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Abstract

Instrumental variable estimators can be severely biased in finite samples when the degree of

overidentification is high or when the instruments are weakly correlated with the endogenous

regressors. This paper proposes an estimator based on the use of the principal components of

the instruments as a means of dealing with these issues. By promoting parsimony, the proposed

estimator can exhibit considerably lower bias, often without giving up asymptotic efficiency. To

make the estimator operational, a simple but flexible rule to select the relevant components for

estimation is suggested. Simulation evidence shows that this approach yields significant finite

sample improvements over other instrumental variable estimators.

JEL Classification : C13, C31, C51.

Keywords : Many instrument asymptotics, principal components.

∗We would like to thank Alastair Hall, Melvyn Weeks and seminar participants at the the University of Cambridge for

helpful comments. Diego Winkelried gratefully acknowledges the financial support of the ORS award, St John’s College

Benefactors’ Scholarship for Research and the Gates Cambridge Trust. The usual disclaimer applies.
†Corresponding author: +511 6132000, diegowq@cantab.net

1



1 Introduction

The two stage least squares estimator – or generalised instrumental variable (IV) estimator (IVE

hereafter) – is known to be biased in finite samples if the degree of overidentification is high or when

the instruments are weakly related to the endogenous variables (Donald and Newey, 2001; Stock,

Wright, and Yogo, 2002). A growing body of literature has responded to these issues by proposing

alternative estimators based either on large-sample approximations of the asymptotic moments,

or on the asymptotic framework advanced in Bekker (1994), where the number of instruments

grows proportionately to the sample size. The results are some form of k-class, limited information

maximum likelihood (LIML) or Jackknife IV estimators. Many of them successfully reduce the bias of

the IVE but at the cost of fatter tails in their sampling distribution, and hence the lack of finite sample

moments. This phenomenon implies that extreme estimates are likely to be encountered in actual

empirical situations, and hence authors like inter alia Hahn, Hausman, and Kuersteiner (2004) and

Davidson and MacKinnon (2006) suggest using estimators known to posses moments instead.

A different way to address the many instrument bias is related to the specification of the reduced

form of the endogenous variables. Hahn (2002) determines an efficiency bound for the variance of

a general class of estimators in the linear IV framework, and shows that strikingly none of the ‘no

moments’ estimators can achieve it under the many instrument asymptotics. Moreover, Hahn makes

a strong case for parsimony by showing that an IVE using only a subset of the available instruments

may be consistent and fully efficient. More precisely, for an IVE to be optimal it is required that

(A) the reduced form of the endogenous variables is parsimonious enough; and (B) this simpler

specification has asymptotically the same explanatory power as the specification involving the full set

of instruments.

Meeting requirements (A) and (B) can be regarded as a model selection problem: one may think

of the many instrument situation as an overparameterised model that contains both relevant IV (that

help achieving identification and improve the precision of the estimates) and irrelevant IV (that

overfit the regression and add bias to the IVE), and therefore the goal of the researcher would be

to retain the relevant IV only. Hall, Rudebusch, and Wilcox (1996) find that determining which

instrument among a set is weak with pretesting procedures may paradoxically exacerbate the poor

properties of the IVE. Also, simulation evidence in Hall and Peixe (2003) suggests that the inclusion

of irrelevant IV can lead to a serious deterioration in the quality of the asymptotic distributions as

an approximation to finite sample behaviour (see also Hall, Inoue, Jana, and Shin, 2007, for related
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information criteria designed to select relevant moment conditions).

On the other hand, Chao and Swanson (2005) find that it is the combined effect of a large number

of possibly weak instruments, and not neccesarily the individual contribution of an instrument, what

affects the properties of the IVE, suggesting that model selection may be performed over sets of IV.

This task is certainly feasible but computationally cumbersome. Kapetanios (2006) deals with the

selection problem by optimising criteria developed in Donald and Newey (2001) among discrete IV

sets. Notwithstanding the significant improvements that are obtained for various estimators, the need

for non-standard optimisation techniques makes the procedure rather costly.

Another strand of the literature explores alternatives to model selection aimed to parsimoniously

summarise large sets of IV, based on the idea of using as much information as possible, while avoiding

the possible pitfalls of using too many instruments. Kapetanios and Marcellino (2006) and Bai and

Ng (2010) impose a factor structure to the IV set and use a few estimated factors as the IV in the

estimation. In a similar fashion, Kapetanios and Marcellino (2008) study the performance of an IVE

based on a limited set of instruments obtained as the weighted average of the original IV. Finally, Okui

(2010) proposes a shrinkage method to deal with the first stage of the IVE procedure. The method

consists of shrinking part of the OLS coefficient estimates from the regression of the endogenous

variables on the instruments and then using the predicted values of the endogenous variables,

based on the shrunk coefficient estimates, as the instruments (see also Carriero, Kapetanios, and

Marcellino, 2008). Consistent with Hahn’s findings, these procedures yield estimators with improved

finite sample performance.

This paper is concerned with the use of principal components (PC henceforth) as a simple way

to address the many (and possibly weak) instrument problem. In particular, we study the properties

of a standard IVE that uses few PC of the original IV as instruments (PCIVE). The idea dates back to

Kloek and Mennes (1960). Another early account is given in Amemiya (1966) who shows that the

use of PC as instruments increases finite sample efficiency by increasing the number of degrees of

freedom. More recently, Doran and Schmidt (2006) use PC methods in GMM estimation to attenuate

the bias effects of near-singularities in the moment conditions. The novelty of this paper is proving

certain optimality results using many (weak) instrument asymptotics as the conceptual framework.

Bai and Ng (2010) show that PC have desirable properties as instruments when the IV set is

generated by a factor structure. Nonetheless, we attempt not to impose such explicit structure in

our analysis since the resulting IVE can perform badly if the IV do not admit a factor representation
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(cf., Kapetanios and Marcellino, 2006). We rely instead on a vague notion of correlation among

instruments (assumption A5 or A6 below), as the merits of the PCIVE depend on the instruments

displaying some correlation.1 To this end, we also propose using a simple rule to select the relevant

components such that conditions (A) and (B) are satisfied. This rule adjusts to the amount of

correlation found in the IV set, and simulation evidence indicates that the PCIVE performs well even

when the IV are only slightly correlated.

Even though our theoretical analysis emphasises the dimensionality reduction aspects of PC, we

also explore in a simulation study if such technique has also instrument selection advantages. In fact,

there may be situations where the PC approach lies between data reduction and model selection.

On the one hand, PC effectively reduce the dimensionality of a vector space by means of linear

combinations that give rise to maximum variations (a comprehensive treatment on the subject can

be found in Jolliffe, 2002). On the other hand, since the PC are just rotations of the original IV that

can be unmistakably sorted, it may ease the separation of the irrelevant combinations of IV from the

relevant ones. This effect is observed when the irrelevant instruments are close to be orthogonal to

the relevant ones.

The rest of the paper is organised as follows. Section 2 describes the setup, briefly summarises

the properties of the IVE in highly overidentified models and explores the benefits of parsimony.

Then, section 3 presents the PCIVE along with a heuristic rule to retain the relevant components.

The PCIVE is found to be consistent and nearly efficient under many instrument asymptotics, even

when the instruments are weak. Section 4 presents a Monte Carlo study aimed to cover situations of

empirical interest, and evaluates the performance of the PCIVE and the associated retention rule in

such situations. Section 5 gives concluding remarks. The derivations of the main results are displayed

in two appendices.

2 Econometric Framework

Consider the simultaneous equations model

y = Xβ + u and X = ZΠ+ V , (1)

1 An advantage of such general structure is that the ‘large-sample’ condition used in previous studies Kn/
p

n→ 0, where
Kn is the number of instruments and n is the sample size, is not required in our asymptotic approximations.
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where y is the n × 1 vector containing n observations of the dependent variable; X is the n × G

matrix with observations of the endogenous regressors; Z is the n× Kn matrix of IV, where Kn > G;

Π is a Kn × G matrix of coefficients with rank G; and V is an n× G matrix of disturbances, whose

rows are correlated with the corresponding elements of u, the n× 1 vector of disturbances in the

structural equation. Note that Z and Π are allowed to depend on n but to alleviate the notation this

dependence is left implicit and noted only through Kn. The interest lies in estimators of the G × 1

vector of unknown coefficients β .

For simplicity we take all regressors as endogenous. This is without loss of generality since

the matrices of regressors and instruments may be written, respectively, as X = (X END, X EX) and

Z = (X EX,Z∗) and the discussion below on variable reduction applies to Z∗ only. In other words, the

relevant quantity is the degree of overidentification Kn−G. Alternatively, one may understand (1) as

the simultaneous equations system after partialling X EX out.

We focus our attention on ‘many instrument’ asymptotic approximations when both Kn and n

grow simultaneously. We work with the following assumptions:

A1 Let ui be the i-th element of u and v i
′ be the i-th row of V . The vectors (ui , v i

′)′ for i = 1,2, . . . , n

contain iid normally distributed variables,
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0
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. (2)

A2 Z is a sequence of non-random variables. The smallest eigenvalue of S = Z ′Z/n is bounded away

from zero as n→∞. Also, if z i
′ denotes the i-th row of Z, then max

i≤n
{z i
′z i/n} → 0.

A3 Define a sequence ψn of non-decreasing numbers such that ψn → ∞ as n → ∞, and define a

G× G positive definite matrix Ψ, such that

Ψ=
Π′Z ′ZΠ
ψn

for all n . (3)

A4 The matrix Π is such that ‖Π‖2 = (ψn/n)O(‖S‖−1 ) for all n, where ‖Π‖2 = tr(Π′Π) denotes the

square of the Frobenius norm for Π.

These assumptions are made for tractability and can be weakened in several ways. The normality

in Assumption A1 may be exchanged, as done in Hansen, Hausman, and Newey (2008), by bounding
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the moments of (ui , v i
′)′ and by assuming the independence between ui and v i − (ρ/σuu)ui , the

residuals from the population regression of v i on ui . As stressed in Bekker (1994), non-normality can

affect the moments of the asymptotic distribution of the IVE, when Kn grows in tandem with n, as

long as they depend on the ratio Kn/n→ αK (see also van Hasselt, 2010). The asymptotic distribution

of the proposed estimator does not depend on such ratio and thus we conjecture that it is robust to

deviations from normality.

The asymptotic non-singularity of S in Assumption A2 is merely a normalisation. Part of the

analysis below is made in terms of the eigenvalues of S and no result is altered if some of them are

equal to zero. In the case where S is rank deficient, one should use Kn = rank(Z ′Z) instead of taking

Kn as the number of columns in Z. On the other hand, Z may be allowed to be random and one

could interpret the results as being conditional on this IV set. With this in mind, we will refer to the

degree of collinearity between the columns of Z loosely as ‘correlation’. If unconditional inference is

pursued, then u and V need to be mean independent from Z to Op(1/
p

n ), a minimum requirement

for the asymptotic identification in IV models. In short, we consider the instruments to be valid and

the reduced form for X to be correctly specified. On the other hand, the condition on the typical

row z i
′ in Assumption A2 is required for the asymptotic distribution of the IVE to be normal, and is a

standard regularity condition (Hahn, 2002; Okui, 2010). It imposes a restriction of a balanced design

so that no single observation is dominant.

Assumption A3 places a restriction on the informational content of the ‘new’ instruments as

Kn increases. If Z is allowed to be random, this equality can be weakened to a probability limit,

without altering the form of asymptotic moments of the IVE. The matrix Ψ in (3) is proportional the

concentration parameter, a widely accepted measure of the relevance of the IV set, so this assumption

implies that it grows at a rate ψn as n→∞. Standard textbook asymptotics implicitly assume that

Kn/ψn→ 0, the many instrument framework of Bekker (1994) sets that both Kn and ψn grow at the

same rate as n, whereas many weak instrument scenarios (cf. Stock, Wright, and Yogo, 2002; Chao

and Swanson, 2005) often impose ψn = O(Kn) and Kn = o(n) or even ψn = o(Kn).

Finally, Assumption A4, which can be viewed as a refinement to Assumption A3, states that the

order of magnitude of the elements of Π is inversely proportional to the order of magnitude of the

elements of S. From the definition of S, Assumption A3 implies that ‖Ψ‖ ≤ (n/ψn)‖Π‖2‖S‖. The

left-hand-side of this inequality is O(1) whereas the right-hand-side is O(1) only under Assumption

A4. Hence, Assumption A4 simply places a bound for ‖Π‖ such that the implied restriction on the
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explanatory power of the instruments in (3) also holds in matrix norms.

2.1 The Case for a Lower-Dimensional IVE

We study the properties of estimators based on an IV set Z̄ obtained from linear combinations of the

original Z, and spanning a lower-dimensional space. More formally, Z̄ = ZC where C is a Kn × rn

matrix of rank rn (rn ≥ G is required for identifiability). This setup encompasses estimators obtained

by selecting a subset of the IV, a case that corresponds to C being formed by rn columns of a Kn× Kn

identity matrix, and the standard IVE (i.e., the two-stage least squares estimator) when C is of full

rank Kn.

Define the projection matrix of rank rn to be P = Z̄(Z̄ ′Z̄)−1Z̄ ′, so the IVE of β in system (1)

associated with the reduced set of instruments is

b = (X ′PX)−1X ′P y . (4)

The standard IVE, which will be referred to as bK , is based on a set of orthogonality conditions

whose sample counterparts are given by Z ′u/n= 0. Similarly, the estimator in (4) is associated with

sample moment conditions of the form Z̄ ′u/n = C ′(Z ′u)/n = 0, so the lower-dimensional IVE can

be thought as the standard IVE after retaining only rn linear combinations of the original moment

conditions or after dropping Kn − rn of such linear combinations. Which combinations are retained

depends on the choice of C .

Let M = In− P and define

En ≡ En(C) =min
γ

¨

(ZΠ− Z̄γ)′(ZΠ− Z̄γ)
ψn

«

=
Π′Z ′MZΠ
ψn

(5)

as the G × G matrix that measures how well ZCγ approximates ZΠ in a least squares sense. It may

be interpreted as the approximation error in explaining the regressors X with the lower-dimensional

set Z̄ instead of the full Kn-dimensional set Z, i.e. a loss (in terms of fit) due to the mispecification of

the first stage regression. For all n, En is bounded from above by Ψ (trivially, when γ= 0 or M = In)

and from below by 0 (when Z̄γ= ZΠ or MZ = 0).

Proposition 1 (see appendix A.1) presents the Bekker-type asymptotic distribution of b for

Kn/n→ αK ∈ [0,1], rn/n→ α ∈ [0,1] and En→ E as n grows.
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PROPOSITION 1. Let Assumptions A1, A2 and A3 hold with ψn = n. In addition, if

p
n
� rn

n
−α
�

= o(1) and
p

n
�

En− E
�

= o(1) , (6)

the asymptotic distribution of b is given by

p
n( b−β −αHρ )

d−→ N(0, HWH ) , (7)

where

H = (Ψ− E +αΩ)−1 , (8a)

W = σ̄(Ψ− E) +α(σuu−αρ′Hρ)Ω−α(Ψ− E)Hρρ′H(Ψ− E) , (8b)

σ̄ = σuu−αρ′Hρ −αρ′H(Ψ− E)Hρ . (8c)

COROLLARY 1 (IVE). The estimator bK that uses Z as instruments has En = 0 and α= αK .

For the IVE bK , the conditions in (6) simplify to Kn/n= αK + o(1/
p

n ) and the result is identical

to Bekker’s. It can be seen that this estimator is inconsistent unless αK = 0, which for ψn = n

corresponds to the standard large sample asymptotics based on a fixed Kn = K .

The reason for the inconsistency is that the least squares estimation used for the projection of

the first stage tends to fit too well, rendering an overfitted PK X which is still correlated with u if the

number of instruments is large. The estimating equations akin to the estimator bK sets (incorrectly)

X ′PK u/n equal to zero. The expectation of this random vector equals to (Kn/n)ρ, a quantity that

does not vanish asymptotically with many instruments (i.e., αK 6= 0) and the inconsistency of the

IVE follows.2 Alternatively, with an increasing number of instruments, the elements of Π become

incidental parameters. If αK = 0, the sampling variability in the estimation of Π in the first stage can

be neglected asymptotically, but if αK 6= 0 this uncertainty passes through the asymptotic moments

of bK . The following Corollaries discuss conditions for the consistency of b.

COROLLARY 2 (Consistency). Suppose rn/
p

n→ ᾱ <∞. Then, b
p
−→ β and

p
n( b−β ) d−→ N( ᾱ(Ψ− E)−1ρ, σuu(Ψ− E)−1 ) . (9)

2 This observation is the basis for the bias-corrected estimator (16) used in section 4.
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Contrary to what happens with bK , the estimator (4) is consistent when rn = o(n). This is clearly

seen as b equates to zero estimating equations with expectation E[X ′Pu/n ] = (rn/n)ρ → 0. Thus,

the consistency under rn = o(n) can be interpreted as coming from estimating equations that are

well ‘centered’ in the limit. Furthermore, by comparing (9) to (7), it is interesting to note that the

influence of overidentification on the asymptotic variance of b vanishes. This is a way to prevent the

incidental parameter phenomenon from arising. Even though a fuller comparison between the mean

squared errors of bK and b may be required, one may suspect that the fact that (4) is consistent as

Kn→∞ would be manifested in a superior finite sample performance.

COROLLARY 3 (
p

n - Consistency). If rn = o(
p

n ) or

rn = o(
p

Kn ) , (A)

then b is
p

n-consistent and (7) simplifies to

p
n( b−β ) d−→ N(0, σuu(Ψ− E)−1 ) . (10)

Hahn (2002) shows that the efficiency bound of estimators of β in model (1) is equal to σuuΨ−1,

which corresponds to the asymptotic variance of bK when αK = 0. Remarkably, this bound does not

depend on α, which suggests it can be achieved if the rate at which the number instruments grow

as n → ∞ is controlled without altering the fit of (1), so the conditions under which the standard

large-n asymptotic results hold are restored. Under condition (A), b is not only consistent but the

expectation of
p

n( b − β ) becomes o(1). Also, the asymptotic variance of b in Corollary 3 differs

from Hahn’s efficiency bound by the limit of the error matrix (5). The smaller this matrix, the closer

b becomes to an asymptotically efficient estimator. Corollary 4 follows naturally.

COROLLARY 4 (Efficiency). If condition (A) is satisfied and

En→ E = 0 , (B)

then Avar(b) = σuuΨ−1/n.

In other words, if the lower-dimensional IV set provides asymptotically the same fit as the original

IV set in predicting the endogenous regressors, then (4) achieves the efficiency bound. In line with our

previous discussion, when (A) holds (ᾱ= 0), then ‖En‖= o(1) becomes sufficient for the asymptotic
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efficiency of b with many instruments.

2.2 Many Weak Instruments

Within the many instrument framework, where the concentration parameter is set to grow at a linear

rate with the sample size (ψn = n), one may get an insight into the effects of weak identification

when the matrix Ψ is of small magnitude. Thus, the bias of bK (which is a function of Ψ−1) can be

sizeable with weak instruments even when the degree of overidentification (as measured by αK) is

small.

Corollaries 2 and 3 indicate that either if rn = O(
p

Kn ) or condition (A) hold, the lower-

dimensional IVE is consistent regardless of the magnitude of Ψ. Next, we enquire whether this

estimator remains consistent under an asymptotic sequence proposed by Chao and Swanson (2005),

which is especially designed to suit many weak instrument situations. Chao and Swanson consider

the case where the concentration parameter grows at a slower rate than the number of instruments,

Π′Z ′ZΠ= o(Kn).

PROPOSITION 2. Let Assumptions A1, A2 and A3 hold and consider that

Kn

ψn
→∞ and

p

Kn

ψn
→ c ≥ 0 as n→∞ . (11)

(a) If rn = O(Kn), then b
p
−→ β +Ω−1ρ.

(b) If either (i) rn = O(
p

Kn ) and c = 0 or (ii) condition (A) holds, b
p
−→ β .

From Proposition 2(a), the many weak instrument situation is rather unfavourable for bK and any

IVE that does not reduce the dimensionality of the IV enough. The probability limit of such estimators

equals the probability limit of the OLS estimator. On the contrary, there are conditions under which

the lower-dimensional IVE is consistent in this case as well. It is important to mention that the results

in Proposition 2 hold regardless of the rate of growth of Kn vis-à-vis the rate of growth of n, we

may have either Kn = O(n) or Kn = o(n). Hence, the IVE may be asymptotically biased due to weak

identification even if Kn/n→ 0, whereas the lower-dimensional IVE has also the ability to overcome

such source of inconsistency.

Chao and Swanson (2005) find that under the sequence in (11) for c = 0 estimators such as

the limited information maximum likelihood (LIML) and the bias-corrected IVE (BCIVE hereafter)
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proposed in Donald and Newey (2001), see equation (16) below, are consistent. This is the same

condition in Proposition 2(b) for the consistency of the lower-dimensional IVE with rn = O(
p

Kn )

and is a slightly stronger requirement if (A) holds (since consistency is achieved even if c > 0).

This is a significant result for the practical relevance of the lower-dimensional IVE. Hahn,

Hausman, and Kuersteiner (2004) argue that albeit consistent, the LIML estimator and the BCIVE

can perform poorly in finite samples. The reason seems to be their lack of finite sample moments.

Consequently, Hahn, Hausman, and Kuersteiner and also Davidson and MacKinnon (2006) suggest

avoiding these ‘no moments’ estimators if the sample size is not too large and when the instruments

are weak. The lower-dimensional IVE is just an IVE and as such possesses up to rn−G−2 moments,

and thus it may achieve the performance in terms of bias of the ‘no moments’ estimators without

displaying their unduly volatility due to fat tails. The fulfilment of condition (A) is key in this respect

(and so are related results as in Proposition 4 below).3

3 Principal Components IVE

Given the first stage equation in (1), the choice of C that maximises the variance of the sample

moment conditions – thereby minimising the variance of the estimator associated to them – subject

to a rank rn constraint, is

C r = argmax
C

¨

var(Z̄ ′u)
n

= σuuC ′SC subject to C ′C = I rn

«

. (12)

It is not difficult to verify that the columns of C r are the eigenvectors associated with the largest rn

eigenvalues of S. Therefore, the rn optimal linear combinations contained in Z̄ = ZC r are the first

principal components (PC) of Z. Furthermore, it can be shown that C = C r also minimises over C

the norm of the sample ‘efficiency loss’ as defined in (5), i.e. C r = argminC{‖En(C)‖} (see appendix

B.1), as well as many other optimality criteria (see Amemiya, 1966).

Consider the lower-dimensional IVE (4) that uses the first rn PC of Z as instruments, PCIVE

henceforth. Its properties will crucially depend on the determination of rn. It is well-known that each

eigenvalue of S equals the variance of the associated PC, and the sum of all eigenvalues – which

equals tr(S) – measures the total variation of the IV set Z. Thus, by construction small values of rn

3 Furthermore, it can be concluded from the derivations in appendix A.1 that if rn = o(
p

ψn ), then
p

ψn(b−β) converges
to the normal distribution in (10). We would need to impose more structure to arrive to more definite conclusions, but
this result illustrates the desirable effects of parsimony even in the many weak instrument case.
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can easily satisfy the parsimony requirement (A) but may fail to fulfill condition (B) if not enough

variation of the IV set is captured by the PC approximation. Similarly, large values of rn are likely to

satisfy with ease the ‘goodness-of-fit’ condition (B) but may violate (A).

The ability of PC to successfully reduce the dimensionality of Z, i.e. to deliver rn small relative

to Kn while keeping En = o(1), depends on the degree of linear dependence among the variables in

Z. In other words, some restrictions on the structure of Z need to be imposed for PC to be effective.

It is important to note that the amount of correlation among the columns in Z (a quantity that will

be denoted by the symbol µ) will be reflected in the pattern of the eigenvalues of S (quantities that

will be associated with the symbol λ), though the mapping from correlations to eigenvalues may be

untractable for general cases (cf. Silverstein and Choi, 1995).

To illustrate this point suppose, with no loss of generality, that the columns of Z have zero mean

and that the diagonal elements in S are equal to one, so S can be thought of as a sample correlation

matrix. Furthermore, consider the simple case where S can be described by an equicorrelation matrix

of the form S ' (1 − θ)IK + θ JK , where JK is a Kn × Kn matrix full of ones and θ is a constant.

In this case, the columns of Z can be interpreted as belonging to one ‘group’ in terms of their

correlation structure, with the correlation between any two columns of Z being approximately equal

to µ ' θ/(1− θ). The maximum eigenvalue of S is λ1 ' Knθ + (1− θ) whereas the remaining are

λk ' 1− θ for 1 < k ≤ Kn. Importantly, whereas all eigenvalues of S measure to some extent the

degree of association among the columns of Z, only the maximum is scaled by the dimension of S:

λ1 = O(Kn) if θ 6= 0 and λk = O(1) for k > 1. Note that if θ = 0 (or µ = 0), then λk = O(1) for all

k, a situation where no significant association is found among the columns of Z and thus PC will be

ineffective as a dimensionality reduction technique.

Similarly, consider now the case where Z can be divided into two nearly orthogonal blocks

Z = (Z1 , Z2), i.e. Z1
′Z2 ' 0, of dimensions n×s1 and n×s2 (s1+s2 = Kn), respectively, such that S is

block-diagonal with blocks S1 ' (1−θ1)I s1
+θ1J s1

and S2 ' (1−θ2)I s2
+θ2J s2

for some constants θ1

and θ2. For f = {1,2}, the eigenvalues of S are λ1 f ' s f θ f +(1−θ f ) = O(s f ) and λk f ' 1−θ f = O(1)

for 1 < k ≤ s f . In this case, Z contains variables belonging to two groups, and therefore at most two

eigenvalues are scaled by the dimensions of the groups. Define µ = max{θ1/(1− θ1),θ2/(1− θ2)}

as the maximum correlation between any two columns of Z. At least one eigenvalue of S grows for

increasing s1 or s2 if either θ1 6= 0 or θ2 6= 0 or both, i.e. if µ 6= 0, whereas λk = O(1) for all k

when µ = 0. Following this line of reasoning, in more general cases Z may contain several groups of
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variables, in which case the existence of a group is signalled by a ‘large’ O(sn) eigenvalue (associated

with non-zero correlations) and several ‘small’ O(1) eigenvalues. The ultimate goal of PC is to rotate

the data to ease the separation of the linear combinations of Z associated with the large eigenvalues.

We analyse two alternative and somehow complementary generalisations of the group structure

described above, and the workings of the PC technique as a means of achieving conditions (A) and

(B) in each case. First, we focus on the eigenvalues of S directly, and then we study the problem by

bounding the maximum correlation among the variables in Z.

3.1 Analysis Based on Eigenvalues

In this section, the following assumption on S is made:

A5 Consider two non-decreasing sequences {sn} and {mn} such that sn = O(Kεs
n ) for 0 ≤ εs ≤ 1 and

mn = O(Kεm
n ) for 0≤ εm < 1. Let λk(S) be the k-th largest eigenvalue of S. Then,

λk(S) = O(sn) for k = 1, . . . , mn , and λk(S) = O(1) for k = mn+ 1, . . . , Kn .

It is important to mention that even though this assumption rules out certain types of instruments

(for instance, mutually exclusive dummy variables), it is a flexible formulation which is satisfied by

several covariance patterns common in econometrics (e.g., factor structures, random effects, mixture

models, among others).

The parameter εs is a measure of the strength of the linear dependence between the newly added

instruments and the original IV set as n→∞ and Kn→∞. The parameter εm controls the number of

underlying groups contained in Z. In a leading case, for instance the two-group example described

above, sn = O(Kn) hence λ1 f = O(Kn) for at most mn = O(1) different f . Thus, if εm = 0 and εs = 1

the underlying group structure observed in the sample is preserved as n and Kn grow. By letting εs < 1

we allow the new instruments to have a weaker association with those in the original IV set, whereas

the case 0 < εm < 1 indicates that Z may contain an increasing number of groups that grows at a

slower rate than Kn as Kn → ∞. Therefore, under Assumption A5, the increases in the sample size

and the number of instruments required to perform the many instrument asymptotic approximations

need not to preserve the group structure in the sample.

Consider the PCIVE that uses the first rn PC of Z as instruments, with rn = O(Kεr
n ) for 0< εr < 1.

Proposition 3 (appendix B.2) gives conditions on εr , εs and εm for the PCIVE to satisfy (B):
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PROPOSITION 3. Let Assumptions A4 and A5 hold. Let also rn = O(Kεr
n ) for 0< εr < 1. If 1−2εs < εm <

εr , then ‖En‖= o(1) as Kn→∞. Otherwise, ‖En‖= O(1).

The main conclusion drawn from Proposition 3 is the intuitive result that PC is effective to satisfy

condition (B) for small values of εm, i.e. either a finite or slowly increasing number of underlying

groups in the IV set, and for relatively large values of εs. In the leading case where εm = 0 and εs = 1

(more precisely, 1/2 < εs ≤ 1), any choice of εr > 0 and hence of rn delivers the desired result.

Moreover, if εr is set such that εr < 1/2, then condition (A) is also satisfied.

By the same token, ‖En‖ = O(1), a violation of (B), if the number of groups grows faster than

the number of selected PC εm > εr , since in the limit the variation of Z captured by the rn first PC

will not fully represent the original IV set; or when εs < (1− εm)/2, since under these circumstances

the association among the columns of Z is too weak to separate them into a small number of groups.

Cases where εs ' 0 or εm ' 1 imply λk(S)' O(1) for all k, which occur for instance when Z contain

a covariance structure resembling that of mutually exclusive dummy variables. Needless to say, PC

would fail to meet condition (B), regardless on whether (A) is satisfied or not.

As a practical implication, Proposition 3 suggests performing an analysis on the eigenvalues of S

prior to the IV estimation, as to determine likely values for εm and εs. If the IV set can be viewed as

being represented closely enough by εm ' 0 and εs > 1/2, then the conclusions in section 2 suggest

that the PCIVE will deliver finite sample improvements over alternative IVE.

3.2 Analysis Based on Correlations

Next, we take a different viewpoint to evaluate the usefulness of PC for IV estimation. In keeping

with standard approaches in multivariate analysis, we focus the attention on the correlations among

the columns of Z. Since our analysis is based on large samples, we make no distinction between the

population variance of the typical row of Z and its sample counterpart, S. We work with the following

assumption:

A6 The typical row of Z, z i , is drawn from a distribution with zero mean and covariance matrix

S = IKn
+ µΥ, where 0 < µ < 1 is a constant and where Υ is a symmetric matrix with zero

diagonal entries and non-diagonal entries within the interval [−1,1].

The parameter µ is the absolute value of the largest correlation between any two elements of z i .
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The determination of rn can be made through a heuristic rule designed to satisfy (A) and (B).

This is inspired by usual practices in the selection of those PC regarded as important in explaining the

main features of the original data, and are conveniently based on the eigenvalues of S. The proposed

rule dictates that only those PC accounting individually for at least a given share of the total variation

of the IV are to be retained. Formally,

RETENTION RULE. Retain the principal components of Z associated with eigenvalues greater than

K−δn tr(S).

Hence, the problem of determining rn translates into the selection of a suitable value for δ.4 If

δ = 1, this criterion boils down to the so-called Kaiser rule, which is a useful benchmark due to its

popularity (Jolliffe, 2002, ch. 6): only those PC with eigenvalues greater than the average are worth

selecting because such PC summarise individually more information than any single original variable.

Indeed, as mentioned earlier, if a subset of variables in the original IV can be represented as coming

from a single group, then this subset will produce a single eigenvalue of S that is greater than the

average tr(S)/Kn and the remaining eigenvalues below this threshold.5

PROPOSITION 4. Let Assumptions A4 and A6 hold, and the Retention Rule is used:

(a) If δ > 1/2, then condition (B) is met.

(b) For µ close to zero, there exists a scalar δ̄ ≤ 1 such that using the Retention Rule with δ < δ̄

satisfies (A).

The condition δ > 1/2 in Proposition 4(a) implies an increasing rn. Establishing the precise

rate at which rn grows under the proposed rule is a complicated problem. Even so, although the

asymptotic distribution of the eigenvalues of S for Kn/n → α is known to exist, no closed-form is

available unless for the special case when S = IKn
(see Silverstein and Choi, 1995, and the references

therein). In face of this, Proposition 4(b) present a necessary condition to regulate rn as Kn grows.

If the columns of Z are uncorrelated (µ = 0), then (A) cannot be met using PC. The number of

PC in such situation is rn = Kn and the PC set is exactly Z. At the other end, if the columns of Z are

highly correlated, condition (A) is satisfied trivially as only a few PC can represent the entire IV set.

The parameter µ in Proposition 4(b) places an upper bound to the correlations among the columns

4 Strictly speaking, if r̃n is the number of components retained by this rule, then rn = max{r̃n, G} components are to be
used to identify β . However, since G is fixed the lower bound for rn can be safely ignored in the asymptotic analysis.

5 Another simple criterion for estimating the number of nontrivial PC is to include components that account jointly for a
given proportion of the total variance. The proposed rule can be easily adapted to such a criterion.
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of Z. This bound is close to zero (the proof of Proposition 4(b) in appendix B.4 relies on this fact),

stating that (A) can be satisfied even when the large IV set displays a small degree of correlation.

Remarkably, Proposition 4(b) rules out selecting the PC with the Kaiser rule (δ = 1) when µ is

small. This finding resembles the critique that this criterion tends to retain too many components

(Jolliffe, 2002, ch. 6). Indeed, if S is nearly a diagonal matrix (µ ' 0), it is expected the Kaiser rule

to retain about half of the PC, making rn = O(Kn) and thus violating (A). However, for δ < 1 the

threshold in the Kaiser rule, i.e. tr(S)/Kn, is increased by a factor of K1−δ
n , therefore increasingly

penalising the rate at which the PC are retained and promoting parsimony. Proposition 4(b) states

that a value δ < 1 exists such that (A) is reestablished as long as µ 6= 0.

If δ̄ is viewed as an upper bound for δ, one may conjecture that it depends positively on µ, so an

increase in µ would bring δ̄ closer to one. Recall that the scope of Proposition 4(b) is local, for small

values of µ, and so it may be the case that δ ≥ 1 satisfies condition (A) for relatively large values of µ.

Besides, since, as found in Silverstein and Choi (1995), the asymptotic distribution of the eigenvalues

of S depends on α, so does δ̄. One may intuitively expect this relationship to be inverse, as for a given

µ a larger IV set (associated with larger α) is likely to require a larger ‘penalty’ term K1−δ̄
n (and so a

smaller δ̄) to achieve (A).

We explore these conjectures numerically by performing a small simulation experiment to

evaluate the relationship δ̄ = δ̄(µ,α). We generate random matrices Z of dimension n×Kn, with each

row drawn independently from a multivariate normal distribution with zero mean and covariance

matrix S as described in Assumption A6. The matrix Υ is symmetric with zero diagonal entries, and

its non-zero entries are drawn from a uniform distribution with support [−1,1]. Hence, this setup

implies that the elements of z i are uncorrelated ‘on average’, though some correlation will arise

within a particular draw. As mentioned, the parameter µ controls the strength of such correlations.

Having generated Z we next seek for the maximum value of δ that makes the number of retained

components equal to rn = b
p

Knc, where bAc rounds A down to the nearest integer. This specification

is probably the most natural way to interpret condition (A) in practice, though it is certainly arbitrary.

We perform the evaluation for an equidistant 20-point grid µ ∈ [0.01,0.20] and selected values of α,

and report the average of δ̄ over 10,000 replications.6

[ Insert Figure 1 here ]

6 We also use n = 300. However, it is important to note that we found this function to depend on the ratio α regardless of
the absolute values of Kn or n. Furthermore, the results in Figure 1 where remarkably robust to the number of replications
used in the numerical evaluation and to the distributional assumption made about the rows of Z.
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Figure 1 shows the results. For a given α the bound δ̄ is increasing in µ, whereas for a given µ it

is decreasing in α. For a given α, values of δ below the corresponding line (but above 1/2) render

a PCIVE satisfying conditions (A) and (B). These results confirm the statement of Proposition 4(b)

that δ̄ ≤ 1 for small µ. Also, the positive slopes of δ̄(µ,α = ᾱ) suggest that as µ increases beyond

what may be considered small, the bound for δ exceeds one for some values of α. This is particularly

true for very small values of α. Finally, a value of δ ' 0.8 seems to be a safe choice for (A) to hold in

parameterisations of interest.

4 Monte Carlo Simulations

Next we carry out a simulation study to assess the finite sample behaviour of the PCIVE relative

to other IVE, and under different PC retention criteria. To this end, we have slightly adapted the

designs in Hahn, Hausman, and Kuersteiner (2004) and in Davidson and MacKinnon (2006) to suit

our purposes.

4.1 Data Generation

We consider the single regressor case

yi = x i β + ui and x i = z i
′π+ vi with β = 1 , (13)

where ui and vi are drawn independently from a multivariate normal distribution with zero means,

var(ui) = var(vi) = 1 and corr(ui , vi) = ρ.

The vectors of instruments z i and first-stage coefficients π are partitioned as z i = (z∗i , za
i )

and π = (π∗′,0a
′)′. The first block z∗i is a set of dim(z∗i ) = K∗ relevant instruments, whereas

the second contains dim(za
i ) = a irrelevant instruments. Thus, the data generation process of x i

involves redundant instruments in the sense of Breusch, Qian, Schmidt, and Wyhowski (1999) and

Hall, Inoue, Jana, and Shin (2007). We take iid draws z∗i ∼ N(0,S∗) where, as in Assumption A6,

S∗ = IK∗+µΥ with Υ containing draws from a uniform distribution (we set the conservative value of

µ= 0.10), and za
i ∼ N(0, Ia) drawn independently from z∗i . The uncorrelatedness between z∗i and za

i

implies that PC will be effective to reduce the dimensionality of z i only under a stringent Retention

Rule.
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It is convenient to describe the properties PC as instruments in this setup. Let the matrix of

instruments be partitioned as Z = [Z∗ : Za ], so its sample correlation matrix will be approximately

equal to S = diag(S∗, Ia). As discussed in section 3, matrix S∗ contains, say, s eigenvalues above 1 and

the remaining K∗−s eigenvalues below unity. Thus, the spectral decomposition of S will be S = CΛC ′

with Λ = diag(Λ1, Ia,Λ2), where Λ1 is the s× s diagonal matrix that collects the s eigenvalues of S

above unity and Λ2 is the diagonal matrix whose entries are the K∗− s eigenvalues of S below unity.

It follows from the equality Λ= C ′SC that the K×K matrix of eigenvectors (the so-called ‘loadings’)

has the form

C =









C̄ K∗×s 0K∗×a Ĉ K∗×(K∗−s)

0a×s Ia 0a×(K∗−s)









therefore ZC = [Z∗C̄ : Za : Z∗Ĉ ] . (14)

The PC of Z used as instruments are Z̄ = ZC r , the first r columns of ZC . From (14) it is clear that if

r ≤ s, Z̄ will contain linear combinations of the relevant instruments Z∗ only, whereas if r > s the IV

set Z̄ also includes r−s irrelevant instruments. Thus, retaining too many PC will have adverse effects

on the bias of the PCIVE because of overidentification and instrument weakness.

On the other hand, the population R2 of the equation for x i in (13), which measures the strength

of the IV set, is

R2 =
π∗
′S∗π∗

1+π∗′S∗π∗
. (15)

By setting π∗ = (π,π, . . . ,π)′, then π and hence π∗ can be determined from a particular choice of

R2. In this setup, Hahn’s efficiency bound is given by σuu/Ψ= (1− R2)/R2.

4.2 Estimators

We consider the standard IVE bK , where the IV set include both relevant and irrelevant instruments

(z i). As a useful benchmark we also consider an IVE, dubbed IVE*, that includes only relevant

instruments in the estimation (z∗i ). In a sense this estimator is unfeasible because the data generating

process and hence the exact set of relevant instruments are not known in practice. However, as

discussed in the introduction, model selection procedures may render IVE* as a final choice.
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In addition, we also include a bias-corrected version of the IVE (BCIVE),

bBC = (X
′PK X − α̂X ′X)−1(X ′PK y − α̂X ′y) , (16)

where α̂ = (Kn − G − 1)/n. This estimator is consistent even when the instruments are weak in

the sense of section 2.2, and shares many desirable finite sample properties with more complex

estimators such as the LIML estimator, while being easier to compute. Besides, it has proven to

work well in other simulation studies (Donald and Newey, 2001; Kapetanios, 2006) and in general

constitutes an attractive choice in practice.

Finally, following the results in section 3.2 we consider two PCIVE. When δ = 1 the PC

selection rule becomes the Kaiser rule, which as discussed has the tendency of retaining (many)

more components than necessary and is likely to violate condition (A). Such an estimator is denoted

PCIVE1. By virtue of the results in Figure 1, we also consider the case when δ = 0.8, which raises

the threshold in the selection rule by a factor of K 0.2
n with respect to the Kaiser rule. We call this

estimator PCIVE0.8. It is important to mention that for a given sampling scenario simulated, PCIVE1

tended to retain about half of the K available PC, whereas PCIVE0.8 often selected only from 3 to 7.

4.3 Experiments and Results

The aim of the Monte Carlo study is to be as comprehensive and illustrative as possible within some

reasonable bounds. We run a total of 500 experiments, each using 50,000 replications, that are

divided according to which parameter, besides n and a, varies:

1. Set K∗ = 10 and R2 = 0.10, and evaluate ρ at each of 50 equidistant values from 0.10 to 0.90.

2. Set K∗ = 10 and ρ = 0.90, and evaluate R2 at each of 50 equidistant values from 0.01 to 0.20.

3. Set ρ = 0.90 and R2 = 0.10, and perform simulations for all 25 values of K∗ from 6 to 30.

Each experiment is performed four times for (n, a) = {(100,10), (100, 30), (300,10), (300,30)} (the

result of further experiments with different values for n and a are available upon request). Note that

when one parameter varies, the others are set to values that make the estimation of β challenging.

In particular, K∗ = 10 implies significant finite sample biases for IVE and IVE*.

As opposed to the IVE (and by extension to the PCIVE), the BCIVE is known not have moments

so its empirical distribution over replications displays fat tails, making summary statistics such as

the mean squared error meaningless. For this reason, we report results on the median absolute error
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(MAE, henceforth).7 To save space we do not discuss the results on bias as they were as expected:

IVE performed extremely poor due to the presence of za
i ; IVE* does better but the benchmark value

of K∗ = 10 and the relatively small samples used induced some noticeable finite sample bias; BCIVE

reported almost no (median) bias across experiments; and PCIVE0.8 did almost as well as the BCIVE.

In fact, the main source of MAE for the IVE, IVE* and PCIVE0.8 is its bias, the variances of these

estimators being relatively small, whereas for the BCIVE the main source is its variance. The PCIVE1

is a compromise between the IVE and the PCIVE0.8. The results on the MAE are displayed in Figures

2 to 4. In all cases, the vertical scales are comparable only between panels with the same value of n,

as increasing the sample size improves the performance of all estimators.

[ Insert Figure 2 here ]

We observe in Figure 2 that the MAE of the IVE, IVE* and PCIVE1 increases quickly with ρ. Recall

that since K∗ = 10, the number of instruments used in the estimation (but in the case of IVE*) is

K = 20 when a = 10 and K = 40 when a = 30. The performance of PCIVE1 is close to that of the

IVE* only when a = 10, so the complete IV set is not too polluted with irrelevant instruments. This

illustrates that even though the dimensionality of the IV set is reduced and hence some improvements

are observed with respect to the IVE, this PCIVE still exhibits the finite sample problems of the IVE,

as expected from the findings in Figure 1. Additionally, it is interesting to note that the PC technique

renders an estimator that performs closely to what a model selection procedure would produce,

insofar as the IV set is not too weak (the PCIVE1 deteriorates dramatically when a = 30, an effect

that is also clearly observed in Figure 4 below).

The behaviour of the BCIVE is different. Its MAE increases with ρ at a much lower rate than

the IVE*. The performance of the BCIVE is poor when n = 100 and improves relatively more than

the others when n = 300, even though in this last case the BCIVE seems to be far more volatile.

Conversely, the MAE of the PCIVE0.8 is quite insensitive to ρ and increases little with a. In a

comparison between IVE* and this PCIVE, we see that either dominates the other for all values of

ρ. The PCIVE0.8 dominates the IVE* when identification becomes difficult, i.e. for values of ρ higher

than, say, 0.40 or 0.50. For smaller values, IVE* is dominant. However, since the IVE* deteriorates

rapidly as ρ increases, the gap between the PCIVE and the IVE* is larger when the former performs

better than when the IVE* dominates.

7 Of course, for the IVE and the PCIVE the results using the root mean squared error are almost identical.
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[ Insert Figure 3 here ]

In Figure 3 we change the value of R2 setting ρ = 0.90, and hence the results lie in the area in

which the PCIVE0.8 outperforms all other estimators. Note that this is true for all the values of R2

considered, though the differences are less clear as the IV become stronger (as R2 approaches 0.2).

The improvements brought by the PCIVE0.8 can be sizeable when the IV set is very weak, and again

it is observed that the performance of this estimator worsens only slightly with a larger a. This is a

consequence of the consistency result in Proposition 2.

[ Insert Figure 4 here ]

Figure 4 (p. 34) shows the dependence of the MAE on the number of overidentifying restrictions.

What is remarkable is the behaviour of the PCIVE0.8. Whereas the MAE in other estimators increase

with the degree of overidentification, in a lesser extent for the case of the BCIVE, it decreases for the

PCIVE0.8 and tends to stabilise for K∗ ≥ 15. In our setup, an increase in K∗ causes two effects. Firstly,

for a given a, it reduces the proportion of irrelevant instruments so the IV set becomes stronger as a

whole. Secondly, it further overfits the first stage regression which translates into larger finite sample

biases. The first effect dominates for the PCIVE0.8, whereas the second is most important for the

other estimators. The PC obtained from stronger IV would deliver an estimator with low variance,

and almost unbiased when the number of PC is small compared to the number of IV. This is achieved

with δ = 0.8.

4.4 Back to the Retention Rule

In Figure 4 the MAE of PCIVE1 runs in parallel with the MAE of the IVE. This is a manifestation

that for the low value of µ in the simulations, rn = O(Kn) when δ = 1. To illustrate the connection

between the Retention Rule as computed in Figure 1 and the performance of the PCIVE, we run an

additional set of experiments whose results are depicted in Figure 5 (p. 34). We set n = 200 and

a = 0 and vary the value of K∗ while computing various PCIVE for different values of δ and µ. To

ease visualisation the results on the IVE and IVE* are omitted, but the results of the BCIVE – that do

not depend on µ – are included for reference.

[ Insert Figure 5 here ]
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We observe that for small values of µ (0.05 in the Figure), values for δ of about 0.90 or higher

give estimators that at some stage become sensitive to the degree of overidentification. An increase

in µ (to 0.15) widens the range of values δ can take while delivering a PCIVE with good sampling

properties. Indeed, the increase in µ betters the performance of all PCIVE in Figure 1, and as a result

the behaviour of the estimator with δ = 0.9 gets closer to that of δ = 0.8.

5 Concluding Remarks

Previous research (cf. Hahn, 2002) has established that within the linear IV framework in the

presence of many instruments, an IVE coming from a parsimonious specification that does not

sacrifice the explanatory power of the system using the full set of instruments may be asymptotically

optimal.

This paper has explored the use of principal components as a simple mean of achieving such

an estimator. In particular, we proposed a rule to select the appropriate components to be used as

instruments, in order to deliver an IVE that is consistent and asymptotically efficient when both

the number of instruments and the sample size go to infinity. The PCIVE is also consistent even if

the many instruments are weak in the sense of Chao and Swanson (2005). The curves depicted

in Figure 1 provide a guide to implement the rule in practice. Simulation evidence shows that the

PCIVE performs well in many circumstances of empirical interest and that it can mark a significant

improvement over alternative estimators. Moreover, the proposed estimator is free from the ‘no

moments’ problem that some alternatives display.

It is important to recall that PC exploits the relationship between the instruments alone, without

reference to their correlation with the endogenous variables. Given the asymptotic sequences used in

the theoretical analysis, and also the data generating process in our simulations, it can be argued that

an implicit assumption throughout the paper has been that these correlations are evenly distributed

across instruments: valid instruments are “equally relevant”. Hence, the performance of the PCIVE

may be affected in situations where there is a clear ranking among instruments based on relevance.

A promising route for further research would be to consider such setup and to analyse the use of

canonical correlations between Z and X (instead of PC of Z), in the spirit of Hall and Peixe (2003)

and Hall, Inoue, Jana, and Shin (2007), within a many instrument framework.

Finally, our analysis has ruled out cases where a set of mutually exclusive dummy variables
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are used as instruments, since in this case the instruments are orthogonal and the use of PC as a

variable reduction technique is futile. Nonetheless, the use of such instruments is often encountered

in applications and thus it may be fruitful to extend the methods discussed here to such situations.
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A Asymptotics

This appendix presents proofs of Propositions 1 and 2. The following lemma is an adaptation of Lemma 2 in

Bekker (1994, p. 678), which is based on the moment generating function of Wishart matrices:

LEMMA 1. Let U = Ū +U∗, where U∗ is an n× p matrix whose rows are iid normally distributed with zero mean

and nonsingular covariance matrix Ξ and Ū = E[U ] is a fixed n× p matrix. Also, let d be a p× 1 fixed vector

and P be an n× n fixed idempotent matrix of rank rn. Then,

E[U ′PUd ] = Rd + rnΞd , (A1a)

var(U ′PUd) = d ′Ξd(R+ rnΞ ) + d ′Rd Ξ+ rnΞdd ′Ξ+Ξdd ′R+Rdd ′Ξ , (A1b)

where R = Ū ′PŪ . Furthermore, consider a non-decreasing sequence θn such that θn→∞ as n→∞. If R/θn and

rn/θn converge as θn→∞ so that var(U ′PUd )/θn→ W ,

U ′PUd −E[U ′PUd ]
p

θn

d−→ N(0, W) . (A2)

To apply the Lemma to the simultaneous equations model (1), let U = (y , X), so that Ū = ZΠ(β , IG) and

U∗ = (u + Vβ , V). From (2), the covariance matrix of the typical row of U∗ is

Ξ=







σuu + 2ρ′β +β ′Ωβ ρ′ +β ′Ω

ρ +Ωβ Ω






. (A3)

Let L= (0 , IG) and d = (1 , −b̄′)′ where b̄ is the probability limit of b. It is easy to verify that

b− b̄ = (X ′PX)−1LU ′PUd , (A4)

and therefore the asymptotic distribution of b can be derived from that of LU ′PUd.

For brevity, call Ψn = Π′Z ′PZΠ/ψn = Ψ− En and its limit Ψn → Ψ̄ ≡ Ψ− E. Also, let δ = β − b̄. Using these

definitions, note that LŪ ′ = (ZΠ)′, Ūd = ZΠδ, LΞd = ρ + Ωδ, L′Ū ′PŪd = ψnΨnδ, LŪ ′PŪL′ = ψnΨn and

LΞL′ = Ω. It follows from (A1) that

E[ LU ′PUd ] =(ψnΨn + rnΩ)δ+ rnρ . (A5a)

var( LU ′PUd ) =(σuu + 2ρ′δ+δ′Ωδ )(ψnΨn + rnΩ) +ψn(δ
′Ψnδ)Ω+ . . .

. . . + rn(ρ +Ωδ)(ρ +Ωδ)
′ +ψn

�

(ρ +Ωδ)δ′Ψn +Ψnδ(ρ +Ωδ)
′	 . (A5b)
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A.1 Many Instruments - Proposition 1

Under many instrument asymptotics, ψn = n and Kn = O(n). Since at most rn = O(Kn) the result in (A5b)

indicates that var(U ′PU ) = O(n) and thus we set θn = n in Lemma 1. Furthermore,

X ′PX

n
=Ψn +

rn

n
Ω+Op

�

1
p

n

�

and
X ′Pu

n
=

rn

n
ρ +Op

�

1
p

n

�

, (A6)

so Slutsky’s theorem gives

b = β +
rn

n

�

Ψn +
rn

n
Ω
�−1

ρ + op(1)
p
−→ b̄ ≡ β +α(Ψ̄+αΩ)−1ρ , (A7)

where b̄ is the probability limit of b. From (A5a) and (A7),

E
�

LU ′PUd

n

�

=
�

Ψn +
rn

n
Ω
�

δ+
rn

n
ρ =

�� rn

n
−α
�

Ψ̄+α(Ψ̄−Ψn)
�

�

Ψ̄+αΩ
�−1
ρ . (A8)

Since Ψ̄−Ψn = En − E, then E[ LU ′PUd/
p

n ] = o(1) if the conditions (6) in Proposition 1 hold.

On the other hand, using (A7) it is straightforward to verify that Ψnδ =−(rn/n)(ρ +Ωδ ) + op(1).

Plugging this equality into (A5b) yields

var

�

LU ′PUd
p

n

�

= (σuu + 2ρ′δ+δ′Ωδ )
�

Ψn +
rn

n
Ω
�

+ . . .

. . . + (δ′Ψnδ )Ω−
rn

n
(ρ +Ωδ )(ρ +Ωδ )′ + op(1) . (A9)

Therefore, using (A4), (A2), the Cramér-Wold device and under conditions (6),

p
n( b− b̄ ) =

�

X ′PX

n

�−1
LU ′PUd
p

n

= (H + op(1) )
LU ′PUd −E[ LU ′PUd ]

p
n

+ op(1)
d−→ N(0, HWH) , (A10)

where H = plim(X ′PX/n)−1, cf. (A6), and W is the limit of (A9) with δ =−αHρ. Straightforward but tedious

manipulations give (8).

Corollaries

Corollaries 1 and 3 are direct implications of the previous analysis, for α = αK and En = E = 0, and α = 0

respectively.

For a proof to Corollary 2, note that since rn = O(
p

n ), then rn/n→ α = 0 yielding a consistent estimator, cf.
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(A7). Thus, we have now that b̄ = β , d = (1 , −β ′)′ and δ = 0. Furthermore, from (A8)

E
�

LU ′PUd
p

n

�

=
rnp

n
ρ = ᾱρ + o(1) , (A11)

and, therefore,

p
n( b−β ) = (H + op(1) ) · N(0, W) + ᾱHρ + op(1)

d−→ N( ᾱHρ, HWH ) , (A12)

where W = σuuΨ̄ is the limit of (A9) under the conditions of Corollary 2. Finally, under Corollary 4, Ψ̄=Ψ.

A.2 Many Weak Instruments - Proposition 2

Proposition 2(a): In this case rn = O(Kn) and hence ψn = o(rn) as an implication of sequence (11). Thus,

from (A5b) we have that var(U ′PU ) = O(rn) and so

X ′PX

rn
=
ψn

rn
Ψn +Ω+Op

�

1
p

rn

�

and
X ′Pu

rn
= ρ +Op

�

1
p

rn

�

. (A13)

The result follows from Slutsky’s theorem:

b = β + (Ω+ op(1) )
−1(ρ + op(1) ) = β + (Ω+ op(1) )

−1ρ + op(1)
p
−→ β +Ω−1ρ . (A14)

Propositions 2(b): Given either (i) rn = O(
p

Kn ) and
p

Kn = o(ψn), or (ii) rn = o(
p

Kn ),

(i)
rn

ψn
=

rn
p

Kn

·

p

Kn

ψn
= O(1)o(1) = o(1) or (ii)

rn

ψn
=

rn
p

Kn

·

p

Kn

ψn
= o(1)O(1) = o(1) . (A15)

Therefore, (A5b) indicates that var(U ′PU ) = O(ψn). Hence,

X ′PX

ψn
=Ψn +

rn

ψn
Ω+Op





1
p

ψn



 and
X ′Pu

ψn
=

rn

ψn
ρ +Op





1
p

ψn



 . (A16)

An application of Slutsky’s theorem gives

b = β +
rn

ψn

�

Ψn +
rn

ψn
Ω
�−1

ρ + op(1) = β + op(1)
p
−→ β . (A17)

Finally, the assertion in footnote 3 follows from the consistency of b (thus, δ = 0) and similar results to

equations (A11) and (A12) with ψn in lieu of n, because var(U ′PU) = O(ψn).
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B Principal Components IVE

This appendix is concerned with the results related to the PCIVE and the use of the Retention Rule. Proofs of

Propositions 3 and 4 are displayed below.

B.1 PC Approximations

Let C be the Kn × Kn matrix whose columns are given by the orthonormal eigenvectors of S and let Λ be the

diagonal matrix whose diagonal entries are the corresponding eigenvalues sorted in decreasing order. Let C r

be the Kn × rn matrix that contains the first rn columns of C and let C e be the Kn × (Kn − rn) matrix formed

by the remaining columns of C : C e
′C r = 0, C eC e

′ = C rC r
′ = IKn

, C e
′C e = IKn−rn

and C r
′C r = I rn

. Partition Λ

conformably into two diagonal matrices Λr and Λe with diagonal entries equal, respectively, to the largest rn

and the smallest Kn − rn eigenvalues of S. By the spectral decomposition of S we have that

S = CΛC ′ = C rΛrC r
′ +C eΛeC e

′ = Sr + Se , (B1)

so that Sr is the rn-rank approximation to S and Se is the residual from such approximation. Notice also that

since SC r = C rΛr ,

Z ′MZ

n
= S− SC r(C r

′SC r)
−1C r

′S = S−C rΛrC r
′ = S− Sr = Se . (B2)

Therefore, using this fact together with the definition En = (n/ψn)Π′SeΠ, cf. (5), and Assumption A4,

‖En‖ ≤ (n/ψn) · ‖Se‖ · ‖Π‖2 = (‖Se‖/‖S‖ )O(1) . (B3)

B.2 Analysis Based on Eigenvalues - Proposition 3

From Assumption A5, mn = O(Kεm
n ) = o(Kn) since εm < 1. Thus, by the spectral decomposition of S,

‖S‖2 =
Kn
∑

k=1

λk(S)
2 = mnO(s2

n) + (Kn −mn)O(1) = O(Kεm+2εs
n ) +O(Kn) = O(Kq

n) , (B4)

where q =max{εm + 2εs, 1}.

Suppose first that εm > εr such that rn/mn = O(Kεr−εm
n ) = o(1) or, in other words, that there exists a finite

number n0 such that mn > rn for all n> n0. Thus,

‖Se‖2 =
Kn
∑

k=rn+1

λk(S)
2 = (mn − rn)O(s

2
n) + (Kn −mn)O(1) = O(Kεm+2εs

n ) +O(Kn) = O(Kq
n) . (B5)

From (B4) and (B5) we obtain ‖Se‖/‖S‖= O(1). Plugging this result into (B3) gives En = O(1).
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On the other hand, consider the opposite case εr > εm such that mn/rn = o(1) or that there exists a finite

number n0 such that rn > mn for all n> n0. Recall that rn = O(Kεr
n ) = o(Kn) since εr < 1. Then,

‖Se‖2 =
Kn
∑

k=rn+1

λk(S)
2 = (Kn − rn)O(1) = O(Kn) . (B6)

Plugging (B4) and (B6) into (B3) gives En ≤ O(K (1−q)/2
n ). Therefore, if εm < 1−2εs then q = 1 and En = O(1);

on the contrary, if 1− 2εs < εm then q > 1 and we conclude that En = o(1). Gathering all these findings gives

Proposition 3.

B.3 Analysis Based on Correlations - Proposition 4(a)

Consider Assumption A6. Since all entries of Υ are less than one in absolute value and their diagonal elements

are all equal to zero, it is easy to verify that

‖S‖2 = ‖IKn
‖2 +µ2‖Υ‖2 = O(K2

n ) and tr(S) = O(Kn) . (B7)

By the Retention Rule, if rn PC are retained then all diagonal entries of Λr in (B1) must be greater than

K−δn tr(S), whereas all entries of Λe are less than (or equal to) K−δn tr(S). Thus, from (B7)

‖Se‖2 ≤ (Kn − rn)K
−2δ
n tr(S)2 ≤ K1−2δ

n O(K2
n ) , (B8)

for any rn = o(Kn). Plugging (B7) and (B8) into (B3) gives En ≤ K1/2−δ
n O(1). Proposition 4(a) follows.

B.4 Rate of Growth of Retained PC - Proposition 4(b)

We omit the n script for convenience. With no loss of generality normalise all the diagonal elements of the

S matrix to one, so that threshold value in the Retention Rule becomes K−δtr(S) = K1−δ. We proceed by

induction to establish a bound for δ and thus a necessary condition for (A).

Consider that we add one instrument to the IV set at a time, which we call a trial. Besides, suppose that K is

large enough such that (K + 1)1−δ ' K1−δ. We begin with an initial situation where the eigenvalues of S are

λ1 ≥ . . .≥ λr > K1−δ ≥ λr+1 ≥ . . .≥ λK , so r0 = O(1) PC are retained.

In the first trial we obtain the matrix

S∗ =







S 0

0 1






+







0 s

s ′ 0






, (B9)

where s is a K×1 vector containing the ‘correlations’ between the newly added instrument and the previous IV

set. Let λ∗i denote the i-th eigenvalue of S∗. By the interlacing property of the eigenvalues (Horn and Johnson,
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1985, Theorem 4.3.8, p. 185), λ∗r ≥ λr > K1−δ which implies that the number of retained components after

the first trial is no less than r0. Also, λ∗r+1 ≥ λr+1 so the interest lies in determining whether λ∗r+1 > K1−δ or,

in words, whether the inclusion of a new instrument increases the number of retained PC. Note that S∗ can

be thought of as the perturbation of the first block diagonal matrix in (B9). By the perturbation theorem for

symmetric matrices (Horn and Johnson, 1985, Corollary 6.3.4, p. 367) we have that

λ∗r+1 = λr+1 + ε , where ε≤ O(
p

s ′s ) = µO(
p

K ) , (B10)

where µ is the absolute value of the largest element of s . Importantly, (B10) is a valid expression if µ = O(1)

is small, as it comes from a local approximation of S∗ around diag(S, 1). Then, by the Markov inequality we

have that the probability of an extra PC is at most

Pr[µO(
p

K )≥ K1−δ ] = Pr[µ≥ O(K1/2−δ) ] = O(Kδ−1/2) . (B11)

It follows that after the first trial, the expected number of retained components is r0+O(Kδ−1/2). After t trials,

rt = r0 +
t
∑

τ=1

O(Kδ−1/2) = r0 +O(Kδ−1/2) = r0 + o(K δ̄−1/2) , (B12)

where δ̄ is strictly greater than δ. For rt = o(
p

K ), then δ̄ ≤ 1 is required as stated in Proposition 4(b).
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Figure 1. The Function δ̄ = δ̄(µ,α) for Small µ and Selected Values of α
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NOTES: Each experiment uses 10,000 replications. δ̄ is the maximum value of δ that satisfies (A) for given µ and α.

Figure 2. Median Absolute Error of IV Estimators as a Function of ρ, n and a
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NOTES: The horizontal axis shows values of ρ, the correlation coefficient between u and v, and ranges from 0.10 to 0.90.
Also, R2 = 0.10, K∗ = 10 and µ= 0.10. Each experiment uses 50,000 replications.
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Figure 3. Median Absolute Error of IV Estimators as a Function of R2, n and a
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NOTES: The horizontal axis shows values of R2, the coefficient of determination of the first stage regression, and ranges
from 0.01 to 0.20. Also, ρ = 0.90, K∗ = 10 and µ= 0.10. Each experiment uses 50, 000 replications.
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Figure 4. Median Absolute Error of IV Estimators as a Function of K∗, n and a
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NOTES: The horizontal axis shows values of K∗, the number of relevant instruments, and ranges from 6 to 30. Also, ρ = 0.90,
R2 = 0.10 and µ= 0.10. Each experiment uses 50,000 replications.

Figure 5. Median Absolute Error of IV Estimators as a Function of K∗, µ and δ
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NOTES: The horizontal axis shows values of K∗, the number of relevant instruments, and ranges from 6 to 30. Also, ρ = 0.90,
R2 = 0.10, n= 200 and a = 0. Each experiment uses 50, 000 replications.
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