Supervision 1
Economic Growth

Problems

1. Shocks to an economy, such as wars, often generate large, one-time flows of workers across borders. This problem analyzes the effects of a one-time increase in the stock of labor on the economy of Paxania. [cf Tripos 2000]

A Suppose the economy of Paxania can be described by the following Solow growth model:

\[Y = K^\alpha (AL)^{1-\alpha} \]
\[L = \bar{L} \]
\[\dot{K} = sY \]
\[\dot{A} = gA \]

where \(Y \) denotes aggregate output, \(K \) the capital stock, \(L \) labor input, \(A \) technology, and \(\dot{X} \equiv dX/dt \). In addition, \(0 < \alpha < 1 \), \(0 < s < 1 \) and \(g > 0 \).

(a) Derive the fundamental equation of motion for capital per effective worker \(\tilde{k} \equiv K/AL \). Compute its balanced growth path level and the corresponding growth rate of output per worker \(y \equiv Y/L \).

(b) Use the Solow diagram to show the effect of a one-time increase in the labor force \(\bar{L} \), assuming Paxania is initially on a balanced growth path. Explain intuitively what happens to the level of per capita output \(y \) and its growth rate \(g_y \equiv \dot{y}/y \).

(c) Sketch the path of \(\ln y \) over time. [Hint: The slope of \(\ln y \) is the growth rate of per capita output: \(d\ln y/dt = g_y \).] Does the inflow of labor improve the standard of living for the people of Paxania?

B Suppose the economy of Paxania can be described by the following Romer endogenous growth model:

\[Y = K^\alpha (AL_Y)^{1-\alpha} \]
\[L_Y = (1-a)\bar{L} \]
\[L_A = a\bar{L} \]
\[\dot{K} = sY \]
\[\dot{A} = \beta AL_A^\theta \]

where \(Y \) denotes aggregate output, \(K \) the capital stock, \(L_Y \) labor input in the production sector, \(L_A \) labor input in the technology (R&D) sector, \(A \) technology, and \(\dot{X} \equiv dX/dt \). In addition, \(0 < \alpha < 1 \), \(0 < a < 1 \), \(0 < s < 1 \), \(\beta > 0 \) and \(0 < \theta < 1 \).
(a) Compute the growth rates of technology $g_A = \dot{A}/A$, output $g_Y = \dot{Y}/Y$ and capital $g_K = \dot{K}/K$ along the balanced growth path. [Hint: On the balanced growth path, $d\ln g_K/dt = 0$.]

(b) Explain intuitively what happens to the level of per capita output y and its growth rate g_y after an increase in the labor force L, assuming Paxania is initially on a balanced growth path.

(c) Sketch the path of $\ln y$ over time. Does the inflow of labor improve the standard of living for the people of Paxania?

2. Consider the following continuous-time Solow growth model. There is a large set of identical firms indexed by i. The production technology of firm i is described by

$$Y_i(t) = A_i(t) [K_i(t)]^\alpha [L_i(t)]^{1-\alpha}$$

where $Y_i(t)$ denotes output of firm i, $K_i(t)$ the capital stock used by firm i, $L_i(t)$ labour employed by firm i, and $\alpha \in (0, 1)$. The productivity factor is described by $A_i(t) = [Y(t)]^{\phi}$, where $Y(t)$ is aggregate output and $\phi \in (0, 1)$. Moreover, $\phi + \alpha < 1$. The labour force grows at a constant rate $n > 0$ and households save a fraction $s \in (0, 1)$ of income. The economy is closed which implies that investment equals saving. The aggregate capital stock evolves according to the following equation of motion:

$$\dot{K}(t) = I(t) - \delta K(t)$$

where $I(t)$ denotes aggregate investment and δ is the depreciation rate of the capital stock, with $\delta > 0$. [cf Tripos 2015]

(a) What is the intuition behind $A_i(t) = [Y(t)]^{\phi}$?

(b) Show that the economy exhibits a balanced growth path with a positive long-run growth rate of output per worker.

(c) Explain whether the economy converges to this balanced growth path equilibrium.

(d) Suppose that the economy is initially in a balanced growth path equilibrium. Consider a change in immigration laws such that it is harder for immigrants to move from another country, so the economy’s underlying labour force growth rate decreases ($n' < n$). Describe the effects of such a policy on the dynamics of output per worker of this economy. Be sure to distinguish between short-run and long-run effects.

Main reading

Supplementary references

- Weil (2012), *Economic Growth*, ch 1-3