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Abstract

The arbitrage pricing theory (APT) attributes differences in expected returns to ex-
posure to systematic risk factors. Two aspects of the APT are considered. Firstly, the
factors in the statistical asset pricing model are related to a theoretically consistent set of
factors defined by their conditional covariation with the stochastic discount factor (SDF)
used to price securities within inter-temporal asset pricing models. It is shown that risk
premia arise from non-zero correlation of observed factors with SDF and the pricing errors
arise from the correlation of the errors in the statistical model with SDF. Secondly, the
estimates of factor risk premia using portfolios are compared to those obtained using in-
dividual securities. It is shown that in the presence of pricing errors consistent estimation
of risk premia requires a large number of not fully diversified portfolios. Also, in general,
it is not possible to rank estimators using individual securities and portfolios in terms of
their small sample bias.
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1 Introduction

This paper addresses two related issues that arise in the analyses of arbitrage pricing theory
(APT) in finance. Firstly, APT is generally regarded as an empirical model and there is
a question as to how the risk factors in the statistical APT model relate to the theoretical
model of inter-temporal asset pricing in which a stochastic discount factor (SDF) represents
the fundamentals. Secondly, estimation of risk premia is typically done using portfolios, and
there is a question as to whether using portfolio returns, rather than individual security returns,
is likely to result in more precise estimates of risk premia.
The APT, as formalised by Ross (1976), assumes that there are many assets, with returns

determined by a small number of factors, and that competitive markets do not permit arbitrage
opportunities in equilibrium. Thus returns can be split into two components: a non-diversifiable
systematic risk component and an idiosyncratic part which can be eliminated in a well diversified
portfolio. Assets with similar risk factors are close substitutes so should have similar expected
returns. In this linear return generating process, expected excess returns are proportional
to systematic risk, measured by factor loadings and risk premia are the coeffi cients of such
loadings.1

The risk premia are usually estimated using a two-pass procedure suggested by Fama and
MacBeth (1973, FM). In the first step the linear statistical factor model is estimated by running
regressions of returns on each security or portfolio onK observed risk factors, fkt, k = 1, 2, ..., K,
t = 1, 2, ..., T. There is no shortage of suggested factors. The best known are the Fama-French
three, market, value and size, or the five given in Fama and French (2015), but many more have
been suggested. Harvey and Liu (2019) document a "factor zoo" of over 400 potential factors.
The first pass regression is used to estimate the factor loadings, βik, which are assumed to be
stable over the given sample period. The second pass is a cross section regression of average
returns on the estimated factor loadings, β̂ik, the coeffi cients of which are the risk premia, λk, for
factor fkt, which are then used to price the factors.2 The properties of the two-pass estimators
are investigated typically assuming zero pricing errors.
In this paper we provide a link between pricing errors and the estimation of risk premia,

both when individual or portfolio returns are used. We show that pricing errors are still present
even if portfolio returns are used. To this end we first consider how the factors in the statistical
factor model are related to a theoretically consistent set of factors defined by their conditional
covariation with the SDF used to price securities within inter-temporal asset pricing models.
We show that a risk factor is priced only if its conditional covariance with the SDF is non-zero.
In contrast, pricing errors arise when there is non-zero correlations between the idiosyncratic
errors of asset returns and the SDF. Pricing errors correspond to persistent anomalies, unlike
the mean zero random errors. The APT theory places bounds on the pricing errors, requiring
them to be square summable.
Secondly, we compare the FM estimators of risk premia based on individual security and

portfolio returns. Following the pioneering contribution of Fama and MacBeth, it is conven-
tional in this literature to use mean returns and loadings for a relatively small number of
portfolios P (P < n) formed from the underlying securities in the second pass regression,

1Wei (1988) links the APT to the capital asset pricing model, CAPM.
2The asymptotic properties of the Fama-MacBeth estimation procedure have been investigated by Shanken

(1992), Shanken and Zhou (2007), Kan, Robotti and Shanken (2013), and Bai and Zhou (2015). See also the
survey paper by Jagannathan, Skoulakis & Wang (2010) for further references.
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rather than the individual securities themselves. It is argued that the sampling errors in the
estimates of the first stage βik using individual security returns can be substantially reduced
by using the β′s of portfolios. We provide a theoretical investigation of this practice and give
conditions under which the use of portfolios rather than individual securities could be justified.
We consider a wide variety of portfolio weights, both fully diversified and non-diversified ones.
We begin by assuming known factor loadings. This allows us to focus on the estimation of
risk premia in the second pass regression, without the complications arising from the first pass
estimation of factor loadings, βik. We show that to eliminate the effects of pricing errors on es-
timation of risk premia a large number of securities must be considered, irrespective of whether
individual security or portfolio returns are used. We also derive conditions on portfolio weights
for consistent estimation of risk premia, and by means of a simple example we show that these
conditions need not be satisfied when fully-diversified portfolios are used.
In the more realistic case where the first-pass loadings are estimated, there is a small T bias

on the second-pass risk premia estimates, whether individual securities or portfolios are used.
The small T case is relevant since factor loadings do not appear to be constant over time, hence
the common practice of using rolling regressions on a relative short time period to estimate them.
We obtain an expression for the small T bias of risk premia using portfolios corresponding to a
similar result obtained by Shanken (1992) for the individual security returns. But for portfolios
the small T bias depends on the portfolio weights as well as the error covariances, rather than
the simple average of the error variances as in the Shanken case. A comparison of an estimator
of the risk premia based on portfolios with the one based on individual securities shows that in
general no clear cut ranking of the bias of the two estimators is possible. This is illustrated in
the case of a simple example, where it is shown that the use of portfolio returns can be justified
only when returns can be sorted a priori into groups with systematically different loadings.
In this paper we follow the literature in assuming that observed factors are strong, which

is necessary for
√
n-consistent estimation of the risk premia. The effect of having factors that

are not strong is considered in a companion paper, Pesaran and Smith (2021), which uses a
measure of factor strength proposed in Bailey, Kapetanios and Pesaran (2021).
The rest of the paper is organized as follows. Section 2 relates the statistical factor model

to the theory consistent factor model in terms of the stochastic discount factor in order to
derive the APT risk premia and pricing errors. Section 3 considers how portfolios are formed.
Section 4 sets out the theory consistent model for portfolios and considers the estimation of the
risk premia for the factors from a cross section when the factor loadings are known. Section
5 analyses the effect of using portfolios when the factor loadings are unknown and provides
a Shanken type bias correction formula. Section 6 has some concluding comments. Lemmas,
proofs and related results are provided in appendices.
Notation: Generic positive finite constants are denoted by C when large, and c when small.

They can take different values at different instances. →p denotes convergence in probability as
n, T → ∞. λmax (A) and λmin (A) denote the maximum and minimum eigenvalues of matrix
A. A > 0 denotes that A is a positive definite matrix. ‖A‖ = λ

1/2
max(A′A) and ‖A‖F =

[Tr(A′A)]1/2 denote the spectral and Frobenius norm of matrix A, respectively. If {fn}∞n=1

is any real sequence and {gn}∞n=1 is a sequences of positive real numbers, then fn = O(gn),
if there exists C such that |fn| /gn ≤ C for all n. fn = o(gn) if fn/gn → 0 as n → ∞.
Similarly, fn = Op(gn) if fn/gn is stochastically bounded, and fn = op(gn), if fn/gn →p 0, where
→pdenotes convergence in probability. If {fn}∞n=1 and {gn}

∞
n=1 are both positive sequences of

real numbers, then fn = 	 (gn) if there exists n0 ≥ 1 and positive finite constants C0 and C1,

2



such that infn≥n0 (fn/gn) ≥ c > 0, and supn≥n0 (fn/gn) ≤ C <∞.

2 Statistical factor models, the stochastic discount fac-
tor and the APT

This section sets out the statistical factor model, and imposes the equilibrium conditions from
standard pricing theory in terms of the stochastic discount factor to derive the associated
theoretically consistent factor model, which is then interpreted in terms of the risk premia and
pricing errors of the APT model used by Ross and others in the literature.

2.1 Statistical and theory consistent factor models

Suppose that at time t there are n individual securities with returns, ri,t+1, generated by a
linear factor pricing model (LFPM) of the form:

ri,t+1 − rft = ait +
K∑
k=1

βik,tfk,t+1 + ui,t+1, for i = 1, 2, ..., n, (1)

where rft is the risk free rate; ait, for i = 1, 2, ..., nt are the intercepts in the factor model; fk,t+1,
k = 1, 2, ..., K are the observed common factors with associated factor loadings, βik,t. The error
ui,t+1 is a mean zero serially uncorrelated idiosyncratic component of returns.3 The model can
be written more compactly as

Statistical factor model: ri,t+1 − rft = ait + β
′

itft+1 + ui,t+1, (2)

where βit = (βi1,t, βi2,t, ..., βiK,t)
′, and ft+1 = (f1,t+1, f2,t+1, ..., fK,t+1)′.

We now examine the restrictions that the standard inter-temporal asset pricing theory
imposes on the above ‘statistical’factor model in order to interpret the risk premia and pricing
errors in terms of a theory consistent factor model. Under standard inter-temporal equilibrium
asset pricing the equilibrium price for security i, Pit, is equal to the expected discounted value
of the payoff, future price plus dividends, namely

Pit = Et [mt+1(Pi,t+1 +Di,t+1)] , (3)

where mt+1 is the stochastic discount factor (SDF) used to price all assets in the market,
and Et(◦) stands for a conditional expectations with respect to the information set, It ={
rfτ ,βiτ , fτ ,mτ , for τ = t, t− 1, ....

}
, assumed to be common across all traders. A common

information set is a strong assumption but is needed for the existence of equilibrium across
security markets, at each moment of time, so that all securities can be priced in terms of the
same SDF, mt+1.
Denoting the holding period return by ri,t+1 = (∆Pi,t+1 +Di,t+1) /Pit, (3) can be written

1 = Et [mt+1(1 + ri,t+1)] . (4)

3Ross (1976) assumed ui,t+1 were cross sectionally independent, Chamberlain & Rothschild (1983) weakened
this to an approximate factor model that requires the maximal eigenvalue of the covariance matrix of ui,t+1 is
bounded.
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Writing a similar condition for the risk free rate rft we have

1 = Et

[
mt+1

(
1 + rft

)]
, (5)

and subtracting (5) from (4) gives the inter-temporal equilibrium pricing condition

Et

[
mt+1(ri,t+1 − rft )

]
= 0, (6)

where
Et(mt+1) = 1/(1 + rft ) > 0. (7)

To derive conditions under which the statistical factor model (2) also satisfies the equilibrium
pricing condition, substitute for ri,t+1 − rft from (2) in (6), to give

aitEt(mt+1) + β
′

itEt (mt+1ft+1) + Et(mt+1ui,t+1) = 0.

Since Et(mt+1) > 0, ait can be solved as

ait = −β
′

itEt (mt+1ft+1)

Et(mt+1)
− Et(mt+1ui,t+1)

Et(mt+1)
. (8)

Imposing this restriction by substituting (8) back into (1) yields the following theory consistent
factor model

Theory consistent factor model: ri,t+1 − rft = β
′

itgt+1 + ηit + ui,t+1, (9)

where gt+1 is the K × 1 vector of theory-consistent factors defined as

gt+1 = ft+1 −
Et (mt+1ft+1)

Et(mt+1)
, (10)

with associated pricing errors given by

ηit = −Et(mt+1ui,t+1)

Et(mt+1)
= −Covt(mt+1, ui,t+1)

Et(mt+1)
. (11)

To relate gt+1and ηit to the APT conditions we note that under APT (See Ross (1976))

Et

(
ri,t+1 − rft

)
= β

′

itλt + ηit, (12)

where λt is the K × 1 vector of risk premia. Now taking conditional expectations of (9) and
comparing the results with the APT condition we have4

λt = Et (gt+1) = Et (ft+1)− Et (mt+1ft+1)

Et(mt+1)
= µt + φt, (13)

where

φt = −Et(mt+1ft+1)

Et(mt+1)
. (14)

4Ross (1976) assumes that all factors are measured as deviations from their population means, and therefore
implicitly assumes that λt = φt.
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It is worth noting that unlike ft+1, the theory-consistent factors, gt+1, are unobserved and can
be identified only in terms of a given SDF, mt+1. Further, the risk premia, λt, is composed
of µtwhich is the conditional mean of the observed factors and does not depend on the SDF,
mt+1, and a second component, φt , that does depend on mt+1. Furthermore, φt can also be
identified from cross section regressions of ait on βi. This follows by noting that (8) can be
written equivalently as

ait = β
′

itφt + ηit. (15)

Seen from this perspective φt can be regarded as the vector of alpha risk premia.
Our derivation also shows how pricing errors, ηit, in the APT condition arise from possible

correlations between the SDF, mt+1, and the idiosyncratic errors, ui,t+1, across the individual
securities, i = 1, 2, ..., n. In the context of misspecified factor models, ηit could also capture
missing factors that are correlated with mt+1.
The above results are summarized in the following proposition:

Proposition 1 Suppose that returns, ri,t+1, on security i = 1, 2..., n are generated according to
the linear factor pricing model (1) subject to the inter-temporal equilibrium conditions in (6).
Then the vector of risk premia, λt, is composed of µt, representing the returns on observed
factors, and a vector of alpha risk premia given by (14). Namely λt = µt + φt.

By construction the theory consistent factor model in (9) satisfies the equilibrium pricing
condition (6) for all i. Also using the identityCovt(mt+1, ft+1) = Et (mt+1ft+1)−Et (mt+1)Et (ft+1)
in (10) the theory consistent factors, gt, can be written equivalently as:

gt+1 = ft+1 − Et (ft+1)− Covt(mt+1, ft+1)

Et(mt+1)
. (16)

This representation provides a transparent link between risk premia and (conditional) covari-
ance of ft+1 and mt+1. This follows since Et [ft+1 − Et (ft+1)] = 0, and hence

λt = Et (gt+1) = −Covt(mt+1, ft+1)

Et(mt+1)

Therefore, the statistical factor fk,t+1 has a non-zero conditional risk premium if it is correlated
with the SDF. A simple example of such a factor is consumption growth illustrated briefly in
what follows:

Example 1 To illustrate the derivation of the theory consistent factor model, consider the case
of the SDF which comes from the familiar consumption based asset pricing model. In this model
investor’s utility is defined over current and discounted expected future consumption as

U(Ct, Ct+1) = u(Ct) + ρEt [u(Ct+1)] ,

where ρ is the subjective discount rate. The investor can buy or sell a security at price Pt
with payoff Xt+1 = Pt+1 + Dt+1, where as before Dt is dividend. The consumer maximizes
Et [U(Ct, Ct+1)] subject to a budget constraint. The first order condition for this optimization
problem is given by

Ptu
′(Ct) = ρEt [u′(Ct+1)Xt+1] ,
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which, corresponding to (4), and can be re-written in terms of the SDF,mt+1 = ρu′(Ct+1)/u′(Ct),
as

1 = Et [mt+1 (1 + rt+1)] ,

where rt+1 = (∆Pt+1+Dt+1)/Pt. Assuming the investor has a power utility, u(Ct) =
(
C1−κ
t − 1

)
/ (1− κ),

where κ > 0 is the coeffi cient of relative risk aversion we have mt+1 = e−κ∆ct+1/(1 + ρ), where
ct = log(Ct). For this specification

gt+1 = ft+1 −
Et
(
e−κ∆ct+1ft+1

)
Et(e−κ∆ct+1)

,

and hence λt = µt +φt, where µt = Et (ft+1), and φt = −Et
(
e−κ∆ct+1ft+1

)
/Et(e

−κ∆ct+1). The
vector of risk premia, λt can be written equivalently as

λt = −Covt(e
−κ∆ct+1 , ft+1)

Et(e−κ∆ct+1)
.

In this application the risk premia does not depend on the subjective discount rate, ρ, and is
non-zero only if the risk factor is correlated with consumption growth.

2.2 Pricing errors

From (11), the pricing errors in the theory consistent factor model is

ηit = −Et(mt+1ui,t+1)

Et(mt+1)
. (17)

Ross (1976) did not allow for time variation, but applying his condition (18) that requires the
pricing errors to be bounded gives

n∑
i=1

η2
it < C. (18)

To further investigate the pricing error, decompose the errors in the statistical factor model,
ui,t+1, into a part correlated with mt+1 and a remaining idiosyncratic part uncorrelated with
mt+1, namely

ui,t+1 = ψimt+1 + εi,t+1. (19)

Thus using (19) in (11)
ηit = −ψiθt, (20)

where θt = Et
(
m2
t+1

)
/Et(mt+1) > 0. The pricing errors are given anomalies. These appear

where the price of an individual security is inconsistent with that implied by the asset pricing
model, creating a return predictor that may persist for some time. This is different from the
random errors, which have conditional expectations of zero.
Pricing errors only arise if the ui,t+1 and the stochastic discount factormt+1 are conditionally

correlated and ψi 6= 0 for some i. Thus (18) becomes

n∑
i=1

η2
it = θ2

t

(
n∑
i=1

ψ2
i

)
. (21)
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The strength of the pricing errors depends on their degree of pervasiveness, namely the rate at
which

∑n
i=1 ψ

2
i rises with n. The APT condition requires that

∑n
i=1 ψ

2
i < C. The idiosyncratic

errors, εi,t+1, although uncorrelated withmt+1, could be cross-sectionally correlated, due to non-
fundamental common factors uncorrelated with the stochastic discount factor that arise from
herding behaviour or correlated beliefs, for instance at times of financial crisis. Alternatively
it might arise from weak spatial correlations arising not from common factors but from local
network effects for instance between firms in the same industry.
The above analysis highlights the importance of distinguishing between the ‘statistical factor

model’ given by (2), and the ‘theory consistent factor model’ given by (9). The focus of
theoretical and empirical analysis should be on the theory consistent factor model, where it
clearly shows that only factors that are known (or expected) to be correlated with the stochastic
discount factor should be considered for inclusion in return regressions.
We will aggregate the theory consistent factor model, (9), for individual securities to a

corresponding theory consistent relation for portfolios. But first we examine how the portfolios
are constructed from the individual securities before returning to the issue of whether one
should use individual securities or portfolios to identify and estimate the vector of risk premia
λt or φt.

3 The formation of return portfolios

The debate over whether it is better to use returns on portfolios or on individual securities
to estimate risk premia is an old one. If one uses portfolios there is also the additional issue
of how such portfolios are to be formed. In the case of a single factor model (CAPM), Fama
and MacBeth (1973, p615) propose forming a small number of portfolios (say 20) based on
ranked beta estimates for individual securities, and to minimize any biases arising from such
a procedure, they suggest using betas estimated on an initial training sample to form return
portfolios in a subsequent estimation sample over which the risk premia are estimated using
their two-step method. The construction of portfolios becomes more complex when the return
regressions contain more than one factor.5

Fama and MacBeth argued that betas of portfolio returns can be more precisely estimated
as compared to the estimates obtained using individual security returns. However, even if this
is true it does not necessarily follow that risk premia based on portfolio betas will be more
precisely estimated. Furthermore, pricing errors continue to be an issue for portfolio returns
which also need to be taken into account. A formal statistical analysis is clearly required to
establish conditions under which risk premia are better estimated with portfolio returns. Ang,

5For instance, Fama and French (2015) for their Table 1, Panel A, sort the individual securities into five
size groups and five book to market (B/M) groups, giving 25 separate, mutually exclusive, portfolios. However,
with four characteristics - Size, B/M, operating profitability (OP) and investment - they comment that even
3× 3× 3× 3 sorts, produce 81 poorly diversified portfolios that have low power in tests of asset pricing models.
They compromise with sorts on size and pairs of the other three variables. They form two Size groups (small
and big), using the median market cap for NYSE stocks as the breakpoint, and use NYSE quartiles to form
four groups for each of the other two sort variables. For each combination of variables there are 2× 4× 4 = 32
portfolios, but correlations between characteristics cause an uneven allocation of stocks. For example, B/M and
OP are negatively correlated, especially among big stocks, so portfolios of stocks with high B/M and high OP
can be poorly diversified. In fact, when they sort stocks independently on Size, B/M, and OP, the portfolio of
big stocks in the highest quartiles of B/M and OP is often empty before July 1974. They then discuss how they
spread stocks more evenly in the 2× 4× 4 sorts.
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Liu and Schwarz (2020) provide a survey of the issues involved.
For a formal analysis a central issue is the choice of portfolio weights, wip. Here we consider

two types of portfolios: (a) a small number of fully diversified portfolios, and (b) a large number
of portfolios formed from a small number of securities. In both cases we denote the portfolio
weights by the n × 1 vector wp = (w1p, w2p, ..., wnp)

′, and consider P return portfolios, rpt,
defined by

rpt =

n∑
i=1

wiprit = w′prnt, for p = 1, 2, ..., P. (22)

Collecting all the portfolio weights in the n×P portfolio weights matrixWP = (w1,w2, ....,wP ),
we have

rPt = W′
P rnt, (23)

where rPt = (r1t, r2t, ..., rPt)
′, is the P × 1 vector of portfolio returns.

Denote by m the maximum number of securities included in a single portfolio. For mutually
exclusive portfolios w′pwp′ = 0 for all p 6= p′, and w′pwp = 1/m, where m is the integer part
of n/P , and ‖WP‖ = m−1/2. In this set up m is fixed, when n and P → ∞, such that
n/P → m ≥ 1. When m = 1 the number of portfolio returns and individual security returns
coincide (P = n).
In the case of fully diversified portfolios we assume that supi,p {n |wip|} < C < ∞ and

infi,p {n |wip|} > c > 0, which ensures wip = 	 (n−1) and ‖WP‖ = λ
1/2
max (W′

PWP ) = 	
(
n−1/2

)
.

In the case of non-diversified portfolios, wip is non-zero only for a finite number of securities.
The following assumption covers both types of portfolios and is generally applicable.

Assumption 1 (Portfolio weights) The portfolio weights, wip, for i = 1, 2, .., n; p = 1, 2, ..., P
satisfy the following conditions

(a):
n∑
i=1

wip = 1, (b): sup
p,n

n∑
i=1

|wip| < C, and (c): sup
i,P

P∑
p=1

|wip| < C, (24)

and
(d): λmin (WPMPW′

P ) > c > 0. (25)

Remark 1 The normalization restriction,
∑n

i=1 wip = 1, is made for convenience and is not
necessary and other choices such as

∑n
i=1wip = 0, can also be entertained. Short sales (wip <

0) are allowed, and it is easily verified that the Assumption 1 applies to a wide variety of
portfolios, fully diversified or mutually exclusive portfolios with each security appearing in only
one portfolio. Condition (b) of the assumption follows from the normalization condition if
wip ≥ 0. The important binding condition (c) restricts the frequency with which the same
security enters all the P portfolios. Conditions (a) and (b) can also be written as bounds on
rows and columns of WP , namely ‖WP‖1 < C and ‖WP‖∞ < C. Condition (d) is required
for identification of risk premia using portfolio returns, and, for example, rules out the use of
linearly dependent portfolio weights when forming portfolios.

The primary difference between fully diversified and non-diversified portfolios is captured
by the rate at which the spectral norm of the portfolio weights matrix, ‖WP‖, varies with
the number of securities included in each portfolio. In the case of fully diversified portfolios

8



we require that ‖WP‖ = 	
(
n−1/2

)
, and for non-diversified portfolios we will assume that

‖WP‖ = 	
(
m−1/2

)
wherem is the maximum number of securities included in a single portfolio.

As noted above, for mutually exclusive portfolios w′pwp′ = 0 for all p 6= p′, and w′pwp = 1/m,
where m is the integer part of n/P , and ‖WP‖ = m−1/2. In this set up m is fixed and n and
P →∞, such that n/P → m ≥ 1. When m = 1 portfolios and individual securities coincide.

4 Equilibrium conditions and estimation of risk premia
for portfolios

This section, aggregates the theory consistent factor model, (9), for individual securities to a
corresponding theory consistent relation for portfolios, and then considers the issue of whether
one should use individual securities or portfolios to estimate the vector of risk premia λt or φt.
To clarify the central issues, it is first assumed that factor loadings are known and do not need
to be estimated in the first-pass. This avoids the complications associated with the small T bias
that comes from using estimated factor loadings. Unlike much of the literature on estimation
of risk premia, we explicitly allow for pricing errors and establish the restrictions on the pricing
errors needed for estimation of the risk premia.

4.1 Equilibrium conditions for portfolios

We now link the earlier discussion of equilibrium conditions to the use of portfolios. Consider a
return portfolio rpt =

∑n
i=1wiprit, represented by the vector of weights, wp = (w1p, w2p, ..., wnp)

′,
where

∑n
i=1wip = 1.

Using (9), we first note that

Et

(
ri,t+1 − rft

)
= β′itEt(gt+1) + ηit,

Then aggregating to portfolios

Et

(
n∑
i=1

wipri,t+1 −
n∑
i=1

wipr
f
t

)
= β̄

′
ptEt(gt+1) + η̄pt,

for p = 1, 2, ..., P > K, where

β̄pt =

n∑
i=1

wipβit, and η̄pt =

n∑
i=1

wipηit.

Hence, noting that Et(gt+1) = λt we have

Et

(
r̄p,t+1 − rft

)
= β̄

′
ptλt + η̄pt, (26)

As in the case of individual securities the equilibrium condition for portfolios can be also written
equivalently as

Et

(
r̄p,t+1 − rft

)
= −Covt(r̄p,t+1 − rft ,mt+1)

Et(mt+1)
. (27)
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4.2 Estimation of risk premia using portfolios with known loadings

For estimation of risk premia, from now on, we assume that T is suffi ciently short such that
βik,t λkt and ηit can be treated as fixed constants, namely βit = βi, λt = λ, and ηit = ηi, for

t = 1, 2, ..., T , and assume that r̄p,t+1 − rft is stationary such that E
(
r̄p,t+1 − rft

)
= µ̄p − rf .

Under these assumptions and using (26) we have

µ̄p = rf + β̄
′
pλ+ η̄p, p = 1, 2, ..., P, (28)

where

βp =
n∑
i=1

wipβi = B′nwp, η̄p =
n∑
i=1

wipηi = w′pηn, (29)

Bn = (β1,β2, ...,βn)′, and ηn = (η1, η2, ..., ηn)′. This equilibrium condition holds when µ̄p and
portfolio betas, β̄p, are known or estimated. To highlight the conditions needed for consistent
estimation of λ here we assume µ̄p and β̄p are known.
For estimation of λ (given the portfolio mean returns, µ̄p, and portfolio factor loadings, βp,

p = 1, 2, ..., P ), we stack the portfolio return equations in (28) to obtain

µ̄P = rfτ P +BPλ+ η̄P , (30)

where µ̄P = (µ̄1, µ̄2, ..., µ̄P )′ , B
′
p =

(
β1,β2, ...,βP

)
, η̄P = (η̄1, η̄2, ..., η̄P )′, and τ P is a P × 1

vector of ones. The least squares estimator of λ is now given by

λ̂p =
(
B
′
PMPBP

)−1

B
′
PMP µ̄P , (31)

where MP = IP − P−1τ Pτ
′
P . Using (30) we now have

λ̂p − λ0 =
(
B
′
PMPBP

)−1

B
′
PMP η̄P ,

where λ0 is the true value of λ. It is clear that
√
P consistent estimation of λ0 requires that

λmin

(
P−1B

′
PMPBP

)
> c > 0, and P−1

(
B
′
PMP η̄P

)
→p 0. (32)

To investigate whether the above two conditions hold when portfolio returns are used, we need
to make assumptions about the factor loadings and pricing errors of the underlying individual
returns. With this in mind we introduce the following assumptions in addition to Assumption
1 already made for the portfolio weights, WP .

Assumption 2 (Factor loadings) (a) The factor loadings βi and the errors ujt are indepen-
dently distributed for all i, j and t. (b) supi ‖βi‖ < C, and (c) The n × K matrix of factor
loadings, Bn = (β1,β2, ...,βn)′, have full column rank such that for all nby

(a): λmin
(
n−1B′nBn

)
> c > 0, (b): lim

n→∞

(
n−1B′nMnBn

)
= Σββ > 0, (33)

and Σββ, is positive definite, where Mn = In − n−1τ nτ
′
n, and τ n is an n× 1 vector of ones.

We also make the following assumption on the pricing errors, ηi.
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Assumption 3 (Pricing errors) The pricing errors, ηi satisfy the approximate bound condition

n∑
i=1

η2
i = Op (nαη) . (34)

where αη ≥ 0.

Assumption 3 is more general than is assumed in the literature which either ignores the
pricing errors (setting ηi = 0), or assumes a very limited degree of pricing errors by setting
αη = 0, as in the APT condition given by (18)
Consider now the two conditions in (32), required for

√
P consistent estimation of the risk

premia, noting that

η̄P = W′
Pηn, and B

′
P = B′n (w1,w2, ....,wP ) = B′nWP , (35)

it follows that P−1B
′
PMPBP = P−1B′nWPMPW′

PBn, and the first condition in (32) is met if
λmin (P−1B′nWPMPW′

PBn) > c > 0. Using Corollary 4.5.1 in Horn and Johnson (1985), we
note that

λmin
(
P−1B′nWPMPW′

PBn

)
≥ λmin

(
P−1B′nBn

)
λmin (WPMPW′

P ) ,

and since P = n/m, with m fixed, then under Assumptions (1) and (2) we have

λmin
(
P−1B′nWPMPW′

PBn

)
≥ c > 0,

as required. However, there is no guarantee that the above condition will be met in the case
of fully diversified portfolios where P is fixed and ‖WP‖2 = 	 (n−1). This is illustrated by the
following simple example.

Example 2 SupposeK = 1, withBn = (β1, β2, ..., βn)′, and note thatB′nWP =
(
β̄1, β̄2, ..., β̄P

)′
,

where β̄p =
∑n

i=1 wipβi. Suppose further that
∑n

i=1w
2
ip = O (m−1), and βi follows the random

coeffi cient specification βi = β+ ξi, where ξi have zero means and a finite variance, σ2
ξ > 0, and

are cross sectionally independent as well as being distributed independently of the weights wjp for
all i and j. Under the normalization

∑n
i=1wip = 1, β̄p = β + ξ̄p, where ξ̄p =

∑n
i=1wipξi = w′pξ,

and B′nWP = βτ ′P + ξ̄
′
P with ξ̄P =

(
ξ̄1, ξ2, ..., ξ̄P

)′
, and we have

P−1B′nWPMPW′
PBn = P−1

P∑
p=1

ξ̄
′
pMP ξ̄p,

which does not depend on β. Also since ξi ∼ IID(0, σ2
ξ ), and V ar

(
ξ̄p
)

= σ2
ξ

(
w′pwp

)
= O (m−1),

then ξ̄P = Op

(
m−1/2

)
and we have

P−1

P∑
p=1

ξ̄
′
pMP ξ̄p ≤ P−1

P∑
p=1

ξ̄
′
pξ̄p = Op

(
m−1

)
.

Therefore, for identification m must be finite, which rules out using diversified portfolio weights
with wip = O (n−1). In this example, the use of portfolios in estimation of risk premia can be
justified only if m is fixed with the number of portfolios, P →∞.
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To establish the second condition in (32) we note that6

P−1 ‖B′nWPMPW′
Pηn‖ ≤ P−1 ‖Bn‖ ‖WP‖2 ‖ηn‖

In the case of non-diversified portfolios ‖WP‖2 = 	 (m−1), n = mP , and by Assumptions
(2) and 3 we have

∥∥n−1/2Bn

∥∥ = λ
1/2
max (n−1B′nBn) < C < ∞,

∥∥n−1/2ηn
∥∥ = (n−1η′nηn)

1/2
=

O(n(αη−1)/2). Then P−1 ‖B′nWPMPW′
Pηn‖ = O(n

αη−1
2 ) → 0, if αη < 1, as n (or P ) → ∞.

Recall that m is fixed as n and P →∞.
It is clear that whether one uses individual securities or portfolios to eliminate the effects

of the pricing errors on estimation of λ0, it is required that n(αη−1)/2 → 0, as n → ∞. If
αη is large, convergence of λ̂p to its true value, λ

0, can be very slow even with known factor
loadings. For αη = 1/2, which corresponds to about 20 out of 400 securities having non-zero
pricing errors, convergence is not at the usual n−1/2 rate but at n−1/4 rate. This is very slow
and requires a much larger sample size to obtain comparable precision to the case where there
are no pricing errors.
Also

√
n consistent estimation of λ0 requires that all factors are strong in the sense that

λmin (n−1B′nBn) tends to a strictly positive number as n→∞. Condition (33) of Assumption
2 can be relaxed by replacing it with limn→∞λmin (DnB

′
nBnDn) > c > 0, where Dn is a K×K

diagonal matrix with elements n−αk/2, for k = 1, 2, ..., K, and αk measures the strength of
factor fkt. In this case the estimator of the risk premia associated with factor fkt converges at
the slower rate of αk/2, instead of the standard rate of

√
n, rate when αk < 1. Using portfolio

returns does not relax the requirement that factors must be strong for
√
n consistent estimation.

If the factor under consideration is not strong and there are pricing errors, the convergence will
be even slower. For further details see Pesaran and Smith (2021).

5 Estimation of risk premia using individual or portfo-
lios returns: unknown factor loadings

The above analysis considered the case when the true factor loadings, βik, are known and showed
that for consistent estimation of risk premia n needs to be large. In practice the factor loadings
must be estimated. Since the loadings tend to vary over time, short samples are typically used
to estimate them, often with rolling regressions. Thus it is the finite T, large n, case that is
relevant in practice.
One argument for the use of portfolios is that they reduce the small T bias in estimators of

the risk premia. Thus it is of some interest to compare the finite T, large n, bias of two-pass
estimators of λ when using either the returns on individual securities or on portfolios. To focus
on the small T bias we consider the usual case examined in the literature where all factors are
strong, αk = 1, but we allow for pricing errors. We begin with individual securities.

5.1 Using individual security returns

To allow for sampling errors when factor loadings are estimated we need the following additional
assumptions:

6Note that since MP is an idempotent matrix then ‖MP ‖ = 1.
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Assumption 4 (Common factors) The T×K matrix F = (f1, f2, ..., fT )′ is full column rank and
theK×K matrix T−1F′MTF is positive definite. T−1F′MTF→p Σf = E

[
(ft+1 − µ) (ft+1 − µ)′

]
>

0, where Et (ft+1) = µ, K is a fixed number, MT = IT − T−1τ Tτ
′
T , and τ T is a T × 1 vector of

ones.

Assumption 5 (Idiosyncratic errors) The errors {uit, i = 1, 2, ..., n; t = 1, 2, ..., T} are serially
independent over t, with zero means, E(uit) = 0, and constant covariances, E(uitujt) = σij,
such that 0 < c < σii < C <∞,

(a): sup
j

n∑
i=1

|σij| < C,

and

(b): n−2

n∑
i=1

n∑
j=1

Cov
(
u2
it, u

2
jt

)
→ 0, as n→∞.

Part (a) of Assumption 5 is standard in the literature and allows for errors to be weakly
cross correlated. It rules out serial correlation, but can be relaxed to allow for a limited degree
of serial correlation when both n and T are large. But it is required if T is fixed and n large.
Now stacking the returns on the n individual securities by time we have

rnt = an +Bnft + unt, for t = 1, 2, ..., T, (36)

where rnt = (r1t, r2t, ...., rnt)
′ is an n× 1 vector of returns on individual securities during period

t, an = (a1,a2, ...,an)′, Bn = (β1,β2, ...,βn)′, and unt = (u1t, u2t, ...., unt)
′. Stacking the return

equations by individual securities we have

ri◦ = aiτ T + Fβi + ui◦, (37)

where ri◦ = (ri1, ri2, ..., riT )′, F = (f1, f2, ..., fT )′, and ui◦ = (ui1, ui2, ..., uiT )′. As noted above,
the true value of the vector of risk premia, λ, is defined by the cross section regressions (CSR)

E (rit) = λ0 + β′iλ+ ηi, for i = 1, 2, ..., n, (38)

where ηi is the pricing error and λ0 is the zero beta return.
The two-pass estimator of risk premia, λ, based on individual returns is given by7

λ̂n =
(
B̂′nTMnB̂nT

)−1

B̂′nTMnr̄n, (39)

where Mn = In − n−1τ nτ
′
n as defined above, B̂nT = (β̂1,T , β̂2,T , ..., β̂n,T )′, r̄n = (r̄1, r̄2, ..., r̄n)′ ,

r̄i◦ = T−1
∑T

t=1 rit,
β̂i,T = (F′MTF)

−1
F′MT ri◦, (40)

F = (f1, f2, ..., fT )′, MT = IT − T−1τ Tτ
′
T , and ri◦ = (ri1, ri2, ..., riT )′. Under (37), β̂i,T =

βi + (F′MTF)−1 F′MTui◦, and hence

B̂nT = Bn + UnGT , (41)

7The two-pass estimator depends on T as well as on n. We omit the subscript T for convenience, but keep
n to highlight the direct use of individual returns in the computation of the estimator.
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where Un = (u1◦,u2◦, ...,un◦)
′, and GT = MTF (F′MTF)−1. Also, averaging the return equa-

tions (37) over t for each i, we have

r̄i◦ = ai + β′if̄T + ūi◦, and E (r̄i) = ai + β′iE
(
f̄T
)
, (42)

where f̄T = T−1
∑T

t=1 ft, and ūi◦ = T−1
∑T

t=1 uit. Hence, using the above results together with
the APT condition given by (38), we have

r̄n = λ0τ n +Bnλ
∗
T + ū+η, (43)

where λ∗T is what is called the "ex post" pricing error

λ∗T = λ0 + dT , (44)

dT = f̄T − E
(
f̄T
)

= T−1

T∑
t=1

[ft − E(ft)] , (45)

ū = (ū1◦, ū2◦, ..., ūn◦)
′ , and η is the n × 1 vector of pricing errors. As before λ0 denotes the

true value of λ.
As established in Pesaran and Smith (2021), for any fixed T > k we have (as n→∞)

λ̂n−λ0 →p

[
Σββ +

σ2

T

(
F′MTF

T

)−1
]−1(

ΣββdT −
σ2

T

(
F′MTF

T

)−1

λ0

)
. (46)

where λ̂n is defined by (39) and

σ2 = lim
n→∞

1

n

n∑
i=1

σ2
i > 0. (47)

The bias of λ̂n is due to terms that involve dT and σ2. Following Shanken (1992), σ2 can be
consistently estimated (for a fixed T > k + 1) by

̂̄σ2

nT =

∑T
t=1

∑n
i=1 û

2
it

n(T −K − 1)
, (48)

where ûit = rit−âiT − β̂
′
i,T ft, and âiT and β̂i,T are the OLS estimators of ai and βi. Using this

result the (Shanken) bias-corrected version of the two-pass estimator is given by:

λ̂
BC

n =

[
B̂′nTMnB̂nT

n
− T−1̂̄σ2

nT

(
F′MTF

T

)−1
]−1(

B̂′nTMnr̄n
n

)
. (49)

5.2 Using portfolio returns

Consider now the estimator of λ0 based on portfolios discussed in Section 4.2. Using portfolio
returns defined by (29), we assume the portfolio weights, wip, are fixed and do not depend on the
factor loadings or the errors. The risk premia can be estimated either forming portfolio betas,
as in (29), or basing the two-pass regressions on portfolio returns, r̄pt =

∑n
i=1wiprit = w′prnt,
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for t = 1, 2, ..., T and p = 1, 2, ..., P . The resulting estimates will be identical. Denoting the
portfolio estimator of λ0 by λ̂P we have

λ̂P =
(
B̂
′
PTMP B̂PT

)−1 (
B̂
′
PTMP r̄P

)
, (50)

where r̄P = ( r̄1, r̄2, ..., r̄P )′, r̄p = T−1
∑T

t=1 r̄pt, B̂PT = (β̂1,T , β̂2,T , ..., β̂P,T )′,

β̂p,T =

n∑
i=1

wipβ̂i,T = (F′MTF)
−1

F′MT

n∑
i=1

wipri,T = (F′MTF)
−1

F′MT r̄P .

To relate λ̂P to the estimator, λ̂n, based on the individual securities, we note that B̂PT =
W′

P B̂nT , and r̄P = W′
P r̄n, where WP = (w1,w2, ...,wP ), with B̂nT and r̄P defined above.

Using these results λ̂P can now be written equivalently as

λ̂P =
(
B̂
′
nTWPMPW′

P B̂nT

)−1 (
B̂
′
nTWPMPW′

P r̄n

)
. (51)

It is clear that the limiting properties of λ̂P depend on the choice of WP , and reduces to λ̂n
only if P = n and WP = In. In what follows we shall consider the asymptotic properties of λ̂P
when Wp (or wip) satisfy the normalization and the summability conditions of Assumption 1.
To establish the asymptotic properties of λ̂P we also need the following assumption.

Assumption 6 (Portfolio factor loadings) (a) The k × 1 vector of portfolio loadings, β̄p =∑n
i=1wipβi and the portfolio errors, up′t =

∑n
i=1 wip′uit are independently distributed for all

p, p′ = 1, 2, ..., P and t = 1, 2, ..., T . (b) supp
∥∥β̄p∥∥ < C, and (c) Σββ,w defined by

lim
P→∞

(
P−1B′nWPMPW′

PBn

)
= Σββ,w, (52)

is positive definite.

When portfolio weights, wip, satisfy the bounds in (24), then it is readily seen that part (b)
of the above assumption follows from part (b) of Assumption 2, and it is therefore somewhat
weaker. Similarly, part (a) of the above assumption follows from part (a) of Assumption 2.
The weaker conditions in parts (a) and (b) of the above assumption is party due to the implicit
assumption that the portfolio weights, wip, are given and known. Part (c) of the above assump-
tion is more demanding as compared to part (c) of Assumption 2, and also requires condition
(d) of Assumption 1.
The small T bias of λ̂P for a fixed m and P →∞, is given in the following theorem:

Theorem 1 (Small T bias of portfolio estimator of risk premia) Consider the multi-factor
linear return model (36) and the associated risk premia, λ, defined by (38), and suppose that
Assumptions (3), (4), (5), and (6) hold, and αη < 1 where αη is defined by (34). Suppose further
that λ is estimated by Fama-MacBeth two-pass estimator based on portfolio excess returns,
r̄pt = w′P rtn, for p = 1, 2, ..., P , and the factors, ft, for i = 1, 2, ..., n, and t = 1, 2, ..., T . Then
under Assumption (1) and assuming that portfolio weights are suffi ciently bounded, namely
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‖WP‖ = 	
(
m−1/2

)
where WP = (w1,w2, ...,wP ), and m is fixed, then for any fixed T > K

we have (as P →∞)

λ̂P−λ0 →p

[
Σββ,w +

ω̄2

T

(
F′MTF

T

)−1
]−1 [

Σββ,wdT −
ω̄2

T

(
F′MTF

T

)−1

λ0

]
. (53)

where λ̂P is defined by (50), λ
0 is the true value of λ, dT = T−1

∑T
t=1 [ft − E(ft)] ,

Σββ,w = lim
P→∞

(
B′nWPMPW′

PBn

P

)
, and ω̄2 = lim

P→∞

1

P

P∑
p=1

(
w′pΣuwp

)
> 0, (54)

and Σu = (σij).

A proof is provided in sub-section A.3 of the Appendix.
It is clear from the above theorem that the small T bias continues to be present when

portfolio returns are used to estimate λ. Following Shanken (1992) it is possible to construct a
bias-corrected version of λ̂P , corresponding to (49). Suppose that ω̄2 is known then a Shanken
type bias-corrected portfolio estimator of λ is given by

λ̂
BC

P =

[
B̂′nTWPMPW′

P B̂nT

P
− ω̄2

T

(
F′MTF

T

)−1
]−1(

B̂
′
nTWPMPW′

P r̄n
P

)
. (55)

Now using (A.28) and (A.29) in the Appendix we have

B̂′nTWPMPW′
P B̂nT

P
− ω̄2

T

(
F′MTF

T

)−1

→p Σββ,ω,

B̂
′
nTWPMPW′

P r̄n
P

→p Σββ,ωλ
∗
T .

Using these results in (55), and assuming that Σββ,ω is full rank (see part (c) of Assumption 6)
we obtain

λ̂
BC

P →p λ
∗
T = λ0 + dfT , (56)

where dT is defined by (45), and λ
∗
T is Shanken’s "ex-post" risk premia.

However, to implement this correction requires a small T unbiased (as n → ∞) estimator
of ω̄2 = limP→∞

1
P

∑P
p=1

(
w′pΣuwp

)
which depend on the error covariances, σij. Recall that

w′pΣuwp =

n∑
i=1

n∑
j=1

wipwjpσij.

This contrasts the case when individual security returns are used, where the Shanken correction
requires small T unbiased estimation of σ2 = limn→∞

1
n

∑n
i=1 σ

2
i which does not involve the error

covariances, σij, and can be estimated consistently by ̂̄σ2

nT = 1
n(T−K−1)

∑T
t=1

∑n
i=1 û

2
it which is

shown to converge to σ2 for a fixed T > K + 1 and as n → ∞. An estimator of ω̄2 can be
obtained by replacing σij by its sample estimator, σ̂ij,T = T−1

∑T
t=1 ûitûjt, to obtain

̂̄ω2

nT =
1

TP

P∑
p=1

T∑
t=1

n∑
i=1

n∑
j=1

wipwjpûitûjt. (57)
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But ûit, being based on the estimates of βi, is subject to additional sampling errors, and in
terms of uit is given by

ûit = uit − ūi −
(
β̂i,T − βi

)′ (
ft − f̄T

)
, for i = 1, 2, ..., n.

Substituting the above expression in (57) now yields

̂̄ω2

nT =
1

TP

P∑
p=1

T∑
t=1

n∑
i=1

n∑
j=1

wipwjp (uit − ūi) (ujt − ūj) + P−1

P∑
p=1

q′p,nT
(
T−1F′MTF

)
qp,nT

− 2
1

TP

P∑
p=1

n∑
i=1

T∑
t=1

wip (uit − ūi)
(
ft − f̄T

)′
qp,nT ,

where qp,nT =
∑n

i=1wip

(
β̂i,T − βi

)
. It is now easily seen that for T fixed the above estimator

does not converge to ω̄2, and a bias correction version does not seem to be attainable, either.
Also whether the bias in estimation of λ can be reduced using portfolio returns instead of

individual security returns is unclear and depends in a complicated way on the within portfolio
correlations, as characterized by w′pΣuwp, and the relative norms of Σββ and Σββ,w. The issue
is illustrated in the following example.

Example 3 Suppose K = 1, so that the risk premia, λ, is a scalar. Also assume that λ > 0,
then the bias of the estimator of λ, whether based on individual securities or portfolios is negative
and the magnitude of the bias of the estimator based on portfolios relative to the estimator based
on individual securities is given by the ratio (using (46) and (53))

ω̄2

[
σ2
ββ + σ̄2

T

(
f ′MT f
T

)−1
]

σ̄2
[
σ2
ββ,w + ω̄2

T

(
f ′MT f
T

)−1
] .

Further, for λ̂P to be less biased as compared to the estimator based on individual securities,
λ̂n, we must have

σ2
ββ,w >

(
ω̄2

σ̄2

)
σ2
ββ,

which can be written equivalently as the limit of the following inequality (as n, P →∞)

β′nWPMPW′
Pβn

P
>

(
1
P

∑P
p=1

(
w′pΣuwp

)
1
n

∑n
i=1 σ

2
i

)
β′nMnβn

n
. (58)

It is clear that the answer will depend on the choice of the portfolio weights. Consider P
equally weighted, mutually exclusive portfolios, each with m securities. In this case wp =
m−1(0′m,0

′
m, ...,0

′
m, τ

′
m,0

′
m, ...,0

′
m)′, where τm is an m × 1 vector of ones. Suppose that the

allocation of securities to portfolios are done randomly, and without loss of generality assume
that the first m securities form the first portfolio, p = 1, the second m securities the second
portfolio, p = 2, and so on. Then

r̄1t = m−1

m∑
i=1

rit, r̄2t = m−1

2m∑
i=m+1

rit, ...., r̄Pt = m−1

n∑
i=(P−1)m+1

rit,
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Similarly

β̄1 = w′1β = m−1

m∑
i=1

βi, β̄2 = w′2β = m−1

2m∑
i=m+1

βi, ...., β̄P = w′Pβ = m−1

n∑
i=(P−1)m+1

βi, (59)

with the sample average of β̄p across p given by

β̈P = P−1

P∑
p=1

β̄p = P−1

P∑
p=1

w′pβ = n−1

n∑
i=1

βi = β̄.

Using these results for the estimator of λ based on portfolio returns we have

P−1B′nWPMPW′
PBn = P−1

P∑
p=1

(β̄p − β̄)2.

Similarly, for the estimator of λ based on individual securities we have (noting that n = mP )

n−1β′nMnβn = n−1

n∑
i=1

(βi − β̄)2 = n−1

P∑
p=1

mp∑
i=(p−1)m+1

(βi − β̄)2

= n−1

P∑
p=1

mp∑
i=(p−1)m+1

(βi − β̄p + β̄p − β̄)2

= n−1

P∑
p=1

mp∑
i=(p−1)m+1

[
(βi − β̄p)2 + (β̄p − β̄)2 + 2(βi − β̄p)(β̄p − β̄)

]

=
1

P

P∑
p=1

m−1

mp∑
i=(p−1)m+1

(βi − β̄p)2

+
1

P

P∑
p=1

(β̄p − β̄)2,

which decomposes the total cross variations of individual β’s into within and between portfolio
variations. To rank order the bias of the two estimators we also need to consider within and
between error covariances. We note that w′pΣuwp = m−2τ ′mΣp,uτm, where Σp,u is the m×m
covariance matrix of the errors of the returns included in the pth portfolio, and

ω̄2
n =

1

Pm2

P∑
p=1

τ ′mΣp,uτm.

It is now easily seen that ω̄2
n = m−1σ̄2

n, when Σp,u is diagonal, namely when within portfolio
errors are uncorrelated, although between portfolio errors are still allowed to be correlated. Under
this additional restriction and using the above results in (58), then for λ̂P to be less biased than
λ̂n, we require

P−1

P∑
p=1

(β̄p − β̄)2 >
1

m

P−1

P∑
p=1

m−1

mp∑
i=(p−1)m+1

(βi − β̄p)2

+
1

P

P∑
p=1

(β̄p − β̄)2

 ,
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or equivalently if

ψP (β) = (m− 1)

[
P−1

P∑
p=1

(β̄p − β̄)2

]
− P−1

P∑
p=1

m−1

mp∑
i=(p−1)m+1

(βi − β̄p)2

 > 0.

This condition is met if dispersion of βi within a given portfolio is small relative to the dispersion
of β̄p across the portfolios. Introducing non-zero within portfolio error covariances leads to
further reduction in relative bias of λ̂P when on average these covariances are negative and vice
versa, when they are positive. Therefore, to achieve bias reduction the portfolio approach should
be capable of identifying securities with similar β’s whose errors are negatively correlated. It is
also important that these differences do not vanish as n→∞. For instance, when βi follow the
random coeffi cient model, βi = β + ξi, with ξi ∼ IID(0, σ2

ξ ), then (also see Example 2)

ψP (β) = P−1

P∑
p=1

(m− 1) (ξ̄p − ξ̄)2 −m−1

mp∑
i=(p−1)m+1

(ξi − ξ̄p)2

 ,
and

E [ψP (β)]

σ2
ξ

= (m− 1)P−1

P∑
p=1

(
1

p
+

1

n
− 2

pn

)
− P−1

P∑
p=1

(
1− 1

p

)

= −1 +m

(
P−1

P∑
p=1

p−1

)
− 2 (m− 1)

mP

(
P−1

P∑
p=1

p−1

)
+

(m− 1)

mP
.

Since
∑P

p=1 p
−1 ≈ ln(P ), then ln(P )/P → 0, as P → ∞, and therefore E [ψn (β)] → −σ2

ξ .

Hence, in this random setting λ̂n, which uses individual securities is likely to be less biased as
compared to λ̂P , for n suffi ciently large.

The above example highlights that using portfolio returns to estimate the risk premia can be
justified if there are a priori known stock characteristics that could be used to sort the returns
into groups with systematically different β̄p across p. Furthermore, the number of portfolios,
P, still needs to be suffi ciently large for

√
n consistent estimation of the risk premia.

6 Concluding remarks

This paper examines two questions associated with tests of the APT, both of which involve the
role of pricing errors. The first question is the relationship between the statistical factor model
determining returns and the theoretically consistent factor model which takes account of the
restrictions implied by the inter-temporal equilibrium pricing conditions. We show that factors
included in the statistical model are priced only if they have non-zero conditional correlation
with the stochastic discount factor, and the pricing errors arise from non-zero correlations
between the idiosyncratic errors in the statistical factor model and the stochastic discount
factor. From a theoretical perspective, the factors used in the return regressions should be the
ones that are thought to be correlated with fundamentals as characterized by the stochastic
discount factor.
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The second question addressed in this paper is the pros and cons of using portfolio returns
rather than individual security returns in estimation of risk premia. We show that when there
are pricing errors it is crucial to have a large cross section dimension, whether the cross section
is of individual securities or of portfolios. One argument given for using portfolios is to reduce
the generated regressor bias that results from the effect of the sampling error of the estimated
first stage loadings. However, as shown in this paper, the small T bias continues to be present
when portfolio returns are used to estimate risk premia. Whether the bias can be reduced using
portfolio returns instead of individual security returns is unclear and depends in a complicated
way on the covariances of the individual securities within the portfolio. Similarly to Shanken
bias-corrected estimator based using individual returns, we also derive a bias corrected estima-
tor of the risk premia based on portfolio returns. But whereas with individual securities the
bias correction is operational, this does not seem to be the case for portfolios. Again this is
because the correction will depend on the covariances of the individual securities comprising
the portfolios. In any event, if portfolios are used, the number of portfolios, P, must still be
suffi ciently large, which presents the investigator with a fine balance between the number of
individual securities to be allocated to individual portfolios for estimation of the loadings, and
the number of portfolios to be used in the second pass of Fama-MacBeth estimator of the risk
premia.
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A Mathematical Appendix

A.1 Introduction

We first state a number of lemmas that we shall then use to prove Theorem 1.

A.2 Statement and proofs of lemmas

Lemma A.1 Consider the errors {uit, i = 1, 2, ..., n; t = 1, 2, ..., T} in the factor model defined
by (36), and suppose that Assumption 5 holds. Then for any t and t′ (as n→∞)

an,tt′ =
1

n

n∑
i=1

uituit′ →p 0, if t 6= t′, (A.1)

bn,t =
1

n

n∑
i=1

(
u2
it − σ2

i

)
→p 0, if t = t′, (A.2)

and

cn,t =
1

n

n∑
i=1

(uitui◦ −
1

T
σ2
i )→p 0, (A.3)

where

σ2
i = E(u2

it), ui◦ =
1

T

T∑
t=1

uit.

Proof. See Pesaran and Smith (2021) section A.2.

Lemma A.2 Consider the n×T error matrixU = (u1◦,u2◦, ...,un◦)
′ , where ui◦ = (ui1, ui2, ..., uiT )′ ,

the n × K matrix of factor loadings, B = (β1,β2, ...,βn) , the n × 1 vector of pricing errors
η = (η1, η2, ..., ηn)′, and suppose that assumptions 5, 3 and part (b) of 2 hold, and αη < 1.8

Then
B′MnU

n
→p 0, (A.4)

B′Mnu

n
→p 0, (A.5)

B′Mnη

n
→p 0, (A.6)

U′MnU

n
→p σ

2IT , (A.7)

U′Mnu

n
→p

σ2

T
τ T , (A.8)

U′Mnη

n
→p 0 (A.9)

where Mn = In − 1
n
τ nτ

′
n, u = (u1◦, u2◦, ..., un◦)

′, ui◦ = T−1
∑T

t=1 uit, and σ
2 = lim 1

n

∑n
i=1 σ

2
i .

Note that τ n and τ T are, respectively, n× 1 and T × 1 vectors of ones

8As compared to the notation in the body of the paper, we have dropped the subscript n from Bn as defined
by (36).
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Proof. See Pesaran and Smith (2021) section A.2.

Lemma A.3 Consider the n×T error matrixU = (u1◦,u2◦, ...,un◦)
′ , where ui◦ = (ui1, ui2, ..., uiT )′ ,

the n × k matrix of factor loadings, B = (β1,β2, ...,βn) , the n × 1 vector of pricing er-
rors η = (η1, η2, ..., ηn)′, and the n × P matrix of portfolio weights, WP = (w1,w2, ...,wP )′,
wp = (w1p, w2p, ...., wnp)

′. Suppose that Assumptions 1, 5, 3 and 2 hold, αη < 1, and ‖WP‖ =
	
(
m−1/2

)
. Then for a fixed m, k and T , and as P → ∞, such that P/n → π, (0 < π < 1),

then we have
U′WP τP

P
→p 0, (A.10)

B′WPMPW′
PU

P
→p 0, (A.11)

B′WPMPW′
Pu

P
→p 0, (A.12)

B′WPMPW′
Pη

P
→p 0, (A.13)

U′WPMPW′
Pη

P
→p 0, (A.14)

U′WPMPW′
PU

P
→p ω̄

2IT , (A.15)

U′WPMPW′
Pu

P
→p

ω̄2

T
τ T , (A.16)

whereMP = IP− 1
P
τ Pτ

′
P , u = (u1◦, u2◦, ..., un◦)

′, ui◦ = T−1
∑T

t=1 uit, ω̄
2 = limP→∞

1
P

∑P
p=1

(
w′pΣuwp

)
,

and Σu = (σij). Note that τ P and τ T are, respectively, P × 1 and T × 1 vectors of ones.

Proof. To establish result (A.10) first note that the tth element of P−1U′WP τP is given by
P−1

∑n
i=1 w̄iPuit, where w̄iP =

∑P
p=1wip. Also E (P−1

∑n
i=1 w̄iPuit) = 0, and

V ar

(
P−1

n∑
i=1

w̄iPuit

)
= P−2

n∑
i=1

n∑
j=1

w̄iP w̄jPσij

≤
(

sup
i,P
|w̄iP |

)2

P−2

n∑
i=1

n∑
j=1

|σij|

≤
(

1

P/n

)(
1

P

)(
sup
i,P
|w̄iP |

)2

sup
i

n∑
j=1

|σij| ,

which tends to zero as P → ∞, since under Assumptions 1 and 5, supi,P |w̄iP | < C, and
supi

∑n
j=1 |σij| < C, and 1 > P/n > 0. Hence, the elements of P−1U′WP τP all tend to zero in

mean square and hence in probability. Consider now A.11 and note that

P−1B′WPMPW′
PU = P−1B′WPW′

P U−
(
P−1B′WP τP

) (
P−1τ ′PWPU

)
, (A.17)
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Also B′WP =
(
β̄1, β̄2, ..., β̄P

)
, B′WP τP =

∑P
i=1 β̄p, where β̄p =

∑n
i=1 w̄ipβi, and by Assump-

tion 6 supp
∥∥β̄p∥∥ < C. Hence,∥∥(P−1B′WP τP

) (
P−1τ ′PWPU

)∥∥ ≤ ∥∥P−1B′WP τP
∥∥∥∥P−1τ ′PWPU

∥∥
≤
(
P−1

P∑
i=1

∥∥β̄p∥∥
)∥∥P−1τ ′PWPU

∥∥ ≤ C
∥∥P−1τ ′PWPU

∥∥ ,
and in view of (A.10), it follows that

P−2B′WP τP τ
′
PWP U →p 0. (A.18)

The first term of (A.17) can be written as

P−1B′WPW′
PU = P−1

(
P∑
p=1

B′wpw
′
pU

)
= P−1

(
P∑
p=1

n∑
i=1

wipβ̄pu
′
i◦

)

= P−1

(
n∑
i=1

φiPu′i◦

)
,

where φiP=
∑P

p=1 wipβ̄p = (φi1,P , φi2,P , ...φiK,P )′ , and φis,P =
∑P

p=1wipβ̄sp. Since T and K are
fixed, then it is suffi cient to consider the limiting property of a typical element of P−1 (

∑n
i=1 φiPu′i◦),

namely cst,P = P−1 (
∑n

i=1 φis,Puit). We note that E(csP ) = 0, and

V ar (cst,P ) = P−2

n∑
i=1

n∑
j=1

φisPφjs,Pσij ≤
(

sup
i,s,P
|φisP |

)2 ( n
P 2

)
sup
i

n∑
j=1

|σij| .

Also |φis,P | ≤ sups,p
∣∣β̄sp∣∣∑P

p=1 |wip| < C and supi
∑n

j=1 |σij| < C, by Assumptions 1, 5,and
6. Hence, it follows that V ar (cst,P ) → 0, for all s = 1, 2, .., K and t = 1, 2, ..., T , and hence
P−1B′WPW′

P U →p 0. Using this result together with (A.18) in (A.17) now establishes
(A.11). To prove (A.12) we first note that since u = (u1◦, u2◦, ..., un◦)

′ = T−1UτT , where
ui◦ = T−1

∑T
t=1 uit, and hence B′WPMPW′

Pu = T−1B′WPMPW′
PUτT , and∥∥P−1B′WPMPW′

Pu
∥∥ ≤ ∥∥P−1B′WPMPW′

PU
∥∥∥∥T−1τT

∥∥
= T−1/2

∥∥P−1B′WPMPW′
PU
∥∥ ,

and tends to zero in probability by virtue of result (A.11). To prove (A.13) we note that

P−1 ‖B′WPMPW′
Pη‖ ≤

∥∥P−1/2B′WPMP

∥∥∥∥P−1/2W′
Pη
∥∥ .

But limP→∞
∥∥P−1/2B′WPMP

∥∥2
= limP→∞ λmax (P−1B′WPMPW′

PB) < C, by Assumption 6,
and

P−1 ‖W′
Pη‖

2 ≤ P−1 ‖WP‖2 ‖η‖2 = P−1 ‖WP‖2

(
n∑
i=1

η2
i

)
.

Also, since by Assumption ‖WP‖2 = 	 (m−1), P/n → π, then P−1 ‖B′WPMPW′
Pη‖ =

	 (n−1
∑n

i=1 η
2
i ) = 	 (nαη−1), which tends to zero since αη < 1. Result (A.14) follows simi-

larly. To establish (A.15), in view of (A.10) it is suffi cient to establish the probability limit of
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P−1U′WPW′
PU . To this end we note that

P−1U′WPW′
PU = P−1

P∑
p=1

U′wpw
′
p U = P−1

P∑
p=1

(
n∑
i=1

wipui◦

)(
n∑
i=1

wjpu
′
j◦

)

= P−1

P∑
p=1

n∑
i=1

n∑
j=1

wipwjpui◦u
′
j◦.

Therefore, a typical (t, t′) element of the T × T matrix CP = P−1U′WPW′
PU is given by

ctt′,P = P−1
∑P

p=1

∑n
i=1

∑n
j=1 wipwjpuitujt′ and we have

E (ctt′,P ) = P−1

P∑
p=1

n∑
i=1

n∑
j=1

wipwjpσij = P−1

P∑
p=1

w′pΣuwp, if t = t′,

E (ctt′,P ) = 0, if t 6= t′,

and hence E (CP ) = ω̄2
P IT , where ω̄2

P = P−1
∑P

p=1 w′pΣuwp. The convergence in probability

follows by considering E
(
c2
tt′,P

)
when t 6= t′ and E (ctt′,P − ω̄2

P )
2 when t = t′, and following

the approach used to establish results (A.1) and (A.2) in Lemma A.1. The details are tedious
and will be omitted to save space. Finally, result (A.16) follows from (A.15), noting that
U′WPMPW′

Pu = T−1U′WPW′
PUτT .

A.3 Proof of theorem 1

We first present some definitions for the case using individual securities. Consider the two-pass
estimator of λ defined by (39), and to simplify notations, write it as

λ̂n =

(
B̂′MnB̂

n

)−1(
B̂′Mnr̄

n

)
, (A.19)

where B̂ = (β̂1, β̂2, ..., β̂n)′, r̄ = (r̄1, r̄2, ..., r̄n)′, r̄i = T−1
∑T

t=1 rit,

β̂i = (F′MTF)−1F′MT ri◦, (A.20)

and ri◦ = (ri1, ri2, ..., riT )′. Under the factor model (36)

ri◦ = aiτ T + Fβi + ui◦, (A.21)

where ui◦ = (ui1, ui2, ..., uiT )′, and hence

β̂i = βi + (F′MTF)−1F′MTui◦. (A.22)

Stacking these results over i yields:

B̂ = B + UGT (A.23)

where U = (u1◦,u2◦, ...,un◦)
′, and

GT = MTF(F′MTF)−1 (A.24)
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Also using result (43) in the paper we have (in terms of the simplified notations used here)

r̄ =λ0τ n + Bλ∗T + ū+η (A.25)

where
λ∗T = λ+ dT , and dT = f̄T − E

(
f̄T
)
. (A.26)

and ū = (ū1◦, ū2◦, ..., ūn◦)
′.

Consider the portfolio estimator λ given by (51) and write it simply as

λ̂P =
(
P−1B̂

′
WPMPW′

P B̂
)−1 (

P−1B̂
′
WPMPW′

P r̄
)
, (A.27)

Substituting B̂ and r̄ using (A.23) and (A.25) respectively, we have

P−1B̂
′
WPMPW′

P B̂ = P−1B′WPMPW′
PB+P−1B′WPMPW′

PUGT

+ P−1G′TU′WPMPW′
PB+P−1G′TU′WPMPW′

PUGT ,

and
B̂
′
WPMPW′

P r̄ = (B + UGT )′WPMPW′
P (aiτ n + Bλ∗T + ū+η) ,

and recall that λ∗T is defined by (A.26). Also, note that since Σn
i=1wip = 1, for all p, then

W′
Pτ n = τ P and MPW′

Pτ n = MPτ P = 0. Hence,

P−1B̂
′
WPMPW′

P r̄=P−1 (B′WPMPW′
PB)λ∗T + P−1B′WPMPW′

P (ū+η)

+ P−1 (G′TU′WPMPW′
PB)λ∗T + P−1G′TU′WPMPW′

P (ū+η) .

Under Assumptions 5, 3 and 6, and using the results of Lemma A.3, we have (as P → ∞, for
a fixed m, T and K):

P−1B̂
′
WPMPW′

P B̂→p Σββ,ω +
ω̄2

T

(
FMTF

T

)−1

, (A.28)

P−1B̂
′
WPMPW′

P r̄→p Σββ,ωλ
∗
T , (A.29)

where ω̄2 and Σββ,ω are defined by (54). Result (53) then follows by using the above in (A.27),
and writing the outcome in terms of λ̂P−λ.
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