑
j=1

T∑
t=1

hithjt.

Recalling that hit = xit(βit − β̄iT ), and hence,

T−1 [τ ′H′Hτ − E (τ ′H′Hτ )] =
k∑
i=1

k∑
j=1

(
T−1

T∑
t=1

bij,t

)
,

where

bij,t = xitxjt(βit − β̄iT )(βjt − β̄jT )− E (xitxjt)E
[
(βit − β̄iT )(βjt − β̄jT )

]
.
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Now consider E
(
T−1

∑T
t=1 bij,t

)2

and note that

E

(
T−1

T∑
t=1

bij,t

)2

= T−2

T∑
t=1

E
(
b2
ij,t

)
+ 2T−2

T∑
t=2

t∑
t′=1

E (bij,tbij,t′)

= T−2

T∑
t=1

E
(
b2
ij,t

)
+ 2T−2

T∑
t=2

t∑
t′=1

E [bij,t′E (bij,t|Ft−1)] .

But, by Assumptions 1, 3, and 6,

E (bij,t|Ft−1) = E (xitxjt|Ft−1)E
[
(βit − β̄iT )(βjt − β̄jT )|Ft−1

]
− E (xitxjt)E

[
(βit − β̄iT )(βjt − β̄jT )

]
= E (xitxjt)E

[
(βit − β̄iT )(βjt − β̄jT )

]
− E (xitxjt)E

[
(βit − β̄iT )(βjt − β̄jT )

]
= 0.

Therefore,

E

(
T−1

T∑
t=1

bij,t

)2

= T−2

T∑
t=1

E
(
b2
ij,t

)
= O

(
1

T

)
,

and by Lemma S-2.13 we conclude that∣∣∣∣∣T−1

T∑
t=1

bij,t

∣∣∣∣∣ = Op

(
1√
T

)
.

Since by Assumption 3, k is a finite fixed integer, we can further conclude that

T−1 [τ ′H′Hτ − E (τ ′H′Hτ )] =
k∑
i=1

k∑
j=1

(
T−1

T∑
t=1

bij,t

)
= Op

(
1√
T

)
. (S.16)

Now, consider, T−1τ ′H′u. Note that

T−1τ ′H′u = T−1τ ′

(
T∑
t=1

htut

)
= T−1

T∑
t=1

τ ′htut = T−1

T∑
t=1

k∑
i=1

hitut =
k∑
i=1

(
T−1

T∑
t=1

hitut

)
.

We have

E

(
T−1

T∑
t=1

hitut

)2

= T−2

T∑
t=1

E
[
(hitut)

2]+ T−2

T∑
t=1

∑
t′ 6=t

E (hithit′utut′) .

Since hit = xit(βit − β̄iT ), and βit for i = 1, 2, · · · , k are distributed independently of xjs,
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j = 1, 2, · · · , N , and us for all t and s, we can further write for any t′ 6= t

E (hithit′utut′) = E (xitutxit′ut′)E
[
(βit − β̄iT )(βit′ − β̄iT )

]

But, by Assumption 1, E [xitut − E(xitut)|Ft−1] = 0 and we also have E(xitut) = 0 for

i = 1, 2, · · · , k and thus for any t′ 6= t we have

E (xitutxit′ut′) = E (xitut)E (xit′ut′) = 0.

Therefore,

E

(
T−1

T∑
t=1

hitut

)2

= T−2

T∑
t=1

E
[
(hitut)

2] = O

(
1

T

)
.

Hence, by Lemma S-2.13,
∣∣∣T−1

∑T
t=1 hitut

∣∣∣ = Op

(
1√
T

)
. Since, by Assumption 3, k is a finite

fixed integer, we conclude that

T−1τ ′H′u =
k∑
i=1

(
T−1

T∑
t=1

hitut

)
= Op

(
1√
T

)
. (S.17)

By substituting (S.16) and (S.17) into (S.15), and noting that ‖T−1W′ (Hτ + u)‖2
= Op(lT/T ),∥∥∥(T−1W′W)

−1 − [E (T−1W′W)]
−1
∥∥∥
F

= Op(lT/
√
T ), and T−1 [u′u− E ( u′u)] = Op(1/

√
T ),

we conclude that

T−1η̂′η̂ =
k∑
i=1

k∑
j=1

(
T−1

T∑
t=1

σijt,xσ
∗
ijt,β

)
+ σ̄2

u,T +Op

(
1√
T

)
+Op

(
lT
T

)
,

where σ∗ijt,β = E
[
(βit − β̄i,T )(βjt − β̄j,T )

]
, β̄iT = T−1

∑T
t=1 E(βit), and σ̄2

u,T = T−1E (u′u).

S-2 Complementary lemmas

Lemma S-2.1 Let zt be a martingale difference process with respect to F zt−1 = σ(zt−1,

zt−2, · · · ), and suppose that there exist some finite positive constants C0 and C1, and s > 0

such that

sup
t

Pr(|zt| > α) ≤ C0 exp(−C1α
s), for all α > 0.
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Let also σ2
zt = E(z2

t |F zt−1) and σ̄2
z,T = T−1

∑T
t=1 σ

2
zt. Suppose that ζT = 	(T λ), for some

0 < λ ≤ (s+ 1)/(s+ 2). Then for any π in the range 0 < π < 1, we have,

Pr
(
|
∑T

t=1 zt| > ζT

)
≤ exp

[
−(1−π)2ζ2T

2T σ̄2
z,T

]
.

if λ > (s+ 1)/(s+ 2), then for some finite positive constant C2,

Pr
(
|
∑T

t=1 zt| > ζT

)
≤ exp

(
−C2ζ

s/(s+1)
T

)
.

Proof. The results follow from Lemma A3 of Chudik et al. (2018) Online Theory Supple-

ment.

Lemma S-2.2 Let

cp(n, δ) = Φ−1

(
1− p

2f(n, δ)

)
, (S.18)

where Φ−1(.) is the inverse of standard normal distribution function, p (0 < p < 1) is the

nominal size of a test, and f(n, δ) = cnδ for some positive constants δ and c. Moreover,

let a > 0 and 0 < b < 1. Then (I) cp(n, δ) = O
[√

δ ln(n)
]

and (II) na exp
[
−bc2

p(n, δ)
]

=

	(na−2bδ).

Proof. The results follow from Lemma 3 of Bailey et al. (2019) Supplementary Appendix

A.

Lemma S-2.3 Let xi, for i = 1, 2, · · · , n, be random variables. Then for any constants πi,

for i = 1, 2, · · · , n, satisfying 0 < πi < 1 and
∑n

i=1 πi = 1, we have

Pr(
∑n

i=1 |xi| > C0) ≤
∑n

i=1 Pr(|xi| > πiC0),

where C0 is a finite positive constant.

Proof. The result follows from Lemma A11 of Chudik et al. (2018) Online Theory Supple-

ment.

Lemma S-2.4 Let x, y and z be random variables. Then for any finite positive constants

C0, C1, and C2, we have

Pr(|x| × |y| > C0) ≤ Pr(|x| > C0/C1) + Pr(|y| > C1),

and

Pr(|x| × |y| × |z| > C0) ≤ Pr(|x| > C0/(C1C2)) + Pr(|y| > C1) + Pr(|z| > C2).
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Proof. The results follow from Lemma A11 of Chudik et al. (2018) Online Theory Supple-

ment.

Lemma S-2.5 Let x be a random variable. Then for some finite constants B, and C, with

|B| ≥ C > 0, we have

Pr(|x+B| ≤ C) ≤ Pr(|x| > |B| − C).

Proof. The results follow from Lemma A12 of Chudik et al. (2018) Online Theory Supple-

ment.

Lemma S-2.6 Let xT to be a random variable. Then for a deterministic sequence, αT > 0,

with αT → 0 as T →∞, there exists T0 > 0 such that for all T > T0 we have

Pr

(∣∣∣∣ 1
√
xT
− 1

∣∣∣∣ > αT

)
≤ Pr(|xT − 1| < αT ).

Proof. The results follow from Lemma A13 of Chudik et al. (2018) Online Theory Supple-

ment.

Lemma S-2.7 Consider random variables xt and zt with the exponentially bounded proba-

bility tail distributions such that

sup
t

Pr(|xt| > α) ≤ C0 exp(−C1α
sx), for all α > 0,

sup
t

Pr(|zt| > α) ≤ C0 exp(−C1α
sz), for all α > 0,

where C0, and C1 are some finite positive constants, sx > 0, and sz > 0 . Then

sup
t

Pr(|xtzt| > α) ≤ C0 exp(−C1α
s/2), for all α > 0,

where s = min{sx, sz}.

Proof. By using Lemma S-2.4, for all α > 0,

Pr(|xtzt| > α) ≤ Pr(|xt| > α1/2) + Pr(|zt| > α1/2)

So,

sup
t

Pr(|xtzt| > α) ≤ sup
t

Pr(|xt| > α1/2) + sup
t

Pr(|zt| > α1/2)

≤ C0 exp(−C1α
sx/2) + C0 exp(−C1α

sz/2)

≤ C0 exp(−C1α
s/2)

where s = min{sx, sz}.
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Lemma S-2.8 Let x, y and z be random variables. Then for some finite positive constants

C0, and C1, we have

Pr(|x| × |y| < C0) ≤ Pr(|x| < C0/C1) + Pr(|y| < C1),

Proof. Define events A = {|x|× |y| < C0}, B = {|x| < C0/C1} and C = {|y| < C1}. Then

A ∈ B ∪ C. Therefore, Pr(A) ≤ Pr(B ∪ C). But Pr(B ∪ C) ≤ Pr(B) + Pr(C) and hence

Pr(A) ≤ Pr(B) + Pr(C).

Lemma S-2.9 Let A and B be n× p and p×m matrices respectively, then

‖AB‖F ≤ ‖A‖F‖B‖2, and ‖AB‖F ≤ ‖A‖2‖B‖F . (S.19)

Proof. ‖AB‖2
F = tr(ABB′A′) = tr[A(BB′)A′], and by result (12) of Lü tkepohl (1996,

p.44),

tr [A(BB′)A′] ≤ λmax(BB′)tr(AA′) = ‖A‖2
F‖ B‖2

2,

where λmax(BB′) is the largest eigenvalue of BB′. Therefore, ‖AB‖F ≤ ‖A‖F‖B‖2, as

required. Similarly,

‖AB‖2
F = tr(B′A′AB) = tr[B′(A′A)B] ≤ λmax(A′A)tr(B′B) = ‖ A‖2

2‖B‖2
F ,

and hence

‖AB‖F ≤ ‖A‖2‖B‖F .

Lemma S-2.10 Let A = (aij)n×m where supij |aij| < C <∞, then

‖A‖2 = O
(√

nm
)
. (S.20)

Proof. This result follows, since ‖A‖2 ≤
√
‖A‖∞ ‖A‖1, ‖A‖∞ = O(m) and ‖A‖1 = O(n).

Lemma S-2.11 Consider two N ×N nonsingular matrices A and B such that

‖B−1‖2‖A−B‖F < 1.

Then

‖A−1 −B−1‖F ≤
‖B−1‖2

2‖A−B‖F
1− ‖B−1‖2‖A−B‖F

.
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Proof. By Lemma S-2.9,

‖A−1 −B−1‖F = ‖A−1(B−A)B−1‖F ≤ ‖A−1‖2‖B−A‖F‖B−1‖2

Note that

‖A−1‖2 = ‖A−1 −B−1 + B−1‖2 ≤ ‖A−1 −B−1‖2 + ‖B−1‖2

≤ ‖A−1 −B−1‖F + ‖ B−1‖2,

and therefore,

‖A−1 −B−1‖F ≤ (‖A−1 − B−1‖F + ‖B−1‖2)‖B−A‖F‖B−1‖2.

Hence,

‖A−1 −B−1‖F (1− ‖B−1‖2‖B−A‖F ) ≤ ‖B−1‖2
2‖B−A‖F .

Since ‖B−1‖2‖B−A‖F < 1, we can further write,

‖A−1 −B−1‖F ≤
‖B−1‖2

2‖A−B‖F
1− ‖B−1‖2‖A−B‖F

.

Lemma S-2.12 Let X and Y be T × Nx and T × Ny matrices of observations on random

variables xit and yjt, for i = 1, 2, · · · , Nx, j = 1, 2, · · · , Ny and t = 1, 2, · · · , T , respectively.

Denote

wij,t = xityjt − E(xityjt), for all i, j and t.

Suppose that

(i) supi,t E |xit|
4 < C, supj,t E |yjt|

4 < C, and

(ii) supi,j

[∑T
t=1

∑T
t′=1 E(wij,twij,t′)

]
= O(T ).

Then,

E
∥∥T−1 [X′Y − E(X′Y)]

∥∥2

F
= O

(
NxNy

T

)
. (S.21)

Proof. The results follow from Lemma A18 of Chudik et al. (2018) Online Theory Supple-

ment.
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Lemma S-2.13 Let X = (xij)T×Nx and Y = (yij)T×Ny be matrices of random variables,

respectively. Suppose that,

E
∥∥T−1 [X′Y − E(X′Y)]

∥∥2

F
= O(aT ), (S.22)

where aT > 0. Then∥∥T−1 [X′Y − E(X′Y)]
∥∥
F

= Op(
√
aT ). (S.23)

Proof. For any B > 0, by the Markov’s inequality

Pr
(∥∥T−1 [X′Y − E(X′Y)]

∥∥
F
> B
√
aT
)
≤ E ‖T−1 [X′Y − E(X′Y)]‖2

F

aTB2

Since E ‖T−1 [X′Y − E(X′Y)]‖2
F = O(aT ) , there exist C and T0 such that for all T > T0

E
∥∥T−1 [X′Y − E(X′Y)]

∥∥2

F
≤ CaT .

Hence, for any ε > 0, there exist Bε =
√

C
ε

and Tε = T0, such that for all T > Tε

Pr
(∥∥T−1 [X′Y − E(X′Y)]

∥∥
F
> Bε

√
aT
)
≤ ε.

Therefore,∥∥T−1 [X′Y − E(X′Y)]
∥∥
F

= Op (
√
aT ) .

Lemma S-2.14 Let ΣT be a positive definite matrix and Σ̂T be its corresponding estimator.

Suppose that λmin (ΣT ) > c > 0, and

E
∥∥∥Σ̂T −ΣT

∥∥∥2

F
= O(aT ) (S.24)

where aT > 0, and aT = o(1). Then∥∥∥Σ̂−1

T −Σ−1
T

∥∥∥
F

= Op(
√
aT ) (S.25)

Proof. Let AT =
{∥∥Σ−1

T

∥∥
2

∥∥∥Σ̂T −ΣT

∥∥∥
F
< 1
}

, BT =
{∥∥∥Σ̂−1

T −Σ−1
T

∥∥∥
F
> B
√
aT

}
and

DT =

{
‖Σ−1

T ‖
2

2
‖Σ̂T−ΣT‖

F

(1−‖ Σ−1
T ‖2‖Σ̂T−ΣT‖

F
)
> B
√
aT

}
where B > 0 is an arbitrary constant. If AT
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holds, by Lemma S-2.11,

∥∥∥Σ̂−1

T −Σ−1
T

∥∥∥
F
≤

∥∥Σ−1
T

∥∥2

2

∥∥∥Σ̂T −ΣT

∥∥∥
F

1−
∥∥Σ−1

T

∥∥
2

∥∥∥Σ̂T −ΣT

∥∥∥
F

.

Hence BT ∩ AT ⊆ DT . Therefore

Pr(BT ∩ AT ) ≤ Pr

 ∥∥Σ−1
T

∥∥2

2

∥∥∥Σ̂T −ΣT

∥∥∥
F(

1−
∥∥ Σ−1

T

∥∥
2

∥∥∥Σ̂T −ΣT

∥∥∥
F

) > B
√
aT


= Pr

(∥∥∥Σ̂T −ΣT

∥∥∥
F
>

B
√
aT∥∥ Σ−1

T

∥∥
2

(∥∥Σ−1
T

∥∥
2

+B
√
aT
))

By the Markov’s inequality, we can further conclude that

Pr(BT ∩ AT ) ≤
E
∥∥∥Σ̂T −ΣT

∥∥∥2

F

aT
×
∥∥Σ−1

T

∥∥2

2

(∥∥Σ−1
T

∥∥
2

+B
√
aT
)2

B2
.

Since by assumption E
∥∥∥Σ̂T −ΣT

∥∥∥2

F
= O(aT ), there exist C and T0 > 0 such that for all

T > T0,

E
∥∥∥Σ̂T −ΣT

∥∥∥2

F
≤ CaT .

Therefore, for all T > T0,

Pr(BT ∩ AT ) ≤
C
∥∥ Σ−1

T

∥∥2

2

(∥∥Σ−1
T

∥∥
2

+B
√
aT
)2

B2
.

Moreover,

Pr(AcT ) = Pr
(∥∥Σ−1

T

∥∥
2

∥∥∥Σ̂T −ΣT

∥∥∥
F
≥ 1
)

= Pr

(∥∥∥Σ̂T −ΣT

∥∥∥
F
≥ 1∥∥Σ−1

T

∥∥
2

)
.

By the Markov’s inequality, we can further write

Pr(AcT ) ≤
∥∥Σ−1

T

∥∥2

2
× E

∥∥∥Σ̂T −ΣT

∥∥∥2

F
,

and hence, for all T > T0,

Pr(AcT ) ≤ C
∥∥Σ−1

T

∥∥2

2
aT .
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Note that

Pr(BT ) = Pr (BT ∩ AT ) + Pr(BT |AcT ) Pr(AcT ),

and since Pr(BT ∩ AT ) ≤ Pr(DT ) and Pr(BT |AcT ) ≤ 1, we have

Pr(BT ) ≤ Pr(BT ∩ AT ) + Pr(AcT ).

Therefore, for all T > T0,

Pr
(∥∥∥Σ̂−1

T −Σ−1
T

∥∥∥
F
> B
√
aT

)
≤
C
∥∥Σ−1

T

∥∥2

2

(∥∥ Σ−1
T

∥∥
2

+B
√
aT
)2

B2
+ C

∥∥Σ−1
T

∥∥2

2
aT .

Now, for a given ε > 0, we are interested to find Bε > 0 and Tε > 0 such that for all T > Tε,

Pr
(∥∥∥Σ̂−1

T −Σ−1
T

∥∥∥
F
> Bε

√
aT

)
≤ ε.

To do so, we first find a value of B such that

C
∥∥Σ−1

T

∥∥2

2

(∥∥Σ−1
T

∥∥
2

+B
√
aT
)2

B2
+ C

∥∥Σ−1
T

∥∥2

2
aT = ε.

By multiplying both sides of the above equality by B2 and bringing all the equations to the

left hand side we have(
ε− 2C

∥∥Σ−1
T

∥∥2

2
aT

)
B2 − 2C

∥∥Σ−1
T

∥∥3

2

√
aTB − C

∥∥Σ−1
T

∥∥4

2
= 0.

By solving the above quadratic equation of B we have

B∗ =
2C
∥∥Σ−1

T

∥∥3

2

√
aT ±

√
4C
∥∥Σ−1

T

∥∥4

2
ε− 4C2

∥∥Σ−1
T

∥∥6

2
aT

2
(
ε− 2C

∥∥Σ−1
T

∥∥2

2
aT

)

=

∥∥Σ−1
T

∥∥
2

(
√
aT ±

√
ε

C‖Σ−1
T ‖

2

2

− aT
)

ε

C‖ Σ−1
T ‖

2

2

− 2aT

Notice that aT → 0 as T → ∞, therefore for large enough T ∗ we have both ε

C‖Σ−1
T ‖

2

2

− 2aT

and ε

C‖Σ−1
T ‖

2

2

−aT being greater than zero for all T > T ∗. Now, by setting Tε = max{T ∗, T0}

and

Bε =

∥∥Σ−1
T

∥∥
2

(
√
aT +

√
ε

C‖Σ−1
T ‖

2

2

− aT
)

ε

C‖Σ−1
T ‖

2

2

− 2aT
> 0,

S.31



we achieve our goal that for all T > Tε,

Pr
(∥∥∥Σ̂−1

T −Σ−1
T

∥∥∥
F
> Bε

√
aT

)
≤ ε.

Remark 7 By using Lemma S-2.11 we achieve the probability convergence order for
∥∥∥Σ̂−1

T −Σ−1
T

∥∥∥
F

that is sharper than the one shown in the proof Lemma A21 of Chudik et al. (2018) (see

equations (B.103) and (B.105) of Chudik et al. (2018) Online Theory Supplement).

Lemma S-2.15 Let zij be a random variable for i = 1, 2, · · · , N , and j = 1, 2, · · · , N .

Then, for any dT > 0,

Pr(N−2
∑N

i=1

∑N
j=1 |zij| > dT ) ≤ N2 supi,j Pr(|zij| > dT )

Proof. We know that N−2
∑N

i=1

∑N
j=1 |zij| ≤ supi,j |zij|. Therefore,

Pr(N−2
∑N

i=1

∑N
j=1 |zij| > dT ) ≤ Pr(supi,j |zij| > dT )

≤ Pr[∪Ni=1 ∪Nj=1 (|zij| > dT )] ≤
∑N

i=1

∑N
j=1 Pr(|zij| > dT )

≤ N2 supi,j Pr(|zij| > dT ).

Lemma S-2.16 Let Σ̂ be an estimator of a N×N symmetric invertible matrix Σ. Suppose

that there exits a finite positive constant C0, such that

sup
i,j

Pr(|σ̂ij − σij| > dT ) ≤ exp(−C0Td
2
T ), for any dT > 0,

where σij and σ̂ij are the elements of Σ and Σ̂ respectively. Then, for any bT > 0,

Pr(‖Σ̂
−1
−Σ−1‖F > bT ) ≤ N2 exp

[
−C0

Tb2
T

N2‖Σ−1‖2
2(‖Σ−1‖2 + bT )2

]
+

N2 exp

(
−C0

T

N2‖Σ−1‖2
2

)
.

Proof. Let AN = {‖Σ−1‖2‖ Σ̂−Σ‖F ≤ 1} and BN = {‖Σ̂−1−Σ−1‖F > bT}, and note that

by Lemma S-2.11 if AN holds we have

‖Σ̂−1 −Σ−1‖F ≤
‖Σ−1‖2

2‖Σ̂−Σ‖F
1− ‖Σ−1‖2‖Σ̂−Σ‖F

.
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Hence

Pr(BN |AN) ≤ Pr

(
‖Σ−1‖2

2‖Σ̂− Σ‖F
1− ‖Σ−1‖2‖Σ̂−Σ‖F

> bT

)

= Pr

[
‖Σ̂−Σ‖F >

bT

‖Σ−1‖2(‖Σ−1‖2 + bT )

]

Note that ‖Σ̂−Σ‖F =
(∑N

i=1

∑N
j=1(σ̂ij − σij)2

)1/2

. Therefore,

Pr(BN |AN) ≤ Pr

( N∑
i=1

N∑
j=1

(σ̂ij − σij)2

)1/2

>
bT

‖Σ−1‖2(‖Σ−1‖2 + bT )


= Pr

[
N∑
i=1

N∑
j=1

(σ̂ij − σij)2 >
b2
T

‖Σ−1‖2
2(‖Σ−1‖2 + bT )2

]

By Lemma S-2.15, we can further write,

Pr(BN |AN) ≤ N2 sup
i,j

Pr

[
(σ̂ij − σij)2 >

b2
T

N2‖Σ−1‖2
2(‖Σ−1‖2 + bT )2

]
= N2 sup

i,j
Pr

[
|σ̂ij − σij| >

bT

N‖Σ−1‖2(‖Σ−1‖2 + bT )

]
≤ N2 exp

[
−C0

Tb2
T

N2‖Σ−1‖2
2(‖Σ−1‖2 + bT )2

]
Furthermore,

Pr(AcN) = Pr(‖Σ−1‖2‖Σ̂−Σ‖F > 1)

= Pr(‖Σ̂−Σ‖F > ‖Σ−1‖−1
2 )

= Pr

( N∑
i=1

N∑
j=1

(σ̂ij − σij)2

)1/2

> ‖Σ−1‖−1
2


= Pr

[
N∑
i=1

N∑
j=1

(σ̂ij − σij)2 > ‖Σ−1‖−2
2

]

≤ N2 sup
i,j

Pr

[
(σ̂ij − σij)2 >

1

N2‖Σ−1‖2
2

]
≤ N2 sup

i,j
Pr

[
|σ̂ij − σij| >

1

N‖Σ−1‖2

]
≤ N2 exp

[
−C0

T

N2‖ Σ−1‖2
2

]
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Note that

Pr(BN) = Pr(BN |AN) Pr(AN) + Pr(BN |AcN) Pr(AcN),

and since Pr(AN) and Pr(BN |AcN) are less than equal to one, we have

Pr(BN) ≤ Pr(BN |AN) + Pr(AcN).

Therefore,

Pr(BNT ) ≤ N2 exp

[
−C0

Tb2
T

N2‖Σ−1‖2
2(‖Σ−1‖2 + bT )2

]
+N2 exp

[
−C0

T

N2‖Σ−1‖2
2

]
.

Lemma S-2.17 Let Σ̂ be an estimator of a N×N symmetric invertible matrix Σ. Suppose

that there exits a finite positive constant C0, such that

sup
i,j

Pr(|σ̂ij − σij| > dT ) ≤ exp
[
−C0(TdT )s/s+2

]
, for any dT > 0,

where σij and σ̂ij are the elements of Σ and Σ̂ respectively. Then, for any bT > 0,

Pr(‖Σ̂
−1
−Σ−1‖F > bT ) ≤ N2 exp

[
−C0

(TbT )s/s+2

N s/s+2‖Σ−1‖s/s+2
2 (‖ Σ−1‖2 + bT )s/s+2

]
+

N2 exp

(
−C0

T s/s+2

N s/s+2‖Σ−1‖s/s+2
2

)
.

Proof. The proof is similar to the proof of Lemma S-2.16.

Lemma S-2.18 Let {xit}Tt=1 for i = 1, 2, · · · , N and {zjt}Tt=1 for j = 1, 2, · · · ,m be time-

series processes. Also let Fxit = σ(xit, xi,t−1, · · · ) for i = 1, 2, · · · , N , F zjt = σ(zjt, zj,t−1, · · · )
for j = 1, 2, · · · ,m, Fxt = ∪Ni=1Fxit, F zt = ∪mj=1F zjt, and Ft = Fxt ∪ Fzt . Define the projection

regression of xit on zt = (z1t, z2t, · · · , zm,t)′ as

xit = z′tψi,T + νit

where ψi,T = (ψ1i,T , ψ2i,T , · · · , ψmi,T )′ is the m × 1 vector of projection coefficients which is

equal to
[
T−1

∑T
t=1 E (ztz

′
t)
]−1

[T−1
∑T

t=1 E(ztxit)]. Suppose, E[xitxi′t − E(xitxi′t)|Ft−1] = 0

for all i, i′ = 1, 2, · · · , N , E[zjtzj′t − E(zjtzj′t)|Ft−1] = 0 for all j, j′ = 1, 2, · · · ,m, and

E[zjtxit − E(zjtxit)|Ft−1] = 0 for all j = 1, 2, · · · ,m and for all i = 1, 2, · · · , N . Then

E [νitνi′t − E(νitνi′t)|Ft−1] = 0,
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for all j, j′ = 1, 2, · · · , N ,

E [νitzjt − E(νitzjt)|Ft−1] = 0,

for all i = 1, 2, · · · , N and j = 1, 2, · · · ,m, and

T−1
∑T

t=1 E(νitzjt) = 0,

for all i = 1, 2, · · · , N and j = 1, 2, · · · ,m.

Proof.

E(νitνi′t|Ft−1) = E(xitxi′t|Ft−1)− E(xitz
′
t|Ft−1)ψi′,T−

E(xi′tz
′
t|Ft−1)ψi,T +ψ′i,T E(ztz

′
t|Ft−1) ψi′,T

= E(xitxi′t)− E(xitz
′
t)ψi′,T − E(xi′tz

′
t)ψi,T+

ψ′i,TE(zt z′t)ψi′,T = E(νitνi′t).

E(νitzjt|Ft−1) = E(xitzjt|Ft−1)− E(z′tzjt|Ft−1)ψi,T

= E(xitzjt)− E(z′tzjt)ψi,T = E(νitzit).

T−1
∑T

t=1 E(νitzt) = T−1
∑T

t=1 E(xitzt)−ψ′−1
i,T

∑T
t=1 E(ztz

′
t)]

= T−1
∑T

t=1 E(xitzt)− T−1
∑T

t=1 E(xitzt) = 0.

Lemma S-2.19 Let {xit}Tt=1 for i = 1, 2, · · · , N and {zjt}Tt=1 for j = 1, 2, · · · ,m be time-

series processes. Define the projection regression of xit on zt = (z1t, z2t, · · · , zm,t)′ as

xit = z′tψi,T + νit

where ψi,T = (ψ1i,T , ψ2i,T , · · · , ψmi,T )′ is the m × 1 vector of projection coefficients which

is equal to
[
T−1

∑T
t=1 E (ztz

′
t)
]−1

[T−1
∑T

t=1 E(ztxit)]. Suppose that only a finite number of

elements in ψi,T is different from zero for all i = 1, 2, · · · , N and there exist sufficiently large

positive constants C0 and C1, and s > 0 such that

(i) supj,t Pr(|zjt| > α) ≤ C0 exp(−C1α
s), for all α > 0, and

(ii) supi,t Pr(|xit| > α) ≤ C0 exp(−C1α
s), for all α > 0.

Then, there exist sufficiently large positive constants C0 and C1, and s > 0 such that

sup
i,t

Pr(|νit| > α) ≤ C0 exp(−C1α
s), for all α > 0.
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Proof. Without loss of generality assume that the first finite ` elements of ψi,T are different

from zero and write

xit =
∑`

j=1 ψji,T zjt + νit.

Now, note that

Pr(|νit| > α) ≤ Pr
(
|xit|+

∑`
j=1|ψji,T zjt| > α

)
,

and hence by Lemma S-2.3, for any 0 < πj < 1, j = 1, 2, · · · , `+ 1 we have,

Pr(|νit| > α) ≤
∑`

j=1 Pr (|ψji,T zjt| > πjα) + Pr (|xit| > π`+1α)

=
∑`

j=1 Pr (|zjt| > |ψji,T |−1πjα) + Pr (|xit| > π`+1α)

≤ ` supj,t Pr (|zjt| > |ψ∗T |−1π∗α) + supi,t Pr (|xit| > π∗α) .

where ψ∗T = supi,j{ψji,T} and π∗ = infj∈1,2,··· ,`+1{πj}. Therefore, by the exponential decaying

probability tail assumptions for xit and zjt we have

Pr(|νit| > α) ≤ `C0 exp(−C1α
s) + C0 exp(−C1α

s),

and hence there exist sufficiently large positive constants C0 and C1 , and s > 0 such that

sup
i,t

Pr(|νit| > α) ≤ C0 exp(−C1α
s), for all α > 0.

Lemma S-2.20 Let {xit}Tt=1 for i = 1, 2, · · · , N and {z`t}Tt=1 for ` = 1, 2, · · · ,m be time-

series processes and m = 	(T d). Also let Fxit = σ(xit, xi,t−1, · · · ) for i = 1, 2, · · · , N , F z`t =

σ(z`t, z`,t−1, · · · ) for ` = 1, 2, · · · ,m, Fxt = ∪Ni=1Fxit, F zt = ∪m`=1F z`t, and Ft = Fxt ∪F zt . Define

the projection regression of xit on zt = (z1t, z2t, · · · , zm,t)′ as

xit = z′tψi,T + νit

where ψi,T = (ψ1i,T , ψ2i,T , · · · , ψmi,T )′ is the m × 1 vector of projection coefficients which is

equal to
[
T−1

∑T
t=1 E (ztz

′
t)
]−1

[T−1
∑T

t=1 E(ztxit)]. Suppose, E[xitxjt − E(xitxjt)|Ft−1] = 0

for all i, j = 1, 2, · · · , N , E[z`tz`′t−E(z`tz`t)|Ft−1] = 0 for all `, `′ = 1, 2, · · · ,m, and E[z`txit−
E(z`txit)|Ft−1] = 0 for all ` = 1, 2, · · · ,m and for all i = 1, 2, · · · , N . Additionally, assume

that only a finite number of elements in ψi,T is different from zero for all i = 1, 2, · · · , N
and there exist sufficiently large positive constants C0 and C1, and s > 0 such that

(i) supj,t Pr(|z`t| > α) ≤ C0 exp(−C1α
s), for all α > 0, and
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(ii) supi,t Pr(|x`t| > α) ≤ C0 exp(−C1α
s), for all α > 0.

Then, there exist some finite positive constants C0, C1 and C2 such that if d < λ ≤
(s+ 2)/(s+ 4),

Pr(|x′iMzxj − E(ν ′iνj)| > ζT ) ≤ exp(−C0T
−1ζ2

T ) + exp(−C1T
C2)

and if λ > (s+ 2)/(s+ 4)

Pr(|x′iMzxj − E(ν ′iνj)| > ζT ) ≤ exp(−C0ζ
s/(s+1)
T ) + exp(−C1T

C2)

for all i, j = 1, 2, · · · , N , where νi = (νi1, νi2, · · · , νiT )′, xi = (xi1, xi2, · · · , xiT )′, and Mz =

I− T−1 ZΣ̂
−1

zz Z′ with Z = (z1, z2, · · · , zT )′ and Σ̂zz = T−1
∑T

t=1(ztz
′
t).

Proof.

Pr [|x′iMzxj − E(ν ′iνj)| > ζT ] = Pr [|ν ′iMzνj − E(ν ′iνj)| > ζT ]

= Pr
[
|ν ′iνj − E(ν ′iνj)− T−1ν ′iZΣ−1

zz Z′νj − T−1ν ′iZ(Σ̂
−1

zz − Σ−1
zz )Z′νj| > ζT

]
where Σzz = E[T−1

∑T
t=1(ztz

′
t)]. By Lemma S-2.3, we can further write

Pr [|x′iMzxj − E(ν ′iνj)| > ζT ]

≤ Pr [|ν ′iνj − E(ν ′iνj)| > π1ζT ] + Pr(|T−1ν ′iZΣ−1
zz Z′νj| > π2ζT )+

Pr
[
|T−1ν ′iZ(Σ̂

−1

zz −Σ−1
zz ) Z′νj|) > π3ζT

]
.

where 0 < πi < 1 and
∑3

i=1 πi = 1. By Lemma S-2.9,

Pr(|T−1ν ′iZΣ−1
zz Z′νj| > π2ζT ) ≤ Pr(‖ν ′iZ‖F‖Σ−1

zz ‖2‖Z′νj‖F > π2ζTT ),

and again by Lemma S-2.4, we have

Pr(|T−1ν ′iZΣ−1
zz Z′νj| > π2ζT )

≤ Pr(‖ν ′iZ‖F > ‖Σ−1
zz ‖

−1/2
2 π

1/2
2 ζ

1/2
T T 1/2) + Pr(‖Z′νj‖F > ‖Σ−1

zz ‖
−1/2
2 π

1/2
2 ζ

1/2
T T 1/2).

Similarly, we can show that

Pr(|T−1ν ′iZ( Σ̂
−1

zz −Σ−1
zz )Z′νj| > π3ζT )

≤ Pr(‖ν ′iZ‖F‖Σ̂
−1

zz −Σ−1
zz ‖F‖Z′νj‖F > π3ζTT )

≤ Pr(‖Σ̂
−1

zz − Σ−1
zz ‖F > δ−1

T ζT ) + Pr(‖ν ′iZ‖F > π
1/2
3 δ

1/2
T T 1/2)

+ Pr(‖Z′νj‖F > π
1/2
3 δ

1/2
T T 1/2)
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where δT = 	(Tα) with 0 < α < λ.

Note that Pr(‖Z′νi‖F > c) = Pr(‖Z′νi‖2
F > c2) = Pr[

∑m
`=1(

∑T
t=1 νitz`t)

2 > c2], where c

is a positive constant. So, by Lemma S-2.3, we have

Pr(‖Z′νi‖F > c) ≤
∑m

`=1 Pr[(
∑T

t=1 νitz`t)
2 > m−1c2]

Hence, Pr(‖Z′νi‖F > c) ≤
∑m

`=1 Pr(|
∑T

t=1 νitz`t| > m−1/2c). Also, by Lemma S-2.18 we

have
∑T

t=1 E(νitz`t) = 0 and hence we can further write

Pr(‖Z′νi‖F > c) ≤
∑m

`=1 Pr{|
∑T

t=1[νitz`t − E(νitz`t)]| > m−1/2c}.

Note that ‖Σ−1
zz ‖2 is equal to the largest eigenvalue of Σ−1

zz and it is a finite positive constant.

So, there exists a positive constant C > 0 such that,

Pr(|x′iMzxj − E(ν ′iνj)| > ζT )

≤ Pr{|
∑T

t=1[νitνjt − E(νitνjt)]| > CT λ}+∑m
`=1 Pr{|

∑T
t=1[νitz`t − E(νitz`t]| > CT 1/2+λ/2−d/2}+∑m

`=1 Pr{|
∑T

t=1[νjtz`t − E(νjtz`t]| > CT 1/2+λ/2−d/2}+∑m
`=1 Pr{|

∑T
t=1[νitz`t − E(νitz`t]| > CT 1/2+α/2−d/2}+∑m

`=1 Pr{|
∑T

t=1[νjtz`t − E(νjtz`t]| > CT 1/2+α/2−d/2}+

Pr(‖Σ̂
−1

zz −Σ−1
zz ‖F > δ−1

T ζT )

Let

κT,i (h, d) =
m∑
`=1

Pr{|
T∑
t=1

[νitz`t − E(νitz`t]| > CT 1/2+κ/2−d/2}, for h = λ, α,

and i = 1, 2, ..., N . By Lemmas S-2.7, S-2.18, and S-2.19, we have νitνjt − E(νitνjt) and

νitz`t − E(νitz`t) are martingale difference processes with exponentially bounded probability

tail, s
2
. So, depending on the value of exponentially bounded probability tail parameter,

from Lemma S-2.1, we know that either

κT,i (h, d) ≤ m exp
[
−	

(
T h−d

)]
or

κT,i (h, d) ≤ m exp
[
−	

(
T s(1/2+h/2−d/2)/(s+2)

)]
,

for h = λ, α. Also, depending on the value of exponentially bounded probability tail param-
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eter, from Lemmas S-2.16 and S-2.17 we have,

Pr(‖Σ̂
−1

zz −Σ−1
zz ‖F > δ−1

T ζT ) ≤ m2 exp

[
−C0

Tδ−2
T ζ2

T

m2‖Σ−1
zz ‖2

2(‖Σ−1
zz ‖2 + δ−1

T ζT )2

]
+

m2 exp

(
−C0

T

m2‖Σ−1
zz ‖2

2

)
,

or

Pr(‖Σ̂
−1

zz −Σ−1
zz ‖F > δ−1

T ζT ) ≤ m2 exp

[
−C0

(Tδ−1
T ζT )s/s+2

ms/s+2‖ Σ−1
zz ‖

s/s+2
2 (‖Σ−1

zz ‖2 + δ−1
T ζT )s/s+2

]
+

m2 exp

(
−C0

T s/s+2

ms/s+2‖Σ−1
zz ‖

s/s+2
2

)
.

Therefore,

Pr(‖Σ̂
−1

zz −Σ−1
zz ‖F > δ−1

T ζT )

≤ m exp[−	 (Tmax{1−2d+2(λ−α),1−2d+λ−α,1−2d})]+

m exp[−	 (T 1−2d)],

or,

Pr(‖Σ̂
−1

zz −Σ−1
zz ‖F > δ−1

T ζT )

≤ m exp[−	 (T s(max{1−d+λ−α,1−d})/(s+2))]+

m exp[−	 (T s(1−d)/(s+2))].

Setting d < 1/2, α = 1/2, and λ > d, we have all the terms going to zero as T → ∞ and

there exist some finite positive constants C1 and C2 such that

κT,i (λ, d) ≤ exp
(
−C1T

C2
)

, κT,i (α, d) ≤ exp
(
−C1T

C2
)

,

and

Pr(‖Σ̂
−1

zz −Σ−1
zz ‖F > δ−1

T ζT ) ≤ exp(−C1T
C2).

Hence, if d < λ ≤ (s+ 2)/(s+ 4),

Pr(|x′iMzxj − E(ν ′iνj)| > ζT ) ≤ exp(−C0T
−1ζ2

T ) + exp(−C1T
C2),

and if λ > (s+ 2)/(s+ 4),

Pr(|x′iMzxj − E(ν ′iνj)| > ζT ) ≤ exp(−C0ζ
s/(s+1)
T ) + exp(−C1T

C2),
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where C0, C1 and C2 are some finite positive constants.
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This online empirical supplement has four sections. Section S-1 provides the full list and

description of technical indicators considered in the stock market application. Section S-

2 provides the list of variables in the conditioning and active sets in the application on

forecasting output growth rates across 33 countries. Section S-3 explains the algorithms

used for implementing Lasso, Adaptive Lasso and Cross-validation. Last section focuses on

the third application, forecasting Euro Area quarterly output growth using the European

Central Bank (ECB) survey of professional forecasters. The section starts with description

of the data and then discusses the results.

S-1 Technical and financial indicators

Our choice of the technical trading indicators is based on the extensive literature on system

trading, reviewed by [27] and [13]. Most of the technical indicators are based on historical

daily high, low and adjusted close prices, which we denote by Hit(τ), Lit(τ), and Pit(τ),

respectively. These prices refer to stock i in month t, for day τ. Moreover, let Di
t be the

number of trading days, and denote by Di
lt

the last trading day of stock i in month t. For

each stock i, monthly high, low and close prices are set to the last trading day of the month,

namely Hit(D
i
lt
), Lit(D

i
lt
) and Pit(D

i
lt
), or Hit, Lit, and Pit, for simplicity. The logarithms of

these are denoted by hit, lit, and pit, respectively.

The 28 stocks considered in our study are allocated to 19 sectoral groups according to
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Industry Classification Benchmark.6 The group membership of stock i is denoted by the set

gi, which includes all S&P 500 stocks in stock ith group, and |gi| is the number of stocks in

the group.

The technical and financial indicators considered are:

1. Return of Stock i (rit): rit = 100(pit − pi,t−1).

2. The Group Average Return of Stock i (r̄git): r̄
g
it = |gi|−1

∑
j∈gi rjt.

3. Moving Average Stock Return of order s (marit(s)): This indicator, which is also

known as s-day momentum (see, for example, 13), is defined as

marit(s) = MA(rit, s),

where MA(xit, s) is Moving Average of a time-series process xit with degree of smooth-

ness s which can be written as

MA(xit, s) = s−1

s∑
`=1

xi,t−`.

4. Return Gap (grit(s)): This indicator represents a belief in mean reversion that prices

will eventually return to their means (for further details see 13).

grit(s) = rit −MA(rit, s).

5. Price Gap (gpit(s)): gpit(s) = 100 [pit −MA(pit, s)] .

6. Realized Volatility (RVit): RVit =

√∑Dit
τ=1

(
Rit(τ)− R̄it

)2
, where

Rit(τ) = 100 [Pit(τ)/Pit(τ − 1)− 1] , and R̄it =

Dit∑
τ=1

Rit(τ)/Di
t.

7. Group Realized Volatility (RV g
it ): RV

g
it =

√
|g|−1

∑
i∈gRV

2
it .

8. Moving Average Realized Volatility (mavit(s)): “Signals are generated when a price

change is accompanied by an unusually large move relative to average volatility” [13].

6The 19 groups are as follows: Oil & Gas, Chemicals, Basic Resources, Construction & Materials, Indus-
trial Goods & Services, Automobiles & Parts, Food & Beverage, Personal & Household Goods, Health Care,
Retail, Media, Travel & Leisure, Telecommunications, Utilities, Banks, Insurance, Real Estate, Financial
Services, and Technology.
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The following two indicators are constructed to capture such signals

mavit(s) = MA(RVit, s)

9. Realized Volatility Gap (RV Git(s)): RV Git(s) = RVit −MA(RVit, s)

10. Percent Price Oscillator(PPOit(s1, s2)):

PPOit(s1, s2) = 100

(
MA(Pit, s1)−MA(Pit, s2)

MA(Pit, s2)

)
, where s1 < s2.

11. Relative Strength Indicator (RSIsit): This is a price momentum indicator developed by

[27] to capture overbought and oversold conditions. Let

∆P+
it = ∆PitI∆Pit>0(∆Pit), and ∆P−it = ∆PitI∆Pit≤0(∆Pit),

where ∆Pit = Pit − Pi,t−1 and IA(xit) is an indicator function that take a value of one

if xit ∈ A and zero otherwise. Then

RSsit = −MA(∆P+
it , s)

MA(∆P−it , s)
, and RSIsit = 100

(
1− 1

1 +RSsit

)
.

12. Williams R (WILLRit(s)): This indicator proposed by [28] to measure buying and

selling pressure.

WILLRit(s) = −100

 max
j∈{1,··· ,s}

(hi,t−s+j)− pit

max
j∈{1,··· ,s}

(hi,t−s+j)− min
j∈{1,··· ,s}

(li,t−s+i)

 .

13. Average Directional Movement Index (ADXit(s)): This is a filtered momentum indi-

cator by [27]. To compute ADXit(s), we first calculate up-ward directional movement

(DM+
it ), down-ward directional movement (DM−

it ), and true range (TRit) as:

DM+
it =

hit − hi,t−1, if hit − hi,t−1 > 0 and hit − hi,t−1 > li,t−1 − lit,

0, otherwise.

DM−
it =

li,t−1 − lit, if li,t−1 − lit > 0 and li,t−1 − lit > hit − hi,t−1,

0, otherwise.

TRit = max{hit − lit, |hit − pi,t−1|, |pi,t−1 − lit|}.

Then, positive and negative directional indexes denoted by ID+
it (s) and ID−it (s) re-
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spectively, are computed by

ID+
it (s) = 100

(
MA(DM+

it , s)

MA(TRit, s)

)
, and ID−it (s) = 100

(
MA(DM−

it , s)

MA(TRit, s)

)
,

Finally, directional index DXit(s) and ADXit(s) are computed as

DXit(s) = 100

(
|ID+

it (s)− ID−it (s)|
ID+

it (s) + ID−it (s)

)
, and ADXit(s) = MA(DXit(s), s).

14. Percentage Change in Kaufman’s Adaptive Moving Average (∆KAMAit(s1, s2,m)):

Kaufman’s Adaptive Moving Average accounts for market noise or volatility. To com-

pute ∆KAMAit(s1, s2,m), we first need to calculate the Efficiency Ratio (ERit) defined

by

ERit = 100

(
|pit − pi,t−m|∑m
j=1 |∆Pi,t−m+j|

)
,

where ∆Pit = Pit − Pi,t−1, and then calculate the Smoothing Constant (SCit) which is

SCit =

[
ERit

(
2

s1 + 1
− 2

s2 + 1

)
+

2

s2 + 1

]2

,

where s1 < m < s2. Then, Kaufman’s Adaptive Moving Average is computed as

KAMA(Pit, s1, s2,m) = SCitPit + (1− SCit)KAMA(Pi,t−1, s1, s2,m)

where

KAMA(Pis2 , s1, s2,m) = s−1
2

s2∑
κ=1

Piκ.

The Percentage Change in Kaufman’s Adaptive Moving Average is then computed as

∆KAMAit(s1, s2,m) = 100

(
KAMA(Pit, s1, s2,m)−KAMA(Pi,t−1, s1, s2,m)

KAMA(Pi,t−1, s1, s2,m)

)
.

For further details see [13].

Other financial indicators

In addition to the above technical indicators, we also make use of daily prices of Brent Crude

Oil, S&P 500 index, monthly series on Fama and French market factors, and annualized

percentage yield on 3-month, 2-year and 10-year US government bonds. Based on this data,
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we have constructed the following variables. These series are denoted by POt and Psp,t

respectively, and their logs by pot and psp,t. The list of additional variables are:

1. Return of S&P 500 index (rsp,t): rsp,t = 100(psp,t − psp,t−1), where psp,t is the log of

S&P 500 index at the end of month t.

2. Realized Volatility of S&P 500 index (RVsp,t):

RVsp,t =

√√√√Dspt∑
τ=1

(
Rsp,t(τ)− R̄sp,t

)2
,

where R̄sp,t =
∑Dspt

τ=1Rit(τ)/Dsp
t , Rsp,t(τ) = 100([Psp,t(τ)/Psp,t(τ − 1)− 1], Psp,t(τ) is

the S&P 500 price index at close of day τ of month t, and Dsp
t is the number of days

in month t.

3. Percent Rate of Change in Oil Prices (∆pot): ∆pot = 100(pot − pot−1), where pot is

the log of oil princes at the close of month t.

4. Long Term Interest Rate Spread (LIRSt): The difference between annualized percent-

age yield on 10-year and 3-month US government bonds.

5. Medium Term Interest Rate Spread (MIRSt): The difference between annualized per-

centage yield on 10-year and 2-year US government bonds.

6. Short Term Interest Rate Spread (SIRSt): The difference between annualized percent-

age yield on 2-year and 3-month US government bonds.

7. Small Minus Big Factor (SMBt): Fama and French Small Minus Big market factor.

8. High Minus Low Factor (HMLt): Fama and French High Minus Low market factor.

A summary of the covariates in the active set used for prediction of monthly stock returns

is given in Table S.1.

S-2 List of variables used when forecasting output growths

Variables in the conditioning and active sets for forecasting output growth across 33 countries

are listed in Table S.2 below.
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Table S.1: Active set for percentage change in equity price forecasting

Target Variable: rit+1 (one-month ahead percentage change in equity price of stock i)

A. Financial Variables: rit, r̄
g
it, rsp,t, RVit, RV

g
it , RVsp,t, SMBt, HMLt.

B. Economic Variables: ∆pot, LIRSt − LIRSt−1, MIRSt −MIRSt−1, SIRSt − SIRSt−1.

C. Technical Indicators: marsit for s = {3, 6, 12}, mavsit for s = {3, 6, 12}, grsit for s = {3, 6, 12},
gpsit for s = {3, 6, 12}, RV Gsit for s = {3, 6, 12}, RSIsit for s = {3, 6, 12},
ADXs

it for s = {3, 6, 12}, WILLRsit for s = {3, 6, 12},
PPOit(s1, s2) for (s1, s2) = {(3, 6), (6, 12), (3, 12)},
∆KAMAit(s1, s2,m) for (s1, s2,m) = (2, 12, 6).

Table S.2: List of variables in the conditioning and active sets for forecasting quarterly output

growths across 33 countries

Conditioning set

c, ∆1yit

Active Set

(a) Domestic variables, ` = 0, 1. (b) Foreign counterparts, ` = 0, 1.

∆1yi,t−1 ∆1y
∗
i,t−`

∆1ri,t−` −∆1πi,t−` ∆1r
∗
i,t−` −∆1π

∗
i,t−`

∆1r
L
i,t−` −∆1ri,t−` ∆1r

L∗
i,t−` −∆1r

∗
i,t−`

∆1qi,t−` −∆1πi,t−` ∆1q
∗
i,t−` −∆1π

∗
i,t−`

Total number of variables in the active set xt: n = 15 (max)

S-3 Lasso, Adaptive Lasso and cross-validation algo-

rithms

This section explains how Lasso, K-fold cross-validation and Adaptive Lasso are implemented

in this paper. Let y = (y1, y2, · · · , yT )′ be a T × 1 vector of target variable, and let Z =

(z1, z2, · · · , zT )′ be a T ×m matrix of conditioning covariates where {zt : t = 1, 2, · · · , T} are

m × 1 vectors and let X = ( x1,x2, · · · ,xT )′ be a T × N matrix of covariates in the active

set where {xt : t = 1, 2, · · · , T} are N × 1 vectors.

Lasso Procedure

1. Construct the filtered variables ỹ = Mzy and X̃ = MzX = ( x̃1◦, x̃2◦, ..., x̃N◦), where

Mz = IT − Z( Z′Z)−1Z′, and x̃i◦ = (x̃i1, x̃i2, · · · , x̃iT )′.
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2. Normalize each covariate x̃i◦ = (x̃i1, x̃i2, · · · , x̃iT )′ by its `2 norm, such that

x̃∗i◦ = x̃i◦/‖x̃i◦‖2,

where ‖.‖2 denotes the `2 norm of a vector. The corresponding matrix of normalized

covariates in the active set is now denoted by X̃∗.

3. For a given value of ϕ ≥ 0, find γ̂∗x(ϕ) ≡ [γ̂∗1x(ϕ), γ̂∗2x(ϕ), · · · , γ̂∗Nx(ϕ)]′ such that

γ̂∗x(ϕ) = arg min
γ∗x

{
‖ỹ − X̃∗γ∗x‖2

2 + ϕ‖γ∗x‖1

}
,

where ‖.‖1 denotes the `1 norm of a vector.

4. Divide γ̂∗ix(ϕ) for i = 1, 2, · · · , N by `2 norm of the x̃i◦ to match the original scale of

x̃i◦, namely set

γ̂ix(ϕ) = γ̂∗ix(ϕ)/‖x̃i◦‖2,

where γ̂x(ϕ) ≡ [γ̂1x(ϕ), γ̂2x(ϕ), · · · , γ̂Nx(ϕ)]′ denotes the vector of scaled coefficients.

5. Compute γ̂z(ϕ) ≡ [γ̂1z(ϕ), γ̂2z(ϕ), · · · , γ̂mz(ϕ)]′ by γ̂z(ϕ) = (Z′Z)−1Z′ê(ϕ) where ê(ϕ) =

ỹ − X̃γ̂x(ϕ).

For a given set of values of ϕ’s, say {ϕj : j = 1, 2, · · · , h}, the optimal value of ϕ is chosen

by K-fold cross-validation as described below.

K-fold Cross-validation

1. Create a T × 1 vector w = (1, 2, · · · , K, 1, 2, · · · , K, · · · )′ where K is the number of

folds.

2. Let w∗ = (w∗1, w
∗
2, · · · , w∗T )′ be a T × 1 vector generated by randomly permuting the

elements of w.

3. Group observations into K folds such that

gk = {t : t ∈ {1, 2, · · · , T} and w∗t = k} for k = 1, 2, · · · , K.

4. For a given value of ϕj and each fold k ∈ {1, 2, · · · , K},

(a) Remove the observations related to fold k from the set of all observations.
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(b) Given the value of ϕj, use the remaining observations to estimate the coefficients

of the model.

(c) Use the estimated coefficients to compute predicted values of the target variable

for the observations in fold k and hence compute mean square forecast error of

fold k denoted by MSFEk(ϕj).

5. Compute the average mean square forecast error for a given value of ϕj by

MSFE(ϕj) =
K∑
k=1

MSFEk(ϕj)/K.

6. Repeat steps 1 to 5 for all values of {ϕj : j = 1, 2, · · · , h}.

7. Select ϕj with the lowest corresponding average mean square forecast error as the op-

timal value of ϕ.

In this study, following Friedman et al. (2010), we consider a sequence of 100 values of

ϕ’s decreasing from ϕmax to ϕmin on log scale where ϕmax = maxi=1,2,··· ,N

{
|
∑T

t=1 x̃
∗
itỹt|

}
and

ϕmin = 0.001ϕmax. We use 10-fold cross-validation (K = 10) to find the optimal value of ϕ.

Denote γ̂x ≡ γ̂x(ϕop) where ϕop is the optimal value of ϕ obtained by the K-fold cross-

validation. Given γ̂x, we implement Adaptive Lasso as described below.

Adaptive Lasso

1. Let S = {i : i ∈ {1, 2, · · · , N} and γ̂ix 6= 0} and XS be the T × s set of covari-

ates in the active set with γ̂ix 6= 0 (from the Lasso step) where s = |S|. Addition-

ally, denote the corresponding s × 1 vector of non-zero Lasso coefficients by γ̂x,S =

(γ̂1x,S , γ̂2x,S , · · · , γ̂sx,S)′.

2. For a given value of ψ ≥ 0, find δ̂
∗
x,S(ψ) ≡ [δ̂∗1x,S(ψ), δ̂∗2x,S(ψ), · · · , δ̂∗sx,S(ψ)]′ such that

δ̂
∗
x,S(ψ) = arg min

δ∗x,S

{
‖ỹ − X̃Sdiag(γ̂x, S)δ∗x,S‖2

2 + ψ‖δ∗x,S‖1

}
,

where diag(γ̂x,S) is an s × s diagonal matrix with its diagonal elements given by the

corresponding elements of γ̂x,S .

3. Post multiply δ̂
∗
x,S(ψ) by diag(γ̂x,S) to match the original scale of X̃S , such that

δ̂x,S(ψ) = diag(γ̂x,S)δ̂
∗
x,S(ψ).
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The coefficients of the covariates in the active set that belong to Sc are set equal to

zero. In other words, δ̂x,Sc(ψ) = 0 for all ψ ≥ 0.

4. Compute δ̂z(ψ) ≡ [δ̂1z(ψ), δ̂2z(ψ), · · · , δ̂mz(ψ)]′ by δ̂z(ψ) = (Z′Z)−1Z′ê(ψ) where ê(ψ) =

ỹ − X̃S δ̂x,S(ψ).

As in the Lasso step, the optimal value ψ is set using 10-fold cross-validation as described

before.7

S-4 Forecasting euro area output growths using ECB

surveys of professional forecasters

This application considers forecasting one-year ahead Euro Area real output growth using

the ECB survey of professional forecasters, recently analyzed by [7]. The dataset consists of

quarterly predictions of 25 professional forecasters over the period 1999Q3 to 2014Q1.8 The

predictions of these forecasters are highly correlated suggesting the presence of a common

factor across these forecasts. To deal with this issue at the variable selection stage following

[24] we also include the simple average of the 25 forecasts in the conditioning set, zt, as a

proxy for the common factor in addition to the intercept. We consider 39 quarterly forecasts

(from 2004Q3 and 2014Q1) for forecast evaluation, using expanding samples (weighted and

unweighted) from 1999Q3. We also consider two simple baseline forecasts: a simple cross

sectional (CS) average of the professional forecasts, and forecasts computed using a regression

of output growths on an intercept and the CS average of the professional forecasts.

Table S.3 compares the forecast performance of OCMT with and without down-weighting

at the selection and forecasting stages, in terms of MSFE. The results suggest that down-

weighting at the selection stage leaves us with larger forecasting errors. The MSFE goes from

3.765 (3.995) to 3.874 (4.672) in case of light (heavy) down-weighting. However, the panel

DM tests indicate that the MSFE among different scenarios are not statistically significant,

possibly due to the short samples being considered. In Table S.4, we compare OCMT

(with no down-weighting at the selection stage) with Lasso and Adaptive Lasso. The results

indicate that the OCMT procedure outperforms Lasso and Adaptive Lasso in terms of MSFE

when using no down-weighting, light down-weighting, and heavy down-weighting at the

forecasting stage. It is worth mentioning that OCMT selects 3 forecasters (Forecaster #21

7To implement Lasso, Adaptive Lasso and 10-fold cross-validation we take advantage of glmnet package
(Matlab version) available at http://web.stanford.edu/~hastie/glmnet_matlab/

8We are grateful to Frank Diebold for providing us with the data set.
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for 2004Q4-2005Q1, Forecaster #7 for 2007Q2-2008Q3, and Forecaster #18 for 2011Q2-

2011Q3). This means that over the full evaluating sample, only 0.3 variables are selected by

OCMT from the active set on average. In contrast, Lasso selects 12.6 forecasters on average.

Each individual forecaster is selected for at least part of the evaluation period. As to be

expected, Adaptive Lasso selects a fewer number of forecasters (9.8 on average) as compared

to Lasso (12.6 on average), and performs slightly worse.

To summarize, we find that down-weighting at the selection stage of OCMT leads to

forecast deterioration (in terms of MSFE). OCMT outperforms Lasso and Adaptive Lasso,

but the panel DM tests are not statistically significant. Moreover, none of the considered

big data methods can beat the simple baseline models.

Table S.3: Mean square forecast error (MSFE) and panel DM test of OCMT of one-year ahead Euro Area

annual real output growth forecasts between 2004Q3 and 2014Q1 (39 forecasts)

Down-weighting at†

Selection stage Forecasting stage MSFE

(M1) no no 3.507

Light down-weighting, λ = {0.975, 0.98, 0.985, 0.99, 0.995, 1}
(M2) no yes 3.765

(M3) yes yes 3.874

Heavy down-weighting, λ = {0.95, 0.96, 0.97, 0.98, 0.99, 1}
(M4) no yes 3.995

(M5) yes yes 4.672

Pair-wise panel DM tests

Light down-weighting Heavy down-weighting

(M2) (M3) (M4) (M5)

(M1) -0.737 -0.474 (M1) -0.656 -0.741

(M2) - -0.187 (M5) - -0.645

Notes: The active set consists of 25 individual forecasts. The conditioning set consists of an intercept and
the cross sectional average of 25 forecasts.
†For each of the two sets of exponential down-weighting (light/heavy) forecasts of the target variable are
computed as the simple average of the forecasts obtained using the down-weighting coefficient, λ, in the
“light” or the “heavy” down-weighting set under consideration.
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Table S.4: Mean square forecast error (MSFE) and panel DM test of OCMT versus Lasso and Adaptive

Lasso of one-year ahead Euro Area annual real output growth forecasts between 2004Q3 and 2014Q1 (39

forecasts)

MSFE under different down-weighting scenarios

No down-weighting Light down-weighting† Heavy down-weighting‡

OCMT 3.507 3.765 3.995

Lasso 5.242 5.116 5.385

A-Lasso 7.559 6.475 6.539

Selected pair-wise panel DM tests

No down-weighting Light down-weighting Heavy down-weighting

Lasso A-Lasso Lasso A-Lasso Lasso A-Lasso

OCMT -1.413 -1.544 -0.990 -1.265 -1.070 -1.267

Lasso - -1.484 - -1.589 - -1.527

Notes: The active set consists of forecasts by 25 individual forecasters. The conditioning set contains an
intercept and the cross sectional average of the 25 forecasts.
† Light down-weighted forecasts are computed as simple averages of forecasts obtained using the
down-weighting coefficient, λ = {0.975, 0.98, 0.985, 0.99, 0.995, 1}.
‡ Heavy down-weighted forecasts are computed as simple averages of forecasts obtained using the
down-weighting coefficient, λ = {0.95, 0.96, 0.97, 0.98, 0.99, 1}.
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