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Abstract

We consider inference in a widely used predictive model. "Stambaugh Bias" arises

when innovations to the predictor variable are correlated with those in the predictive re-

gression. We show that such correlations will arise if the predictor is actually redundant,

but simply proxies univariate predictability. In these circumstances even bias-corrected

conventional tests of redundance will be severely distorted. We propose tests that dis-

tinguish well between redundant predictors and the "true" predictor. Empirical results

suggest that several widely used predictors of stock returns are redundant, and that uni-

variate predictability provides most of the explanatory power of the consumption/GNP

ratio for output growth.
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1 Introduction

There is an extensive literature, mainly in empirical finance, that focusses on inference difficul-

ties in a predictive framework of the form

yt = βzzt−1 + uzt (1)

zt = λzzt−1 + vzt (2)

where the first equation captures the degree of predictability of some variable, yt in terms of

some predictor variable zt, while the second models the predictor as an AR(1) process. In the

finance literature yt is usually some measure of returns or excess returns, while zt is frequently

some indicator of value, such as the price-dividend ratio; but the framework is in principle much

more general.1 Usually we are interested in testing H0 : βz = 0, .ie, that zt−1 is predictively

redundant for yt. Stambaugh (1999) noted that if the predictor variable is persistent and the

two innovations are correlated, conventional OLS will lead to estimates of βz that are biased

in finite samples. Other authors have also noted the risks of various forms of data mining

- whether in choosing from a list of possible regressors (eg, Ferson et al,2003) or by sample

selection (eg Goyal & Welch, 2003), while yet others have noted that Stambaugh Bias also

affects long-horizon regressions (Boudhoukh et al,2006).2

It is now standard to subject predictive regressions to various corrections for bias, structural

stability and data mining. Only when the null H0 : βz = 0 can be convincingly rejected after

these corrections is a predictor variable deemed to have any genuine statistical significance.

In this paper we show that even these stringent test procedures may not be enough. Pre-

dictor variables can be redundant even if the standard null βz = 0 (which we shall henceforth

refer to as the "Stambaugh Null"3) is rejected.

1The predictive framework can also, for example, be interpreted as a reparameterised cointegrating VAR(1),
where zt ≡ st− θqt is some candidate cointegrating relation between two non-stationary variables, and the first
equation is one of the implied error correction equations (eg, yt ≡ ∆st).

2If the system is interpreted as in the previous footnote as a reparameterised cointegrating VAR, then tests onbβz are equivalent to tests of no Granger Causality, taking cointegration as given (ie, assuming zt is stationary).
Interestingly the impact of Stambaugh Bias on such tests does not appear to have received any attention in the
cointegration literature.

3Stambaugh’s original paper focused on a more general case of small samples where in principle the true
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Under the Stambaugh Null, βz = 0 implies yt = uzt which is usually assumed to be white

noise. Under our proposed generalisation of the Stambaugh Null we allow it to follow an

ARMA(1,1) process. This is not an arbitrary assumption. If, for example, there exists some

other underlying but possibly unobserved true predictor variable, xt, in a predictive framework

of the same form as (1) and (2) but with βx 6= 0, then the reduced form for yt will be an

ARMA(1,1). Under this null, if a predictive regression of the form of (1) is estimated by OLS,

conditioning only on zt, then even if zt is a redundant predictor, it may be sufficiently correlated

with the predictions from the ARMA representation to reject the Stambaugh Null in its usual

form, even after correcting for biases in the usual way. Furthermore, if zt has emerged from a

predictive "horse race" we would positively expect to find a significant "Stambaugh Correlation"

between the innovations in (1) and (2).

We suggest a simple test procedure for the generalised Stambaugh Null that zt is a redundant

predictor. Our tests exploit the property that under the null that zt is a redundant predictor,

its marginal predictive power must disappear, once we condition correctly upon the univariate

prediction.4 Our tests appear to have reasonable power against the obvious alternative, that

zt = xt, i.e., is in fact the true predictor, despite the fact that the true and a redundant predictor

are likely to have very similar characteristics.

We provide two empirical illustrations. We show that tests of our generalised version of the

Stambaugh Null are particularly relevant when testing for predictability of stock returns. We

examine four candidate predictors that have been used in past research, several of which appear

to reject the standard Stambaugh Null even using bias-corrected test procedures. However,

most signally fail to reject our generalised null - leading to the conclusion that such indicators

are doing little or nothing more than proxy univariate properties. We also show that the

test procedure potentially has wider relevance to tests for cointegrating relationships, which

we illustrate with a test based on Cochrane’s (1994) use of the consumption-GNP ratio as a

value of βz may be non-zero, but in practice almost all applications of his analysis have focussed on the null of
no predictability.

4In so doing we are simply carrying out a test of the null of no Granger Causality from zt to yt in the general
form originally specified in Granger (1969). However we note below that a key difference in our test procedure
is that, in contrast to Granger Causality tests as conventionally implemented (of which the usual Stambaugh
Null is a special case), our test procedure allows yt to be an ARMA process of the same order under both H0

and H1. We also discuss extensions to allow for higher order ARMA processes.
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predictor for GNP growth.

The paper is structured as follows. In Section 2 we derive the relationships between the pre-

dicted process and both true and redundant predictors. In Section 3 we describe our proposed

test procedures. In Section 4 we provide two empirical examples, and Section 5 concludes.

Appendices provide technical details.

2 Univariate Characteristics and Predictor Variables

2.1 The true predictive regression and its ARMA(1,1) reduced form

We assume that the true process for yt can be represented by a predictive regression in terms

of a true (and possibly unobservable) predictor, xt, and an autoregressive representation of the

true predictor5

yt = βxxt−1 + uxt (3)

xt = λxt−1 + vxt (4)

where
∙
ut vt

¸0
is a vector of serially uncorrelated shocks with ρ = corr (uxt, vxt) ∈ (−1, 1) .

We assume 0 ≤ λ < 1,6 and neglect constants for simplicity.

While the system in (3) and (4) has the same structure as the system in terms of zt in (1)

and (2), we stress that for the true predictor, xt, we have βx 6= 0 by assumption.

Substituting from (4) into (3) we can derive the reduced form univariate process for yt,

which is an ARMA(1,1):

yt =

µ
1− θL

1− λL

¶
εt (5)

where L is the lag operator (defined by Lxt = xt−1); εt is a composite univariate innovation

5In many contexts (most notably if yt is some measure of asset returns) the white noise property of uxt
arises naturally from some combination of rational expectations and efficient markets. The restrictive nature
of the model lies in the model of xt, the predictor, rather than the predictive regression itself: ie that efficient
forecasts of yt can be expressed in terms of a single AR(1) state variable.

6Most of our results generalise to, but are complicated by, the case where λ < 0; however we regard this as
empirically less likely to be of interest.
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that is white noise conditional upon the history {yi}t−10 . As long as uxt and vxt, the innovations

in (3) and (4) are less than perfectly correlated, we can always derive a representation that

is strictly invertible (or "fundamental"), hence we assume θ ∈ (−1, 1) . If θ = λ the AR and

MA components cancel, and there is no univariate predictability. Note that this special case,

in which the reduced form for yt is white noise, can arise even when βx 6= 0.7

Equation (5) shows that the autoregressive coefficient of the predictor variable translates

directly to the AR coefficient of the reduced form. For the MA parameter things are more

complicated: in Section 2.4 we show how it is determined by the characteristics of the underlying

predictive system (3) and (4).

The system (3) and (4) and its reduced form in (5) are both representations of the true

process for yt, which differ only by the nature of the conditioning information set.8

2.2 A "pseudo predictor"

Starting from the ARMA(1,1) representation in (5) we can reverse-engineer a useful limiting

representation of the same form as (3) and (4). Define the “fundamental pseudo predictor”,

denoted xft , by

xft =
εt

1− λL
(6)

which, if we set βf = λ− θ, and substitute into (3) and (4) (implying uxt = vxt = εt) gives us

back (5). The predicted value of yt from the ARMA representation is thus simply a scaling of

xft−1.

Note that, using (6) and (5) the fundamental pseudo predictor can also be derived as an

7This feature of the reduced form is well-known: see for example Campbell, Lo and Mackinlay (1995)
8While the ARMA(1,1) representation might seem overly restrictive we can easily generalise at least to an

ARMA(p, 1) , which arises if (3) includes p− 1 lags of yt.This can be reduced to an ARMA(1,1) representation
by quasi-differencing and re-defining the dependent variable (see our second empirical example in Section 4.2).
The general case with multiple predictor variables, that can in turn be represented by a VAR(1) in q variables,
cannot be reduced below an ARMA(q, q) : hence the key issue is how many predictor variables (or in the
cointegrating case, how many cointegrating relations) there are.
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infinite moving average of the predicted process itself9

xft =
yt

1− θL
(7)

The pseudo predictor will have a predictive R-squared for yt identical to the ARMA R-squared,

and, by inspection of (6), a Stambaugh correlation of precisely unity (ρ = ρf = 1).
10

2.3 A redundant predictor

Consider the following general definition of a redundant predictor:

Definition 1 A redundant predictor for some variable yt contains no information of predictive

value that is not already in the history of the predicted variable itself, {yi}t−1i=0 .

Note that this is simply a statement that zt does not Granger-Cause yt, in the original very

general sense of Granger (1969). However, in practical applications the null of No Granger

Causality is almost always represented in the more restrictive sense of predictive redundance

conditional upon a finite order autoregressive representation of yt (and possibly a set of other

variables).11 When the reduced form for yt is an ARMA representation, as in (5), this distinction

can be very important, as we shall show below.

Supppose that zt is a redundant predictor in the sense of Definition 1. We can reinterpret

the predictive regression (1) as a least squares linear projection of yt on zt−1 and a constant

term. The resulting innovation process uzt will be orthogonal to zt but will not be white

noise (although it may well be virtually indistinguishable from white noise in the data). If we

are prepared to assume that zt is correctly specified as an AR(1) we can derive the following

properties:

9The irreducible ARMA(q, q) model discussed in the previous footnote can also always be represented in
a similar way, with q pseudo-predictors defined, analogously to (7), by xfk,t = (1− θkL)

−1 yt, k = 1..q Thus
the number of underlying predictors, which in turn determines the order of the MA component (and hence the
number of pseudo predictors) is the crucial limiting factor.
10The fundamental pseudo-predictor in period t is also, up to a scaling factor and initial condition, identical

to the optimal estimate of the true predictor variable using the Kalman Filter, when the information set consists
only of the history {yi}ti=0.
11See for example the discussion in Hamilton, 1994.

5



Proposition 1 Assume that zt follows the AR(1) process in (2).

a) A sufficient condition for zt−1 to be redundant for yt by Definition 1 is that vzt, the

innovation to zt can be written as

vzt = ψεεt + ωt (8)

where εt is the innovation in the ARMA reduced form (5), and ωt is a white noise process that

satisfies E (ωtεt−i) = E (ωtuxt−i) = E (ωtvxt−i) = 0, ∀i, and ψε is some constant;

b) Let R2z ≡ 1− var (uzt) /var (yt) be the predictive R-squared from a linear projection of yt

on zt−1, of the form in (1); and let ρz = corr(uzt, vzt) be the associated Stambaugh Correlation.

If zt is a redundant predictor by Definition 1, with innovations as in (8), then

R2z
1−R2z

≤ ρ2z
R2f

1−R2f
(9)

where R2f ≡ 1 − σ2ε/σ
2
y is the predictive R-squared for the fundamental ARMA representation

of yt in (5). The expression for R2z in (9) holds with equality if λz = λ , and the implied upper

bound R2z = R2f is attainable for some zt since ρz ∈ [−1, 1] .

Proof. See Appendix A.

The characteristics in Proposition 1 define a set of redundant AR(1) predictors with rela-

tively simple and empirically relevant properties.12 The specification of the innovation in (8)

means that zt is clearly redundant by Definition 1 (since any representation of the history

{yi}ti=0 has an equivalent represention in terms of {εi}
t
0). For any specification that allowed the

innovation vzt to be independently correlated with either current or lagged values of the true

innovations uxt and vxt, zt would not be redundant.

Part b) of the Proposition shows that even a redundant predictor can still appear to have

significant predictive power in a predictive regression of the form in (1). Such a linear projection

on a redundant predictor will have a degree of predictive power which, first, depends on how

12We show in the appendix that the complementary set of redundant AR(1) predictors that do not satisfy
all of the conditions in part a) of the proposition (because E (ωtεt−i) 6= 0 for some i, or because ωt is not
white noise, or both) will either have a predictive R-squared that is strictly bounded below R2f , or will have
innovations containing a process ωt that must satisfy very tight restrictions such that vzt remains white noise
(which we require for zt to be AR(1)).

6



well the ARMA representation itself predicts (ie, on how high R2f is) and second, on how good a

proxy the predictor is for the "pseudo predictor" defined in Section 2.2. This is in turn captured

by two elements. The first is the Stambaugh correlation. In the Appendix we show that this is

very closely related to the correlation between the innovations to the redundant predictor, in

(8), and those to the ARMA representation in (5) (indeed we show that for yt reasonably close

to white noise, ρz ≈corr(vzt, εt)). The second is the extent to which the the persistence of the

redundant predictor matches the AR(1) parameter in the ARMA representation: we show that

the closer λz is to λ, the better the prediction.

Proposition 1 provides a useful insight into the characteristics of observable predictors. We

frequently observe high Stambaugh correlations in the data (particularly, but by no means

exclusively, in the literature on predictability of returns13). In the existing empirical finance

literature this characteristic is usually simply treated as a nuisance that complicates inference.14

However, Proposition 1 suggests that it may be much more than this. Consider the case where

a given predictor variable has been the result of a wider search of candidate predictors (cf

Ferson, Simin and Sarkissian, 2003; Sullivan, Timmerman and White, 1999) by way of some

form of data-mining horse race procedure. For a redundant predictor to survive this procedure,

a high Stambaugh correlation is a necessary characteristic, since, from (9), the higher is the

Stambaugh correlation, the higher is R2z. Furthermore, from (9), data-mining econometricians

will also have a greater tendency to single out redundant predictors with AR(1) parameters as

close as possible to the true predictor, since, for a given Stambaugh Correlation, this will also

push up R2z. Indeed, if we follow the logic of data mining through to its ultimate conclusion,

there is a straightforward corollary to Proposition 1:

Corollary 1 Assume that data mining econometricians run horse races between redundant

predictors with the characteristics given by Proposition 1, in which the sole objective is to

maximise the predictive R-squared, R2z in the predictive regression (1). If there is no constraint

on the number of such potential indicators or on the manner in which they are constructed, the
13In cointegrating models, as in footnote 1, a high Stambaugh Correlation will tend to follow naturally from

the definition of the cointegrating relation, eg if yt = ∆st; zt = st− θqt, then the Stambaugh correlation will be
high if innovations to ∆st have high variance compared to, and are not strongly correlated with, those to ∆qt.
This is essentially the case analysed in Cochrane (2008), pp 1548-9.
14An important exception is Cochrane (2008).
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redundant predictor with the best track record will, up to a scaling factor, be arbitrarily close to

the "pseudo predictor" defined in (6), with a Stambaugh correlation arbitrarily close to unity in

absolute value.

This corollary is similar in spirit to the claim that an infinite number of monkeys typing for

an infinite amount of time will almost surely type the complete works of Shakespeare:15 here we

are in effect modelling an indirect method of ARMA estimation by monkeys. The difference is

that the monkey typists’ behaviour is purely random, while our monkey econometricians could

in principle be replaced by computer programs with relatively straightforward data-mining

algorithms, with a well-defined objective function. And our empirical results will show that

Corollary 1 appears to come quite close to explaining the nature of some predictors of stock

market returns.16

2.4 Characteristics of the true predictor

In our framework the null hypothesis is that zt is a redundant predictor. But for any test

procedure to have practical value it needs to have power against the natural alternative, that

zt is in fact the true predictor, xt.17 It turns out that for a range of parameter values that

appear empirically relevant (particularly, but not exclusively, for predictive return regressions)

the characteristics of the true predictor may be superficially similar to those of a redundant

predictor.

We have already noted that the AR parameter in the ARMA representation (5) corresponds

directly to that of the true predictor. In Appendix B we show that, subject to an innocuous

normalisation of the data for xt that fixes the sign of βx, the MA parameter θ can be expressed

15Strictly speaking, one monkey will do, but will take infinitely longer.
16The data-mining econometrician monkeys in Corollary 1 are of course unsophisticated in that they ignore

Stambaugh Bias. If the monkeys’ objective criterion included a penalty for Stambaugh Bias we would not
expect to find Stambaugh Correlations of precisely unity. However, as our first empirical examples show, some
predictors of stock returns get very close.
17We could in principle consider intermediate cases, for example where zt is not the true predictor, but

has predictive power, even conditioning upon the ARMA prediction, because it provides a noisy signal of xt.
However in this case even a non-redundant predictor would lead to a mis-specified predictive regression since
the innovations would not be white noise. The cleaner alternative is therefore H1 : zt = xt
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in terms of three unit-free characteristics of the predictive model:

θ = θ
¡
λ, ρ,R2x

¢
(10)

where ρ = corr(uxt, vxt) is the Stambaugh Correlation for the true predictor xt in (3) and

(4) and R2x = 1 − var (uxt) /var (yt) is its predictive R-squared. By using this relationship

in reverse, the ARMA representation can tell us a lot about the nature of the true predictor.

The following proposition summarises results discussed in more detail in Robertson and Wright

(2009):

Proposition 2 For the ARMA(1,1) univariate representation (5) which is a reduced form of

a predictive regression (3) and a predictor autoregression (4), both defined in terms of the true

predictor, xt,

a) The one-period-ahead R-squared of the predictive regression, R2x satisfies the inequality

R2f ≤ R2x ≤ R2n (11)

where R2f (λ, θ) = (θ − λ)2
¡
1− λ2 + (θ − λ)2

¢−1
and R2n (λ, θ) ≡ R2f

¡
λ, θ−1

¢
are the predictive

R-squareds of the "fundamental" and "non-fundamental" ARMA representations;

b) If θ > λ > 0 (which is a sufficient condition for the horizon variance ratio, as defined in

Cochrane (1988) to be less than unity at all horizons), then ρ = corr (uxt, vxt), the Stambaugh

correlation for the true predictor, satisfies

|ρ| ≥ ρmin (λ, θ) > 0 (12)

Proof. See Appendices B to D.

Taken as a whole, Proposition 2 implies significant constraints on the "predictive space"

that the true predictor can inhabit.

Part a) shows that the ARMA parameters can be used to derive upper and lower bounds

for the true predictive R-squared.
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The lower bound is easy to interpret: the true predictor provides predictive information for

yt beyond that contained in the history of yt itself (ie, it is not redundant). It must therefore

have a higher predictive R-squared than the ARMA representation.

The upper bound is more novel, but also has a reasonably intuitive explanation. As is well

known (see for example Hamilton, 1994, pp 66-67) the ARMA representation in (5), which is

defined to be "fundamental" by constraining θ to lie in (−1, 1) , has an alternative representa-

tion that replaces θ with θ−1, with innovations, ηt, with strictly lower variance than those in the

fundamental representation, ie σ2η = θ2σ2ε. The non-fundamental innovation ηt cannot be recov-

ered from the history of yt but can be recovered as a linear combinations of future values of yt.

Intuitively, since the non-fundamental representation also conditions on the history of yt, the

increase in the information set automatically implies σ2η < σ2ε, hence R
2
n ≥ R2f . The stronger re-

sult, that R2x must lie within these two bounds, means that the information set provided by the

non-fundamental representation dominates that of any possible AR(1) predictor. Equivalently,

if we define a pseudo predictor in the same way as in (6), but in terms of ηt, the innovations to

the non-fundamental representation, this "non-fundamental pseudo predictor" in period t − 1

is the best possible AR(1) predictor of yt, consistent with the ARMA representation.

In Robertson & Wright (2009) we show that the upper and lower bounds in (11) constrain

R2x non-trivially (ie to a space strictly within (0, 1)) except in the case where θ = λ = 0 (which

implies R2f = 0, R
2
n = 1) and can for some parameter values be quite restrictive.

Part b) of Proposition 2 shows that, if we restrict ourselves to a particular subset of ARMA

representations for which the variance ratio slopes downwards (a feature that, for example,

Cochrane (1988; 1994 ) asserts holds for both stock returns and GNP growth18) there is a further

18In the context of asset returns this is often referred to as mean reversion (following Poterba & Summers,
(1988)), but this is a somewhat confusing misnomer. Poterba & Summers define mean reversion as "stock prices
(or cumulative returns) have a mean-reverting transitory component". Following Beveridge & Nelson (1981) we
can write any general ARMA(p, q) univariate representation of returns as

rt = a(L)εt = a(1)εt + a∗(L)(1− L)εt

with the second term defining the mean-reverting transitory component in cumulative returns = a∗ (L) εt.
Such a term will be present for any stationary univariate representation where returns have some serial correla-
tion structure, but not all such representations will have a downward sloping variance ratio. It is straightforward
to show that a(1) < 1 is a sufficient condition for the variance ratio to slope downwards. Since a(1)+a∗(0) = 1,
in this case the transitory component will be positively correlated with returns, whereas for a(1) > 1, which
implies that the variance ratio slopes upwards, it will be negatively correlated. But in both cases the transitory
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restriction on the space that the true predictor can inhabit: its "Stambaugh Correlation" must

be bounded away from zero. Indeed, it is possible to show that for a wide range of values

satisfying θ > λ > 0, ρmin is quite close to unity. For such processes, Stambaugh bias will

therefore be endemic for any true predictor just as it is for redundant predictors (albeit for very

different reasons).19

The constraint that the Stambaugh correlation for the true predictor must lie close to unity

suggests a superficial similarity both to the redundant predictor discussed in Section 2.2 (which

we have seen must have a high Stambaugh correlation if it is to be a good proxy for the

"fundamental pseudo predictor") and to the pseudo predictor itself, which has a Stambaugh

Correlation of precisely unity. However, there is a very important difference. It is straightfor-

ward to show that the correlation between the true predictor and the pseudo predictor satisfies

corr
³
xt, x

f
t

´2
=

R2f
R2x

(13)

Thus, while the redundant predictor only has predictive power to the extent that it is correlated

with the pseudo predictor, the true predictor is less correlated with the pseudo predictor, the

better it predicts.20

2.5 A geometric comparison of predictor characteristics

Figure 1 provides a geometric comparison of the key characteristics of both true and redundant

predictors.

component will be mean-reverting (cf Kim et al (1991) who refer to the latter case as “mean aversion”).
19It is possible to show that Part (b) of the proposition also holds for representations with θ < λ < 0. We do

not at present see this as empirically very interesting; but it does imply an even greater prevalence of Stambaugh
Bias.
20See Appendix E.
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Figure 1: Predictor Characteristics and Univariate Properties

An illustration for an ARMA(1,1) with λ = 0.8; θ = 0.9.
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As noted in discussion of equation (10), for any given (λ, θ) combination the true predictor

can be represented by a (λ, ρ,R2x) combination, where ρ is the Stambaugh Correlation of the

true predictor. To simplify matters we normalise ρ to lie between zero and one (which we

can always do by changing the sign of xt). The upper line in Figure 1 plots combinations

of ρ and R2x consistent with an ARMA representation with λ = 0.8, θ = 0.9.21 With this

combination of parameters yt is a near-white noise process but with a horizon variance ratio,

V R (h), that declines monotonically from unity to the asymptote V R (∞) = 0.24. The lower

and upper bounds for R2x in Proposition 2 are given by the extreme points of this curve. At

the far left is the limiting case where the true predictor is the (fundamental) pseudo predictor.

The Stambaugh Correlation is unity and R2x = R2f = 0.027: ie, there is barely any univariate

predictability. At the far right is the limiting case of the "non-fundamental pseudo predictor".

The Stambaugh Correlation is again unity and R2x = R2n = 0.219: ie, this limiting predictor

(which from Proposition 2, is the best possible AR(1) predictor consistent with the ARMA)

predicts substantially better than the fundamental ARMA representation. If the true predictor

lies anywhere between these two points it must have a very high Stambaugh Correlation: the

low point of the curve, corresponding to ρmin in part b) of Proposition 2, is at ρmin = 0.858.

21The formula for this line is given in Appendix D, equation (40).
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The lower curve plots corr
³
xt, x

f
t

´
, the correlation between the true predictor and the

(fundamental) "pseudo predictor", using the expression in (13). The curve shows that a true

predictor that is interestingly different from the pseudo predictor (because it predicts better by

a reasonable margin) should also look fairly different (we shall use this as an informal diagnostic

in our empirics).

The same diagram can also be used to plot out the relationship between R2z, the predictive

R-squared from a linear projection of yt on zt−1, and its Stambaugh Correlation ρz, if zt is a

redundant predictor. The curve is drawn on the simplifying assumption that λz = λ, thus we

simply use (9) in Proposition 1, which holds with equality.22 As noted in Section 2.3, for a

redundant predictor, a high Stambaugh Correlation is a requirement for it to have any chance

of surviving horse races - hence we would expect to find it fairly high up on this curve. It

is therefore likely that the true predictor and a redundant predictor will have very similar

Stambaugh Correlations. However the true predictor must predict strictly better than the

univariate representation, and will therefore have marginal predictive power even conditioning

upon {yi}ti=0 (this is the basis for our statistical tests).

While for a true predictor, we saw that, from (13) the better it predicts, the more dissimilar

it is from the pseudo predictor, for a redundant predictor the reverse is the case: the better

it predicts, the more similar it must be to the pseudo predictor. Indeed, for the case shown

in the diagram, where λz = λ, it is straightforward to show that we have corr
³
zt, x

f
t

´
=

corr (vzt, εt) ≈ ρz.

Thus, despite, their superficial similarities, the true and redundant predictors differ in im-

portant ways that offer scope to discriminate between them. Even in the case illustrated in

Figure 1, where yt is close to being white noise, while the "predictive space" is significantly

constrained, the true predictor may nonetheless differ significantly from the pseudo predictor

(the correlation between the two, given by (13) has a minimum value of
q
R2f/R

2
n = 0.36), and

will have a significantly higher predictive R-squared. It should therefore also, a fortiori, be

readily distinguishable from a redundant predictor.

22For general λz, the curve can be interpreted as a lower bound for the Stambaugh correlation, for a given
value of R2z.
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3 Testing for predictive redundance

3.1 A general framework for testing the null of predictive redun-

dance.

We wish to test the null hypothesis that zt is a redundant AR(1) predictor with the character-

istics in Proposition 1, given that the true process for yt is (5) (or equivalently, the predictive

system (3) and (4) in terms of the true predictor, xt). We consider tests of this null against

the alternative, H1 : zt = xt. A key feature of this testing framework is that yt is ARMA(1,1)

under both the null and the alternative.

In contrast, in the standard testing framework a predictive regression of the form in (1) and

the predictor autoregression (2) are analysed on the assumption that uzt is white noise, hence

under the "Stambaugh Null" H0 : βz = 0, yt is also white noise. The alternative hypothesis in

the standard framework is the same as in ours, namely H1 : zt = xt, hence yt is ARMA(1,1) in

reduced form. Thus for tests of the standard Stambaugh Null (as indeed in any conventional

test of Granger Causality) the order of the ARMA representation differs between the null and

the alternative.

Under our null, zt−1 may appear to have statistically significant predictive power for yt,

however it is redundant once we condition on the history {yi}t−1i=0 . Both null and alternative can

be represented in a multivariate predictive regression which includes the (fundamental) pseudo

predictor, as defined in (6), as an additional regressor,

yt = γ1x
f
t−1 + γ2zt−1 + ξt (14)

then the null of predictive redundance is H0 : γ2 = 0 (and ξt = εt) and, for the alternative that

zt is the true predictor, xt we have H1:γ1 = 0 (and ξt = uxt).

Note that our generalised null nests the standard Stambaugh Null as a special case if the

true predictor has the characteristics (λ, ρ,R2x) such that θ (λ, ρ,R
2
x) = λ, and hence yt is white

noise. In this case both γ1 and γ2 are zero under the null. This does not rule out the existence

of a true predictor variable, xt with a predictive R2 that may in principle be anywhere in the
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range given by (11); but under the null zt−1 is as useless in predicting yt as the pseudo predictor,

xft−1, hence the standard Stambaugh null applies.

The practical obstacle to the implementation of a test procedure based on (14) is that it

requires an estimate of the fundamental pseudo predictor, xft , or equivalently of the one-step-

ahead prediction from the ARMA representation. We consider three tests that use alternative

approaches to this problem. We first describe the tests, and then, in Section 3.3, discuss their

sampling properties.

3.1.1 The indirect pseudo predictor approach with λz = λ (RP1)

In order to include an estimate of the pseudo predictor in a multivariate predictive regression

of the general form (14), we require an estimate of the MA parameter θ. But direct estimation

of ARMA parameters is known to be problematic, particularly when θ is close to the AR

parameter, λ (in the limit, for θ = λ, the parameters are not identified). However, our first test

procedure circumvents these difficulties by modifying the null to include a further restriction,

that allows us to derive an indirect estimate of θ, solely from the properties of the predictive

system in (1) and (2). It turns out that, under this modified null, the resulting indirect estimate

has distinctly better sampling properties than the direct estimate.

From the properties of the function given in (10), θ must satisfy

θ
¡
λ, ρ,R2x

¢
= θ

¡
λ, 1, R2f

¢
(15)

ie, θ must be consistent both with the properties of the true predictor, and, by definition,

with those of the pseudo predictor, which has a Stambaugh Correlation of unity and the same

predictive R-squared as the ARMA representation. Under the joint null that zt is redundant

and that λ = λz,
23 the predictive system in (1) and (2) allows us to derive estimates of both λ

and R2f , which in turn, using the right-hand side of (15) allow us to derive an indirect estimate

of θ.
23From Corollary 1 this is a natural restriction on the null model if the predictor has arisen from a process

of data mining. This does however have implications for the choice of critical values (see discussion in Section
4 below).
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The estimate of λ is straightforward since we can set λ = bλz. But we can also exploit the
fact that under the restricted null the inequality between R2z, ρz and R2f in (9) in Proposition

1 holds with equality. Thus if we have estimates of R2z and ρz from the system in (1) and (2)

then we can derive an implied value of R2f , which coupled with an estimate of λz, is sufficient

to derive an estimate of θ. We refer to this estimate as bθz.24
Given this indirect estimate of θ, an estimate of the pseudo predictor bxft consistent with the

null can then be derived using (7), conditional upon some initial estimate bxf0 which for simplicity
can be set to its unconditional mean of zero. The null that zt is a redundant predictor can then

be tested by a simple F -test of the hypothesis that γ2 is zero in the multivariate predictive

regression (14), with xft replaced by bxft . We refer to this test statistic as RP1(Redundant
Predictor1).

The seemingly convoluted nature of this indirect approach can be readily justified by sam-

pling properties. We show in Appendix F that, under this restricted version of our null, the

implied indirect estimate, bθz has distinctly lower sampling variation than the direct ARMA es-
timate (particularly when the true value of λ and θ are very close), and hence we have a better

estimate of the pseudo predictor in deriving the test statistic. However a clear disadvantage

is the usual joint null problem, that we may reject the null, even when zt is truly redundant,

because λz differs from λ. Our other two tests do not suffer from this joint null problem, but

have the offsetting disadvantage that they rely on ARMA estimation.

3.1.2 A two stage ARMA-based approach with λz 6= λ (RP2)

We noted in Section 2.2 that the one-step-ahead prediction of yt from the ARMA representation

is simply a scaling of the pseudo predictor. The reverse is also, straightforwardly, the case, and

our second test exploits this equivalence. In the first stage of the test procedure we estimate

an ARMA(1,1) representation of yt. We then take the one-step-ahead predictions from the

estimated ARMA model and include them as a proxy for the pseudo predictor in a multivariate

24We give a precise description of how bθz is calculated in Appendix F, where we also consider the impact of
small sample biases, and discuss sampling properties.
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predictive regression of the same form as (14).25 We then again conduct an F -test for the

marginal predictive significance of zt−1 in this regression, and denote this test statistic RP2

3.1.3 A one stage ARMAX-based approach with λz 6= λ (RP3)

A more direct approach is to estimate an equation of the same form as the standard predictive

regression (1), but allowing the error term uzt to follow an ARMA(1,1). Under the null that zt

is a redundant predictor, once we allow this specification of the error term then we again have

H0 : βz = 0, since under the null the process for uzt can capture the reduced form for yt itself

as in (5). The test statistic RP3 is the likelihood ratio statistic for this restriction against the

unrestricted ARMAX(1,1) representation of yt.26

3.2 A link with the standard Stambaugh Bias problem

Consider the multivariate predictive regression (14). As already noted, we can consider our

tests as alternative ways of producing an estimate of the univariate innovations, and hence of

the true pseudo predictor, xft . Suppose that we actually had data on the true pseudo predictor.

Then, using (6), it follows that, by setting γ1 = λ− θ in (14),we would have yt− γ1x
f
t = εt, the

true univariate innovation. If this were the case then (14) could be re-written as

εt = γ2zt−1 + ξt

where, under the null that zt is predictively redundant, γ2 = 0 and ξt = εt; but innovations

to zt are correlated with εt (recall that from Proposition 1, they must be, since otherwise zt

would not appear to have any predictive power). By inspection this equation has exactly the

same form as the predictive regression (1) under the standard "Stambaugh Null" that βz = 0.

Hence in this case the only form of small sample biases we would have to worry about would be

those identified by Stambaugh. Given that, as we have already noted, a redundant predictor

25Note that this approach automatically circumvents the problem of an initial value for the pseudo predictor
(required for the RP1 test) since maximum likelihood estimation of the ARMA model will generate an estimate
of bε0 by backcasting.
26Note that in principle the methodology of both the ARMA based tests, RP2 and RP3 could be easily

extended to more general ARMA(p, q) processes.
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is likely to have a high Stambaugh Correlation, we would expect that, at a minimum, our test

statistics would be distorted by Stambaugh bias in small samples.27

However, in practice we must form an estimate of the pseudo predictor (or, equivalently, of

the one-step-ahead predictions from the univariate representation). To the extent that these

estimates are imperfect, we shall introduce additional sources of small sample distortions. Thus

the distribution of all three test statistics will in principle depend on both the true ARMA pa-

rameters, as well as on the Stambaugh correlation and the persistence of the predictor variable.

These latter two parameters are likely to be reasonably well-estimated in the data, but esti-

mates of λ and θ (on which both RP2 and RP3 rely) are much more problematic, particularly

when yt is close to being white noise. For this reason we also examine the distribution of the

test statistic RP1 under the more general null, λz 6= λ, despite the fact that in this more general

case it is mis-specified.

3.3 Monte Carlo Evidence

Table 1 provides some background and motivation for the Monte Carlo evidence we present for

our three proposed tests. We first illustrate the difficulties the standard test procedure may

encounter when the true predicted process is, an ARMA(1,1).

Panel A of Table 1 shows the implied population R-squared, R2z, from a least squares linear

projection of the form (1) when the predictor, zt is redundant by Definition 1. The Stambaugh

correlation, ρz is set at 0.9. For simplicity the figures in the table assume that the AR(1)

parameter of the redundant predictor is equal to that of the true predictor, ie λz = λ, since,

from Proposition 1, for a given value of the Stambaugh correlation, this implies the maximum

apparent predictive power for a redundant predictor. Given this assumption, (9) in Proposition

1 holds with equality, and R2z is to a reasonable approximation just a scaling-down of R
2
f , the

27Note that Stambaugh Bias will also frequently affect estimates of βx in the true predictive regression, if
θ > λ (from Proposition 2b), hence may affect power. It will also be a chronic problem for ARMA estimates,
since, as noted in Section 2.2, if the ARMA representation is reparameterised in terms of the pseudo predictor,
the associated Stambaugh correlation is precisely unity. In the special case that θ = 0 this gives the familiar
downward bias in bβf = bλ; more generally bβf = [λ− θ is downward biased (which we verify in our simulations).

Hence if yt has a flat or downward-sloping variance ratio (ie is "mean-reverting"), so θ > λ, then bβf is biased
away from zero.
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ARMA R-squared. The table shows that the key determinant of R2z is therefore how far the

two key ARMA parameters, λ and θ, are from the diagonal. Along the diagonal the predicted

process, yt, is white noise, so the true values of both R2f and R2z are precisely zero. In the

cells next to the diagonal, where λ is usually quite close to θ, there is only weak univariate

predictability, and hence even weaker predictability from the redundant predictor (since its

predictive power stems solely from its correlation with the ARMA predictions). However,

further away from the diagonal the redundant predictor has much stronger predictive power,

reflecting the (even stronger) degree of univariate predictability.

Panel B of Table 1 shows the simulated size28 of a 1-sided t-test on the OLS estimate of βz

in (1), at a nominal 5% level. The size distortion along the diagonal corresponds precisely to

the bias originally noted by Stambaugh (1999). Moving down the diagonal, as λ, and hence

λz increases, the bias increases.29 But the size distortion along the diagonal due to Stambaugh

bias is dwarfed by the size distortion away from the diagonal, due to the correlation of the

redundant predictor with the "pseudo predictor" that captures univariate predictability. Even

for cells next to the diagonal, where, as the top panel of the table shows, there is a very modest

degree of true predictability, a redundant predictor will nonetheless, for most values of λ and

θ, appear to have significant predictive power in the majority of replications. Given the much

more modest size distortion due to pure Stambaugh bias (ie when the predicted process is white

noise) as shown on the diagonal, the null of no predictability is likely to be rejected frequently

even after correcting for Stambaugh bias. The table therefore clearly illustrates the difficulties

of inference if we do not allow for univariate predictability.

Tables 2 to 4 provide estimates of the size of our three proposed test statistics. All three

tables show the rejection rate at a nominal 5% level under the null hypothesis that zt is a

redundant predictor, for the three test statistics,30 for a range of values of λ and θ. As in

Table 1 we set ρz, the Stambaugh Correlation of the redundant predictor, to 0.9. For the AR

parameter λz of the redundant predictor, we consider three different variants. In Table 2 we

28For details of simulation methodology see Appendix G.
29The size distortion along the diagonal increases for lower values of T : For example, for λz = λ = θ = 0.95

the simulated size increases to 10% and 14% for T = 100 and T = 50 respectively.
30For comparability between the three tests we show the size of a two-sided test. We have also carried out

simulations of the size of 1-sided t-test versions of the first two tests but the results are very similar.

19



assume that, for any (λ, θ) pair the true model is consistent with the restricted null underpinning

our first test statistic, RP1, and hence set λz = λ. In Table 3 we assume that it is systematically

lower (λz = λ
2
), while in Table 4 we assume it is systematically higher

¡
λz = λ+ 1−λ

2

¢
.31

The most notable feature of these tables is that, while all three tests clearly display size

distortions, these are typically much more modest, and vary much less with θ and λ than do

the size distortions associated with tests on the simple predictive regression, illustrated in the

bottom panel of Table 1. The comparison with the standard testing framework is also, for all

three tests, most favourable in the neighbourhood of the diagonal, where yt is close to, but not

quite, white noise.

In terms of a comparison between our three proposed tests, the key features worth noting

in the tables are:

• Under the restricted null that λz = λ, size distortions for the first test, RP1 (as described

in Section 3.1.1) that exploits the indirect estimate of the MA parameter, θ, in deriving

an estimate of the pseudo predictor, are very modest except well away from the diagonal.

To the extent that there are size distortions, these are largely due to Stambaugh bias (for

reasons outlined in Section 3.2) , and thus can in principle be allowed for fairly easily.

But it is also striking that even when λz is not equal to λ, as shown in Tables 3 and 4,

and thus the test statistic is mis-specified, the size distortions remain fairly modest, and

are again largely explicable by Stambaugh bias. The link with Stambaugh bias is most

easily seen along the diagonal, where the size distortion is systematically larger in the

top panel of Table 4 (since λz is systematically higher), and systematically less in the

top panel of Table 3 (since λz is systematically lower). Away from the diagonal the size

distortions become much more significant, particularly in Tables 3 and 4, but univariate

predictability in such cases is likely to be so readily detectable that these are much less

likely to be relevant.

• The two-stage ARMA-based test RP2 (as described in Section 3.1.2) fairly systematically
31We would argue that it is reasonable to assume some relationship between λz and λ, given that, as noted

in Proposition 1, R2z is decreasing in the absolute difference between the two AR parameters - hence redundant
predictors with very different AR parameters from the true predictor are much less likely to appear significant.
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under-rejects the null in the neighbourhood of the diagonal. We presume that this is

due to a generated regressor problem more than offsetting Stambaugh bias. In contrast

the ARMAX-based test, RP3 (as described in Section 3.1.3) systematically over-rejects

the null However in both cases the size distortion is sufficiently stable across population

parameters, particularly in the neighbourhood of the diagonal, that simple adjustments

to critical values, or simulation of p-values based on estimates of the population parame-

ters should allow reasonably accurate inference (we provide an illustration of the latter

approach in our empirical examples).

Table 5 provides an indicator of the power of the three tests. It shows rejection rates at a

nominal 5% level under the alternative hypothesis that zt = xt, the true predictor. To quantify

the alternative hypothesis we need to make some assumption about where the true predictor

sits within the "predictive space" summarised in Proposition 2. Part a) of the Proposition

shows that xt must always predict strictly better than the fundamental pseudo predictor (or

equivalently, than the ARMA representation), but clearly the more marginal is the improvement

in predictive power, the less often we will be able to reject the null that xt is redundant. The

figures in Table 5 assume that the predictive R-squared of the true predictor, R2x, is a fixed linear

weighting of the upper and lower bounds R2f (λ, θ) and R2n (λ, θ) given in Proposition 2. We

set R2x = 0.25R
2
f + 0.75R

2
n, such that the true predictor is distinctly closer to the fundamental

pseudo predictor than it is to the non-fundamental pseudo predictor. For reference, the table

also shows, in the bottom two panels, the implied value of R2x and of the Stambaugh Correlation

of the true predictor, ρ. The lowest panel shows that for a wide range of values of λ and θ the

true predictor will have a Stambaugh Correlation quite close to unity in absolute value - hence

Stambaugh bias will affect small sample estimation even of the true predictive regression, and

in many cases the true predictor may superficially resemble a redundant predictor.

For most values of θ and λ all three tests correctly reject the null of redundance with high

probability (note that the comparison between the tests is complicated by the differences in

size distortions - the relevant values of which are shown in Table 232). Only for values of θ > λ

32While ideally we should calculate size-corrected power this is by no means straightforward given the degree
to which true size depends on unknown parameters, as illustrated in Tables 1 to 4.
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and both close to unity do rejection rates fall off.33

4 Empirical Applications

In Table 6 we apply our proposed test procedure to some empirical examples.

4.1 Predicting Real Annual US Stock Returns

The first four columns of Table 6 summarise results for a range of alternative predictors of

real stock returns, over a long sample of annual data:34 the dividend yield; the P/E multiple

(cyclically adjusted using ten year average earnings as in Campbell & Shiller, 1988); Tobin’s q;

and an alternative Miller-Modigliani-consistent "cashflow" yield.35

In Panel A we show the two key characteristics of each of the predictors. All are strongly

persistent, and most have high Stambaugh Correlations. The analysis of Sections 2.3 and 2.4

showed that high Stambaugh Correlations may be a feature of both redundant predictors and

the true predictor. The conventional approach to testing does not convincingly distriminate

between these two explanations. The bottom row of Panel B shows that nominal p-values for a

t-test on bβz in a predictive regression of the form (1), estimated by OLS, reject the "Stambaugh
Null" H0 : βz = 0 at conventional significance levels for three out of the four indicators. Even if

we correct for Stambaugh bias by simulating bootstrapped p-values under the null that returns

are white noise (as shown in the bottom row of Panel D) two out of the four still appear to

33In such cases, the "predictive space" defined by Proposition 2 contracts: both upper and lower bounds
for R2x approach zero, and, as shown in the bottom panel of Table 5, ρ, the true Stambaugh Correlation, tends
to unity. Thus in these limiting cases the true predictor becomes harder to distinguish from the fundamental
pseudo predictor or from redundant predictors. We discuss this limiting case in more detail in Robertson &
Wright, 2009.
34All data are taken from the dataset described in Wright (2004), updated to end-2007. P/E and dividend

yield data (both from spliced Cowles/S&P 500 data, as in Shiller, 2000) are available on the same basis from
1871 onwards, but for comparability we align the samples for these predictors with those for the other two,
which are only available from 1900 onwards.
35The literature on the dividend yield is massive. See Campbell, Lo and Mackinlay, (1995) for a survey of the

early literature; Goyal & Welch (2003) as an example of the recent critique, and Cochrane (2008); Campbell
& Thompson (2007) for responses. The use of a cyclically adjusted P/E dates at least as far back as Graham
& Dodd (1934) but more recently was revived by Campbell & Shiller (1998) and Carroll (2008) as a tool for
long-horizon forecasting. See also Lamont (1998) on the unadjusted P/E. On Tobin’s q (and the closely related
book-to-market ratio), see Smithers & Wright, 2000; Robertson & Wright, 1998; Vuolteenaho, 1999. On the
"cashflow" yield, see Robertson & Wright, 2006; Boudhoukh et al, 2007.
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have quite strongly significant predictive power.36

In Panel B we show nominal p-values for the three test statistics that we have proposed as a

means of weeding out redundant predictors. For three out of the four predictors, the dividend

yield, the P/E and q, we cannot reject the null that all three are redundant predictors of stock

returns, once we condition on the history of returns. This result can be read off straightforwardly

from the nominal p-values for all three of our proposed tests, shown in Panel B; this conclusion

is unaffected when bootstrapped (Panels C and D) p-values are used. Furthermore we do not

reject the restricted version of the null, such that λz = λ, so we can rely simply on our first

test, RP1, that uses an indirect estimate of the pseudo predictor. We thus cannot reject the

null that the apparent predictive power of all three indicators simply reflects their correlation

with the pseudo predictor, as evidenced by their high Stambaugh Correlations.

In the case of the dividend yield, we would have arrived at the same conclusion simply by

looking at the predictive regression, since even the nominal p-value on βz (shown in Table 6,

Panel B) suggests insignificance.37

It is noteworthy that the very high Stambaugh correlation of 0.98 for the cyclically adjusted

P/E shows a striking similarity with the result we proposed in Corollary 1, suggesting that the

the cyclical adjustment of earnings is required simply to boost the Stambaugh Correlation, and

hence the apparent significance of this predictor. Results with unsmoothed earnings lower the

Stambaugh correlation significantly, but simultaneously greatly weaken the apparent predictive

power of this predictor. Essentially, the P/E multiple can only be turned into anything resem-

bling a useful predictor of stock returns by eliminating any of its independent informational

content.

Results for the fourth indicator, the cashflow yield, are less clear-cut. There is a strong

rejection of redundance on our first test, RP1. However, given the restricted nature of the null

underlying this test, the rejection could in principle reflect a standard joint null problem, arising

36Bootstrapping methodology is described in Appendix G.
37Cochrane (2008) argues strongly that this negative result cannot be viewed in isolation, and that return

predictability should be inferred from the joint properties of a system that exploits the present value relation
beween the dividend yield, returns and future dividend growth. Since the dividend yield does not predict
dividend growth, he argues that it must predict returns. Our results do not conflict with this conclusion. We
simply argue that, in predicting returns, the dividend yield is proxying the pseudo predictor.
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from the restriction that λz = λ. We therefore need also to look at our two remaining tests,

RP2 and RP3, that do not impose this additional restriction. Our simulation results showed

that size distortions were larger for these tests, hence we focus on bootstrapped p-values: for

both tests these indicate more marginal rejections. A further caveat arises from our discussion

of data mining in Section 2.3. To the extent that a predictor variable is chosen on the basis

of horse races between predictive regressions, then this prior filtering of the data means that

there can be significant distortions to p-values (cf Ferson, Simin and Sarkissian, 2003; Sullivan,

Timmerman and White, 1999). Arguably therefore the results for this predictor should be

regarded as more marginal even than suggested by the bootstrapped p-values shown in Panel

C.38

Figure 2 provides some insight into the results. It shows each of the four predictor variables

over the common sample period from 1900 to 2007, along with estimates of the fundamental

pseudo predictor, constructed using the formula in (7) from the history of returns,39 and the

indirect estimate of bθz derived from the properties of each of the predictor variables as described
in Section 3.1.1. Unsurprisingly the estimated pseudo predictors are very similar in all four

panels, since all are long moving averages of the same return process, and the estimates of θ

are all quite similar (and all quite close to unity).

The charts show that for both the price-earnings ratio and Tobin’s q the correlation with

the pseudo predictor is very strong (around 0.85 for both predictors). This is consistent with

the analysis of Figure 1 in Section 2.5 in which we noted that for a redundant predictor this

correlation will approximately equal the Stambaugh Correlation.40 For the dividend yield the

38We are thus undermining our own claim, in Robertson & Wright (2006), that the cashflow yield is a
significant predictor of stock returns. The basis for this claim was essentially the p-value of 0.002 on βz under
the "Stambaugh Null" that yt is white noise, as shown in the bottom line of Panel D of Table 6. We showed
in our earlier paper that this rejection of the Stambaugh Null was robust to sample changes and to a range
of different simulation techniques for p-values. The evidence of the tests in Table 6 makes these results look
distinctly more marginal. However, in defence of our past selves, the cashflow yield is at least to some extent
proof against the data mining critique since it has a stronger basis in economic theory than the conventional
dividend yield, and thus was picked as a predictor for this reason, rather than on the basis of its predictive
power.
39Initial values are set to the unconditional mean, however, since we have almost a full century of data on

returns before the start of the sample used in the charts, the impact of the initial value is trivially small.
40For both predictors Table 6 shows that the latter is distinctly higher, but this may be due to sampling

differences in estimating the correlation with the pseudo predictor. For two strongly serially correlated processes
a given sample provides much less information on the true correlation than for two white noise processes.
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correlation is lower (0.68) but Table 6 shows that so is the Stambaugh Correlation and the

degree of apparent predictive power: thus it seems reasonable to conclude that the dividend

yield is simply a poorer proxy of the pseudo predictor than are the P/E or q.

Figure 2. Predictors and Pseudo Predictors for US Stock Returns
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Figure 2 also shows that the correlation between the price-dividend ratio and the pseudo

predictor is much higher if the sample is truncated to end in the mid 1980s. In this sample

the apparent statistical significance of the dividend yield is also distinctly greater - consistent

with the conclusion of Goyal and Welch (op cit) that the evidence of predictability from the

dividend yield is an artefact of sample selection. Our results suggest the interpretation that

this simply reflects the fact that during this sample the dividend yield was a better proxy for

the pseudo predictor.41

In contrast Figure 2 shows that the cashflow yield has a much lower correlation with the

pseudo predictor (0.46) despite (as Table 6 showed) having stronger predictive power for returns.

This is again broadly consistent with our discussion of Figure 1, in which we noted that the true

predictor may have a quite low correlation with the pseudo predictor. The marginal nature of

41If we carry out our three tests over these truncated samples, we still fail to reject the null that it is a
redundant predictor.
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the results for this variable in Table 6 mean that we certainly cannot be sure that the cashflow

yield is the true predictor, but it does at least suggest that it may be a reasonable proxy for it.

It should be stressed that the evidence presented in both Table 6 and Figure 2 does not

rely on the assumption that stock returns have a significant degree of univariate predictability.

Simulated p-values are also shown in Table 6, Panel D, under the null that returns are white

noise. For our three proposed test statistics the associated p-values are typically quite similar,

and the conclusions to be drawn from them are unaltered. This is in marked contrast with sim-

ulated p-values for bβz, which quite strongly reject the white noise null for one predictor (q) and
marginally so for another (the P/E). The reconciliation of these two results is straightforward:

these two predictors do have a degree of predictive power that we would be very unlikely to

observe if returns were pure white noise. But our results suggest that this is simply because

they are proxies for the pseudo predictor which captures univariate predictability. For these

two indicators (and all the more so for the dividend yield) the evidence of predictability of real

stock returns (such as it is) is thus almost entirely univariate in nature.42

4.2 Predicting quarterly GNP growth

In our second example, shown in the final column of Table 6, we examine a somewhat simplified

version of Cochrane’s (1994) predictive equation for quarterly GNP growth using the ratio of

consumption to GNP as a predictor variable. Cochrane used this predictive equation (in the

context of a vector autoregression) to draw the conclusion that consumption provides a good

estimate of the permanent component of GNP. This example does not fit so readily into our

ARMA(1,1) framework, hence the formal statistical tests can only be viewed as illustrative.

Nonetheless the exercise yields some interesting insights.

Cochrane’s original regression equation included two lags of both consumption growth and

GNP growth as additional regressors. We can allow for the terms in lagged GNP growth by

by modifying the dependent variable to be in quasi-differenced form, but we can only match

our very simple predictive regression framework by discarding the terms in lagged consumption

42It is noteworthy that pseudo predictors actually predict better, in-sample, than both the P/E and the
dividend yield.
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growth.43 Thus our restricted predictive regression specification fits less well than Cochrane’s

(both updated to include all available data). But the significance of the lagged cointegrating

term, the log ratio of GNP to consumption, is very similar, as is the actual size of the coefficient.

Within this rather restrictive framework we find some fairly clear-cut conclusions. First, the

GNP/consumption ratio is emphatically not redundant: it does contain significant predictive

information, independent of the history of GNP growth, with strong rejections of the null on

all three of our tests.

Figure 3: The Consumption/GDP Ratio and its Associated Pseudo Predictor
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However, perhaps the most interesting feature of this second set of results is arguably to

be found if we again examine the properties of the resulting pseudo predictor (derived solely

from the history of GNP growth). While the tests in Table 6 suggest strongly that there is

independent predictive value in the GNP/consumption ratio, Figure 3 shows that the predictor

and its associated pseudo predictor are very similar indeed: ie, the "great ratio" is very similar

to a simple long weighted moving average of GNP growth. We would be surprised if any

43To be precise, we estimate an equation of the form

∆ lnGNPt = bα1∆ lnGNPt−1 + bα2∆ lnGNPt−2 − bβxt−1 + but
where xt = log (GNPt/CONSt) and then define

yt = ∆ lnGNPt − bα1∆ lnGNPt−1 − bα2∆ lnGNPt−2

Note that our framework also over-simplifies the dynamics of xt, the cointegrating relation.

27



applied macroeconomist, however familiar with the data, would be able to say which series

was which without the aid of the legend. Thus although the cointegrating framework does

provide statistically significant predictive power, in quantitative terms this improvement is

quite marginal. Univariate properties appear to be the dominant element in predictability of

GNP growth.44

5 Conclusions

We have examined a very simple predictive model which is widely used in empirical finance,

and which also captures key features of cointegrating systems. When candidate predictor

variables have high "Stambaugh Correlations" it is well-known (in empirical finance at least)

that Stambaugh bias matters and may lead to over-rejection of the null that it is a redundant

predictor (which is in turn a simple test of Granger Causality45). But our results show that,

wherever Stambaugh Correlations are high, Stambaugh bias actually matters much less than

taking proper account of univariate predictability (which in turn may well be a key explanation

of why the Stambaugh Correlation is high). A key feature of our proposed test procedure, in

contrast to conventional tests of Granger Causality, is that the predicted process has the same

ARMA representation under both the null and alternative hypotheses.

Our results do not, however, depend on there being significant ARMA features: p-values

for our tests are relatively invariant to the true ARMA parameters in the neighbourhood of

the white noise case, in contrast to those for a standard predictive regression which are highly

sensitive to ARMA parameters in this neighbourhood.

Our results have strong implications for the literature on predictability of returns. Our

redundant predictors provide a pretty consistent picture that a model of returns that is nearly

44We have noted that our test procedure in this last example is constrained by our assumption of an
ARMA(1,1) representation. But we have also noted that our RW2 and RW3 tests are in principle easy to
generalise. As an alternative to the constrained test procedure reported in Table 6, we have also carried out
equivalent versions of RW1 and RW2 on the assumption of a higher order ARMA process for ∆ lnGNP itself
(up to third order in both AR and MA components). These yield very similar results: namely a strong rejection
of predictor redundance for the consumption/GNP ratio, but coupled with a distinctly modest increase in R2

over the univariate representation. For these generalised tests we have however had to rely on the assumption
that the true size of the tests is reasonably well captured by their nominal size.
45Although the issue seems to have been neglected in more general applications of Granger Causality testing

in cointegrating systems.
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but not quite white noise matches long sample properties. This representation has a slowly

declining variance ratio which may well imply strong long horizon predictability. But our results

suggest strongly that any such long-horizon predictability, if it does exist, is entirely univariate

in nature.46 The dividend yield, the P/E and Tobin’s q are at best imperfect proxies for

the pseudo predictor associated with this representation. After taking account of univariate

properties, the only predictor of returns with even marginal significance is the cashflow yield.

This is less persistent than the other indicators but this does not necessarily contradict the

above representation, since it might just be an imperfect, low persistence and noisy proxy for

the "true" predictor.

While our applications primarily focussed on stock returns,they are potentially of consider-

ably wider applicability. All of our return predictors can be (and have been in the literature)

viewed as cointegrating relations. The data show that most, or possibly all of these predictors,

can be treated as redundant - ie that multivariate results are actually just proxying univariate

properties. Our results in this paper on the consumption/GNP ratio suggest that, while it does

have statistically significant predictive power for output growth, it is pretty marginal in quan-

titative terms relative to a univariate benchmark. We suspect that other evidence derived from

Granger Causality tests in a cointegrating framework should be revisited in the same spirit.

46Note that the evidence for a declining variance ratio for stock returns originally found over long historical
samples by Cochrane (1994) has been disputed by Kim, Nelson and Startz (1991) on the basis of more recent
data. The power of direct evidence on the variance ratio over such short samples is however known to be quite
low: their postwar results would also be consistent with a high (λ, θ), declining variance ratio ARMA(1,1).
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Appendix
Note: for convenience of referees we include fairly lengthy derivations and

proofs. We would envisage that the published version of the appendix could be

significantly shorter.

A Redundant Predictors

A.1 The general innovation specification

Assume that zt is a redundant predictor by Definition 1. By an innocuous re-scaling of zt, let

the innovation to the AR(1) process in (2) be given by

vzt = γεεt + ωt (16)

= ρεvzεt + σε

q
1− ρ2εvzqt

where Eqt = 0, Eq2t = 1. This gives the useful normalisation

σvz = σε;

corr (vzt, εt) = ρεvz

Note that, while the AR(1) property of zt requires vzt to be white noise this need not necessarily

be the case for ωt. We consider this more general case below, but first consider the benchmark

case where ωt is white noise, and is also orthogonal to all lags of εt, as assumed in Proposition

1.
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A.2 Proof of Proposition 1: The predictive R-squared if ωt is white

noise orthogonal to all lags of εt.

Given the normalisation of the innovation variance we have, for the general case,

βz =
cov (yt+1, zt)

var (zt)
=

cov (yt+1, zt)

σ2ε/
¡
1− λ2z

¢
and, given the orthogonality assumption we have, using (5),

cov (yt+1, zt) = cov

µ
εt+1 − (θ − λ)

εt
1− λL

,
vzt

1− λzL

¶
= − (θ − λ) ρεvzcov

µ
εt

1− λL
,

εt
1− λzL

¶
= − (θ − λ) ρεvzcov

£¡
1 + λL+ λ2L2 + ...

¢
εt,
¡
1 + λzL+ λ2zL

2 + ...
¢
εt
¤

=
− (θ − λ) ρεvzσ

2
ε

1− λλz

hence we have, for the general case

βz = − (θ − λ) ρεvz

µ
1− λ2z
1− λλz

¶

and hence

R2z =
β2zσ

2
z

σ2y
= (θ − λ)2 ρ2εvz

µ
1− λ2z
1− λλz

¶2
σ2ε¡

1− λ2z
¢ 1
σ2y

(17)

but we have, using the formulae in Proposition 2,

R2f ≡ 1−
σ2ε
σ2y
=

(θ − λ)2

1− λ2 + (θ − λ)2

hence we have
σ2ε
σ2y
= 1−R2f and (θ − λ)2

¡
1−R2f

¢
= R2f

¡
1− λ2

¢
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so that substituting into (17) we can write

R2z = ρ2εvzR
2
fg (λ, λz) (18)

where

g (λ, λz) =

¡
1− λ2

¢ ¡
1− λ2z

¢
(1− λλz)

2 (19)

The expression in (18) is defined in terms of ρεvz = corr (εt, vzt) . To show the link with the

Stambaugh Correlation, note that we have

uzt = yt − βzzt−1 =

µ
1− θL

1− λL

¶
εt − βz

Ã
ρεvzεt−1 + σε

p
1− ρ2εvzqt−1

1− λzL

!

hence

ρz ≡ corr (uzt, vzt) =
ρεvzσ

2
ε

σuzσε
= ρεvz

σε
σuz

= ρεvz

s
1−R2f
1−R2z

(20)

which allows us to substitute into (18), giving

R2z =

Ã
1−R2z
1−R2f

!
ρ2zR

2
fg (λ, λz) ≤

Ã
1−R2z
1−R2f

!
ρ2zR

2
f (21)

since g (.) has a maximum value of unity at λz = λ. Equivalently, as in the Proposition

R2z
1−R2z

≤ ρ2z

Ã
R2f

1−R2f

!
(22)

which in turn implies an equivalent upper bound on R2z itself since f (x) = x/ (1− x) is a

strictly increasing function. By inspection of (20) ρz lies within [−1, 1], hence for ρz = 1 we

have R2z = R2f .¥

A.3 More general processes for ωt

Consider the more general processes for vzt and ωt

vzt = γ0εt + ωt; E (vztωt) = 0
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ωt =
∞X
i=1

γiεt−i + ξt; E (ξtεt−i) = 0 ∀ i ≥ 0

ξt =
∞X
i=0

πist−i

where st is white noise hence we require

E (ξtεt−i) = πiE (st−iεt−i) = 0 ∀ i > 0

⇒ E (st−iεt−i) = 0 ∀ i

hence if vzt is white noise, which we require for AR(1)ness of zt, we require

E (vztvzt−k) = E

"Ã ∞X
i=0

γiεt−i +
∞X
i=0

πist−i

!Ã ∞X
i=0

γiεt−k−i +
∞X
i=0

πist−k−i

!#
= σ2ε

£
γkγ0 + γk+1γ1 + ...

¤
+ σ2s [πkπ0 + πk+1π1 + ...]

= σ2ε

∞X
i=0

γk+iγi + σ2s

∞X
i=0

πk+iπi = 0∀k > 0 (23)

It is evident that if we set γi = 0∀i > 0 then if we also set πi = 0∀i > 0 then the condition

is satisfied for all k. This is the benchmark case analysed in Proposition 1, where ωt is white

noise uncorrelated with all lags of εt.

We next consider two cases that satisfy the autocovariance condition in (23) for more general

processes

A.3.1 Special case: ωt is white noise but E (ωtεt−j) 6= for some j > 0

For this condition to hold we may allow γj 6= 0 for some j > 0. But by inspection of (23)

this requires γi = 0 for i 6= j (which in turn implies γ0 = 0 - hence a zero contemporaneous

correlation of vzt and εt) and an equivalent restriction on the πi (which will be satisfied if, eg

πi = 0 ∀i > 0). Then we can write, subject to a normalisation

vzt = γjεt−j + ωt
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which is a white noise process, as is ωt = st. From this specification it follows that zt will be a

scaling of xft−j, plus an AR(1) error. But it also follows that we must have

R2z ≤ λ2jR2f

(where the upper bound is attained when γj = 1, st = 0), thus the higher is j the lower the

upper bound on the predictive R-squared.

A.3.2 A more general case: ωt not white noise

In this more general case, while ωt may not be white noise, the autocovariance condition (23)

puts a very tight restriction on the nature of the two underlying polynomials γ (L) and π (L) ,

such that vzt is white noise. Any non-zero γi put corresponding restrictions on the πi, which

in turn increases the noise element in vzt, which in turn must lower the predictive R-squared.

Whilst we have as yet not been able to establish any general implications of such a process, we

suspect that most such processes will as a result have low R-squareds. Some processes are also

entirely ruled out (eg γ (L) and π (L) cannot both be finite order ARs).

B The ARMA(1,1) Reduced Form

B.1 Normalisations

In what follows we assume that by an appropriate scaling of the data for the true predictor, xt,

we can ensure βx > 0.We also suppress x-subscripts so that all parameters without a subscript

are assumed to relate to x.

To ensure that both fundamental and non-fundamental pseudo predictors satisfy this sign

convention, in what follows we also re-define each by setting

xft = sign (θ − λ)
εt

1− λL
(24)

β = |θ − λ| ⇒ ρf = sign (θ − λ)
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and

xnt = sign
¡
θ−1 − λ

¢ ηt
1− λL

(25)

β = |θ−1 − λ| ⇒ ρn = sign
¡
θ−1 − λ

¢
where ηt is the non-fundamental innovation.

B.2 Derivation of reduced form

Substituting from (4) into (3) we have

yt =
ξt

(1− λL)
(26)

where

ξt = −βvt−1 + (1− λL)ut (27)

which is a moving average error defined in terms of the two underlying innovations. We can

represent this in terms of a composite univariate innovation, εt, which satisfies

ξt = (1− θL) εt

where θ satisfies the moment condition

−θ
1 + θ2

=
cov

¡
ξt, ξt−1

¢
var (ξt)

=
cov (−βLvt + (1− λL)ut,−βLvt−1 + (1− λL)ut−1)

var (−βLvt + (1− λL)ut)

=
− (λσ2u + βσvu)

β2σ2v + σ2u(1 + λ2) + 2λβσvu
=

− (λ+ βρs)

1 + λ2 + β2s2 + 2λρβs

where ρ = σvu/(σuσv), s = σv/σu, and R2x is the R-squared from the predictive regression (3).

Note also that

R2x =
β2σ2x
σ2y

=
β2s2

β2s2 + 1− λ2
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implying

β2s2 = F 2

where F (R2x, λ) =

s¡
1− λ2

¢ R2x
1−R2x

(28)

hence the moment condition defining θ can be written as

θ

1 + θ2
= κ

where κ(λ, ρ,R2x) =
λ+ ρF (R2x, λ)

1 + λ2 + F (R2x, λ)
2 + 2λρF (R2x, λ)

(29)

which solves to give the MA parameter in the fundamental representation47

θ
¡
λ, ρ,R2x

¢
=
1− (1− 4κ (λ, ρ,R2x)

2
)
1
2

2κ (λ, ρ,R2x)
(30)

A real solution for θ ∈ (−1, 1) requires that κ ∈
¡
−1
2
, 1
2

¢
. To show this, note first that we

have

∂κ/∂ρ =
F
¡
1 + F 2 − λ2

¢¡
1 + λ2 + F 2 + 2λρF

¢2 > 0 (31)

for λ ∈ [0, 1), R2x ∈ (0, 1) . Thus, since ρ ∈ (−1, 1) , we know that

κ
¡
λ, ρ,R2x

¢
∈
¡
κ
¡
λ,−1, R2x

¢
, κ
¡
λ, 1, R2x

¢¢
∈ (g (λ− F ) , g (λ+ F ))

where

g (x) =
x

1 + x2
∈
µ
−1
2
,
1

2

¶
(32)

hence we do indeed have κ ∈
¡
−1
2
, 1
2

¢
. Given this, we know that

∂θ

∂κ
=
1

2

µ
1−
√
1− 4κ2√

1− 4κ2κ2

¶
≥ 0 (33)

47The other solution to (29) gives the nonfundamental representation.
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which in turn gives us
∂θ

∂ρ
=

∂θ

∂κ

∂κ

∂ρ
≥ 0 (34)

which we shall exploit in the proof of Proposition 2, part a).

C Proof of Proposition 2, part a)

We wish to establish the inequality

R2f (λ, θ) ≤ R2x < R2n (λ, θ)

C.0.1 Relation of R2x to R2f

The first inequality is straightforward. Using the derivation of the ARMA(1,1) representation

in Appendix B we have

εt =
1

1− θL
[−βvt−1 + (1− λL)ut]

= ut − λut−1 − βvt−1 + θεt−1

= ut + ψt−1

hence

var(εt) = var(ut) + var(ψt) > var(ut)

since cov(ut, ψt−1) = 0. Hence for 1 < ρ < 1 we always have

1− σ2ε
σ2y

< 1− σ2u
σ2y

R2f < R2x

For the fundamental pseudo predictor case, if θ > λ we have ut = εt = vt (hence ρ = 1)

so ψt−1 = (θ − λ− β) εt−1 = 0 and if θ < λ we have ut = εt = −vt (hence ρ = −1), so

ψt−1 = (θ − λ+ β) εt−1 = 0. Hence for the limiting case of the fundamental pseudo predictor
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we always have σ2u = σ2ε ⇒ R2f = R2x so for the general case we have

R2f ≤ R2x

We can also use the Yule-Walker equations to derive

σ2y =

µ
1− λ2 + (θ − λ)2

1− λ2

¶
σ2ε

hence

R2f = 1−
σ2ε
σ2y
=

(θ − λ)2

1− λ2 + (θ − λ)2
(35)

C.0.2 Relation of R2x to R2n

We have the non-fundamental representation

yt =

µ
1− θ−1L

1− λL

¶
ηt (36)

where ηt is the non-fundamental innovation, and we know (Hamilton, 1994, pp 66-67)

σ2η = θ2σ2ε

hence

R2n = R2f +
¡
1− θ2

¢ σ2ε
σ2y
= R2f +

¡
1− θ2

¢ ¡
1−R2f

¢
which, after substituting from (35) gives

R2n =
(1− θλ)2

1− λ2 + (θ − λ)2
(37)

which can also be derived directly from (35) by substituting θ−1 for θ, as in the Proposition.

We wish to establish the weak inequality

H
¡
λ, ρ,R2x

¢
≡ R2n

¡
λ, θ

¡
λ, ρ,R2x

¢¢
−R2x ≥ 0
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While H depends in principle on the triplet (λ, ρ,R2x) we shall analyse its properties for

a given (λ,R2x) pair; we shall show that the result hold for any (λ,R
2
x) within their allowable

ranges. Note that for this proof we do not require λ to be positive.

Thus we can write H = H (θ (ρ)). From (34) we also have ∂θ/∂ρ > 0, hence we can write

H = H (θ) ; θ ∈ [θmin, θmax]

where

θmin = θ
¡
λ,−1, R2x

¢
; θmax = θ

¡
λ, 1, R2x

¢
and we have

H 0 (θ) =
∂R2n
∂θ

= −2θ
Ã¡
1− λ2

¢
(1− θλ)

1− λ2 + (θ − λ)2

!
⇒ sign (H 0 (θ)) = −sign(θ) (38)

There are three cases:

Case 1: θmin > 0; For this case,we have H (θmax) = 0, since at this point x is the non-

fundamental pseudo predictor in (25) with R2x = R2n, ρ = ρn = 1. From (38) we also have

H 0 < 0 hence H ≥ 0.

Case 2: θmax < 0; For this case,we have H (θmin) = 0, since at this point x is again the

non-fundamental pseudo predictor in (25) with R2x = R2n, but with ρ = ρn = −1. From (38)

we have H 0 > 0 hence H ≥ 0.

Case 3: θmin < 0 < θmax; For this case,we have H (θmin) = H (θmax) = 0, H 0 (θmin) > 0;

H 0 (θmax) < 0, and, from (38) H has a single turning point at θ = 0,48 hence again we have

H ≥ 0.
48Not that for the case θ

¡
λ, ρ,R2x

¢
= 0 the non-fundamental representation (36) is undefined. At the limit

the non-fundamental pseudo-predictor has zero variance but if for the general case we substitute for yt in (25)
we can solve forward to derive

xnt = −sign
¡
θ−1 − λ

¢ θ

1− θL−1
yt+1 (39)

which we can expand to give

Et−1yt|xnt−1 = −
¡
θ−1 − λ

¢ £
−θyt − θ2yt+1 + ....

¤
which gives limθ→0Et−1yt|xnt−1 = yt, hence limθ→0R

2
n = 1.
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Since we have shown that these results hold for any θ and λ, by implication they also hold

for any λ and R2x.

We have thus established the right-hand inequality in (11) for all three cases thus completing

the proof of part a) of Proposition 2.¥

D Proof of Proposition 2, part b)

Any given values of θ and λ must imply a condition on κ (as defined in (29)) of the form

κ(λ, ρ,R2x) =
θ

1 + θ2

For given values of θ and λ this can be taken to imply a restriction on ρ, the correlation between

the two underlying innovations, which solves to give

ρ(R2x) =
(θ − λ) (1− θλ) + F (λ,R2x)

2θ¡
1− λ2 + (θ − λ)2

¢
F (λ,R2x)

; ρ ∈ (−1, 1) (40)

where F (λ,R2x), as defined in (28). If the solved value for ρ lies outside this range, the triplet

(θ, λ,R2x) is not feasible.

The first order condition yields a unique stationary point:

dρ(R2x)

dR2x
= 0⇒ R2x =

(θ − λ) (1− θλ)

θ − λ+ θ (1− θλ)

which after substituting into (40) yields a real solution if

(θ − λ) θ > 0

which is satisfied for θ > λ, given λ > 0. The second-order condition confirms that for this

range of parameter values this yields the minimum value

ρmin = sign (θ − λ)

Ã
2
p
(θ − λ) (1− θλ) θ

1− λ2 + (θ − λ)2

!
> 0.¥
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E The correlation between the true predictor and the

fundamental pseudo predictor.

Consider the regression

yt = γxxt−1 + γfx
f
t−1 + wt

where xft is the fundamental pseudo predictor and xt the true predictor. Then it must be that

γf = 0; γx = βx (from (3)). Treating xt−1 as an omitted variable, if we estimate a predictive

regression in terms of the pseudo predictor as define in (6), then using the formula for omitted

variable bias we have

βf = βxcorr
³
xft , xt

´ σx
σxf

which implies

βf
σxf

σy
= βxcorr

³
xft , xt

´ σx
σy

which, after squaring both sides gives

R2f = corr
³
xft , xt

´2
R2x

which in turn gives (13) in the main text. Note that the squared correlation in (13) is bounded

below by the ratio R2f/R
2
n since, from part a) of Proposition 2, R

2
x is bounded above by R

2
n, the

predictive R-squared of the non-fundamental pseudo predictor.
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F Properties of bθz, used in the indirect pseudo predictor
based test, RP1

F.1 Derivation

To derive bθz as defined in Section 3.1.1 we need estimates of λ and R2f . The first is easy given

the additional restriction λz = λ. It also allows us to write (21), using g (λ, λz) = 1, as

f
¡
R2z
¢
= ρ2zf

¡
R2f
¢

(41)

where f (x) = x/ (1− x) , so for a given Stambaugh correlation, inverting (41), we have

R2f =
f (R2z)

ρ2z + f (R2z)
(42)

Hence we can write

θ
¡
λ, 1, R2f

¢
= θ

µ
λz, 1,

f (R2z)

ρ2z + f (R2z)

¶
= θz

¡
λz, ρz, R

2
z

¢
. (43)

Under the restricted null the final expression defines a functional relationship that holds exactly

in terms of population parameters. For purposes of estimation we define bθz = θz
³bλz,bρz, bR2z´ .

F.2 Sampling Properties

Table A1 provides a comparison of the sampling properties of bθz and the ARMA estimate of
θ, under the joint null that zt is predictively redundant and λz = λ, as for our proposed test

statistic RP1.

The first two panels show the sampling properties of the ARMA estimate for a range of

values of the true population parameters, λ and θ, on the assumption (used in previous tables)

that the Stambaugh Correlation ρz = 0.9. The top panel shows that the ARMA estimate

displays non-trivial bias for virtually all population values of λ and θ, with severe bias near

the diagonal (the white noise case), the second panel shows that there is an equivalent increase
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in dispersion. We have in fact arguably somewhat understated the problems with the ARMA

estimates, since for each replication the estimation is actually carried out twice: once without

starting values; and once using starting values (for convenience given by bλz and bθz) to reflect
the prior that the true values are both positive. The program chooses the estimate with the

highest value of the estimated log likelihood. Both the bias and the wide dispersion in part

reflect the fact that, even exploiting these starting values, a high proportion of estimated values

of θ are negative.

The lower two panels of Table A1 provide equivalent simulation evidence for our indirect

estimate, bθz. Both bias and dispersion are dramatically lower. Given the nonlinearity of the
expression derived in the previous section it is perhaps surprising that there is so little bias.

However, while it is well known that OLS estimates of λ are downward-biased in small samples,

at the same time R2z is upward biased (due to Stambaugh Bias) For most values of the true

parameters these two biases appear to offset. In principle a more sophisticated attempt at bias

correction could be applied.

The low dispersion of the indirect estimate bθz means in turn that the resulting estimated
pseudo predictor used in deriving the test statistic RP1 is, under the null, very close to being

the true pseudo predictor, which helps to explain why size distortions for this test statistic are

so low.

Lest we appear to be getting the econometric equivalent of something for nothing, it should

be stressed that this indirect method of estimating the MA parameter from the properties of

the redundant variable hinges crucially upon the assumption that λz = λ. Hence if the joint

null underlying RP1 is rejected this may be because zt is not redundant, but it could also be

because the assumption that λz = λ is incorrect (which, for sufficient differences between λz

and λ will imply that the indirect estimate bθz may be severely biased).
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G Simulation Methodology

G.1 Monte Carlos

The input parameters for each simulation are λ, θ, ρz and λz and a weight, μ, such that R2x =

(1− μ)R2f (λ, θ) + μR2n (λ, θ) , where R
2
f and R2n are as defined in Proposition 2. By inverting

the formula for θ (λ, ρ,R2x) in (10) this yields a value of ρ, the true Stambaugh Correlation. We

then simulate underlying joint normal white noise innovations uxt vxt and ωt (in equations (3),

(4) and (8) respectively with the appropriate correlations. This in turn generates processes for

xt, yt εt (using εt = (1− θL)−1 [(1− λL)ut − βvt−1]) and zt. Note that for Tables 1 to 4 and

A1 we could equally well simulate εt and generate yt from the ARMA(1, 1) , but for Table 5

we need to generate the data from the underlying model. For each replication we simulate 100

initial observations before estimation to approximate the unconditional distribution.

G.2 Bootstrapped p-Values

For bootstrapped p-values in Table 6, we use different methods of bootstrapping depending on

the test statistic and the null model, as follows:

In Panel C, for test statistics RP2, RP3 and t (βz) we estimate an ARMA(1, 1) representa-

tion of the dependent variable (as in (5)) and an AR(1) representation of the predictor (as in

(2)) and store the residuals {bεt,bvzt}Tt=1 and the estimates of the parameters ³bθ, bλ, bλz,bρz´ . For
RP1 we estimate the predictive regression and the predictor autoregression, use the properties

thereof to derive an estimate of bθz as outlined in Appendix F and hence derive an estimate
of the pseudo predictor bxft (these are shown in Figure 2). We then estimate a predictive re-
gression of the same form as (3) in terms of the estimated pseudo predictor, which under the

null gives an estimated series for εt. We again store the residuals {bεt, bvzt}Tt=1 and the estimates
of the parameters

³bθ, bλ, bλz,bρz´ (where the first two of these are indirect estimates, setting
θ = θz

³bλz,bρz, bR2z´ and bλ = bλz).
In Panel D, for all test statistics we assume that yt is white noise, hence simply set bεt = yt.

We again store the residuals {bεt,bvzt}Tt=1 and the estimates of the parameters ³bθ, bλ, bλz,bρz´
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(where under the white noise null we can arbitrarily set bλ = bθ = bλz).
To simulate p-values we re-sample (using 5000 replications) from the relevant sets of es-

timated residuals and simulate as described in the previous section using estimated values of

the input parameters, except that here we generate yt directly from the ARMA representation

(since we do not need to make any assumption on the nature of the true predictor).
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Table 1. OLS-Based Tests of a Redundant AR(1) Predictor of an ARMA(1,1) process  
 
Panel A: Population R-Squared of Redundant Predictor, ρz=0.9 

  θ 
  0 0.5 0.7 0.8 0.9 0.95 

0 0.000 0.168 0.284 0.341 0.396 0.422 
0.5 0.213 0.000 0.041 0.089 0.147 0.179 
0.7 0.438 0.060 0.000 0.016 0.060 0.090 
0.8 0.590 0.168 0.022 0.000 0.022 0.048 
0.9 0.775 0.406 0.146 0.041 0.000 0.011 

λ 

0.95 0.882 0.627 0.342 0.157 0.020 0.000 
Panel B: Size of 1-sided t-test on OLS estimate of βz, at notional 5% level,T=200, 
when zt is a redundant predictor 

  θ 
  0 0.5 0.7 0.8 0.9 0.95 

0 0.040 1.000 1.000 1.000 1.000 1.000 
0.5 1.000 0.054 0.881 0.999 1.000 1.000 
0.7 1.000 0.856 0.067 0.495 0.996 1.000 
0.8 1.000 0.994 0.426 0.065 0.668 0.978 
0.9 1.000 1.000 0.969 0.594 0.072 0.397 

λ 

0.95 1.000 1.000 0.999 0.918 0.305 0.080 
 
Table 1 assumes that the predicted process is ARMA(1,1): yt =(1-θL)/(1-λL)εt; and zt is a redundant 
AR(1) predictor with λz=λ and Stambaugh correlation ρz=corr(uzt, vzt)=0.9 in the predictive system 
(1) and (2). Panel A gives the value of 2

zR  in Proposition 1 (where the inequality holds precisely 

since λz=λ). Panel B shows the simulated size of a t-test on ˆ
zβ  in equation (1) in 1000 replications. 



Table 2. Simulated size of three tests of the null that z is a redundant predictor  
λz = λ 

 
  θ 

RP1 λ 0 0.5 0.7 0.8 0.9 0.95 
 0 0.065 0.055 0.073 0.097 0.200 0.290 
 0.5 0.077 0.060 0.060 0.059 0.092 0.139 
 0.7 0.092 0.060 0.077 0.073 0.064 0.092 
 0.8 0.106 0.083 0.060 0.085 0.067 0.065 
 0.9 0.187 0.095 0.081 0.079 0.107 0.062 
 0.95 0.329 0.171 0.129 0.113 0.116 0.112 

RP2    
 0 0.018 0.041 0.050 0.054 0.060 0.076 
 0.5 0.054 0.017 0.044 0.041 0.054 0.063 
 0.7 0.063 0.043 0.029 0.042 0.061 0.071 
 0.8 0.072 0.051 0.022 0.030 0.057 0.069 
 0.9 0.082 0.073 0.059 0.042 0.036 0.057 
 0.95 0.097 0.094 0.092 0.075 0.036 0.038 

RP3    
 0 0.131 0.120 0.165 0.229 0.150 0.117 
 0.5 0.100 0.107 0.205 0.232 0.189 0.124 
 0.7 0.099 0.145 0.116 0.168 0.191 0.132 
 0.8 0.106 0.135 0.129 0.112 0.143 0.115 
 0.9 0.127 0.113 0.167 0.169 0.075 0.091 
 0.95 0.163 0.132 0.163 0.198 0.137 0.082 

 
Table 2 shows  the simulated size, in 1000 replications, of the three tests that zt is a redundant 
predictor of an ARMA(1,1) process, as described in Sections 3.1.1 to 3.1.3. The processes for yt 
and zt are as for Table 1. T=200 



Table 3. Simulated size of three tests of the null that z is a redundant predictor  
 

λz = λ/2 
 

  θ 
RP1 λ 0 0.5 0.7 0.8 0.9 0.95 

 0 0.065 0.055 0.073 0.097 0.2 0.29 
 0.5 0.081 0.062 0.052 0.07 0.201 0.388 
 0.7 0.114 0.072 0.063 0.061 0.139 0.311 
 0.8 0.176 0.098 0.073 0.063 0.076 0.196 
 0.9 0.298 0.512 0.213 0.089 0.059 0.074 
 0.95 0.437 0.873 0.711 0.376 0.073 0.069 

RP2    
 0 0.018 0.041 0.05 0.054 0.06 0.076 
 0.5 0.034 0.014 0.037 0.035 0.044 0.068 
 0.7 0.01 0.029 0.017 0.032 0.045 0.074 
 0.8 0.004 0.012 0.023 0.02 0.039 0.064 
 0.9 0.004 0.002 0.01 0.02 0.019 0.035 
 0.95 0.005 0 0.005 0.013 0.017 0.026 

RP3    
 0 0.131 0.12 0.165 0.229 0.15 0.117 
 0.5 0.087 0.118 0.18 0.205 0.185 0.106 
 0.7 0.071 0.125 0.112 0.158 0.157 0.094 
 0.8 0.071 0.085 0.115 0.102 0.141 0.096 
 0.9 0.065 0.066 0.08 0.108 0.105 0.097 
 0.95 0.053 0.056 0.065 0.083 0.112 0.117 

 
Table 3 shows  the simulated size, in 1000 replications, of the three tests that zt is a redundant 
predictor of an ARMA(1,1) process, as described in Sections 3.1.1 to 3.1.3. The processes for yt 
and zt are as for Table 1, but with λz=λ/2. T=200 



Table 4. Simulated size of three tests of the null that z is a redundant predictor  
 

λz = λ+(1-λ)/2 
 

  θ 
RP1 λ 0 0.5 0.7 0.8 0.9 0.95 

 0 0.06 0.348 0.743 0.071 0.333 0.709 
 0.5 0.074 0.081 0.109 0.311 0.127 0.22 
 0.7 0.07 0.064 0.095 0.092 0.211 0.121 
 0.8 0.072 0.087 0.069 0.11 0.103 0.112 
 0.9 0.094 0.111 0.101 0.096 0.12 0.112 
 0.95 0.148 0.152 0.143 0.136 0.142 0.131 

RP2    
 0 0.018 0.016 0.019 0.027 0.04 0.057 
 0.5 0.033 0.029 0.036 0.032 0.046 0.059 
 0.7 0.05 0.042 0.037 0.04 0.057 0.055 
 0.8 0.06 0.04 0.029 0.041 0.054 0.065 
 0.9 0.076 0.069 0.06 0.043 0.039 0.07 
 0.95 0.108 0.098 0.086 0.078 0.04 0.05 

RP3    
 0 0.104 0.115 0.156 0.219 0.163 0.104 
 0.5 0.072 0.127 0.193 0.212 0.163 0.099 
 0.7 0.082 0.088 0.102 0.147 0.144 0.119 
 0.8 0.087 0.07 0.099 0.085 0.126 0.158 
 0.9 0.082 0.078 0.094 0.106 0.068 0.138 
 0.95 0.076 0.076 0.086 0.119 0.101 0.115 

 
Table 3 shows  the simulated size, in 1000 replications, of the three tests that zt is a redundant 
predictor of an ARMA(1,1) process, as described in Sections 3.1.1 to 3.1.3. The processes for yt 
and zt are as for Table 1, but with λz=λ + (1-λ)/2. T=200 



Table 5 Simulated rejection rates of the three tests under H1: zt = xt. 
 

2 2 20.25 0.75x f nR R R= +  
 

  Θ 
RP1 λ 0 0.5 0.7 0.8 0.9 0.95 

 0 1 1 1 0.998 0.93 0.786 
 0.5 1 1 1 0.998 0.901 0.662 
 0.7 1 1 0.999 0.991 0.886 0.609 
 0.8 1 1 0.997 0.991 0.861 0.558 
 0.9 1 1 1 0.99 0.875 0.548 
 0.95 1 1 1 0.993 0.879 0.593 

RP2    
 0 1 1 1 0.992 0.772 0.304 
 0.5 1 1 0.998 0.995 0.763 0.324 
 0.7 1 1 1 0.985 0.754 0.318 
 0.8 1 1 0.996 0.987 0.752 0.334 
 0.9 1 1 0.997 0.987 0.799 0.4 
 0.95 1 1 0.998 0.985 0.809 0.475 

RP3    
 0 0.981 0.999 0.998 0.988 0.895 0.718 
 0.5 0.999 1 0.999 0.991 0.906 0.738 
 0.7 0.997 1 1 0.99 0.893 0.744 
 0.8 0.998 1 0.995 0.978 0.887 0.734 
 0.9 0.999 1 0.998 0.989 0.85 0.683 
 0.95 0.996 1 0.998 0.988 0.874 0.634 

Memo: R-Squared of True Predictor ( 2
xR ) 

 0 0.250 0.350 0.414 0.445 0.474 0.487 
 0.5 0.438 0.188 0.172 0.188 0.215 0.232 
 0.7 0.618 0.247 0.128 0.108 0.117 0.131 
 0.8 0.730 0.350 0.151 0.090 0.073 0.082 
 0.9 0.858 0.559 0.279 0.136 0.048 0.037 
 0.95 0.927 0.736 0.468 0.261 0.071 0.024 

Memo: Stambaugh Correlation of True Predictor (ρ) 
 0 0.000 0.839 0.954 0.982 0.996 0.999 
 0.5 -0.655 0.277 0.767 0.911 0.982 0.996 
 0.7 -0.771 -0.207 0.375 0.723 0.943 0.988 
 0.8 -0.811 -0.419 0.009 0.419 0.859 0.970 
 0.9 -0.842 -0.580 -0.360 -0.121 0.461 0.862 
 0.95 -0.855 -0.642 -0.504 -0.382 -0.059 0.481 

 
Table 5 shows  the rejection rate at a nominal 5% size, in 1000 replications, of the three tests that zt 
is a redundant predictor, as described in Sections 3.1.1 to 3.1.3, under the alternative hypothesis 
H1: zt=xt. The true predictor xt is assumed to have a predictive R-squared.given by a fixed linear  
weighting of the upper and lower bounds given in Proposition 2: 2 2 20.25 0.75x f nR R R= + , where 
both upper and lower bounds are functions of the ARMA parameters alone. T=200. The bottom 
two panels show, for reference, the implied values of the R-Squared and the Stambaugh 
Correlation for the true predictor, consistent with Proposition 2. 
 
 



Table 6. Tests of Predictor Redundance: Some Empirical Examples 
 

 Predicted Variable   
 Real stock 

returns 
 Quasi-differenced log GNP 

growth 

 Predictor   
 log(price / 

dividend) 
log(price / 10 
year earnings) 

log(Tobin's q) log(price / total cash 
transfers) 

log(GNP /  consumption) 

Sample 1901-2007 1901-2007 1901-2007 1901-2007 1948:01-2007:02 

T 107 107 107 107 238 
Panel A.  Predictor Characteristics   
Stambaugh Correlation ( zρ ) 0.835 0.983 0.914 0.552 0.816 

Predictor AR(1) parameter ( zλ )* 0.922 0.928 0.905 0.694 0.943 

Panel B. Nominal P-Values   
RP1 1.000 0.888 0.440 0.011 0.003 
RP2 0.898 0.885 0.567 0.068 0.001 
RP3 0.872 0.255 0.132 0.014 0.000 
t(βz) 0.141 0.034 0.009 0.002 0.000 
Panel C: Bootstrapped P-Values, y=ARMA(1,1)**   
RP1 0.9996 0.8984 0.6882 0.0178 0.0048 
RP2 0.9218 0.9456 0.659 0.0994 0.0122 
RP3 0.9038 0.8368 0.6876 0.0578 0.0022 
t(βz) 0.9474 0.9184 0.6088 0.0308 0.0364 
Panel D: Bootstrapped P-Values, y =white noise   
RP1 0.9994 0.9078 0.5286 0.0164 0.0044 
RP2 0.8898 0.8546 0.5222 0.0706 0.0006 
RP3 0.8524 0.2516 0.1712 0.0362 0.0000 
t(βz)) 0.1838 0.0634 0.0148 0.0026 0.0002 

 
* AR(1) estimates include bias-correction.  ** Bootstrapped p-values for RP1 set λ=λz; θ=θz(.) as in equation (15); bootstrapped p values for 
other tests use direct ARMA estimates of λ and θ . See Appendix C for further detail 



Table A1 Sampling Properties of ARMA vs Indirect Estimates of θ 
 

  Θ 
 λ 0 0.5 0.7 0.8 0.9 0.95 

Mean ARMA estimate of θ 
 0 0.027 0.532 0.729 0.830 0.935 0.977 
 0.5 -0.031 0.293 0.735 0.840 0.936 0.977 
 0.7 -0.020 0.403 0.417 0.748 0.934 0.975 
 0.8 -0.017 0.465 0.467 0.513 0.871 0.963 
 0.9 -0.013 0.483 0.656 0.611 0.590 0.832 
 0.95 -0.011 0.488 0.681 0.755 0.612 0.613 

Standard Deviation of ARMA estimate 
 0 0.626 0.136 0.080 0.064 0.046 0.024 
 0.5 0.157 0.655 0.235 0.104 0.055 0.027 
 0.7 0.109 0.312 0.662 0.396 0.135 0.066 
 0.8 0.095 0.159 0.501 0.652 0.274 0.157 
 0.9 0.085 0.096 0.181 0.435 0.637 0.455 
 0.95 0.080 0.080 0.091 0.193 0.573 0.642 

Mean of Indirect Estimate (θz) 
 0 0.061 0.500 0.700 0.801 0.901 0.948 
 0.5 0.001 0.546 0.700 0.800 0.900 0.950 
 0.7 0.001 0.501 0.734 0.801 0.900 0.950 
 0.8 0.001 0.502 0.696 0.825 0.900 0.950 
 0.9 0.001 0.502 0.701 0.798 0.914 0.950 
 0.95 0.001 0.501 0.701 0.801 0.890 0.958 

Standard Deviation of Indirect Estimate (θz) 
 0 0.081 0.032 0.032 0.033 0.034 0.031 
 0.5 0.036 0.065 0.027 0.026 0.025 0.024 
 0.7 0.036 0.032 0.051 0.022 0.021 0.021 
 0.8 0.037 0.033 0.030 0.040 0.019 0.018 
 0.9 0.042 0.036 0.030 0.025 0.025 0.014 
 0.95 0.061 0.043 0.035 0.028 0.029 0.016 

 
Table A1 compares, for different values of the population parameters θ and λ, sampling properties 

of the ARMA estimate of θ and the indirect estimate, ( )2
,ˆ ,z z zz z Rθ θ λ ρ=  derived from the 

properties of the predictive regression (1) and the predictor autoregression (2) under the 
joint null that λz=λ and zt is redundant (see Section 3.1.1 and Appendix B). Results are 
shown for 1000 replications, with ρz=0.9, T=200.To allow for the prior that λ and θ are 
both positive, ARMA estimates in each replication use as starting values estimates of λz 
and θz but discard these if zero starting values yield a higher value of the estimated log 
likelihood. 
 


