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Abstract

For high dimensional data sets the sample covariance matrix is usually

unbiased but noisy if the sample is not large enough. Shrinking the sample

covariance towards a constrained, low dimensional estimator can be used to

mitigate the sample variability. By doing so, we introduce bias, but reduce

variance. In this paper, we give details on feasible optimal shrinkage allowing

for time series dependent observations.
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1 Introduction

This paper considers the problem of estimating the variance covariance matrix

of high dimensional data sets when the sample size is relatively small and the

data exhibit time series dependence. The importance of estimating the covariance

matrix in these situations is obvious. The number of applied problems where such

an estimate is required is large, e.g. mean-variance portfolio optmisation for a large

number of assets, generalised method of moments estimation when the number of

moment equations is large, etc.. However, the estimator based on the sample

covariance can be noisy, it can be difficult to find its approximate inverse, hence

might perform poorly.

To mitigate this problem, the sample covariance matrix can be shrunk towards

a low dimensional constrained covariance matrix. Recently, this approach has

been successfully studied by Ledoit and Wolf (2004). These authors assume iid

observations, a certain cross dependence structure for the vector of observations

and shrink towards a matrix proportional to the identity. Related references can

be found in their work. The idea is to find an optimal convex combination of the

sample covariance and the constrained covariance matrix. The parameter defining

shrinkage depends on unknown quantities and needs to be estimated consistently.

Intuitively, the problem is the usual one of balancing the bias and the variance of

the estimator to obtain lower mean square error.

The goal of the present paper is to show that covariance matrix shrinkage can

be used in quite general situations, when data are time dependent and are not

restricted in their cross dependence structure. To account for time dependence,

the estimator based on iid observations has to be slightly changed. However, an
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interesting property of the estimator is that accounting for time series dependence

is not always crucial. We will make this statement more precise in our simulation

study. Extending the theory to more general situations is important when dealing

with real data.

The results derived here are weak, as they only hold in probability versus L2

consistency of Ledoit and Wolf (op.cit.). However, we show that the constrained

covariance matrix does not need to be proportional to the identity and can be

chosen more generally. In Ledoit and Wolf (2003) a constrained covariance matrix

based on a one factor model was suggested, assuming that the cross-sectional di-

mension stays fixed. Our framework covers the case when time and cross-sectional

dimensions may grow at the same rate. However, this requires that the constrained

covariance matrix is chosen appropriately. In this respect, while the results of this

paper cover a lot of cases of interest not covered by Ledoit and Wolf (2004), the

two papers are still complementary. Details will be given in due course.

The plan of the paper is as follows. Section 2 states the problem and the

suggested solution. Section 3 contains a Monte Carlo study of the small sample

performance of shrinkage when data series are dependent. Section 4 proves that

the procedure is consistent.

We introduce some notation. Given two sequences a := an and b := bn, a . b,

means that there is a finite absolute constant c such that a ≤ cb, ; a ³ b means

that a . b and b . a. We may also use the O and o notation as complement and

substitute of the above symbols to describe orders of magnitude, which ever is felt

more appropriate. Given two numbers a and b, the symbols a ∨ b and a ∧ b mean,

respectively, the maximum and minimum between a and b. If A is a countable set,

#A stands for its cardinality. Finally, for a matrix A, Aij stands for the (i, j)
th
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entry.

2 Estimation of the Unconditional CovarianceMa-

trix

Suppose (Yt)t∈{1,...,T} are random variables with values in RN . For simplicity as-

sume the variables are mean zero. The covariance matrix is defined as Σ :=

T−1
PT

t=1 EYtY 0
t and under second order stationarity this reduces to Σ := EYtY 0

t .

Then, Σ̂T =
XT

t=1
YtY

0
t /T is a sample estimator for Σ. In some cases, we may have

that N grows with T . If N/T → 0 the sample covariance matrix Σ̂T is consistent

(under an appropriate metric), but the rate of convergence can be arbitrarily slow,

moreover, Σ̂T might be singular in finite samples. If N ³ T, Σ̂T is also inconsistent.

This paper considers the case where N/T → c ∈ [0,∞], so that we might even have

T = o (N) .

To be more precise, we define the Frobenious norm in order to measure the

distance between matrices.

Definition 1 Suppose A is a square N dimensional matrix. The Frobenious norm

is defined as kAk2 :=
p
Trace (AA0).

Remark 2 Note that kAk22 :=
XN

i=1

XN

j=1
A2ij. Moreover, kAk

2
2 =

XN

i=1
λ2Ai,

where λ2A1, ..., λ
2
AN are the eigenvalues of A. Ledoit and Wolf (2004) suggest stan-

dardisation by N, so that the Frobenious norm of the identity matrix is always one

independently of the dimension. This will not be done here.

To mitigate the problem that
°°°Σ̂T − Σ

°°°
2
is large when N is relatively large,

it is suggested that we use a shrunk estimator Σ̃T (α) = αF + (1− α) Σ̂T , where
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α ∈ [0, 1] and F is a constrained version of Σ. In general, F is chosen to impose

stringent restrictions on the unconditional covariance matrix so that F 6= Σ. On

the other hand, Σ̂T is unbiased for Σ, but very noisy especially in finite sample,

where we may even have N > T. The shrunk estimator Σ̃T should be preferred to

Σ̂T because there exists an α ∈ [0, 1] such that E
°°°Σ̃T (α)− Σ

°°°
2
≤ E

°°°Σ̂T − Σ
°°°
2
.

This entails choosing α optimally to achieve this. Unfortunately, minimisation of

E
°°°Σ̃T (α)− Σ

°°°
2
does not lead to a closed form solution for α. For this reason,

Ledoit and Wolf (2004) do not minimise the expectation of the Frobenious norm

with respect to α, but its square. Note that

E
°°°Σ̃T (α)− Σ

°°°
2
≤
µ
E
°°°Σ̃T (α)− Σ

°°°2
2

¶1/2
(1)

by Jensen inequality. Hence, minimising the right hand side of (1) we should also

minimise the left hand side. The solution of the minimisation problem is given in

the following.

Proposition 3 Suppose Σ̃T (α) = αF+(1− α) Σ̂T . The optimal choice of α under

the expected squared Frobenious norm is

α0 =
E
°°°Σ̂T − Σ

°°°2
2

E
°°°F − Σ̂T

°°°2
2

∧ 1 = arg min
α∈[0,1]

E
°°°Σ̃T − Σ

°°°2
2
, (2)

where

E
°°°Σ̂T − Σ

°°°2
2
=

X
1≤i,j≤N

V ar
³
Σ̂ijT

´
,

and all relevant moments are assumed to exist.

The solution shows that we might reduce the error under the Frobenious norm

even if Σ̃T is biased (recall that F 6= Σ) because we reduce its variance. This is
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the usual bias-variance trade-off in the mean square error of the estimator. Un-

fortunately, Σ̃T (α0) is based on unknown quantities, but Σ can be replaced by its

unbiased estimator Σ̂T , and F by an unbiased estimator, say F̂T . Clearly, F̂T should

have low variance in order for the procedure to work well in practice. Moreover,

note that

E
°°°Σ̂T − Σ

°°°2
2
=

X
1≤i,j≤N

V ar

Ã
1

T

TX
t=1

YtiYtj

!
(3)

so that when the observations are dependent, we should also estimate the covariance

terms Cov (YtiYtj, YsiYsj) . Define

Σ̂ijT : =
1

T

TX
t=1

(YtiYtj)

Γ̂ijT (s) : =
1

T

T−sX
t=1

³
Yt,iYt,j − Σ̂ijT

´³
Yt+s,iYt+s,j − Σ̂ijT

´
Γ̂bijT : = Γ̂ijT (0) + 2

T−1X
s=1

κ (s/b) Γ̂ijT (s) , b > 0, (4)

where κ (s) is some function decreasing to zero and continuous in the neighborhood

of zero and b > 0 is a smoothing parameter. With the above notation, under

stationarity conditions, an estimator of (3) is given by T−1
P

1≤i,j≤N Γ̂bijT . Then we

define the sample estimator

α̂T :=
T−1

P
1≤i,j≤N Γ̂bijT°°°Σ̂T − F̂T

°°°2
2

and will show that it is asymptotically equivalent to use either α̂T or α0, where α0

is as in (2). To make this statement formal, we require some conditions. Comments

about the following technical conditions are deferred to the next Subsection.

Condition 4 (1.)
¯̄̄
F̂ijT − Fij

¯̄̄
= Op

¡
T−1/2

¢
(∀i, j) where F = EF̂T ;

(2.) #
n
1 ≤ i, j ≤ N : Fij 6= F̂ijT

o
. Nβ, β ≥ 0;
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(3.) kF − Σk22 ³ Nγ, γ > 0;

(4.) = T := N/T such that , β and γ satisfy

¡
1/2Nβ−1/2 ∨ 1/2N (1+γ)/2

¢
= o (Nγ) .

Condition 5 Suppose u, v ∈ {1, 2, 3, 4}. Consider the u and v tuples (i1, ..., iu) , (s1, ..., su) ∈

Nu and (j1, ..., jv) , (t1, ..., tv) ∈ Nv such that s1 ≤ ... ≤ su < su + r ≤ t1 ≤ ... ≤ tv

for some r ∈ N. Then, there exists a sequence (θr)r∈N, where θr . r−a with a > 3

such that

|Cov (Yt1jv · · ·Ytujv , Ys1i1, ..., Ysuiu)| ≤ θr.

Condition 6 In (4) above,

(1.) κ : R→ R is a decreasing positive function, continuous from the right with left

hand limits such that lims→0+ κ (s) = 1 and
Z ∞

0

[κ (s)]2 ds <∞.

(2.) b→∞ such that b = o
¡
T 1/2

¢
.

Condition 7 (Yt)t∈N is a N dimensional vector of nondegenerate random variables

with finite and stationary 8th moment.

Hence, we have consistency of the estimated shrinkage parameter and the fea-

sible shrinkage estimator.

Theorem 8 Under Conditions 4, 5, 6, and 7,

(1.) £
N1−γ¤−1 (α̂T − α0) = op (1) ,

where α0 = O ( N1−γ) = o (1) ;

(2.)°°°α̂T F̂T + (1− α̂T ) Σ̂T − Σ
°°°
2
=
°°°α0F + (1− α0) Σ̂T − Σ

°°°
2

©
1 + op

¡
1/2N (1−γ)/2¢ª .
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Below, we provide comments about Theorem 8, and in the subsequent Subsec-

tion, we remark on the technical conditions of the paper.

2.1 Remarks on Theorem 8

Theorem 8 gives a rate of convergence uniformly in

°°°α0F + (1− α0) Σ̂T − Σ
°°°
2
,

where 1/2N (1−γ)/2 → 0 by Condition 4 (4.). Note that → 0 is not required, but

it is allowed. We may also have →∞ as long as Condition 4 is satisfied (remarks

about this condition can be found in the next Subsection). Note that Theorem 8 is

not concerned with consistency of Σ̂T , but only assures that with high probability,

the shrunk estimator α̂T F̂T + (1− α̂T ) Σ̂T will perform better than Σ̂T under the

Frobenious norm.

Moreover, if F is full rank, then we can usually expect αF + (1− α) Σ̂T to be

invertible when α > 0 even though Σ̂T is rank deficient. This intuition can be

made formal in the special case F = vIN , where IN is the identity matrix and v a

positive constant. Then,

det
³
αvIN + (1− α) Σ̂T − λIN

´
= (1− α)N det

µ
Σ̂T −

(λ− αv)

(1− α)
IN

¶
and Σ̂T has arbitrary eigenvalue ω := (λ− αv) / (1− α) ≥ 0 (because Σ̂T is pos-

itive semidefinite), implying λ = (1− α)ω + αv > 0 (which is the corresponding

eigenvalue of the shrunk estimator). Therefore, the minimum eigenvalue of this

shrunk estimator is always larger than the one of the sample covariance matrix.

We now turn to specific comments regarding the Conditions of the paper.
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2.2 Remarks on the Technical Conditions

2.2.1 Condition 4

Part (1.) in Condition 4 implies that F̂ijT is root-n consistent. Part (2.) says that F̂T

and F are constrained so that there are at most O
¡
Nβ
¢
elements to be estimated

in F , while the others are taken to be fixed and known. The simplest way to achieve

this is by setting at most O
¡
Nβ
¢
elements to be nonzero in F and estimate them

using F̂T . We give some examples.

Example 9 Suppose F := vIN where v =
XN

i=1
Σii/N. Then, F̂T = v̂IN where

v̂ =
XN

i=1
Σ̂iiT/N. In this case, Σ̃T shrinks all the off diagonal elements of Σ̂T

towards zero and the diagonal towards the mean of its diagonal elements, in both

cases by a factor (1− α) . In this case, we need
¡
1/2N1/2 ∨ N

¢
= o (Nγ). This is

the estimator used in Ledoit and Wolf (2004), but with different restrictions on Σ.

Example 10 Suppose the data can be divided in groups and we constraint the

correlation between groups to be zero. Controlling for the number of groups and

elements in each group would allow us to satisfy Condition 4. Many examples, also

based on factor models, can be generated once we restrict between groups correla-

tions to be zero. Details can be left to the interested reader.

Part (3.) implies that F 6= Σ, and controlling γ we also control the order of

different elements in F and Σ. Part (4.) is the crucial condition of the paper and

relates the coefficients β and γ together with the ratio T := N/T . A simple

example shows that these conditions do not define an empty set.

Example 11 Suppose F and F̂T are diagonal, then β = 1. Suppose γ > 1, which
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is surely satisfied if, for example, kΣk22 ³ Nγ. Then, Condition 4 (4.) is satisfied

for T → c > 0 and we may even have T →∞ at, e.g., a logarithmic rate.

It is interesting to note that if T → c > 0, the result of the paper does not

cover the case β = 1 (i.e. F and F̂T are diagonal) and Σ is diagonal as well. In this

case, we do require T → 0. In practice, we would often use shrinkage for a matrix

Σ such that Σ and F are different (i.e. γ > 1) because the number of entries to

be estimated in F is relatively small (e.g. β ≤ 3/2). In this case T → c > 0 is

allowed.

It is useful to compare with the results in Ledoit and Wolf (2004) and in partic-

ular with their Assumption 2. We note that a necessary condition for Assumption

2 in Ledoit and Wolf is kΣk22 = O (N) .We will show this below. Based on another

restrictive assumption on the higher order crossdependence structure, Ledoit and

Wolf show that using F proportional to the identity allows for successful shrinkage.

Theorem 8 does not cover this case, though it is quite restrictive, as this would

imply β = γ = 1 and T → c > 0, as remarked before. In this case, we require

T → 0. This is the price one has to pay for lifting the iid condition and restrictive

conditions on the higher order crossdependence structure of the data (Assumption

3 in Ledoit and Wolf). Clearly, the results in Ledoit and Wolf do not allow for, say

kΣk22 ³ N2, which is covered by this paper. Hence, the present result and the one

in Ledoit and Wolf are somehow complementary. We remark that what makes the

approach of Ledoit andWolf work is that under their conditions, they can show that

(1− E)
°°°Σ̂T

°°°2
2
= op (N) (they actually show it in L2) while

°°°Σ̂T − Σ
°°°2
2
= Op (N).

This cannot be done under the present, more general conditions, and a different

route had to be used.
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To see that Assumption 2 in Ledoit and Wolf implies kΣk22 = O (N), write

Σ = PΛP 0 where Λ is the matrix of eigenvalues and P is the matrix of orthonor-

mal eigenvectors. Define Xt := PYt. Assumption 2 in Ledoit and Wolf says thatXN

i=1
EX8

ti = O (N) (using our notation). By Jensen inequality, this implies

O (N) =
NX
i=1

EX8
ti ≥

NX
i=1

¡
EX2

ti

¢4
=

NX
i=1

Λ4ii = Trace
¡
Λ4
¢
.

However, by the standard inequality for means (e.g. Hardy et al. 1999), the above

display, together with Remark 2, gives

O (N) = Trace
¡
Λ4
¢
≥ N−1 £Trace ¡Λ2¢¤2 = N−1 ¡kΣk22¢2 ,

so that
XN

i=1
EX8

ti = O (N) implies, but does not necessarily imply

kΣk22 = O (N) .

Note that Assumption 3 in Ledoit and Wolf also imposes a further restriction on

the cross-sectional dependence of the data (not used here), which is satisfied by a

restricted class of random variables like Gaussian random variables.

2.2.2 Condition 5

Condition 5 can be verified by deriving the weak dependence coefficients of Doukhan

and Louhichi (1999). Condition 5 is satisfied by a wide range of time series mod-

els. It is weaker and much easier to derive than strong mixing, and Doukhan and

Louhichi (1999) give important examples of processes satisfying conditions of this

type. Ledoit and Wolf (2004) assume independence.
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2.2.3 Condition 6

Condition 6 is standard for the estimation of the spectral density at frequency zero.

For the purpose of this paper only convergence in probability is required, and we

may just require
Z ∞

0

κ (s) ds < ∞ instead of
Z ∞

0

[κ (s)]2 ds < ∞. However, this

would not allow us to directly refer to well known results, which are based on L2

consistency for the sample variance of a partial sum of dependent random variables.

Finally, note that there are other alternatives for the estimation of the variance

of the sample mean of dependent observations: block bootstrap, sieve bootstrap,

subsampling etc. (see Bühlmann, 2002, Politis, 2003, for reviews). Clearly any of

these other approaches could be used as an estimator of (3) in place of (4).

2.2.4 Condition 7

From the proofs it is evident that stationarity is mainly used to simplify the nota-

tion in the definition of Γ̂ijT (s) . Under suitable conditions, we could allow (Yt)t∈N

to be heterogeneous and interpret Σ to be the arithmetic average of (EYtY 0
t )t∈{1,...,T}

and similarly for other quantities that will be defined in the next section. Details

can be left to the interested reader.

3 Simulation Study

Ledoit and Wolf (2004) carry out a simulation study to verify the small sample

properties of their estimator. Theorem 8 says that we need to account for time

series dependence. However, it is interesting to see what is the effect of dependence

in practice. In the simulation examples we carry out below we can see that there

is no substantial gain unless there is some moderate time series dependence across
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all the (i, j) terms. Here is an explanation for this. To keep it simple, suppose that

in Condition 4 γ = 1 and = 1. Then, by Lemma 15 (below),

α0 =
T−1

P
1≤i,j≤N V ar

³
T−1/2

PT
t=1 YtiYtj

´
E
°°°F − Σ̂T

°°°2
2

³ (NT )−1
X

1≤i,j≤N
V ar

Ã
T−1/2

TX
t=1

YtiYtj

!
,

which is the average over the variances of the (i, j) sample covariances. Hence, if

T−1X
t=2

Cov (Y1iY1j, Yt,iYt,j) ' 0

for many i and j’s, then, averaging over (i, j) would considerably decrease the

impact of dependence on the estimator. Hence, shrinkage can be thought to be

somehow robust to departures from independence.

The Monte Carlo study is carried out as follows. Simulate several sequences

of vectors and compute their covariance using the covariance shrinkage proposed

here. In particular we choose the constrained estimator to be as in Example 9. This

way, results can be compared with the shrunk estimator used for iid observations

and proposed by Ledoit and Wolf (2004). We want to verify if in practice we

should worry too much about weak dependence. For all the simulated data, we

compute E
°°°Σ̂∗T (α̂T )− Σ

°°°2
2
where Σ̂∗T (α) := αF̂T + (1− α) Σ̂T , and as usual Σ is

the true covariance matrix. We also compute the percentage relative improvement

in average loss (PRIAL), i.e

PRIAL (Σ∗T (α̂T )) = 100
E
°°°Σ̂∗T (α̂T )− Σ̂T

°°°2
2
− E

°°°Σ̂T − Σ
°°°2
2

E
°°°Σ̂T − Σ

°°°2
2

.

The expectations are computed (approximated) using 1000 Monte Carlo replica-

tions, and standard errors are also computed.

The smoothing function in Condition 6 is chosen to be κ (s) = (1− |s|) I{|s|≤1},

which is the Bartlett kernel. For b = 1 it corresponds to the case when no time
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series dependence is accounted for, as the covariance terms all drop. We consider

the cases b = 1, 5, so that in the second case, 4th order autocovariance terms are

retained in the estimation of Γ̂bijT .When b = 1, we just recover the exact estimator

considered in Ledoit and Wolf (2004).

For comparison reasons, we also compute Σ̂∗T (α) for fixed values of α = 0, .1, .2, ..., 1.

Clearly, for α = 0 the PRIAL is zero, while for α = 1 we would be using the con-

strained estimator F̂T .

Details on the simulated data are as follows. The sample is T = 40 from an

N = 20 dimensional vector autoregressive process (VAR) of order one. The matrix

of autoregressive coefficients is diagonal with diagonal entries in [0, .8] , and [.5, .8] in

a second simulation example. These coefficients were obtained by simulating an N

dimensional vector of [0, .8] and [.5, .8] uniform random variables. The innovations

are iid Gaussian vectors with diagonal covariance matrix, whose coefficients were

simulated from a lognormal with mean one and scaling parameter σ = .25, .5, 1, 2

(σ is the standard deviation of the logs of the observations). Different values of

σ allows us to assess changes in performance as the diagonal entries becomes less

concentrated around their mean equal to one. As σ increases, F̂T becomes noisier

and more biased for Σ so that shrinkage is less justified. Results show that when

the scaling parameter σ is equal to 1, the PRIAL is quite small becoming negative

when σ = 2. Hence, we also report the same results when σ = 1 but N = 40 to see

if there is a relative improvement, which indeed happens to be substantial, despite

the increased variability and bias in F̂T . A larger N implies that Σ̂T is noisier, and

we can argue more strongly for shrinkage despite the bias in F̂T . Finally, in a third

simulation, we consider the case of non diagonal true covariance matrix. To this

end we use the same VARmodel with autoregressive coefficients in [0, .8] and [.5, .8]
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, but we set the covariance matrix of the innovations to be one along the diagonal

and .25 off the diagonal. In this case, we consider N = 20, 40, to see the effect of

increasing the cross-sectional dimension and the time series dependence when the

true covariance matrix is not diagonal. The results seem to be representative of the

behaviour of the covariance shrinkage estimator in the presence of exponentially

decaying time series dependence. Note that for a VAR(1), Condition 5 is satisfied

for any a > 0. All the results are reported in Table I, Panels A, B, C and D.

Remark 12 For the experimental results in Panel A and B we have β = γ = 1,

using the notation in Condition 4. By Theorem 8, the estimator might not be

consistent, in this case, unless → 0. For the experiments in Panel C and D, we

have β = 1 and γ = 2 and the estimator is consistent also for → c > 0.

Table I.

Panel A. Diagonal Covariance, VAR Coefficients in [0, 0.8]
 Values of

Estimated Alpha
b=5 b=1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 b=5 b=1

N=20
Sigma=.25 MEAN 9.94 11.55 35.33 29.17 23.79 19.20 15.40 12.38 10.16 8.73 8.08 8.23 9.16 0.72 0.61

SE 0.12 0.16 0.33 0.26 0.19 0.14 0.10 0.06 0.04 0.03 0.03 0.03 0.02 5.E-03 4.E-03
PRIAL 71.9% 67.3% 0.0% 17.5% 32.7% 45.7% 56.4% 65.0% 71.2% 75.3% 77.1% 76.7% 74.1%

Sigma=.5 MEAN 18.21 19.45 39.20 32.77 27.38 23.04 19.75 17.51 16.32 16.18 17.08 19.04 22.04 0.60 0.51
SE 0.19 0.23 0.42 0.32 0.24 0.17 0.13 0.10 0.09 0.08 0.07 0.05 0.02 5.E-03 4.E-03
PRIAL 53.5% 50.4% 0.0% 16.4% 30.2% 41.2% 49.6% 55.3% 58.4% 58.7% 56.4% 51.4% 43.8%

Sigma=1 MEAN 43.88 43.54 50.14 44.32 40.77 39.49 40.49 43.76 49.30 57.12 67.20 79.57 94.20 0.36 0.29
SE 0.56 0.59 0.80 0.59 0.46 0.41 0.40 0.41 0.40 0.36 0.29 0.18 0.04 4.E-03 3.E-03
PRIAL 12.5% 13.2% 0.0% 11.6% 18.7% 21.2% 19.3% 12.7% 1.7% -13.9% -34.0% -58.7% -87.9%

Sigma=2 MEAN 70.99 68.71 63.11 62.77 67.81 78.20 93.97 115.09 141.58 173.44 210.66 253.25 301.20 0.17 0.13
SE 1.54 1.57 1.70 1.38 1.30 1.36 1.44 1.47 1.40 1.23 0.95 0.55 0.08 3.E-03 2.E-03
PRIAL -12.5% -8.9% 0.0% 0.5% -7.4% -23.9% -48.9% -82.4% -124.4% -174.8% -233.8% -301.3% -377.3%

N=40
Sigma=1 MEAN 76.74 79.36 128.37 108.55 92.93 81.53 74.33 71.34 72.57 78.00 87.65 101.50 119.56 0.49 0.41

SE 0.53 0.63 1.20 0.87 0.62 0.46 0.39 0.37 0.38 0.35 0.29 0.18 0.04 3.E-03 3.E-03
PRIAL 40.2% 38.2% 0.0% 15.4% 27.6% 36.5% 42.1% 44.4% 43.5% 39.2% 31.7% 20.9% 6.9%

Fixed AlphaEstimated Alpha
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Panel B. Diagonal Covariance, VAR Coefficients in [0.5, 0.8]
 N=20 b=5 b=1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 b=5 b=1

Sigma=.25 MEAN 19.64 31.23 82.12 67.38 54.35 43.02 33.41 25.50 19.30 14.81 12.02 10.95 11.58 0.66 0.46
SE 0.36 0.51 0.79 0.63 0.48 0.35 0.24 0.16 0.09 0.06 0.05 0.05 0.05 4.E-03 3.E-03
PRIAL 76.1% 62.0% 0.0% 17.9% 33.8% 47.6% 59.3% 68.9% 76.5% 82.0% 85.4% 86.7% 85.9%

Sigma=.5 MEAN 34.16 44.30 90.24 74.81 61.51 50.32 41.26 34.31 29.48 26.77 26.18 27.70 31.35 0.59 0.41
SE 0.47 0.65 0.99 0.77 0.58 0.42 0.29 0.20 0.14 0.12 0.11 0.09 0.06 4.E-03 3.E-03
PRIAL 62.1% 50.9% 0.0% 17.1% 31.8% 44.2% 54.3% 62.0% 67.3% 70.3% 71.0% 69.3% 65.3%

Sigma=1 MEAN 82.27 85.45 109.23 94.72 84.03 77.16 74.12 74.90 79.50 87.93 100.18 116.26 136.16 0.40 0.28
SE 1.00 1.18 1.65 1.23 0.91 0.70 0.60 0.57 0.56 0.52 0.43 0.28 0.09 4.E-03 3.E-03
PRIAL 24.7% 21.8% 0.0% 13.3% 23.1% 29.4% 32.1% 31.4% 27.2% 19.5% 8.3% -6.4% -24.6%

Sigma=2 MEAN 131.66 125.75 120.08 116.14 119.85 131.20 150.19 176.83 211.11 253.03 302.60 359.81 424.66 0.21 0.14
SE 2.53 2.61 2.92 2.28 2.00 1.98 2.05 2.09 2.01 1.78 1.38 0.81 0.15 3.E-03 2.E-03
PRIAL -9.6% -4.7% 0.0% 3.3% 0.2% -9.3% -25.1% -47.3% -75.8% -110.7% -152.0% -199.6% -253.7%

N=40
Sigma=1 MEAN 143.81 169.86 293.19 245.21 205.27 173.35 149.47 133.62 125.80 126.02 134.26 150.54 174.84 0.50 0.35

SE 1.12 1.64 2.69 2.02 1.46 1.02 0.72 0.56 0.50 0.48 0.42 0.28 0.09 3.E-03 2.E-03
PRIAL 50.9% 42.1% 0.0% 16.4% 30.0% 40.9% 49.0% 54.4% 57.1% 57.0% 54.2% 48.7% 40.4%

Panel C. Non-Diagonal Covariance, VAR Coefficients in [0, 0.8]
 N=20 b=5 b=1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 b=5 b=1

MEAN 24.33 24.48 33.38 28.67 25.26 23.16 22.36 22.87 24.67 27.78 32.20 37.91 44.94 0.43 0.37
SE 0.23 0.24 0.39 0.29 0.23 0.20 0.19 0.19 0.19 0.17 0.14 0.09 0.02 4.E-03 3.E-03
PRIAL 27.1% 26.6% 0.0% 14.1% 24.3% 30.6% 33.0% 31.5% 26.1% 16.8% 3.5% -13.6% -34.6%

N=40
MEAN 92.72 93.78 131.39 112.19 98.29 89.69 86.39 88.38 95.67 108.26 126.15 149.33 177.81 0.42 0.36
SE 0.72 0.73 1.20 0.86 0.66 0.61 0.64 0.67 0.67 0.61 0.49 0.29 0.04 3.E-03 3.E-03
PRIAL 29.4% 28.6% 0.0% 14.6% 25.2% 31.7% 34.2% 32.7% 27.2% 17.6% 4.0% -13.7% -35.3%

Panel D. Non-Diagonal Covariance, VAR Coefficients in [0.5, 0.8]
 N=20 b=5 b=1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 b=5 b=1

MEAN 52.64 55.85 77.77 66.47 57.79 51.73 48.29 47.46 49.25 53.66 60.68 70.32 82.58 0.44 0.31
SE 0.49 0.59 0.93 0.69 0.52 0.43 0.40 0.40 0.39 0.36 0.29 0.19 0.05 4.E-03 3.E-03
PRIAL 32.3% 28.2% 0.0% 14.5% 25.7% 33.5% 37.9% 39.0% 36.7% 31.0% 22.0% 9.6% -6.2%

N=40
MEAN 206.93 220.93 309.80 264.15 229.23 205.02 191.54 188.78 196.74 215.43 244.83 284.96 335.81 0.42 0.30
SE 1.64 1.99 3.12 2.23 1.64 1.38 1.37 1.43 1.44 1.33 1.07 0.65 0.10 4.E-03 3.E-03
PRIAL 33.2% 28.7% 0.0% 14.7% 26.0% 33.8% 38.2% 39.1% 36.5% 30.5% 21.0% 8.0% -8.4%

As we mentioned above, when time dependence is moderate across all the series

(Panel B and D), accounting for time dependence can be advantageous. However,

the difference for the estimators based on b = 5 and b = 1 decreases as shrinkage

becomes less desirable. For σ < 2, the estimated α0 when b = 5 is usually closer to

the true optimal α0, assuming the true optimal α0 to be close to the α that gives

the highest PRIAL in the results above.
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4 Asymptotics for Covariance Shrinkage Estima-

tors

Proof of Proposition 3. Differentiating with respect to α,

dE
°°°αF + (1− α) Σ̂T − Σ

°°°2
2

dα

= 2
X

1≤i,j≤N
E
³
αFij + (1− α) Σ̂ijT − Σij

´³
Fij − Σ̂ijT

´
= 2

X
1≤i,j≤N

∙
αE
³
Fij − Σ̂ijT

´2
+ Cov

³
Fij, Σ̂ijT

´
− V ar

³
Σ̂ijT

´¸
,

which, imposing the constraint, implies the result because Cov
³
Fij, Σ̂ijT

´
= 0, as

F is non-stochastic.

We introduce some notation.

Notation 13 Γij (s) := Cov (YtiYtj, Yt+s,iYt+s,j) , ΓijT := Γij (0)+2
PT−1

s=1 (1− s/T )Γij (s) .

Moreover, k...kp,P is the Lp norm (p = 1, 2).

The following lemmata are used to prove Theorem 8.

Lemma 14 Under Conditions 5, 6, and 7,

E
°°°Σ̂T − Σ

°°°2
2
³ N

and

E

¯̄̄̄
¯
Ã X
1≤i,j≤N

Γ̂bijT/T

!
− E

°°°Σ̂T − Σ
°°°2
2

¯̄̄̄
¯ = o ( N) .

Proof. By Condition 5,

E
°°°Σ̂T − Σ

°°°2
2
=

X
1≤i,j≤N

V ar

Ã
1

T

TX
t=1

YtiYtj

!

≤ 2
N2

T 2
max

1≤i,j≤N

X
1≤t1≤t2≤T

Cov (Yt1iYt1j, Yt2iYt2j)

. N2

T
= N.
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By Condition 7, YtiYtj is nondegenerate (∀i, j) hence we must also haveX
1≤i,j≤N

V ar

Ã
1

T

TX
t=1

YtiYtj

!
& N2

T
min

1≤i,j≤N
V ar (YtiYtj) ³ N ,

implying the first part of Lemma 14. For arbitrary, but fixed i, j, define St :=

(1− E)YtiYtj. Condition 5 implies (e.g. Doukhan and Louhichi, 1999),X
1≤r1≤r2≤r3≤∞

EStSt+r1St+r2St+r3 ≤
∞X
r=1

(r + 1)2 θr <∞, (5)

which implies that the fourth mixed cumulant of (St, St+r1, St+r2, St+r3) is summable

in (r1, r2, r3). Noting

V ar

Ã
1

T

TX
t=1

YtiYtj

!
=

ΓijT
T

by Condition 6 and (5), we deduce,

max
1≤i,j≤N

°°°Γ̂bijT − ΓijT

°°°
1,P
= o (1)

using Theorem 1 in Andrews (1991) and the results in Anderson (1970, ch .8).

We give the rate of growth of E
°°°F̂T − Σ̂T

°°°2
2
.

Lemma 15 Under Conditions 4, 5 and 7

E
°°°F − Σ̂T

°°°2
2
= kF − Σk22 + E

°°°Σ̂T − Σ
°°°2
2
³ Nγ.

Proof. Adding and subtracting Σ2ij,

E
°°°F − Σ̂T

°°°2
2
=

X
1≤i,j≤N

h³
F 2
ij − 2FijEΣ̂ijT + Σ2ij

´
+
³
EΣ̂2ijT − Σ2ij

´i
= kF − Σk22 + E

°°°Σ̂T − Σ
°°°2
2

³ Nγ

because, by Lemma 14,

E
°°°Σ̂T − Σ

°°°2
2
= O ( N) = o (Nγ) ,
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because Condition 4 (4.) gives 1/2N (1+γ)/2 = o (Nγ) which implies N = o (Nγ)

and because kF − Σk22 ³ Nγ by Condition 4 (3.) .

We have the final lemma before the proof of Theorem 8.

Lemma 16 Under Conditions 4, 5, and 7,

°°°F̂T − Σ̂T

°°°2
2
− E

°°°F − Σ̂T

°°°2
2
= op (N

γ)

Proof. By direct calculation,

°°°F̂T − Σ̂T

°°°2
2

=
°°°³F̂T − F

´
+ (F − Σ) +

³
Σ− Σ̂T

´°°°2
2

[adding and subtracting F and Σ]

=
X

1≤i,j≤N
[³F̂ijT − Fij

´2
+ (Fij − Σij)

2 +
³
Σij − Σ̂ijT

´2
+ 2

³
F̂ijT − Fij

´
(Fij − Σij)

+2
³
F̂ijT − Fij

´³
Σij − Σ̂ijT

´
+ 2 (Fij − Σij)

³
Σij − Σ̂ijT

´]
[expanding the square]

= kF − Σk22 + op (N
γ) ,

using the following, which are easily derived using Condition 4,

X
1≤i,j≤N

³
F̂ijT − Fij

´2
= Op

¡
NβT−1

¢
= Op

¡
Nβ−1¢ = op (N

γ) , (6)

because there are Nβ nonzero elements in the sum and F̂ijT is root-n consistent,

X
1≤i,j≤N

³
Σij − Σ̂ijT

´2
= Op ( N) = op (N

γ) ,

by Lemma 14,

X
1≤i,j≤N

³
F̂ijT − Fij

´
(Fij − Σij) = Op

¡
NβT−1/2

¢
= Op

¡
1/2Nβ−1/2¢ = op (N

γ) ,
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by similar reasoning as for (6),

X
1≤i,j≤N

³
F̂ijT − Fij

´³
Σij − Σ̂ijT

´
≤
°°°F̂T − F

°°°
2

°°°Σ̂T − Σ
°°°
2
= Op

µ°°°Σ̂T − Σ
°°°2
2

¶
= op (N

γ) ,

by Lemma 14,

X
1≤i,j≤N

(Fij − Σij)
³
Σij − Σ̂ijT

´
≤ kF − Σk2

°°°Σ̂T − Σ
°°°
2
= Op

¡
1/2N (1+γ)/2

¢
= op (N

γ) ,

(7)

by Lemma 14 and Condition 4 (3.). By Lemmata 15 and 14,

E
°°°F − Σ̂T

°°°2
2
= kF − Σk22 +O ( N) .

Hence, °°°F̂T − Σ̂T

°°°2
2
− E

°°°F − Σ̂T

°°°2
2
= op (N

γ) .

We can now prove Theorem 8.

Proof of Theorem 8 (1.). By the triangle inequality,¯̄̄̄
¯̄̄P1≤i,j≤N Γ̂bijT/T°°°F̂T − Σ̂T

°°°2
2

−
E
°°°Σ̂T − Σ

°°°2
2

E
°°°Σ̂T − F

°°°2
2

¯̄̄̄
¯̄̄

≤

¯̄̄̄
¯̄̄P1≤i,j≤N Γ̂bijT/T°°°Σ̂T − F̂T

°°°2
2

−
E
°°°Σ̂T − Σ

°°°2
2°°°Σ̂T − F̂T

°°°2
2

¯̄̄̄
¯̄̄+

¯̄̄̄
¯̄̄E
°°°Σ̂T − Σ

°°°2
2°°°Σ̂T − F̂T

°°°2
2

−
E
°°°Σ̂T − Σ

°°°2
2

E
°°°Σ̂T − F

°°°2
2

¯̄̄̄
¯̄̄

= I+ II.

Control over I.

By Lemma 16, the Continuous Mapping Theorem and Lemma 15,µ°°°F̂T − Σ̂T

°°°2
2
/Nγ

¶−1
p→
µ
E
°°°F − Σ̂T

°°°2
2
/Nγ

¶−1
³ N−γNγ = O (1) . (8)
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By (8) and Lemma 14,

I =
1°°°F̂T − Σ̂T

°°°2
2
/Nγ

¯̄̄̄
¯ X
1≤i,j≤N

Γ̂bijT/T − E
°°°Σ̂T − Σ

°°°2
2

¯̄̄̄
¯ /Nγ

= Op (1)

¯̄̄̄
¯ X
1≤i,j≤N

Γ̂bijT/T − E
°°°Σ̂T − Σ

°°°2
2

¯̄̄̄
¯ /Nγ

= op
¡
N1−γ¢ .

Control over II.

By direct calculation, Lemma 14 and (8),

II =
E
°°°Σ̂T − Σ

°°°2
2°°°Σ̂T − F̂T

°°°2
2
E
°°°Σ̂T − F

°°°2
2

¯̄̄̄
E
°°°Σ̂T − F

°°°2
2
−
°°°Σ̂T − F̂T

°°°2
2

¯̄̄̄

=
E
°°°Σ̂T − Σ

°°°2
2
/Nγ°°°Σ̂T − F̂T

°°°2
2
/NγE

°°°Σ̂T − F
°°°2
2
/Nγ

¯̄̄̄
E
°°°Σ̂T − F

°°°2
2
−
°°°Σ̂T − F̂T

°°°2
2

¯̄̄̄
/Nγ

= op
¡
N1−γ¢ .

Hence, I+II= op ( N
1−γ) , which gives [ N1−γ]

−1
(α̂T − α0) = op (1) . To see that

α0 = O ( N1−γ), we just use Lemmata 14 and 15. Then, Condition 4 (4.) shows

that N1−γ = o (1).
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Proof of Theorem 8 (2.). We have the following chain of inequalities,

°°°α̂T F̂T + (1− α̂T ) Σ̂T − Σ
°°°
2

=
°°°α̂T

³
F̂T − F

´
+ α̂TF + (1− α̂T ) Σ̂T − Σ

°°°
2

[adding and subtracting α̂TF ]

≤
°°°α̂TF + (1− α̂T ) Σ̂T − Σ

°°°
2
+ α̂T

°°°F̂T − F
°°°
2

[by Minkowski inequality]

=
°°°(α̂T − α0)

³
F − Σ̂T

´
+ α0F + (1− α0) Σ̂T − Σ

°°°
2
+ α̂T

°°°F̂T − F
°°°
2

[adding and subtracting α0
³
F − Σ̂T

´
]

≤
°°°α0F + (1− α0) Σ̂T − Σ

°°°
2
+ (α̂T − α0)

°°°F − Σ̂T

°°°
2
+ α̂T

°°°F̂T − F
°°°
2

[by Minkowski inequality]

= I+ II+ III.

We shall bound the three terms above. First, note that by Theorem 8 (1.),

(α̂T − α0) = op
¡
N1−γ¢ , (9)

and

α̂T = Op (α0) ³ N1−γ = o (1) . (10)

Control over II.

By Lemmata 16 and 15,

°°°F − Σ̂T

°°°2
2
= E

°°°F − Σ̂T

°°°2
2
+ op (N

γ) = Op (N
γ) ,

hence using (9),

II = op
¡
N1−γ/2¢ .
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Control over III.

Using (6) and (10)

III = op
¡
N1−γ/2¢ .

Control over I.

For the bound to be uniform, we only need to show that the following holds in

probability: °°°α0F + (1− α0) Σ̂T − Σ
°°°
2
& N1−γ/2.

Using &p to mean that & holds in probability and similarly for ³p,°°°α0F + (1− α0) Σ̂T − Σ
°°°2
2

=
°°°α0 (F − Σ) + (1− α0)

³
Σ̂T − Σ

´°°°2
2

[adding and subtracting α0Σ]

= α20 kF − Σk22 + (1− α0)
2
°°°Σ̂T − Σ

°°°2
2
+

X
1≤i,j≤N

2α0 (Fij − Σij)
³
Σ̂ijT − Σij

´
[expanding the square]

& p N, (11)

because

(1− α0)
2
°°°Σ̂T − Σ

°°°2
2
³ p N ,

[by (10) and Lemma 14]

α20 kF − Σk22 = O
¡
2N2−γ¢ = o ( N)

[by (10) and Condition 4 (3.) ]X
1≤i,j≤N

α0 (Fij − Σij)
³
Σ̂ijT − Σij

´
= Op

¡
3/2N3/2−γ/2¢ = o ( N) ,

by (10), (7) and Condition 4 (4.). By Condition 4 (4.), N1−γ/2 = o
³
[ N ]1/2

´
, so
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that

I &p [ N ]
1/2 & N1−γ/2.

To write II and III in terms of I times an o (1) quantity we solve II=III= x [ N ]1/2 =

op
¡
N1−γ/2¢ for x to find x = op

¡
1/2N (1−γ)/2¢, which implies the result.
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