

UNIVERSITY OF CAMBRIDGE

# **Cambridge Working Papers in Economics**

Transformed Maximum Likelihood Estimation of Short Dynamic Panel Data Models with Interactive Effects

Kazuhiko Hayakawa, Hashem Peseran and Vanessa Smith

CWPE 1412

# Transformed Maximum Likelihood Estimation of Short Dynamic Panel Data Models with Interactive Effects<sup>\*</sup>

Kazuhiko Hayakawa M. Hashem Pesaran L. Vanessa Smith Hiroshima University USC and Trinity College, Cambridge

May 2014

University of York

#### Abstract

This paper proposes the transformed maximum likelihood estimator for short dynamic panel data models with interactive fixed effects, and provides an extension of Hsiao et al. (2002) that allows for a multifactor error structure. This is an important extension since it retains the advantages of the transformed likelihood approach, whilst at the same time allows for observed factors (fixed or random). Small sample results obtained from Monte Carlo simulations show that the transformed ML estimator performs well in finite samples and outperforms the GMM estimators proposed in the literature in almost all cases considered.

JEL Classifications: C12, C13, C23

Keywords: short T dynamic panels, transformed maximum likelihood, multi-factor error structure, interactive fixed effects

<sup>\*</sup>The authors would like to thank Vasilis Sarafidis as well as participants at the conference on Cross-sectional Dependence in Panel Data Models, May 2013, Cambridge, for helpful comments on a preliminary version of the paper. Part of this paper was written whilst Hayakawa was visiting the University of Cambridge as a JSPS Postdoctoral Fellow for Research Abroad. He acknowledges financial support from the JSPS Fellowship and the Grant-in-Aid for Scientific Research (KAKENHI 22730178, 25780153) provided by the JSPS. Pesaran and Smith acknowledge financial support from the ESRC Grant No. ES/1031626/1.

## 1 Introduction

There now exists an extensive literature on the estimation of linear dynamic panel data models where the time dimension (T) is short and fixed relative to the cross section dimension (N), which is large. Such panels are usually referred to as *micro panels*, and often arise in microeconometric applications. For example, many empirical applications based on survey data such as the British Household Panel Surveys (BHPS) and the Panel Study in Income Dynamics (PSID) are characterized by data covering relatively short time periods. Although it is now quite common to include dynamics in such studies, it is rare to find studies that allow for error cross section dependence as well. In most empirical applications time dummies are used to deal with cross section dependence, which is valid only if the time effect is homogeneous over the cross section units. Short T panels also arise in the cross country empirical growth literature where data is typically averaged over five to seven years to eliminate the business cycle effects. Both generalized method of moments (GMM) and likelihood approaches have been advanced to estimate such panel data models. See, for example, Anderson and Hsiao (1981), Arellano and Bond (1991), Arellano and Bover (1995), Blundell and Bond (1998), Hsiao et al. (2002) and Binder et al. (2005).<sup>1</sup> However, this literature assumes that the errors are cross sectionally independent, which might not hold in many applications where cross section units are subject to common unobserved effects, or possibly spatial or network spillover effects. Ignoring cross section dependence can have important consequences for conventional estimators of dynamic panels. Phillips and Sul (2007) study the impact of cross section dependence modelled as a factor structure on the inconsistency of the pooled least squares estimate of a short dynamic panel regression. Sarafidis and Robertson (2009) investigate the properties of a number of standard widely used generalized method of moments (GMM) estimators under cross section dependence and show that such estimators are inconsistent.

In applications where the spatial patterns are important and can be characterized by known spatial weight matrices, error cross section dependence is typically modelled as spatial autoregressions and estimated jointly with the other parameters of the dynamic panel data model. Lee and Yu (2010) provide a review. For small T, Elhorst (2005) and Su and Yang (2007) consider random effects as well as fixed effects specifications. In the latter case they apply the first-differencing operator to eliminate the fixed effects and then use the transformed likelihood approach of Hsiao et al. (2002) to deal with the initial value problem. The treatment of the initial values in spatial dynamic panel data models poses additional difficulties and requires further investigation. More recently Jacobs et al. (2009) discuss GMM estimation of dynamic fixed effect panel data models featuring spatially correlated errors and endogenous interaction.

However, in addition to the spatial effects it is also likely that the error cross section dependence could be a result of omitted unobserved common factor(s). This class of models has been the subject of intensive research over the past five years and robust estimation procedures have been advanced in the case of panels where N and T are both large.<sup>2</sup> In contrast, little work has been done so far on the estimation of short T dynamic panels where error cross section dependence is due to unobserved common factors. An early contribution by MaCurdy (1982) features panel models with an error structure that combines factor schemes with autoregressive-moving average models estimated by maximum likelihood and used to analyze the error process associated with the earnings of prime

<sup>&</sup>lt;sup>1</sup>The analysis of Hsiao et al. (2002) is extended by Hayakawa and Pesaran (2012) to allow for a cross-sectionally heteroskedastic error term.

<sup>&</sup>lt;sup>2</sup>See, for example, Pesaran (2006), Bai (2009), Pesaran and Tosetti (2011), Chudik et al. (2011), and Kapetanios et al. (2011).

age males. In subsequent work, for the case of a single factor, Holtz-Eakin et al. (1988) and Ahn et al. (2001), suggest a quasi-differencing approach to purge the factor structure and then use GMM to consistently estimate the model parameters.<sup>3</sup> Nauges and Thomas (2003) follow this approach in addition to prior first-differencing to eliminate the fixed effect, which they consider separately from the single common factor structure assumed for the errors. Ahn et al. (2013) extend this approach to the more general case of a multifactor error structure.

More recently, Robertson and Sarafidis (2013) propose an instrumental variable estimation procedure that introduces new parameters to represent the unobserved covariances between the instruments and the factor component of the errors. They show that the resulting estimator is asymptotically more efficient than the GMM estimator based on quasi-differencing as it exploits extra restrictions implied by the model. Elhorst (2010) considers a fixed effects dynamic panel with contemporaneous endogenous interaction effects under small T. For estimation purposes, he adopts both the maximum likelihood estimator of Hsiao et al. (2002) and the GMM estimator of Arellano and Bond (1991). Bai (2013) suggests a quasi-maximum likelihood (ML) approach applied to the original dynamic panel without differencing (simple or quasi), and uses the approach of Mundlak (1978) and Chamberlain (1982) to deal with the correlation between the factor loadings and the regressors, but continues to assume that all factor loadings (including the one associated with the intercepts) are uncorrelated with the errors.<sup>4</sup>

In this paper, following Hsiao et al. (2002), we propose an alternative quasi ML approach applied to the panel data model after first-differencing. In this way, we account for heterogeneity of the initial values and the common factors in an integrated framework. The proposed estimation procedure includes the transformed likelihood procedure of Hsiao et al. (2002) as a special case. It allows for both fixed and interactive effects (the latter based on a random coefficient specification), and can be used to test the validity of the fixed effects specification against the more general model with interactive effects. Our procedure differs from the one proposed by Bai (2013) since he proposes to apply the maximum likelihood (ML) procedure to the level model without timeinvariant fixed effects, whilst we propose to apply the ML procedure to the first-differenced model where time-invariant fixed effects are removed. The application of the ML approach to dynamic panel data models without first-differencing requires the fixed effects in the processes generating the regressors to be uncorrelated with the errors. Otherwise, as shown in Hsiao et al. (2002), the initial values  $(y_{i0})$  could be subject to an incidental parameter problem. More specifically, reliance on the Mundlak-Chamberlain device for the specification of  $y_{i0}$  employed by Bai (2013) will be valid only under random effects specification of the processes generating the regressors. However, this assumption is not required under the transformed likelihood approach, where the quasi ML approach is applied to first differences. The proposed method can also be readily extended to a panel VAR framework as in Binder et al. (2005). Monte Carlo simulations are carried out to investigate the finite sample performance of the transformed ML estimator including a comparison with several GMM estimators. We find that the transformed ML estimator performs well in almost all cases considered, while the GMM estimators perform (sometimes) substantially poorly.

The rest of this paper is organized as follows. Section 2 sets out the dynamic model (with and without regressors) and develops the transformed likelihood approach. Initially we consider the relatively simple case where in addition to fixed effects the model contains a single unobserved common factor with interactive effects. In subsection 2.3 we extend our analysis to models with multiple factors. In Section 3, a review of the GMM approach is provided. In Section 4, we describe the Monte Carlo experiments and compare bias, root mean square errors, size and power

 $<sup>^{3}</sup>$ The quasi-differencing transformation was originally proposed by Chamberlain (1984). Holtz-Eakin et al. (1988) implement it in the context of a bivariate panel autoregression.

<sup>&</sup>lt;sup>4</sup>See also Sarafidis and Wansbeek (2012) for a recent survey of panel data models with error cross section dependence when T is short.

of the proposed transformed ML estimator to a number of different GMM estimators.<sup>5</sup> Section 5 concludes.

## 2 The Likelihood Approach

#### **2.1** AR(1) model

Consider the following first order autoregressive, AR(1), panel data model

$$y_{it} = \alpha_i + \gamma y_{i,t-1} + \xi_{it},$$

$$\xi_{it} = \lambda_i f_t + u_{it},$$

$$(i = 1, 2, ..., N; t = 1, 2, ..., T),$$

$$(1)$$

where T is fixed and small relative to N which could be large,  $\alpha_i$  for i = 1, 2, ..., N are the fixed effects,  $f_t$  is an unobserved common factor for all i,  $u_{it}$  are the individual-specific (idiosyncratic) errors,  $\lambda_i$  for i = 1, 2, ..., N are factor loadings distributed indepedently of  $u_{it}$  and  $f_t$ . No restrictions will be imposed on  $f_t$  except that  $g_t = \Delta f_t \neq 0$  for at least some t = 1, 2, ..., T. Note that this requirement does not restrict the specification of the model since the excluded case of  $f_t = C$  (a fixed constant for all t) is already covered by the explicit inclusion of fixed effects,  $\alpha_i$ , in the model. We consider the problem of estimation of  $\gamma$  under the following assumptions:

**Assumption 1**  $|\gamma| < 1$  and the AR(1) model given in (1) has started from the infinite past.

**Assumption 2** The idiosyncratic shocks,  $u_{it}$  (i = 1, 2, ..., N; t = 1, 2, ..., T), are independently distributed both across i and t with mean zero and variance  $\sigma^2$ .

**Assumption 3** The unobserved factor loadings,  $\lambda_i$ , are independently and identically distributed across *i* and of the individual specific errors,  $u_{jt}$ , and the common factor,  $f_t$ , for all *i*, *j* and *t* with fixed mean,  $\lambda$ , and a finite variance. In particular,

$$\lambda_i = \lambda + \eta_i, \ \eta_i \sim IID(0, \sigma_n^2).$$
<sup>(2)</sup>

**Assumption 4** The error terms  $\eta_i$  and  $u_{it}$  are normally distributed.

**Remark 1** Assumption 1 is made to simplify the exposition. In the next subsection we consider the case where the dynamic process has started from a finite past. In such a case it is also possible to allow for unit roots, namely the case where  $\gamma = 1$ .

**Remark 2** For each *i*, the composite error  $\xi_{it}$  in (1) is heteroskedastic even though it is assumed that  $var(u_{it}) = \sigma^2$  is homoskedastic, namely for each *i* we have  $Var(\xi_{it} | \lambda_i) = \lambda_i^2 \sigma_f^2 + \sigma^2$ . As shown by Hayakawa and Pesaran (2012), in a recent extension of Hsiao et al. (2002), it could be possible to allow for heteroskedasticity in  $u_{it}$ , but this will not be pursued here. In our approach  $f_t$  can be fixed or random.

**Remark 3** Under Assumption 4,  $\eta_i$  and  $u_{it}$  are considered normally distributed for the application of the ML approach. The normality assumption is not required as  $N \to \infty$ , so long as the errors  $\eta_i$  and  $u_{it}$  have finite fourth-order moments.

<sup>&</sup>lt;sup>5</sup>In these comparisons we do not include Bai's recent estimator since the computer code for the implementation of this estimation method has not yet been released. Also, the Monte Carlo evidence provided in Bai (2013) is more illustrative in nature and does not cover cases where there are fixed effects in the processes generating the regressors that are correlated with the errors. Further, Bai (2013) does not provide any evidence on size and power of tests based on his proposed estimator. We intend to include Bai's estimation method in our comparative analysis once workable computer codes are released.

**Remark 4** No assumptions are made regarding the fixed effects,  $\alpha_i$ . They could be correlated with  $\lambda_i$  and  $u_{it}$ , and need not be cross sectionally independent. For example,  $\alpha_i$  could follow a spatial autoregressive specification where  $cov(\alpha_i, \alpha_j) \neq 0$  for all i and j.

Under Assumption 3 we can rewrite model (1) as

$$y_{it} = \alpha_i + \gamma y_{i,t-1} + \lambda_i f_t + u_{it}$$
  
=  $\alpha_i + \gamma y_{i,t-1} + \lambda f_t + \eta_i f_t + u_{it}$ 

We eliminate the individual effects by first-differencing

$$\Delta y_{it} = \gamma \Delta y_{i,t-1} + \lambda_i g_t + \Delta u_{it}$$
  
=  $\gamma \Delta y_{i,t-1} + \lambda g_t + \eta_i g_t + \Delta u_{it}$  for  $t = 2, 3, ..., T.$  (3)

Under Assumption 1, by recursive substitution, we have the following expression for t = 1

$$\Delta y_{i1} = \lambda_i \tilde{g}_1 + v_{i1},\tag{4}$$

where  $\tilde{g}_1 = \sum_{j=0}^{\infty} \gamma^j g_{1-j}$ ,  $v_{i1} = \sum_{j=0}^{\infty} \gamma^j \Delta u_{i,1-j}$  with  $E(v_{i1}) = 0$  and  $var(v_{i1}) = \omega \sigma^2$ . Although  $\omega$  is given by  $2/(1+\gamma)$  in this model, in general, we treat  $\omega$  as a free parameter to be estimated.

To deal with the incidental parameter problem associated with  $\lambda_i$ , instead of quasi-differencing to eliminate  $\lambda_i$ , we use (2) and write (3) and (4) as

$$\begin{aligned} \Delta y_{i1} &= \lambda \tilde{g}_1 + \eta_i \tilde{g}_1 + v_{i1} \\ \Delta y_{it} &= \gamma \Delta y_{i,t-1} + \lambda g_t + \eta_i g_t + \Delta u_{it}, \qquad (t = 2, 3, ..., T). \end{aligned}$$

In matrix notation the above system of equations can be written as

$$\Delta \mathbf{y}_i = \Delta \mathbf{W}_i \gamma + \lambda \mathbf{g} + \boldsymbol{\xi}_i, \tag{5}$$

where  $\Delta \mathbf{y}_i = (\Delta y_{i1}, \Delta y_{i2}, ..., \Delta y_{iT})'$ ,  $\Delta \mathbf{W}_i = (0, \Delta y_{i1}, ..., \Delta y_{i,T-1})'$ ,  $\mathbf{g} = (\tilde{g}_1, g_2, ..., g_T)'$ , and  $\boldsymbol{\xi}_i = \eta_i \mathbf{g} + \mathbf{r}_i$ , with  $\mathbf{r}_i = (v_{i1}, \Delta u_{i2}, ..., \Delta u_{iT})'$ . From Hsiao et al. (2002) we have that

$$E(\mathbf{r}_{i}\mathbf{r}_{i}') = \sigma^{2} \begin{pmatrix} \omega & -1 & 0 \\ -1 & 2 & \ddots & \\ & \ddots & \\ & & \ddots & \\ & & \ddots & 2 & -1 \\ 0 & & & -1 & 2 \end{pmatrix} = \sigma^{2} \mathbf{\Omega}.$$
 (6)

Using (6) and recalling that  $\eta_i$  and  $u_{it}$  are independently distributed we have

$$Var(\boldsymbol{\xi}_i) = \sigma^2 \boldsymbol{\Omega} + \sigma_{\eta}^2 \mathbf{g} \mathbf{g}' = \sigma^2 \left( \boldsymbol{\Omega} + \phi \mathbf{g} \mathbf{g}' \right),$$

where

$$\phi = \frac{\sigma_{\eta}^2}{\sigma^2}.$$

Hence, the log-likelihood function of the transformed model (5) is given by

$$\ell(\boldsymbol{\psi}) = -\frac{NT}{2}\ln(2\pi) - \frac{NT}{2}\ln(\sigma^2) - \frac{N}{2}\ln\left|\boldsymbol{\Omega} + \phi \mathbf{g}\mathbf{g}'\right| -\frac{1}{2\sigma^2}\sum_{i=1}^{N}\left(\Delta \mathbf{y}_i - \Delta \mathbf{W}_i\gamma - \lambda \mathbf{g}\right)'\left(\boldsymbol{\Omega} + \phi \mathbf{g}\mathbf{g}'\right)^{-1}\left(\Delta \mathbf{y}_i - \Delta \mathbf{W}_i\gamma - \lambda \mathbf{g}\right).$$
(7)

The log-likelihood in (7) is a function of a fixed number of unknown parameters,  $\boldsymbol{\psi} = (\gamma, \omega, \sigma^2, \phi, \lambda, \mathbf{g}')'$ . After some algebra (see Section A.2 of the Appendix) it can be written as

$$N^{-1}\ell(\boldsymbol{\psi}) = -\frac{T}{2}\ln(2\pi) - \frac{T}{2}\ln(\sigma^{2}) - \frac{1}{2}\ln|\boldsymbol{\Omega}| - \frac{1}{2}\ln(1 + \phi \mathbf{g}'\boldsymbol{\Omega}^{-1}\mathbf{g}) - \frac{1}{2\sigma^{2}} \left[ N^{-1}\sum_{i=1}^{N} \mathbf{v}_{i}'\boldsymbol{\Omega}^{-1}\mathbf{v}_{i} - \frac{\phi \mathbf{g}'\boldsymbol{\Omega}^{-1}\mathbf{B}_{N}\boldsymbol{\Omega}^{-1}\mathbf{g} - \lambda^{2}\mathbf{g}'\boldsymbol{\Omega}^{-1}\mathbf{g} + 2\lambda\mathbf{g}'\boldsymbol{\Omega}^{-1}\bar{\mathbf{v}}}{1 + \phi(\mathbf{g}'\boldsymbol{\Omega}^{-1}\mathbf{g})} \right], \quad (8)$$

where  $\mathbf{v}_i = \mathbf{v}_i(\gamma) = \Delta \mathbf{y}_i - \Delta \mathbf{W}_i \gamma$ ,  $\mathbf{\bar{v}} = N^{-1} \sum_{i=1}^N \mathbf{v}_i$  and

$$\mathbf{B}_N = \mathbf{B}_N(\gamma) = N^{-1} \sum_{i=1}^N \mathbf{v}_i(\gamma) \mathbf{v}'_i(\gamma).$$
(9)

It is clear that if  $\phi = 0$ , the log-likelihood simplifies to the case of panels with (pure) time effects and  $\lambda$  is not separately identified from the elements of **g**. In such a case  $\lambda$  is typically set to unity and *T* time dummies are introduced to estimate **g**. In the interactive case where  $\phi \neq 0$ , **g** is not identified separately from  $\phi$  and without loss of generality we can set  $\mathbf{q} = \sqrt{\phi}\mathbf{g}$  and write the log-likelihood function in (8) as

$$N^{-1}\ell(\boldsymbol{\theta}) = -\frac{T}{2}\ln(2\pi) - \frac{T}{2}\ln(\sigma^{2}) - \frac{1}{2}\ln|\boldsymbol{\Omega}| - \frac{1}{2}\ln(1 + \mathbf{q}'\boldsymbol{\Omega}^{-1}\mathbf{q}) -\frac{1}{2\sigma^{2}}\left[N^{-1}\sum_{i=1}^{N}\mathbf{v}_{i}'\boldsymbol{\Omega}^{-1}\mathbf{v}_{i} - \frac{\mathbf{q}'\boldsymbol{\Omega}^{-1}\mathbf{B}_{N}\boldsymbol{\Omega}^{-1}\mathbf{q} - \kappa^{2}\mathbf{q}'\boldsymbol{\Omega}^{-1}\mathbf{q} + 2\kappa\mathbf{q}'\boldsymbol{\Omega}^{-1}\mathbf{\bar{v}}}{1 + \mathbf{q}'\boldsymbol{\Omega}^{-1}\mathbf{q}}\right], \quad (10)$$

where  $\boldsymbol{\theta} = (\gamma, \omega, \sigma^2, \kappa, \mathbf{q}')'$ , and  $\kappa = \lambda/\sqrt{\phi}$ .

Taking partial derivatives with respect to  $\kappa$  and  $\sigma^2$  and solving out for these we have

$$\hat{\kappa} = \left(\mathbf{q}' \mathbf{\Omega}^{-1} \mathbf{q}\right)^{-1} \mathbf{q}' \mathbf{\Omega}^{-1} \bar{\mathbf{v}},\tag{11}$$

and

$$\hat{\sigma}^2 = T^{-1} \left[ N^{-1} \sum_{i=1}^{N} \mathbf{v}'_i \mathbf{\Omega}^{-1} \mathbf{v}_i - \frac{\mathbf{q}' \mathbf{\Omega}^{-1} \mathbf{B}_N \mathbf{\Omega}^{-1} \mathbf{q}}{1 + \mathbf{q}' \mathbf{\Omega}^{-1} \mathbf{q}} - \frac{\left(\mathbf{q}' \mathbf{\Omega}^{-1} \bar{\mathbf{v}}\right)^2}{\left(1 + \mathbf{q}' \mathbf{\Omega}^{-1} \mathbf{q}\right) \left(\mathbf{q}' \mathbf{\Omega}^{-1} \mathbf{q}\right)} \right]$$

But using (9) the above expression can also be written as

$$\hat{\sigma}^2 = T^{-1} \left[ N^{-1} \sum_{i=1}^N \mathbf{v}'_i \left[ \mathbf{\Omega}^{-1} - \frac{\mathbf{\Omega}^{-1} \mathbf{q} \mathbf{q}' \mathbf{\Omega}^{-1}}{1 + \mathbf{q}' \mathbf{\Omega}^{-1} \mathbf{q}} \right] \mathbf{v}_i - \frac{\left( \mathbf{q}' \mathbf{\Omega}^{-1} \bar{\mathbf{v}} \right)^2}{\left( 1 + \mathbf{q}' \mathbf{\Omega}^{-1} \mathbf{q} \right) \left( \mathbf{q}' \mathbf{\Omega}^{-1} \mathbf{q} \right)} \right],$$

or equivalently as

$$\hat{\sigma}^2 = T^{-1} \left[ N^{-1} \sum_{i=1}^{N} \mathbf{v}_i' \left( \mathbf{\Omega} + \mathbf{q} \mathbf{q}' \right)^{-1} \mathbf{v}_i - \frac{\left( \mathbf{q}' \mathbf{\Omega}^{-1} \bar{\mathbf{v}} \right)^2}{\left( 1 + \mathbf{q}' \mathbf{\Omega}^{-1} \mathbf{q} \right) \left( \mathbf{q}' \mathbf{\Omega}^{-1} \mathbf{q} \right)} \right].$$
(12)

In practice,  $\bar{\mathbf{v}}$  is likely to be small for sufficiently large N, which ensures a positive estimate for  $\sigma^2$ , although this is not guaranteed if N is small.

Substituting (11) and (12) into (10), we have

$$N^{-1}\ell(\gamma,\omega,\mathbf{q}) \propto -\frac{1}{2}\ln|\mathbf{\Omega}| - \frac{1}{2}\ln\left(1 + \mathbf{q}'\mathbf{\Omega}^{-1}\mathbf{q}\right)$$

$$-\frac{T}{2}\ln\left[N^{-1}\sum_{i=1}^{N}\mathbf{v}'_{i}\left(\mathbf{\Omega} + \mathbf{q}\mathbf{q}'\right)^{-1}\mathbf{v}_{i} - \frac{\left(\mathbf{q}'\mathbf{\Omega}^{-1}\bar{\mathbf{v}}\right)^{2}}{\left(1 + \mathbf{q}'\mathbf{\Omega}^{-1}\mathbf{q}\right)\left(\mathbf{q}'\mathbf{\Omega}^{-1}\mathbf{q}\right)}\right].$$
(13)

The transformed ML estimator is obtained by maximizing the above concentrated log-likelihood function. Having obtained the ML estimators of  $\gamma$ ,  $\omega$  and  $\mathbf{q}$ , (which we denote by  $\hat{\gamma}$ ,  $\hat{\omega}$  and  $\hat{\mathbf{q}}$ ), the MLE of  $\sigma^2$  and  $\kappa$  can then be computed using (11) and (12). To compute the variance-covariance matrix of  $\hat{\boldsymbol{\theta}} = (\hat{\gamma}, \hat{\omega}, \hat{\sigma}^2, \hat{\kappa}, \hat{\mathbf{q}}')'$  we need to make use of the unconcentrated log-likelihood function given by (10) and compute its second derivatives, either analytically or numerically. For a fixed Tand as  $N \to \infty$ , using standard results from the asymptotic theory of ML estimation we have

$$AsyVar(\sqrt{N}\hat{\boldsymbol{\theta}}) = \mathbf{H}^{-1}(\boldsymbol{\theta}),$$

where (using the unconcentrated log-likelihood function given by (10))

$$\mathbf{H}(\boldsymbol{\theta}) = p \lim_{N \to \infty} \left[ -\frac{1}{N} \frac{\partial^2 \ell(\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} \right]$$

A consistent estimator of  $AsyVar(\hat{\theta})$  can be obtained as

$$\widehat{Var}(\hat{\boldsymbol{\theta}}) = \left[-\frac{\partial^2 \ell\left(\hat{\boldsymbol{\theta}}\right)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right]^{-1},\tag{14}$$

where the second partial derivatives are evaluated at the MLE,  $\hat{\boldsymbol{\theta}} = (\hat{\gamma}, \hat{\omega}, \hat{\sigma}^2, \hat{\kappa}, \hat{\mathbf{q}}')'$ . The first and second derivatives of the log-likelihood function are provided in Section A.3 of the Appendix.

#### $2.2 \quad ARX(1) \mod l$

Consider next the case where an exogenous variable is included in model (1) and consider the augmented AR(1) model (which we denote by ARX(1))

$$y_{it} = \alpha_i + \gamma y_{i,t-1} + \beta x_{it} + \lambda_i f_t + u_{it}, \qquad (i = 1, 2, ..., N; t = 1, 2, ..., T).$$
(15)

For simplicity we assume that  $x_{it}$  is a scalar. Extension to the case of multiple regressors is straightforward at the expense of notational complexity. Taking the first-difference of (15) and using Assumption 3 we have

$$\Delta y_{it} = \gamma \Delta y_{i,t-1} + \beta \Delta x_{it} + \lambda g_t + \eta_i g_t + \Delta u_{it}, \qquad (t = 2, 3, ..., T).$$
(16)

We assume that the regressor  $x_{it}$  is generated either by

$$x_{it} = \mu_i + ct + \vartheta_i f_t + \sum_{j=0}^{\infty} a_j \varepsilon_{i,t-j}, \qquad \sum_{j=0}^{\infty} |a_j| < \infty,$$
(17)

or

$$\Delta x_{it} = c + \vartheta_i g_t + \sum_{j=0}^{\infty} d_j \varepsilon_{i,t-j}, \qquad \sum_{j=0}^{\infty} |d_j| < \infty,$$
(18)

where  $\mu_i$  are fixed effects (which could be correlated with  $u_{it}$  and/or  $\varepsilon_{it}$ ), and  $\vartheta_i$  are random interactive effects distributed independently of  $u_{it}$  and  $f_t$ .

**Assumption 5** The dynamic process given by (16) has started from  $y_{i,-S}$  with S finite such that  $E(\Delta y_{i,-S+1}|\Delta x_{i1}, \Delta x_{i2}, ..., \Delta x_{iT}) = \tilde{b}$  for all *i*.

**Assumption 6** The interactive effects  $\vartheta_i$  in  $\Delta x_{it}$  have constant variance  $var(\vartheta_i) = \sigma_{\vartheta}^2$  and are uncorrelated with  $\lambda_i$  and  $u_{it}$  for all i and t.

**Assumption 7** The error terms  $\varepsilon_{it}$  in  $x_{it}$  are independently distributed over all *i* and *t*, with  $E(\varepsilon_{it}) = 0$  and  $E(\varepsilon_{it}^2) = \sigma_{\varepsilon}^2$ , and independent of  $u_{it'}$  for all *t'* and *t*.

**Remark 5** Assumption 5 imposes the restriction that the expected changes in the initial values are the same across all individuals, but does not necessarily require that  $|\gamma| < 1$  or that all individuals should start from the same position.

**Remark 6** Assumption 7 requires that  $x_{it}$  is strictly exogenous. This can be relaxed by considering vector autoregressions as in Holtz-Eakin et al. (1988). See also Binder et al. (2005).

**Remark 7** While the time variant individual effects,  $\lambda_i$ , are treated as random they could be correlated with the regressor(s)  $x_i$ , such that  $\lambda_i = \pi' x_i + \epsilon_i$ , so long as the Mudlank-Chamberlain device is used to control for this correlation. However, the  $\lambda'_i$ s cannot be correlated across *i*.

By recursive substitution we have

$$\begin{aligned} \Delta y_{i1} &= \gamma^{S} \Delta y_{i,-S+1} + \beta \sum_{j=0}^{S-1} \gamma^{j} \Delta x_{i,1-j} + \lambda_{i} \sum_{j=0}^{S-1} \gamma^{j} g_{1-j} + \sum_{j=0}^{S-1} \gamma^{j} \Delta u_{i,1-j} \\ &= \gamma^{S} \Delta y_{i,-S+1} + \beta \sum_{j=0}^{S-1} \gamma^{j} \Delta x_{i,1-j} + \lambda_{i} \tilde{g}_{1S} + \sum_{j=0}^{S-1} \gamma^{j} \Delta u_{i,1-j}, \end{aligned}$$

where  $\tilde{g}_{1S} = \sum_{j=0}^{S-1} \gamma^j g_{1-j}$ . This expression shows that  $\Delta y_{i1}$  contains many unknown quantities such as unknown parameters or unobserved past variables. However, it is possible to derive an expression for  $\Delta y_{i1}$  based on observed variables and a finite number of parameters as follows.

**Theorem 1** Consider model (16) where  $x_{it}$  follows either (17) or (18). Suppose that Assumptions 2, 3, 5, 6, and 7 hold. Then  $\Delta y_{i1}$  can be expressed as:

$$\Delta y_{i1} = b + \pi' \Delta \mathbf{x}_i + v_{i1},\tag{19}$$

where b is a constant,  $\pi$  is a T-dimensional vector of constants,  $\Delta \mathbf{x}_i = (\Delta x_{i1}, \Delta x_{i2}, ..., \Delta x_{iT})'$  and  $v_{i1}$  is independently distributed across i such that  $E(v_{i1}) = 0$  and  $E(v_{i1}^2) = \omega \sigma^2$  with  $0 < \omega < K < \infty$ .

**Proof.** See Section A.1 of the Appendix.

**Remark 8** This theorem establishes the conditions under which the Mundlak-Chamberlain specification for the initial observations,  $\Delta y_{i1}$ , is valid. The key condition is the restrictions on the processes generating  $x_{it}$  or  $\Delta x_{it}$ . In our application, since we apply first-differencing before ML estimation we can allow for inclusion of fixed effects in the  $x_{it}$  process, but we must rule out the presence of fixed effects in the processes generating  $\Delta x_{it}$ . See Assumption 6.

Using Theorem 1 and (16) the transformed model can be rewritten as

$$\Delta \mathbf{y}_i = \Delta \mathbf{W}_i \boldsymbol{\varphi} + \lambda \mathbf{g} + \boldsymbol{\xi}_i,$$

where  $\boldsymbol{\varphi} = (b, \boldsymbol{\pi}', \gamma, \beta)', \, \boldsymbol{\xi}_i = \eta_i \mathbf{g} + \mathbf{r}_i, \, \Delta \mathbf{y}_i = (\Delta y_{i1}, \Delta y_{i2}, ..., \Delta y_{iT})', \, \mathbf{r}_i = (v_{i1}, \Delta u_{i2}, ..., \Delta u_{iT})'$  and

$$\Delta \mathbf{W}_{i} = \begin{pmatrix} 1 & \Delta \mathbf{x}_{i}' & 0 & 0 \\ 0 & \mathbf{0} & \Delta y_{i1} & \Delta x_{i2} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \mathbf{0} & \Delta y_{i,T-1} & \Delta x_{iT} \end{pmatrix}.$$
(20)

The rest of the analysis follows identically to the AR(1) case where the final expression for the log-likelihood function,  $\bar{\ell}(\varphi, \omega, \mathbf{q})$ , is given by (13), with the difference that  $\mathbf{v}_i$  is now given by

$$\mathbf{v}_i = \Delta \mathbf{y}_i - \Delta \mathbf{W}_i \boldsymbol{\varphi},\tag{21}$$

where  $\boldsymbol{\varphi} = (b, \boldsymbol{\pi}', \gamma, \beta)'$  and  $\Delta \mathbf{W}_i$  is defined by (20).

#### 2.3 Extension of the transformed maximum likelihood to the multifactor case

Consider the extension of model (1) to the multifactor case

$$y_{it} = \alpha_i + \gamma y_{i,t-1} + \xi_{it}, \xi_{it} = \mathbf{f}'_t \boldsymbol{\lambda}_i + u_{it}, \qquad (i = 1, 2, ..., N; t = 1, 2, ..., T),$$
(22)

where  $\mathbf{f}_t$  and  $\lambda_i$  are  $m \times 1$  vectors of unobserved common effects and random interactive effects, respectively, the latter distributed independently of  $u_{it}$  and  $\mathbf{f}_t$ . Without loss of generality it is assumed that  $\mathbf{g}_t = \Delta \mathbf{f}_t \neq \mathbf{0}$  for at least some t = 1, 2, ..., T. The remaining parameters are specified as in Section 2.1. It is assumed that the number of factors m is known and that m < T. To accommodate multiple factors the following modified versions of Assumptions 3 and 4 are needed:

**Assumption 8** The unobserved factor loadings,  $\lambda_i$ , are independently and identically distributed across *i* and of the individual specific errors,  $u_{jt}$ , and the common factor,  $\mathbf{f}_t$ , for all *i*, *j* and *t*, with fixed means,  $\lambda$ , and a finite variance. In particular,

$$\boldsymbol{\lambda}_i = \boldsymbol{\lambda} + \boldsymbol{\eta}_i, \ \boldsymbol{\eta}_i \sim IID(\mathbf{0}, \boldsymbol{\Omega}_{\eta}), \tag{23}$$

where  $\Omega_{\eta}$  is an  $m \times m$  symmetric positive definite matrix,  $\|\lambda\| < K$  and  $\|\Omega_{\eta}\| < K$  for some positive constant  $K < \infty$ .

**Assumption 9** The error terms  $\eta_i$  and  $u_{it}$  are normally distributed.

Under Assumptions 8 and 9 and following similar derivations as in the single factor case we have

$$N\bar{\ell}(\boldsymbol{\theta}) \propto -\frac{1}{2}\ln|\boldsymbol{\Omega}| - \frac{1}{2}\ln\left|\mathbf{I}_{m} + \mathbf{Q}'\boldsymbol{\Omega}^{-1}\mathbf{Q}\right|$$

$$-\frac{T}{2}\ln\left\{\begin{array}{c} N^{-1}\sum_{i=1}^{N}\mathbf{v}_{i}'\left(\boldsymbol{\Omega} + \mathbf{Q}\mathbf{Q}'\right)^{-1}\mathbf{v}_{i} \\ -\bar{\mathbf{v}}'\boldsymbol{\Omega}^{-1}\mathbf{Q}\mathbf{A}^{-1}(\mathbf{Q}'\boldsymbol{\Omega}^{-1}\mathbf{Q})^{-1}\mathbf{Q}'\boldsymbol{\Omega}^{-1}\bar{\mathbf{v}}\end{array}\right\},$$
(24)

where  $\boldsymbol{\theta} = (\gamma, \omega, vec(\mathbf{Q})')'$ ,  $\mathbf{Q} = \sigma^{-1} \mathbf{G} \Omega_{\eta}^{1/2}$  with  $\mathbf{G} = (\mathbf{\tilde{g}}_1, \mathbf{g}_2, ..., \mathbf{g}_T)'$  and  $\mathbf{\tilde{g}}_1 = \sum_{j=0}^{\infty} \gamma^j \mathbf{g}_{1-j}$ , and  $\mathbf{A} = \mathbf{I}_m + \mathbf{Q}' \mathbf{\Omega}^{-1} \mathbf{Q}$ . The restrictions implied by  $\mathbf{Q} = \sigma^{-1} \mathbf{G} \mathbf{\Omega}_{\eta}^{1/2}$  are not binding, in the sense that the log-likelihood function is invariant to the choice of the normalization and they are used to identify the multifactor structure  $\lambda' \mathbf{g}_t$ . Since  $\lambda$  and  $\mathbf{g}_t$  are not separately identified their inner product can be equivalently written as  $\delta' \mathbf{q}_t$  where  $\delta = \sigma \mathbf{\Omega}_{\eta}^{-1/2} \lambda$ , and  $\mathbf{q}_t$  is the  $t^{th}$  row of  $\mathbf{Q}$ . For details of the derivations see Section A.4 of the Appendix. It is also easily verified that (24) reduces to (13) when m = 1.

In the case where the panel data model contains exogenous regressors the form of the loglikelihood function is as in (24), with the difference that  $\mathbf{v}_i$  is now defined by (21).

### 3 The GMM Approach

In this section we provide details of two different GMM estimators proposed in the literature for the estimation of dynamic panel data models with interactive effects. We shall then use these estimators in the Monte Carlo experiments for comparison with the transformed ML estimator proposed in this paper.

#### 3.1 Ahn, Lee and Schmidt (2013)

Ahn et al. (2001) consider a single factor panel model (without specification of a separate fixed effect component) which they extend to the multifactor case in Ahn et al. (2013). While they consider static models with weakly exogenous variables, it is straightforward to extend their analysis to the dynamic case. As Ahn et al. (2001) is a special case of Ahn et al. (2013), we focus on the latter and consider the model

$$y_{it} = \alpha_i + \mathbf{w}'_{it} \boldsymbol{\delta} + \boldsymbol{\lambda}'_i \mathbf{f}_t + \varepsilon_{it}, \qquad (i = 1, 2, ..., N; t = 1, 2, ..., T)$$
$$= \mathbf{w}'_{it} \boldsymbol{\delta} + \tilde{\boldsymbol{\lambda}}'_i \tilde{\mathbf{f}}_t + \varepsilon_{it},$$

where  $\mathbf{w}_{it} = (y_{i,t-1}, \mathbf{x}'_{it})'$ ,  $\boldsymbol{\delta} = (\gamma, \beta')'$ ,  $\tilde{\boldsymbol{\lambda}}_i = (\alpha_i, \lambda_{1i}, ..., \lambda_{mi})'$  and  $\mathbf{\tilde{f}}_t = (1, f_{1t}, ..., f_{mt})'$  are  $(\tilde{m} \times 1)$  vectors with  $\tilde{m} = m + 1$ , and  $\varepsilon_{it}$  are cross-sectionally and temporally uncorrelated. The individual specific effects  $\boldsymbol{\lambda}_i$  are allowed to be correlated with  $\mathbf{x}_{it}$ , while  $\mathbf{x}_{it}$  is assumed to be strictly or weakly exogenous. The model in matrix notation can be written as

$$\mathbf{y}_i = \mathbf{W}_i \boldsymbol{\delta} + \tilde{\mathbf{F}} \tilde{\boldsymbol{\lambda}}_i + \boldsymbol{\varepsilon}_i, \tag{25}$$

where  $\mathbf{y}_i = (y_{i1}, ..., y_{iT})'$ ,  $\mathbf{W}_i = (\mathbf{w}_{i1}, ..., \mathbf{w}_{iT})'$ ,  $\boldsymbol{\varepsilon}_i = (\varepsilon_{i1}, ..., \varepsilon_{iT})'$  and  $\mathbf{\tilde{F}} = (\mathbf{\tilde{f}}_1, ..., \mathbf{\tilde{f}}_T)'$  is a  $T \times \tilde{m}$  matrix. To separately identify  $\mathbf{\tilde{F}}$  from  $\mathbf{\tilde{\lambda}}_i$ , the authors impose  $\tilde{m}^2$  restrictions on the factors themselves such that  $\mathbf{\tilde{F}} = (\mathbf{\Psi}', \mathbf{I}_{\tilde{m}})'$  where  $\mathbf{\Psi}$  is a  $(T - \tilde{m}) \times \tilde{m}$  matrix of unrestricted parameters. Let  $\mathbf{H} = (\mathbf{I}_{T-\tilde{m}}, -\mathbf{\Psi})'$ , so that  $\mathbf{H}'\mathbf{\tilde{F}} = (\mathbf{I}_{T-\tilde{m}}, -\mathbf{\Psi})(\mathbf{\Psi}', \mathbf{I}_{\tilde{m}})' = \mathbf{0}_{(T-\tilde{m})\times\tilde{m}}$ . Then, pre-multiplying equation (25) by  $\mathbf{H}'$  removes the unobservable effects so that

$$\mathbf{H}'\mathbf{y}_i = \mathbf{H}'\mathbf{W}_i\boldsymbol{\delta} + \mathbf{H}'\boldsymbol{\varepsilon}_i,$$

or

$$egin{array}{rcl} \dot{\mathbf{y}}_i &=& \dot{\mathbf{W}}_i \boldsymbol{\delta} + \mathbf{\Psi} \ddot{\mathbf{y}}_i - \mathbf{\Psi} \ddot{\mathbf{W}}_i \boldsymbol{\delta} + \dot{oldsymbol{\varepsilon}}_i - \mathbf{\Psi} \ddot{oldsymbol{\varepsilon}}_i \ &=& \dot{\mathbf{W}}_i \boldsymbol{\delta} + \left( \mathbf{I}_{T- ilde{m}} \otimes \ddot{\mathbf{y}}_i' 
ight) vec(\mathbf{\Psi}) - \left( vec(\ddot{\mathbf{W}}_i)' \otimes \mathbf{I}_{T- ilde{m}} 
ight) vec(oldsymbol{\delta}' \otimes \mathbf{\Psi}) + \dot{oldsymbol{\varepsilon}}_i - \mathbf{\Psi} \ddot{oldsymbol{\varepsilon}}_i, \end{array}$$

where  $\dot{\mathbf{y}}_i = (y_{i1}, ..., y_{i,T-\tilde{m}})', \ddot{\mathbf{y}}_i = (y_{i,T-\tilde{m}+1}, ..., y_{iT})', \dot{\mathbf{W}}_i = (\mathbf{w}_{i1}, ..., \mathbf{w}_{i,T-\tilde{m}})', \ddot{\mathbf{W}}_i = (\mathbf{w}_{i,T-\tilde{m}+1}, ..., \mathbf{w}_{iT})',$   $\Psi' = (\psi_1, ..., \psi_{T-\tilde{m}}), \dot{\boldsymbol{\varepsilon}}_i = (\varepsilon_{i1}, ..., \varepsilon_{i,T-\tilde{m}})', \text{ and } \ddot{\boldsymbol{\varepsilon}}_i = (\varepsilon_{i,T-\tilde{m}+1}, ..., \varepsilon_{iT})'.$ The  $t^{th}$  equation is given by

$$y_{it} = \boldsymbol{\delta}' \mathbf{w}_{it} + \boldsymbol{\psi}'_t \ddot{\mathbf{y}}_i - \boldsymbol{\psi}'_t \ddot{\mathbf{W}}_i \boldsymbol{\delta} + v_{it}, \qquad (i = 1, ..., N; t = 1, ..., T - \tilde{m}),$$
(26)

where  $v_{it} = (\varepsilon_{it} - \psi'_t \ddot{\varepsilon}_i)$ . Then, if  $\mathbf{x}_{it}$  is strictly exogenous, we end up with  $(T - \tilde{m})(T - \tilde{m} + 1)/2 + kT(T - \tilde{m})$  moment conditions given by  $E[\mathbf{z}_{it}v_{it}] = \mathbf{0}$ , for  $t = 1, ..., T - \tilde{m}$ , where  $\mathbf{z}_{it} = (y_{i0}, ..., y_{i,t-1}, \mathbf{x}'_{i1}, ..., \mathbf{x}'_{iT})'$ . In matrix notation the moment conditions can be written as  $E[\mathbf{Z}'_i \mathbf{v}_i(\boldsymbol{\theta})] = \mathbf{0}$ , where  $\mathbf{Z}_i = diag(\mathbf{z}'_{i1}, ..., \mathbf{z}'_{i,T-\tilde{m}}), \mathbf{v}_i(\boldsymbol{\theta}) = (v_{i1}, ..., v_{i,T-\tilde{m}})'$  and  $\boldsymbol{\theta} = (\boldsymbol{\delta}', \psi')'$  with  $\psi = vec(\Psi)$ .

Then the one-step and two-step GMM estimators are given respectively by

$$\hat{\boldsymbol{\theta}}_{1step} = \operatorname*{arg\,min}_{\boldsymbol{\theta}} \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{v}_i(\boldsymbol{\theta})' \mathbf{Z}_i \right) \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_i' \mathbf{Z}_i \right)^{-1} \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_i' \mathbf{v}_i(\boldsymbol{\theta}) \right),$$

and

$$\hat{\boldsymbol{\theta}}_{2step} = \operatorname*{arg\,min}_{\boldsymbol{\theta}} \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{v}_i(\boldsymbol{\theta})' \mathbf{Z}_i \right) \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_i' \mathbf{v}_i(\hat{\boldsymbol{\theta}}_{1step}) \mathbf{v}_i(\hat{\boldsymbol{\theta}}_{1step})' \mathbf{Z}_i \right)^{-1} \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_i' \mathbf{v}_i(\boldsymbol{\theta}) \right).$$
(27)

The continuous updating GMM estimator (CUE) is given by

$$\hat{\boldsymbol{\theta}}_{CUE} = \operatorname*{arg\,min}_{\boldsymbol{\theta}} \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{v}_i(\boldsymbol{\theta})' \mathbf{Z}_i \right) \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_i' \mathbf{v}_i(\boldsymbol{\theta}) \mathbf{v}_i(\boldsymbol{\theta})' \mathbf{Z}_i \right)^{-1} \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_i' \mathbf{v}_i(\boldsymbol{\theta}) \right).$$
(28)

The asymptotic covariance matrix of the above estimator is given, respectively, by

$$Var(\hat{\boldsymbol{\theta}}_{1step}) = N^{-1} \left( \hat{\mathbf{G}}_{1step}' \hat{\mathbf{W}}^{-1} \hat{\mathbf{G}}_{1step} \right)^{-1} \hat{\mathbf{G}}_{1step}' \hat{\mathbf{W}}^{-1} \hat{\boldsymbol{\Omega}}_{1step} \hat{\mathbf{W}}^{-1} \hat{\mathbf{G}}_{1step} \left( \hat{\mathbf{G}}_{1step}' \hat{\mathbf{W}}^{-1} \hat{\mathbf{G}}_{1step} \right)^{-1}$$
(29)

$$Var(\hat{\boldsymbol{\theta}}_{2step}) = N^{-1} \left( \hat{\mathbf{G}}_{2step}' \hat{\mathbf{\Omega}}_{2step}^{-1} \hat{\mathbf{G}}_{2step} \right)^{-1}, \tag{30}$$

and

$$Var(\hat{\boldsymbol{\theta}}_{CUE}) = N^{-1} \left( \hat{\mathbf{G}}_{CUE}' \hat{\boldsymbol{\Omega}}_{CUE}^{-1} \hat{\mathbf{G}}_{CUE} \right)^{-1}, \qquad (31)$$

where  $\hat{\mathbf{G}}_{j} = \partial \bar{\mathbf{g}}(\hat{\boldsymbol{\theta}}_{j}) / \partial \boldsymbol{\theta}'$  for j = 1 step, 2 step, CUE, with  $\mathbf{g}_{i}(\hat{\boldsymbol{\theta}}_{j}) = \mathbf{Z}'_{i} \mathbf{v}_{i}(\hat{\boldsymbol{\theta}}_{j})$  and  $\bar{\mathbf{g}}(\hat{\boldsymbol{\theta}}_{j}) = N^{-1} \sum_{i=1}^{N} \mathbf{g}_{i}(\hat{\boldsymbol{\theta}}_{j})$ ,  $\hat{\mathbf{W}} = N^{-1} \sum_{i=1}^{N} \mathbf{Z}'_{i} \mathbf{Z}_{i}$ , and  $\hat{\mathbf{\Omega}}_{j} = N^{-1} \sum_{i=1}^{N} \mathbf{g}_{i}(\hat{\boldsymbol{\theta}}_{j}) \mathbf{g}_{i}(\hat{\boldsymbol{\theta}}_{j})'$ . The derivatives involved in  $\hat{\mathbf{G}}_{j}$  are computed numerically.

#### **3.2** Nauges and Thomas (2003)

Nauges and Thomas (2003) consider the single factor dynamic panel model given by

$$y_{it} = \mathbf{w}'_{it}\boldsymbol{\delta} + u_{it}, \qquad (i = 1, 2, ..., N; t = 1, 2, ..., T),$$
(32)

where  $u_{it} = \alpha_i + \lambda_i f_t + \varepsilon_{it}$ . It is assumed that  $|\gamma| < 1$  with the initial values,  $y_{i0}$ , treated as given. It is further assumed that

$$E(\alpha_i) = 0, \ E(\lambda_i) = 0, \ E(\varepsilon_{it}) = 0,$$

and

$$E(y_{i0}\varepsilon_{it}) = 0, \ E(\alpha_i\varepsilon_{it}) = 0, \ E(\lambda_i\varepsilon_{it}) = 0, \ E(\varepsilon_{it}\varepsilon_{is}) = 0,$$
(33)

for i = 1, 2, ..., N, t = 1, 2, ..., T and  $t \neq s$ . As a first step they first difference to eliminate  $\alpha_i$  so that (32) becomes

$$\Delta y_{it} = \boldsymbol{\delta}' \Delta \mathbf{w}_{it} + \Delta u_{it}, \tag{34}$$

where

$$\Delta u_{it} = \lambda_i g_t + \Delta \varepsilon_{it},$$

and  $g_t = \Delta f_t$ . In the second step, following Holtz-Eakin et al. (1988), they perform a quasidifferencing transformation to obtain

$$\Delta u_{it} - r_t \Delta u_{i,t-1} = \Delta \varepsilon_{it} - r_t \Delta \varepsilon_{i,t-1}, \qquad (i = 1, 2, \dots, N; \quad t = 3, 4, \dots, T),$$

where  $r_t = g_t/g_{t-1} = (f_t - f_{t-1})/(f_{t-1} - f_{t-2})$ . Using (34) it follows that

$$v_{it} = \Delta u_{it} - r_t \Delta u_{i,t-1} = (\Delta y_{it} - r_t \Delta y_{i,t-1}) - \boldsymbol{\delta}' (\Delta \mathbf{w}_{it} - r_t \Delta \mathbf{w}_{i,t-1}).$$

Under the conditions set out in (33), if  $x_{it}$  is strictly exogenous, the following (T-2)(T-1)/2 + kT(T-2) moment conditions hold:

$$E[\mathbf{z}_{it}(\Delta u_{it} - r_t \Delta u_{i,t-1})] = \mathbf{0}, \qquad (t = 3, 4, ..., T)$$

where  $\mathbf{z}_{it} = (y_{i0}, ..., y_{i,t-3}; \mathbf{x}'_{i1}, ..., \mathbf{x}'_{iT})'$ . These moment conditions are non-linear in the parameters, as the nuisance parameters  $r'_t$ s are estimated jointly with the parameter of interest,  $\boldsymbol{\delta}$ . The moment conditions in matrix notation can be written as

$$E\left[\mathbf{Z}_{i}'\mathbf{v}_{i}(\boldsymbol{\theta})\right]=\mathbf{0},$$

where  $\mathbf{Z}_i = diag(\mathbf{z}'_{i3}, ..., \mathbf{z}'_{iT})$  and  $\mathbf{v}_i(\boldsymbol{\theta}) = (v_{i3}, ..., v_{iT})'$ . Based on the above orthogonality conditions, and starting from some initial estimate of  $\boldsymbol{\theta}$ , in the first step a consistent GMM estimator of the parameter of interest is obtained as

$$\hat{\boldsymbol{\theta}}_{1step} = \operatorname*{arg\,min}_{\boldsymbol{\theta}} \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{v}_i(\boldsymbol{\theta})' \mathbf{Z}_i \right) \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_i' \mathbf{H} \mathbf{Z}_i \right)^{-1} \left( \frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_i' \mathbf{v}_i(\boldsymbol{\theta}) \right),$$

where **H** is a matrix with 2's on the main diagonal, -1's on the first sub-diagonal and 0's elsewhere. Two-step and continuous-updating GMM estimators are obtained similarly to (27) and (28), respectively. The asymptotic covariance matrix is obtained similarly to (29), (30) and (31).

### 4 Monte Carlo designs

We investigate by means of Monte Carlo simulations the finite sample properties of the transformed likelihood approach and compare them to those of the GMM estimators of Ahn, Lee and Schmidt (2013, ALS) and Nauges and Thomas (2003, NT) described above. We begin by considering the simple AR(1) model followed by the ARX(1) model with an exogenous regressor.

#### 4.1 AR(1) model with a single factor

In this case the observations on  $y_{it}$  are generated as

$$y_{it} = \alpha_i + \gamma y_{i,t-1} + \xi_{it}, \quad \text{for } i = 1, ..., N; t = -S + 1, ..., -1, 0, 1, ..., T,$$
  
$$\xi_{it} = \lambda_i f_t + u_{it}, \ u_{it} \sim iid\mathcal{N}(0, \sigma^2),$$

where  $|\gamma| < 1$ . To ensure that  $y_{i0}$  are correlated with the fixed effects,  $\alpha_i$ , and the error terms,  $\xi_{it}$ , we assume that the AR(1) processes have started at time t = -S with starting values  $y_{i,-S}$ . It is then easily seen that

$$y_{i0} = \frac{1 - \gamma^S}{1 - \gamma} \alpha_i + \gamma^S y_{i,-S} + \sum_{j=0}^{S-1} \gamma^j \xi_{i,-j},$$

and with S sufficiently large we have

$$y_{i0} \approx \frac{1}{1-\gamma} \alpha_i + \sum_{j=0}^{S-1} \gamma^j \xi_{i,-j}.$$

To deal with the initial values for each i we generate the T + 1 + S observations t = -S + 1, -S + 2, ..., 0, 1, ..., T using  $y_{i,-S} = 0$  and discard the first S = 50, and use the remaining T+1 observations in estimation and inference.

For the unobserved common factor,  $f_t$ , we consider a deterministic and a stochastic option:

$$f_t = \begin{cases} 0 & t = -S + 1, \dots, -1, 0 \\ t & t = 1, 2, \dots, T \end{cases}$$

and

$$f_t = \rho_f f_{t-1} + \sqrt{1 - \rho_f^2} \varepsilon_{ft}, \ \varepsilon_{ft} \sim iid\mathcal{N}(0, 1), \ \text{for } t = -S + 1, ..., -1, 0, 1, ..., T.$$

We consider a relatively persistent case where  $\rho_f = 0.9$  and without loss of generality set  $f_{-S} = 0$ .

Under both specifications of  $f_t$  we also scale the resultant  $f_t$  values such that  $T^{-1} \sum_{t=1}^T f_t^2 = 1$ . The values  $f_t$  for t = -S + 1, ..., -1, 0 are not scaled. The scaling is done to ensure a particular average value of fit as explained below. In all experiments each  $f_t$  is generated once and the same  $f'_t s$  are used in all replications of a given experiment.

The factor loadings,  $\lambda_i$ , are generated independently of the error terms as

$$\lambda_i = \lambda + \eta_i$$
 with  $\lambda = 1$  and  $\eta_i \sim iid\mathcal{N}(0, 1)$ .

However, the fixed effects,  $\alpha_i$ , are allowed to be correlated with the errors by generating them as

$$\alpha_i = T^{-1}(\xi_{i1} + \xi_{i2} + \dots + \xi_{iT}) + v_i = \lambda_i \bar{f} + \bar{u}_i + v_i,$$

where  $\bar{f} = T^{-1} \sum_{t=1}^{T} f_t$ ,  $\bar{u}_i = T^{-1} \sum_{t=1}^{T} u_{it}$  and  $v_i \sim iid\mathcal{N}(0,1)$ . Thus, the fixed effects are correlated with the errors in contrast to the factor loadings,  $\lambda_i$ , that are generated independently of all the other random variables influencing  $y_{it}$ . Note that both options of generating the unobserved factors yield a non-zero value for  $\bar{f}$ , and the (correlated) fixed effects specification can not be generated simply by setting  $f_t = 1$ . This is because our approach to dealing with the unobserved common factors rules out the factor loadings to be correlated with the errors,  $u_{it}$ , whilst we do not rule out correlation between the fixed effects and the errors.

Finally, as shown in Section A.5 of the Appendix, the average fit of the panel AR(1) model is determined by  $\gamma$  and does not depend on  $\sigma_u^2 = Var(u_{it})$ , and hence we set  $\sigma_u^2 = 1$ . For the key parameter of the model,  $\gamma$ , we consider a medium and a high value, namely  $\gamma = 0.4$  and 0.8, and consider the following combinations of sample sizes,  $T = \{6, 10\}$  and  $N = \{150, 300, 500\}$ . For the GMM estimators of Ahn et al. (2013, ALS) and Nauges and Thomas (2003, NT) we report results for the one-step, two-step and CU GMM estimators. T = 6 is the smallest value for which the ALS GMM estimators are computable. For inference we use the standard errors computed based on the second derivative of the log-likelihood function given in (14) for the ML estimator. For the GMM estimators, we use the conventional formulas given in (29), (30) and (31). All derivatives are evaluated numerically.

We report simulation results for the autoregressive parameter  $\gamma$ . Specifically, we report the bias and root mean square error (RMSE). In addition, we present size and power estimates. The power is computed at { $\gamma \pm 0.10, \gamma \pm 0.05$ } for the null values of  $\gamma = \{0.4, 0.8\}$ . All tests are carried out at the 5% significance level and all experiments are replicated 1,000 times.

#### 4.1.1 Results for the AR(1) case

The simulation results for the AR(1) case are presented in Tables 1 to 4.<sup>6</sup>,<sup>7</sup> In terms of bias and RMSE, the transformed ML estimator performs well for all cases. As the sample size N and/or T increases, the RMSE decreases irrespective of the value of the autoregressive parameter  $\gamma$  and the specification used for  $f_t$ . With regard to inference, the ML estimator performs well in that it has correct size for all combinations of N and T. Power performance is satisfactory though there is the tendency for the ML estimator to display low power for small positive departures from the null. For example, when  $\gamma = 0.8$ , T = 6 and  $N = \{150, 300\}$ , the power is quite low for the alternative  $\gamma = 0.9$  when testing the null  $\gamma = 0.8$ . This tendency is also evident when  $f_t$  is generated as a time trend. Contrary to the well behaved finite sample properties of the transformed ML estimator, the performance of the GMM estimators are not generally good. In terms of bias and RMSE, the GMM estimators are substantially worse than the transformed ML estimator. With regard to size, the one-step ALS-GMM estimator displays empirical sizes close to the nominal level in many cases.

#### 4.2 ARX(1) model with a single factor

The observations on  $y_{it}$  for the ARX(1) model are generated as

$$y_{it} = \alpha_i + \gamma y_{i,t-1} + \beta x_{it} + \xi_{it}, \quad \text{for } i = 1, 2, ..., N; t = -S + 1, -S + 2, ..., 0, 1, ..., T,$$
  
$$\xi_{it} = \lambda_i f_t + u_{it}, u_{it} \sim iid\mathcal{N}(0, \sigma^2).$$

As in the AR(1) case, for values of  $|\gamma|$  not too close to unity we set  $y_{i,-S} = 0$  and note that for S sufficiently large

$$y_{i0} \approx \frac{1}{1-\gamma} \alpha_i + \beta \sum_{j=0}^{S-1} \gamma^j x_{i,-j} + \sum_{j=0}^{S-1} \gamma^j \xi_{i,-j}$$

The regressors,  $x_{it}$ , are generated as

$$x_{it} = \mu_i + \vartheta_i f_t + \breve{x}_{it}, \ , \breve{x}_{it} = \rho_x \breve{x}_{i,t-1} + \sqrt{1 - \rho_x^2} \varepsilon_{it},$$
(35)

with  $\breve{x}_{i,-S} = 0$ , for t = -S + 1, ..., 0, 1, ..., T, where  $|\rho_x| < 1$ ,  $\mu_i \sim iid\mathcal{N}(0, 1)$ ,  $\varepsilon_{it} \sim iid\mathcal{N}(0, 1)$  and  $f_t$  is generated as in the AR(1) case. We set  $\rho_x = 0.8$  which yields relatively persistence regressors.

We generate the factor loadings independently as

$$\vartheta_i \sim iid\mathcal{N}(0.5, \sigma_\vartheta^2), \ \lambda_i \sim iid\mathcal{N}(0.5, \sigma_\lambda^2),$$
(36)

<sup>&</sup>lt;sup>6</sup>For the starting values in the optimization routine used to compute the ML estimators, we use  $\boldsymbol{\theta}_{ini} = (\gamma_{ini}, \omega_{ini}, \mathbf{q}'_{ini})'$  with  $\gamma_{ini} \sim U[-0.999, 0.999]$ ,  $\omega_{ini} \sim U[1, 2]$  and  $q_{t,ini} \sim U[-1, 1]$  where  $q_{t,ini}$  is the th element of  $\mathbf{q}_{ini}$ . In addition  $\omega$  needs to satisfy  $\omega > (T-1)/T$  since  $|\mathbf{\Omega}| = 1 + T(\omega - 1) > 0$ . Specifically, we use five such sets of random starting values and choose the largest among the maximum of the log-likelihood values as the estimate of the ML estimator. Similarly, for the one-step ALS and NT GMM estimators we use five sets of starting values  $\boldsymbol{\theta}_{ini,ALS} = (\gamma_{ini}, \psi'_{ini})'$  and  $\boldsymbol{\theta}_{ini,NT} = (\gamma_{ini}, \mathbf{r}'_{ini})'$  respectively, where  $\gamma_{ini} \sim U[-0.999, 0.999]$ ,  $\psi_{t,ini} \sim U[-1, 1]$  with  $\psi_{t,ini}$  the th element of  $\psi_{ini}$ , and  $r_{t,ini} \sim U[-1, 1]$  with  $r_{t,ini}$  the th element of  $\mathbf{r}_{ini}$ . We select the smallest among the minimum values of the objective function as the estimate of the one-step ALS and NT GMM estimators. For the two-step and continuous-updating ALS and NT GMM estimators we use the one-step estimates as the starting value of the optimization routine.

<sup>&</sup>lt;sup>7</sup>In certain cases, the Hessian evaluated at the global maximum for the ML estimator was not positive definite. The simulation draw for these cases was discarded and an additional draw was generated until the total number of simulations with a positive definite Hessian reached 1,000. The number of these additional draws decreased for a fixed T as N increased, and as T increased for all N.

and to ensure that the fixed effects,  $\alpha_i$ , are correlated with the regressors, as well as with the errors, we generate them as

$$\alpha_i = T^{-1} \sum_{t=1}^T x_{it} + \lambda_i \bar{f} + \bar{u}_i + v_i,$$

where as in the AR(1) case,  $\bar{f} = T^{-1} \sum_{t=1}^{T} f_t$ ,  $\bar{u}_i = T^{-1} \sum_{t=1}^{T} u_{it}$  and  $v_i \sim iid\mathcal{N}(0,1)$ . We set the remaining parameters bearing in mind that in the case of ARX(1) panels the average

We set the remaining parameters bearing in mind that in the case of ARX(1) panels the average  $R^2$  is at least as large as  $\gamma^2$ . In particular, from the results for the  $R^2$  derived in Section A.5 of the Appendix we have that

$$R_y^2 = \frac{\beta^2 Var(\check{x}_{it}) + \left[ \left( N^{-1} \sum_{i=1}^N c_i^2 \right) \left( T^{-1} \sum_{t=1}^T f_t^2 \right) + \sigma^2 \right] \gamma^2}{\beta^2 Var(\check{x}_{it}) + \left( N^{-1} \sum_{i=1}^N c_i^2 \right) \left( T^{-1} \sum_{t=1}^T f_t^2 \right) + \sigma^2} \ge \gamma^2,$$

with the equality holding when  $\beta = 0$  and where  $c_i = \beta \vartheta_i + \lambda_i$ . In view of (35)  $Var(\check{x}_{it}) = 1$  and without loss of generality we set  $\beta = 1$ . Also, recall that  $T^{-1} \sum_{t=1}^{T} f_t^2 = 1$ . For comparability with the AR(1) case we set  $\gamma = (0.4, 0.8)$  and determine  $\sigma^2$ ,  $\sigma^2_{\lambda}$ , and  $\sigma^2_{\vartheta}$  such that  $R_y^2 - \gamma^2 = 0.1$ . To this end we note that

$$R_y^2 - \gamma^2 = \frac{(1 - \gamma^2)}{1 + N^{-1} \sum_{i=1}^N c_i^2 + \sigma^2} = 0.1.$$

Further, for sufficiently large N and noting that  $\lambda_i$  and  $\vartheta_i$  are generated independently (see (36)) it follows that

$$N^{-1} \sum_{i=1}^{N} c_i^2 \to_p \beta^2 \sigma_\vartheta^2 + \sigma_\lambda^2 + \frac{1}{4} (1+\beta)^2.$$

Hence with  $\beta = 1$  we have

$$R_y^2 - \gamma^2 = \frac{(1 - \gamma^2)}{2 + \sigma_\vartheta^2 + \sigma_\lambda^2 + \sigma^2} = 0.1.$$

We set  $\sigma_\lambda^2=\sigma_\vartheta^2=\sigma^2$  and using the above result we obtain

$$\sigma^2 = \frac{0.8 - \gamma^2}{0.3} > 0$$

Finally, we consider the same combinations of T and N as in the AR(1) case, namely  $T = \{6, 10\}$ and  $N = \{150, 300, 500\}$ , and discard the first 50 observations basing estimation on the remaining observations over the period  $t = 0, 1, \dots, T$ . Note that after first-differencing we end up with Tobservations for estimation of  $\gamma$  and  $\beta$ . The standard errors used for inference are based on the same formulas as those used in the AR(1) case with all derivatives computed numerically.

We report simulation results for the same set of statistics as in the AR(1) case, for both  $\gamma$ and  $\beta$ , including size and power. Power is computed for the null values of  $(\gamma, \beta) = \{0.4, 1.0\}$  and  $(\gamma, \beta) = \{0.8, 1.0\}$ . As previously, all tests are carried out at the 5% significance level and all experiments are replicated 1,000 times.

Under strict exogeneity, for the ALS and NT GMM estimators there are so many moment conditions and using all of them causes a large finite sample bias. Hence, we use only a subset of moment conditions for the exogenous variable  $x_{it}$ . Specifically, for ALS GMM we use  $\mathbf{z}_{it} = (y_{i0}, ..., y_{i,t-1}, x_{it}, ..., x_{iT})'$ , since  $\mathbf{w}_{it}$  and  $\mathbf{\ddot{W}}_{it}$  in (26) contain  $x_{it}$  and  $x_{i,T-m}, ..., x_{iT}$ . Similarly, for NT GMM we use  $\mathbf{z}_{it} = (y_{i0}, ..., y_{i,t-m-2}, x_{i1}, ..., x_{it})'$ . Recall that m is the number of unobserved factors which, in the case of current experiments, is set to 1.

#### 4.2.1 Results for the ARX(1) case

Simulation results for the ARX(1) model are summarized in Tables 5 to 8.<sup>8</sup> In terms of bias and RMSE, the results are very similar to the AR(1) case. As the sample size increases, the RMSE decreases in all cases. The sizes are close to the nominal level in all cases and, contrary to the AR(1) case, the power is reasonably high even for  $\gamma = 0.8$  and N = 150 irrespective of the specification of  $f_t$ . The augmentation of the AR(1) model with exogenous regressors has also benefited the GMM estimators who show improved performance as compared to the results obtained for the AR(1) model. However, the transformed ML estimator continues to outperform the GMM estimators (sometimes substantially) both in terms of bias and RMSE. In terms of size, all the GMM estimators exihibit large size distortions in almost all cases. An exception is the one-step NT-GMM with T = 6,  $\gamma = 0.8$  and  $f_t \sim AR(1)$ . In this case, the empirical size is close to the nominal one, but power is lower than the transformed ML estimator.

#### 4.3 AR(1) model with two factors

The observations on  $y_{it}$  for the AR(1) model are generated as

$$y_{it} = \alpha_i + \gamma y_{i,t-1} + \xi_{it}, \quad \text{for } i = 1, ..., N; \ t = -S + 1, ..., -1, 0, 1, ..., T$$
  
$$\xi_{it} = \lambda_{1i} f_{1t} + \lambda_{2i} f_{2t} + u_{it} = \lambda'_i \mathbf{f}_t + u_{it}, \qquad u_{it} \sim iid\mathcal{N}(0, \sigma^2),$$

where  $\mathbf{f}_t = (f_{1t}, f_{2t})'$  and  $\lambda_i = (\lambda_{1i}, \lambda_{2i})'$ , with the initial values of  $y_{it}$  for  $|\gamma| < 1$  dealt with as in the single factor case.

The unobserved common factors,  $f_{\ell t}$ , are generated as

$$f_{\ell t} = \rho_{f\ell} f_{\ell,t-1} + \sqrt{1 - \rho_{f\ell}^2} \varepsilon_{f\ell t}, \ \varepsilon_{f\ell t} \sim iid\mathcal{N}(0,1), \ \text{for} \ \ell = 1,2; t = -S + 1, ..., -1, 0, 1, ..., T,$$

with  $\rho_{f\ell} = 0.9$ , and without loss of generality  $f_{\ell,-S} = 0$ . As in the single factor case, we scale the resultant  $f_{\ell t}$  values such that  $T^{-1} \sum_{t=1}^{T} f_{\ell t}^2 = 1$  (the past values  $f_{\ell t}$  for t = -S + 1, ..., -1, 0 are not scaled) to ensure a particular average value of fit.

The factor loadings,  $\lambda_i = (\lambda_{1i}, \lambda_{2i})'$  are generated independently of the error terms and all other variables influencing  $y_{it}$  as

$$\lambda_{\ell i} = \lambda + \eta_{\ell i}, \text{ with } \lambda = 1 \text{ and } \eta_{\ell i} \sim iid\mathcal{N}(0, 1).$$

The fixed effects,  $\alpha_i$ , are allowed to be correlated with the errors by generating them as

$$\alpha_i = T^{-1}(\xi_{i1} + \xi_{i2} + \dots + \xi_{iT}) + v_i = \lambda_{1i}\bar{f}_1 + \lambda_{2i}\bar{f}_2 + \bar{u}_i + v_i$$

where  $\bar{f}_{\ell} = T^{-1} \sum_{t=1}^{T} f_{\ell t}$ ,  $\ell = 1, 2, \ \bar{u}_i = T^{-1} \sum_{t=1}^{T} u_{it}$ , and  $v_i \sim iid\mathcal{N}(0,1)$ .

As mentioned earlier, since the average fit of the panel AR(1) model is solely determined by  $\gamma$  (a result which holds irrespective of the number of factors) we set  $\sigma_u^2 = 1$ .

<sup>&</sup>lt;sup>8</sup>As starting values, in the case of the ML estimation we use  $\boldsymbol{\theta}_{ini} = (\boldsymbol{\varphi}'_{ini}, \omega_{ini}, \mathbf{q}'_{ini})'$  with  $\boldsymbol{\varphi}_{ini} = (b_{ini}, \pi'_{ini}, \gamma_{ini}, \beta_{ini})'$ , where  $b_{ini}$  and  $\pi_{ini}$  are obtained as the OLS estimates of (19),  $\beta_{ini} \sim U[0, 1]$ , and the remaining parameters are generated as in the AR(1) case using five sets of starting values. For the one-step ALS and NT GMM estimators we use  $\boldsymbol{\theta}_{ini,ALS} = (\gamma_{ini}, \beta_{ini}, \boldsymbol{\psi}'_{ini})'$  and  $\boldsymbol{\theta}_{ini,NT} = (\gamma_{ini}, \beta_{ini}, \mathbf{r}'_{ini})'$  respectively, where  $\beta_{ini} \sim U[0, 1]$ , and the remaining parameters are generated as in the AR(1) case using five sets of starting values. For the CUE, for both ALS and NT we use the parameter estimates obtained from the one-step GMM.

#### 4.3.1 Results for the AR(1) case

Simulation results for the AR(1) model are provided in Tables 9 and 10. Since the single factor results showed that the GMM estimators do not work well, we consider here the transformed ML estimator only. From the tables we find that the behaviour of the proposed estimator for the two factor case is similar to that of the single factor case. In particular, the bias of the transformed ML estimator is very small and RMSE decreases as N increases. In terms of inference, sizes are close to the nominal level and power is relatively high except for some cases with  $\gamma = 0.8$ .

#### 4.4 ARX(1) model with two factors

The dependent variable,  $y_{it}$ , for the ARX(1) model is generated as

$$y_{it} = \alpha_i + \gamma y_{i,t-1} + \beta x_{it} + \xi_{it}, \quad \text{for } i = 1, 2, ..., N; t = -S + 1, -S + 2, ..., 0, 1, ..., T)$$
  
$$\xi_{it} = \lambda'_i \mathbf{f}_t + u_{it}, u_{it} \sim iid\mathcal{N}(0, \sigma^2).$$

The regressors,  $x_{it}$ , are generated as

$$x_{it} = \mu_i + \vartheta'_i \mathbf{f}_t + \breve{x}_{it}, \ , \breve{x}_{it} = \rho_x \breve{x}_{i,t-1} + \sqrt{1 - \rho_x^2} \varepsilon_{it}, \tag{37}$$

with  $\check{x}_{i,-S} = 0$  for t = -S+1, ..., 0, 1, ..., T, where  $\vartheta_i = (\vartheta_{1i}, \vartheta_{2i})', \mu_i \sim iid\mathcal{N}(0, 1), \varepsilon_{it} \sim iid\mathcal{N}(0, 1)$ , and  $f_{\ell t}, \ell = 1, 2$ , are generated as in the AR(1) case, and  $\rho_x = 0.8$ . The factor loadings  $\vartheta_i = (\vartheta_{1i}, \vartheta_{2i})'$  and  $\lambda_i = (\lambda_{1i}, \lambda_{2i})'$  are generated independently as

$$\vartheta_{\ell i} \sim iid\mathcal{N}(0.5, \sigma_{\ell\vartheta}^2), \ \lambda_{\ell i} \sim iid\mathcal{N}(0.5, \sigma_{\ell\lambda}^2), \ \ell = 1, 2,$$
(38)

and to ensure that the fixed effects,  $\alpha_i$ , are correlated with the regressors, as well as with the errors, as in the single factor case we generate them as

$$\alpha_i = \bar{x}_i + \lambda_{1i}\bar{f}_1 + \lambda_{2i}\bar{f}_2 + \bar{u}_i + v_i,$$

where  $\bar{x}_i = T^{-1} \sum_{t=1}^{T} x_{it}$ , and the remaining parameters are set as in the two factor AR(1) model. In setting the remaining parameters, using results in Section A.5 of the Appendix, for the two

In setting the remaining parameters, using results in Section A.5 of the Appendix, for the two factor case we have

$$R_y^2 = \frac{\beta^2 Var(\breve{x}_{it}) + \left[ \left( N^{-1} \sum_{i=1}^N c_{1i}^2 \right) \left( T^{-1} \sum_{t=1}^T f_{1t}^2 \right) + \left( N^{-1} \sum_{i=1}^N c_{2i}^2 \right) \left( T^{-1} \sum_{t=1}^T f_{2t}^2 \right) + \sigma^2 \right] \gamma^2}{\beta^2 Var(\breve{x}_{it}) + \left( N^{-1} \sum_{i=1}^N c_{1i}^2 \right) \left( T^{-1} \sum_{t=1}^T f_{1t}^2 \right) + \left( N^{-1} \sum_{i=1}^N c_{2i}^2 \right) \left( T^{-1} \sum_{t=1}^T f_{2t}^2 \right) + \sigma^2} \ge \gamma^2,$$

where  $c_{\ell i} = \beta \vartheta_{\ell i} + \lambda_{\ell i}$ ,  $\ell = 1, 2$ . From (37) we have that  $Var(\check{x}_{it}) = 1$  and we set  $\beta = 1$ . For comparability with the AR(1) case  $\gamma = (0.4, 0.8)$  and  $\sigma^2$ ,  $\sigma^2_{\ell\lambda}$ , and  $\sigma^2_{\ell\vartheta}$ ,  $\ell = 1, 2$ , are determined such that  $R_y^2 - \gamma^2 = 0.1$ , as in the single factor case. Thus, recalling that  $T^{-1} \sum_{t=1}^T f_{\ell t}^2 = 1$ 

$$R_y^2 - \gamma^2 = \frac{1 - \gamma^2}{1 + N^{-1} \sum_{i=1}^N c_{1i}^2 + N^{-1} \sum_{i=1}^N c_{2i}^2 + \sigma^2} = 0.1,$$

and for sufficiently large N since  $\lambda_i$  and  $\vartheta_i$  are generated independently (see (38)) we have

$$N^{-1} \sum_{i=1}^{N} c_{\ell i}^2 \to_p \beta^2 \sigma_{\ell \vartheta}^2 + \sigma_{\ell \lambda}^2 + \frac{1}{4} (1+\beta)^2, \text{ for } \ell = 1, 2.$$

For  $\beta = 1$  we then obtain

$$R_{y}^{2} - \gamma^{2} = \frac{1 - \gamma^{2}}{3 + \sigma_{1\vartheta}^{2} + \sigma_{1\lambda}^{2} + \sigma_{2\vartheta}^{2} + \sigma_{2\lambda}^{2} + \sigma^{2}} = 0.1.$$

Setting  $\sigma_{1\vartheta}^2 = \sigma_{1\lambda}^2 = \sigma_{2\vartheta}^2 = \sigma_{2\lambda}^2 = \sigma^2$  and using the above result yields

$$\sigma^2 = \frac{0.7 - \gamma^2}{0.5} > 0$$

#### 4.4.1 Results for the ARX(1) case

Simulation results for the ARX(1) model are provided in Tables 11 and 12. As in the AR(1) case only the transformed ML estimator is considered. The results show that bias is very small and that RMSE decreases as N and T increase. In addition, size is close to its nominal value and power is high in all cases.

## 5 Conclusion

In this paper we proposed the transformed maximum likelihood estimator for short dynamic panel data models with interactive fixed effects. This is a natural extension of Hsiao, Pesaran, and Tahmiscioglu (2002) to incorporate a factor structure in the error, while retaining the advantages of the transformed likelihood approach. Monte Carlo simulations were carried out to investigate the finite sample behaviour of the proposed estimator and to compare its performance with several GMM estimators available in the literature. The simulation results showed that the ML estimator performs well in finite samples and outperforms the GMM estimators in almost all cases considered. In our analysis we assumed that the number of factors is known. Estimating the number of factors in the current setting where T is short and N tends to infinity is a topic for future research.

|            | T              | $= 6, \gamma =$ | 0.4, $f_t \sim$ | -AR(1)         |                |                |
|------------|----------------|-----------------|-----------------|----------------|----------------|----------------|
|            | N =            | : 150           | N =             | : 300          | N =            | 500            |
| Estimator  | Bias           | RMSE            | Bias            | RMSE           | Bias           | RMSE           |
|            | $(\times 100)$ | $(\times 100)$  | $(\times 100)$  | $(\times 100)$ | $(\times 100)$ | $(\times 100)$ |
| ML         | 0.34           | 6.26            | 0.01            | 4.27           | -0.16          | 3.31           |
| ALS(1step) | -17.20         | 33.97           | -16.65          | 30.94          | -17.82         | 29.22          |
| ALS(2step) | -15.94         | 32.21           | -16.14          | 29.60          | -16.62         | 27.89          |
| ALS(CUE)   | -16.51         | 33.99           | -14.99          | 29.36          | -17.08         | 28.87          |
| NT(1step)  | -58.44         | 60.78           | -60.38          | 61.31          | -61.05         | 61.62          |
| NT(2step)  | -57.94         | 60.32           | -60.58          | 61.38          | -61.31         | 61.76          |
| NT(CUE)    | -64.14         | 66.30           | -65.22          | 65.72          | -65.35         | 65.64          |
|            | T              | $= 6, \gamma =$ | $0.8, f_t \sim$ | -AR(1)         |                |                |
|            | N =            | 150             | N =             | = 300          | N =            | 500            |
| Estimator  | Bias           | RMSE            | Bias            | RMSE           | Bias           | RMSE           |
|            | (×100)         | $(\times 100)$  | $(\times 100)$  | $(\times 100)$ | (×100)         | (×100)         |
| ML         | -0.14          | 7.35            | 0.04            | 5.63           | 0.15           | 4.71           |
| ALS(1step) | -34.26         | 48.24           | -28.17          | 39.85          | -27.57         | 37.15          |
| ALS(2step) | -35.26         | 49.17           | -29.50          | 40.56          | -28.70         | 37.97          |
| ALS(CUE)   | -33.98         | 50.34           | -27.33          | 40.68          | -26.74         | 37.55          |
| NT(1step)  | -59.14         | 85.47           | -65.45          | 89.77          | -71.95         | 93.70          |
| NT(2step)  | -56.65         | 82.48           | -60.66          | 84.75          | -66.43         | 87.70          |
| NT(CUE)    | -57.22         | 83.70           | -58.49          | 81.90          | -61.448        | 83.58          |
|            | T              | $= 6, \gamma =$ | $0.4, f_t \sim$ | $\sim trend$   |                |                |
|            | N =            | : 150           | N =             | : 300          | N =            | 500            |
| Estimator  | Bias           | RMSE            | Bias            | RMSE           | Bias           | RMSE           |
|            | $(\times 100)$ | $(\times 100)$  | $(\times 100)$  | $(\times 100)$ | $(\times 100)$ | $(\times 100)$ |
| ML         | 0.23           | 8.12            | -0.02           | 5.45           | 0.05           | 4.16           |
| ALS(1step) | -19.00         | 33.04           | -19.87          | 27.96          | -19.84         | 24.86          |
| ALS(2step) | -18.62         | 32.37           | -19.63          | 27.68          | -19.11         | 23.95          |
| ALS(CUE)   | -18.83         | 34.47           | -19.58          | 28.67          | -18.95         | 24.38          |
| NT(1step)  | -12.74         | 54.24           | -20.47          | 58.26          | -28.74         | 60.59          |
| NT(2step)  | -13.36         | 55.40           | -21.22          | 59.06          | -29.30         | 61.14          |
| NT(CUE)    | -18.64         | 62.90           | -24.75          | 62.83          | -31.45         | 63.35          |
|            | T              | $= 6, \gamma =$ | 0.8, $f_t \sim$ | $\sim trend$   |                |                |
|            | N =            | : 150           | N =             | : 300          | N =            | 500            |
| Estimator  | Bias           | RMSE            | Bias            | RMSE           | Bias           | RMSE           |
|            | $(\times 100)$ | $(\times 100)$  | $(\times 100)$  | $(\times 100)$ | $(\times 100)$ | $(\times 100)$ |
| ML         | -3.21          | 13.36           | -1.68           | 10.36          | -0.43          | 8.34           |
| ALS(1step) | -34.76         | 51.98           | -34.05          | 52.22          | -35.43         | 53.05          |
| ALS(2step) | -37.44         | 54.36           | -36.70          | 55.01          | -36.99         | 54.37          |
| ALS(CUE)   | -35.42         | 56.23           | -34.47          | 55.11          | -35.13         | 54.39          |
| NT(1step)  | -49.95         | 63.27           | -61.37          | 73.58          | -71.26         | 81.07          |
| NT(2step)  | -50.83         | 64.44           | -61.79          | 74.83          | -72.50         | 82.81          |
| NT(CUE)    | -60.29         | 80.38           | -72.93          | 89.58          | -83.87         | 96.77          |

Table 1: Bias(×100) and RMSE(×100) for the AR(1) model with a single factor (T = 6)

Notes:  $y_{it}$  is generated as  $y_{it} = \alpha_i + \gamma y_{i,t-1} + \xi_{it}$ ,  $\xi_{it} = \lambda_i f_t + u_{it}$ ,  $u_{it} \sim iid\mathcal{N}(0, \sigma^2)$ , i = 1, 2, ..., N; t = -49, 48, ...0, 1, ..., T, with  $y_{i,-50} = 0$  and  $\sigma^2 = 1$ . The factor is generated as:  $f_t = \rho_f f_{t-1} + \sqrt{1 - \rho_f^2} \varepsilon_{ft}$ ,  $\varepsilon_{ft} \sim iid\mathcal{N}(0, 1)$ , for t = -49, 48, ...0, 1, ..., T, with  $f_{-50} = 0$ , and  $\rho_f = 0.9$ , in the case where  $f_t \sim AR(1)$ ;  $f_t = 0$  for all t = -49, 48, ...0, and  $f_t = t$  for 1, 2, ..., T, in the case where  $f_t \sim trend$ . Under both specifications of  $f_t$ , the resultant  $f_t$  values are scaled such that  $T^{-1} \sum_{t=1}^T f_t t^2 = 1$ . The values of  $f_t$  for t = -49, 48, ...0 are not scaled. The factor loadings,  $\lambda_i$ , are generated as  $\lambda_i = \lambda + \eta_i$  with  $\lambda = 1$  and  $\eta_i \sim iid\mathcal{N}(0, 1)$ . The fixed effects,  $\alpha_i$ , are generated as  $\alpha_i = T^{-1}(\xi_{i1} + \xi_{i2} + ... + \xi_{iT}) + v_i = \lambda_i \bar{f} + \bar{u}_i + v_i$ , where  $\bar{f} = T^{-1} \sum_{t=1}^T f_t$ ,  $\bar{u}_i = T^{-1} \sum_{t=1}^T u_{it}$ , and  $v_i \sim iid\mathcal{N}(0, 1)$ . Each  $f_t$  is generated once and the same  $f'_t$ s are used throughout the replications. The first 50 observations are discarded. ML is the proposed transformed maximum likelihood estimator. ALS(j) and NT(j) with j = 1 step, 2step, CUE are the one step, two step and continuous updating GMM estimators of Ahn et al. (2013), and Nauges and Thomas (2003), respectively. All experiments are based on 1,000 replications.

|            | <i>T</i> =       | $= 10. \gamma =$ | $0.4. f_{t}$    | $\sim AR(1)$   |                |                |
|------------|------------------|------------------|-----------------|----------------|----------------|----------------|
|            | $\overline{N} =$ | : 150            | N =             | : 300          | N =            | 500            |
| Estimator  | Bias             | RMSE             | Bias            | RMSE           | Bias           | RMSE           |
|            | $(\times 100)$   | $(\times 100)$   | $(\times 100)$  | $(\times 100)$ | $(\times 100)$ | $(\times 100)$ |
| ML         | 0.30             | 4.47             | 0.01            | 3.11           | -0.09          | 2.28           |
| ALS(1step) | 15.18            | 23.26            | 10.06           | 18.99          | 6.69           | 15.39          |
| ALS(2step) | 12.45            | 20.40            | 7.03            | 15.88          | 3.58           | 11.42          |
| ALS(CUE)   | 11.66            | 19.92            | 3.68            | 13.94          | 0.91           | 9.66           |
| NT(1step)  | -35.40           | 41.02            | -43.60          | 44.20          | -47.11         | 47.48          |
| NT(2step)  | -41.82           | 47.14            | -51.89          | 52.29          | -55.49         | 55.69          |
| NT(CUĖ)    | -56.39           | 61.07            | -61.56          | 61.62          | -61.87         | 61.90          |
| ()         | <i>T</i> =       | $= 10, \gamma =$ | $0.8, f_t$      | $\sim AR(1)$   |                |                |
|            | N =              | 150              | N =             | : 300          | N =            | 500            |
| Estimator  | Bias             | RMSE             | Bias            | RMSE           | Bias           | RMSE           |
|            | $(\times 100)$   | $(\times 100)$   | $(\times 100)$  | $(\times 100)$ | $(\times 100)$ | (×100)         |
| ML         | 0.30             | 6.01             | 0.12            | 4.59           | 0.06           | 3.63           |
| ALS(1step) | -5.35            | 9.68             | -5.01           | 9.08           | -4.51          | 9.84           |
| ALS(2step) | -8.12            | 11.72            | -7.58           | 11.15          | -6.71          | 11.49          |
| ALS(CUE)   | -3.92            | 10.87            | -3.49           | 9.64           | -3.04          | 10.27          |
| NT(1step)  | 2.32             | 31.97            | 0.98            | 36.27          | -0.05          | 40.53          |
| NT(2step)  | -5.33            | 34.26            | -5.70           | 37.08          | -5.72          | 40.21          |
| NT(CUE)    | -7.64            | 37.24            | -9.28           | 39.41          | -10.04         | 39.70          |
|            | <i>T</i> =       | $= 10, \gamma =$ | $0.4, f_t$ ~    | $\sim trend$   |                |                |
|            | N =              | : 150            | N =             | : 300          | N =            | 500            |
| Estimator  | Bias             | RMSE             | Bias            | RMSE           | Bias           | RMSE           |
|            | $(\times 100)$   | $(\times 100)$   | $(\times 100)$  | $(\times 100)$ | $(\times 100)$ | $(\times 100)$ |
| ML         | 0.21             | 4.18             | 0.21            | 4.18           | -0.09          | 2.28           |
| ALS(1step) | -9.06            | 12.94            | -9.06           | 12.94          | 6.69           | 15.39          |
| ALS(2step) | -9.59            | 13.61            | -9.59           | 13.61          | 3.58           | 11.42          |
| ALS(CUE)   | -11.77           | 15.28            | -11.77          | 15.28          | 0.91           | 9.66           |
| NT(1step)  | -24.10           | 52.37            | -24.10          | 52.37          | -47.11         | 47.48          |
| NT(2step)  | -27.60           | 55.35            | -27.60          | 55.35          | -55.49         | 55.69          |
| NT(CUE)    | -24.64           | 61.13            | -24.64          | 61.13          | -61.87         | 61.90          |
|            | T                | $= 6, \gamma =$  | 0.8, $f_t \sim$ | $\sim trend$   |                |                |
|            | N =              | 150              | N =             | 300            | N =            | 500            |
| Estimator  | Bias             | RMSE             | Bias            | RMSE           | Bias           | RMSE           |
|            | $(\times 100)$   | $(\times 100)$   | $(\times 100)$  | $(\times 100)$ | $(\times 100)$ | $(\times 100)$ |
| ML         | -0.10            | 6.92             | 0.15            | 5.39           | -0.06          | 4.24           |
| ALS(1step) | -10.74           | 18.61            | -11.93          | 21.10          | -13.84         | 23.54          |
| ALS(2step) | -11.89           | 16.89            | -12.85          | 19.63          | -17.46         | 24.11          |
| ALS(CUE)   | -10.15           | 20.96            | -12.66          | 24.69          | -16.94         | 28.01          |
| NT(1step)  | -46.57           | 60.17            | -60.55          | 72.32          | -75.19         | 83.16          |
| NT(2step)  | -49.44           | 63.01            | -63.07          | 75.26          | -78.42         | 87.33          |
| NT(CUE)    | -56.11           | 77.72            | -77.00          | 93.18          | -95.74         | 105.41         |

Table 2:  $Bias(\times 100)$  and  $RMSE(\times 100)$  (T = 10) for the AR(1) model with a single factor

|                               |      |                                   |        |      | T         | $= 6, \gamma$ | = 0.4,   | $f_t \sim AF$ | $\mathcal{K}(1)$ |          |       |          |        |       |          |
|-------------------------------|------|-----------------------------------|--------|------|-----------|---------------|----------|---------------|------------------|----------|-------|----------|--------|-------|----------|
|                               |      | 1                                 | V = 15 | 50   |           |               | 1        | N = 30        | 0                |          |       | i        | N = 50 | 0     |          |
|                               | Powe | $er(H_1)$                         | Size   | Powe | $er(H_1)$ | Powe          | $r(H_1)$ | Size          | Powe             | $r(H_1)$ | Powe  | $r(H_1)$ | Size   | Powe  | $r(H_1)$ |
| Estimators $\setminus \gamma$ | 0.30 | 0.35                              | 0.40   | 0.45 | 0.50      | 0.30          | 0.35     | 0.40          | 0.45             | 0.50     | 0.30  | 0.35     | 0.40   | 0.45  | 0.50     |
| ML                            | 38.1 | 14.5                              | 5.4    | 12.1 | 40.0      | 64.2          | 23.2     | 4.7           | 20.8             | 65.5     | 83.8  | 35.1     | 4.8    | 28.6  | 85.6     |
| ALS(1step)                    | 6.1  | 4.8                               | 3.7    | 3.8  | 4.3       | 8.5           | 5.9      | 4.8           | 4.2              | 4.5      | 13.0  | 7.0      | 4.1    | 3.1   | 3.2      |
| ALS(2step)                    | 15.9 | 13.7                              | 11.6   | 11.1 | 10.9      | 26.0          | 18.8     | 14.0          | 11.9             | 11.6     | 33.6  | 23.2     | 15.9   | 12.6  | 11.9     |
| ALS(CUE)                      | 13.4 | 11.2                              | 10.1   | 9.0  | 8.6       | 17.0          | 11.0     | 8.3           | 6.6              | 6.1      | 25.0  | 17.1     | 11.4   | 8.1   | 7.7      |
| NT(1step)                     | 92.3 | 89.4                              | 86.0   | 82.1 | 77.0      | 99.9          | 99.8     | 99.1          | 97.8             | 96.0     | 100.0 | 100.0    | 100.0  | 99.9  | 99.6     |
| NT(2step)                     | 95.6 | 94.0                              | 91.7   | 89.1 | 83.6      | 100.0         | 99.7     | 99.3          | 98.9             | 98.5     | 100.0 | 100.0    | 100.0  | 100.0 | 99.8     |
| NT(CUE)                       | 99.0 | 99.0                              | 98.8   | 97.8 | 95.4      | 100.0         | 100.0    | 100.0         | 100.0            | 100.0    | 100.0 | 100.0    | 100.0  | 100.0 | 100.0    |
|                               |      |                                   |        |      | T         | $= 6, \gamma$ | = 0.8,   | $f_t \sim AF$ | R(1)             |          |       |          |        |       |          |
|                               |      | Ι                                 | V = 15 | 50   |           |               |          | N = 30        | 0                |          |       | i        | N = 50 | 0     |          |
|                               | Powe | $er(H_1)$                         | Size   | Powe | $er(H_1)$ | Powe          | $r(H_1)$ | Size          | Powe             | $r(H_1)$ | Powe  | $r(H_1)$ | Size   | Powe  | $r(H_1)$ |
| Estimators $\setminus \gamma$ | 0.70 | 0.75                              | 0.80   | 0.85 | Ò.90      | 0.70          | 0.75     | 0.80          | 0.85             | 0.90     | 0.70  | 0.75     | 0.80   | 0.85  | 0.90     |
| ML                            | 30.9 | 15.6                              | 5.8    | 2.3  | 5.6       | 42.2          | 20.7     | 6.4           | 1.7              | 12.0     | 55.4  | 25.8     | 4.8    | 2.6   | 47.3     |
| ALS(1step)                    | 8.1  | 6.4                               | 5.3    | 4.4  | 3.7       | 8.8           | 7.1      | 5.6           | 4.6              | 3.5      | 8.8   | 7.7      | 6.2    | 4.6   | 3.6      |
| ALS(2step)                    | 19.1 | 16.1                              | 13.9   | 11.8 | 10.0      | 18.6          | 15.7     | 12.7          | 10.9             | 8.3      | 18.4  | 15.8     | 12.8   | 10.5  | 8.7      |
| ALS(CUE)                      | 15.1 | 12.8                              | 10.9   | 9.4  | 7.8       | 15.9          | 13.6     | 11.8          | 9.7              | 7.8      | 15.6  | 13.8     | 11.5   | 10.0  | 8.0      |
| NT(1step)                     | 56.1 | 55.6                              | 55.2   | 54.5 | 54.0      | 63.4          | 63.3     | 62.9          | 62.7             | 62.7     | 69.2  | 69.0     | 68.9   | 68.9  | 69.7     |
| NT(2step)                     | 59.1 | 58.6                              | 58.5   | 58.1 | 57.6      | 64.3          | 63.9     | 63.9          | 63.8             | 64.2     | 69.4  | 69.3     | 69.3   | 69.3  | 70.5     |
| NT(CUĖ)                       | 54.1 | 53.8                              | 53.5   | 53.3 | 53.4      | 57.8          | 57.7     | 57.7          | 57.5             | 57.7     | 57.6  | 57.6     | 57.6   | 57.7  | 59.1     |
|                               | 1    |                                   |        |      | T         | $= 6, \gamma$ | = 0.4,   | $f_t \sim tr$ | end              |          |       |          |        |       |          |
|                               |      | Ι                                 | V = 15 | 50   |           |               | Í        | N = 30        | 0                |          |       | j        | N = 50 | 0     |          |
|                               | Powe | $er(H_1)$                         | Size   | Powe | $er(H_1)$ | Powe          | $r(H_1)$ | Size          | Powe             | $r(H_1)$ | Powe  | $r(H_1)$ | Size   | Powe  | $r(H_1)$ |
| Estimators $\setminus \gamma$ | 0.30 | 0.35                              | 0.40   | 0.45 | 0.50      | 0.30          | 0.35     | 0.40          | 0.45             | 0.50     | 0.30  | 0.35     | 0.40   | 0.45  | 0.50     |
| ML                            | 28.7 | 14.4                              | 6.0    | 9.6  | 23.9      | 45.4          | 18.9     | 5.0           | 13.7             | 43.6     | 66.3  | 24.0     | 5.8    | 21.0  | 67.6     |
| ALS(1step)                    | 6.4  | 5.4                               | 4.1    | 3.3  | 2.6       | 9.4           | 6.5      | 3.8           | 2.0              | 1.2      | 18.5  | 13.2     | 8.0    | 4.5   | 2.2      |
| ALS(2step)                    | 14.1 | 10.8                              | 9.9    | 8.2  | 6.8       | 19.7          | 15.2     | 10.5          | 7.6              | 5.3      | 27.1  | 19.3     | 13.0   | 8.3   | 5.0      |
| ALS(CUE)                      | 9.8  | 8.2                               | 7.3    | 5.6  | 4.1       | 15.0          | 10.6     | 7.2           | 4.7              | 3.1      | 22.0  | 15.2     | 10.0   | 5.9   | 3.1      |
| NT(1step)                     | 47.0 | 45.5                              | 43.1   | 40.6 | 38.2      | 67.2          | 67.5     | 68.7          | 71.8             | 74.0     | 78.3  | 84.1     | 90.2   | 93.7  | 95.7     |
| NT(2step)                     | 48.8 | 47.7                              | 47.5   | 47.4 | 46.9      | 67.7          | 69.3     | 71.5          | 75.5             | 78.8     | 79.5  | 85.8     | 91.0   | 94.5  | 96.5     |
| NT(CUE)                       | 56.6 | 55.7                              | 56.3   | 56.7 | 58.6      | 69.6          | 71.4     | 74.5          | 78.7             | 81.8     | 79.3  | 85.5     | 91.5   | 94.8  | 96.6     |
|                               |      |                                   |        |      | T         | $= 6, \gamma$ | = 0.8,   | $f_t \sim tr$ | end              |          |       |          |        |       |          |
|                               |      | 1                                 | V = 15 | 50   |           |               | 1        | N = 30        | 0                | ( )      |       | 1        | V = 50 | 0     | ( )      |
|                               | Powe | $\operatorname{er}(\mathrm{H}_1)$ | Size   | Powe | $er(H_1)$ | Powe          | $r(H_1)$ | Size          | Powe             | $r(H_1)$ | Powe  | $r(H_1)$ | Size   | Powe  | $r(H_1)$ |
| Estimators $\setminus \gamma$ | 0.70 | 0.75                              | 0.80   | 0.85 | 0.90      | 0.70          | 0.75     | 0.80          | 0.85             | 0.90     | 0.70  | 0.75     | 0.80   | 0.85  | 0.90     |
| ML                            | 22.5 | 16.0                              | 10.3   | 5.3  | 2.3       | 21.9          | 15.1     | 7.9           | 3.1              | 1.3      | 25.2  | 13.4     | 5.1    | 1.7   | 1.4      |
| ALS(1step)                    | 4.1  | 3.2                               | 2.8    | 1.8  | 1.1       | 6.0           | 4.5      | 3.0           | 2.3              | 1.8      | 7.3   | 5.0      | 3.7    | 2.8   | 2.0      |
| ALS(2step)                    | 13.5 | 11.5                              | 8.1    | 6.8  | 5.0       | 15.5          | 13.3     | 11.5          | 9.7              | 7.2      | 20.4  | 16.5     | 14.2   | 10.7  | 8.3      |
| ALS(CUE)                      | 10.0 | 7.7                               | 5.9    | 4.6  | 3.9       | 13.3          | 11.3     | 9.3           | 7.6              | 6.1      | 15.1  | 12.2     | 9.5    | 7.4   | 6.6      |
| NT(1step)                     | 32.2 | 31.7                              | 30.8   | 30.1 | 28.2      | 46.6          | 45.8     | 44.6          | 43.7             | 42.9     | 60.2  | 59.6     | 59.1   | 57.8  | 56.9     |
| NT(2step)                     | 31.8 | 31.0                              | 30.8   | 30.4 | 29.4      | 46.4          | 45.6     | 44.9          | 44.0             | 42.9     | 59.5  | 59.0     | 58.5   | 57.8  | 56.6     |
|                               |      |                                   |        |      |           |               |          |               |                  |          |       |          |        |       |          |

Table 3: Size(%) and power(%) for the AR(1) model with a single factor (T = 6)

\_\_\_

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                            |                                                                                                                                                                        | T =                                                                                                                                                                                                      | = 10, $\gamma$                                                                                                                                                         | = 0.4,                                                                                                                                                                                                                                       | $f_t \sim A$                                                                                                                                                                                                         | R(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                                                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                             | Γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V = 15                                                                                                                                                                                     | 50                                                                                                                                                                     |                                                                                                                                                                                                          |                                                                                                                                                                        | 1                                                                                                                                                                                                                                            | V = 30                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                |                                                                                                                                                                                                                                                     | i                                                                                                                                                                       | N = 50                                                                                                                                                                                                    | 0                                                                                                                                                                                                                   |                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Powe                                                                                                                        | $r(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Size                                                                                                                                                                                       | Powe                                                                                                                                                                   | $r(H_1)$                                                                                                                                                                                                 | Powe                                                                                                                                                                   | $r(H_1)$                                                                                                                                                                                                                                     | Size                                                                                                                                                                                                                 | Powe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $r(H_1)$                                                                                                                                                       | Powe                                                                                                                                                                                                                                                | $r(H_1)$                                                                                                                                                                | Size                                                                                                                                                                                                      | Powe                                                                                                                                                                                                                | $r(H_1)$                                                                                                                                                                                                             |
| Estimators $\setminus \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.30                                                                                                                        | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.40                                                                                                                                                                                       | 0.45                                                                                                                                                                   | 0.50                                                                                                                                                                                                     | 0.30                                                                                                                                                                   | 0.35                                                                                                                                                                                                                                         | 0.40                                                                                                                                                                                                                 | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.50                                                                                                                                                           | 0.30                                                                                                                                                                                                                                                | 0.35                                                                                                                                                                    | 0.40                                                                                                                                                                                                      | 0.45                                                                                                                                                                                                                | 0.50                                                                                                                                                                                                                 |
| ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62.5                                                                                                                        | 20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.3                                                                                                                                                                                        | 21.6                                                                                                                                                                   | 66.9                                                                                                                                                                                                     | 89.2                                                                                                                                                                   | 37.9                                                                                                                                                                                                                                         | 5.7                                                                                                                                                                                                                  | 38.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91.1                                                                                                                                                           | 99.1                                                                                                                                                                                                                                                | 58.4                                                                                                                                                                    | 3.2                                                                                                                                                                                                       | 54.8                                                                                                                                                                                                                | 99.7                                                                                                                                                                                                                 |
| ALS(1step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.6                                                                                                                        | 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.0                                                                                                                                                                                       | 22.4                                                                                                                                                                   | 25.3                                                                                                                                                                                                     | 12.1                                                                                                                                                                   | 15.3                                                                                                                                                                                                                                         | 20.9                                                                                                                                                                                                                 | 25.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29.8                                                                                                                                                           | 11.6                                                                                                                                                                                                                                                | 14.2                                                                                                                                                                    | 19.0                                                                                                                                                                                                      | 23.7                                                                                                                                                                                                                | 29.3                                                                                                                                                                                                                 |
| ALS(2step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55.8                                                                                                                        | 60.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66.9                                                                                                                                                                                       | 70.6                                                                                                                                                                   | 75.5                                                                                                                                                                                                     | 51.3                                                                                                                                                                   | 47.2                                                                                                                                                                                                                                         | 50.7                                                                                                                                                                                                                 | 58.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68.2                                                                                                                                                           | 58.5                                                                                                                                                                                                                                                | 39.9                                                                                                                                                                    | 34.9                                                                                                                                                                                                      | 45.2                                                                                                                                                                                                                | 63.9                                                                                                                                                                                                                 |
| ALS(CUE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.9                                                                                                                        | 25.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29.7                                                                                                                                                                                       | 31.7                                                                                                                                                                   | 33.0                                                                                                                                                                                                     | 36.2                                                                                                                                                                   | 29.2                                                                                                                                                                                                                                         | 24.0                                                                                                                                                                                                                 | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.0                                                                                                                                                           | 48.2                                                                                                                                                                                                                                                | 30.1                                                                                                                                                                    | 18.7                                                                                                                                                                                                      | 20.7                                                                                                                                                                                                                | 36.5                                                                                                                                                                                                                 |
| NT(1step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.3                                                                                                                        | 91.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 86.8                                                                                                                                                                                       | 78.4                                                                                                                                                                   | 68.3                                                                                                                                                                                                     | 99.9                                                                                                                                                                   | 99.7                                                                                                                                                                                                                                         | 98.8                                                                                                                                                                                                                 | 97.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93.4                                                                                                                                                           | 100.0                                                                                                                                                                                                                                               | 100.0                                                                                                                                                                   | 100.0                                                                                                                                                                                                     | 99.9                                                                                                                                                                                                                | 99.8                                                                                                                                                                                                                 |
| NT(2step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.1                                                                                                                        | 98.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 98.3                                                                                                                                                                                       | 96.7                                                                                                                                                                   | 94.6                                                                                                                                                                                                     | 100.0                                                                                                                                                                  | 100.0                                                                                                                                                                                                                                        | 100.0                                                                                                                                                                                                                | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99.9                                                                                                                                                           | 100.0                                                                                                                                                                                                                                               | 100.0                                                                                                                                                                   | 100.0                                                                                                                                                                                                     | 100.0                                                                                                                                                                                                               | 100.0                                                                                                                                                                                                                |
| NT(CUĖ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 98.4                                                                                                                        | 98.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 98.3                                                                                                                                                                                       | 98.4                                                                                                                                                                   | 98.4                                                                                                                                                                                                     | 100.0                                                                                                                                                                  | 100.0                                                                                                                                                                                                                                        | 100.0                                                                                                                                                                                                                | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100.0                                                                                                                                                          | 100.0                                                                                                                                                                                                                                               | 100.0                                                                                                                                                                   | 100.0                                                                                                                                                                                                     | 100.0                                                                                                                                                                                                               | 100.0                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                            |                                                                                                                                                                        | <i>T</i> =                                                                                                                                                                                               | $= 10, \gamma$                                                                                                                                                         | = 0.8,                                                                                                                                                                                                                                       | $f_t \sim A$                                                                                                                                                                                                         | R(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                                                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                             | Γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V = 15                                                                                                                                                                                     | 50                                                                                                                                                                     |                                                                                                                                                                                                          | l í                                                                                                                                                                    |                                                                                                                                                                                                                                              | V = 30                                                                                                                                                                                                               | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                |                                                                                                                                                                                                                                                     | i                                                                                                                                                                       | N = 50                                                                                                                                                                                                    | 0                                                                                                                                                                                                                   |                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Powe                                                                                                                        | $r(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Size                                                                                                                                                                                       | Powe                                                                                                                                                                   | $r(H_1)$                                                                                                                                                                                                 | Powe                                                                                                                                                                   | $r(H_1)$                                                                                                                                                                                                                                     | Size                                                                                                                                                                                                                 | Powe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $r(H_1)$                                                                                                                                                       | Powe                                                                                                                                                                                                                                                | $r(H_1)$                                                                                                                                                                | Size                                                                                                                                                                                                      | Powe                                                                                                                                                                                                                | $r(H_1)$                                                                                                                                                                                                             |
| Estimators $\setminus \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.70                                                                                                                        | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.80                                                                                                                                                                                       | 0.85                                                                                                                                                                   | Ò.90                                                                                                                                                                                                     | 0.70                                                                                                                                                                   | 0.75                                                                                                                                                                                                                                         | 0.80                                                                                                                                                                                                                 | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.90                                                                                                                                                           | 0.70                                                                                                                                                                                                                                                | 0.75                                                                                                                                                                    | 0.80                                                                                                                                                                                                      | 0.85                                                                                                                                                                                                                | 0.90                                                                                                                                                                                                                 |
| ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37.0                                                                                                                        | 18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.7                                                                                                                                                                                        | 3.9                                                                                                                                                                    | 15.8                                                                                                                                                                                                     | 53.8                                                                                                                                                                   | 24.9                                                                                                                                                                                                                                         | 4.8                                                                                                                                                                                                                  | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54.5                                                                                                                                                           | 72.1                                                                                                                                                                                                                                                | 33.8                                                                                                                                                                    | 5.0                                                                                                                                                                                                       | 13.4                                                                                                                                                                                                                | 84.5                                                                                                                                                                                                                 |
| ALS(1step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.6                                                                                                                        | 16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.6                                                                                                                                                                                        | 1.1                                                                                                                                                                    | 4.1                                                                                                                                                                                                      | 26.2                                                                                                                                                                   | 16.6                                                                                                                                                                                                                                         | 7.3                                                                                                                                                                                                                  | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.9                                                                                                                                                            | 29.1                                                                                                                                                                                                                                                | 17.0                                                                                                                                                                    | 7.5                                                                                                                                                                                                       | 4.6                                                                                                                                                                                                                 | 9.0                                                                                                                                                                                                                  |
| ALS(2step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79.5                                                                                                                        | 74.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61.3                                                                                                                                                                                       | 45.0                                                                                                                                                                   | 35.5                                                                                                                                                                                                     | 77.2                                                                                                                                                                   | 70.9                                                                                                                                                                                                                                         | 59.1                                                                                                                                                                                                                 | 43.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35.8                                                                                                                                                           | 72.7                                                                                                                                                                                                                                                | 66.7                                                                                                                                                                    | 58.3                                                                                                                                                                                                      | 45.1                                                                                                                                                                                                                | 37.0                                                                                                                                                                                                                 |
| ALS(CUÉ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.0                                                                                                                        | 23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.0                                                                                                                                                                                       | 15.0                                                                                                                                                                   | 17.6                                                                                                                                                                                                     | 37.7                                                                                                                                                                   | 28.8                                                                                                                                                                                                                                         | 21.9                                                                                                                                                                                                                 | 15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.7                                                                                                                                                           | 38.1                                                                                                                                                                                                                                                | 30.3                                                                                                                                                                    | 23.9                                                                                                                                                                                                      | 16.8                                                                                                                                                                                                                | 21.3                                                                                                                                                                                                                 |
| NT(1step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.3                                                                                                                        | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.6                                                                                                                                                                                        | 7.8                                                                                                                                                                    | 7.4                                                                                                                                                                                                      | 11.8                                                                                                                                                                   | 11.4                                                                                                                                                                                                                                         | 11.3                                                                                                                                                                                                                 | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.8                                                                                                                                                           | 13.2                                                                                                                                                                                                                                                | 13.1                                                                                                                                                                    | 13.1                                                                                                                                                                                                      | 13.1                                                                                                                                                                                                                | 13.9                                                                                                                                                                                                                 |
| NT(2step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.1                                                                                                                        | 18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.2                                                                                                                                                                                       | 18.1                                                                                                                                                                   | 21.1                                                                                                                                                                                                     | 18.0                                                                                                                                                                   | 16.6                                                                                                                                                                                                                                         | 15.6                                                                                                                                                                                                                 | 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.5                                                                                                                                                           | 18.2                                                                                                                                                                                                                                                | 17.4                                                                                                                                                                    | 16.1                                                                                                                                                                                                      | 16.4                                                                                                                                                                                                                | 22.9                                                                                                                                                                                                                 |
| NT(CUĖ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25.8                                                                                                                        | 23.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.3                                                                                                                                                                                       | 21.9                                                                                                                                                                   | 27.4                                                                                                                                                                                                     | 23.7                                                                                                                                                                   | 21.7                                                                                                                                                                                                                                         | 20.9                                                                                                                                                                                                                 | 21.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.9                                                                                                                                                           | 19.8                                                                                                                                                                                                                                                | 18.1                                                                                                                                                                    | 17.6                                                                                                                                                                                                      | 19.4                                                                                                                                                                                                                | 25.0                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                            |                                                                                                                                                                        | <i>T</i> =                                                                                                                                                                                               | $= 10, \gamma$                                                                                                                                                         | = 0.4,                                                                                                                                                                                                                                       | $f_t \sim tr$                                                                                                                                                                                                        | $\cdot end$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |                                                                                                                                                                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                             | Λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V = 15                                                                                                                                                                                     | 50                                                                                                                                                                     |                                                                                                                                                                                                          |                                                                                                                                                                        | 1                                                                                                                                                                                                                                            | V = 30                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                |                                                                                                                                                                                                                                                     | i                                                                                                                                                                       | N = 50                                                                                                                                                                                                    | 0                                                                                                                                                                                                                   |                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Powe                                                                                                                        | $r(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Size                                                                                                                                                                                       | Powe                                                                                                                                                                   | $r(H_1)$                                                                                                                                                                                                 | Powe                                                                                                                                                                   | $r(H_1)$                                                                                                                                                                                                                                     | Size                                                                                                                                                                                                                 | Powe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $r(H_1)$                                                                                                                                                       | Powe                                                                                                                                                                                                                                                | $r(H_1)$                                                                                                                                                                | Size                                                                                                                                                                                                      | Powe                                                                                                                                                                                                                | $r(H_1)$                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                             | < ±/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                            | 0.45                                                                                                                                                                   |                                                                                                                                                                                                          |                                                                                                                                                                        | · · · /                                                                                                                                                                                                                                      |                                                                                                                                                                                                                      | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                | 0.30                                                                                                                                                                                                                                                | 0 35                                                                                                                                                                    | 0.40                                                                                                                                                                                                      | 0.45                                                                                                                                                                                                                | ò Éó                                                                                                                                                                                                                 |
| Estimators $\setminus \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.30                                                                                                                        | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.40                                                                                                                                                                                       | 0.45                                                                                                                                                                   | 0.50                                                                                                                                                                                                     | 0.30                                                                                                                                                                   | 0.35                                                                                                                                                                                                                                         | 0.40                                                                                                                                                                                                                 | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.50                                                                                                                                                           | 0.50                                                                                                                                                                                                                                                | 0.50                                                                                                                                                                    | 0.40                                                                                                                                                                                                      | 0.40                                                                                                                                                                                                                | 0.50                                                                                                                                                                                                                 |
| Estimators $\setminus \gamma$<br>ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.30 \\ 66.7 \end{array}$                                                                                 | $\frac{0.35}{23.1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{0.40}{5.5}$                                                                                                                                                                         | $\frac{0.45}{23.6}$                                                                                                                                                    | $0.50 \\ 71.2$                                                                                                                                                                                           | 0.30 92.6                                                                                                                                                              | $\frac{0.35}{40.6}$                                                                                                                                                                                                                          | 0.40<br>4.8                                                                                                                                                                                                          | 42.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93.9                                                                                                                                                           | 99.1                                                                                                                                                                                                                                                | 63.3                                                                                                                                                                    | 0.40<br>4.7                                                                                                                                                                                               | 58.7                                                                                                                                                                                                                | 99.9                                                                                                                                                                                                                 |
| $\begin{array}{c c} \text{Estimators} \setminus \gamma \\ \hline \text{ML} \\ \text{ALS(1step)} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{r} 0.30 \\ 66.7 \\ 23.3 \end{array} $                                                                       | $     \begin{array}{r}       0.35 \\       23.1 \\       13.7     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $     \begin{array}{r}       0.40 \\       5.5 \\       6.7     \end{array} $                                                                                                              | $     \begin{array}{r}       0.45 \\       23.6 \\       2.6     \end{array} $                                                                                         | $     \begin{array}{r}       0.50 \\       71.2 \\       2.5     \end{array} $                                                                                                                           | $\begin{array}{c} 0.30 \\ 92.6 \\ 41.3 \end{array}$                                                                                                                    | $\frac{0.35}{40.6} \\ 32.0$                                                                                                                                                                                                                  | $     \begin{array}{r}       0.40 \\       4.8 \\       16.6     \end{array} $                                                                                                                                       | $     \begin{array}{r}       0.45 \\       42.6 \\       5.7 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.50<br>93.9<br>0.9                                                                                                                                            | $ \begin{array}{c} 0.30 \\ 99.1 \\ 48.2 \end{array} $                                                                                                                                                                                               | $\frac{0.33}{63.3}$<br>44.4                                                                                                                                             | $     \begin{array}{r}       0.40 \\       4.7 \\       30.9     \end{array} $                                                                                                                            | $\frac{0.45}{58.7}$<br>11.8                                                                                                                                                                                         | $\frac{0.50}{99.9}$<br>1.7                                                                                                                                                                                           |
| $\begin{array}{  l l l l l l l l l l l l l l l l l l $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.30 \\ \hline 66.7 \\ 23.3 \\ 49.2 \end{array}$                                                          | $\begin{array}{r} 0.35 \\ \hline 23.1 \\ 13.7 \\ 35.4 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $     \begin{array}{r}       0.40 \\       5.5 \\       6.7 \\       20.2     \end{array} $                                                                                                | $     \begin{array}{r}       0.45 \\       23.6 \\       2.6 \\       11.6     \end{array} $                                                                           | $     \begin{array}{r}       0.50 \\       71.2 \\       2.5 \\       10.2     \end{array} $                                                                                                             | $\begin{array}{r} 0.30 \\ 92.6 \\ 41.3 \\ 69.4 \end{array}$                                                                                                            | $     \begin{array}{r}       0.35 \\       40.6 \\       32.0 \\       59.0 \\     \end{array} $                                                                                                                                             | $     \begin{array}{r}       0.40 \\       4.8 \\       16.6 \\       36.5     \end{array} $                                                                                                                         | $     \begin{array}{r}       0.45 \\       42.6 \\       5.7 \\       15.7 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $   \begin{array}{r}     0.50 \\     93.9 \\     0.9 \\     6.6   \end{array} $                                                                                | $ \begin{array}{r} 0.30 \\ 99.1 \\ 48.2 \\ 79.6 \end{array} $                                                                                                                                                                                       | $     \begin{array}{r}       0.33 \\       63.3 \\       44.4 \\       75.3     \end{array} $                                                                           | $     \begin{array}{r}       0.40 \\       4.7 \\       30.9 \\       53.1     \end{array} $                                                                                                              | $     \begin{array}{r}       0.45 \\       58.7 \\       11.8 \\       21.0 \\     \end{array} $                                                                                                                    | $     \begin{array}{r}       0.30 \\       99.9 \\       1.7 \\       4.9 \\     \end{array} $                                                                                                                       |
| $\begin{array}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.30 \\ 66.7 \\ 23.3 \\ 49.2 \\ 30.2 \end{array}$                                                         | $\begin{array}{r} 0.35 \\ 23.1 \\ 13.7 \\ 35.4 \\ 22.8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $     \begin{array}{r}       0.40 \\       5.5 \\       6.7 \\       20.2 \\       14.9     \end{array} $                                                                                  | $ \begin{array}{r} 0.45\\ 23.6\\ 2.6\\ 11.6\\ 9.0 \end{array} $                                                                                                        | $ \begin{array}{r} 0.50 \\ 71.2 \\ 2.5 \\ 10.2 \\ 6.5 \\ \end{array} $                                                                                                                                   | $\begin{array}{r} 0.30 \\ 92.6 \\ 41.3 \\ 69.4 \\ 45.3 \end{array}$                                                                                                    | $\begin{array}{r} 0.35 \\ 40.6 \\ 32.0 \\ 59.0 \\ 38.9 \end{array}$                                                                                                                                                                          | $     \begin{array}{r}       0.40 \\       4.8 \\       16.6 \\       36.5 \\       26.6 \\     \end{array} $                                                                                                        | $     \begin{array}{r}       0.45 \\       42.6 \\       5.7 \\       15.7 \\       11.9 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{r} 0.50 \\ 93.9 \\ 0.9 \\ 6.6 \\ 4.7 \\ \end{array} $                                                                                          | $ \begin{array}{r} 0.30\\ 99.1\\ 48.2\\ 79.6\\ 54.1 \end{array} $                                                                                                                                                                                   | $     \begin{array}{r}       63.3 \\       44.4 \\       75.3 \\       51.5     \end{array} $                                                                           | $     \begin{array}{r}       0.40 \\       4.7 \\       30.9 \\       53.1 \\       38.5 \\     \end{array} $                                                                                             | $     \begin{array}{r}       0.45 \\       58.7 \\       11.8 \\       21.0 \\       16.4     \end{array} $                                                                                                         | $     \begin{array}{r}       0.30 \\       99.9 \\       1.7 \\       4.9 \\       4.7 \\     \end{array} $                                                                                                          |
| $\begin{array}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.30 \\ \hline 66.7 \\ 23.3 \\ 49.2 \\ 30.2 \\ 89.3 \end{array}$                                          | $\begin{array}{r} 0.35 \\ \hline 23.1 \\ 13.7 \\ 35.4 \\ 22.8 \\ 90.4 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{r} 0.40\\ \overline{5.5}\\ 6.7\\ 20.2\\ 14.9\\ 90.4 \end{array}$                                                                                                            | $\begin{array}{r} 0.45 \\ 23.6 \\ 2.6 \\ 11.6 \\ 9.0 \\ 89.2 \end{array}$                                                                                              | $\begin{array}{r} 0.50 \\ \hline 71.2 \\ 2.5 \\ 10.2 \\ 6.5 \\ 86.1 \end{array}$                                                                                                                         | $\begin{array}{r} 0.30 \\ 92.6 \\ 41.3 \\ 69.4 \\ 45.3 \\ 99.9 \end{array}$                                                                                            | $\begin{array}{r} 0.35 \\ 40.6 \\ 32.0 \\ 59.0 \\ 38.9 \\ 99.8 \end{array}$                                                                                                                                                                  | $ \begin{array}{r} 0.40 \\ 4.8 \\ 16.6 \\ 36.5 \\ 26.6 \\ 99.8 \end{array} $                                                                                                                                         | $     \begin{array}{r}       0.45 \\       42.6 \\       5.7 \\       15.7 \\       11.9 \\       99.6     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{r} 0.50\\ 93.9\\ 0.9\\ 6.6\\ 4.7\\ 99.5 \end{array} $                                                                                          | $\begin{array}{r} 0.30\\ 99.1\\ 48.2\\ 79.6\\ 54.1\\ 100.0 \end{array}$                                                                                                                                                                             | $\begin{array}{r} 63.3 \\ 44.4 \\ 75.3 \\ 51.5 \\ 100.0 \end{array}$                                                                                                    | $     \begin{array}{r}       0.40 \\       4.7 \\       30.9 \\       53.1 \\       38.5 \\       100.0 \\     \end{array} $                                                                              | $     \begin{array}{r}       58.7 \\       58.7 \\       21.0 \\       16.4 \\       100.0 \\     \end{array} $                                                                                                     | $     \begin{array}{r}       0.30 \\       99.9 \\       1.7 \\       4.9 \\       4.7 \\       100.0 \\     \end{array} $                                                                                           |
| $\begin{array}{c} \text{Estimators} \setminus \gamma \\ \hline \text{ML} \\ \text{ALS}(1\text{step}) \\ \text{ALS}(2\text{step}) \\ \text{ALS}(\text{CUE}) \\ \text{NT}(1\text{step}) \\ \text{NT}(2\text{step}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.30 \\ 66.7 \\ 23.3 \\ 49.2 \\ 30.2 \\ 89.3 \\ 97.6 \end{array}$                                         | $\begin{array}{c} 0.35\\ 23.1\\ 13.7\\ 35.4\\ 22.8\\ 90.4\\ 97.8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{r} 0.40\\ \overline{5.5}\\ 6.7\\ 20.2\\ 14.9\\ 90.4\\ 97.6\end{array}$                                                                                                      | $\begin{array}{r} 0.45\\ \hline 23.6\\ 2.6\\ 11.6\\ 9.0\\ 89.2\\ 97.1 \end{array}$                                                                                     | $\begin{array}{c} 0.50 \\ \hline 71.2 \\ 2.5 \\ 10.2 \\ 6.5 \\ 86.1 \\ 96.1 \end{array}$                                                                                                                 | $\begin{array}{r} 0.30 \\ 92.6 \\ 41.3 \\ 69.4 \\ 45.3 \\ 99.9 \\ 100.0 \end{array}$                                                                                   | $\begin{array}{c} 0.35 \\ 40.6 \\ 32.0 \\ 59.0 \\ 38.9 \\ 99.8 \\ 100.0 \end{array}$                                                                                                                                                         | $\begin{array}{r} 0.40 \\ \hline 4.8 \\ 16.6 \\ 36.5 \\ 26.6 \\ 99.8 \\ 100.0 \end{array}$                                                                                                                           | $\begin{array}{r} 0.45\\ 42.6\\ 5.7\\ 15.7\\ 11.9\\ 99.6\\ 100.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{r} 0.50\\ \hline 93.9\\ 0.9\\ 6.6\\ 4.7\\ 99.5\\ 100.0 \end{array}$                                                                             | $\begin{array}{r} 0.30\\ 99.1\\ 48.2\\ 79.6\\ 54.1\\ 100.0\\ 100.0 \end{array}$                                                                                                                                                                     | $\begin{array}{r} 63.3 \\ 44.4 \\ 75.3 \\ 51.5 \\ 100.0 \\ 100.0 \end{array}$                                                                                           | $\begin{array}{r} 0.40 \\ \hline 4.7 \\ 30.9 \\ 53.1 \\ 38.5 \\ 100.0 \\ 100.0 \end{array}$                                                                                                               | $\begin{array}{r} 0.43\\ 58.7\\ 11.8\\ 21.0\\ 16.4\\ 100.0\\ 100.0 \end{array}$                                                                                                                                     | $\begin{array}{r} 99.9\\ 1.7\\ 4.9\\ 4.7\\ 100.0\\ 100.0 \end{array}$                                                                                                                                                |
| $\begin{array}{c} \text{Estimators} \setminus \gamma \\ \hline \text{ML} \\ \text{ALS}(1\text{step}) \\ \text{ALS}(2\text{step}) \\ \text{ALS}(\text{CUE}) \\ \text{NT}(1\text{step}) \\ \text{NT}(2\text{step}) \\ \text{NT}(2\text{step}) \\ \text{NT}(\text{CUE}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 0.30 \\ 66.7 \\ 23.3 \\ 49.2 \\ 30.2 \\ 89.3 \\ 97.6 \\ 80.2 \end{array}$                                 | $\begin{array}{c} 0.35\\ 23.1\\ 13.7\\ 35.4\\ 22.8\\ 90.4\\ 97.8\\ 80.6 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{r} 0.40\\ \overline{5.5}\\ 6.7\\ 20.2\\ 14.9\\ 90.4\\ 97.6\\ 80.6 \end{array}$                                                                                              | $\begin{array}{r} 0.45\\ 23.6\\ 2.6\\ 11.6\\ 9.0\\ 89.2\\ 97.1\\ 80.7 \end{array}$                                                                                     | $\begin{array}{c} 0.50 \\ \hline 71.2 \\ 2.5 \\ 10.2 \\ 6.5 \\ 86.1 \\ 96.1 \\ 80.7 \end{array}$                                                                                                         | $\begin{array}{c} 0.30\\ 92.6\\ 41.3\\ 69.4\\ 45.3\\ 99.9\\ 100.0\\ 97.3 \end{array}$                                                                                  | $\begin{array}{r} 0.35 \\ 40.6 \\ 32.0 \\ 59.0 \\ 38.9 \\ 99.8 \\ 100.0 \\ 97.3 \end{array}$                                                                                                                                                 | $\begin{array}{r} 0.40 \\ \hline 4.8 \\ 16.6 \\ 36.5 \\ 26.6 \\ 99.8 \\ 100.0 \\ 97.3 \end{array}$                                                                                                                   | $\begin{array}{r} 0.45\\ 42.6\\ 5.7\\ 15.7\\ 11.9\\ 99.6\\ 100.0\\ 97.3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.50\\ \hline 93.9\\ 0.9\\ 6.6\\ 4.7\\ 99.5\\ 100.0\\ 97.3 \end{array}$                                                                      | $\begin{array}{c} 99.1 \\ 48.2 \\ 79.6 \\ 54.1 \\ 100.0 \\ 100.0 \\ 99.8 \end{array}$                                                                                                                                                               | $\begin{array}{c} 0.33\\ 63.3\\ 44.4\\ 75.3\\ 51.5\\ 100.0\\ 100.0\\ 99.8 \end{array}$                                                                                  | $\begin{array}{r} 0.40\\ \hline 4.7\\ 30.9\\ 53.1\\ 38.5\\ 100.0\\ 100.0\\ 99.8 \end{array}$                                                                                                              | $\begin{array}{r} 0.43\\ \overline{58.7}\\ 11.8\\ 21.0\\ 16.4\\ 100.0\\ 100.0\\ 99.8 \end{array}$                                                                                                                   | $\begin{array}{c} 0.30\\ \hline 99.9\\ 1.7\\ 4.9\\ 4.7\\ 100.0\\ 100.0\\ 99.8 \end{array}$                                                                                                                           |
| $\begin{array}{c} \text{Estimators} \setminus \gamma \\ \hline \text{ML} \\ \text{ALS}(1\text{step}) \\ \text{ALS}(2\text{step}) \\ \text{ALS}(2\text{cUE}) \\ \text{NT}(1\text{step}) \\ \text{NT}(2\text{step}) \\ \text{NT}(2\text{step}) \\ \text{NT}(\text{CUE}) \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.30 \\ 66.7 \\ 23.3 \\ 49.2 \\ 30.2 \\ 89.3 \\ 97.6 \\ 80.2 \end{array}$                                 | $\begin{array}{c} 0.35 \\ 23.1 \\ 13.7 \\ 35.4 \\ 22.8 \\ 90.4 \\ 97.8 \\ 80.6 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{r} 0.40\\ \overline{5.5}\\ 6.7\\ 20.2\\ 14.9\\ 90.4\\ 97.6\\ 80.6\end{array}$                                                                                               | $\begin{array}{c} 0.45\\ 23.6\\ 2.6\\ 11.6\\ 9.0\\ 89.2\\ 97.1\\ 80.7 \end{array}$                                                                                     | $\begin{array}{c} 0.50 \\ \hline 71.2 \\ 2.5 \\ 10.2 \\ 6.5 \\ 86.1 \\ 96.1 \\ 80.7 \\ \hline T = \end{array}$                                                                                           | $\begin{array}{c} 0.30 \\ 92.6 \\ 41.3 \\ 69.4 \\ 45.3 \\ 99.9 \\ 100.0 \\ 97.3 \\ = 10, \gamma \end{array}$                                                           | $\begin{array}{r} 0.35 \\ 40.6 \\ 32.0 \\ 59.0 \\ 38.9 \\ 99.8 \\ 100.0 \\ 97.3 \\ = 0.8, \end{array}$                                                                                                                                       | $\begin{array}{c} 0.40 \\ \hline 4.8 \\ 16.6 \\ 36.5 \\ 26.6 \\ 99.8 \\ 100.0 \\ 97.3 \\ \hline f_t \sim tr \end{array}$                                                                                             | 0.45<br>42.6<br>5.7<br>15.7<br>11.9<br>99.6<br>100.0<br>97.3<br>rend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.50\\ 93.9\\ 0.9\\ 6.6\\ 4.7\\ 99.5\\ 100.0\\ 97.3\end{array}$                                                                              | $\begin{array}{c} 99.1 \\ 48.2 \\ 79.6 \\ 54.1 \\ 100.0 \\ 100.0 \\ 99.8 \end{array}$                                                                                                                                                               | $\begin{array}{c} 0.33\\ 63.3\\ 44.4\\ 75.3\\ 51.5\\ 100.0\\ 100.0\\ 99.8 \end{array}$                                                                                  | $\begin{array}{r} 0.40 \\ 4.7 \\ 30.9 \\ 53.1 \\ 38.5 \\ 100.0 \\ 100.0 \\ 99.8 \end{array}$                                                                                                              | $\begin{array}{c} 0.43 \\ \overline{58.7} \\ 11.8 \\ 21.0 \\ 16.4 \\ 100.0 \\ 100.0 \\ 99.8 \end{array}$                                                                                                            | $\begin{array}{c} 0.30\\ 99.9\\ 1.7\\ 4.9\\ 4.7\\ 100.0\\ 100.0\\ 99.8 \end{array}$                                                                                                                                  |
| $\begin{tabular}{ c c c c c } \hline Estimators & $\gamma$ \\ \hline ML \\ ALS(1step) \\ ALS(2step) \\ ALS(CUE) \\ NT(1step) \\ NT(2step) \\ NT(2step) \\ NT(CUE) \\ \hline \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 0.30 \\ 66.7 \\ 23.3 \\ 49.2 \\ 30.2 \\ 89.3 \\ 97.6 \\ 80.2 \end{array}$                                 | $\begin{array}{c} 0.35 \\ 23.1 \\ 13.7 \\ 35.4 \\ 22.8 \\ 90.4 \\ 97.8 \\ 80.6 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $     \begin{array}{r}       0.40 \\       5.5 \\       6.7 \\       20.2 \\       14.9 \\       90.4 \\       97.6 \\       80.6 \\       \hline       V = 18     \end{array} $           | 0.45<br>23.6<br>2.6<br>11.6<br>9.0<br>89.2<br>97.1<br>80.7                                                                                                             | $\begin{array}{c} 0.50 \\ 71.2 \\ 2.5 \\ 10.2 \\ 6.5 \\ 86.1 \\ 96.1 \\ 80.7 \\ \hline T = \end{array}$                                                                                                  | $\begin{array}{c c} 0.30 \\ 92.6 \\ 41.3 \\ 69.4 \\ 45.3 \\ 99.9 \\ 100.0 \\ 97.3 \\ = 10, \gamma \end{array}$                                                         | $\begin{array}{c} 0.35 \\ 40.6 \\ 32.0 \\ 59.0 \\ 38.9 \\ 99.8 \\ 100.0 \\ 97.3 \\ = 0.8, \end{array}$                                                                                                                                       | $\begin{array}{r} 0.40 \\ \hline 4.8 \\ 16.6 \\ 36.5 \\ 26.6 \\ 99.8 \\ 100.0 \\ 97.3 \\ \hline f_t \sim tr \\ V = 30 \end{array}$                                                                                   | 0.45<br>42.6<br>5.7<br>15.7<br>11.9<br>99.6<br>100.0<br>97.3<br>rend<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.50\\ 93.9\\ 0.9\\ 6.6\\ 4.7\\ 99.5\\ 100.0\\ 97.3 \end{array}$                                                                             | 99.1<br>48.2<br>79.6<br>54.1<br>100.0<br>99.8                                                                                                                                                                                                       | $\begin{array}{c} 0.33\\ 63.3\\ 44.4\\ 75.3\\ 51.5\\ 100.0\\ 100.0\\ 99.8\\ \end{array}$                                                                                | $     \begin{array}{r}       0.40 \\       4.7 \\       30.9 \\       53.1 \\       38.5 \\       100.0 \\       100.0 \\       99.8 \\       \hline       V = 50     \end{array} $                       | 0.43<br>58.7<br>11.8<br>21.0<br>16.4<br>100.0<br>99.8                                                                                                                                                               | $\begin{array}{c} 0.30\\ 99.9\\ 1.7\\ 4.9\\ 4.7\\ 100.0\\ 100.0\\ 99.8 \end{array}$                                                                                                                                  |
| $\begin{tabular}{ c c c c c } \hline Estimators & $\gamma$ \\ \hline ML \\ ALS(1step) \\ ALS(2step) \\ ALS(CUE) \\ NT(1step) \\ NT(2step) \\ NT(CUE) \\ \hline \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline$ | 0.30<br>66.7<br>23.3<br>49.2<br>30.2<br>89.3<br>97.6<br>80.2                                                                | 0.35<br>23.1<br>13.7<br>35.4<br>22.8<br>90.4<br>97.8<br>80.6<br><i>N</i><br>rr(H <sub>1</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.40 \\ \hline 5.5 \\ 6.7 \\ 20.2 \\ 14.9 \\ 90.4 \\ 97.6 \\ 80.6 \\ \hline V = 18 \\ Size$                                                                                               | 0.45<br>23.6<br>2.6<br>11.6<br>9.0<br>89.2<br>97.1<br>80.7<br>50<br>Powe                                                                                               | $     \begin{array}{r}       0.50 \\       71.2 \\       2.5 \\       10.2 \\       6.5 \\       86.1 \\       96.1 \\       80.7 \\       \hline       T = \\       \overline{T(H_1)}     \end{array} $ | $\begin{array}{c c} 0.30 \\ 92.6 \\ 41.3 \\ 69.4 \\ 45.3 \\ 99.9 \\ 100.0 \\ 97.3 \\ = 10, \gamma \\ \end{array}$                                                      | $     \begin{array}{r}       0.35 \\       40.6 \\       32.0 \\       59.0 \\       38.9 \\       99.8 \\       100.0 \\       97.3 \\       = 0.8, \\       \overline{} \\       r(H_1) \\       7       7       7       7       7       $ | $     \begin{array}{r}       0.40 \\       4.8 \\       16.6 \\       36.5 \\       26.6 \\       99.8 \\       100.0 \\       97.3 \\       \overline{f_t \sim tr} \\       V = 300 \\       Size     \end{array} $ | 0.45<br>42.6<br>5.7<br>15.7<br>11.9<br>99.6<br>100.0<br>97.3<br>•end<br>0<br>Powe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.50<br>93.9<br>0.9<br>6.6<br>4.7<br>99.5<br>100.0<br>97.3<br>r(H <sub>1</sub> )                                                                               | 99.1<br>48.2<br>79.6<br>54.1<br>100.0<br>99.8<br>Powe                                                                                                                                                                                               | 63.3<br>44.4<br>75.3<br>51.5<br>100.0<br>100.0<br>99.8                                                                                                                  | $     \begin{array}{r}       0.40 \\       4.7 \\       30.9 \\       53.1 \\       38.5 \\       100.0 \\       100.0 \\       99.8 \\       \hline       V = 50 \\       Size     \end{array} $         | 0.43<br>58.7<br>11.8<br>21.0<br>16.4<br>100.0<br>99.8<br>0<br>Powe                                                                                                                                                  | 99.9<br>1.7<br>4.9<br>4.7<br>100.0<br>100.0<br>99.8<br>r(H <sub>1</sub> )                                                                                                                                            |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.30<br>66.7<br>23.3<br>49.2<br>30.2<br>89.3<br>97.6<br>80.2<br>Powe<br>0.70                                                | 0.35<br>23.1<br>13.7<br>35.4<br>22.8<br>90.4<br>97.8<br>80.6<br>PT(H <sub>1</sub> )<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.40 \\ \hline 5.5 \\ 6.7 \\ 20.2 \\ 14.9 \\ 90.4 \\ 97.6 \\ 80.6 \\ \hline V = 15 \\ Size \\ 0.80 \\ \hline$                                                                             | 0.45<br>23.6<br>2.6<br>11.6<br>9.0<br>89.2<br>97.1<br>80.7<br>50<br>Powe<br>0.85                                                                                       | $\begin{array}{c} 0.50\\ \hline 71.2\\ 2.5\\ 10.2\\ 6.5\\ 86.1\\ 96.1\\ 80.7\\ \hline T =\\ rr(H_1)\\ 0.90\\ \end{array}$                                                                                | $\begin{array}{c c} 0.30 \\ \hline 92.6 \\ 41.3 \\ 69.4 \\ 45.3 \\ 99.9 \\ 100.0 \\ 97.3 \\ \hline = 10, \gamma \\ \hline \\ \text{Powe} \\ 0.70 \end{array}$          | $\begin{array}{c} 0.35 \\ \hline 40.6 \\ 32.0 \\ 59.0 \\ 38.9 \\ 99.8 \\ 100.0 \\ 97.3 \\ \hline = 0.8, \\ r(H_1) \\ 0.75 \end{array}$                                                                                                       | $\begin{array}{r} 0.40 \\ \hline 4.8 \\ 16.6 \\ 36.5 \\ 26.6 \\ 99.8 \\ 100.0 \\ 97.3 \\ \hline f_t \sim tr \\ V = 30 \\ Size \\ 0.80 \end{array}$                                                                   | 0.45<br>42.6<br>5.7<br>15.7<br>11.9<br>99.6<br>100.0<br>97.3<br>97.3<br>0<br>Powe<br>0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.50\\ 93.9\\ 0.9\\ 6.6\\ 4.7\\ 99.5\\ 100.0\\ 97.3\\ \end{array}$                                                                           | 99.1<br>48.2<br>79.6<br>54.1<br>100.0<br>100.0<br>99.8<br>Powe<br>0.70                                                                                                                                                                              | 63.3<br>44.4<br>75.3<br>51.5<br>100.0<br>100.0<br>99.8<br>r(H <sub>1</sub> )<br>0.75                                                                                    | $\begin{array}{r} 0.40 \\ \hline 4.7 \\ 30.9 \\ 53.1 \\ 38.5 \\ 100.0 \\ 100.0 \\ 99.8 \end{array}$ $\overline{V = 50}$ Size<br>0.80                                                                      | 0.43<br>58.7<br>11.8<br>21.0<br>16.4<br>100.0<br>99.8<br>0<br>Powe<br>0.85                                                                                                                                          | 99.9<br>1.7<br>4.9<br>4.7<br>100.0<br>100.0<br>99.8<br>r(H <sub>1</sub> )<br>0.90                                                                                                                                    |
| $\begin{tabular}{ c c c c } \hline Estimators & $\gamma$ \\ \hline ML \\ ALS(1step) \\ ALS(2step) \\ ALS(CUE) \\ NT(1step) \\ NT(2step) \\ NT(CUE) \\ \hline \\ \hline \\ Estimators & $\gamma$ \\ \hline \\ ML \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.30<br>66.7<br>23.3<br>49.2<br>30.2<br>89.3<br>97.6<br>80.2<br>Powe<br>0.70<br>31.0                                        | $\begin{array}{c} 0.35\\ \hline 23.1\\ 13.7\\ 35.4\\ 22.8\\ 90.4\\ 97.8\\ 80.6\\ \hline \\ rr(H_1)\\ 0.75\\ \hline 15.5\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.40\\ \hline 5.5\\ 6.7\\ 20.2\\ 14.9\\ 90.4\\ 97.6\\ 80.6\\ \hline \\ V=18\\ \text{Size}\\ 0.80\\ \hline 4.5\\ \end{array}$                                             | 0.45<br>23.6<br>2.6<br>11.6<br>9.0<br>89.2<br>97.1<br>80.7<br>50<br>Powe<br>0.85<br>2.1                                                                                | $\begin{array}{c} 0.50\\ \hline 71.2\\ 2.5\\ 10.2\\ 6.5\\ 86.1\\ 96.1\\ 80.7\\ \hline T = \\ \hline rr(H_1)\\ 0.90\\ \hline 11.3 \end{array}$                                                            | $\begin{array}{c} 0.30\\ 92.6\\ 41.3\\ 69.4\\ 45.3\\ 99.9\\ 100.0\\ 97.3\\ = 10,\gamma\\ \\ \text{Powe}\\ 0.70\\ \hline 44.0 \end{array}$                              | $\begin{array}{c} 0.35 \\ \hline 40.6 \\ 32.0 \\ 59.0 \\ 38.9 \\ 99.8 \\ 100.0 \\ 97.3 \\ \hline = 0.8, \\ r(H_1) \\ 0.75 \\ \hline 19.9 \end{array}$                                                                                        | $\begin{array}{c} 0.40 \\ \hline 4.8 \\ 16.6 \\ 36.5 \\ 26.6 \\ 99.8 \\ 100.0 \\ 97.3 \\ \hline f_t \sim tr \\ V = 300 \\ \text{Size} \\ 0.80 \\ \hline 5.4 \end{array}$                                             | 0.45<br>42.6<br>5.7<br>15.7<br>11.9<br>99.6<br>100.0<br>97.3<br><u>rend</u><br>0<br>Powe<br>0.85<br>6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.50<br>93.9<br>0.9<br>6.6<br>4.7<br>99.5<br>100.0<br>97.3<br>r(H <sub>1</sub> )<br>0.90<br>39.4                                                               | 99.1<br>48.2<br>79.6<br>54.1<br>100.0<br>99.8<br>Powe<br>0.70<br>64.1                                                                                                                                                                               | 63.3<br>44.4<br>75.3<br>51.5<br>100.0<br>100.0<br>99.8<br>r(H <sub>1</sub> )<br>0.75<br>26.5                                                                            | $\begin{array}{c} 0.40\\ \hline 4.7\\ 30.9\\ 53.1\\ 38.5\\ 100.0\\ 100.0\\ 99.8\\ \hline \\ \hline$                       | 0.45<br>58.7<br>11.8<br>21.0<br>16.4<br>100.0<br>99.8<br>0<br>Powe<br>0.85<br>14.5                                                                                                                                  | 0.30           99.9           1.7           4.9           4.7           100.0           99.8           r(H1)           0.90           61.4                                                                           |
| $ \begin{array}{c} \text{Estimators} & \gamma \\ \hline \text{ML} \\ \text{ALS}(1\text{step}) \\ \text{ALS}(2\text{step}) \\ \text{ALS}(\text{CUE}) \\ \text{NT}(1\text{step}) \\ \text{NT}(2\text{step}) \\ \text{NT}(\text{CUE}) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{Estimators} & \gamma \\ \hline \\ \text{ML} \\ \text{ALS}(1\text{step}) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.30<br>66.7<br>23.3<br>49.2<br>30.2<br>89.3<br>97.6<br>80.2<br>Powe<br>0.70<br>31.0<br>6.5                                 | $\begin{array}{c} 0.35\\ \hline 23.1\\ 13.7\\ 35.4\\ 22.8\\ 90.4\\ 97.8\\ 80.6\\ \hline \\ \hline \\ P7.8\\ 80.6\\ \hline \\ P7.8\\ 80.6\\ \hline \\ P7.8\\ 80.6\\ \hline \\ \hline \\ P7.8\\ \hline \\ \hline \\ \hline \\ P7.8\\ \hline \\ \hline \\ P7.8\\ \hline \\ \hline \hline \\ P7.8\\ \hline \\ \hline \\ \hline \hline \\ P7.8\\ \hline \\ \hline \hline \\ P7.8\\ \hline \\ \hline \\ \hline \hline \\ P7.8\\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline$ | $\begin{array}{c} 0.40\\ \hline 5.5\\ 6.7\\ 20.2\\ 14.9\\ 90.4\\ 97.6\\ 80.6\\ \hline \\ V=15\\ \text{Size}\\ 0.80\\ \hline \\ 4.5\\ 1.0\\ \end{array}$                                    | 0.45<br>23.6<br>2.6<br>11.6<br>9.0<br>89.2<br>97.1<br>80.7<br>50<br>Powe<br>0.85<br>2.1<br>0.3                                                                         | $\begin{array}{c} 0.50\\ \hline 71.2\\ 2.5\\ 10.2\\ 6.5\\ 86.1\\ 96.1\\ 80.7\\ \hline T = \\ \hline rr(H_1)\\ 0.90\\ \hline 11.3\\ 0.8 \end{array}$                                                      | $\begin{array}{c} 0.30\\ 92.6\\ 41.3\\ 69.4\\ 45.3\\ 99.9\\ 100.0\\ 97.3\\ = 10, \gamma\\ \hline \\ Powe\\ 0.70\\ 44.0\\ 10.5\\ \end{array}$                           | $\begin{array}{c} 0.35\\ \hline 40.6\\ 32.0\\ 59.0\\ 38.9\\ 99.8\\ 100.0\\ 97.3\\ \hline = 0.8,\\ r(H_1)\\ 0.75\\ \hline 19.9\\ 4.5\\ \end{array}$                                                                                           | $\begin{array}{c} 0.40 \\ \hline 4.8 \\ 16.6 \\ 36.5 \\ 26.6 \\ 99.8 \\ 100.0 \\ 97.3 \\ \hline f_t \sim tr \\ V = 300 \\ \text{Size} \\ 0.80 \\ \hline 5.4 \\ 1.8 \end{array}$                                      | $\begin{array}{c} 0.45 \\ \hline 42.6 \\ 5.7 \\ 15.7 \\ 11.9 \\ 99.6 \\ 100.0 \\ 97.3 \\ \hline end \\ \hline 0 \\ 0 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.50<br>93.9<br>0.9<br>6.6<br>4.7<br>99.5<br>100.0<br>97.3<br>r(H <sub>1</sub> )<br>0.90<br>39.4<br>2.0                                                        | 99.1<br>48.2<br>79.6<br>54.1<br>100.0<br>100.0<br>99.8<br>Powe<br>0.70<br>64.1<br>9.4                                                                                                                                                               | $\begin{array}{c} 0.33\\ \hline 63.3\\ 44.4\\ 75.3\\ 51.5\\ 100.0\\ 100.0\\ 99.8\\ \hline r(H_1)\\ 0.75\\ \hline 26.5\\ 5.2\\ \end{array}$                              | $\begin{array}{r} 0.40 \\ \hline 4.7 \\ 30.9 \\ 53.1 \\ 38.5 \\ 100.0 \\ 100.0 \\ 99.8 \end{array}$ $\overline{V = 50}$ Size 0.80 $\overline{4.8}$ 2.3                                                    | 0.45<br>58.7<br>11.8<br>21.0<br>16.4<br>100.0<br>100.0<br>99.8<br>0<br>Powe<br>0.85<br>14.5<br>2.0                                                                                                                  | 0.30           99.9           1.7           4.9           4.7           100.0           99.8           r(H1)           0.90           61.4           3.3                                                             |
| $ \begin{array}{c} \text{Estimators} & \gamma \\ \hline \text{ML} \\ \text{ALS}(1\text{step}) \\ \text{ALS}(2\text{step}) \\ \text{ALS}(\text{CUE}) \\ \text{NT}(1\text{step}) \\ \text{NT}(2\text{step}) \\ \text{NT}(\text{CUE}) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{Estimators} & \gamma \\ \hline \\ \hline \\ \text{ML} \\ \text{ALS}(1\text{step}) \\ \text{ALS}(2\text{step}) \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.30<br>66.7<br>23.3<br>49.2<br>30.2<br>89.3<br>97.6<br>80.2<br>Powe<br>0.70<br>31.0<br>6.5<br>41.9                         | $\begin{array}{c} 0.35\\ \hline 23.1\\ 13.7\\ 35.4\\ 22.8\\ 90.4\\ 97.8\\ 80.6\\ \hline \\ \hline \\ P7.8\\ 80.6\\ \hline \\ P7.8\\ \hline \\ P7.8\\ 80.6\\ \hline \\ P7.8\\ \\ P7.8\\ 80.6\\ \hline \\ P7.8\\ 80.6\\ \hline \\ P7.8\\ 80.6\\ \hline \\ P7.8\\ 80.6\\ \hline \\ P7.8\\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 0.40\\ \hline 5.5\\ 6.7\\ 20.2\\ 14.9\\ 90.4\\ 97.6\\ 80.6\\ \hline \\ V = 18\\ \text{Size}\\ 0.80\\ \hline 4.5\\ 1.0\\ 25.6\\ \end{array}$                              | 0.45<br>23.6<br>2.6<br>11.6<br>9.0<br>89.2<br>97.1<br>80.7<br>50<br>Powe<br>0.85<br>2.1<br>0.3<br>18.1                                                                 | $\begin{array}{c} 0.50\\ \hline 71.2\\ 2.5\\ 10.2\\ 6.5\\ 86.1\\ 96.1\\ 80.7\\ \hline T = \\ rr(H_1)\\ 0.90\\ \hline 11.3\\ 0.8\\ 13.8 \end{array}$                                                      | $\begin{array}{c} 0.30\\ 92.6\\ 41.3\\ 69.4\\ 45.3\\ 99.9\\ 100.0\\ 97.3\\ =10, \gamma\\ \hline \\ Powe\\ 0.70\\ 44.0\\ 10.5\\ 39.0\\ \end{array}$                     | $\begin{array}{c} 0.35\\ \hline 40.6\\ 32.0\\ 59.0\\ 38.9\\ 99.8\\ 100.0\\ 97.3\\ \hline = 0.8,\\ r(H_1)\\ 0.75\\ \hline 19.9\\ 4.5\\ 31.2 \end{array}$                                                                                      | $\begin{array}{r} 0.40\\ \hline 4.8\\ 16.6\\ 36.5\\ 26.6\\ 99.8\\ 100.0\\ 97.3\\ \hline f_t \sim t_7\\ V = 300\\ \text{Size}\\ 0.80\\ \hline 5.4\\ 1.8\\ 23.1\\ \end{array}$                                         | $\begin{array}{c} 0.45 \\ \hline 42.6 \\ 5.7 \\ 15.7 \\ 11.9 \\ 99.6 \\ 100.0 \\ 97.3 \\ \hline end \\ 0 \\ \hline 0.85 \\ \hline 6.6 \\ 1.2 \\ 16.2 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.50<br>93.9<br>0.9<br>6.6<br>4.7<br>99.5<br>100.0<br>97.3<br>r(H <sub>1</sub> )<br>0.90<br>39.4<br>2.0<br>15.0                                                | 99.1<br>48.2<br>79.6<br>54.1<br>100.0<br>100.0<br>99.8<br>Powe<br>0.70<br>64.1<br>9.4<br>42.6                                                                                                                                                       | $\begin{array}{c} 0.33\\ \hline 63.3\\ 44.4\\ 75.3\\ 51.5\\ 100.0\\ 100.0\\ 99.8\\ \hline r(H_1)\\ 0.75\\ \hline 26.5\\ 5.2\\ 38.8 \end{array}$                         | $\begin{array}{r} 0.40 \\ \hline 4.7 \\ 30.9 \\ 53.1 \\ 38.5 \\ 100.0 \\ 99.8 \\ \hline \\ V = 50 \\ \text{Size} \\ 0.80 \\ \hline \\ 4.8 \\ 2.3 \\ 31.9 \\ \end{array}$                                  | 0.45<br>58.7<br>11.8<br>21.0<br>16.4<br>100.0<br>100.0<br>99.8<br>0<br>Powe<br>0.85<br>14.5<br>2.0<br>23.0                                                                                                          | 0.30           99.9           1.7           4.9           4.7           100.0           99.8           r(H1)           0.90           61.4           3.3           18.0                                              |
| $ \begin{array}{c} \text{Estimators} \setminus \gamma \\ \hline \text{ML} \\ \text{ALS}(1\text{step}) \\ \text{ALS}(2\text{step}) \\ \text{ALS}(\text{CUE}) \\ \text{NT}(1\text{step}) \\ \text{NT}(2\text{step}) \\ \text{NT}(\text{CUE}) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{Estimators} \setminus \gamma \\ \hline \\ \hline \\ \text{ALS}(1\text{step}) \\ \text{ALS}(2\text{step}) \\ \text{ALS}(2\text{step}) \\ \hline \\ \\ \text{ALS}(\text{CUE}) \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.30<br>66.7<br>23.3<br>49.2<br>30.2<br>89.3<br>97.6<br>80.2<br>Powe<br>0.70<br>31.0<br>6.5<br>41.9<br>19.4                 | $\begin{array}{c} 0.35\\ \hline 23.1\\ 13.7\\ 35.4\\ 22.8\\ 90.4\\ 97.8\\ 80.6\\ \hline \\ rr(H_1)\\ 0.75\\ \hline 15.5\\ 2.8\\ 35.4\\ 16.1\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.40\\ \hline 5.5\\ 6.7\\ 20.2\\ 14.9\\ 90.4\\ 97.6\\ 80.6\\ \hline \\ V=15\\ \text{Size}\\ 0.80\\ \hline \\ 4.5\\ 1.0\\ 25.6\\ 14.2\\ \end{array}$                      | $\begin{array}{c} 0.45\\ \hline 23.6\\ 2.6\\ 11.6\\ 9.0\\ 89.2\\ 97.1\\ 80.7\\ \hline \\ 50\\ \hline \\ 0.85\\ \hline 2.1\\ 0.3\\ 18.1\\ 13.2\\ \end{array}$           | $\begin{array}{c} 0.50\\ \hline 71.2\\ 2.5\\ 10.2\\ 6.5\\ 86.1\\ 96.1\\ 80.7\\ \hline T = \\ rr(H_1)\\ 0.90\\ \hline 11.3\\ 0.8\\ 13.8\\ 11.9 \end{array}$                                               | $\begin{array}{c} 0.30\\ 92.6\\ 41.3\\ 69.4\\ 45.3\\ 99.9\\ 100.0\\ 97.3\\ = 10, \gamma\\ \hline \\ Powe\\ 0.70\\ 44.0\\ 10.5\\ 39.0\\ 25.6\\ \end{array}$             | $\begin{array}{c} 0.35 \\ \hline 40.6 \\ 32.0 \\ 59.0 \\ 99.8 \\ 100.0 \\ 97.3 \\ \hline = 0.8, \\ \hline r(H_1) \\ 0.75 \\ \hline 19.9 \\ 4.5 \\ 31.2 \\ 22.2 \end{array}$                                                                  | $\begin{array}{c} 0.40\\ \hline 4.8\\ 16.6\\ 36.5\\ 26.6\\ 99.8\\ 100.0\\ 97.3\\ \hline f_t \sim tr\\ V=30\\ Size\\ 0.80\\ \hline 5.4\\ 1.8\\ 23.1\\ 19.3\\ \end{array}$                                             | $\begin{array}{c} 0.45 \\ \hline 42.6 \\ 5.7 \\ 15.7 \\ 11.9 \\ 99.6 \\ 100.0 \\ 97.3 \\ \hline 97.3 \\ \hline 0 \\ \hline 1.2 \\ 16.2 \\ 16.2 \\ 16.6 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.50<br>93.9<br>0.9<br>6.6<br>4.7<br>99.5<br>100.0<br>97.3<br>r(H <sub>1</sub> )<br>0.90<br>39.4<br>2.0<br>15.0<br>16.8                                        | 99.1<br>48.2<br>79.6<br>54.1<br>100.0<br>99.8<br>Powe<br>0.70<br>64.1<br>9.4<br>42.6<br>32.8                                                                                                                                                        | 63.3<br>63.3<br>44.4<br>75.3<br>51.5<br>100.0<br>99.8<br>r(H <sub>1</sub> )<br>0.75<br>26.5<br>5.2<br>38.8<br>29.7                                                      | $\begin{array}{c} 0.40 \\ \hline 4.7 \\ 30.9 \\ 53.1 \\ 38.5 \\ 100.0 \\ 100.0 \\ 99.8 \\ \hline \\ V = 50 \\ \text{Size} \\ 0.80 \\ \hline \\ 4.8 \\ 2.3 \\ 31.9 \\ 26.7 \\ \end{array}$                 | 0.43<br>58.7<br>11.8<br>21.0<br>16.4<br>100.0<br>99.8<br>0<br>Powe<br>0.85<br>14.5<br>2.0<br>23.0<br>24.6                                                                                                           | 9.30           99.9           1.7           4.9           4.7           100.0           99.8           rr(H1)           0.90           61.4           3.3           18.0           23.2                              |
| $\begin{array}{c} \text{Estimators} & \gamma \\ \hline \text{ML} \\ \text{ALS}(1\text{step}) \\ \text{ALS}(2\text{step}) \\ \text{ALS}(2\text{step}) \\ \text{NT}(1\text{step}) \\ \text{NT}(2\text{step}) \\ \text{NT}(\text{CUE}) \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{Estimators} & \gamma \\ \hline \\ \hline \\ \text{ALS}(1\text{step}) \\ \text{ALS}(2\text{step}) \\ \text{ALS}(2\text{step}) \\ \text{ALS}(\text{CUE}) \\ \text{NT}(1\text{step}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.30<br>66.7<br>23.3<br>49.2<br>30.2<br>89.3<br>97.6<br>80.2<br>Powe<br>0.70<br>31.0<br>6.5<br>41.9<br>19.4<br>47.0         | $\begin{array}{c} 0.35\\ \hline 23.1\\ 13.7\\ 35.4\\ 22.8\\ 90.4\\ 97.8\\ 80.6\\ \hline \\ pr(H_1)\\ 0.75\\ 15.5\\ 2.8\\ 35.4\\ 16.1\\ 46.0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.40\\ \hline 5.5\\ 6.7\\ 20.2\\ 14.9\\ 90.4\\ 97.6\\ 80.6\\ \hline \\ N=18\\ \text{Size}\\ 0.80\\ \hline \\ 4.5\\ 1.0\\ 25.6\\ 14.2\\ 44.8\\ \end{array}$               | $\begin{array}{c} 0.45\\ \hline 23.6\\ 2.6\\ 11.6\\ 9.0\\ 89.2\\ 97.1\\ 80.7\\ \hline \\ 50\\ \hline \\ 0.85\\ \hline \\ 2.1\\ 0.3\\ 18.1\\ 13.2\\ 43.3\\ \end{array}$ | $\begin{array}{c} 0.50\\ \hline 0.50\\ \hline 71.2\\ 2.5\\ 10.2\\ 6.5\\ 86.1\\ 96.1\\ 80.7\\ \hline T = \\ \hline r(H_1)\\ 0.90\\ \hline 11.3\\ 0.8\\ 13.8\\ 11.9\\ 41.8 \end{array}$                    | $\begin{array}{c} 0.30\\ 92.6\\ 41.3\\ 69.4\\ 45.3\\ 99.9\\ 100.0\\ 97.3\\ = 10, \gamma\\ \hline \\ Powe\\ 0.70\\ 44.0\\ 10.5\\ 39.0\\ 25.6\\ 67.8\\ \end{array}$      | $\begin{array}{c} 0.35 \\ \hline 40.6 \\ 32.0 \\ 59.0 \\ 99.8 \\ 100.0 \\ 97.3 \\ \hline = 0.8, \\ r(H_1) \\ 0.75 \\ \hline 19.9 \\ 4.5 \\ 31.2 \\ 22.2 \\ 67.3 \\ \end{array}$                                                              | $\begin{array}{r} 0.40\\ \hline 4.8\\ 16.6\\ 36.5\\ 26.6\\ 99.8\\ 100.0\\ 97.3\\ \hline f_t \sim tr\\ V=30\\ Size\\ 0.80\\ \hline 5.4\\ 1.8\\ 23.1\\ 19.3\\ 66.5\\ \end{array}$                                      | $\begin{array}{c} 0.45 \\ \hline 42.6 \\ 5.7 \\ 15.7 \\ 11.9 \\ 99.6 \\ 100.0 \\ 97.3 \\ \hline end \\ \hline 0 \\ \hline \\ Powe \\ 0.85 \\ \hline \\ 6.6 \\ 1.2 \\ 16.2 \\ 16.2 \\ 16.6 \\ 65.7 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.30\\ \hline 93.9\\ 0.9\\ 6.6\\ 4.7\\ 99.5\\ 100.0\\ 97.3\\ \hline \\ r(H_1)\\ 0.90\\ \hline 39.4\\ 2.0\\ 15.0\\ 16.8\\ 64.2\\ \end{array}$ | 99.1<br>48.2<br>79.6<br>54.1<br>100.0<br>100.0<br>99.8<br>Powe<br>0.70<br>64.1<br>9.4<br>42.6<br>32.8<br>82.4                                                                                                                                       | $\begin{array}{c} 0.33\\ \hline 63.3\\ 44.4\\ 75.3\\ 51.5\\ 100.0\\ 99.8\\ \hline \\ r(H_1)\\ 0.75\\ \hline 26.5\\ 5.2\\ 38.8\\ 29.7\\ 81.9\\ \end{array}$              | $\begin{array}{c} 0.40\\ \hline 4.7\\ 30.9\\ 53.1\\ 188.5\\ 100.0\\ 100.0\\ 99.8\\ \hline \\ V=50\\ Size\\ 0.80\\ \hline \\ 4.8\\ 2.3\\ 31.9\\ 26.7\\ 81.2\\ \end{array}$                                 | 0.43<br>58.7<br>11.8<br>21.0<br>16.4<br>100.0<br>99.8<br>0<br>Powe<br>0.85<br>14.5<br>2.0<br>23.0<br>24.6<br>80.6                                                                                                   | 9.30           99.9           1.7           4.9           4.7           100.0           99.8           r(H1)           0.90           61.4           3.3           18.0           23.2           80.2                |
| $\begin{array}{c} \text{Estimators} & \gamma \\ \hline \text{ML} \\ \text{ALS}(1\text{step}) \\ \text{ALS}(2\text{step}) \\ \text{ALS}(\text{CUE}) \\ \text{NT}(1\text{step}) \\ \text{NT}(2\text{step}) \\ \text{NT}(\text{CUE}) \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{Estimators} & \gamma \\ \hline \\ \hline \\ \text{ALS}(1\text{step}) \\ \text{ALS}(2\text{step}) \\ \text{ALS}(2\text{step}) \\ \text{ALS}(2\text{step}) \\ \text{NT}(1\text{step}) \\ \text{NT}(2\text{step}) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.30<br>66.7<br>23.3<br>49.2<br>30.2<br>89.3<br>97.6<br>80.2<br>Powe<br>0.70<br>31.0<br>6.5<br>41.9<br>19.4<br>47.0<br>46.7 | $\begin{array}{c} 0.35\\ \hline 23.1\\ 13.7\\ 35.4\\ 22.8\\ 90.4\\ 97.8\\ 80.6\\ \hline \\ 97.8\\ 80.6\\ \hline \\ 97.8\\ 80.6\\ \hline \\ 15.5\\ 2.8\\ 35.4\\ 16.1\\ 46.0\\ 45.3\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.40\\ \hline 5.5\\ 6.7\\ 20.2\\ 14.9\\ 90.4\\ 97.6\\ 80.6\\ \hline \\ V=18\\ \text{Size}\\ 0.80\\ \hline \\ 4.5\\ 1.0\\ 25.6\\ 14.2\\ 44.8\\ 44.6\\ \hline \end{array}$ | 0.45<br>23.6<br>2.6<br>11.6<br>9.0<br>89.2<br>97.1<br>80.7<br>60<br>Powe<br>0.85<br>2.1<br>0.3<br>18.1<br>13.2<br>43.3<br>43.5                                         | $\begin{array}{c} 0.50\\ \hline 0.50\\ \hline 71.2\\ 2.5\\ 10.2\\ 6.5\\ 86.1\\ 96.1\\ 80.7\\ \hline T = \\ \hline rr(H_1)\\ 0.90\\ \hline 11.3\\ 0.8\\ 13.8\\ 11.9\\ 41.8\\ 43.0\\ \end{array}$          | $\begin{array}{c} 0.30\\ 92.6\\ 41.3\\ 69.4\\ 45.3\\ 99.9\\ 100.0\\ 97.3\\ =10,\gamma\\ \hline \\ Powe\\ 0.70\\ 44.0\\ 10.5\\ 39.0\\ 25.6\\ 67.8\\ 63.6\\ \end{array}$ | $\begin{array}{c} 0.35 \\ 40.6 \\ 32.0 \\ 59.0 \\ 38.9 \\ 99.8 \\ 100.0 \\ 97.3 \\ \hline = 0.8, \\ r(H_1) \\ 0.75 \\ \hline 19.9 \\ 4.5 \\ 31.2 \\ 22.2 \\ 67.3 \\ 62.8 \\ \end{array}$                                                     | $\begin{array}{c} 0.40 \\ \hline 4.8 \\ 16.6 \\ 36.5 \\ 26.6 \\ 99.8 \\ 100.0 \\ 97.3 \\ \hline f_t \sim tr \\ V = 300 \\ Size \\ 0.80 \\ \hline 5.4 \\ 1.8 \\ 23.1 \\ 19.3 \\ 66.5 \\ 62.3 \\ \end{array}$          | $\begin{array}{c} 0.45\\ \hline 42.6\\ 5.7\\ 15.7\\ 11.9\\ 99.6\\ 100.0\\ 97.3\\ \hline end\\ 0\\ \hline \\ 0\\ \hline 0\\ \hline \\ 0\\ \hline 0\\ \hline \\ 0\\ \hline 0\\ \hline 0\\ 0\\ 0\\ \hline 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $ | $\begin{array}{c} 0.30\\ 93.9\\ 0.9\\ 6.6\\ 4.7\\ 99.5\\ 100.0\\ 97.3\\ \hline r(H_1)\\ 0.90\\ 39.4\\ 2.0\\ 15.0\\ 15.0\\ 64.2\\ 60.4\\ \end{array}$           | 0.30         99.1           99.1         48.2           79.6         54.1           100.0         100.0           99.8         99.8           Powee         0.70           64.1         9.4           42.6         32.8           82.4         79.3 | $\begin{array}{c} 6.3.3 \\ \hline 63.3 \\ 44.4 \\ 75.3 \\ 51.5 \\ 100.0 \\ 99.8 \\ \hline r(H_1) \\ 0.75 \\ 26.5 \\ 5.2 \\ 38.8 \\ 29.7 \\ 81.9 \\ 79.1 \\ \end{array}$ | $\begin{array}{c} 0.40 \\ \hline 4.7 \\ 30.9 \\ 53.1 \\ 38.5 \\ 100.0 \\ 100.0 \\ 99.8 \\ \hline \hline \\ V = 50 \\ Size \\ 0.80 \\ \hline \\ 4.8 \\ 2.3 \\ 31.9 \\ 26.7 \\ 81.2 \\ 78.6 \\ \end{array}$ | 0.43           58.7           11.8           21.0           16.4           100.0           99.8           0           Powe           0.85           14.5           2.0           23.6           80.6           77.9 | 0.30           99.9           1.7           4.9           4.7           100.0           99.8           r(H1)           0.90           61.4           3.3           18.0           23.2           80.2           77.4 |

Table 4: Size(%) and power(%) for the AR(1) model with a single factor (T = 10)

|            |                |                |                | T=6,           | $\gamma = 0.4,$ | $\beta = 1.0,$        | $f_t \sim AR($              | 1)             |                |                       |                |                |
|------------|----------------|----------------|----------------|----------------|-----------------|-----------------------|-----------------------------|----------------|----------------|-----------------------|----------------|----------------|
|            |                | N =            | = 150          |                |                 | N =                   | : 300                       |                |                | N =                   | = 500          |                |
|            | ^              | γ              | ŀ              | 3              | '               | γ                     | ŀ                           | 3              | ,              | γ                     | ļ              | 3              |
| Estimators | Bias           | RMSE           | Bias           | RMSE           | Bias            | RMSE                  | Bias                        | RMSE           | Bias           | RMSE                  | Bias           | RMSE           |
|            | $(\times 100)$  | $(\times 100)$        | $(\times 100)$              | $(\times 100)$ | $(\times 100)$ | $(\times 100)$        | $(\times 100)$ | $(\times 100)$ |
| ML         | -0.19          | 4.29           | -0.05          | 7.41           | 0.03            | 3.01                  | 0.05                        | 5.26           | -0.05          | 2.30                  | 0.01           | 4.08           |
| ALS(1step) | 0.81           | 16.60          | -3.11          | 17.23          | -0.87           | 11.56                 | -1.59                       | 11.85          | -1.71          | 8.16                  | -0.86          | 8.51           |
| ALS(2step) | 2.10           | 17.47          | -5.20          | 19.40          | 1.69            | 11.82                 | -4.80                       | 13.42          | 1.76           | 8.32                  | -4.47          | 9.97           |
| ALS(CUE)   | 2.46           | 22.58          | -7.08          | 23.84          | -0.70           | 15.87                 | -4.44                       | 15.66          | -2.51          | 11.59                 | -2.93          | 11.07          |
| NT(1step)  | -3.70          | 32.16          | 4.70           | 14.58          | 8.52            | 24.51                 | 7.37                        | 12.02          | 15.80          | 20.97                 | 8.52           | 10.84          |
| NT(2step)  | -6.23          | 35.96          | 4 09           | 16.28          | 6.58            | 27.22                 | 6.96                        | 12.90          | 14 76          | 21.98                 | 8.07           | 11.01          |
| NT(CUE)    | 17.04          | 41.42          | 0.60           | 22.77          | 26.21           | 35.06                 | 4.72                        | 13.98          | 29.58          | 31.63                 | 5.70           | 10.90          |
|            |                |                |                | T = 6          | $\gamma = 0.8$  | $\beta = 1.0$         | $f_{t} \sim AR($            | 1)             |                |                       |                |                |
|            |                | N =            | 150            | - 0,           | / 0.0,          | $\frac{N}{N} =$       | : 300                       | -)             |                | N =                   | 500            |                |
|            | -              |                | 100            | 3              |                 | ~ ~ ~                 | 000                         | 3              |                | - 11 -                | 000            | 3              |
| Estimators | Biag           | RMSE           | Bias           | BMSE           | Biag            | RMSE                  | Bias                        | BMSE           | Bise           | BMSE                  | Bias           | RMSE           |
| Estimators | $(\times 100)$  | $(\times 100)$        | $(\times 100)$              | $(\times 100)$ | $(\times 100)$ | $(\times 100)$        | $(\times 100)$ | $(\times 100)$ |
| MI         | 0.06           | 2.38           |                | 4.33           | 0.10            | 1.74                  |                             | 3.14           | 0.01           | 1 32                  | 0.01           | 2.42           |
| AIS(1stop) | -0.00          | 5.20           | 2.02           | 4.00<br>8.00   | 9.11            | 4.17                  | 4.02                        | 6.95           | -0.01          | 2.16                  | 4.20           | 5.42           |
| ALS(1step) | -1.33          | 5.59           | 3.03           | 0.29           | -2.11           | 4.17                  | 4.02                        | 0.00<br>E 70   | -2.32          | 0.10                  | 4.29           | 4.96           |
| ALS(2step) | -0.33          | 5.20           | 1.52           | 1.91           | -0.05           | 3.00                  | 2.02                        | 0.10<br>5 76   | -0.07          | 2.20                  | 2.23           | 4.20           |
| ALS(CUE)   | -0.44          | 0.90<br>14.76  | 0.01           | 0.44<br>6.26   | -1.10           | 0.90<br>10.96         | 1.07                        | 0.70           | -1.21          | 2.00                  | 1.99           | 4.5Z           |
| NT(1step)  | -1.37          | 14.70          | 0.51           | 0.30           | 0.89            | 12.20                 | 0.83                        | 4.57           | 9.39           | 11.80                 | 0.79           | 3.00           |
| NT(2step)  | -2.45          | 10.47          | 0.38           | 1.20           | 5.32            | 13.55                 | 0.69                        | 5.06           | 9.06           | 12.37                 | 0.60           | 3.97           |
| NT(CUE)    | 8.50           | 18.47          | -0.09          | 8.50           | 14.21           | 10.97                 | 0.14                        | 5.51           | 16.50          | 17.10                 | 0.01           | 4.22           |
|            |                | N              | 150            | $I \equiv 0,$  | $\gamma = 0.4,$ | p = 1.0,              | $\frac{J_t \sim trei}{200}$ | na             |                | <b>N</b> <i>T</i>     | 500            |                |
|            |                | N =            | = 150          | -              |                 | N =                   | : 300                       | 0              |                | N =                   | = 500          | 0              |
| D. C. A    |                | γ<br>DMOD      | <u> </u>       |                | <i>′</i>        | $\frac{\gamma}{DMOD}$ | <u> </u>                    | DMOD           | ´              | $\frac{\gamma}{DMOD}$ | <u> </u>       |                |
| Estimators | Bias (v. 100)  | RMSE (v. 100)  | Bias (v. 100)  | RMSE (v.100)   | Bias            | RMSE (v.100)          | Bias                        | RMSE (v.100)   | Bias (v.100)   | RMSE (v.100)          | Bias (v.100)   | RMSE (v.100)   |
| M          | (×100)         | (×100)         | $(\times 100)$ | (X100)         | $(\times 100)$  | (×100)                | $(\times 100)$              | (×100)         | $(\times 100)$ | (×100)                | $(\times 100)$ | (×100)         |
|            | -0.07          | 5.82           | -0.28          | 8.96           | 0.07            | 3.98                  | -0.08                       | 0.27           | -0.07          | 2.95                  | 0.01           | 4.((           |
| ALS(1step) | 9.07           | 30.37          | -13.00         | 40.27          | 5.01            | 36.84                 | -8.05                       | 40.08          | 3.71           | 37.09                 | -0.38          | 39.69          |
| ALS(2step) | 10.86          | 36.14          | -16.42         | 41.33          | 10.57           | 34.73                 | -15.78                      | 39.41          | 10.68          | 34.05                 | -15.65         | 38.38          |
| ALS(CUE)   | 1.58           | 43.38          | -(.24          | 48.41          | -0.94           | 39.84                 | -2.94                       | 42.45          | -2.13          | 39.03                 | -1.24          | 40.83          |
| NT(Istep)  | 54.52          | 55.27          | -4.96          | 10.30          | 59.27           | 59.32                 | -5.65                       | 12.47          | 59.81          | 59.82                 | -0.11          | 10.67          |
| NT(2step)  | 55.16          | 56.00          | -6.97          | 20.08          | 59.47           | 59.52                 | -8.04                       | 15.34          | 59.87          | 59.87                 | -8.68          | 13.38          |
| NT(CUE)    | 55.52          | 57.40          | -7.78          | 27.23          | 59.31           | 59.43                 | -7.13                       | 18.07          | 59.82          | 59.83                 | -6.68          | 14.17          |
|            |                |                | 150            | T = 6,         | $\gamma = 0.8,$ | $\beta = 1.0,$        | $f_t \sim trev$             | nd             |                |                       |                |                |
|            |                | N =            | = 150          | 0              |                 | N =                   | 300                         | 2              |                | N =                   | = 500          | 2              |
| -          |                | Y              | ļ., /          | 3              | · · · · · ·     | γ                     | ļ/                          | 3              | ^              | γ                     | 4              | 3              |
| Estimators | Bias           | RMSE           | Bias           | RMSE           | Bias            | RMSE                  | Bias                        | RMSE           | Bias           | RMSE                  | Bias           | RMSE           |
|            | $(\times 100)$  | $(\times 100)$        | $(\times 100)$              | $(\times 100)$ | $(\times 100)$ | $(\times 100)$        | $(\times 100)$ | $(\times 100)$ |
| ML         | -0.09          | 3.10           | -0.14          | 4.88           | -0.11           | 2.18                  | 0.04                        | 3.44           | -0.01          | 1.65                  | 0.01           | 2.64           |
| ALS(1step) | 4.65           | 10.21          | -4.82          | 14.47          | 4.23            | 9.69                  | -3.85                       | 13.19          | 3.66           | 9.12                  | -2.99          | 12.24          |
| ALS(2step) | 6.54           | 10.13          | -6.98          | 13.73          | 6.95            | 9.82                  | -7.09                       | 12.28          | 7.41           | 9.79                  | -7.20          | 11.61          |
| ALS(CUE)   | 4.71           | 10.38          | -5.36          | 14.56          | 4.38            | 9.43                  | -4.24                       | 11.94          | 4.06           | 8.87                  | -3.51          | 10.83          |
| NT(1step)  | 18.93          | 19.50          | 1.40           | 6.85           | 19.86           | 19.87                 | 1.49                        | 4.93           | 19.90          | 19.90                 | 1.44           | 3.99           |
| NT(2step)  | 17.83          | 18.92          | 1.24           | 7.84           | 19.77           | 19.80                 | 1.58                        | 5.42           | 19.89          | 19.89                 | 1.52           | 4.26           |
| NT(CUE)    | 17.64          | 19.22          | 1.67           | 9.08           | 19.66           | 19.71                 | 2.08                        | 6.04           | 19.84          | 19.85                 | 2.12           | 4.70           |

Table 5: Bias(×100) and RMSE(×100) for the ARX(1) model with a single factor (T = 6) $T = 6, \gamma = 0.4, \beta = 1.0, f_t \sim AB(1)$ 

Notes:  $y_{it}$  is generated as  $y_{it} = \alpha_i + \gamma y_{i,t-1} + \beta x_{it} + \xi_{it}$ ,  $\xi_{it} = \lambda_i f_t + u_{it}$ ,  $u_{it} \sim iid\mathcal{N}(0,\sigma^2)$ , i = 1, 2, ..., N; t = -49, 48, ...0, 1, ..., T, with  $y_{i,-50} = 0$  and  $x_{it} = \mu_i + \vartheta_i f_t + \check{x}_{it}$ ,  $\check{x}_{it} = \rho_x \check{x}_{i,t-1} + \sqrt{1 - \rho_x^2} \varepsilon_{it}$ , with  $\check{x}_{i,-50} = 0$ , for t = -49, 48, ...0, 1, ..., T, where  $\rho_x = 0.8$ ,  $\mu_i \sim iid\mathcal{N}(0, 1)$ , and  $\varepsilon_{it} \sim iid\mathcal{N}(0, 1)$ . The factor  $f_t$  is generated as in the AR(1) case (see notes to Table 1). The factor loadings,  $\vartheta_i$  and  $\lambda_i$ , are generated as  $\vartheta_i \sim iid\mathcal{N}(0.5, \sigma_{\vartheta}^2)$  and  $\lambda_i \sim iid\mathcal{N}(0.5, \sigma_{\lambda}^2)$ , respectively. The fixed effects,  $\alpha_i$ , are generated as  $\alpha_i = T^{-1} \sum_{t=1}^T x_{it} + \lambda_i \bar{f} + \bar{u}_i + v_i$ , where  $\bar{f} = T^{-1} \sum_{t=1}^T f_t$ ,  $\bar{u}_i = T^{-1} \sum_{t=1}^T u_{it}$ , and  $v_i \sim iid\mathcal{N}(0, 1)$ . The remaining parameters are set at  $\beta = 1$ ,  $\sigma_{\lambda}^2 = \sigma_{\vartheta}^2 = \sigma^2$ , with  $\sigma^2 = (0.8 - \gamma^2)/0.3$ . Each  $f_t$  is generated once and the same  $f'_t s$  are used throughout the replications. The first 50 observations are discarded. ML is the proposed maximum likelihood estimator. ALS(j) and NT(j) with j = 1 step, 2step, CUE are the one step, two step and continuous updating GMM estimators of Ahn et al. (2013), and Nauges and Thomas (2003), respectively. All experiments are based on 1,000 replications.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T = 10                                                                                                            | $,\gamma=0.4$                                                                                                                                                                                                                                                                                                     | $\beta = 1.0,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $f_t \sim AR$                                                                                                                                                                                                                                                                                                                                                | (1)                                                                                                                                                                     |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                               |                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       | N =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                   | N =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | : 300                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                         |                                                                                                                                                                                                                                  | N =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500                                                                                                                                                           |                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                     | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ĺ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                 | · ·                                                                                                                                                                                                                                                                                                               | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                       | · ·                                                                                                                                                                                                                              | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ĺ                                                                                                                                                             | 3                                                                                                                                                          |
| Estimators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bias                                                                                                                                                                  | BMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RMSE                                                                                                              | Bias                                                                                                                                                                                                                                                                                                              | BMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bias                                                                                                                                                                                                                                                                                                                                                         | BMSE                                                                                                                                                                    | Bias                                                                                                                                                                                                                             | BMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bias                                                                                                                                                          | BMSE                                                                                                                                                       |
| Lotimatorio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(\times 100)$                                                                                                                                                        | $(\times 100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(\times 100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(\times 100)$                                                                                                    | $(\times 100)$                                                                                                                                                                                                                                                                                                    | $(\times 100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(\times 100)$                                                                                                                                                                                                                                                                                                                                               | $(\times 100)$                                                                                                                                                          | $(\times 100)$                                                                                                                                                                                                                   | $(\times 100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(\times 100)$                                                                                                                                                | $(\times 100)$                                                                                                                                             |
| MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(\times 100)$                                                                                                                                                        | (×100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(\times 100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (×100)                                                                                                            | (×100)                                                                                                                                                                                                                                                                                                            | (×100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(\times 100)$                                                                                                                                                                                                                                                                                                                                               | $(\times 100)$                                                                                                                                                          | $(\times 100)$                                                                                                                                                                                                                   | $(\times 100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(\times 100)$                                                                                                                                                | $(\times 100)$                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.03                                                                                                                                                                 | 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                              | -0.10                                                                                                                                                                                                                                                                                                             | 1.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.07                                                                                                                                                                                                                                                                                                                                                         | 5.99                                                                                                                                                                    | -0.04                                                                                                                                                                                                                            | 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07                                                                                                                                                          | 5.00                                                                                                                                                       |
| ALS(1step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.62                                                                                                                                                                  | 6.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -6.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.10                                                                                                             | 0.67                                                                                                                                                                                                                                                                                                              | 4.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -6.03                                                                                                                                                                                                                                                                                                                                                        | 9.11                                                                                                                                                                    | 0.44                                                                                                                                                                                                                             | 3.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -5.74                                                                                                                                                         | 7.82                                                                                                                                                       |
| ALS(2step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.90                                                                                                                                                                  | 7.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -10.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.20                                                                                                             | 1.55                                                                                                                                                                                                                                                                                                              | 5.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -10.43                                                                                                                                                                                                                                                                                                                                                       | 13.14                                                                                                                                                                   | 2.04                                                                                                                                                                                                                             | 4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -10.81                                                                                                                                                        | 12.34                                                                                                                                                      |
| ALS(CUE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.11                                                                                                                                                                  | 12.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -9.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.91                                                                                                             | 0.00                                                                                                                                                                                                                                                                                                              | 8.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -6.73                                                                                                                                                                                                                                                                                                                                                        | 13.39                                                                                                                                                                   | -1.29                                                                                                                                                                                                                            | 5.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -5.27                                                                                                                                                         | 9.33                                                                                                                                                       |
| NT(1step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.94                                                                                                                                                                 | 26.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.51                                                                                                             | 30.58                                                                                                                                                                                                                                                                                                             | 31.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.63                                                                                                                                                                                                                                                                                                                                                         | 9.17                                                                                                                                                                    | 33.75                                                                                                                                                                                                                            | 34.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.39                                                                                                                                                          | 8.10                                                                                                                                                       |
| NT(2step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.08                                                                                                                                                                 | 30.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.92                                                                                                             | 31.21                                                                                                                                                                                                                                                                                                             | 32.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.50                                                                                                                                                                                                                                                                                                                                                         | 10.48                                                                                                                                                                   | 34.83                                                                                                                                                                                                                            | 35.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.21                                                                                                                                                          | 8.62                                                                                                                                                       |
| NTCUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.45                                                                                                                                                                 | 39.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.90                                                                                                             | 27.29                                                                                                                                                                                                                                                                                                             | 3494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.80                                                                                                                                                                                                                                                                                                                                                         | 13.07                                                                                                                                                                   | 28.77                                                                                                                                                                                                                            | 32.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 23                                                                                                                                                          | 10.48                                                                                                                                                      |
| 111(001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.10                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T = 10                                                                                                            | $\alpha = 0.8$                                                                                                                                                                                                                                                                                                    | $\beta = 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f. o.AB                                                                                                                                                                                                                                                                                                                                                      | (1)                                                                                                                                                                     | 20                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.20                                                                                                                                                          | 10.10                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 = 10                                                                                                            | , 7 = 0.0                                                                                                                                                                                                                                                                                                         | p = 1.0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{J_t}{200}$                                                                                                                                                                                                                                                                                                                                            | (1)                                                                                                                                                                     | 1                                                                                                                                                                                                                                | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500                                                                                                                                                           |                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       | <i>I</i> <b>v</b> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                   | $I\mathbf{v} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                       |                                                                                                                                                                                                                                  | <i>I</i> <b>v</b> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | : 500                                                                                                                                                         | 2                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                 |                                                                                                                                                                                                                                                                                                                   | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                       | ^                                                                                                                                                                                                                                | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               | 3                                                                                                                                                          |
| Estimators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bias                                                                                                                                                                  | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RMSE                                                                                                              | Bias                                                                                                                                                                                                                                                                                                              | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bias                                                                                                                                                                                                                                                                                                                                                         | RMSE                                                                                                                                                                    | Bias                                                                                                                                                                                                                             | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bias                                                                                                                                                          | RMSE                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(\times 100)$                                                                                                                                                        | $(\times 100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(\times 100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(\times 100)$                                                                                                    | $(\times 100)$                                                                                                                                                                                                                                                                                                    | $(\times 100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(\times 100)$                                                                                                                                                                                                                                                                                                                                               | $(\times 100)$                                                                                                                                                          | $(\times 100)$                                                                                                                                                                                                                   | $(\times 100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(\times 100)$                                                                                                                                                | $(\times 100)$                                                                                                                                             |
| ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.04                                                                                                                                                                 | 1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.03                                                                                                              | -0.02                                                                                                                                                                                                                                                                                                             | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02                                                                                                                                                                                                                                                                                                                                                         | 2.17                                                                                                                                                                    | -0.02                                                                                                                                                                                                                            | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03                                                                                                                                                          | 1.67                                                                                                                                                       |
| ALS(1step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.10                                                                                                                                                                 | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.59                                                                                                              | -0.06                                                                                                                                                                                                                                                                                                             | 1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.32                                                                                                                                                                                                                                                                                                                                                         | 3.37                                                                                                                                                                    | -0.09                                                                                                                                                                                                                            | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.32                                                                                                                                                          | 2.82                                                                                                                                                       |
| ALS(2step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.21                                                                                                                                                                  | 2.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.70                                                                                                              | 0.63                                                                                                                                                                                                                                                                                                              | 1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.68                                                                                                                                                                                                                                                                                                                                                        | 354                                                                                                                                                                     | 0.76                                                                                                                                                                                                                             | 1 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.76                                                                                                                                                         | 2.71                                                                                                                                                       |
| ALS(CUE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.58                                                                                                                                                                  | 3 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 84                                                                                                              | 0.69                                                                                                                                                                                                                                                                                                              | 1 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.66                                                                                                                                                                                                                                                                                                                                                        | 4 08                                                                                                                                                                    | 0.59                                                                                                                                                                                                                             | 1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.49                                                                                                                                                         | 2.83                                                                                                                                                       |
| NT(1step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.26                                                                                                                                                                 | 15 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.66                                                                                                              | 17.35                                                                                                                                                                                                                                                                                                             | 17.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 37                                                                                                                                                                                                                                                                                                                                                         | 4.63                                                                                                                                                                    | 10.17                                                                                                                                                                                                                            | 10.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 36                                                                                                                                                          | 4.12                                                                                                                                                       |
| NT(2stop)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.20                                                                                                                                                                 | 17.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 29                                                                                                              | 14.99                                                                                                                                                                                                                                                                                                             | 16.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.01                                                                                                                                                                                                                                                                                                                                                         | 5.04                                                                                                                                                                    | 17.24                                                                                                                                                                                                                            | 17.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.04                                                                                                                                                          | 4.12                                                                                                                                                       |
| NT(2step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.70                                                                                                                                                                  | 17.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.95                                                                                                             | 14.50                                                                                                                                                                                                                                                                                                             | 17.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.01                                                                                                                                                                                                                                                                                                                                                         | 5.04                                                                                                                                                                    | 11.04                                                                                                                                                                                                                            | 17.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.94                                                                                                                                                          | 4.02                                                                                                                                                       |
| NT(CUE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.07                                                                                                                                                                  | 20.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.35                                                                                                             | 12.56                                                                                                                                                                                                                                                                                                             | 17.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.78                                                                                                                                                                                                                                                                                                                                                         | 5.55                                                                                                                                                                    | 15.27                                                                                                                                                                                                                            | 16.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.86                                                                                                                                                          | 4.30                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 10                                                                                                              | 0.4                                                                                                                                                                                                                                                                                                               | 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e ,                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                       |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                               |                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T = 10                                                                                                            | $\gamma = 0.4$                                                                                                                                                                                                                                                                                                    | $\beta = 1.0,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $f_t \sim tre$                                                                                                                                                                                                                                                                                                                                               | nd                                                                                                                                                                      |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                               |                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       | N =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T = 10                                                                                                            | $\gamma = 0.4$                                                                                                                                                                                                                                                                                                    | $\beta = 1.0, N = N = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $f_t \sim tre$<br>= 300                                                                                                                                                                                                                                                                                                                                      | nd                                                                                                                                                                      |                                                                                                                                                                                                                                  | N =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500                                                                                                                                                           |                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       | $N = \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{T=10}{3}$                                                                                                  | $\gamma = 0.4$                                                                                                                                                                                                                                                                                                    | $\beta = 1.0,$<br>$N = \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $f_t \sim tre$<br>300                                                                                                                                                                                                                                                                                                                                        | nd<br>3                                                                                                                                                                 | ,                                                                                                                                                                                                                                | $\frac{N}{\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | : 500<br>/                                                                                                                                                    | 3                                                                                                                                                          |
| Estimators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bias                                                                                                                                                                  | $N = \frac{\gamma}{\text{RMSE}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 150<br>/-<br>Bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{T = 10}{\frac{3}{\text{RMSE}}}$                                                                            | $\gamma = 0.4$<br>Bias                                                                                                                                                                                                                                                                                            | $\beta = 1.0,$<br>$N = \frac{\gamma}{\text{RMSE}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $f_t \sim tre$<br>300<br>Bias                                                                                                                                                                                                                                                                                                                                | nd<br>3<br>RMSE                                                                                                                                                         | Bias                                                                                                                                                                                                                             | $N = \frac{\gamma}{\text{RMSE}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500                                                                                                                                                           | 3<br>RMSE                                                                                                                                                  |
| Estimators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bias<br>(×100)                                                                                                                                                        | $\frac{N}{\gamma}$ RMSE (×100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 150<br>Bias<br>(×100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $T = 10$ $\overline{\text{RMSE}}$ $(\times 100)$                                                                  | $\gamma = 0.4$<br>Bias<br>$(\times 100)$                                                                                                                                                                                                                                                                          | $\frac{\beta = 1.0,}{N = \gamma}$ $\frac{\gamma}{(\times 100)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $f_t \sim tre$ $300$ Bias (×100)                                                                                                                                                                                                                                                                                                                             | $\frac{nd}{3}$ RMSE (×100)                                                                                                                                              | Bias<br>(×100)                                                                                                                                                                                                                   | $\frac{N}{\gamma}$ RMSE (×100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 500<br>Bias<br>(×100)                                                                                                                                         | $\frac{1}{3}$<br>(×100)                                                                                                                                    |
| Estimators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bias<br>(×100)<br>0.09                                                                                                                                                | $\frac{N}{\gamma} = \frac{\gamma}{(\times 100)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 150<br>Bias<br>(×100)<br>-0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $T = 10$ $\overline{\text{RMSE}}$ $(\times 100)$ $6.01$                                                           | $\gamma = 0.4$<br>Bias<br>$(\times 100)$<br>-0.12                                                                                                                                                                                                                                                                 | $\frac{\beta \beta = 1.0,}{N = \gamma}$ $\frac{\gamma}{(\times 100)}$ $2.21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $f_t \sim tre$ $= 300$ Bias (×100) 0.00                                                                                                                                                                                                                                                                                                                      | $\frac{nd}{\frac{3}{\text{RMSE}}}$ $(\times 100)$ $4.62$                                                                                                                | Bias<br>(×100)<br>0.01                                                                                                                                                                                                           | $\frac{N}{\frac{\gamma}{\text{RMSE}}}$ $\frac{(\times 100)}{1.76}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500<br>Bias<br>(×100)<br>0.06                                                                                                                                 | $\frac{\text{RMSE}}{(\times 100)}$                                                                                                                         |
| Estimators<br>ML<br>ALS(1step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bias<br>(×100)<br>0.09<br>15.28                                                                                                                                       | $\frac{N}{\text{RMSE}}$ $\frac{(\times 100)}{3.21}$ $\frac{3.21}{29.71}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 150<br>Bias<br>(×100)<br>-0.10<br>-22.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T = 10$ $\overline{\text{RMSE}}$ $(\times 100)$ $\overline{6.01}$ $36.05$                                        | $\gamma = 0.4$<br>Bias<br>(×100)<br>-0.12<br>15.80                                                                                                                                                                                                                                                                | $\frac{\beta \beta = 1.0,}{N = \frac{\gamma}{\text{RMSE}}}$ $\frac{\gamma}{(\times 100)}$ $\frac{2.21}{31.79}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $f_t \sim tre$ $300$ Bias (×100) 0.00 -22.74                                                                                                                                                                                                                                                                                                                 | $\frac{nd}{8}$ $\frac{RMSE}{(\times 100)}$ $\frac{4.62}{37.69}$                                                                                                         | Bias<br>(×100)<br>0.01<br>16.93                                                                                                                                                                                                  | $\frac{N}{\text{RMSE}}$ $\frac{(\times 100)}{1.76}$ $33.49$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500<br>Bias<br>(×100)<br>0.06<br>-23.36                                                                                                                       | $\frac{3}{(\times 100)}$<br>3.35<br>39.17                                                                                                                  |
| Estimators<br>ML<br>ALS(1step)<br>ALS(2step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bias<br>(×100)<br>0.09<br>15.28<br>14 48                                                                                                                              | $\frac{N}{\gamma} = \frac{\gamma}{\text{RMSE}} \times 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 150<br>Bias<br>(×100)<br>-0.10<br>-22.34<br>-23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T = 10 RMSE (×100) 6.01 36.05 39.68                                                                               | $\gamma = 0.4$<br>Bias<br>(×100)<br>-0.12<br>15.80<br>16.55                                                                                                                                                                                                                                                       | $\beta = 1.0,$<br>$N = \frac{\gamma}{N}$<br>RMSE<br>(×100)<br>2.21<br>31.79<br>32.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $f_t \sim tre$<br>300<br>Bias<br>(×100)<br>0.00<br>-22.74<br>-26.34                                                                                                                                                                                                                                                                                          | $\frac{nd}{8}$ RMSE (×100) 4.62 37.69 41.32                                                                                                                             | Bias<br>(×100)<br>0.01<br>16.93<br>19.12                                                                                                                                                                                         | $\frac{N}{\gamma} = \frac{\gamma}{\text{RMSE}} \times 100$ 1.76 33.49 33.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500<br>Bias<br>(×100)<br>0.06<br>-23.36<br>-28.93                                                                                                             | $\frac{1}{3}$ RMSE (×100) 3.35 39.17 43.57                                                                                                                 |
| Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>ALS(CUE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bias<br>(×100)<br>0.09<br>15.28<br>14.48<br>6.18                                                                                                                      | $\frac{N}{\text{RMSE}} = \frac{\gamma}{(\times 100)}$ 3.21 29.71 30.29 31.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 150<br>Bias<br>(×100)<br>-0.10<br>-22.34<br>-23.94<br>-13.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T = 10 RMSE (×100) 6.01 36.05 39.68 41.53                                                                         | $\gamma = 0.4$<br>Bias<br>$(\times 100)$<br>-0.12<br>15.80<br>16.55<br>2.84                                                                                                                                                                                                                                       | $\beta = 1.0,$<br>$N = \frac{N}{N} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c} f_t \sim tree \\ \hline 300 \\ \hline \\ Bias \\ (\times 100) \\ 0.00 \\ -22.74 \\ -26.34 \\ -10.09 \\ \end{array} $                                                                                                                                                                                                                      | nd<br>RMSE<br>(×100)<br>4.62<br>37.69<br>41.32<br>40.13                                                                                                                 | Bias<br>(×100)<br>0.01<br>16.93<br>19.12<br>4 31                                                                                                                                                                                 | $\frac{N}{\text{RMSE}} = \frac{\gamma}{(\times 100)}$ 1.76<br>33.49<br>33.90<br>33.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500<br>Bias<br>(×100)<br>0.06<br>-23.36<br>-28.93<br>-11.11                                                                                                   | RMSE<br>(×100)<br>3.35<br>39.17<br>43.57<br>40.90                                                                                                          |
| Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>ALS(CUE)<br>NT(1step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bias<br>(×100)<br>0.09<br>15.28<br>14.48<br>6.18<br>53.85                                                                                                             | $N = \frac{\gamma}{(\times 100)}$ $\frac{1}{3.21}$ $\frac{3.21}{30.29}$ $\frac{31.25}{54.45}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 150<br>Bias<br>(×100)<br>-0.10<br>-22.34<br>-23.94<br>-13.34<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T = 10 RMSE (×100) 6.01 36.05 39.68 41.53 11.72                                                                   | $\gamma = 0.4$<br>Bias<br>$(\times 100)$<br>-0.12<br>15.80<br>16.55<br>2.84<br>59.56                                                                                                                                                                                                                              | $\beta = 1.0, \beta = 1.0, N = \frac{N}{N} = \frac{\gamma}{(\times 100)}$<br>$\frac{2.21}{31.79}$<br>32.08<br>32.14<br>50.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{c} f_t \sim tre \\ \hline 300 \\ \hline \\ Bias \\ (\times 100) \\ 0.00 \\ -22.74 \\ -26.34 \\ -10.09 \\ 0.89 \\ \end{array} $                                                                                                                                                                                                               | $\begin{array}{c} nd \\ \hline \\ $                                                     | Bias<br>(×100)<br>0.01<br>16.93<br>19.12<br>4.31<br>59.00                                                                                                                                                                        | $\frac{N}{\gamma} = \frac{\gamma}{(\times 100)}$ $\frac{1.76}{33.49}$ $\frac{33.90}{33.29}$ $\frac{33.29}{59.00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500<br>Bias<br>(×100)<br>0.06<br>-23.36<br>-28.93<br>-11.11<br>1.21                                                                                           | $\begin{array}{c} & \\ \hline & \\ RMSE \\ (\times 100) \\ \hline & 3.35 \\ 39.17 \\ 43.57 \\ 40.90 \\ 6.59 \end{array}$                                   |
| Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>ALS(CUE)<br>NT(1step)<br>NT(1step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bias<br>(×100)<br>0.09<br>15.28<br>14.48<br>6.18<br>53.85<br>52.07                                                                                                    | $N = \frac{\gamma}{(\times 100)}$ $RMSE (\times 100)$ $3.21$ $29.71$ $30.29$ $31.25$ $54.45$ $54.45$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 150<br>Bias<br>(×100)<br>-0.10<br>-22.34<br>-23.94<br>-13.34<br>-0.06<br>1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T = 10 RMSE (×100) 6.01 36.05 39.68 41.53 11.72 18.25                                                             | $\begin{array}{c} , \gamma = 0.4 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                        | $\frac{\beta = 1.0,}{N = 0}$ $\frac{\gamma}{(\times 100)}$ $\frac{\gamma}{2.21}$ $\frac{\gamma}{31.79}$ $\frac{\gamma}{32.08}$ $\frac{\gamma}{32.14}$ $\frac{\gamma}{59.58}$ $\frac{\gamma}{50.51}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{c} f_t \sim tre \\ \hline 300 \\ \hline \\ Bias \\ (\times 100) \\ \hline 0.00 \\ -22.74 \\ -26.34 \\ -10.09 \\ -0.89 \\ 0.16 \end{array} $                                                                                                                                                                                                  | $\begin{array}{c} nd \\ \hline \\ $                                                     | Bias<br>(×100)<br>0.01<br>16.93<br>19.12<br>4.31<br>59.90<br>59.90                                                                                                                                                               | $\frac{N}{\gamma} = \frac{\gamma}{(\times 100)}$ RMSE<br>(×100)<br>1.76<br>33.49<br>33.90<br>33.29<br>59.90<br>59.90<br>50.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 500<br>Bias<br>(×100)<br>0.06<br>-23.36<br>-28.93<br>-11.11<br>-1.21<br>0.40                                                                                  | $\begin{array}{c} \hline & \\ \hline RMSE \\ (\times 100) \\ \hline 3.35 \\ 39.17 \\ 43.57 \\ 40.90 \\ 6.59 \\ 7.74 \end{array}$                           |
| Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>ALS(CUE)<br>NT(1step)<br>NT(2step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bias<br>(×100)<br>0.09<br>15.28<br>14.48<br>6.18<br>53.85<br>53.07<br>42.01                                                                                           | $N = \frac{\gamma}{(\times 100)}$ RMSE<br>(×100)<br>3.21<br>29.71<br>30.29<br>31.25<br>54.45<br>54.45<br>54.25<br>54.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 150<br>Bias<br>(×100)<br>-0.10<br>-22.34<br>-23.94<br>-13.34<br>-0.06<br>1.05<br>2.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T = 10 RMSE (×100) 6.01 36.05 39.68 41.53 11.72 18.25 26.92                                                       | $\begin{array}{c} \gamma = 0.4 \\ \hline \\ Bias \\ (\times 100) \\ \hline \\ -0.12 \\ 15.80 \\ 16.55 \\ 2.84 \\ 59.56 \\ 59.49 \\ 59.49 \\ 59.20 \end{array}$                                                                                                                                                    | $\frac{\beta = 1.0,}{N = 100}$ RMSE<br>(×100)<br>2.21<br>31.79<br>32.08<br>32.14<br>59.58<br>59.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} f_t \sim tre \\ \hline 300 \\ \hline \\ Bias \\ (\times 100) \\ 0.00 \\ -22.74 \\ -26.34 \\ -10.09 \\ -0.89 \\ -0.16 \\ \hline 7.99 \\ \end{array}$                                                                                                                                                                                        | nd<br>RMSE<br>(×100)<br>4.62<br>37.69<br>41.32<br>40.13<br>8.76<br>10.97<br>15.99                                                                                       | Bias<br>(×100)<br>0.01<br>16.93<br>19.12<br>4.31<br>59.90<br>59.90<br>59.90                                                                                                                                                      | $\frac{N}{\gamma} = \frac{\gamma}{(\times 100)}$ RMSE<br>(×100)<br>1.76<br>33.49<br>33.90<br>33.29<br>59.90<br>59.90<br>59.90<br>57.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500<br>Bias<br>(×100)<br>0.06<br>-23.36<br>-28.93<br>-11.11<br>-1.21<br>-0.40<br>0.21                                                                         | RMSE<br>(×100)<br>3.35<br>39.17<br>43.57<br>40.90<br>6.59<br>7.74                                                                                          |
| Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>ALS(CUE)<br>NT(1step)<br>NT(2step)<br>NT(CUE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} & \\ & \\ & \\ Bias \\ (\times 100) \\ 0.09 \\ 15.28 \\ 14.48 \\ 6.18 \\ 53.85 \\ 53.07 \\ 43.81 \end{array}$                                       | $N = \frac{\gamma}{RMSE} \\ (\times 100) \\ 3.21 \\ 29.71 \\ 30.29 \\ 31.25 \\ 54.45 \\ 54.25 \\ 52.07 \\ N = 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 150 $= 150$ $= 150$ $= 100$ $= -0.10$ $= -23.94$ $= -13.34$ $= -0.06$ $= 1.05$ $= 2.39$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T = 10 RMSE (×100) 6.01 36.05 39.68 41.53 11.72 18.25 26.83                                                       | $\begin{array}{c} \gamma = 0.4 \\ \\ Bias \\ (\times 100) \\ \hline -0.12 \\ 15.80 \\ 16.55 \\ 2.84 \\ 59.56 \\ 59.49 \\ 53.89 \\ \hline 53.89 \end{array}$                                                                                                                                                       | $\begin{array}{c} \beta = 1.0, \\ N = \\ \hline N = \\ \hline N \\ \hline RMSE \\ (\times 100) \\ \hline 2.21 \\ 31.79 \\ 32.08 \\ 32.14 \\ 59.58 \\ 59.51 \\ 55.78 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} f_t \sim tree \\ \hline 300 \\ \hline \\ Bias \\ (\times 100) \\ 0.00 \\ -22.74 \\ -26.34 \\ -10.09 \\ -0.89 \\ -0.16 \\ 7.22 \end{array}$                                                                                                                                                                                                 | $\begin{array}{c} nd \\ \hline \\ \hline \\ RMSE \\ (\times 100) \\ \hline \\ 4.62 \\ 37.69 \\ 41.32 \\ 40.13 \\ 8.76 \\ 10.97 \\ 15.00 \\ \hline \end{array}$          | $\begin{array}{c} \text{Bias} \\ (\times 100) \\ 0.01 \\ 16.93 \\ 19.12 \\ 4.31 \\ 59.90 \\ 59.90 \\ 56.43 \end{array}$                                                                                                          | $N = \frac{\gamma}{(\times 100)}$ $\frac{1.76}{33.49}$ $33.90$ $33.29$ $59.90$ $59.90$ $57.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 500<br>Bias<br>(×100)<br>0.06<br>-23.36<br>-28.93<br>-11.11<br>-1.21<br>-0.40<br>8.31                                                                         | $\begin{array}{c} & \\ \hline \text{RMSE} \\ (\times 100) \\ \hline 3.35 \\ 39.17 \\ 43.57 \\ 40.90 \\ 6.59 \\ 7.74 \\ 11.77 \end{array}$                  |
| Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>NT(1step)<br>NT(2step)<br>NT(CUE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                                                                                                    | $N = \frac{\gamma}{RMSE} \\ (\times 100) \\ 3.21 \\ 29.71 \\ 30.29 \\ 31.25 \\ 54.45 \\ 54.25 \\ 52.07 \\ N = 10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 150 $= 150$ $= 150$ $= 100$ $= -0.10$ $= -22.34$ $= -23.94$ $= -13.34$ $= -0.06$ $= 1.05$ $= 2.39$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T = 10 RMSE (×100) 6.01 36.05 39.68 41.53 11.72 18.25 26.83 $T = 10$                                              | $\begin{array}{c} , \gamma = 0.4 \\ \\ \hline \\ Bias \\ (\times 100) \\ -0.12 \\ 15.80 \\ 16.55 \\ 2.84 \\ 59.56 \\ 59.49 \\ 53.89 \\ , \gamma = 0.8 \end{array}$                                                                                                                                                | $\begin{array}{c} \beta = 1.0, \\ N = \\ \hline N = \\ \hline N = \\ \hline N \\ \hline RMSE \\ (\times 100) \\ \hline 2.21 \\ 31.79 \\ 32.08 \\ 32.14 \\ 59.58 \\ 59.51 \\ 55.78 \\ \beta \\ \beta = 1.0, \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} f_t \sim tree \\ \hline f_t \sim tree \\ \hline 300 \\ \hline \\ Bias \\ (\times 100) \\ \hline 0.00 \\ -22.74 \\ -26.34 \\ -10.09 \\ -0.89 \\ -0.16 \\ \hline 7.22 \\ f_t \sim tree \\ \hline \end{array}$                                                                                                                                | $\begin{array}{c} nd \\ \hline \\ \hline \\ \hline \\ RMSE \\ (\times 100) \\ \hline \\ 4.62 \\ 37.69 \\ 41.32 \\ 40.13 \\ 8.76 \\ 10.97 \\ 15.00 \\ nd \\ \end{array}$ | $\begin{array}{c} \text{Bias} \\ (\times 100) \\ 0.01 \\ 16.93 \\ 19.12 \\ 4.31 \\ 59.90 \\ 59.90 \\ 56.43 \end{array}$                                                                                                          | $\frac{N}{(\times 100)} = \frac{\gamma}{1.76}$ $\frac{33.49}{33.90}$ $\frac{33.29}{59.90}$ $\frac{59.90}{57.15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500<br>Bias<br>(×100)<br>0.06<br>-23.36<br>-28.93<br>-11.11<br>-1.21<br>-0.40<br>8.31                                                                         | $\begin{array}{c} & \\ \hline \text{RMSE} \\ (\times 100) \\ \hline 3.35 \\ 39.17 \\ 43.57 \\ 40.90 \\ 6.59 \\ 7.74 \\ 11.77 \end{array}$                  |
| Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>ALS(CUE)<br>NT(1step)<br>NT(2step)<br>NT(CUE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bias<br>(×100)<br>0.09<br>15.28<br>14.48<br>6.18<br>53.85<br>53.07<br>43.81                                                                                           | $\frac{N}{\text{RMSE}} = \frac{\gamma}{\text{RMSE}} \times \frac{\gamma}{(\times 100)} \times \frac{3.21}{30.29} \times \frac{31.25}{54.45} \times \frac{54.25}{54.25} \times \frac{52.07}{52.07} \times \frac{\gamma}{N} = \frac{\gamma}{N} = \frac{\gamma}{N} \times \frac{\gamma}{N} = \frac{\gamma}{N} \times \frac{\gamma}{N} \times \frac{\gamma}{N} = \frac{\gamma}{N} \times \frac{\gamma}{$ | = 150 $= 150$ $= 150$ $= 100$ $= -0.10$ $= -22.34$ $= -23.94$ $= -13.34$ $= -0.06$ $= 1.05$ $= 2.39$ $= 150$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T = 10 RMSE (×100) 6.01 36.05 39.68 41.53 11.72 18.25 26.83 T = 10                                                | $\begin{array}{c} \gamma = 0.4 \\ \hline \\ Bias \\ (\times 100) \\ -0.12 \\ 15.80 \\ 16.55 \\ 2.84 \\ 59.56 \\ 59.49 \\ 53.89 \\ , \gamma = 0.8 \end{array}$                                                                                                                                                     | $\frac{\beta = 1.0,}{N = 100}$ $\frac{N = 100}{N = 100}$ $\frac{\gamma}{2.21}$ $\frac{31.79}{32.08}$ $\frac{32.14}{32.14}$ $\frac{32.14}{59.58}$ $\frac{32.14}{59.51}$ $\frac{55.78}{55.78}$ $\frac{\beta = 1.0,}{N = 100}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} f_t \sim tree \\ \hline $300$ \\ \hline $Bias$ \\ (\times 100) \\ 0.00 \\ -22.74 \\ -26.34 \\ -10.09 \\ -0.89 \\ -0.16 \\ 7.22 \\ f_t \sim tree \\ \hline $300$ \\ \hline \end{array}$                                                                                                                                                     | nd<br>RMSE<br>(×100)<br>4.62<br>37.69<br>41.32<br>40.13<br>8.76<br>10.97<br>15.00<br>nd                                                                                 | $\begin{array}{c} Bias \\ (\times 100) \\ 0.01 \\ 16.93 \\ 19.12 \\ 4.31 \\ 59.90 \\ 59.90 \\ 56.43 \end{array}$                                                                                                                 | $\frac{N}{\text{RMSE}} = \frac{\gamma}{(\times 100)}$ 1.76<br>33.49<br>33.90<br>33.29<br>59.90<br>59.90<br>57.15<br>N = N = N = N = N = N = N = N = N = N =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500<br>Bias<br>(×100)<br>0.06<br>-23.36<br>-28.93<br>-11.11<br>-1.21<br>-0.40<br>8.31<br>5500                                                                 | RMSE<br>(×100)<br>3.35<br>39.17<br>43.57<br>40.90<br>6.59<br>7.74<br>11.77                                                                                 |
| Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>ALS(CUE)<br>NT(1step)<br>NT(2step)<br>NT(CUE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bias<br>(×100)<br>0.09<br>15.28<br>14.48<br>6.18<br>53.85<br>53.07<br>43.81                                                                                           | $\frac{N}{(\times 100)} = \frac{\gamma}{3.21} = \frac{\gamma}{30.29} = \frac{31.25}{54.45} = \frac{54.45}{52.07} = \frac{\gamma}{\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 150 $= 150$ $= 150$ $= -0.10$ $= -22.34$ $= -23.94$ $= -13.34$ $= -0.06$ $= 1.05$ $= 2.39$ $= 150$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T = 10 RMSE (×100) 6.01 36.05 39.68 41.53 11.72 18.25 26.83 T = 10                                                | $\begin{array}{c} \gamma = 0.4 \\ \\ \text{Bias} \\ (\times 100) \\ -0.12 \\ 15.80 \\ 16.55 \\ 2.84 \\ 59.56 \\ 59.49 \\ 53.89 \\ , \gamma = 0.8 \end{array}$                                                                                                                                                     | $\frac{\beta = 1.0,}{N = 100}$ $\frac{N = 100}{N = 100}$ $\frac{\gamma}{2.21}$ $\frac{31.79}{32.08}$ $\frac{32.14}{32.14}$ $\frac{59.58}{59.51}$ $\frac{55.78}{55.78}$ $\frac{N = 1.0}{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} f_t \sim tree \\ \hline s 300 \\ \hline \\ Bias \\ (\times 100) \\ 0.00 \\ -22.74 \\ -26.34 \\ -10.09 \\ -0.89 \\ -0.16 \\ 7.22 \\ f_t \sim tree \\ \hline \\ s 300 \\ \hline \end{array}$                                                                                                                                                 | nd<br>RMSE<br>(×100)<br>4.62<br>37.69<br>41.32<br>40.13<br>8.76<br>10.97<br>15.00<br>nd<br>3                                                                            | $\begin{array}{c} Bias \\ (\times 100) \\ 0.01 \\ 16.93 \\ 19.12 \\ 4.31 \\ 59.90 \\ 59.90 \\ 56.43 \end{array}$                                                                                                                 | $\frac{N}{(\times 100)} = \frac{\gamma}{1.76}$ $\frac{33.49}{33.90}$ $\frac{33.29}{59.90}$ $\frac{59.90}{57.15}$ $\frac{N}{\gamma} = \frac{\gamma}{\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500<br>Bias<br>(×100)<br>0.06<br>-23.36<br>-28.93<br>-11.11<br>-1.21<br>-0.40<br>8.31<br>500                                                                  | RMSE<br>(×100)<br>3.35<br>39.17<br>43.57<br>40.90<br>6.59<br>7.74<br>11.77                                                                                 |
| Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>ALS(CUE)<br>NT(1step)<br>NT(2step)<br>NT(CUE)<br>Estimators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bias<br>(×100)<br>0.09<br>15.28<br>14.48<br>6.18<br>53.85<br>53.07<br>43.81<br>Bias                                                                                   | $N = \frac{\gamma}{RMSE} \\ (\times 100) \\ 3.21 \\ 29.71 \\ 30.29 \\ 31.25 \\ 54.45 \\ 54.25 \\ 52.07 \\ \hline N = \frac{\gamma}{RMSE}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 150 $= 150$ $= 150$ $= 0.10$ $= -22.34$ $= -23.94$ $= -13.34$ $= -0.06$ $= 1.05$ $= 2.39$ $= 150$ $= 150$ $= 6$ Bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T = 10 RMSE (×100) 6.01 36.05 39.68 41.53 11.72 18.25 26.83 $T = 10$ RMSE                                         | $\begin{array}{c} ,\gamma = 0.4 \\ \\ Bias \\ (\times 100) \\ -0.12 \\ 15.80 \\ 16.55 \\ 2.84 \\ 59.56 \\ 59.49 \\ 53.89 \\ ,\gamma = 0.8 \\ \\ \end{array}$ Bias                                                                                                                                                 | $\frac{\beta = 1.0,}{N = 10}$ $\frac{N = 100}{N = 100}$ $\frac{\gamma}{RMSE}$ $\frac{\gamma}{(\times 100)}$ $\frac{2.21}{31.79}$ $\frac{32.08}{32.14}$ $\frac{32.14}{59.58}$ $\frac{59.51}{55.78}$ $\frac{\beta = 1.0,}{N = 100}$ $\frac{\gamma}{RMSE}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} f_t \sim tree \\ \hline s 300 \\ \hline \\ Bias \\ (\times 100) \\ 0.00 \\ -22.74 \\ -26.34 \\ -10.09 \\ -0.89 \\ -0.16 \\ 7.22 \\ f_t \sim tree \\ \hline \\ \hline \\ s 300 \\ \hline \\ Bias \end{array}$                                                                                                                               | nd<br>RMSE<br>(×100)<br>4.62<br>37.69<br>41.32<br>40.13<br>8.76<br>10.97<br>15.00<br>nd<br>8<br>RMSE                                                                    | Bias<br>(×100)<br>0.01<br>16.93<br>19.12<br>4.31<br>59.90<br>59.90<br>56.43<br>Bias                                                                                                                                              | $\frac{N}{RMSE} = \frac{\gamma}{RMSE} \times \frac{100}{1.76} \times \frac{100}{33.49} \times \frac{33.90}{33.29} \times \frac{33.29}{59.90} \times \frac{59.90}{57.15} \times \frac{N}{\gamma} = \frac{\gamma}{RMSE}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500<br>Bias<br>(×100)<br>0.06<br>-23.36<br>-28.93<br>-11.11<br>-1.21<br>-0.40<br>8.31<br>500<br>Bias                                                          | RMSE<br>(×100)<br>3.35<br>39.17<br>43.57<br>40.90<br>6.59<br>7.74<br>11.77<br>8<br>RMSE                                                                    |
| Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>NT(1step)<br>NT(1step)<br>NT(CUE)<br>Estimators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bias<br>(×100)<br>0.09<br>15.28<br>14.48<br>6.18<br>53.85<br>53.07<br>43.81<br>Bias<br>(×100)                                                                         | $N = \frac{\gamma}{RMSE} (\times 100)$ 3.21 29.71 30.29 31.25 54.45 54.25 52.07 $N = \frac{\gamma}{RMSE} (\times 100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $= 150$ $= 150$ $(\times 100)$ $-0.10$ $-22.34$ $-23.94$ $-13.34$ $-0.06$ $1.05$ $2.39$ $= 150$ $= 150$ $= 150$ $= 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T = 10 RMSE (×100) 6.01 36.05 39.68 41.53 11.72 18.25 26.83 $T = 10$ RMSE (×100)                                  | $\gamma = 0.4$<br>Bias<br>(×100)<br>-0.12<br>15.80<br>16.55<br>2.84<br>59.49<br>53.89<br>$\gamma = 0.8$<br>Bias<br>(×100)                                                                                                                                                                                         | $\begin{array}{c} \beta = 1.0, \\ N = \\ \hline N = \\ \hline N = \\ \hline N = \\ \hline (\times 100) \\ 2.21 \\ 31.79 \\ 32.08 \\ 32.14 \\ 59.58 \\ 59.51 \\ 55.78 \\ \beta = 1.0, \\ \hline N = \\ \hline \\ \hline N = \\ \hline \\ \hline N \\ \hline \\ RMSE \\ (\times 100) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} f_t \sim tree \\ \hline $300$ \\ \hline $Bias$ \\ (\times 100) \\ 0.00 \\ -22.74 \\ -26.34 \\ -10.09 \\ -0.89 \\ -0.16 \\ 7.22 \\ f_t \sim tree \\ \hline $300$ \\ \hline $Bias$ \\ (\times 100) \\ \end{array}$                                                                                                                           | nd<br>RMSE<br>(×100)<br>4.62<br>37.69<br>41.32<br>40.13<br>8.76<br>10.97<br>15.00<br>nd<br>RMSE<br>(×100)                                                               | Bias<br>(×100)<br>0.01<br>16.93<br>19.12<br>4.31<br>59.90<br>59.90<br>59.90<br>56.43<br>Bias<br>(×100)                                                                                                                           | $N = \frac{\gamma}{RMSE} \\ (\times 100) \\ 1.76 \\ 33.49 \\ 33.90 \\ 33.29 \\ 59.90 \\ 59.90 \\ 57.15 \\ \hline N = \frac{\gamma}{\gamma} \\ RMSE \\ (\times 100) \\ (\times 100) \\ N = \frac{\gamma}{N} \\ N$ | 500<br>Bias<br>(×100)<br>0.06<br>-23.36<br>-28.93<br>-11.11<br>-1.21<br>-0.40<br>8.31<br>500<br>Bias<br>(×100)                                                | RMSE<br>(×100)<br>3.35<br>39.17<br>43.57<br>40.90<br>6.59<br>7.74<br>11.77<br>RMSE<br>(×100)                                                               |
| Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>NT(1step)<br>NT(2step)<br>NT(CUE)<br>Estimators<br>ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bias<br>(×100)<br>0.09<br>15.28<br>14.48<br>6.18<br>53.85<br>53.07<br>43.81<br>Bias<br>(×100)<br>-0.03                                                                | $\frac{N}{(\times 100)} = \frac{\gamma}{3.21} = \frac{\gamma}{30.29} = \frac{3.21}{30.29} = \frac{31.25}{54.45} = \frac{54.45}{52.07} = \frac{\gamma}{\gamma} = \frac{\gamma}{\text{RMSE}} = \frac{\gamma}{(\times 100)} = \frac{1.69}{1.69}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 150 $= 150$ $= 150$ $= 100$ $= -0.10$ $= -22.34$ $= -23.94$ $= -13.34$ $= -0.06$ $= 1.05$ $= 2.39$ $= 150$ $= 150$ $= 100$ $= 100$ $= 100$ $= 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T = 10 RMSE (×100) 6.01 36.05 39.68 41.53 11.72 18.25 26.83 $T = 10$ RMSE (×100) 3.25                             | $\gamma = 0.4$<br>Bias<br>$(\times 100)$<br>-0.12<br>15.80<br>16.55<br>2.84<br>59.59<br>59.49<br>53.89<br>$\gamma = 0.8$<br>Bias<br>$(\times 100)$<br>-0.03                                                                                                                                                       | $\begin{array}{c} \beta = 1.0, \\ N = \\ \hline N = \\ \gamma \\ \hline RMSE \\ (\times 100) \\ 2.21 \\ 31.79 \\ 32.08 \\ 32.14 \\ 59.58 \\ 59.51 \\ 55.78 \\ \beta = 1.0, \\ \hline N = \\ \gamma \\ \hline RMSE \\ (\times 100) \\ \hline 1.18 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} f_t \sim tree \\ \hline f_t \sim tree \\ \hline 300 \\ \hline \\ Bias \\ (\times 100) \\ 0.00 \\ -22.74 \\ -26.34 \\ -10.09 \\ -0.16 \\ 7.22 \\ \hline \\ f_t \sim tree \\ \hline 300 \\ \hline \\ Bias \\ (\times 100) \\ -0.02 \end{array}$                                                                                              | nd<br>RMSE<br>(×100)<br>4.62<br>37.69<br>41.32<br>40.13<br>8.76<br>10.97<br>15.00<br>nd<br>RMSE<br>(×100)<br>2.45                                                       | Bias<br>(×100)<br>0.01<br>16.93<br>19.12<br>4.31<br>59.90<br>59.90<br>56.43<br>Bias<br>(×100)<br>0.01                                                                                                                            | $N = \frac{\gamma}{RMSE} \times 100$ (×100) 1.76 33.49 33.90 33.29 59.90 59.90 57.15 $N = \frac{\gamma}{\gamma} \times RMSE \times (\times 100) = 0.89$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 500<br>Bias<br>(×100)<br>0.06<br>-23.36<br>-28.93<br>-11.11<br>-0.40<br>8.31<br>500<br>Bias<br>(×100)<br>0.04                                                 | RMSE<br>(×100)<br>3.35<br>39.17<br>43.57<br>40.90<br>6.59<br>7.74<br>11.77<br>RMSE<br>(×100)<br>1.77                                                       |
| Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>ALS(CUE)<br>NT(1step)<br>NT(2step)<br>NT(CUE)<br>Estimators<br>ML<br>ALS(1step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bias<br>(×100)<br>0.09<br>15.28<br>14.48<br>6.18<br>53.85<br>53.07<br>43.81<br>Bias<br>(×100)<br>-0.03<br>3.77                                                        | $N = \frac{\gamma}{RMSE} \\ (\times 100) \\ 3.21 \\ 29.71 \\ 30.29 \\ 31.25 \\ 54.45 \\ 54.25 \\ 52.07 \\ \hline \\ N = \frac{\gamma}{N} \\ RMSE \\ (\times 100) \\ 1.69 \\ 7.11 \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 150 $= 150$ $= 150$ $= -100$ $= -22.34$ $= -23.94$ $= -13.34$ $= -0.06$ $= 1.05$ $= 2.39$ $= 150$ $= 150$ $= 150$ $= 150$ $= 150$ $= 100$ $= -349$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T = 10 RMSE (×100) 6.01 36.05 39.68 41.53 11.72 18.25 26.83 T = 10<br>RMSE (×100) 3.25 11.63                      | $\gamma = 0.4$<br>Bias<br>$(\times 100)$<br>-0.12<br>15.80<br>16.55<br>2.84<br>59.56<br>59.49<br>53.89<br>$\gamma = 0.8$<br>( $\times 100$ )<br>-0.03<br>2.26                                                                                                                                                     | $\frac{\beta = 1.0,}{N = 100}$ RMSE<br>(×100)<br>2.21<br>31.79<br>32.08<br>32.14<br>59.58<br>59.51<br>55.78<br>$\beta = 1.0,$<br>N = 100<br>(×100)<br>N = 100<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} f_t \sim tree \\ \hline f_t \sim tree \\ \hline 300 \\ \hline \\ Bias \\ (\times 100) \\ 0.00 \\ -22.74 \\ -26.34 \\ -10.09 \\ -0.89 \\ -0.16 \\ \hline 7.22 \\ f_t \sim tree \\ \hline 300 \\ \hline \\ \hline \\ Bias \\ (\times 100) \\ -0.02 \\ -1.04 \\ \end{array}$                                                                  | nd<br>RMSE<br>(×100)<br>4.62<br>37.69<br>41.32<br>40.13<br>8.76<br>10.97<br>15.00<br>nd<br>8<br>RMSE<br>(×100)<br>2.45<br>8.92                                          | Bias<br>(×100)<br>0.01<br>16.93<br>19.12<br>4.31<br>59.90<br>59.90<br>56.43<br>Bias<br>(×100)<br>0.01<br>1.34                                                                                                                    | $N = \frac{\gamma}{RMSE} \\ (\times 100) \\ 1.76 \\ 33.49 \\ 33.90 \\ 33.29 \\ 59.90 \\ 59.90 \\ 57.15 \\ \hline N = \frac{\gamma}{\gamma} \\ RMSE \\ (\times 100) \\ 0.89 \\ 3.97 \\ \hline N = \frac{\gamma}{3.97} \\ RMSE \\ (\times 100) \\ \hline N = \frac{\gamma}{3.97} \\ RMSE \\ (\times 100) \\ \hline N = \frac{\gamma}{3.97} \\ RMSE \\ (\times 100) \\ (\times 100$                                                                                                                                                                                                                                                                                                                                                                         | 500<br>Bias<br>(×100)<br>0.06<br>-23.36<br>-28.93<br>-11.11<br>-1.21<br>-0.40<br>8.31<br>500<br>(×100)<br>0.04<br>0.69                                        | RMSE<br>(×100)<br>3.35<br>39.17<br>43.57<br>40.90<br>6.59<br>7.74<br>11.77<br>RMSE<br>(×100)<br>1.77<br>6.82                                               |
| Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>ALS(CUE)<br>NT(1step)<br>NT(2step)<br>NT(CUE)<br>Estimators<br>ML<br>ALS(1step)<br>ALS(2step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bias<br>(×100)<br>0.09<br>15.28<br>14.48<br>6.18<br>53.85<br>53.07<br>43.81<br>Bias<br>(×100)<br>-0.03<br>3.77<br>4.25                                                | $N = \frac{\gamma}{RMSE} \\ (\times 100) \\ 3.21 \\ 29.71 \\ 30.29 \\ 31.25 \\ 54.45 \\ 54.25 \\ 52.07 \\ \hline \\ N = \frac{\gamma}{\gamma} \\ RMSE \\ (\times 100) \\ 1.69 \\ 7.11 \\ 7.03 \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 150 $= 150$ $= 150$ $= -150$ $= -22.34$ $= -23.94$ $= -13.34$ $= -0.06$ $= 1.05$ $= 2.39$ $= -50$ $= -50$ $= -50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T = 10 RMSE (×100) 6.01 36.05 39.68 41.53 11.72 18.25 26.83 T = 10<br>RMSE (×100) 3.25 11.63 11.12                | $\gamma = 0.4$<br>Bias<br>$(\times 100)$<br>-0.12<br>15.80<br>16.55<br>2.84<br>59.56<br>59.49<br>53.89<br>$\gamma = 0.8$<br>Bias<br>$(\times 100)$<br>-0.03<br>2.26<br>4.00                                                                                                                                       | $\begin{array}{c} \beta = 1.0, \\ N = \\ \hline 1.000 \\ \hline 2.21 \\ 31.79 \\ 32.08 \\ 32.14 \\ 59.58 \\ 59.51 \\ 55.78 \\ \beta = 1.0, \\ N = \\ \hline 1.18 \\ 5.44 \\ 5.72 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} f_t \sim tree \\ \hline f_t \sim tree \\ \hline 300 \\ \hline \\ Bias \\ (\times 100) \\ 0.00 \\ -22.74 \\ -26.34 \\ -10.09 \\ -0.89 \\ -0.16 \\ 7.22 \\ f_t \sim tree \\ \hline \\ \hline \\ \hline \\ f_t \sim tree \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ Bias \\ (\times 100) \\ -0.02 \\ -1.04 \\ -5.10 \\ \end{array}$ | nd<br>RMSE<br>(×100)<br>4.62<br>37.69<br>41.32<br>40.13<br>8.76<br>10.97<br>15.00<br>nd<br>RMSE<br>(×100)<br>2.45<br>8.92<br>8.33                                       | $\begin{array}{c} Bias \\ (\times 100) \\ 0.01 \\ 16.93 \\ 19.12 \\ 4.31 \\ 59.90 \\ 59.90 \\ 56.43 \\ \hline \\ Bias \\ (\times 100) \\ 0.01 \\ 1.34 \\ 3.72 \\ \end{array}$                                                    | $N = \frac{\gamma}{(\times 100)}$ RMSE<br>(×100)<br>1.76<br>33.49<br>33.90<br>33.29<br>59.90<br>59.90<br>57.15<br>$N = \frac{\gamma}{\gamma}$ RMSE<br>(×100)<br>0.89<br>3.97<br>4.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500<br>Bias<br>(×100)<br>0.06<br>-23.36<br>-28.93<br>-11.11<br>-1.21<br>-0.40<br>8.31<br>500<br>Bias<br>(×100)<br>0.04<br>0.69<br>-4.35                       | RMSE<br>(×100)<br>3.35<br>39.17<br>43.57<br>40.90<br>6.59<br>7.74<br>11.77<br>RMSE<br>(×100)<br>1.77<br>6.82<br>6.56                                       |
| Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>NT(1step)<br>NT(2step)<br>NT(CUE)<br>Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>ALS(2step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bias<br>(×100)<br>0.09<br>15.28<br>14.48<br>6.18<br>53.85<br>53.07<br>43.81<br>Bias<br>(×100)<br>-0.03<br>3.77<br>4.25<br>3.13                                        | $N = \frac{\gamma}{RMSE} \times 100$ $3.21$ $29.71$ $30.29$ $31.25$ $54.45$ $54.25$ $52.07$ $N = \frac{\gamma}{\gamma}$ $RMSE$ $(\times 100)$ $1.69$ $7.11$ $7.03$ $7.89$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 150 $= 150$ $= 150$ $= -0.10$ $= -22.34$ $= -23.94$ $= -13.34$ $= -0.06$ $= 1.05$ $= 2.39$ $= 150$ $= 150$ $= 100$ $= 100$ $= -3.49$ $= -4.75$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T = 10 RMSE (×100) 6.01 36.05 39.68 41.53 11.72 18.25 26.83 $T = 10$ RMSE (×100) 3.25 11.63 11.12 12.76           | $\gamma = 0.4$<br>Bias<br>(×100)<br>-0.12<br>15.80<br>16.55<br>2.84<br>59.49<br>53.89<br>$\gamma = 0.8$<br>Bias<br>(×100)<br>-0.03<br>2.26<br>4.00<br>2.25                                                                                                                                                        | $\begin{array}{c} \rho = 1.0, \\ N = \frac{1}{N} \\ \hline RMSE \\ (\times 100) \\ 2.21 \\ 31.79 \\ 32.08 \\ 32.14 \\ 59.58 \\ 59.51 \\ 55.78 \\ \rho = 1.0, \\ N = \frac{1}{N} \\ \hline RMSE \\ (\times 100) \\ \hline 1.18 \\ 5.44 \\ 5.72 \\ 5.35 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} f_t \sim tree \\ \hline f_t \sim tree \\ \hline 300 \\ \hline \\ Bias \\ (\times 100) \\ 0.00 \\ -22.74 \\ -26.34 \\ -10.09 \\ -0.89 \\ -0.16 \\ 7.22 \\ f_t \sim tree \\ \hline \\ \hline \\ 300 \\ \hline \\ \hline \\ Bias \\ (\times 100) \\ -0.02 \\ -1.04 \\ -5.10 \\ -3.04 \\ \end{array}$                                          | nd<br>RMSE<br>(×100)<br>4.62<br>37.69<br>41.32<br>40.13<br>8.76<br>10.97<br>15.00<br>nd<br>RMSE<br>(×100)<br>2.45<br>8.92<br>8.33<br>7.81                               | Bias<br>(×100)<br>0.01<br>16.93<br>19.12<br>4.31<br>59.90<br>59.90<br>59.90<br>56.43<br>Bias<br>(×100)<br>0.01<br>1.34<br>3.72<br>1.73                                                                                           | $N = \frac{\gamma}{(\times 100)}$ RMSE<br>(×100)<br>1.76<br>33.49<br>33.90<br>33.29<br>59.90<br>59.90<br>57.15<br>$N = \frac{\gamma}{\gamma}$ RMSE<br>(×100)<br>0.89<br>3.97<br>4.81<br>3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 500<br>Bias<br>(×100)<br>0.06<br>-23.36<br>-28.93<br>-11.11<br>-1.21<br>-0.40<br>8.31<br>500<br>$\beta$<br>Bias<br>(×100)<br>0.04<br>0.69<br>-4.35<br>-1.81   | RMSE<br>(×100)<br>3.35<br>39.17<br>43.57<br>40.90<br>6.59<br>7.74<br>11.77<br>RMSE<br>(×100)<br>1.77<br>6.82<br>6.56<br>5.36                               |
| Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>NT(1step)<br>NT(2step)<br>NT(CUE)<br>Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>ALS(2step)<br>NT(1step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bias<br>(×100)<br>0.09<br>15.28<br>14.48<br>6.18<br>53.85<br>53.07<br>43.81<br>Bias<br>(×100)<br>-0.03<br>3.77<br>4.25<br>3.13<br>10 5 1                              | $\frac{N}{(\times 100)} = \frac{\gamma}{3.21}$ $\frac{29.71}{30.29}$ $\frac{31.25}{54.25}$ $\frac{54.45}{52.07}$ $\frac{N}{(\times 100)}$ $\frac{\gamma}{1.69}$ $7.11$ $7.03$ $7.03$ $7.05$ $7.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 150 $= 150$ $= 150$ $= 100$ $= -0.10$ $= -22.34$ $= -23.94$ $= -13.34$ $= -0.06$ $= 1.05$ $= 2.39$ $= -3.49$ $= -3.49$ $= -5.68$ $= -4.75$ $= -2.29$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T = 10 RMSE (×100) 6.01 36.05 39.68 41.53 11.72 18.25 26.83 $T = 10$ RMSE (×100) 3.25 11.63 11.12 12.76 5.01      | $\gamma = 0.4$<br>Bias<br>$(\times 100)$<br>-0.12<br>15.80<br>16.55<br>2.84<br>59.56<br>59.49<br>53.89<br>$, \gamma = 0.8$<br>Bias<br>$(\times 100)$<br>-0.03<br>2.26<br>4.00<br>2.25<br>10.00                                                                                                                    | $\begin{array}{c} \beta = 1.0, \\ N = \\ \hline N = \\ \gamma \\ \hline RMSE \\ (\times 100) \\ \hline 2.21 \\ 31.79 \\ 32.08 \\ 32.14 \\ 59.58 \\ 59.51 \\ 55.78 \\ \beta = 1.0, \\ \hline N = \\ \gamma \\ \hline RMSE \\ (\times 100) \\ \hline 1.18 \\ 5.44 \\ 5.72 \\ 5.35 \\ 10.00 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} f_t \sim tree \\ \hline f_t \sim tree \\ \hline 300 \\ \hline \\ Bias \\ (\times 100) \\ 0.00 \\ -22.74 \\ -26.34 \\ -10.09 \\ -0.89 \\ -0.16 \\ 7.22 \\ f_t \sim tree \\ \hline 300 \\ \hline \\ Bias \\ (\times 100) \\ -0.02 \\ -1.04 \\ -5.10 \\ -3.04 \\ 2 \approx 0 \end{array}$                                                     | nd<br>RMSE<br>(×100)<br>4.62<br>37.69<br>41.32<br>40.13<br>8.76<br>10.97<br>15.00<br>nd<br>RMSE<br>(×100)<br>2.45<br>8.92<br>8.33<br>7.81<br>5.19                       | Bias<br>(×100)<br>0.01<br>16.93<br>19.12<br>4.31<br>59.90<br>59.90<br>56.43<br>Bias<br>(×100)<br>0.01<br>1.34<br>3.72<br>1.73<br>10.00                                                                                           | $N = \frac{\gamma}{(\times 100)}$ RMSE<br>(×100)<br>1.76<br>33.49<br>33.90<br>33.29<br>59.90<br>59.90<br>57.15<br>$N = \frac{\gamma}{(\times 100)}$ RMSE<br>(×100)<br>0.89<br>3.97<br>4.81<br>3.78<br>10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500<br>Bias<br>(×100)<br>0.06<br>-23.36<br>-28.93<br>-11.11<br>-1.21<br>-0.40<br>8.31<br>500<br>Bias<br>(×100)<br>0.04<br>0.69<br>-4.35<br>-1.81<br>4.0c      | RMSE<br>(×100)<br>3.35<br>39.17<br>43.57<br>40.90<br>6.59<br>7.74<br>11.77<br>RMSE<br>(×100)<br>1.77<br>6.82<br>6.56<br>5.36<br>4 ° 0                      |
| Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>NT(1step)<br>NT(2step)<br>NT(CUE)<br>Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>ALS(2tep)<br>NT(1step)<br>NT(1step)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                                                                                                    | $\frac{N}{(\times 100)}$ RMSE<br>(×100)<br>3.21<br>29.71<br>30.29<br>31.25<br>54.45<br>54.25<br>54.25<br>54.25<br>52.07<br>$\frac{N}{(\times 100)}$<br>RMSE<br>(×100)<br>1.69<br>7.11<br>7.03<br>7.89<br>19.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 150 $= 150$ $= 150$ $= -22.34$ $= -23.94$ $= -13.34$ $= -0.06$ $= 1.05$ $= 2.39$ $= -3.49$ $= -5.68$ $= -4.75$ $= 3.53$ $= -4.75$ $= -5.68$ $= -4.75$ $= -4.75$ $= -5.68$ $= -4.75$ $= -5.68$ $= -4.75$ $= -5.68$ $= -4.75$ $= -5.68$ $= -4.75$ $= -5.68$ $= -4.75$ $= -5.68$ $= -4.75$ $= -5.68$ $= -4.75$ $= -5.68$ $= -4.75$ $= -5.68$ $= -4.75$ $= -5.68$ $= -4.75$ $= -5.68$ $= -4.75$ $= -5.68$ $= -4.75$ $= -5.68$ $= -4.75$ $= -5.68$ $= -4.75$ $= -5.68$ $= -4.75$ $= -5.68$ $= -4.75$ $= -5.68$ $= -4.75$ $= -5.68$ $= -4.75$ $= -5.68$ $= -5.68$ $= -4.75$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ $= -5.68$ | T = 10 RMSE (×100) 6.01 36.05 39.68 41.53 11.72 18.25 26.83 $T = 10$ RMSE (×100) 3.25 11.63 11.12 12.76 5.91 5.90 | $\gamma = 0.4$<br>Bias<br>$(\times 100)$<br>-0.12<br>15.80<br>16.55<br>2.84<br>59.59<br>53.89<br>$\gamma = 0.8$<br>Bias<br>$(\times 100)$<br>-0.03<br>2.26<br>4.00<br>2.25<br>19.90                                                                                                                               | $\frac{\beta}{\beta} = 1.0, \\ N = \frac{\gamma}{N} = \frac{\gamma}{(\times 100)}$ $\frac{2.21}{31.79} = \frac{32.08}{32.14} = \frac{32.08}{59.51} = \frac{55.78}{55.78} = \frac{55.78}{5.57} = \frac{1.0}{N} = \frac{\gamma}{N} = \frac{\gamma}{N} = \frac{\gamma}{N} = \frac{\gamma}{1.18} = \frac{5.44}{5.72} = \frac{5.35}{5.35} = \frac{19.90}{19.90} = \frac{9}{100} = \frac{9}{100} = \frac{100}{100} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} f_t \sim tree \\ \hline f_t \sim tree \\ \hline 300 \\ \hline \\ Bias \\ (\times 100) \\ 0.00 \\ -22.74 \\ -26.34 \\ -10.09 \\ -0.89 \\ -0.16 \\ 7.22 \\ f_t \sim tree \\ \hline 300 \\ \hline \\ \hline \\ Bias \\ (\times 100) \\ -0.02 \\ -1.04 \\ -5.10 \\ -3.04 \\ 3.89 \\ 2.7 \end{array}$                                           | nd<br>RMSE<br>(×100)<br>4.62<br>37.69<br>41.32<br>40.13<br>8.76<br>10.97<br>15.00<br>nd<br>RMSE<br>(×100)<br>2.45<br>8.92<br>8.33<br>7.81<br>5.18<br>5.00               | $\begin{array}{c} & \text{Bias} \\ (\times 100) \\ 0.01 \\ 16.93 \\ 19.12 \\ 4.31 \\ 59.90 \\ 59.90 \\ 56.43 \\ \hline \\ & \text{Bias} \\ (\times 100) \\ 0.01 \\ 1.34 \\ 3.72 \\ 1.73 \\ 19.90 \\ 19.90 \\ \hline \end{array}$ | $N = \frac{\gamma}{(\times 100)}$ RMSE<br>(×100)<br>1.76<br>33.49<br>33.90<br>33.29<br>59.90<br>57.15<br>$N = \frac{\gamma}{\gamma}$ RMSE<br>(×100)<br>0.89<br>3.97<br>4.81<br>3.78<br>19.90<br>19.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500<br>Bias<br>(×100)<br>0.06<br>-23.36<br>-28.93<br>-11.11<br>-1.21<br>-0.40<br>8.31<br>500<br><i>(</i> ×100)<br>0.04<br>0.69<br>-4.35<br>-1.81<br>4.06      | RMSE<br>(×100)<br>3.35<br>39.17<br>43.57<br>40.90<br>6.59<br>7.74<br>11.77<br>11.77<br>RMSE<br>(×100)<br>1.77<br>6.82<br>6.56<br>5.36<br>4.80              |
| Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>NT(1step)<br>NT(2step)<br>NT(CUE)<br>Estimators<br>ML<br>ALS(1step)<br>ALS(2step)<br>ALS(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step)<br>NT(2step) | $\begin{array}{c} \\ Bias \\ (\times 100) \\ 0.09 \\ 15.28 \\ 14.48 \\ 6.18 \\ 53.85 \\ 53.07 \\ 43.81 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ | $N = \frac{\gamma}{RMSE} \frac{N}{(\times 100)}$ 3.21<br>29.71<br>30.29<br>31.25<br>54.45<br>54.25<br>52.07<br>N = \frac{\gamma}{N} RMSE<br>(×100)<br>1.69<br>7.11<br>7.03<br>7.89<br>19.64<br>18.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 150 $= 150$ $= 150$ $= -2100$ $= -22.34$ $= -23.94$ $= -3.34$ $= -0.06$ $= 1.05$ $= 2.39$ $= -3.49$ $= -3.49$ $= -5.68$ $= -4.75$ $= 3.53$ $= 2.61$ $= -2.61$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T = 10 RMSE (×100) 6.01 36.05 39.68 41.53 11.72 18.25 26.83 T = 10 RMSE (×100) 3.25 11.63 11.12 12.76 5.91 7.80   | $\begin{array}{c} \gamma = 0.4 \\ \\ \text{Bias} \\ (\times 100) \\ -0.12 \\ 15.80 \\ 16.55 \\ 2.84 \\ 59.56 \\ 59.56 \\ 59.49 \\ 53.89 \\ \hline \\ \gamma = 0.8 \\ \hline \\ \text{Bias} \\ (\times 100) \\ -0.03 \\ 2.26 \\ 4.00 \\ 2.25 \\ 19.90 \\ 19.81 \\ \hline \\ \hline \\ 19.81 \\ \hline \end{array}$ | $\begin{array}{c} \beta = 1.0, \\ N = \\ \hline N = $ | $\begin{array}{c} f_t \sim tree \\ \hline f_t \sim tree \\ \hline 300 \\ \hline \\ Bias \\ (\times 100) \\ 0.00 \\ -22.74 \\ -26.34 \\ -10.09 \\ -0.89 \\ -0.16 \\ 7.22 \\ f_t \sim tree \\ \hline \\ \hline \\ 300 \\ \hline \\ \hline \\ Bias \\ (\times 100) \\ -0.02 \\ -1.04 \\ -5.10 \\ -3.04 \\ 3.89 \\ 2.67 \\ \hline \\ \end{array}$                | nd<br>RMSE<br>(×100)<br>4.62<br>37.69<br>41.32<br>40.13<br>8.76<br>10.97<br>15.00<br>nd<br>RMSE<br>(×100)<br>2.45<br>8.92<br>8.33<br>7.81<br>5.18<br>5.06               | $\begin{array}{c} Bias \\ (\times 100) \\ 0.01 \\ 16.93 \\ 19.12 \\ 4.31 \\ 59.90 \\ 59.90 \\ 56.43 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                               | $N = \frac{\gamma}{(\times 100)}$ RMSE<br>(×100)<br>1.76<br>33.49<br>33.90<br>33.29<br>59.90<br>59.90<br>57.15<br>N = \frac{\gamma}{(\times 100)}<br>0.89<br>3.97<br>4.81<br>3.78<br>19.90<br>19.90<br>19.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 500 Bias<br>(×100)<br>0.06<br>-23.36<br>-28.93<br>-11.11<br>-1.21<br>-0.40<br>8.31<br>500<br>Bias<br>(×100)<br>0.04<br>0.69<br>-4.35<br>-1.81<br>4.06<br>2.78 | RMSE<br>(×100)<br>3.35<br>39.17<br>43.57<br>40.90<br>6.59<br>7.74<br>11.77<br>11.77<br>8<br>RMSE<br>(×100)<br>1.77<br>6.82<br>6.56<br>5.36<br>4.80<br>4.08 |

Table 6: Bias(×100) and RMSE(×100) for the ARX(1) model with a single factor (T = 10)  $T = 10, \gamma = 0.4, \beta = 1.0, f_t \sim AR(1)$ 

|                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                  | λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 _ 15                                                                                 | <u> </u>                                                                                                                                                        | - 0, / -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 0. 1, p                                                                                                                                                                                                                                 | - 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{110(1)}{10}$                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               | λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I = 50                                                                                 | 0                                                                                                                                    |                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                   |                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | v = 1c                                                                                 | 0                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v = 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v = 30                                                                                 | 0                                                                                                                                    |                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                   | Powe                                                                                                                               | r(H <sub>1</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Size                                                                                   | Powe                                                                                                                                                            | r(H <sub>1</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Power                                                                                                                                                                                                                                     | $(\mathbf{H}_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Powe                                                                                                                                                                                                                                       | r(H <sub>1</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Power                                                                                                                         | $(\mathbf{H}_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Size                                                                                   | Powe                                                                                                                                 | r(H <sub>1</sub> )                                                                                                                                                                                                      |
| Estimators $\setminus \gamma$                                                                                                                                                                                                                                                                     | 0.30                                                                                                                               | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 40                                                                                   | 0 45                                                                                                                                                            | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.30                                                                                                                                                                                                                                      | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.45                                                                                                                                                                                                                                       | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.30                                                                                                                          | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.40                                                                                   | 0.45                                                                                                                                 | 0.50                                                                                                                                                                                                                    |
| ML                                                                                                                                                                                                                                                                                                | 68.2                                                                                                                               | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.8                                                                                    | 21.6                                                                                                                                                            | 65.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 91.9                                                                                                                                                                                                                                      | 38.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.5                                                                                                                                                                                                                                       | 92.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.0                                                                                                                          | 60.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.9                                                                                    | 61.4                                                                                                                                 | 99.0                                                                                                                                                                                                                    |
| ALS1(1step)                                                                                                                                                                                                                                                                                       | 37.2                                                                                                                               | 20.0<br>22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.2                                                                                   | 16.7                                                                                                                                                            | 26.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48 7                                                                                                                                                                                                                                      | 27.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.8                                                                                                                                                                                                                                       | 29.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62.4                                                                                                                          | 32.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.6                                                                                   | 15.0                                                                                                                                 | 37.2                                                                                                                                                                                                                    |
| ALS1(2step)                                                                                                                                                                                                                                                                                       | 45.3                                                                                                                               | 32.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.6                                                                                   | 28.8                                                                                                                                                            | 38.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44 1                                                                                                                                                                                                                                      | 28.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.9                                                                                                                                                                                                                                       | 48.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47.9                                                                                                                          | 25.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.0                                                                                   | 35.1                                                                                                                                 | 63.2                                                                                                                                                                                                                    |
| ALS1(CUE)                                                                                                                                                                                                                                                                                         | 56.3                                                                                                                               | 48.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41.7                                                                                   | 40.0                                                                                                                                                            | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62.0                                                                                                                                                                                                                                      | 47.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36.1                                                                                                                                                                                                                                       | 39.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70.1                                                                                                                          | 50.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35.1                                                                                   | 30.5                                                                                                                                 | 39.8                                                                                                                                                                                                                    |
| NT1(1step)                                                                                                                                                                                                                                                                                        | 29.5                                                                                                                               | 31.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.2                                                                                   | 38.1                                                                                                                                                            | 41.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.8                                                                                                                                                                                                                                      | 26.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45.5                                                                                                                                                                                                                                       | 57.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.7                                                                                                                          | 30.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46.1                                                                                   | 61.3                                                                                                                                 | 73.0                                                                                                                                                                                                                    |
| NT1(2step)                                                                                                                                                                                                                                                                                        | 41.6                                                                                                                               | 43.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.8                                                                                   | 49.4                                                                                                                                                            | 54.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33.8                                                                                                                                                                                                                                      | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.6                                                                                                                                                                                                                                       | 61.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.4                                                                                                                          | 38.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51.3                                                                                   | 62.3                                                                                                                                 | 72.5                                                                                                                                                                                                                    |
| NT1(CUĖ)                                                                                                                                                                                                                                                                                          | 54.7                                                                                                                               | 59.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 65.0                                                                                   | 71.6                                                                                                                                                            | 75.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 57.1                                                                                                                                                                                                                                      | 66.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 74.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82.5                                                                                                                                                                                                                                       | 88.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.9                                                                                                                          | 77.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88.0                                                                                   | 93.2                                                                                                                                 | 96.9                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                   |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                                                                                      |                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                   | Powe                                                                                                                               | $r(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Size                                                                                   | Powe                                                                                                                                                            | $er(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Power                                                                                                                                                                                                                                     | $r(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Powe                                                                                                                                                                                                                                       | $er(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Power                                                                                                                         | $r(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Size                                                                                   | Powe                                                                                                                                 | $er(H_1)$                                                                                                                                                                                                               |
| Estimators $\setminus \beta$                                                                                                                                                                                                                                                                      | 0.90                                                                                                                               | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00                                                                                   | 1.05                                                                                                                                                            | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.90                                                                                                                                                                                                                                      | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.05                                                                                                                                                                                                                                       | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.90                                                                                                                          | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                   | 1.05                                                                                                                                 | 1.10                                                                                                                                                                                                                    |
| ML                                                                                                                                                                                                                                                                                                | 26.3                                                                                                                               | 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.9                                                                                    | 9.7                                                                                                                                                             | 23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47.6                                                                                                                                                                                                                                      | 14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.9                                                                                                                                                                                                                                       | 46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68.0                                                                                                                          | 21.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.7                                                                                    | 22.0                                                                                                                                 | 68.4                                                                                                                                                                                                                    |
| ALS1(1step)                                                                                                                                                                                                                                                                                       | 21.7                                                                                                                               | 15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.5                                                                                   | 12.7                                                                                                                                                            | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.3                                                                                                                                                                                                                                      | 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.1                                                                                                                                                                                                                                       | 22.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34.8                                                                                                                          | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.5                                                                                    | 12.5                                                                                                                                 | 30.2                                                                                                                                                                                                                    |
| ALS1(2step)                                                                                                                                                                                                                                                                                       | 34.0                                                                                                                               | 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.4                                                                                   | 21.8                                                                                                                                                            | 27.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44.1                                                                                                                                                                                                                                      | 26.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.1                                                                                                                                                                                                                                       | 21.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60.5                                                                                                                          | 32.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.7                                                                                   | 11.8                                                                                                                                 | 23.0                                                                                                                                                                                                                    |
| ALS1(CUE)                                                                                                                                                                                                                                                                                         | 41.1                                                                                                                               | 32.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.5                                                                                   | 30.2                                                                                                                                                            | 34.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43.3                                                                                                                                                                                                                                      | 29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.5                                                                                                                                                                                                                                       | 29.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50.7                                                                                                                          | 28.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.1                                                                                   | 16.5                                                                                                                                 | 31.0                                                                                                                                                                                                                    |
| NT1(1step)                                                                                                                                                                                                                                                                                        | 13.3                                                                                                                               | 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.4                                                                                   | 21.0                                                                                                                                                            | 34.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.1                                                                                                                                                                                                                                      | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.7                                                                                                                                                                                                                                       | 61.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.6                                                                                                                           | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.1                                                                                   | 60.1                                                                                                                                 | 84.6                                                                                                                                                                                                                    |
| NT1(2step)                                                                                                                                                                                                                                                                                        | 23.7                                                                                                                               | 21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24.2                                                                                   | 32.1                                                                                                                                                            | 44.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.5                                                                                                                                                                                                                                      | 17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.5                                                                                                                                                                                                                                       | 62.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.4                                                                                                                          | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35.0                                                                                   | 61.3                                                                                                                                 | 81.9                                                                                                                                                                                                                    |
| NT1(CUE)                                                                                                                                                                                                                                                                                          | 32.9                                                                                                                               | 30.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34.1                                                                                   | 39.4                                                                                                                                                            | 46.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.3                                                                                                                                                                                                                                      | 21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38.5                                                                                                                                                                                                                                       | 53.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.8                                                                                                                          | 17.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.6                                                                                   | 47.4                                                                                                                                 | 70.1                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                   |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                                                                                      |                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                   |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        | <i>T</i> =                                                                                                                                                      | = 6, $\gamma$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $= 0.8, \beta$                                                                                                                                                                                                                            | = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $f_t \sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AR(1)                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                                                                                      |                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                   |                                                                                                                                    | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V = 15                                                                                 | T = 50                                                                                                                                                          | = 6,γ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0.8, β                                                                                                                                                                                                                                  | = 1.0<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $f_t \sim V = 30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{AR(1)}{00}$                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V = 50                                                                                 | 00                                                                                                                                   |                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                   |                                                                                                                                    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V = 15                                                                                 | T = 50                                                                                                                                                          | $= 6, \gamma =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 0.8, β                                                                                                                                                                                                                                  | r = 1.0<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{0, f_t \sim}{V = 30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AR(1)<br>00                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V = 50                                                                                 | )0<br>D                                                                                                                              |                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                   | Powe                                                                                                                               | N<br>$er(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V = 15<br>Size                                                                         | T = 50                                                                                                                                                          | $= 6, \gamma =$<br>$\operatorname{er}(\mathrm{H}_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 0.8, β                                                                                                                                                                                                                                  | $r(H_1) = 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $f_t \sim V = 30$<br>$\gamma$<br>Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AR(1)                                                                                                                                                                                                                                      | $er(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Power                                                                                                                         | N<br>r(H <sub>1</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V = 50<br>Size                                                                         | DO<br>Powe                                                                                                                           | $er(H_1)$                                                                                                                                                                                                               |
| Estimators $\setminus \gamma$                                                                                                                                                                                                                                                                     | Powe<br>0.70                                                                                                                       | $ \frac{N}{0.75} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V = 15<br>Size<br>0.80                                                                 | T = 50 Powe 0.85                                                                                                                                                | $= 6, \gamma =$<br>$er(H_1)$<br>0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 0.8, β                                                                                                                                                                                                                                  | r = 1.0<br>N<br>$r (H_1)$<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{0, f_t \sim}{V = 30}$ $\frac{\gamma}{\text{Size}}$ $0.80$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AR(1)<br>00<br>Powe<br>0.85                                                                                                                                                                                                                | $er(H_1) = 0.90$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Power<br>0.70                                                                                                                 | $(H_1)$<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V = 50<br>Size<br>0.80                                                                 | 00<br>Powe<br>0.85                                                                                                                   | $er(H_1)$<br>0.90                                                                                                                                                                                                       |
| Estimators $\setminus \gamma$<br>ML<br>ALS1((star))                                                                                                                                                                                                                                               | Powe<br>0.70<br>99.8                                                                                                               | $\frac{N}{0.75}$ 56.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V = 15 Size $0.80$ $5.1$ $14.6$                                                        | T = 50<br>Powe 0.85<br>56.8                                                                                                                                     | $= 6, \gamma =$<br>$er(H_1)$<br>0.90<br>97.2<br>62.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 0.8, β<br>Power<br>0.70<br>100.0<br>00.2                                                                                                                                                                                                | $r(H_1)$<br>0.75<br>86.2<br>21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{0, f_t \sim}{V = 30}$ $\frac{\gamma}{\text{Size}}$ $\frac{0.80}{6.1}$ $\frac{16.5}{16.5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AR(1)<br>00<br>Powe<br>0.85<br>81.6<br>22.4                                                                                                                                                                                                | $r(H_1)$<br>0.90<br>100.0<br>80.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Power<br>0.70<br>100.0                                                                                                        | N<br>r(H <sub>1</sub> )<br>0.75<br>97.3<br>05.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V = 50 Size $0.80$ $6.4$ 21.2                                                          | 00<br>Powe<br>0.85<br>95.7                                                                                                           | $r(H_1)$<br>0.90<br>100.0<br>04.4                                                                                                                                                                                       |
| Estimators $\setminus \gamma$<br>ML<br>ALS1(1step)<br>ALS1(2step)                                                                                                                                                                                                                                 | Powe<br>0.70<br>99.8<br>92.9<br>01.2                                                                                               | $\frac{N}{0.75}$ 56.1 55.9 55.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V = 15<br>Size<br>0.80<br>5.1<br>14.6<br>10.8                                          | T = 50<br>Powe 0.85<br>56.8<br>18.7<br>36.2                                                                                                                     | $= 6, \gamma =$<br>er(H <sub>1</sub> )<br>0.90<br>97.2<br>62.6<br>77.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 0.8, β<br>Power<br>0.70<br>100.0<br>99.3<br>08 8                                                                                                                                                                                        | $r(H_1) = 1.0$ $r(H_1) = 0.75$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{f_t \sim V}{V = 30}$ $\frac{\gamma}{Size}$ $\frac{0.80}{6.1}$ $\frac{16.5}{13.0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AR(1)<br>00<br>Powe<br>0.85<br>81.6<br>23.4<br>43.6                                                                                                                                                                                        | $r(H_1)$<br>0.90<br>100.0<br>80.7<br>94.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Power<br>0.70<br>100.0<br>99.9                                                                                                | N<br>r(H <sub>1</sub> )<br>0.75<br>97.3<br>95.7<br>83.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V = 50<br>Size<br>0.80<br>6.4<br>21.2<br>11.4                                          | Powe<br>0.85<br>95.7<br>27.8<br>62.8                                                                                                 | $r(H_1)$<br>0.90<br>100.0<br>94.4<br>00.8                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                   | Powe<br>0.70<br>99.8<br>92.9<br>91.2<br>90.9                                                                                       | $\frac{N}{0.75}$ 56.1 55.9 55.8 59.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V = 15<br>Size<br>0.80<br>5.1<br>14.6<br>19.8<br>24.7                                  | T = 50<br>Powe 0.85<br>56.8<br>18.7<br>36.2<br>37.0                                                                                                             | $= 6, \gamma =$ $= 1000000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 0.8, β<br>Power<br>0.70<br>100.0<br>99.3<br>98.8<br>98.6                                                                                                                                                                                | $ = 1.0 $ $ N $ $ r(H_1) $ $ 0.75 $ $ 86.2 $ $ 81.5 $ $ 71.7 $ $ 76.4 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \frac{f_t \sim}{V = 30} $ $ \frac{\gamma}{\text{Size}} $ $ \frac{0.80}{6.1} $ $ 16.5 $ $ 13.9 $ $ 10.1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AR(1)<br>00<br>Powe<br>0.85<br>81.6<br>23.4<br>43.6<br>39.4                                                                                                                                                                                | $r(H_1)$<br>0.90<br>100.0<br>80.7<br>94.0<br>90.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Power<br>0.70<br>100.0<br>99.9<br>100.0<br>99.9                                                                               | N<br>(H <sub>1</sub> )<br>0.75<br>97.3<br>95.7<br>83.8<br>88.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V = 50<br>Size<br>0.80<br>6.4<br>21.2<br>11.4<br>16.6                                  | Powe<br>0.85<br>95.7<br>27.8<br>62.8<br>52.3                                                                                         | $r(H_1)$<br>0.90<br>100.0<br>94.4<br>99.8<br>08.5                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                   | Powe<br>0.70<br>99.8<br>92.9<br>91.2<br>90.9<br>9.2                                                                                | $\begin{array}{r} \hline \\ Pr(H_1) \\ 0.75 \\ \hline 56.1 \\ 55.9 \\ 55.8 \\ 59.8 \\ 6.6 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V = 15 Size 0.80 5.1 14.6 19.8 24.7 5.0                                                | T = 50 Powe 0.85 56.8 18.7 36.2 37.0 4.0                                                                                                                        | $= 6, \gamma =$ $= 6, \gamma =$ $= 0, \gamma =$ | $\begin{array}{c c} = 0.8, \beta \\ \hline \\ Power \\ 0.70 \\ 100.0 \\ 99.3 \\ 98.8 \\ 98.6 \\ 2.7 \\ \end{array}$                                                                                                                       | $ = 1.0 $ $ \overline{N} $ | $   \begin{array}{r} f_t \sim \\ V = 30 \\ \hline \gamma \\ \hline Size \\ 0.80 \\ \hline 6.1 \\ 16.5 \\ 13.9 \\ 19.1 \\ 1.6 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $     \begin{array}{r} AR(1) \\ \hline 00 \\ \hline 00 \\ \hline 0.85 \\ \hline 81.6 \\ 23.4 \\ 43.6 \\ 39.4 \\ \hline 71 \\ \end{array} $                                                                                                 | $r(H_1) = 0.90 = 0.000 = 0.0000 = 0.00000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Power<br>0.70<br>100.0<br>99.9<br>100.0<br>99.9<br>0.3                                                                        | $\begin{array}{c} & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ | V = 50 Size 0.80 6.4 21.2 11.4 16.6 6.2                                                | Powe<br>0.85<br>95.7<br>27.8<br>62.8<br>52.3<br>17 3                                                                                 | $\begin{array}{c} \text{er}(\text{H}_{1}) \\ 0.90 \\ \hline 100.0 \\ 94.4 \\ 99.8 \\ 98.5 \\ 30.9 \end{array}$                                                                                                          |
|                                                                                                                                                                                                                                                                                                   | Powe<br>0.70<br>99.8<br>92.9<br>91.2<br>90.9<br>9.2<br>14.3                                                                        | $\begin{array}{r} \hline N \\ \hline er(H_1) \\ 0.75 \\ \hline 56.1 \\ 55.9 \\ 55.8 \\ 59.8 \\ 6.6 \\ 11.8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V = 15 Size 0.80 5.1 14.6 19.8 24.7 5.0 10.4                                           | T = 50 Powe<br>0.85<br>56.8<br>18.7<br>36.2<br>37.0<br>4.0<br>10.9                                                                                              | $= 6, \gamma =$ $= (H_1)$ 0.90 97.2 62.6 77.4 74.9 6.3 15.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c c} = 0.8, \beta \\ \hline \\ 0.70 \\ 100.0 \\ 99.3 \\ 98.8 \\ 98.6 \\ 2.7 \\ 5.4 \\ \end{array}$                                                                                                                         | $= 1.0$ $\overline{(H_1)}$ 0.75 86.2 81.5 71.7 76.4 1.6 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $f_t \sim V = 30$<br>$\gamma$<br>Size<br>0.80<br>6.1<br>16.5<br>13.9<br>19.1<br>1.6<br>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AR(1)<br>00<br>Powe<br>0.85<br>81.6<br>23.4<br>43.6<br>39.4<br>7.1<br>15.6                                                                                                                                                                 | $\begin{array}{c} \text{er}(\text{H}_{1}) \\ 0.90 \\ \hline 100.0 \\ 80.7 \\ 94.0 \\ 90.4 \\ 16.7 \\ 27.2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Power<br>0.70<br>100.0<br>99.9<br>100.0<br>99.9<br>0.3<br>0.9                                                                 | $\begin{array}{c} \hline \\ r(H_1) \\ 0.75 \\ 97.3 \\ 95.7 \\ 83.8 \\ 88.4 \\ 0.3 \\ 0.7 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V = 50 Size 0.80 6.4 21.2 11.4 16.6 6.2 11.5                                           | Powe<br>0.85<br>95.7<br>27.8<br>62.8<br>52.3<br>17.3<br>24 1                                                                         | $\begin{array}{c} \text{Pr}(\text{H}_{1}) \\ 0.90 \\ 100.0 \\ 94.4 \\ 99.8 \\ 98.5 \\ 30.9 \\ 36.2 \end{array}$                                                                                                         |
| $ \begin{array}{c} \hline \\ \hline \\ Estimators \setminus \gamma \\ \hline \\ ML \\ ALS1(1step) \\ ALS1(2step) \\ ALS1(CUE) \\ NT1(1step) \\ NT1(2step) \\ NT1(CUE) \\ \end{array} $                                                                                                            | Powe<br>0.70<br>99.8<br>92.9<br>91.2<br>90.9<br>9.2<br>14.3<br>8 7                                                                 | $\begin{array}{c} & N \\ \hline 0.75 \\ \hline 56.1 \\ 55.9 \\ 55.8 \\ 59.8 \\ 6.6 \\ 11.8 \\ 8.2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V = 15<br>Size<br>0.80<br>5.1<br>14.6<br>19.8<br>24.7<br>5.0<br>10.4<br>6.8            | T = 50 Powe 0.85 56.8 18.7 36.2 37.0 4.0 10.9 11.6                                                                                                              | $\begin{array}{c} = 6, \gamma = \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 0.8, β<br>Power<br>0.70<br>100.0<br>99.3<br>98.8<br>98.6<br>2.7<br>5.4<br>2.2                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} f_t \sim \\ V = 30 \\ \hline \gamma \\ \hline Size \\ 0.80 \\ \hline 6.1 \\ 16.5 \\ 13.9 \\ 19.1 \\ 1.6 \\ 4.5 \\ 5.8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{r} AR(1) \\ \hline 00 \\ \hline 0.85 \\ 81.6 \\ 23.4 \\ 43.6 \\ 39.4 \\ 7.1 \\ 15.6 \\ 35.6 \\ \end{array}$                                                                                                                 | pr(H <sub>1</sub> )<br>0.90<br>100.0<br>80.7<br>94.0<br>90.4<br>16.7<br>27.2<br>58.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Power<br>0.70<br>100.0<br>99.9<br>100.0<br>99.9<br>0.3<br>0.9<br>0.0                                                          | $\begin{array}{c} \hline N\\ \hline r(H_1)\\ 0.75\\ 97.3\\ 95.7\\ 83.8\\ 88.4\\ 0.3\\ 0.7\\ 0.2\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V = 50<br>Size<br>0.80<br>6.4<br>21.2<br>11.4<br>16.6<br>6.2<br>11.5<br>32.6           | Powe<br>0.85<br>95.7<br>27.8<br>62.8<br>52.3<br>17.3<br>24.1<br>64 4                                                                 | $r(H_1)$<br>0.90<br>100.0<br>94.4<br>99.8<br>98.5<br>30.9<br>36.2<br>78.6                                                                                                                                               |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                          | Powe<br>0.70<br>99.8<br>92.9<br>91.2<br>90.9<br>9.2<br>14.3<br>8.7                                                                 | $\begin{array}{c} \hline N\\ \text{er}(\text{H}_1)\\ 0.75\\ 56.1\\ 55.9\\ 55.8\\ 59.8\\ 6.6\\ 11.8\\ 8.2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V = 15 Size 0.80 5.1 14.6 19.8 24.7 5.0 10.4 6.8                                       | $T = \frac{7}{50}$ Powe<br>0.85<br>56.8<br>18.7<br>36.2<br>37.0<br>4.0<br>10.9<br>11.6                                                                          | $\begin{array}{c} = 6, \gamma = \\ \hline \\ r(H_1) \\ 0.90 \\ 97.2 \\ 62.6 \\ 77.4 \\ 74.9 \\ 6.3 \\ 15.1 \\ 28.9 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} = 0.8, \beta \\ \hline \\ Power \\ 0.70 \\ 100.0 \\ 99.3 \\ 98.8 \\ 98.6 \\ 2.7 \\ 5.4 \\ 2.2 \end{array}$                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{l} f_t \sim \\ V = 30 \\ \hline \\ \hline \\ Size \\ 0.80 \\ \hline \\ 6.1 \\ 16.5 \\ 13.9 \\ 19.1 \\ 1.6 \\ 4.5 \\ 5.8 \\ \hline \\ \\ \beta \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AR(1)<br>00<br>0.85<br>81.6<br>23.4<br>43.6<br>39.4<br>7.1<br>15.6<br>35.6                                                                                                                                                                 | $\begin{array}{c} r(H_1) \\ 0.90 \\ 100.0 \\ 80.7 \\ 94.0 \\ 90.4 \\ 16.7 \\ 27.2 \\ 58.6 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Power<br>0.70<br>100.0<br>99.9<br>100.0<br>99.9<br>0.3<br>0.9<br>0.0                                                          | $\begin{array}{c} \hline N\\ \hline r(H_1)\\ 0.75\\ 97.3\\ 95.7\\ 83.8\\ 88.4\\ 0.3\\ 0.7\\ 0.2\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V = 50 Size 0.80 6.4 21.2 11.4 16.6 6.2 11.5 32.6                                      | Powe<br>0.85<br>95.7<br>27.8<br>62.8<br>52.3<br>17.3<br>24.1<br>64.4                                                                 | $\begin{array}{c} {\rm er}({\rm H}_1)\\ 0.90\\ \hline 100.0\\ 94.4\\ 99.8\\ 98.5\\ 30.9\\ 36.2\\ 78.6\\ \end{array}$                                                                                                    |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                          | Powe<br>0.70<br>99.8<br>92.9<br>91.2<br>90.9<br>9.2<br>14.3<br>8.7<br>Powe                                                         | N<br>er(H <sub>1</sub> )<br>0.75<br>56.1<br>55.9<br>55.8<br>59.8<br>6.6<br>11.8<br>8.2<br>er(H <sub>1</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V = 15 Size 0.80 5.1 14.6 19.8 24.7 5.0 10.4 6.8 Size                                  | $T = \frac{7}{50}$ Powe<br>0.85<br>56.8<br>18.7<br>36.2<br>37.0<br>4.0<br>10.9<br>11.6<br>Powe                                                                  | $r(H_1) = \frac{6}{97.2}$ $r(H_1) = \frac{6}{97.2}$ $r(H_2) = \frac{6}{15.1}$ $r(H_1) = r(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 0.8, β<br>Power<br>0.70<br>100.0<br>99.3<br>98.8<br>98.6<br>2.7<br>5.4<br>2.2                                                                                                                                                           | = 1.0 N (H1) 0.75 86.2 81.5 71.7 76.4 1.6 4.3 2.0 (H1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \frac{f_t \sim V}{V = 30} = 30 \\ \frac{\gamma}{\text{Size}} = 0.80 \\ 6.1 \\ 16.5 \\ 13.9 \\ 19.1 \\ 1.6 \\ 4.5 \\ 5.8 \\ \frac{\beta}{\text{Size}} = 5 \\ \frac{\beta}{\text{Size}} = 5 \\ \frac{\beta}{100} = 5 \\ \frac{\beta}{$ | AR(1)<br>00<br>Powe<br>0.85<br>81.6<br>23.4<br>43.6<br>39.4<br>7.1<br>15.6<br>35.6<br>Powe                                                                                                                                                 | er(H <sub>1</sub> )<br>0.90<br>100.0<br>80.7<br>94.0<br>90.4<br>16.7<br>27.2<br>58.6<br>er(H <sub>1</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Power<br>0.70<br>100.0<br>99.9<br>100.0<br>99.9<br>0.3<br>0.9<br>0.0                                                          | $ \frac{N}{r(H_1)} = 0.75 \\ 97.3 \\ 95.7 \\ 83.8 \\ 88.4 \\ 0.3 \\ 0.7 \\ 0.2 \\ r(H_1) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V = 50 Size 0.80 6.4 21.2 11.4 16.6 6.2 11.5 32.6 Size                                 | Powe<br>0.85<br>95.7<br>27.8<br>62.8<br>52.3<br>17.3<br>24.1<br>64.4                                                                 | er(H <sub>1</sub> )<br>0.90<br>100.0<br>94.4<br>99.8<br>98.5<br>30.9<br>36.2<br>78.6<br>er(H <sub>1</sub> )                                                                                                             |
| $ \begin{array}{c} \text{Estimators} \setminus \gamma \\ \hline \text{ML} \\ \text{ALS1(1step)} \\ \text{ALS1(2step)} \\ \text{ALS1(CUE)} \\ \text{NT1(1step)} \\ \text{NT1(2step)} \\ \text{NT1(CUE)} \\ \hline \\ \text{Estimators} \setminus \beta \end{array} $                               | Powe<br>0.70<br>99.8<br>92.9<br>91.2<br>90.9<br>9.2<br>14.3<br>8.7<br>Powe<br>0.90                                                 | $\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V = 15 Size 0.80 5.1 14.6 19.8 24.7 5.0 10.4 6.8 Size 1.00                             | $T = \frac{7}{50}$ Powe 0.85 56.8 18.7 36.2 37.0 4.0 10.9 11.6 Powe 1.05                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 0.8, β           Power           0.70           100.0           99.3           98.6           2.7           5.4           2.2           Power           0.90                                                                            | $= 1.0$ $\overline{N}$ $r(H_1)$ $0.75$ $86.2$ $81.5$ $71.7$ $76.4$ $1.6$ $4.3$ $2.0$ $r(H_1)$ $0.95$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{l} f_t \sim \\ V = 30 \\ \hline \gamma \\ \hline Size \\ 0.80 \\ \hline 6.1 \\ 16.5 \\ 13.9 \\ 19.1 \\ 1.6 \\ 4.5 \\ 5.8 \\ \hline \beta \\ \hline Size \\ 1.00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \text{AR}(1) \\ \hline 00 \\ \hline 00 \\ \hline 0.85 \\ \hline 81.6 \\ 23.4 \\ 43.6 \\ 39.4 \\ 7.1 \\ 15.6 \\ 35.6 \\ \hline 00 \\ 1.05 \\ \end{array}$                                                                 | $r(H_1)$<br>0.90<br>100.0<br>80.7<br>94.0<br>90.4<br>16.7<br>27.2<br>58.6<br>$r(H_1)$<br>1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Power<br>0.70<br>100.0<br>99.9<br>100.0<br>99.9<br>0.3<br>0.9<br>0.0<br>Power<br>0.90                                         | $ \frac{N}{r(H_1)} \frac{0.75}{97.3} \frac{97.3}{95.7} \frac{95.7}{83.8} \frac{88.4}{0.3} \frac{0.7}{0.2} \frac{0.2}{r(H_1)} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V = 50 Size 0.80 6.4 21.2 11.4 16.6 6.2 11.5 32.6 Size 1.00                            | Powe<br>0.85<br>95.7<br>27.8<br>62.8<br>52.3<br>17.3<br>24.1<br>64.4<br>Powe<br>1.05                                                 | $r(H_1)$<br>0.90<br>100.0<br>94.4<br>99.8<br>98.5<br>30.9<br>36.2<br>78.6<br>$r(H_1)$<br>1.10                                                                                                                           |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                          | Powe<br>0.70<br>99.8<br>92.9<br>91.2<br>90.9<br>9.2<br>14.3<br>8.7<br>Powe<br>0.90<br>61.9                                         | $\begin{array}{c} \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V = 15 Size 0.80 5.1 14.6 19.8 24.7 5.0 10.4 6.8 Size 1.00 5.1                         | T = 50 Powe 0.85 56.8 18.7 36.2 37.0 4.0 10.9 11.6 Powe 1.05 19.1                                                                                               | $= 6, \gamma =$ $= 6, \gamma =$ $= 0.90$ $= 0.90$ $= 0.90$ $= 0.90$ $= 0.90$ $= 0.90$ $= 0.90$ $= 0.90$ $= 0.90$ $= 0.90$ $= 0.90$ $= 0.90$ $= 0.90$ $= 0.90$ $= 0.90$ $= 0.90$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Power</li> <li>0.70</li> <li>100.0</li> <li>99.3</li> <li>98.6</li> <li>2.7</li> <li>5.4</li> <li>2.2</li> <li>Power</li> <li>0.90</li> <li>87.8</li> </ul>                                                                      | $ = 1.0 \\ \hline N \\ \hline F(H_1) \\ 0.75 \\ \hline 86.2 \\ 81.5 \\ 71.7 \\ 76.4 \\ 1.6 \\ 4.3 \\ 2.0 \\ \hline F(H_1) \\ 0.95 \\ \hline 34.6 \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{l} f_t \sim \\ V = 30 \\ \hline \gamma \\ \hline Size \\ 0.80 \\ \hline 6.1 \\ 16.5 \\ 13.9 \\ 19.1 \\ 1.6 \\ 4.5 \\ 5.8 \\ \hline \beta \\ \hline Size \\ 1.00 \\ \hline 5.4 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \text{AR}(1) \\ \hline 00 \\ \hline \\ \hline 00 \\ \hline \\ 0.85 \\ \hline 81.6 \\ 23.4 \\ 43.6 \\ 39.4 \\ 7.1 \\ 15.6 \\ 35.6 \\ \hline \\ \hline \\ 00 \\ \hline \\ 1.05 \\ \hline \\ 37.4 \\ \end{array}$           | $\begin{array}{c} \mathrm{Pr}(\mathrm{H}_{1}) \\ 0.90 \\ 100.0 \\ 80.7 \\ 94.0 \\ 90.4 \\ 16.7 \\ 27.2 \\ 58.6 \\ \mathrm{Pr}(\mathrm{H}_{1}) \\ 1.10 \\ 89.8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Power<br>0.70<br>100.0<br>99.9<br>100.0<br>99.9<br>0.3<br>0.9<br>0.0<br>Power<br>0.90<br>98.8                                 | $\begin{array}{c} & & \\ \hline r(H_1) \\ 0.75 \\ 97.3 \\ 95.7 \\ 83.8 \\ 88.4 \\ 0.3 \\ 0.7 \\ 0.2 \\ \hline r(H_1) \\ 0.95 \\ \hline 54.0 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V = 50 Size 0.80 6.4 21.2 11.4 16.6 6.2 11.5 32.6 Size 1.00 4.6                        | Powe<br>0.85<br>95.7<br>27.8<br>62.8<br>52.3<br>17.3<br>24.1<br>64.4<br>Powe<br>1.05<br>55.0                                         | er(H <sub>1</sub> )<br>0.90<br>100.0<br>94.4<br>99.8<br>98.5<br>30.9<br>36.2<br>78.6<br>er(H <sub>1</sub> )<br>1.10<br>98.5                                                                                             |
| $\begin{tabular}{ c c c c c } \hline Estimators & & & & \\ \hline ML \\ ALS1(1step) \\ ALS1(2step) \\ ALS1(CUE) \\ NT1(1step) \\ NT1(2step) \\ NT1(CUE) \\ \hline Estimators & & & & \\ \hline ML \\ ALS1(1step) \\ \hline \end{tabular}$                                                         | Powe<br>0.70<br>99.8<br>92.9<br>91.2<br>90.9<br>9.2<br>14.3<br>8.7<br>Powe<br>0.90<br>61.9<br>24.0                                 | $\begin{array}{c} & & \\ \hline r(H_1) \\ 0.75 \\ \hline 56.1 \\ 55.9 \\ 55.8 \\ 59.8 \\ 6.6 \\ 11.8 \\ 8.2 \\ \hline r(H_1) \\ 0.95 \\ \hline 21.1 \\ 11.2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V = 15 Size 0.80 5.1 14.6 19.8 24.7 5.0 10.4 6.8 Size 1.00 5.1 12.5                    | T = 50 Powe<br>0.85<br>56.8<br>18.7<br>36.2<br>37.0<br>4.0<br>10.9<br>11.6<br>Powe<br>1.05<br>19.1<br>31.8                                                      | $= 6, \gamma =$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 0.8, β<br>Power<br>0.70<br>100.0<br>99.3<br>98.8<br>98.6<br>2.7<br>5.4<br>2.2<br>Power<br>0.90<br>87.8<br>28.1                                                                                                                          | $ = 1.0 $ $ ^{F(H_1)} 0.75 $ $ 86.2 $ $ 81.5 $ $ 71.7 $ $ 76.4 $ $ 1.6 $ $ 4.3 $ $ 2.0 $ $ ^{F(H_1)} 0.95 $ $ ^{34.6} $ $ 9.4 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{l} f_t \sim \\ V = 30 \\ \hline \gamma \\ Size \\ 0.80 \\ \hline 6.1 \\ 16.5 \\ 13.9 \\ 19.1 \\ 1.6 \\ 4.5 \\ 5.8 \\ \hline Size \\ 1.00 \\ \hline 5.4 \\ 19.2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \text{AR}(1) \\ \hline 00 \\ \hline 00 \\ \hline 0.85 \\ 81.6 \\ 23.4 \\ 43.6 \\ 39.4 \\ 7.1 \\ 15.6 \\ 35.6 \\ \hline 00 \\ 1.05 \\ 37.4 \\ 54.8 \end{array}$                                                           | rr(H <sub>1</sub> )<br>0.90<br>1000<br>80.7<br>94.0<br>90.4<br>16.7<br>27.2<br>58.6<br>rr(H <sub>1</sub> )<br>1.10<br>89.8<br>84.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Power<br>0.70<br>100.0<br>99.9<br>100.0<br>99.9<br>0.3<br>0.9<br>0.0<br>Power<br>0.90<br>98.8<br>37.0                         | $\begin{array}{c} & \\ \hline r(H_1) \\ 0.75 \\ 97.3 \\ 95.7 \\ 83.8 \\ 88.4 \\ 0.3 \\ 0.7 \\ 0.2 \\ \hline r(H_1) \\ 0.95 \\ \hline 54.0 \\ 5.3 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V = 50 Size 0.80 6.4 21.2 11.4 16.6 6.2 11.5 32.6 Size 1.00 4.6 21.4                   | Powe<br>0.85<br>95.7<br>27.8<br>62.8<br>52.3<br>17.3<br>24.1<br>64.4<br>Powe<br>1.05<br>55.0<br>75.1                                 | er(H <sub>1</sub> )<br>0.90<br>100.0<br>94.4<br>99.8<br>98.5<br>30.9<br>36.2<br>78.6<br>er(H <sub>1</sub> )<br>1.10<br>98.5<br>97.9                                                                                     |
| $\begin{tabular}{ c c c c c } \hline Estimators & & \gamma \\ \hline ML \\ ALS1(1step) \\ ALS1(2step) \\ ALS1(CUE) \\ NT1(1step) \\ NT1(2step) \\ NT1(CUE) \\ \hline \\ \hline Estimators & & \beta \\ \hline ML \\ ALS1(1step) \\ ALS1(2step) \\ \hline \end{tabular}$                           | Powe<br>0.70<br>99.8<br>92.9<br>91.2<br>90.9<br>9.2<br>14.3<br>8.7<br>Powe<br>0.90<br>61.9<br>24.0<br>40.9                         | $\begin{array}{c} & & \\ \hline \\ \hline$ | V = 15 Size 0.80 5.1 14.6 19.8 24.7 5.0 10.4 6.8 Size 1.00 5.1 12.5 19.1               | T = 50 Powe<br>0.85<br>56.8<br>18.7<br>36.2<br>37.0<br>4.0<br>10.9<br>11.6<br>Powe<br>1.05<br>19.1<br>31.8<br>34.0                                              | $= 6, \gamma =$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 0.8, β<br>Power<br>0.70<br>100.0<br>99.3<br>98.8<br>98.6<br>2.7<br>5.4<br>2.2<br>Power<br>0.90<br>87.8<br>287.8<br>287.8<br>28.3                                                                                                        | $= 1.0$ $\overline{(H_1)}$ 0.75 86.2 81.5 71.7 76.4 1.6 4.3 2.0 $\overline{(H_1)}$ 0.95 34.6 9.4 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{l} f_t \sim \\ V = 30 \\ \hline \gamma \\ Size \\ 0.80 \\ \hline 6.1 \\ 16.5 \\ 13.9 \\ 19.1 \\ 1.6 \\ 4.5 \\ 5.8 \\ \hline \beta \\ Size \\ 1.00 \\ \hline 5.4 \\ 19.2 \\ 17.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} {\rm AR}(1)\\ \hline 0\\ \hline \\ 0\\ \hline \\ 0\\ 0\\ 81.6\\ 23.4\\ 43.6\\ 39.4\\ 7.1\\ 15.6\\ 35.6\\ \hline \\ 0\\ 35.6\\ \hline \\ 0\\ 35.6\\ \hline \\ 0\\ 37.4\\ 47.1\\ \end{array}$                              | $\begin{array}{c} eq:rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_resc$ | Power<br>0.70<br>100.0<br>99.9<br>0.3<br>0.9<br>0.0<br>Power<br>0.90<br>98.8<br>37.0<br>68.5                                  | N           r(H_1)           0.75           97.3           95.7           83.8           88.4           0.3           0.7           0.2           r(H_1)           0.95           54.0           5.3           16.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V = 50 Size 0.80 6.4 21.2 11.4 16.6 6.2 11.5 32.6 Size 1.00 4.6 21.4 15.4              | Powe<br>0.85<br>95.7<br>27.8<br>62.8<br>52.3<br>17.3<br>24.1<br>64.4<br>Powe<br>1.05<br>55.0<br>75.1<br>62.5                         | $\begin{array}{c} \text{pr}(\text{H}_1) \\ 0.90 \\ 100.0 \\ 94.4 \\ 99.8 \\ 98.5 \\ 30.9 \\ 36.2 \\ 78.6 \\ \hline \text{pr}(\text{H}_1) \\ 1.10 \\ 98.5 \\ 97.9 \\ 95.6 \end{array}$                                   |
| $\begin{tabular}{ c c c c c } \hline Estimators & & & & \\ \hline ML & & & \\ ALS1(1step) & & \\ ALS1(2step) & & \\ ALS1(CUE) & & \\ NT1(2step) & & \\ NT1(CUE) & & \\ \hline Estimators & & & & \\ \hline ML & & \\ ALS1(1step) & & \\ ALS1(2step) & \\ ALS1(2cUE) & & \\ \hline \end{array}$    | Powe<br>0.70<br>99.8<br>92.9<br>91.2<br>90.9<br>9.2<br>14.3<br>8.7<br>Powe<br>0.90<br>61.9<br>24.0<br>40.9<br>43.0                 | $\begin{array}{c} & \underline{N} \\ \hline r(H_1) \\ 0.75 \\ 56.1 \\ 55.9 \\ 55.8 \\ 59.8 \\ 6.6 \\ 11.8 \\ 8.2 \\ \hline r(H_1) \\ 0.95 \\ 21.1 \\ 11.2 \\ 20.8 \\ 23.8 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V = 15 Size 0.80 5.1 14.6 19.8 24.7 5.0 10.4 6.8 Size 1.00 5.1 12.5 19.1 21.6          | $T = \frac{50}{0.85}$ $\frac{56.8}{56.8}$ $\frac{18.7}{36.2}$ $\frac{37.0}{4.0}$ $\frac{4.0}{10.9}$ $\frac{11.6}{1.05}$ $\frac{19.1}{31.8}$ $\frac{34.0}{33.8}$ | $\begin{array}{c} = 6, \gamma = \\ \hline er(H_1) \\ 0.90 \\ 97.2 \\ 62.6 \\ 77.4 \\ 74.9 \\ 6.3 \\ 15.1 \\ 28.9 \\ \hline er(H_1) \\ 1.10 \\ 62.0 \\ 58.1 \\ 60.1 \\ 57.1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0.8, β           Power           0.70           100.0           99.3           98.8           98.6           2.7           5.4           2.2           Power           0.90           87.8           28.1           50.3           52.5 | $= 1.0$ $\overline{(H_1)}$ 0.75 86.2 81.5 71.7 76.4 1.6 4.3 2.0 $\overline{(H_1)}$ 0.95 34.6 9.4 17.5 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} f_t \sim \\ V = 30 \\ \hline \gamma \\ Size \\ 0.80 \\ 6.1 \\ 16.5 \\ 13.9 \\ 19.1 \\ 1.6 \\ 4.5 \\ 5.8 \\ \hline \beta \\ Size \\ 1.00 \\ 5.4 \\ 19.2 \\ 17.0 \\ 17.5 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \operatorname{AR}(1)\\ \hline 0\\ \hline \\ 0\\ \hline \\ 0\\ 0\\ \hline \\ 0\\ 81.6\\ 23.4\\ 43.6\\ 39.4\\ 7.1\\ 15.6\\ 35.6\\ \hline \\ \hline \\ 0\\ 35.6\\ \hline \\ 1.05\\ 37.4\\ 54.8\\ 47.1\\ 46.7\\ \end{array}$ | $\begin{array}{c} r(H_1) \\ 0.90 \\ 100.0 \\ 80.7 \\ 94.0 \\ 90.4 \\ 16.7 \\ 27.2 \\ 58.6 \\ r(H_1) \\ 1.10 \\ 89.8 \\ 84.9 \\ 82.6 \\ 81.6 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Power<br>0.70<br>100.0<br>99.9<br>0.3<br>0.9<br>0.0<br>Power<br>0.90<br>98.8<br>37.0<br>68.5<br>70.5                          | $\begin{array}{c} \hline \\ r(H_1) \\ 0.75 \\ 97.3 \\ 95.7 \\ 83.8 \\ 88.4 \\ 0.3 \\ 0.7 \\ 0.2 \\ \hline \\ r(H_1) \\ 0.95 \\ 54.0 \\ 5.3 \\ 16.8 \\ 20.3 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V = 50 Size 0.80 6.4 21.2 11.4 16.6 6.2 11.5 32.6 Size 1.00 4.6 21.4 15.4 14.9         | Powe<br>0.85<br>95.7<br>27.8<br>52.3<br>17.3<br>24.1<br>64.4<br>Powe<br>1.05<br>55.0<br>75.1<br>62.5<br>59.6                         | $\begin{array}{c} $\mathbf{r}(\mathbf{H}_1)$\\ 0.90\\ \hline 100.0\\ 94.4\\ 99.8\\ 98.5\\ 30.9\\ 36.2\\ 78.6\\ \hline \mathbf{r}(\mathbf{H}_1)\\ 1.10\\ 98.5\\ 97.9\\ 95.6\\ 94.4\\ \end{array}$                        |
| $\begin{tabular}{ c c c c c } \hline Estimators & & \gamma \\ \hline ML \\ ALS1(1step) \\ ALS1(2step) \\ ALS1(CUE) \\ NT1(1step) \\ NT1(CUE) \\ \hline \\ \hline Estimators & & \beta \\ \hline ML \\ ALS1(1step) \\ ALS1(2step) \\ ALS1(2step) \\ ALS1(CUE) \\ NT1(1step) \\ \hline \end{array}$ | Powe<br>0.70<br>99.8<br>92.9<br>91.2<br>90.9<br>9.2<br>14.3<br>8.7<br>Powe<br>0.90<br>61.9<br>24.0<br>40.9<br>43.0<br>32.7         | $\begin{array}{c} & \underline{\scriptstyle N} \\ \hline \\ \hline \\ rr(H_1) \\ 0.75 \\ 56.1 \\ 55.9 \\ 55.8 \\ 59.8 \\ 6.6 \\ 11.8 \\ 8.2 \\ \hline \\ rr(H_1) \\ 0.95 \\ 21.1 \\ 11.2 \\ 20.8 \\ 23.8 \\ 11.7 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V = 15 Size 0.80 5.1 14.6 19.8 24.7 5.0 10.4 6.8 Size 1.00 5.1 12.5 19.1 21.6 5.1      | T = 50 Powe<br>0.85<br>56.8<br>18.7<br>36.2<br>37.0<br>4.0<br>10.9<br>11.6<br>Powe<br>1.05<br>19.1<br>31.8<br>34.0<br>33.8<br>14.7                              | $\begin{array}{c} = 6, \gamma = \\ \hline \\ \hline \\ er(H_1) \\ 0.90 \\ 97.2 \\ 62.6 \\ 77.4 \\ 74.9 \\ 6.3 \\ 15.1 \\ 28.9 \\ \hline \\ er(H_1) \\ 1.10 \\ 62.0 \\ 58.1 \\ 60.1 \\ 57.1 \\ 40.2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} = 0.8, \beta \\ \hline \\ Power \\ 0.70 \\ 100.0 \\ 99.3 \\ 98.8 \\ 98.6 \\ 2.7 \\ 5.4 \\ 2.2 \\ \hline \\ Power \\ 0.90 \\ 87.8 \\ 28.1 \\ 50.3 \\ 52.5 \\ 54.0 \\ \end{array}$                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{l} f_t \sim \\ V = 30 \\ \hline \gamma \\ Size \\ 0.80 \\ \hline 6.1 \\ 16.5 \\ 13.9 \\ 19.1 \\ 1.6 \\ 4.5 \\ 5.8 \\ \hline \beta \\ Size \\ 1.00 \\ 5.4 \\ 19.2 \\ 17.0 \\ 17.5 \\ 5.5 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} {\rm AR}(1)\\ \hline 0\\ \hline 0\\ 0\\ 0\\ 81.6\\ 23.4\\ 43.6\\ 39.4\\ 7.1\\ 15.6\\ 35.6\\ 35.6\\ 1.05\\ 37.4\\ 54.8\\ 47.1\\ 46.7\\ 25.4\\ \end{array}$                                                                | $\begin{array}{c} r(H_1) \\ 0.90 \\ 100.0 \\ 80.7 \\ 94.0 \\ 90.4 \\ 16.7 \\ 27.2 \\ 58.6 \\ rr(H_1) \\ 1.10 \\ 89.8 \\ 84.9 \\ 82.6 \\ 81.6 \\ 65.2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Power<br>0.70<br>100.0<br>99.9<br>100.0<br>99.9<br>0.3<br>0.9<br>0.0<br>Power<br>0.90<br>98.8<br>37.0<br>68.5<br>70.5<br>73.1 | $\begin{array}{c} \hline \\ r(H_1) \\ 0.75 \\ 97.3 \\ 95.7 \\ 83.8 \\ 88.4 \\ 0.3 \\ 0.7 \\ 0.2 \\ \hline \\ r(H_1) \\ 0.95 \\ 54.0 \\ 5.3 \\ 16.8 \\ 20.3 \\ 22.7 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V = 50 Size 0.80 6.4 21.2 11.4 16.6 6.2 11.5 32.6 Size 1.00 4.6 21.4 15.4 14.9 4.8     | Powe<br>0.85<br>95.7<br>27.8<br>62.8<br>52.3<br>17.3<br>24.1<br>64.4<br>Powe<br>1.05<br>55.0<br>75.1<br>62.5<br>59.6<br>37.5         | $\begin{array}{c} \hline r(H_1) \\ 0.90 \\ \hline 100.0 \\ 94.4 \\ 99.8 \\ 98.5 \\ 30.9 \\ 36.2 \\ 78.6 \\ \hline r(H_1) \\ 1.10 \\ 98.5 \\ 97.9 \\ 95.6 \\ 94.4 \\ 83.4 \\ \end{array}$                                |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                          | Powe<br>0.70<br>99.8<br>92.9<br>91.2<br>90.9<br>9.2<br>14.3<br>8.7<br>Powe<br>0.90<br>61.9<br>24.0<br>40.9<br>43.0<br>32.7<br>42.4 | $\begin{array}{c} & \underline{N} \\ \hline \\ \hline \\ & 0.75 \\ 56.1 \\ 55.9 \\ 55.8 \\ 59.8 \\ 6.6 \\ 11.8 \\ 8.2 \\ \hline \\ & 11.2 \\ 21.1 \\ 11.2 \\ 20.8 \\ 23.8 \\ 11.7 \\ 21.7 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V = 15 Size 0.80 5.1 14.6 19.8 24.7 5.0 10.4 6.8 Size 1.00 5.1 12.5 19.1 21.6 5.1 13.2 | $T = \frac{50}{56.8}$ $18.7$ $36.2$ $37.0$ $4.0$ $10.9$ $11.6$ $1.05$ $19.1$ $31.8$ $34.0$ $3.8$ $14.7$ $23.9$                                                  | $\begin{array}{c} = 6, \gamma = \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} = 0.8, \beta \\ \hline \\ Power \\ 0.70 \\ 100.0 \\ 99.3 \\ 98.8 \\ 98.6 \\ 2.7 \\ 5.4 \\ 2.2 \\ \hline \\ Power \\ 0.90 \\ 87.8 \\ 28.1 \\ 50.3 \\ 52.5 \\ 54.0 \\ 58.2 \\ \end{array}$                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{l} f_t \sim \\ V = 30 \\ \hline \gamma \\ Size \\ 0.80 \\ 6.1 \\ 16.5 \\ 13.9 \\ 19.1 \\ 1.6 \\ 4.5 \\ 5.8 \\ \hline \beta \\ Size \\ 1.00 \\ 5.4 \\ 19.2 \\ 17.0 \\ 17.5 \\ 5.5 \\ 10.6 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} {\rm AR}(1)\\ \hline 00\\ \hline 0.85\\ \hline 81.6\\ 23.4\\ 43.6\\ 39.4\\ 7.1\\ 15.6\\ 35.6\\ \hline \\ 1.05\\ 37.4\\ 54.8\\ 47.1\\ 46.7\\ 25.4\\ 30.5\\ \end{array}$                                                   | $\begin{array}{c} $\mathbf{rr}(\mathbf{H}_1)$\\ 0.90\\ \hline 100.0\\ 80.7\\ 94.0\\ 90.4\\ 16.7\\ 27.2\\ 58.6\\ \hline \mathbf{rr}(\mathbf{H}_1)\\ 1.10\\ 89.8\\ 84.9\\ 82.6\\ 81.6\\ 81.6\\ 65.2\\ 66.3\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Power<br>0.70<br>100.0<br>99.9<br>0.3<br>0.9<br>0.0<br>Power<br>0.90<br>98.8<br>37.0<br>68.5<br>70.5<br>73.1<br>75.2          | N           0.75           97.3           95.7           83.8           88.4           0.3           0.7           0.2           r(H1)           0.955           54.0           5.3           16.8           20.3           22.7           27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V = 50 Size 0.80 6.4 21.2 11.4 16.6 6.2 11.5 32.6 Size 1.00 4.6 21.4 15.4 14.9 4.8 8.4 | Powe<br>0.85<br>95.7<br>27.8<br>62.8<br>52.3<br>17.3<br>24.1<br>64.4<br>Powe<br>1.05<br>55.0<br>75.1<br>62.5<br>59.6<br>37.5<br>39.5 | $\begin{array}{c} $\operatorname{pr}(\mathbf{H}_1)$\\ 0.90\\ 100.0\\ 94.4\\ 99.8\\ 98.5\\ 30.9\\ 36.2\\ 78.6\\ $\operatorname{pr}(\mathbf{H}_1)$\\ 1.10\\ 98.5\\ 97.9\\ 95.6\\ 94.4\\ 83.4\\ 83.4\\ 82.3\\ \end{array}$ |

Table 7a: Size(%) and power(%) for the ARX(1) model with a single factor  $(T = 6, f_t \sim AR(1))$ 

|                                                                                                                                                                                                                                                                                                           |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       | 1                                                                                                                                                                                                                                            | = 0, 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\gamma = 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , p = .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.0, J_t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sim tren$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ıd                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                       |                                                                                       |                                                                                                                                        |                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                           |                                                                                                                                   | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V = 15                                                                                | 50                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                           | 1                                                                                                                                                                                     | V = 50                                                                                | 0                                                                                                                                      |                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                           |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>(</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                 |                                                                                                                           |                                                                                                                                                                                       |                                                                                       |                                                                                                                                        |                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                           | Powe                                                                                                                              | $r(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Size                                                                                  | Powe                                                                                                                                                                                                                                         | $r(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $r(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Powe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $r(H_1)$                                                                                                                                                                                        | Powe                                                                                                                      | $r(H_1)$                                                                                                                                                                              | Size                                                                                  | Powe                                                                                                                                   | $r(H_1)$                                                                                                                                                         |
| Estimators $\setminus \gamma$                                                                                                                                                                                                                                                                             | 0.30                                                                                                                              | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.40                                                                                  | 0.45                                                                                                                                                                                                                                         | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.50                                                                                                                                                                                            | 0.30                                                                                                                      | 0.35                                                                                                                                                                                  | 0.40                                                                                  | 0.45                                                                                                                                   | 0.50                                                                                                                                                             |
| ML                                                                                                                                                                                                                                                                                                        | 47.1                                                                                                                              | 18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.3                                                                                   | 13.5                                                                                                                                                                                                                                         | 43.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 73.2                                                                                                                                                                                            | 91.7                                                                                                                      | 41.5                                                                                                                                                                                  | 4.4                                                                                   | 37.0                                                                                                                                   | 92.1                                                                                                                                                             |
| ALS1(1step)                                                                                                                                                                                                                                                                                               | 59.9                                                                                                                              | 51.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44.1                                                                                  | 38.9                                                                                                                                                                                                                                         | 38.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40.4                                                                                                                                                                                            | 90.6                                                                                                                      | 81.7                                                                                                                                                                                  | 71.1                                                                                  | 57.9                                                                                                                                   | 46.5                                                                                                                                                             |
| ALS1(2step)                                                                                                                                                                                                                                                                                               | 68.4                                                                                                                              | 60.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 53.6                                                                                  | 48.9                                                                                                                                                                                                                                         | 47.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43.7                                                                                                                                                                                            | 79.9                                                                                                                      | 67.9                                                                                                                                                                                  | 54.2                                                                                  | 45.4                                                                                                                                   | 42.8                                                                                                                                                             |
| ALS1(CUĖ)                                                                                                                                                                                                                                                                                                 | 87.3                                                                                                                              | 82.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76.5                                                                                  | 70.7                                                                                                                                                                                                                                         | 64.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 73.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 62.4                                                                                                                                                                                            | 98.5                                                                                                                      | 97.2                                                                                                                                                                                  | 92.1                                                                                  | 83.6                                                                                                                                   | 69.6                                                                                                                                                             |
| NT1(1step)                                                                                                                                                                                                                                                                                                | 78.8                                                                                                                              | 85.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88.6                                                                                  | 91.6                                                                                                                                                                                                                                         | 94.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.0                                                                                                                                                                                           | 100.0                                                                                                                     | 100.0                                                                                                                                                                                 | 100.0                                                                                 | 100.0                                                                                                                                  | 100.0                                                                                                                                                            |
| NT1(2step)                                                                                                                                                                                                                                                                                                | 87.6                                                                                                                              | 90.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92.4                                                                                  | 94.3                                                                                                                                                                                                                                         | 95.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.0                                                                                                                                                                                           | 100.0                                                                                                                     | 100.0                                                                                                                                                                                 | 100.0                                                                                 | 100.0                                                                                                                                  | 100.0                                                                                                                                                            |
| NT1(CUĖ)                                                                                                                                                                                                                                                                                                  | 90.8                                                                                                                              | 92.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93.3                                                                                  | 94.5                                                                                                                                                                                                                                         | 95.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 98.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99.6                                                                                                                                                                                            | 100.0                                                                                                                     | 100.0                                                                                                                                                                                 | 100.0                                                                                 | 100.0                                                                                                                                  | 100.0                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                           |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                 |                                                                                                                           |                                                                                                                                                                                       |                                                                                       |                                                                                                                                        |                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                           | Powe                                                                                                                              | $r(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Size                                                                                  | Powe                                                                                                                                                                                                                                         | $r(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Powe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $r(H_1)$                                                                                                                                                                                        | Powe                                                                                                                      | $r(H_1)$                                                                                                                                                                              | Size                                                                                  | Powe                                                                                                                                   | $r(H_1)$                                                                                                                                                         |
| Estimators $\setminus \beta$                                                                                                                                                                                                                                                                              | 0.90                                                                                                                              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00                                                                                  | 1.05                                                                                                                                                                                                                                         | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.10                                                                                                                                                                                            | 0.90                                                                                                                      | 0.95                                                                                                                                                                                  | 1.00                                                                                  | 1.05                                                                                                                                   | 1.10                                                                                                                                                             |
| ML                                                                                                                                                                                                                                                                                                        | 21.7                                                                                                                              | 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.9                                                                                   | 8.9                                                                                                                                                                                                                                          | 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35.9                                                                                                                                                                                            | 53.5                                                                                                                      | 18.5                                                                                                                                                                                  | 4.6                                                                                   | 19.5                                                                                                                                   | 56.7                                                                                                                                                             |
| ALS1(1step)                                                                                                                                                                                                                                                                                               | 37.0                                                                                                                              | 36.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36.5                                                                                  | 38.6                                                                                                                                                                                                                                         | 41.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 57.5                                                                                                                                                                                            | 39.0                                                                                                                      | 43.3                                                                                                                                                                                  | 52.7                                                                                  | 64.0                                                                                                                                   | 74.1                                                                                                                                                             |
| ALS1(2step)                                                                                                                                                                                                                                                                                               | 44.0                                                                                                                              | 43.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45.0                                                                                  | 46.8                                                                                                                                                                                                                                         | 51.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53.6                                                                                                                                                                                            | 40.3                                                                                                                      | 38.1                                                                                                                                                                                  | 41.8                                                                                  | 49.2                                                                                                                                   | 57.2                                                                                                                                                             |
| ALS1(CUE)                                                                                                                                                                                                                                                                                                 | 51.8                                                                                                                              | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59.0                                                                                  | 64.8                                                                                                                                                                                                                                         | 70.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.2                                                                                                                                                                                            | 517                                                                                                                       | 62.1                                                                                                                                                                                  | 73 3                                                                                  | 85.2                                                                                                                                   | 92.4                                                                                                                                                             |
| NT1(1step)                                                                                                                                                                                                                                                                                                | 22.1                                                                                                                              | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.2                                                                                  | 9.3                                                                                                                                                                                                                                          | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3                                                                                                                                                                                            | 52.3                                                                                                                      | 31.6                                                                                                                                                                                  | 15.3                                                                                  | 9.7                                                                                                                                    | 11.3                                                                                                                                                             |
| NT1(2step)                                                                                                                                                                                                                                                                                                | 37.1                                                                                                                              | 30.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.4                                                                                  | 20.6                                                                                                                                                                                                                                         | 22.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.5                                                                                                                                                                                            | 64.2                                                                                                                      | 44.6                                                                                                                                                                                  | 28.5                                                                                  | 17.6                                                                                                                                   | 15.6                                                                                                                                                             |
| NT1(CUE)                                                                                                                                                                                                                                                                                                  | 42.3                                                                                                                              | 39.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38.3                                                                                  | 37.5                                                                                                                                                                                                                                         | 37.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.7                                                                                                                                                                                            | 55.4                                                                                                                      | 41.9                                                                                                                                                                                  | 30.4                                                                                  | 24.4                                                                                                                                   | 25.9                                                                                                                                                             |
| ( )                                                                                                                                                                                                                                                                                                       | -                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                           |                                                                                                                                                                                       |                                                                                       |                                                                                                                                        |                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                           |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       | 7                                                                                                                                                                                                                                            | 7 = 6, 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\gamma = 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\beta = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.0, f_t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sim tren$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d                                                                                                                                                                                               |                                                                                                                           |                                                                                                                                                                                       |                                                                                       |                                                                                                                                        |                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                           |                                                                                                                                   | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V = 15                                                                                | $\frac{7}{50}$                                                                                                                                                                                                                               | 7 = 6, 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\gamma = 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\beta = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.0, f_t$<br>N = 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\sim tren$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd                                                                                                                                                                                              | <br>                                                                                                                      | 1                                                                                                                                                                                     | V = 50                                                                                | 0                                                                                                                                      |                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                           |                                                                                                                                   | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V = 15                                                                                | 7<br>50                                                                                                                                                                                                                                      | r = 6, r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\gamma = 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\beta = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{1.0, f_t}{V = 30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\sim tren$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd                                                                                                                                                                                              |                                                                                                                           | 1                                                                                                                                                                                     | V = 50                                                                                | 0                                                                                                                                      |                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                           | Powe                                                                                                                              | N<br>$r(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V = 15Size                                                                            | 7<br>50<br>Powe                                                                                                                                                                                                                              | $r(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\gamma = 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\beta = \frac{1}{\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{1.0, f_t}{V = 30}$ $\frac{\gamma}{\text{Size}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim tren$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $r(H_1)$                                                                                                                                                                                        | Powe                                                                                                                      | )<br>r(H <sub>1</sub> )                                                                                                                                                               | V = 50Size                                                                            | 0<br>Powe                                                                                                                              | $r(H_1)$                                                                                                                                                         |
| Estimators $\setminus \gamma$                                                                                                                                                                                                                                                                             | Powe<br>0.70                                                                                                                      | N<br>er(H <sub>1</sub> )<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V = 15<br>Size<br>0.80                                                                | 7<br>50<br>Powe<br>0.85                                                                                                                                                                                                                      | $r(H_1) = 6, r(H_1) = 0.90$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\gamma = 0.8$ Power 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\beta = \frac{1}{\beta}$ $r(H_1)$ $0.75$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{1.0, f_t}{V = 30}$ $\frac{\gamma}{Size}$ $0.80$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim tren$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $r(H_1) = 0.90$                                                                                                                                                                                 | Powe<br>0.70                                                                                                              | $r(H_1) = 0.75$                                                                                                                                                                       | V = 50<br>Size<br>0.80                                                                | 0<br>Powe<br>0.85                                                                                                                      | $r(H_1) = 0.90$                                                                                                                                                  |
| Estimators $\setminus \gamma$<br>ML                                                                                                                                                                                                                                                                       | Powe<br>0.70<br>92.1                                                                                                              | N<br>er(H <sub>1</sub> )<br>0.75<br>40.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V = 15<br>Size<br>0.80<br>6.1                                                         | 7<br>50<br>Powe<br>0.85<br>39.0                                                                                                                                                                                                              | $r(H_1)$<br>0.90<br>89.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\gamma = 0.8$<br>Power<br>0.70<br>100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\beta = \frac{1}{2}$<br>r(H <sub>1</sub> )<br>0.75<br>68.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{1.0, f_t}{V = 30}$ $\frac{\gamma}{Size}$ $\frac{0.80}{5.8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\sim tren$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $r(H_1)$<br>0.90<br>99.3                                                                                                                                                                        | Powe<br>0.70<br>100.0                                                                                                     | $r(H_1)$<br>0.75<br>87.2                                                                                                                                                              | V = 50<br>Size<br>0.80<br>5.7                                                         | 0<br>Powe<br>0.85<br>86.6                                                                                                              | $r(H_1) = 0.90 = 99.9$                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                           | Powe<br>0.70<br>92.1<br>82.9                                                                                                      | $ \frac{N}{100000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V = 15<br>Size<br>0.80<br>6.1<br>49.1                                                 | 7<br>50<br>0.85<br>39.0<br>52.1                                                                                                                                                                                                              | $r(H_1)$<br>0.90<br>89.0<br>69.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\gamma = 0.8$<br>Power<br>0.70<br>100.0<br>94.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\beta = \frac{1}{2}$<br>r(H <sub>1</sub> )<br>0.75<br>68.0<br>79.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \frac{1.0, f_t}{V = 30} $ $ \frac{\gamma}{Size} $ $ \frac{0.80}{5.8} $ $ 48.9 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\sim trendo$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $     r(H_1) \\     0.90 \\     99.3 \\     78.5     $                                                                                                                                          | Powe<br>0.70<br>100.0<br>98.2                                                                                             | $r(H_1) = \frac{0.75}{87.2}$                                                                                                                                                          | V = 50 Size $0.80$ 5.7 $48.0$                                                         | 0<br>Powe<br>0.85<br>86.6<br>54.1                                                                                                      | $r(H_1) \\ 0.90 \\ 99.9 \\ 87.1$                                                                                                                                 |
| Estimators \ γ<br>ML<br>ALS1(1step)<br>ALS1(2step)                                                                                                                                                                                                                                                        | Powe<br>0.70<br>92.1<br>82.9<br>75.0                                                                                              | $\frac{N}{100000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V = 15<br>Size<br>0.80<br>6.1<br>49.1<br>57.1                                         | 7<br>50<br>0.85<br>39.0<br>52.1<br>69.3                                                                                                                                                                                                      | $r(H_1)$<br>0.90<br>89.0<br>69.8<br>87.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\gamma = 0.8$<br>Power<br>0.70<br>100.0<br>94.9<br>87.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\beta = \frac{1}{2}$<br>r(H <sub>1</sub> )<br>0.75<br>68.0<br>79.8<br>66.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $   \begin{array}{r}     1.0, f_t \\     V = 30 \\     \hline     \hline                         $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\sim trendo00Powe0.8564.852.179.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \text{nd} \\ \hline \\ \text{r(H}_1) \\ 0.90 \\ 99.3 \\ 78.5 \\ 97.3 \end{array}$                                                                                             | Powe<br>0.70<br>100.0<br>98.2<br>91.5                                                                                     | $     r(H_1) \\         0.75 \\         87.2 \\         88.8 \\         67.1     $                                                                                                    | V = 50 Size 0.80 5.7 48.0 62.6                                                        | 0<br>Powe<br>0.85<br>86.6<br>54.1<br>89.8                                                                                              | $r(H_1) \\ 0.90 \\ 99.9 \\ 87.1 \\ 99.5$                                                                                                                         |
| Estimators \ γ<br>ML<br>ALS1(1step)<br>ALS1(2step)<br>ALS1(CUE)                                                                                                                                                                                                                                           | Powe<br>0.70<br>92.1<br>82.9<br>75.0<br>80.6                                                                                      | $\frac{N}{100000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V = 15<br>Size<br>0.80<br>6.1<br>49.1<br>57.1<br>58.5                                 | 7<br>50<br>0.85<br>39.0<br>52.1<br>69.3<br>62.1                                                                                                                                                                                              | $r(H_1)$<br>0.90<br>89.0<br>69.8<br>87.1<br>76.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \gamma = 0.8 \\ \hline \\ 0.70 \\ 100.0 \\ 94.9 \\ 87.1 \\ 92.2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\beta = \frac{1}{2}$<br>r(H <sub>1</sub> )<br>0.75<br>68.0<br>79.8<br>66.0<br>79.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $   \begin{array}{r}     1.0, f_t \\     V = 30 \\     \hline     \hline     \hline                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{nd} \\ \hline \\ \text{r(H_1)} \\ 0.90 \\ \hline \\ 99.3 \\ 78.5 \\ 97.3 \\ 87.4 \\ \end{array}$                                                                        | Powe<br>0.70<br>100.0<br>98.2<br>91.5<br>97.9                                                                             | $r(H_1) = 0.75$ 87.2 88.8 67.1 86.1                                                                                                                                                   | V = 50 Size 0.80 5.7 48.0 62.6 49.6                                                   | 0<br>Powe<br>0.85<br>86.6<br>54.1<br>89.8<br>64.5                                                                                      | $r(H_1) \\ 0.90 \\ 99.9 \\ 87.1 \\ 99.5 \\ 94.4$                                                                                                                 |
|                                                                                                                                                                                                                                                                                                           | Powe<br>0.70<br>92.1<br>82.9<br>75.0<br>80.6<br>0.5                                                                               | $ \frac{N}{100000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V = 15 Size 0.80 6.1 49.1 57.1 58.5 0.3                                               | 7<br>50<br>0.85<br>39.0<br>52.1<br>69.3<br>62.1<br>0.3                                                                                                                                                                                       | $r(H_1)$<br>0.90<br>89.0<br>69.8<br>87.1<br>76.8<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \gamma = 0.8 \\ \hline \\ 0.70 \\ 100.0 \\ 94.9 \\ 87.1 \\ 92.2 \\ 0.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\beta = \frac{\beta}{1}$<br>r(H <sub>1</sub> )<br>0.75<br>68.0<br>79.8<br>66.0<br>79.8<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $   \begin{array}{r}     1.0, f_t \\     V = 30 \\     \hline     \hline     \hline                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{r} \sim tren \\ \hline 00 \\ \hline 00 \\ \hline 0.85 \\ \hline 64.8 \\ 52.1 \\ 79.4 \\ 60.7 \\ 0.0 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \text{nd} \\ \hline \\ \text{r(H_1)} \\ 0.90 \\ \hline 99.3 \\ 78.5 \\ 97.3 \\ 87.4 \\ 2.9 \end{array}$                                                                       | Powe<br>0.70<br>100.0<br>98.2<br>91.5<br>97.9<br>0.0                                                                      | $\begin{array}{r} \hline r(H_1) \\ 0.75 \\ \hline 87.2 \\ 88.8 \\ 67.1 \\ 86.1 \\ 0.0 \\ \end{array}$                                                                                 | V = 50 Size 0.80 5.7 48.0 62.6 49.6 0.0                                               | 0<br>Powe<br>0.85<br>86.6<br>54.1<br>89.8<br>64.5<br>1.4                                                                               | $r(H_1) \\ 0.90 \\ 99.9 \\ 87.1 \\ 99.5 \\ 94.4 \\ 40.8 \\$                                                                                                      |
| Estimators \ $\gamma$<br>ML<br>ALS1(1step)<br>ALS1(2step)<br>ALS1(CUE)<br>NT1(1step)<br>NT1(2step)                                                                                                                                                                                                        | Powe<br>0.70<br>92.1<br>82.9<br>75.0<br>80.6<br>0.5<br>0.4                                                                        | $\begin{array}{c} \hline \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V = 15 Size 0.80 6.1 49.1 57.1 58.5 0.3 0.3                                           | 7<br>0<br>0.85<br>39.0<br>52.1<br>69.3<br>62.1<br>0.3<br>0.4                                                                                                                                                                                 | $r(H_1)$<br>0.90<br>89.0<br>69.8<br>87.1<br>76.8<br>0.7<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \gamma = 0.8 \\ \hline 0.70 \\ 100.0 \\ 94.9 \\ 87.1 \\ 92.2 \\ 0.0 \\ 0.0 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{\beta}{r(H_1)} = \frac{\beta}{r(H_1)}$ $\frac{\sigma}{r(H_1)} = \frac{\sigma}{r(H_1)}$ | $   \begin{array}{r}     1.0, f_t \\     \overline{V = 3} \\     \hline     \hline     \hline     \hline     \hline     \hline     \hline     Size \\     0.80 \\     \hline     \overline{5.8} \\     48.9 \\     56.2 \\     52.8 \\     0.0 \\     0.0 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{r} \sim tren \\ \hline 00 \\ \hline \\ \hline \\ \hline \\ \hline \\ 0.85 \\ \hline \\ 64.8 \\ 52.1 \\ 79.4 \\ 60.7 \\ 0.0 \\ 0.1 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \text{id} \\ \hline \\ \text{r}(\text{H}_{1}) \\ 0.90 \\ 99.3 \\ 78.5 \\ 97.3 \\ 87.4 \\ 2.9 \\ 8.6 \end{array}$                                                              | Powe<br>0.70<br>100.0<br>98.2<br>91.5<br>97.9<br>0.0<br>0.0                                                               | $\begin{array}{r} \hline r(H_1) \\ 0.75 \\ 87.2 \\ 88.8 \\ 67.1 \\ 86.1 \\ 0.0 \\ 0.0 \\ \end{array}$                                                                                 | V = 500 Size 0.80 5.7 48.0 62.6 49.6 0.0 0.1                                          | 0<br>Powe<br>0.85<br>86.6<br>54.1<br>89.8<br>64.5<br>1.4<br>4.2                                                                        | $r(H_1) \\ 0.90 \\ 99.9 \\ 87.1 \\ 99.5 \\ 94.4 \\ 40.8 \\ 55.8 \\$                                                                                              |
| Estimators \ γ<br>ML<br>ALS1(1step)<br>ALS1(2step)<br>ALS1(CUE)<br>NT1(1step)<br>NT1(2step)<br>NT1(CUE)                                                                                                                                                                                                   | Powe<br>0.70<br>92.1<br>82.9<br>75.0<br>80.6<br>0.5<br>0.4<br>1.1                                                                 | $\begin{array}{c} \hline \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V = 15 Size 0.80 6.1 49.1 57.1 58.5 0.3 0.3 0.6                                       | 7<br>50<br>Powe<br>0.85<br>39.0<br>52.1<br>69.3<br>62.1<br>0.3<br>0.4<br>0.7                                                                                                                                                                 | $r(H_1)$<br>0.90<br>89.0<br>69.8<br>87.1<br>76.8<br>0.7<br>2.0<br>2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \gamma = 0.8 \\ \hline \\ Power \\ 0.70 \\ 100.0 \\ 94.9 \\ 87.1 \\ 92.2 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \beta = \frac{1}{2} \\ \hline r(H_1) \\ 0.75 \\ \hline 68.0 \\ 79.8 \\ 66.0 \\ 79.8 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $   \begin{array}{r}     \text{I.0, } f_t \\     \overline{\text{V} = 3} \\     \overline{\text{V} = 3} \\     \overline{\text{V} = 3} \\     \overline{\text{Size}} \\     \overline{\text{0.80}} \\     \overline{\text{5.8}} \\     48.9 \\     56.2 \\     52.8 \\     0.0 \\     0.0 \\     0.0 \\     0.0 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \sim tren \\ \hline 00 \\ \hline \\ \hline \\ \hline \\ \hline \\ 0.85 \\ \hline \\ 64.8 \\ 52.1 \\ 79.4 \\ 60.7 \\ 0.0 \\ 0.1 \\ 0.1 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                 | Powe<br>0.70<br>100.0<br>98.2<br>91.5<br>97.9<br>0.0<br>0.0<br>0.0                                                        | r(H <sub>1</sub> )<br>0.75<br>87.2<br>88.8<br>67.1<br>86.1<br>0.0<br>0.0<br>0.0                                                                                                       | V = 50 Size 0.80 5.7 48.0 62.6 49.6 0.0 0.1 0.0                                       | 0<br>Powe<br>0.85<br>86.6<br>54.1<br>89.8<br>64.5<br>1.4<br>4.2<br>4.1                                                                 | $r(H_1) \\ 0.90 \\ 99.9 \\ 87.1 \\ 99.5 \\ 94.4 \\ 40.8 \\ 55.8 \\ 53.7 \\$                                                                                      |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                  | Powe<br>0.70<br>92.1<br>82.9<br>75.0<br>80.6<br>0.5<br>0.4<br>1.1                                                                 | $\begin{array}{c} \hline \\ r(H_1) \\ 0.75 \\ \hline 40.4 \\ 66.3 \\ 65.1 \\ 71.6 \\ 0.4 \\ 0.3 \\ 1.0 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V = 15 Size 0.80 6.1 49.1 57.1 58.5 0.3 0.3 0.6                                       | $\begin{array}{c} 7\\ \hline 60\\ \hline 0.85\\ 39.0\\ 52.1\\ 69.3\\ 62.1\\ 0.3\\ 0.4\\ 0.7\\ \end{array}$                                                                                                                                   | $\vec{r}(H_1) = 6, \vec{r}$ $\vec{r}(H_1) = 0.90$ $\vec{8}9.0$ $\vec{6}9.8$ $\vec{8}7.1$ $\vec{7}6.8$ $\vec{0.7}$ $\vec{2.0}$ $\vec{2.5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \gamma = 0.8 \\ \hline \\ 0.70 \\ 100.0 \\ 94.9 \\ 87.1 \\ 92.2 \\ 0.0 \\ 0.0 \\ 0.0 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\beta = \frac{1}{2}$ $r(H_1)$ $0.75$ $68.0$ $79.8$ $66.0$ $79.8$ $0.0$ $0.0$ $0.0$ $0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \frac{1.0, f_t}{V = 30} = \frac{1.0, f_t}{\gamma} = \frac{1.0, f_t}{V = 30} = \frac{1}{2} = $ | $\begin{array}{c} \sim tren \\ \hline 00 \\ \hline \\ \hline \\ 0.85 \\ \hline 64.8 \\ 52.1 \\ 79.4 \\ 60.7 \\ 0.0 \\ 0.1 \\ 0.1 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} {\rm r(H_1)}\\ 0.90\\ 99.3\\ 78.5\\ 97.3\\ 87.4\\ 2.9\\ 8.6\\ 8.5\\ \end{array}$                                                                                              | Powe<br>0.70<br>100.0<br>98.2<br>91.5<br>97.9<br>0.0<br>0.0<br>0.0                                                        | $\begin{array}{r} \hline \\ r(H_1) \\ 0.75 \\ 87.2 \\ 88.8 \\ 67.1 \\ 86.1 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ \end{array}$                                                                | V = 50 Size 0.80 5.7 48.0 62.6 49.6 0.0 0.1 0.0                                       | 0<br>Powe<br>0.85<br>86.6<br>54.1<br>89.8<br>64.5<br>1.4<br>4.2<br>4.1                                                                 | $r(H_1) \\ 0.90 \\ 99.9 \\ 87.1 \\ 99.5 \\ 94.4 \\ 40.8 \\ 55.8 \\ 53.7 \\$                                                                                      |
| $\begin{tabular}{ c c c c c } \hline Estimators & & & \gamma \\ \hline ML \\ ALS1(1step) \\ ALS1(2step) \\ ALS1(CUE) \\ NT1(1step) \\ NT1(2step) \\ NT1(CUE) \\ \hline \end{tabular}$                                                                                                                     | Powe<br>0.70<br>92.1<br>82.9<br>75.0<br>80.6<br>0.5<br>0.4<br>1.1<br>Powe                                                         | $ \frac{N}{100000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V = 15 Size 0.80 6.1 49.1 57.1 58.5 0.3 0.3 0.6 Size                                  | 7<br>50<br>Powe<br>0.85<br>39.0<br>52.1<br>69.3<br>62.1<br>0.3<br>0.4<br>0.7<br>Powe                                                                                                                                                         | $r(H_1)$<br>0.90<br>89.0<br>69.8<br>87.1<br>76.8<br>0.7<br>2.0<br>2.5<br>$r(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \gamma = 0.8 \\ \hline \\ 0.70 \\ 100.0 \\ 94.9 \\ 87.1 \\ 92.2 \\ 0.0 \\ 0.0 \\ 0.0 \\ \hline \\ Powei \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\beta = \frac{1}{2}$ $r(H_1)$ $0.75$ $68.0$ $79.8$ $66.0$ $79.8$ $0.0$ $0.0$ $0.0$ $0.0$ $r(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \frac{1.0, f_t}{V = 30} $ $ \frac{1.0, f_t}{S.8} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \sim tren \\ \hline 00 \\ \hline \\ \hline \\ 0.85 \\ \hline 64.8 \\ 52.1 \\ 79.4 \\ 60.7 \\ 0.0 \\ 0.1 \\ 0.1 \\ \hline \\ \hline \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $r(H_1) = 0.90$ 99.3 78.5 97.3 87.4 2.9 8.6 8.5 $r(H_1)$                                                                                                                                        | Powe<br>0.70<br>100.0<br>98.2<br>91.5<br>97.9<br>0.0<br>0.0<br>0.0<br>0.0                                                 | $ \frac{1}{r(H_1)} \\ 0.75 \\ 87.2 \\ 88.8 \\ 67.1 \\ 86.1 \\ 0.0 \\ 0.0 \\ 0.0 \\ r(H_1) $                                                                                           | V = 50 Size 0.80 5.7 48.0 62.6 49.6 0.0 0.1 0.0 Size                                  | 0<br>Powe<br>0.85<br>86.6<br>54.1<br>89.8<br>64.5<br>1.4<br>4.2<br>4.1<br>Powe                                                         | $r(H_1)$<br>0.90<br>99.9<br>87.1<br>99.5<br>94.4<br>40.8<br>55.8<br>53.7<br>$r(H_1)$                                                                             |
| $\begin{tabular}{ c c c c } \hline Estimators & & & & \\ \hline ML \\ ALS1(1step) \\ ALS1(2step) \\ ALS1(CUE) \\ NT1(1step) \\ NT1(2step) \\ NT1(CUE) \\ \hline \\ Estimators & & & & & \\ \hline \end{tabular}$                                                                                          | Powe<br>0.70<br>92.1<br>82.9<br>75.0<br>80.6<br>0.5<br>0.4<br>1.1<br>Powe<br>0.90                                                 | $ \frac{N}{100000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V = 15 Size 0.80 6.1 49.1 57.1 58.5 0.3 0.3 0.6 Size 1.00                             | 7<br>60<br>Powe<br>0.85<br>39.0<br>52.1<br>69.3<br>62.1<br>0.3<br>0.4<br>0.7<br>Powe<br>1.05                                                                                                                                                 | $r(H_1)$<br>0.90<br>89.0<br>69.8<br>87.1<br>76.8<br>0.7<br>2.0<br>2.5<br>$r(H_1)$<br>1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \gamma = 0.8 \\ \hline \\ Power \\ 0.70 \\ 100.0 \\ 94.9 \\ 87.1 \\ 92.2 \\ 0.0 \\ 0.0 \\ 0.0 \\ \hline \\ 0.0 \\ 0.0 \\ \hline \\ 0.90 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \beta = \frac{1}{2} \\ \hline r(H_1) \\ 0.75 \\ \hline 68.0 \\ 79.8 \\ 66.0 \\ 79.8 \\ 0.0 \\ 0.0 \\ 0.0 \\ \hline 0.0 \\ \hline r(H_1) \\ 0.95 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $   \begin{array}{r}     1.0, f_t \\     \overline{V} = 3i \\     \overline{\gamma} \\     Size \\     0.80 \\     \overline{5.8} \\     48.9 \\     56.2 \\     52.8 \\     0.0 \\     0.0 \\     \overline{0.0} \\     \overline{\beta} \\     Size \\     1.00   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \sim tren \\ \hline 00 \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \text{id} \\ \hline \\ \text{r}(\text{H}_{1}) \\ 0.90 \\ \hline 99.3 \\ 78.5 \\ 97.3 \\ 87.4 \\ 2.9 \\ 8.6 \\ 8.5 \\ \hline \\ \text{r}(\text{H}_{1}) \\ 1.10 \\ \end{array}$ | Powe<br>0.70<br>100.0<br>98.2<br>91.5<br>97.9<br>0.0<br>0.0<br>0.0<br>0.0<br>Powe<br>0.90                                 | $\begin{array}{c} \hline \\ \hline \\ r(H_1) \\ 0.75 \\ 87.2 \\ 88.8 \\ 67.1 \\ 86.1 \\ 0.0 \\ 0.0 \\ 0.0 \\ \hline \\ r(H_1) \\ 0.95 \\ \end{array}$                                 | V = 50 Size 0.80 5.7 48.0 62.6 49.6 0.0 0.1 0.0 Size 1.00                             | 0<br>Powe<br>0.85<br>86.6<br>54.1<br>89.8<br>64.5<br>1.4<br>4.2<br>4.1<br>Powe<br>1.05                                                 | $\begin{array}{c} r(\mathrm{H_1}) \\ 0.90 \\ 99.9 \\ 87.1 \\ 99.5 \\ 94.4 \\ 40.8 \\ 55.8 \\ 53.7 \\ \hline r(\mathrm{H_1}) \\ 1.10 \end{array}$                 |
| $\begin{tabular}{ c c c c } \hline Estimators & & \gamma \\ \hline ML \\ ALS1(1step) \\ ALS1(2step) \\ ALS1(CUE) \\ NT1(1step) \\ NT1(2step) \\ NT1(CUE) \\ \hline Estimators & & \beta \\ \hline ML \\ \hline \end{tabular}$                                                                             | Powe<br>0.70<br>92.1<br>82.9<br>75.0<br>80.6<br>0.5<br>0.4<br>1.1<br>Powe<br>0.90<br>57.9                                         | $\begin{array}{c} \hline N \\ \hline r(H_1) \\ 0.75 \\ \hline 40.4 \\ 66.3 \\ 65.1 \\ 71.6 \\ 0.4 \\ 0.3 \\ 1.0 \\ \hline r(H_1) \\ 0.95 \\ \hline 18.8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V = 15 Size 0.80 6.1 49.1 57.1 58.5 0.3 0.3 0.6 Size 1.00 5.7                         | 7<br>60<br>Powe<br>0.85<br>39.0<br>52.1<br>69.3<br>62.1<br>0.3<br>0.4<br>0.7<br>Powe<br>1.05<br>17.3                                                                                                                                         | $\vec{r} = 6, \vec{r} = 6, \vec{r}$ | $\begin{array}{c} \gamma = 0.8\\ \hline \\ Power\\ 0.70\\ 100.0\\ 94.9\\ 87.1\\ 92.2\\ 0.0\\ 0.0\\ 0.0\\ \hline \\ 0.0\\ 0.0\\ \hline \\ 0.90\\ 82.1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \beta = \frac{1}{2} \\ \hline r(H_1) \\ 0.75 \\ \hline 68.0 \\ 79.8 \\ 66.0 \\ 79.8 \\ 0.0 \\ 0.0 \\ 0.0 \\ \hline 0.0 \\ \hline r(H_1) \\ 0.95 \\ \hline 33.7 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $   \begin{array}{r}     1.0, f_t \\     \overline{V} = 3i \\     \overline{\gamma} \\     \overline{Size} \\     0.80 \\     \overline{5.8} \\     48.9 \\     56.2 \\     52.8 \\     0.0 \\     0.0 \\     \overline{0.0} \\     \overline{0.0} \\     \overline{Size} \\     1.00 \\     \overline{5.2} \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \sim tren \\ \hline 00 \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                 | Powe<br>0.70<br>100.0<br>98.2<br>91.5<br>97.9<br>0.0<br>0.0<br>0.0<br>0.0<br>Powe<br>0.90<br>97.1                         | r(H <sub>1</sub> )<br>0.75<br>87.2<br>88.8<br>67.1<br>86.1<br>0.0<br>0.0<br>0.0<br>r(H <sub>1</sub> )<br>0.95<br>47.1                                                                 | V = 50 Size 0.80 5.7 48.0 62.6 49.6 0.1 0.0 Size 1.00 5.2                             | 0<br>Powe<br>0.85<br>86.6<br>54.1<br>89.8<br>64.5<br>1.4<br>4.2<br>4.1<br>Powe<br>1.05<br>48.9                                         | $\begin{array}{c} r(H_1) \\ 0.90 \\ 99.9 \\ 87.1 \\ 99.5 \\ 94.4 \\ 40.8 \\ 55.8 \\ 53.7 \\ \hline r(H_1) \\ 1.10 \\ 96.5 \end{array}$                           |
| $\begin{tabular}{ c c c c c } \hline Estimators & & & & \\ \hline ML \\ ALS1(1step) \\ ALS1(2step) \\ ALS1(CUE) \\ NT1(1step) \\ NT1(2step) \\ NT1(CUE) \\ \hline Estimators & & & & \\ \hline ML \\ ALS1(1step) \\ \hline \end{tabular}$                                                                 | Powe<br>0.70<br>92.1<br>82.9<br>75.0<br>80.6<br>0.5<br>0.4<br>1.1<br>Powe<br>0.90<br>57.9<br>50.8                                 | $ \frac{N}{r(H_1)} \\ 0.75 \\ 40.4 \\ 66.3 \\ 65.1 \\ 71.6 \\ 0.4 \\ 0.3 \\ 1.0 \\ rr(H_1) \\ 0.95 \\ 18.8 \\ 43.4 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V = 18 Size 0.80 6.1 49.1 57.1 58.5 0.3 0.3 0.6 Size 1.00 5.7 38.8                    | 7<br>60<br>Powe<br>0.85<br>39.0<br>52.1<br>69.3<br>62.1<br>0.3<br>0.4<br>0.7<br>Powe<br>1.05<br>17.3<br>34.4                                                                                                                                 | $\begin{array}{c} \mathbf{r} = 6, \\ \mathbf{r} (\mathbf{H}_1) \\ 0.90 \\ 89.0 \\ 69.8 \\ 87.1 \\ 76.8 \\ 0.7 \\ 2.0 \\ 2.5 \\ \hline \mathbf{r} (\mathbf{H}_1) \\ 1.10 \\ 54.8 \\ 36.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \gamma = 0.8 \\ \hline \\ 0.70 \\ 0.70 \\ 94.9 \\ 87.1 \\ 92.2 \\ 0.0 \\ 0.0 \\ 0.0 \\ \hline \\ 0.9 \\ 82.1 \\ 50.9 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \beta = 1\\ \hline \\ r(H_1)\\ 0.75\\ \hline 68.0\\ 79.8\\ 66.0\\ 79.8\\ 66.0\\ 79.8\\ 0.0\\ 0.0\\ 0.0\\ \hline \\ r(H_1)\\ 0.95\\ \hline 33.7\\ 43.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $     \begin{array}{r}       1.0, f_t \\       V = 30 \\       \hline       7 \\       Size \\       0.80 \\       5.8 \\       48.9 \\       56.2 \\       52.8 \\       0.0 \\       0.0 \\       0.0 \\       \hline       0.0 \\       \hline       Size \\       1.00 \\       5.2 \\       47.9 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \sim tren \\ \hline 00 \\ \hline \\ \hline \\ Powe \\ 0.85 \\ \hline \\ 64.8 \\ 52.1 \\ 79.4 \\ 60.7 \\ 0.0 \\ 0.1 \\ 0.1 \\ \hline \\ 0.1 \\ \hline \\ 9 \\ \hline \\ 0.1 \\ 59.2 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                 | Powe<br>0.70<br>100.0<br>98.2<br>91.5<br>97.9<br>0.0<br>0.0<br>0.0<br>0.0<br>Powe<br>0.90<br>97.1<br>51.4                 | r(H <sub>1</sub> )<br>0.75<br>87.2<br>88.8<br>67.1<br>86.1<br>0.0<br>0.0<br>0.0<br>r(H <sub>1</sub> )<br>0.95<br>47.1<br>40.0                                                         | $V = 50^{\circ}$ Size 0.80 5.7 48.0 62.6 49.6 0.0 0.1 0.0 Size 1.00 5.2 52.0          | 0<br>Powe<br>0.85<br>86.6<br>54.1<br>89.8<br>64.5<br>1.4<br>4.2<br>4.1<br>Powe<br>1.05<br>48.9<br>77.8                                 | $\begin{array}{c} r(H_1)\\ 0.90\\ 99.9\\ 87.1\\ 99.5\\ 94.4\\ 40.8\\ 55.8\\ 53.7\\ r(H_1)\\ 1.10\\ 96.5\\ 78.4 \end{array}$                                      |
| $\begin{tabular}{ c c c c c } \hline Estimators & & & & \\ \hline ML \\ ALS1(1step) \\ ALS1(2step) \\ ALS1(CUE) \\ NT1(1step) \\ NT1(2step) \\ NT1(CUE) \\ \hline \\ \hline Estimators & & & & \\ \hline ML \\ ALS1(1step) \\ ALS1(2step) \\ \hline \end{tabular}$                                        | Powe<br>0.70<br>92.1<br>82.9<br>75.0<br>80.6<br>0.5<br>0.4<br>1.1<br>Powe<br>0.90<br>57.9<br>50.8<br>66.1                         | $ \frac{N}{1.00} \frac{1}{1.00} \frac{1}{1.0$ | V = 18 Size 0.80 6.1 49.1 57.1 58.5 0.3 0.3 0.6 Size 1.00 5.7 38.8 43.0               | T           50           0.85           39.0           52.1           69.3           62.1           0.3           0.4           0.7           Powe           1.05           17.3           34.4           37.0                               | $r(H_1)$<br>0.90<br>89.0<br>69.8<br>87.1<br>76.8<br>0.7<br>2.0<br>2.5<br>$r(H_1)$<br>1.10<br>54.8<br>36.0<br>34.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \gamma = 0.8\\ \hline \\ Power\\ 0.70\\ 100.0\\ 94.9\\ 87.1\\ 92.2\\ 0.0\\ 0.0\\ 0.0\\ \hline \\ 0.0\\ 0.0\\ \hline \\ 87.1\\ 92.2\\ 0.0\\ 0.0\\ \hline \\ 87.1\\ 92.2\\ 0.0\\ 0.0\\ \hline \\ 94.9\\ 0.0\\ 0.0\\ \hline \\ 94.9\\ 0.0\\ 0.0\\ \hline \\ 94.9\\ 0.0\\ 0.0\\ 0.0\\ \hline \\ 94.9\\ 0.0\\ 0.0\\ 0.0\\ \hline \\ 94.9\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$ | $\begin{array}{c} \beta = \frac{1}{2} \\ \hline r(H_1) \\ 0.75 \\ \hline 68.0 \\ 79.8 \\ 66.0 \\ 79.8 \\ 66.0 \\ 79.8 \\ 0.0 \\ 0.0 \\ \hline 0.0 \\ 0.0 \\ \hline 0.0 \\ \hline 0.0 \\ \hline 0.0 \\ \hline 0.0 \\ 58.2 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $     \begin{array}{r}       1.0, f_t \\       V = 30 \\       \hline       7 \\       Size \\       0.80 \\       5.8 \\       48.9 \\       56.2 \\       52.8 \\       0.0 \\       0.0 \\       0.0 \\       0.0 \\       \hline       Size \\       1.00 \\       5.2 \\       47.9 \\       48.7 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \sim tren \\ \hline 00 \\ \hline \\ \hline \\ Powe \\ 0.85 \\ \hline 64.8 \\ 52.1 \\ 79.4 \\ 60.7 \\ 0.0 \\ 0.1 \\ 0.1 \\ \hline \\ 0.1 \\ \hline \\ 0.1 \\ \hline \\ 31.1 \\ 59.2 \\ 46.1 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                 | Powe<br>0.70<br>100.0<br>98.2<br>91.5<br>97.9<br>0.0<br>0.0<br>0.0<br>0.0<br>97.1<br>51.4<br>85.4                         | r(H <sub>1</sub> )<br>0.75<br>87.2<br>88.8<br>67.1<br>86.1<br>0.0<br>0.0<br>0.0<br>0.0<br>r(H <sub>1</sub> )<br>0.95<br>47.1<br>40.0<br>63.9                                          | V = 50 Size 0.80 5.7 48.0 62.6 49.6 0.0 0.1 0.0 Size 1.00 5.2 52.0 53.4               | 0<br>Powe<br>0.85<br>86.6<br>54.1<br>89.8<br>64.5<br>1.4<br>4.2<br>4.1<br>Powe<br>1.05<br>48.9<br>77.8<br>57.7                         | $\begin{array}{c} r(H_1)\\ 0.90\\ 99.9\\ 87.1\\ 99.5\\ 94.4\\ 40.8\\ 55.8\\ 55.8\\ 55.8\\ 53.7\\ r(H_1)\\ 1.10\\ 96.5\\ 78.4\\ 57.8\\ \end{array}$               |
| $\begin{tabular}{ c c c c c } \hline Estimators & & & & & \\ \hline ML & & & & \\ ALS1(1step) & & & \\ ALS1(2step) & & & & \\ ALS1(CUE) & & & & \\ NT1(CUE) & & & & \\ \hline Estimators & & & & & \\ \hline ML & & & & \\ ALS1(1step) & & & \\ ALS1(2step) & & \\ ALS1(CUE) & & \\ \hline \end{tabular}$ | Powe<br>0.70<br>92.1<br>82.9<br>75.0<br>80.6<br>0.5<br>0.4<br>1.1<br>Powe<br>0.90<br>57.9<br>50.8<br>66.1<br>60.3                 | $\begin{array}{c} & & \\ \hline \\ r(H_1) \\ 0.75 \\ 40.4 \\ 66.3 \\ 65.1 \\ 71.6 \\ 0.4 \\ 0.3 \\ 1.0 \\ \hline \\ r(H_1) \\ 0.95 \\ 18.8 \\ 43.4 \\ 53.6 \\ 48.9 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V = 15 Size 0.80 6.1 49.1 57.1 57.1 58.5 0.3 0.3 0.6 Size 1.00 5.7 38.8 43.0 43.6     | T           60           Powe           0.85           39.0           52.1           69.3           62.1           0.3           0.4           0.7           Powe           1.05           17.3           34.4           37.0           42.4 | $\begin{array}{c} \overline{r(H_1)}\\ 0.90\\ \overline{89.0}\\ 69.8\\ 87.1\\ 76.8\\ 0.7\\ 2.0\\ 2.5\\ \overline{r(H_1)}\\ 1.10\\ 54.8\\ 36.0\\ 34.5\\ 46.1\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \gamma = 0.8\\ \hline Power \\ 0.70\\ 100.0\\ 94.9\\ 87.1\\ 92.2\\ 0.0\\ 0.0\\ 0.0\\ \hline 0.0\\ 0.0\\ \hline 0.0\\ 82.1\\ 50.9\\ 75.6\\ 63.1\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \beta = \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c} 1.0, f_t \\ V = 30 \\ \hline \gamma \\ \hline Size \\ 0.80 \\ \hline 5.8 \\ 48.9 \\ 56.2 \\ 52.8 \\ 0.0 \\ 0.0 \\ \hline 0.0 \\ 0.0 \\ \hline 0.0 \\ \hline Size \\ 1.00 \\ \hline 5.2 \\ 47.9 \\ 48.7 \\ 45.0 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \sim tren \\ \hline 00 \\ \hline \\ \hline \\ 0.85 \\ 52.1 \\ 79.4 \\ 60.7 \\ 0.0 \\ 0.1 \\ 0.1 \\ 0.1 \\ \hline \\ \hline \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\$ |                                                                                                                                                                                                 | Powe<br>0.70<br>100.0<br>98.2<br>91.5<br>97.9<br>0.0<br>0.0<br>0.0<br>0.0<br>97.1<br>51.4<br>85.4<br>68.7                 | r(H <sub>1</sub> )<br>0.75<br>87.2<br>88.8<br>67.1<br>86.1<br>0.0<br>0.0<br>0.0<br>0.0<br>r(H <sub>1</sub> )<br>0.95<br>47.1<br>40.0<br>63.9<br>46.6                                  | V = 50 Size 0.80 5.7 48.0 62.6 49.6 0.0 0.1 0.0 Size 1.00 5.2 52.0 53.4 47.7          | 0<br>Powe<br>0.85<br>86.6<br>54.1<br>89.8<br>64.5<br>1.4<br>4.2<br>4.1<br>Powe<br>1.05<br>48.9<br>77.8<br>57.7<br>69.1                 | $\begin{array}{c} r(H_1)\\ 0.90\\ 99.9\\ 87.1\\ 99.5\\ 94.4\\ 40.8\\ 55.8\\ 53.7\\ r(H_1)\\ 1.10\\ 96.5\\ 78.4\\ 57.8\\ 73.1\\ \end{array}$                      |
| $\begin{tabular}{ c c c c c } \hline Estimators & & & \gamma \\ \hline ML \\ ALS1(1step) \\ ALS1(2step) \\ ALS1(CUE) \\ NT1(1step) \\ NT1(2step) \\ NT1(CUE) \\ \hline \\ \hline Estimators & & & & & \\ \hline ML \\ ALS1(1step) \\ ALS1(2step) \\ ALS1(CUE) \\ NT1(1step) \\ \hline \end{array}$        | Powe<br>0.70<br>92.1<br>82.9<br>75.0<br>80.6<br>0.5<br>0.4<br>1.1<br>Powe<br>0.90<br>57.9<br>50.8<br>66.1<br>60.3<br>26.3         | $\begin{tabular}{ c c c c c }\hline & & & & & \\ \hline r(H_1) & & & & \\ 0.75 & & & & \\ 40.4 & & & \\ 66.3 & & & & \\ 65.1 & & & & \\ 71.6 & & & & \\ 0.4 & & & & \\ 0.4 & & & & \\ 0.4 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V = 15 Size 0.80 6.1 49.1 57.1 58.5 0.3 0.3 0.6 Size 1.00 5.7 38.8 43.0 43.6 5.0      | T           60           0.85           39.0           52.1           69.3           62.1           0.3           0.4           0.7           Powe           1.05           17.3           34.4           37.0           42.4           17.8 | $\vec{r}(H_1) = 6, \vec{r}$ $\vec{r}(H_1) = 0.90$ $\vec{89.0} = 69.8$ $\vec{87.1} = 76.8$ $\vec{0.7} = 2.0$ $\vec{2.5} = \vec{r}(H_1)$ $\vec{1.10} = 54.8$ $\vec{36.0} = 34.5$ $\vec{46.1} = 41.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \gamma = 0.8\\ \hline Power \\ 0.70\\ 100.0\\ 94.9\\ 87.1\\ 92.2\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ \hline 0.90\\ 82.1\\ 50.9\\ 75.6\\ 63.1\\ 44.9 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \beta = \frac{1}{2} \\ \hline r(H_1) \\ 0.75 \\ 68.0 \\ 79.8 \\ 66.0 \\ 79.8 \\ 66.0 \\ 79.8 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ \hline r(H_1) \\ 0.95 \\ 33.7 \\ 43.0 \\ 58.2 \\ 50.1 \\ 11.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c} 1.0, f_t \\ \overline{\rm V=30} \\ \hline \gamma \\ \overline{\rm Size} \\ 0.80 \\ \hline 5.8 \\ 48.9 \\ 56.2 \\ 52.8 \\ 0.0 \\ 0.0 \\ 0.0 \\ \hline 0.0 \\ \hline 0.0 \\ \hline 0.0 \\ \hline Size \\ 1.00 \\ \hline 5.2 \\ 47.9 \\ 48.7 \\ 45.0 \\ 5.5 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \sim tren \\ \hline 00 \\ \hline \\ \hline \\ 0.85 \\ 64.8 \\ 64.8 \\ 52.1 \\ 79.4 \\ 60.7 \\ 0.0 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 51.4 \\ 59.2 \\ 46.1 \\ 59.2 \\ 46.1 \\ 51.4 \\ 27.6 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                 | Powe<br>0.70<br>100.0<br>98.2<br>91.5<br>97.9<br>0.0<br>0.0<br>0.0<br>0.0<br>97.1<br>51.4<br>85.4<br>68.7<br>63.5         | $\begin{array}{c} \hline r(H_1) \\ 0.75 \\ 87.2 \\ 88.8 \\ 67.1 \\ 86.1 \\ 0.0 \\ 0.0 \\ 0.0 \\ \hline r(H_1) \\ 0.95 \\ 47.1 \\ 40.0 \\ 63.9 \\ 46.6 \\ 16.2 \\ \end{array}$         | V = 50 Size 0.80 5.7 48.0 62.6 49.6 0.0 0.1 0.0 Size 1.00 5.2 52.0 53.4 47.7 7.5      | 0<br>Powe<br>0.85<br>86.6<br>54.1<br>89.8<br>64.5<br>1.4<br>4.2<br>4.1<br>Powe<br>1.05<br>48.9<br>77.8<br>57.7<br>69.1<br>43.4         | $\begin{array}{c} r(H_1)\\ 0.90\\ 99.9\\ 87.1\\ 99.5\\ 94.4\\ 40.8\\ 55.8\\ 53.7\\ r(H_1)\\ 1.10\\ 96.5\\ 78.4\\ 57.8\\ 73.1\\ 86.5\\ \end{array}$               |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                  | Powe<br>0.70<br>92.1<br>82.9<br>75.0<br>80.6<br>0.5<br>0.4<br>1.1<br>Powe<br>0.90<br>57.9<br>50.8<br>66.1<br>60.3<br>26.3<br>37.0 | $\begin{array}{c} \hline \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V = 15 Size 0.80 6.1 49.1 57.1 58.5 0.3 0.3 0.6 Size 1.00 5.7 38.8 43.0 43.6 5.0 15.1 | $\begin{array}{c} \hline 7\\ \hline \\ \hline $                                                                                                                        | $\begin{array}{c} \overline{r(H_1)} \\ 0.90 \\ 89.0 \\ 69.8 \\ 87.1 \\ 76.8 \\ 0.7 \\ 2.0 \\ 2.5 \\ \hline r(H_1) \\ 1.10 \\ \hline 54.8 \\ 36.0 \\ 34.5 \\ 46.1 \\ 41.8 \\ 49.5 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \gamma = 0.8\\ \hline \\ Power \\ 0.70\\ 100.0\\ 94.9\\ 87.1\\ 92.2\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ \hline \\ 0.90\\ 82.1\\ 50.9\\ 75.6\\ 63.1\\ 44.9\\ 47.9\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \beta = \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c} \text{I.0, } f_t \\ \text{V} = 3\text{I} \\ \hline \gamma \\ \text{Size} \\ 0.80 \\ \hline 5.8 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ \hline \text{Size} \\ 1.00 \\ \hline 5.2 \\ 47.9 \\ 48.7 \\ 45.0 \\ 5.5 \\ 10.1 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \sim tren \\ \hline 00 \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                 | Powe<br>0.70<br>100.0<br>98.2<br>91.5<br>97.9<br>0.0<br>0.0<br>0.0<br>0.0<br>97.1<br>51.4<br>85.4<br>85.4<br>63.5<br>63.5 | $\begin{array}{c} \hline r(H_1) \\ 0.75 \\ 87.2 \\ 88.8 \\ 67.1 \\ 86.1 \\ 0.0 \\ 0.0 \\ 0.0 \\ \hline r(H_1) \\ 0.95 \\ 47.1 \\ 40.0 \\ 63.9 \\ 46.6 \\ 16.2 \\ 19.8 \\ \end{array}$ | V = 50 Size 0.80 5.7 48.0 62.6 49.6 0.0 0.1 0.0 Size 1.00 5.2 52.0 53.4 47.7 7.5 11.0 | 0<br>Powe<br>0.85<br>86.6<br>54.1<br>89.8<br>64.5<br>1.4<br>4.2<br>4.1<br>Powe<br>1.05<br>48.9<br>77.8<br>57.7<br>69.1<br>43.4<br>47.4 | $\begin{array}{c} r(H_1)\\ 0.90\\ 99.9\\ 87.1\\ 99.5\\ 94.4\\ 40.8\\ 55.8\\ 53.7\\ \hline r(H_1)\\ 1.10\\ 96.5\\ 78.4\\ 57.8\\ 73.1\\ 86.5\\ 86.5\\ \end{array}$ |

Table 7b: Size(%) and power(%) for the ARX(1) model with a single factor  $(T = 6, f_t \sim trend)$ 

|                               |       |                                         |              | Т            | = 10, -                           | $\gamma = 0.4$ | $\beta = 1$          | $0, f_t$               | $\sim AR(1$  | .)                                    |       |                              |              |       |                |
|-------------------------------|-------|-----------------------------------------|--------------|--------------|-----------------------------------|----------------|----------------------|------------------------|--------------|---------------------------------------|-------|------------------------------|--------------|-------|----------------|
|                               |       | Ν                                       | V = 15       | 50           |                                   | [              | Λ                    | V = 30                 | 0            | ,                                     |       | Λ                            | V = 50       | 00    |                |
|                               |       |                                         |              |              |                                   |                |                      | $\gamma$               |              |                                       |       |                              |              |       |                |
|                               | Power | $(H_1)$                                 | Size         | Powe         | $\operatorname{er}(\mathrm{H}_1)$ | Powe           | $r(H_1)$             | Size                   | Powe         | $r(H_1)$                              | Powe  | $r(H_1)$                     | Size         | Powe  | $r(H_1)$       |
| Estimators $\setminus \gamma$ | 0.30  | 0.35                                    | 0.40         | 0.45         | 0.50                              | 0.30           | 0.35                 | 0.40                   | 0.45         | 0.50                                  | 0.30  | 0.35                         | 0.40         | 0.45  | 0.50           |
| ML                            | 97.1  | 47.3                                    | 5.2          | 48.5         | 96.4                              | 100.0          | 79.0                 | 6.0                    | 74.0         | 99.9                                  | 100.0 | 93.5                         | 4.5          | 93.8  | 100.0          |
| ALS1(1step)                   | 45.0  | 15.2                                    | 6.8          | 21.7         | 54.5                              | 68.0           | 22.3                 | 7.7                    | 33.9         | 76.7                                  | 87.4  | 33.3                         | 7.1          | 45.0  | 90.0           |
| ALS1(2step)                   | 70.0  | 50.6                                    | 45.2         | 59.9         | 77.6                              | 75.4           | 38.5                 | 30.5                   | 61.7         | 89.9                                  | 83.4  | 37.1                         | 28.2         | 76.9  | 97.9           |
| ALS1(CUE)                     | 72.1  | 64.7                                    | 60.6         | 66.4         | 73.8                              | 79.9           | 63.5                 | 48.8                   | 51.2         | 72.7                                  | 92.0  | 72.6                         | 39.7         | 41.1  | 78.8           |
| NT1(1step)                    | 36.5  | 53.8                                    | 64.6         | 75.7         | 82.1                              | 79.5           | 91.9                 | 96.6                   | 98.8         | 99.5                                  | 98.2  | 99.6                         | 99.9         | 100.0 | 100.0          |
| NT1(2step)                    | 67.0  | 72.6                                    | 77.0         | 81.4         | 85.8                              | 81.8           | 91.4                 | 96.0                   | 97.2         | 98.6                                  | 96.3  | 98.3                         | 99.5         | 99.9  | 100.0          |
| NTI(CUE)                      | 83.0  | 84.5                                    | 84.0         | 84.3         | 83.0                              | 76.5           | 81.4                 | 85.0                   | 87.2         | 88.6                                  | 80.3  | 86.2                         | 91.7         | 95.1  | 96.4           |
|                               | D     | / <b>*</b> * \                          | 0.           |              | (** \                             |                | ( <b>**</b> )        | β                      | -            | (** )                                 |       | (** \                        | <i>a</i> .   | D     | (** )          |
| D                             | Power | $(H_1)$                                 | Size         | Powe         | $r(H_1)$                          | Powe           | $r(H_1)$             | Size                   | Powe         | $r(H_1)$                              | Powe  | $r(H_1)$                     | Size         | Powe  | $r(H_1)$       |
| Estimators $\ \beta$          | 0.90  | 0.95                                    | 1.00         | 1.05         | 1.10                              | 0.90           | 0.95                 | 1.00                   | 1.05         | 1.10                                  | 0.90  | 0.95                         | 1.00         | 1.05  | 1.10           |
| ML<br>ATC1(1-4-)              | 42.4  | 13.9                                    | 4.2          | 14.6         | 43.7                              | 72.2           | 23.9                 | 4.9                    | 24.3         | 71.1                                  | 90.1  | 35.8                         | 5.3          | 37.0  | 91.2           |
| ALSI(1step)                   | 48.2  | 29.9                                    | 13.7         | 5.2          | 1.2                               | (3.1           | 44.3                 | 11.1                   | 1.5          | 10.2                                  | 80.4  | 59.1                         | 23.4         | (.5   | 16.2           |
| ALSI(2step)                   | 82.2  | 69.6                                    | 55.2         | 44.5         | 40.3                              | 92.3           | (9.6                 | 58.4                   | 35.0         | 25.0                                  | 98.1  | 90.9                         | (0.8         | 42.5  | 20.0           |
| ALSI(CUE)                     | (1.8  | 05.5                                    | 60.6         | 59.2<br>27 F | 59.1                              | (0.2           | 60.3<br>10.1         | 41.1                   | 41.8         | 43.0                                  | 84.5  | 63.7                         | 41.1         | 28.9  | 42.1           |
| NT1(1step)                    | 9.0   | 10.5                                    | 19.1<br>40.C | 31.3         | $\frac{38.3}{71.9}$               | 11.7           | 10.1                 | 24.2                   | 02.1<br>C0.0 | 80.5                                  | 10.9  | 8.9                          | 32.2         | 70.7  | 93.3<br>01.0   |
| NT1(2step)                    | 49.2  | 45.2                                    | 49.0         | 60.3         | (1.3<br>70.0                      | 31.0           | 28.3                 | 40.8                   | 02.0         | 81.5<br>70.0                          | 28.0  | 19.9                         | 44.0         | 70.7  | 91.0           |
| NII(CUE)                      | 03.9  | 03.7                                    | 03.0         | 01.8         | 12.0                              | 43.9           | 43.1                 | 02.3                   | 04.1         | 10.0                                  | 34.5  | 32.8                         | <u>ə</u> 3.3 | (2.)  | 89.2           |
|                               |       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 7 18         | 1            | $= 10, \cdot$                     | $\gamma = 0.8$ | b, p = 1             | $\frac{.0, J_t}{, 20}$ | $\sim AR(1)$ | .)                                    |       |                              | v = 50       | 0     |                |
|                               |       | 1                                       | v = 10       | 0            |                                   |                | 1                    | v = 30                 | 0            |                                       |       | 1                            | v = 30       | 10    |                |
|                               | Powo  | $(\mathbf{H}_{\mathbf{z}})$             | Sizo         | Power        | $r(H_{\star})$                    | Powo           | $r(H_{z})$           | Sizo                   | Powo         | $\mathbf{r}(\mathbf{H}_{\mathbf{z}})$ | Dowo  | $r(\mathbf{H}_{\mathbf{z}})$ | Sizo         | Powo  | $r(H_{\star})$ |
| Fetimators \ a                | 0.70  | 0.75                                    | 0.80         | 0.85         |                                   | 0.70           | 0.75                 | 0.80                   | 0.85         |                                       |       | 0.75                         | 0.80         | 0.85  |                |
| ML                            | 100.0 | 0.75                                    | 4.5          | 0.85         | 100.0                             | 100.0          | $\frac{0.75}{100.0}$ | 4.6                    | 100.0        | 100.0                                 | 100.0 | 100.0                        | 5.0          | 100.0 | 100.0          |
| ALS1(1step)                   | 00.0  | 70.0                                    | 4.0          | 75.0         | 00.0                              | 08.8           | 96.6                 | 4.0                    | 05 A         | 08.8                                  |       | 08.7                         | 5.0          | 08.3  | 00.0           |
| ALS1(2step)                   | 100.0 | 87.4                                    | 40.0         | 89.3         | 00.8                              | 100.0          | 96.4                 | 23.4                   | 00.4<br>00.5 | 100.0                                 | 100.0 | 90.1                         | 24.8         | 100.0 | 100.0          |
| ALS1(CUE)                     | 94.6  | 77.8                                    | 51.0         | 83.6         | 95.6                              | 100.0          | 01 3                 | 33.5                   | 97.9         | 100.0                                 | 100.0 | 99.0                         | 24.0         | 99.8  | 100.0          |
| NT1(1step)                    | 2.8   | 1.9                                     | 75           | 36.8         | 53.0                              | 0.0            | 1.6                  | 63.0                   | 81.3         | 90.1                                  | 0.0   | 67.8                         | 93.5         | 98.8  | 99.7           |
| NT1(2step)                    | 23.2  | 45.7                                    | 53 7         | 59.2         | 64.5                              | 2.4            | 40.8                 | 61 7                   | 75.1         | 83.9                                  | 0.2   | 67.0                         | 82.1         | 92.3  | 96.9           |
| NT1(CUE)                      | 27.1  | 60.1                                    | 72.9         | 73.6         | 74.3                              | 6.8            | 50.7                 | 66.7                   | 73.5         | 77.9                                  | 2.3   | 62.6                         | 73.2         | 80.5  | 87.8           |
|                               |       |                                         |              |              |                                   | 0.0            |                      | B                      |              |                                       |       | 0 _ 1 0                      |              |       |                |
|                               | Power | $(H_1)$                                 | Size         | Powe         | $r(H_1)$                          | Powe           | $r(H_1)$             | Size                   | Powe         | $r(H_1)$                              | Powe  | $r(H_1)$                     | Size         | Powe  | $r(H_1)$       |
| Estimators $\setminus \beta$  | 0.90  | 0.95                                    | 1.00         | 1.05         | 1.10                              | 0.90           | 0.95                 | 1.00                   | 1.05         | 1.10                                  | 0.90  | 0.95                         | 1.00         | 1.05  | ì.10           |
| ML                            | 91.0  | 37.3                                    | 5.0          | 39.4         | 91.6                              | 99.6           | 65.1                 | 5.9                    | 65.5         | 99.3                                  | 100.0 | 84.9                         | 5.1          | 85.5  | 100.0          |
| ALS1(1step)                   | 49.9  | 15.2                                    | 6.1          | 32.0         | 72.7                              | 79.0           | 21.8                 | 7.2                    | 51.6         | 94.2                                  | 93.5  | 34.5                         | 8.4          | 72.2  | 98.8           |
| ALS1(2step)                   | 83.5  | 57.1                                    | 39.4         | 52.2         | 77.7                              | 96.3           | 64.1                 | 21.7                   | 48.8         | 92.0                                  | 99.8  | 78.1                         | 17.7         | 56.9  | 98.2           |
| ALS1(CUĖ)                     | 79.7  | 61.7                                    | 46.7         | 55.0         | 72.7                              | 94.3           | 63.3                 | 27.0                   | 51.8         | 89.4                                  | 99.1  | 74.2                         | 19.4         | 62.2  | 98.4           |
| NT1(1step)                    | 30.3  | 7.0                                     | 13.2         | 51.5         | 86.5                              | 54.7           | 7.5                  | 19.4                   | 75.8         | 98.2                                  | 75.2  | 9.3                          | 28.5         | 92.5  | 99.9           |
| NT1(2step)                    | 61.9  | 42.8                                    | 49.3         | 70.3         | 86.7                              | 70.0           | 25.8                 | 33.5                   | 76.8         | 96.5                                  | 85.2  | 23.5                         | 32.1         | 88.5  | 99.9           |
| NT1(CUE)                      | 70.7  | 59.5                                    | 57.7         | 66.6         | 78.2                              | 69.5           | 34.4                 | 38.5                   | 72.6         | 94.7                                  | 82.3  | 27.8                         | 36.0         | 86.2  | 99.7           |

Table 8a: Size(%) and power(%) for the ARX(1) model with a single factor ( $T = 10, f_t \sim AR(1)$ )

|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |                                                                                                                                                                                             |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I = 10                                                                                                                       | $\gamma = 0.$                                                                                                                                                                          | 4, p =                                                                                                                                                                                                                            | $1.0, J_{t}$                                                                                                                                                                                                                                                                                     | $\sim iren$                                                                                                                                                                                                                                      | a                                                                                                                                                                                                          |                                                                                                                                           |                                                                                                                                                                             |                                                                                           |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               | Λ                                                                                                                                                                                           | V = 15                                                                                   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              |                                                                                                                                                                                        | 1                                                                                                                                                                                                                                 | V = 30                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                |                                                                                                                                                                                                            |                                                                                                                                           | 1                                                                                                                                                                           | V = 50                                                                                    | 0                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |                                                                                                                                                                                             |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |                                                                                                                                                                                        |                                                                                                                                                                                                                                   | $\gamma$                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                             |                                                                                           |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                   | Power                                                                                                                         | $r(H_1)$                                                                                                                                                                                    | Size                                                                                     | Powe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\operatorname{er}(\mathrm{H}_1)$                                                                                            | Powe                                                                                                                                                                                   | $r(H_1)$                                                                                                                                                                                                                          | Size                                                                                                                                                                                                                                                                                             | Powe                                                                                                                                                                                                                                             | $r(H_1)$                                                                                                                                                                                                   | Powe                                                                                                                                      | $r(H_1)$                                                                                                                                                                    | Size                                                                                      | Powe                                                                                                                                | $r(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Estimators $\setminus \gamma$                                                                                                                                                                                                                                                                                                     | 0.30                                                                                                                          | 0.35                                                                                                                                                                                        | 0.40                                                                                     | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.50                                                                                                                         | 0.30                                                                                                                                                                                   | 0.35                                                                                                                                                                                                                              | 0.40                                                                                                                                                                                                                                                                                             | 0.45                                                                                                                                                                                                                                             | 0.50                                                                                                                                                                                                       | 0.30                                                                                                                                      | 0.35                                                                                                                                                                        | 0.40                                                                                      | 0.45                                                                                                                                | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ML                                                                                                                                                                                                                                                                                                                                | 85.3                                                                                                                          | 33.3                                                                                                                                                                                        | 4.4                                                                                      | 34.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88.4                                                                                                                         | 99.5                                                                                                                                                                                   | 62.1                                                                                                                                                                                                                              | 4.3                                                                                                                                                                                                                                                                                              | 58.0                                                                                                                                                                                                                                             | 99.8                                                                                                                                                                                                       | 100.0                                                                                                                                     | 80.7                                                                                                                                                                        | 4.9                                                                                       | 83.2                                                                                                                                | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ALS1(1step)                                                                                                                                                                                                                                                                                                                       | 47.1                                                                                                                          | 37.2                                                                                                                                                                                        | 36.1                                                                                     | 43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53.6                                                                                                                         | 62.1                                                                                                                                                                                   | 48.5                                                                                                                                                                                                                              | 42.1                                                                                                                                                                                                                                                                                             | 44.1                                                                                                                                                                                                                                             | 56.2                                                                                                                                                                                                       | 79.1                                                                                                                                      | 62.3                                                                                                                                                                        | 47.5                                                                                      | 46.2                                                                                                                                | 55.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ALS1(2step)                                                                                                                                                                                                                                                                                                                       | 74.6                                                                                                                          | 68.3                                                                                                                                                                                        | 64.1                                                                                     | 67.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72.9                                                                                                                         | 75.2                                                                                                                                                                                   | 62.1                                                                                                                                                                                                                              | 56.4                                                                                                                                                                                                                                                                                             | 61.0                                                                                                                                                                                                                                             | 71.9                                                                                                                                                                                                       | 83.8                                                                                                                                      | 65.1                                                                                                                                                                        | 53.1                                                                                      | 59.1                                                                                                                                | 77.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ALS1(CUE)                                                                                                                                                                                                                                                                                                                         | 84.2                                                                                                                          | 77.5                                                                                                                                                                                        | 73.7                                                                                     | 70.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68.7                                                                                                                         | 93.7                                                                                                                                                                                   | 90.9                                                                                                                                                                                                                              | 82.5                                                                                                                                                                                                                                                                                             | 71.2                                                                                                                                                                                                                                             | 54.6                                                                                                                                                                                                       | 93.5                                                                                                                                      | 92.9                                                                                                                                                                        | 89.8                                                                                      | 77.6                                                                                                                                | 53.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NT1(1step)                                                                                                                                                                                                                                                                                                                        | 96.4                                                                                                                          | 98.6                                                                                                                                                                                        | 99.4                                                                                     | 99.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.8                                                                                                                         | 100.0                                                                                                                                                                                  | 100.0                                                                                                                                                                                                                             | 100.0                                                                                                                                                                                                                                                                                            | 100.0                                                                                                                                                                                                                                            | 100.0                                                                                                                                                                                                      | 100.0                                                                                                                                     | 100.0                                                                                                                                                                       | 100.0                                                                                     | 100.0                                                                                                                               | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NT1(2step)                                                                                                                                                                                                                                                                                                                        | 96.3                                                                                                                          | 97.6                                                                                                                                                                                        | 98.4                                                                                     | 99.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.6                                                                                                                         | 100.0                                                                                                                                                                                  | 100.0                                                                                                                                                                                                                             | 100.0                                                                                                                                                                                                                                                                                            | 100.0                                                                                                                                                                                                                                            | 100.0                                                                                                                                                                                                      | 100.0                                                                                                                                     | 100.0                                                                                                                                                                       | 100.0                                                                                     | 100.0                                                                                                                               | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NT1(CUE)                                                                                                                                                                                                                                                                                                                          | 90.4                                                                                                                          | 91.7                                                                                                                                                                                        | 92.0                                                                                     | 92.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92.8                                                                                                                         | 96.2                                                                                                                                                                                   | 97.2                                                                                                                                                                                                                              | 98.1                                                                                                                                                                                                                                                                                             | 98.1                                                                                                                                                                                                                                             | 98.1                                                                                                                                                                                                       | 98.7                                                                                                                                      | 98.8                                                                                                                                                                        | 99.2                                                                                      | 99.4                                                                                                                                | 99.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |                                                                                                                                                                                             |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |                                                                                                                                                                                        |                                                                                                                                                                                                                                   | β                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                             |                                                                                           |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                   | Power                                                                                                                         | $r(H_1)$                                                                                                                                                                                    | Size                                                                                     | Powe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $er(H_1)$                                                                                                                    | Powe                                                                                                                                                                                   | $r(H_1)$                                                                                                                                                                                                                          | Size                                                                                                                                                                                                                                                                                             | Powe                                                                                                                                                                                                                                             | $r(H_1)$                                                                                                                                                                                                   | Powe                                                                                                                                      | $r(H_1)$                                                                                                                                                                    | Size                                                                                      | Powe                                                                                                                                | $r(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Estimators $\setminus \beta$                                                                                                                                                                                                                                                                                                      | 0.90                                                                                                                          | 0.95                                                                                                                                                                                        | 1.00                                                                                     | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.10                                                                                                                         | 0.90                                                                                                                                                                                   | 0.95                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                             | 1.05                                                                                                                                                                                                                                             | 1.10                                                                                                                                                                                                       | 0.90                                                                                                                                      | 0.95                                                                                                                                                                        | 1.00                                                                                      | 1.05                                                                                                                                | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ML                                                                                                                                                                                                                                                                                                                                | 38.2                                                                                                                          | 13.0                                                                                                                                                                                        | 5.0                                                                                      | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37.3                                                                                                                         | 63.8                                                                                                                                                                                   | 23.9                                                                                                                                                                                                                              | 6.6                                                                                                                                                                                                                                                                                              | 22.3                                                                                                                                                                                                                                             | 63.0                                                                                                                                                                                                       | 83.9                                                                                                                                      | 33.4                                                                                                                                                                        | 5.3                                                                                       | 34.0                                                                                                                                | 86.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ALS1(1step)                                                                                                                                                                                                                                                                                                                       | 53.2                                                                                                                          | 45.1                                                                                                                                                                                        | 37.9                                                                                     | 33.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.4                                                                                                                         | 57.7                                                                                                                                                                                   | 45.9                                                                                                                                                                                                                              | 39.9                                                                                                                                                                                                                                                                                             | 36.4                                                                                                                                                                                                                                             | 39.8                                                                                                                                                                                                       | 58.2                                                                                                                                      | 48.3                                                                                                                                                                        | 42.1                                                                                      | 41.1                                                                                                                                | 47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ALS1(2step)                                                                                                                                                                                                                                                                                                                       | 74.1                                                                                                                          | 68.2                                                                                                                                                                                        | 63.5                                                                                     | 61.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60.2                                                                                                                         | 75.6                                                                                                                                                                                   | 66.5                                                                                                                                                                                                                              | 55.7                                                                                                                                                                                                                                                                                             | 49.9                                                                                                                                                                                                                                             | 50.5                                                                                                                                                                                                       | 83.3                                                                                                                                      | 69.4                                                                                                                                                                        | 57.1                                                                                      | 49.2                                                                                                                                | 51.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ALS1(CUE)                                                                                                                                                                                                                                                                                                                         | 65.5                                                                                                                          | 65.1                                                                                                                                                                                        | 64.9                                                                                     | 68.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 69.6                                                                                                                         | 44.7                                                                                                                                                                                   | 49.2                                                                                                                                                                                                                              | 58.9                                                                                                                                                                                                                                                                                             | 69.8                                                                                                                                                                                                                                             | 80.4                                                                                                                                                                                                       | 40.4                                                                                                                                      | 48.4                                                                                                                                                                        | 64.0                                                                                      | 78.6                                                                                                                                | 88.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NT1(1step)                                                                                                                                                                                                                                                                                                                        | 21.3                                                                                                                          | 12.2                                                                                                                                                                                        | 9.5                                                                                      | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.7                                                                                                                         | 33.7                                                                                                                                                                                   | 16.8                                                                                                                                                                                                                              | 9.5                                                                                                                                                                                                                                                                                              | 13.6                                                                                                                                                                                                                                             | 28.4                                                                                                                                                                                                       | 49.4                                                                                                                                      | 21.5                                                                                                                                                                        | 8.0                                                                                       | 14.3                                                                                                                                | 35.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NT1(2step)                                                                                                                                                                                                                                                                                                                        | 55.7                                                                                                                          | 52.7                                                                                                                                                                                        | 51.7                                                                                     | 53.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58.0                                                                                                                         | 46.1                                                                                                                                                                                   | 32.4                                                                                                                                                                                                                              | 27.1                                                                                                                                                                                                                                                                                             | 33.7                                                                                                                                                                                                                                             | 47.2                                                                                                                                                                                                       | 51.5                                                                                                                                      | 30.3                                                                                                                                                                        | 19.0                                                                                      | 28.4                                                                                                                                | 49.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NT1(CUE)                                                                                                                                                                                                                                                                                                                          | 63.1                                                                                                                          | 62.0                                                                                                                                                                                        | 65.0                                                                                     | 66.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70.0                                                                                                                         | 36.9                                                                                                                                                                                   | 38.7                                                                                                                                                                                                                              | 48.6                                                                                                                                                                                                                                                                                             | 61.5                                                                                                                                                                                                                                             | 70.6                                                                                                                                                                                                       | 23.2                                                                                                                                      | 27.4                                                                                                                                                                        | 46.2                                                                                      | 67.8                                                                                                                                | 85.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |                                                                                                                                                                                             |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                             |                                                                                           |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |                                                                                                                                                                                             |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T = 10                                                                                                                       | $, \gamma = 0.$                                                                                                                                                                        | $8, \beta =$                                                                                                                                                                                                                      | $1.0, f_{t}$                                                                                                                                                                                                                                                                                     | $\sim tren$                                                                                                                                                                                                                                      | d                                                                                                                                                                                                          |                                                                                                                                           |                                                                                                                                                                             |                                                                                           |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               | Ν                                                                                                                                                                                           | V = 15                                                                                   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T = 10                                                                                                                       | $, \gamma = 0.$                                                                                                                                                                        | $\beta = \frac{1}{\beta}$                                                                                                                                                                                                         | $\frac{1.0, f_t}{\mathrm{N} = 30}$                                                                                                                                                                                                                                                               | $\sim trendo$                                                                                                                                                                                                                                    | d                                                                                                                                                                                                          |                                                                                                                                           | 1                                                                                                                                                                           | V = 50                                                                                    | 0                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               | Ν                                                                                                                                                                                           | V = 15                                                                                   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T = 10                                                                                                                       | $\gamma = 0.$                                                                                                                                                                          | $\beta, \beta = \beta$                                                                                                                                                                                                            | $\frac{1.0, f_t}{V = 30}$                                                                                                                                                                                                                                                                        | $\sim trendo$                                                                                                                                                                                                                                    | d                                                                                                                                                                                                          |                                                                                                                                           | 1                                                                                                                                                                           | V = 50                                                                                    | 0                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                   | Power                                                                                                                         | <i>N</i><br>r(H <sub>1</sub> )                                                                                                                                                              | V = 15<br>Size                                                                           | 50<br>Powe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $T = 10$ $er(H_1)$                                                                                                           | $\gamma = 0.$                                                                                                                                                                          | $8, \beta = \frac{\beta}{1}$ $r(H_1)$                                                                                                                                                                                             | $\frac{1.0, f_t}{V = 30}$ $\frac{\gamma}{Size}$                                                                                                                                                                                                                                                  | $\sim trendo$                                                                                                                                                                                                                                    | dr(H <sub>1</sub> )                                                                                                                                                                                        | Powe                                                                                                                                      | 1<br>r(H <sub>1</sub> )                                                                                                                                                     | V = 50<br>Size                                                                            | 0<br>Powe                                                                                                                           | $r(H_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Estimators $\setminus \gamma$                                                                                                                                                                                                                                                                                                     | Power<br>0.70                                                                                                                 | N<br>r(H <sub>1</sub> )<br>0.75                                                                                                                                                             | V = 15<br>Size<br>0.80                                                                   | 50<br>Powe<br>0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $T = 10$ $er(H_1)$ $0.90$                                                                                                    | $\gamma = 0.$<br>Powe 0.70                                                                                                                                                             | $\frac{8,\beta}{r(H_1)}$                                                                                                                                                                                                          | $\frac{1.0, f_t}{V = 30}$ $\frac{\gamma}{Size}$ $0.80$                                                                                                                                                                                                                                           | $\sim trendo0 Powe 0.85$                                                                                                                                                                                                                         | $d = r(H_1) = 0.90$                                                                                                                                                                                        | Powe<br>0.70                                                                                                                              | $r(H_1) = 0.75$                                                                                                                                                             | V = 50<br>Size<br>0.80                                                                    | 0<br>Powe<br>0.85                                                                                                                   | $r(H_1) = 0.90$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Estimators $\setminus \gamma$<br>ML                                                                                                                                                                                                                                                                                               | Power<br>0.70<br>100.0                                                                                                        | N<br>r(H <sub>1</sub> )<br>0.75<br>86.7                                                                                                                                                     | V = 15<br>Size<br>0.80<br>5.6                                                            | 50<br>Powe<br>0.85<br>83.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T = 10<br>er(H <sub>1</sub> )<br>0.90<br>100.0                                                                               | $\gamma = 0.$<br>Powe<br>0.70<br>100.0                                                                                                                                                 | $\beta = \frac{8, \beta = 1}{100}$<br>r(H <sub>1</sub> )<br>0.75<br>99.6                                                                                                                                                          | $ \begin{array}{r} 1.0, f_t \\ \overline{V} = 30 \\ \hline \gamma \\ \overline{Size} \\ 0.80 \\ \hline 5.6 \end{array} $                                                                                                                                                                         | $\sim trend0Powe0.8598.1$                                                                                                                                                                                                                        | $ \frac{d}{r(H_1)} \\ 0.90 \\ 100.0 $                                                                                                                                                                      | Powe<br>0.70<br>100.0                                                                                                                     | $r(H_1)$<br>0.75<br>100.0                                                                                                                                                   | V = 50<br>Size<br>0.80<br>5.5                                                             | 0<br>Powe<br>0.85<br>100.0                                                                                                          | $r(H_1)$<br>0.90<br>100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Estimators $\setminus \gamma$<br>ML<br>ALS1(1step)                                                                                                                                                                                                                                                                                | Power<br>0.70<br>100.0<br>90.3                                                                                                | $r(H_1)$<br>0.75<br>86.7<br>47.4                                                                                                                                                            | V = 15<br>Size<br>0.80<br>5.6<br>28.1                                                    | 50<br>Powe<br>0.85<br>83.8<br>70.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $T = 10$ $er(H_1)$ 0.90 100.0 92.3                                                                                           | $\gamma = 0.$<br>Powe<br>0.70<br>100.0<br>96.6                                                                                                                                         | $8, \beta = \frac{1}{100}$ r(H <sub>1</sub> )<br>0.75<br>99.6<br>69.1                                                                                                                                                             | $\frac{1.0, f_t}{V = 30}$ $\frac{\gamma}{Size}$ $\frac{0.80}{5.6}$ $21.4$                                                                                                                                                                                                                        | $\sim trend0Powe0.8598.180.7$                                                                                                                                                                                                                    | $ \frac{d}{r(H_1)} \\ 0.90 \\ 100.0 \\ 97.1 $                                                                                                                                                              | Powe<br>0.70<br>100.0<br>97.7                                                                                                             | $     r(H_1)      0.75      100.0      84.2     $                                                                                                                           | V = 50 Size $0.80$ $5.5$ 16.0                                                             | 0<br>Powe<br>0.85<br>100.0<br>91.0                                                                                                  | $r(H_1) \\ 0.90 \\ 100.0 \\ 97.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Estimators $\langle \gamma \rangle$<br>ML<br>ALS1(1step)<br>ALS1(2step)                                                                                                                                                                                                                                                           | Power<br>0.70<br>100.0<br>90.3<br>93.5                                                                                        |                                                                                                                                                                                             | V = 15<br>Size<br>0.80<br>5.6<br>28.1<br>63.5                                            | Fowe<br>0.85<br>83.8<br>70.4<br>89.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $T = 10$ $er(H_1)$ 0.90 100.0 92.3 99.3                                                                                      | $\gamma = 0.$<br>Powe<br>0.70<br>100.0<br>96.6<br>97.1                                                                                                                                 | $8, \beta = \frac{1}{100}$ $r(H_1) = 0.75$ $99.6$ $69.1$ $56.4$                                                                                                                                                                   | $     \begin{array}{r}       1.0, f_t \\       V = 30 \\       \hline       \frac{\gamma}{\text{Size}} \\       0.80 \\       \hline       5.6 \\       21.4 \\       63.7     \end{array} $                                                                                                     | $\sim trend0Powe0.8598.180.799.3$                                                                                                                                                                                                                | $ \frac{d}{r(H_1)} \\ 0.90 \\ 100.0 \\ 97.1 \\ 100.0 $                                                                                                                                                     | Powe<br>0.70<br>100.0<br>97.7<br>99.3                                                                                                     | $     r(H_1) \\     0.75 \\     100.0 \\     84.2 \\     52.2     $                                                                                                         | V = 50 Size 0.80 5.5 16.0 75.0                                                            | 0<br>Powe<br>0.85<br>100.0<br>91.0<br>99.9                                                                                          | $r(H_1) \\ 0.90 \\ 100.0 \\ 97.7 \\ 100.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Estimators \ γ<br>ML<br>ALS1(1step)<br>ALS1(2step)<br>ALS1(CUE)                                                                                                                                                                                                                                                                   | Power<br>0.70<br>100.0<br>90.3<br>93.5<br>90.0                                                                                | $\begin{array}{r} & N \\ \hline r(H_1) \\ 0.75 \\ \hline 86.7 \\ 47.4 \\ 68.7 \\ 72.5 \end{array}$                                                                                          | V = 15<br>Size<br>0.80<br>5.6<br>28.1<br>63.5<br>70.7                                    | Powe<br>0.85<br>83.8<br>70.4<br>89.9<br>82.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $T = 10$ $er(H_1)$ 0.90 100.0 92.3 99.3 92.8                                                                                 | $\gamma = 0.$<br>Powe<br>0.70<br>100.0<br>96.6<br>97.1<br>97.9                                                                                                                         | $8, \beta = \frac{1}{10000000000000000000000000000000000$                                                                                                                                                                         | $   \begin{array}{r}     1.0, f_t \\     \overline{V = 30} \\     \overline{V = 30} \\     \overline{V} \\     \overline{Size} \\     0.80 \\     \overline{5.6} \\     21.4 \\     63.7 \\     51.8 \\   \end{array} $                                                                          |                                                                                                                                                                                                                                                  | $\begin{array}{c} d \\ \hline r(H_1) \\ 0.90 \\ \hline 100.0 \\ 97.1 \\ 100.0 \\ 99.8 \end{array}$                                                                                                         | Powe<br>0.70<br>100.0<br>97.7<br>99.3<br>99.5                                                                                             | $     r(H_1) \\     0.75 \\     100.0 \\     84.2 \\     52.2 \\     84.7   $                                                                                               | V = 50 Size 0.80 5.5 16.0 75.0 43.4                                                       | 0<br>Powe<br>0.85<br>100.0<br>91.0<br>99.9<br>96.9                                                                                  | $r(H_1) \\ 0.90 \\ 100.0 \\ 97.7 \\ 100.0 \\ 100.0 \\ 100.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Estimators \ γ<br>ML<br>ALS1(1step)<br>ALS1(2step)<br>ALS1(CUE)<br>NT1(1step)                                                                                                                                                                                                                                                     | Power<br>0.70<br>100.0<br>90.3<br>93.5<br>90.0<br>0.1                                                                         | $\begin{array}{c} \hline \\ r(H_1) \\ 0.75 \\ \hline 86.7 \\ 47.4 \\ 68.7 \\ 72.5 \\ 0.1 \\ \end{array}$                                                                                    | V = 15 Size 0.80 5.6 28.1 63.5 70.7 0.1                                                  | Powe<br>0.85<br>83.8<br>70.4<br>89.9<br>82.6<br>3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $T = 10$ $er(H_1)$ 0.90 100.0 92.3 99.3 92.8 49.6                                                                            | $\gamma = 0.$<br>Powe<br>0.70<br>100.0<br>96.6<br>97.1<br>97.9<br>0.0                                                                                                                  | $     \begin{array}{r}       8, \beta = \\       \hline       1 \\       r(H_1) \\       0.75 \\       99.6 \\       69.1 \\       56.4 \\       75.9 \\       0.0 \\     \end{array} $                                           | $     \begin{array}{r}       1.0, f_t \\       \overline{V} = 30 \\       \overline{\gamma} \\       \overline{Size} \\       0.80 \\       \overline{5.6} \\       21.4 \\       63.7 \\       51.8 \\       0.2 \\     \end{array} $                                                           | $\begin{array}{r} \sim trend \\ \hline 0 \\ \hline 0 \\ \hline 0.85 \\ 98.1 \\ 80.7 \\ 99.3 \\ 88.4 \\ 54.7 \\ \end{array}$                                                                                                                      | $\begin{array}{c} d \\ \hline r(H_1) \\ 0.90 \\ \hline 100.0 \\ 97.1 \\ 100.0 \\ 99.8 \\ 99.3 \\ \end{array}$                                                                                              | Powe<br>0.70<br>100.0<br>97.7<br>99.3<br>99.5<br>0.0                                                                                      | $\begin{array}{r} & 1\\ \hline r(H_1) \\ 0.75 \\ \hline 100.0 \\ 84.2 \\ 52.2 \\ 84.7 \\ 0.0 \\ \end{array}$                                                                | V = 50 Size 0.80 5.5 16.0 75.0 43.4 23.8                                                  | 0<br>Powe<br>0.85<br>100.0<br>91.0<br>99.9<br>96.9<br>99.7                                                                          | $r(H_1) \\ 0.90 \\ 100.0 \\ 97.7 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0$ |
| Estimators \ γ<br>ML<br>ALS1(1step)<br>ALS1(2step)<br>ALS1(CUE)<br>NT1(1step)<br>NT1(2step)                                                                                                                                                                                                                                       | Power<br>0.70<br>100.0<br>90.3<br>93.5<br>90.0<br>0.1<br>1.5                                                                  | $\begin{array}{r} \hline \\ r(H_1) \\ 0.75 \\ \hline 86.7 \\ 47.4 \\ 68.7 \\ 72.5 \\ 0.1 \\ 7.3 \\ \end{array}$                                                                             | V = 15 Size 0.80 5.6 28.1 63.5 70.7 0.1 59.3                                             | Fowe<br>0.85<br>83.8<br>70.4<br>89.9<br>82.6<br>3.8<br>78.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $T = 10$ $er(H_1)$ 0.90 100.0 92.3 99.3 92.8 49.6 84.6                                                                       | $\begin{array}{c} \gamma = 0. \\ \hline 0.70 \\ 100.0 \\ 96.6 \\ 97.1 \\ 97.9 \\ 0.0 \\ 0.0 \\ \end{array}$                                                                            | $8, \beta = \frac{1}{2}$ $r(H_1) = 0.75$ $99.6$ $69.1$ $56.4$ $75.9$ $0.0$ $0.0$                                                                                                                                                  | $     \begin{array}{r}       1.0, f_t \\       \overline{V} = 30 \\       \overline{V} \\       \overline{Size} \\       0.80 \\       \overline{5.6} \\       21.4 \\       63.7 \\       51.8 \\       0.2 \\       61.5 \\     \end{array} $                                                  | $\begin{array}{c} \sim tren \\ \hline 0 \\ \hline 0 \\ \hline 0.85 \\ 98.1 \\ 80.7 \\ 99.3 \\ 88.4 \\ 54.7 \\ 99.1 \\ \end{array}$                                                                                                               | $\begin{array}{c} d \\ \hline r(H_1) \\ 0.90 \\ 100.0 \\ 97.1 \\ 100.0 \\ 99.8 \\ 99.3 \\ 99.9 \end{array}$                                                                                                | Powe<br>0.70<br>100.0<br>97.7<br>99.3<br>99.5<br>0.0<br>0.0                                                                               | $\begin{array}{r} & 1\\ \hline r(H_1) \\ 0.75 \\ \hline 100.0 \\ 84.2 \\ 52.2 \\ 84.7 \\ 0.0 \\ 0.4 \end{array}$                                                            | V = 50 Size 0.80 5.5 16.0 75.0 43.4 23.8 95.0                                             | 0<br>Powe<br>0.85<br>100.0<br>91.0<br>99.9<br>96.9<br>99.7<br>100.0                                                                 | $r(H_1) \\ 0.90 \\ 100.0 \\ 97.7 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0$ |
| $\begin{tabular}{ c c c c c } \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & &$                                                                                                                                                                                                                                         | Power<br>0.70<br>100.0<br>90.3<br>93.5<br>90.0<br>0.1<br>1.5<br>12.5                                                          | $\begin{array}{c} \hline \\ r(H_1) \\ 0.75 \\ 86.7 \\ 47.4 \\ 68.7 \\ 72.5 \\ 0.1 \\ 7.3 \\ 19.6 \end{array}$                                                                               | V = 15 Size 0.80 5.6 28.1 63.5 70.7 0.1 59.3 63.7                                        | Powe<br>0.85<br>83.8<br>70.4<br>89.9<br>82.6<br>3.8<br>78.6<br>76.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T = 10 $T = 10$ $T = 10$ $0.90$ $100.0$ $92.3$ $99.3$ $92.8$ $49.6$ $84.6$ $78.9$                                            | $\begin{array}{c} \gamma = 0. \\ \hline \\ 0.70 \\ 100.0 \\ 96.6 \\ 97.1 \\ 97.9 \\ 0.0 \\ 0.0 \\ 0.5 \\ \end{array}$                                                                  | $\frac{8, \beta = \frac{1}{2}}{r(H_1)}$ $\frac{0.75}{99.6}$ $\frac{69.1}{56.4}$ $75.9$ $0.0$ $0.0$ $0.5$                                                                                                                          | $\begin{array}{c} \frac{1.0, f_t}{\mathrm{N}=30}\\ \overline{\mathrm{N}=30}\\ \hline \gamma\\ \overline{\mathrm{Size}}\\ 0.80\\ \hline 5.6\\ 21.4\\ 63.7\\ 51.8\\ 0.2\\ 61.5\\ 49.6\\ \end{array}$                                                                                               | $\begin{array}{c} \sim tren \\ \hline 0 \\ \hline \\ \hline 0 \\ \hline \\ 0.85 \\ \hline 98.1 \\ 80.7 \\ 99.3 \\ 88.4 \\ 54.7 \\ 99.1 \\ 83.5 \\ \end{array}$                                                                                   | $\begin{array}{c} d \\ \hline r(H_1) \\ 0.90 \\ \hline 100.0 \\ 97.1 \\ 100.0 \\ 99.8 \\ 99.3 \\ 99.9 \\ 89.4 \\ \end{array}$                                                                              | Powe<br>0.70<br>100.0<br>97.7<br>99.3<br>99.5<br>0.0<br>0.0<br>0.0<br>0.0                                                                 | $\begin{array}{r} \hline r(H_1)\\ 0.75\\\hline 100.0\\ 84.2\\ 52.2\\ 84.7\\ 0.0\\ 0.4\\ 0.6\\ \end{array}$                                                                  | V = 50 Size 0.80 5.5 16.0 75.0 43.4 23.8 95.0 81.0                                        | 0<br>Powe<br>0.85<br>100.0<br>91.0<br>99.9<br>96.9<br>99.7<br>100.0<br>92.0                                                         | $r(H_1) \\ 0.90 \\ 100.0 \\ 97.7 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 95.5 \\ rac{1}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                   | Powe<br>0.70<br>100.0<br>90.3<br>93.5<br>90.0<br>0.1<br>1.5<br>12.5                                                           | $\begin{array}{c} & N \\ \hline r(H_1) \\ 0.75 \\ \hline 86.7 \\ 47.4 \\ 68.7 \\ 72.5 \\ 0.1 \\ 7.3 \\ 19.6 \end{array}$                                                                    | V = 15 Size 0.80 5.6 28.1 63.5 70.7 0.1 59.3 63.7                                        | Powe<br>0.85<br>83.8<br>70.4<br>89.9<br>82.6<br>3.8<br>78.6<br>76.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $T = 10$ $r(H_1)$ 0.90 100.0 92.3 99.3 92.8 49.6 84.6 78.9                                                                   | $\begin{array}{c} \gamma = 0. \\ \hline \\ Powe \\ 0.70 \\ 100.0 \\ 96.6 \\ 97.1 \\ 97.9 \\ 0.0 \\ 0.0 \\ 0.5 \\ \end{array}$                                                          | $\frac{8,\beta = \frac{1}{2}}{r(H_1)}$ $\frac{0.75}{99.6}$ $\frac{69.1}{56.4}$ $75.9$ $0.0$ $0.0$ $0.5$                                                                                                                           | $ \begin{array}{r} \hline 1.0, f_t \\ \hline V = 300 \\ \hline \hline \\ \hline$                                                                                                                                           | $\begin{array}{c} \sim tren \\ 0 \\ \hline \\ \hline \\ 9 \\ 9 \\ 8 \\ 8 \\ 0 \\ 7 \\ 9 \\ 9 \\ 8 \\ 8 \\ 4 \\ 5 \\ 4 \\ 7 \\ 9 \\ 9 \\ 1 \\ 8 \\ 3 \\ 5 \\ \end{array}$                                                                         | $\begin{array}{c} d \\ \hline r(H_1) \\ 0.90 \\ \hline 100.0 \\ 97.1 \\ 100.0 \\ 99.8 \\ 99.3 \\ 99.9 \\ 89.4 \\ \end{array}$                                                                              | Powe<br>0.70<br>100.0<br>97.7<br>99.3<br>99.5<br>0.0<br>0.0<br>0.0<br>0.0                                                                 | $\begin{array}{c} \hline \\ \hline r(H_1) \\ \hline 0.75 \\ \hline 100.0 \\ 84.2 \\ 52.2 \\ 84.7 \\ 0.0 \\ 0.4 \\ 0.6 \\ \end{array}$                                       | V = 50 Size 0.80 5.5 16.0 75.0 43.4 23.8 95.0 81.0                                        | 0<br>Powe<br>0.85<br>100.0<br>91.0<br>99.9<br>96.9<br>99.7<br>100.0<br>92.0                                                         | $\begin{array}{c} r(H_1) \\ 0.90 \\ 100.0 \\ 97.7 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 95.5 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Estimators \ γ<br>ML<br>ALS1(1step)<br>ALS1(2step)<br>ALS1(CUE)<br>NT1(1step)<br>NT1(2step)<br>NT1(CUE)                                                                                                                                                                                                                           | Power<br>0.70<br>100.0<br>90.3<br>93.5<br>90.0<br>0.1<br>1.5<br>12.5<br>Power                                                 | $\begin{array}{c} \hline \\ r(H_1) \\ 0.75 \\ \hline 86.7 \\ 47.4 \\ 68.7 \\ 72.5 \\ 0.1 \\ 7.3 \\ 19.6 \\ \hline r(H_1) \end{array}$                                                       | V = 15 Size 0.80 5.6 28.1 63.5 70.7 0.1 59.3 63.7 Size                                   | Powe<br>0.85<br>83.8<br>70.4<br>89.9<br>82.6<br>3.8<br>78.6<br>76.4<br>Powe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T = 10 er(H <sub>1</sub> ) 0.90 100.0 92.3 99.3 92.8 49.6 84.6 78.9 er(H <sub>1</sub> )                                      | $\begin{array}{c} \gamma = 0. \\ \hline \\ Powe \\ 0.70 \\ 100.0 \\ 96.6 \\ 97.1 \\ 97.9 \\ 0.0 \\ 0.0 \\ 0.5 \\ \hline \\ Powe \end{array}$                                           | $\frac{8, \beta = \frac{1}{2}}{r(H_1)}$ $\frac{0.75}{99.6}$ $\frac{69.1}{56.4}$ $\frac{56.4}{75.9}$ $0.0$ $0.0$ $0.5$ $r(H_1)$                                                                                                    | $     \begin{array}{r}       1.0, f_t \\       V = 30 \\       \overline{V} \\       \overline{Size} \\       0.80 \\       \overline{5.6} \\       21.4 \\       63.7 \\       51.8 \\       0.2 \\       61.5 \\       49.6 \\       \overline{\beta} \\       \overline{Size}   \end{array} $ | $\sim trend0$<br>Powe<br>0.85<br>98.1<br>80.7<br>99.3<br>88.4<br>54.7<br>99.1<br>83.5<br>Powe                                                                                                                                                    | $\frac{d}{r(H_1)}$ 0.90 100.0 97.1 100.0 99.8 99.3 99.9 89.4 $r(H_1)$                                                                                                                                      | Powe<br>0.70<br>100.0<br>97.7<br>99.3<br>99.5<br>0.0<br>0.0<br>0.0<br>0.0<br>Powe                                                         | $\begin{array}{c} \hline \\ \hline \\ r(H_1) \\ 0.75 \\ \hline 100.0 \\ 84.2 \\ 52.2 \\ 84.7 \\ 0.0 \\ 0.4 \\ 0.6 \\ \hline \\ r(H_1) \end{array}$                          | V = 50 Size 0.80 5.5 16.0 75.0 43.4 23.8 95.0 81.0 Size                                   | 0<br>Powe<br>0.85<br>100.0<br>91.0<br>99.9<br>96.9<br>99.7<br>100.0<br>92.0<br>Powe                                                 | $r(H_1) = 0.90$ 100.0 97.7 100.0 100.0 100.0 100.0 100.0 95.5 r(H_1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{tabular}{ c c c c } \hline & Estimators $$ & $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $                                                                                                                                                                                                                                           | Power<br>0.70<br>100.0<br>90.3<br>93.5<br>90.0<br>0.1<br>1.5<br>12.5<br>Power<br>0.90                                         | $\begin{array}{c} \hline \\ r(H_1) \\ 0.75 \\ 86.7 \\ 47.4 \\ 68.7 \\ 72.5 \\ 0.1 \\ 7.3 \\ 19.6 \\ \hline r(H_1) \\ 0.95 \\ \end{array}$                                                   | V = 15 Size 0.80 5.6 28.1 63.5 70.7 0.1 59.3 63.7 Size 1.00                              | For the second s | $T = 10$ $T = 10$ $0.90$ $100.0$ $92.3$ $99.3$ $92.8$ $49.6$ $84.6$ $78.9$ $T(H_1)$ $1.10$                                   | $\begin{array}{c} \gamma = 0. \\ \hline \\ 0.70 \\ 100.0 \\ 96.6 \\ 97.1 \\ 97.9 \\ 0.0 \\ 0.5 \\ \hline \\ 0.9 \\ 0.5 \\ \end{array}$                                                 | $\frac{8, \beta = \frac{1}{2}}{r(H_1)}$ 0.75 99.6 69.1 56.4 75.9 0.0 0.0 0.5 r(H_1) 0.95                                                                                                                                          |                                                                                                                                                                                                                                                                                                  | ~ trend<br>0<br>Powe<br>0.85<br>98.1<br>80.7<br>99.3<br>88.4<br>54.7<br>99.1<br>83.5<br>Powe<br>1.05                                                                                                                                             | $\begin{array}{c} d \\ \hline \\ r(H_1) \\ 0.90 \\ 100.0 \\ 97.1 \\ 100.0 \\ 99.3 \\ 99.3 \\ 99.9 \\ 89.4 \\ \hline \\ r(H_1) \\ 1.10 \\ \end{array}$                                                      | Powe<br>0.70<br>100.0<br>97.7<br>99.3<br>99.5<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                            | $\begin{array}{c} & & \\ r(\mathrm{H}_{1}) \\ 0.75 \\ 100.0 \\ 84.2 \\ 52.2 \\ 84.7 \\ 0.0 \\ 0.4 \\ 0.6 \\ \hline r(\mathrm{H}_{1}) \\ 0.95 \end{array}$                   | V = 50 Size 0.80 5.5 16.0 75.0 43.4 23.8 95.0 81.0 Size 1.00                              | 0<br>Powe<br>0.85<br>100.0<br>91.0<br>99.9<br>99.7<br>100.0<br>92.0<br>Powe<br>1.05                                                 | $\begin{array}{c} r(H_1) \\ 0.90 \\ 100.0 \\ 97.7 \\ 100.0 \\ 100.0 \\ 100.0 \\ 95.5 \\ r(H_1) \\ 1.10 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{tabular}{ c c c c } \hline & & & & & \\ \hline & & & & & \\ \hline & & & & &$                                                                                                                                                                                                                                             | Power<br>0.70<br>100.0<br>90.3<br>93.5<br>90.0<br>0.1<br>1.5<br>12.5<br>Power<br>0.90<br>86.6                                 | $\begin{array}{c} \hline \\ r(H_1)\\ 0.75\\ 86.7\\ 47.4\\ 68.7\\ 72.5\\ 0.1\\ 7.3\\ 19.6\\ \hline \\ r(H_1)\\ 0.95\\ \overline{33.8} \end{array}$                                           | V = 15 Size 0.80 5.6 28.1 63.5 70.7 0.1 59.3 63.7 Size 1.00 5.8                          | For the second s | $T = 10$ $T = 10$ $0.90$ $100.0$ $92.3$ $99.3$ $92.8$ $49.6$ $84.6$ $84.6$ $78.9$ $T(H_1)$ $1.10$ $87.5$                     | $\begin{array}{c} \gamma = 0.\\ \hline \\ Powe\\ 0.70\\ 100.0\\ 96.6\\ 97.1\\ 97.9\\ 0.0\\ 0.5\\ \hline \\ 0.0\\ 0.5\\ \hline \\ 0.90\\ 98.5\\ \end{array}$                            | $\frac{8, \beta = \frac{1}{2}}{r(H_1)}$ 0.75 99.6 69.1 56.4 75.9 0.0 0.0 0.5 r(H_1) 0.95 58.3                                                                                                                                     |                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \sim trend\\ \hline 0 \\ \hline \\ \hline \\ 0 \\ \hline \\ 0 \\ 85 \\ 98.1 \\ 80.7 \\ 99.3 \\ 88.4 \\ 54.7 \\ 99.1 \\ 83.5 \\ \hline \\ 83.5 \\ \hline \\ \hline \\ \hline \\ 0 \\ 0 \\ \hline \\ 0 \\ 0 \\ \hline \\ 0 \\ 0$ | $\begin{array}{c} d \\ \hline \\ r(H_1) \\ 0.90 \\ 100.0 \\ 97.1 \\ 100.0 \\ 99.8 \\ 99.3 \\ 99.9 \\ 89.4 \\ \hline \\ r(H_1) \\ 1.10 \\ \hline \\ 98.9 \end{array}$                                       | Powe<br>0.70<br>100.0<br>97.7<br>99.3<br>99.5<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>100.0                                   | $\begin{array}{c} & & \\ & r(H_1) \\ 0.75 \\ \hline 100.0 \\ 84.2 \\ 52.2 \\ 84.7 \\ 0.0 \\ 0.4 \\ 0.6 \\ \hline r(H_1) \\ 0.95 \\ \hline 79.7 \end{array}$                 | V = 50 Size 0.80 5.5 16.0 75.0 43.4 23.8 95.0 81.0 Size 1.00 5.0                          | 0<br>Powe<br>0.85<br>100.0<br>91.0<br>99.9<br>99.9<br>99.7<br>100.0<br>92.0<br>Powe<br>1.05<br>82.1                                 | r(H <sub>1</sub> )<br>0.90<br>100.0<br>97.7<br>100.0<br>100.0<br>100.0<br>95.5<br>r(H <sub>1</sub> )<br>1.10<br>100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} \hline \\ Estimators \ \ \ \gamma \\ \hline \\ ML \\ ALS1(1step) \\ ALS1(2step) \\ ALS1(CUE) \\ NT1(1step) \\ NT1(2step) \\ NT1(CUE) \\ \hline \\ Estimators \ \ \ \ \beta \\ \hline \\ ML \\ ALS1(1step) \end{array}$                                                                                          | Power<br>0.70<br>100.0<br>90.3<br>93.5<br>90.0<br>0.1<br>1.5<br>12.5<br>Power<br>0.90<br>86.6<br>44.8                         | $\begin{array}{c} \hline \\ r(H_1) \\ 0.75 \\ 86.7 \\ 47.4 \\ 68.7 \\ 72.5 \\ 0.1 \\ 7.3 \\ 19.6 \\ \hline r(H_1) \\ 0.95 \\ \hline 33.8 \\ 28.4 \\ \end{array}$                            | V = 15 Size 0.80 5.6 28.1 63.5 70.7 0.1 59.3 63.7 Size 1.00 5.8 22.1                     | Powe<br>0.85<br>83.8<br>70.4<br>89.9<br>82.6<br>78.6<br>76.4<br>Powe<br>1.05<br>34.2<br>32.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $T = 10$ $r(H_1)$ 0.90 0.90 0.92.3 99.3 92.8 49.6 84.6 78.9 $r(H_1)$ 1.10 87.5 51.6                                          | $\begin{array}{c} \gamma = 0.\\ \hline Powe \\ 0.70 \\ 0.00 \\ 96.6 \\ 97.1 \\ 97.9 \\ 0.0 \\ 0.5 \\ \hline 0.00 \\ 0.5 \\ \hline 0.90 \\ 98.5 \\ 55.6 \end{array}$                    | $\frac{8, \beta = \frac{1}{1}}{r(H_1)}$ $\frac{0.75}{99.6}$ $\frac{99.6}{69.1}$ $\frac{56.4}{75.9}$ $\frac{0.0}{0.0}$ $\frac{0.5}{0.5}$ $\frac{1}{r(H_1)}$ $\frac{0.95}{58.3}$ $\frac{58.3}{26.9}$                                |                                                                                                                                                                                                                                                                                                  | ~ trend<br>0<br>Powe<br>0.85<br>98.1<br>80.7<br>99.3<br>88.4<br>54.7<br>99.1<br>83.5<br>Powe<br>1.05<br>56.6<br>42.9                                                                                                                             | $\begin{array}{c} \hline \\ r(H_1) \\ 0.90 \\ \hline 100.0 \\ 97.1 \\ 100.0 \\ 99.8 \\ 99.3 \\ 99.9 \\ 89.4 \\ \hline r(H_1) \\ 1.10 \\ \hline 98.9 \\ 78.2 \\ \end{array}$                                | Powe<br>0.70<br>100.0<br>97.7<br>99.3<br>99.5<br>0.0<br>0.0<br>0.0<br>0.0<br>Powe<br>0.90<br>100.0<br>65.9                                | r(H <sub>1</sub> )<br>0.75<br>100.0<br>84.2<br>52.2<br>84.7<br>0.0<br>0.4<br>0.6<br>r(H <sub>1</sub> )<br>0.95<br>79.7<br>20.4                                              | V = 50 Size 0.80 5.5 16.0 75.0 43.4 23.8 95.0 81.0 Size 1.00 5.0 14.9                     | 0<br>Powe<br>0.85<br>100.0<br>91.0<br>99.9<br>96.9<br>99.7<br>100.0<br>92.0<br>Powe<br>1.05<br>82.1<br>59.7                         | $\begin{array}{c} r(H_1)\\ 0.90\\ 100.0\\ 97.7\\ 100.0\\ 100.0\\ 100.0\\ 95.5\\ r(H_1)\\ 1.10\\ 100.0\\ 94.7\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{tabular}{ c c c c } \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & &$                                                                                                                                                                                                                                           | Power<br>0.70<br>100.0<br>90.3<br>93.5<br>90.0<br>0.1<br>1.5<br>12.5<br>Power<br>0.90<br>86.6<br>44.8<br>85.8                 | $\begin{array}{c} \hline \\ r(H_1) \\ 0.75 \\ 86.7 \\ 47.4 \\ 68.7 \\ 72.5 \\ 0.1 \\ 7.3 \\ 19.6 \\ \hline r(H_1) \\ 0.95 \\ \hline 33.8 \\ 28.4 \\ 70.9 \\ \end{array}$                    | V = 15 Size 0.80 5.6 28.1 63.5 70.7 0.1 59.3 63.7 Size 1.00 5.8 22.1 53.9                | Powe<br>0.85<br>83.8<br>70.4<br>89.9<br>82.6<br>3.8<br>78.6<br>76.4<br>Powe<br>1.05<br>34.2<br>32.6<br>53.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $T = 10$ $r(H_1)$ 0.90 92.3 99.3 92.8 49.6 84.6 78.9 $r(H_1)$ 1.10 87.5 51.6 64.4                                            | $\begin{array}{c} \gamma = 0.\\ \hline Powe \\ 0.70 \\ 100.0 \\ 96.6 \\ 97.1 \\ 97.9 \\ 0.0 \\ 0.0 \\ 0.5 \\ \hline 0.90 \\ 98.5 \\ 55.6 \\ 96.9 \\ \end{array}$                       | $\frac{8, \beta =}{r(H_1)}$ $\frac{1}{0.75}$ $\frac{99.6}{69.1}$ $\frac{69.1}{56.4}$ $\frac{75.9}{0.0}$ $0.0$ $0.5$ $r(H_1)$ $0.95$ $\frac{1}{58.3}$ $\frac{26.9}{79.8}$                                                          | $\begin{array}{r} 1.0, f_t \\ \overline{\rm V} = 30 \\ \hline {\rm V} = 30 \\ \hline {\rm V} = 30 \\ \overline{\rm Size} \\ 0.80 \\ 5.6 \\ 21.4 \\ 63.7 \\ 51.8 \\ 0.2 \\ 61.5 \\ 49.6 \\ \hline {\rm Bize} \\ 1.00 \\ \hline {\rm Bize} \\ 1.00 \\ \hline 6.6 \\ 17.9 \\ 44.0 \end{array}$      | ~ trend<br>0<br>Powe<br>0.85<br>98.1<br>80.7<br>99.3<br>88.4<br>54.7<br>99.1<br>83.5<br>Powe<br>1.05<br>56.6<br>42.9<br>34.2                                                                                                                     | $\begin{array}{c} d \\ \hline r(H_1) \\ 0.90 \\ 100.0 \\ 97.1 \\ 100.0 \\ 99.8 \\ 99.3 \\ 99.9 \\ 99.9 \\ 99.9 \\ 99.9 \\ 99.9 \\ 79.9 \\ 89.4 \\ \hline r(H_1) \\ 1.10 \\ 98.9 \\ 66.0 \\ \end{array}$    | Powe<br>0.70<br>100.0<br>97.7<br>99.3<br>99.5<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>00.0<br>65.9<br>99.9             | $\begin{array}{c} & 1\\ \hline r(H_1) \\ 0.75 \\ 100.0 \\ 84.2 \\ 52.2 \\ 84.7 \\ 0.0 \\ 0.4 \\ 0.6 \\ \hline r(H_1) \\ 0.95 \\ \hline 79.7 \\ 20.4 \\ 91.3 \\ \end{array}$ | V = 50 Size 0.80 5.5 16.0 75.0 43.4 23.8 95.0 81.0 Size 1.00 5.0 14.9 42.5                | 0<br>Powe<br>0.85<br>100.0<br>99.9<br>96.9<br>99.7<br>100.0<br>92.0<br>Powe<br>1.05<br>82.1<br>59.7<br>25.8                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c} \hline \\ \hline \\ Estimators \ \backslash \ \gamma \\ \hline \\ ML \\ ALS1(1step) \\ ALS1(2step) \\ ALS1(CUE) \\ NT1(1step) \\ NT1(2step) \\ NT1(CUE) \\ \hline \\ \hline \\ Estimators \ \backslash \ \beta \\ \hline \\ ML \\ ALS1(1step) \\ ALS1(2step) \\ ALS1(2step) \\ ALS1(CUE) \\ \hline \end{array}$ | Power<br>0.70<br>100.0<br>90.3<br>93.5<br>90.0<br>0.1<br>1.5<br>12.5<br>Power<br>0.90<br>86.6<br>44.8<br>85.8<br>78.0         | $\begin{array}{c} \hline \\ r(H_1) \\ 0.75 \\ 86.7 \\ 47.4 \\ 68.7 \\ 72.5 \\ 0.1 \\ 7.3 \\ 19.6 \\ \hline \\ r(H_1) \\ 0.95 \\ 33.8 \\ 28.4 \\ 70.9 \\ 68.0 \\ \end{array}$                | V = 15 Size 0.80 5.6 28.1 63.5 70.7 0.1 59.3 63.7 Size 1.00 5.8 22.1 53.9 60.6           | Powe<br>0.85<br>83.8<br>70.4<br>89.9<br>82.6<br>3.8<br>78.6<br>76.4<br>Powe<br>1.05<br>34.2<br>32.6<br>53.3<br>61.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $T = 10$ $rr(H_1)$ 0.90 100.0 92.3 99.3 92.8 49.6 84.6 84.6 78.9 $rr(H_1)$ 1.10 87.5 51.6 64.4 67.3                          | $\begin{array}{c} \gamma = 0.\\ \hline Powe \\ 0.70 \\ 100.0 \\ 96.6 \\ 97.1 \\ 97.9 \\ 0.0 \\ 0.5 \\ \hline 0.0 \\ 0.5 \\ \hline 0.90 \\ 98.5 \\ 55.6 \\ 96.9 \\ 89.8 \\ \end{array}$ | $\frac{8, \beta =}{1}$ $r(H_1)$ 0.75 99.6 69.1 56.4 75.9 0.0 0.0 0.5 $r(H_1)$ 0.95 58.3 26.9 79.8 64.7                                                                                                                            |                                                                                                                                                                                                                                                                                                  | $\sim trend0Powe0.8598.180.799.388.454.799.183.5Powe1.0556.642.934.246.3$                                                                                                                                                                        | $\begin{array}{c} r(H_1) \\ 0.90 \\ 100.0 \\ 97.1 \\ 100.0 \\ 99.8 \\ 99.9 \\ 99.9 \\ 89.4 \\ \hline r(H_1) \\ 1.10 \\ 98.9 \\ 78.2 \\ 66.0 \\ 77.4 \\ \end{array}$                                        | Powe<br>0.70<br>100.0<br>97.7<br>99.3<br>99.5<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>Powe<br>0.90<br>100.0<br>65.9<br>99.9<br>99.9<br>97.2 | r(H <sub>1</sub> )<br>0.75<br>100.0<br>84.2<br>52.2<br>84.7<br>0.0<br>0.4<br>0.6<br>r(H <sub>1</sub> )<br>0.95<br>79.7<br>20.4<br>91.3<br>71.7                              | V = 50 Size 0.80 5.5 16.0 75.0 43.4 23.8 95.0 81.0 Size 1.00 5.0 14.9 42.5 27.0           | 0<br>Powe<br>0.85<br>100.0<br>91.0<br>99.9<br>99.7<br>100.0<br>92.0<br>Powe<br>1.05<br>82.1<br>59.7<br>25.8<br>50.3                 | $\begin{array}{c} r(H_1)\\ 0.90\\ 100.0\\ 97.7\\ 100.0\\ 100.0\\ 100.0\\ 05.5\\ \hline r(H_1)\\ 1.10\\ 100.0\\ 95.7\\ 77.4\\ 90.0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c} \hline \\ \hline \\ Estimators \ \backslash \ \gamma \\ \hline \\ ML \\ ALS1(1step) \\ ALS1(2step) \\ NT1(1step) \\ NT1(2step) \\ NT1(CUE) \\ \hline \\ \hline \\ Estimators \ \backslash \ \beta \\ \hline \\ ML \\ ALS1(1step) \\ ALS1(2step) \\ ALS1(2step) \\ ALS1(CUE) \\ NT1(1step) \\ \end{array}$       | Power<br>0.70<br>100.0<br>90.3<br>93.5<br>90.0<br>0.1<br>1.5<br>12.5<br>Power<br>0.90<br>86.6<br>44.8<br>85.8<br>78.0<br>28.1 | $\begin{array}{c} \hline \\ r(H_1) \\ 0.75 \\ 86.7 \\ 47.4 \\ 68.7 \\ 72.5 \\ 0.1 \\ 7.3 \\ 19.6 \\ \hline r(H_1) \\ 0.95 \\ 33.8 \\ 28.4 \\ 70.9 \\ 68.0 \\ 6.6 \\ \hline \end{array}$     | V = 15 Size 0.80 5.6 28.1 63.5 70.7 0.1 59.3 63.7 Size 1.00 5.8 22.1 53.9 60.6 12.7      | Powe           0.85           83.8           70.4           89.9           82.6           3.8           78.6           76.4           Powe           1.05           34.2           32.6           53.3           61.3           44.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $T = 10$ $rr(H_1)$ 0.90 100.0 92.3 99.3 92.8 49.6 84.6 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9                               | $\begin{array}{c} \gamma = 0.\\ \hline Powe \\ 0.70\\ 100.0\\ 96.6\\ 97.1\\ 97.9\\ 0.0\\ 0.5\\ \hline 0.0\\ 0.5\\ \hline 0.90\\ 98.5\\ 55.6\\ 96.9\\ 89.8\\ 844.5\\ \end{array}$       | $\frac{8, \beta = \frac{1}{2}}{r(H_1)}$ $\frac{1}{0.75}$ $\frac{99.6}{69.1}$ $\frac{69.1}{56.4}$ $\frac{75.9}{0.0}$ $0.0$ $0.5$ $\frac{1}{0.95}$ $\frac{1}{58.3}$ $\frac{26.9}{79.8}$ $\frac{64.7}{7.8}$                          |                                                                                                                                                                                                                                                                                                  | $\sim trend0 \\ \hline \\ Powe \\ 0.85 \\ 98.1 \\ 80.7 \\ 99.3 \\ 88.4 \\ 54.7 \\ 99.3 \\ 83.5 \\ \hline \\ Powe \\ 1.05 \\ 56.6 \\ 42.9 \\ 34.2 \\ 46.3 \\ 75.5 \\ \hline \\ \end{cases}$                                                       | $\begin{array}{c} r(H_1) \\ 0.90 \\ 100.0 \\ 97.1 \\ 100.0 \\ 99.8 \\ 99.3 \\ 99.9 \\ 89.4 \\ r(H_1) \\ 1.10 \\ 98.9 \\ 78.2 \\ 66.0 \\ 77.4 \\ 98.3 \\ \end{array}$                                       | Powe<br>0.70<br>100.0<br>97.7<br>99.3<br>99.5<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>Powe<br>0.90<br>100.0<br>65.9<br>99.9<br>97.2<br>62.0 | $\begin{array}{c} & \\ r(H_1) \\ 0.75 \\ 100.0 \\ 84.2 \\ 52.2 \\ 84.7 \\ 0.0 \\ 0.4 \\ 0.6 \\ \hline r(H_1) \\ 0.95 \\ 79.7 \\ 20.4 \\ 91.3 \\ 71.7 \\ 6.1 \\ \end{array}$ | V = 50 Size 0.80 5.5 16.0 75.0 43.4 23.8 95.0 81.0 Size 1.00 5.0 14.9 42.5 27.0 34.8      | 0<br>Powe<br>0.85<br>100.0<br>99.9<br>96.9<br>99.7<br>100.0<br>92.0<br>Powe<br>1.05<br>82.1<br>59.7<br>25.8<br>50.3<br>93.4         | $\begin{array}{c} r(H_1) \\ 0.90 \\ 100.0 \\ 97.7 \\ 100.0 \\ 100.0 \\ 100.0 \\ 95.5 \\ r(H_1) \\ 1.10 \\ 100.0 \\ 94.7 \\ 77.4 \\ 90.0 \\ 99.9 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c} \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                  | Power<br>0.70<br>90.3<br>93.5<br>90.0<br>0.1<br>1.5<br>12.5<br>Power<br>0.90<br>86.6<br>44.8<br>85.8<br>78.0<br>28.1<br>61.8  | $\begin{array}{c} \hline \\ r(H_1) \\ 0.75 \\ 86.7 \\ 47.4 \\ 68.7 \\ 72.5 \\ 0.1 \\ 7.3 \\ 19.6 \\ \hline \\ r(H_1) \\ 0.95 \\ 33.8 \\ 28.4 \\ 70.9 \\ 68.0 \\ 6.6 \\ 46.7 \\ \end{array}$ | V = 18 Size 0.80 5.6 28.1 63.5 70.7 0.1 59.3 63.7 Size 1.00 5.8 22.1 53.9 60.6 12.7 46.8 | Powe<br>0.85<br>83.8<br>70.4<br>89.9<br>82.6<br>3.8<br>78.6<br>76.4<br>Powe<br>1.05<br>34.2<br>32.6<br>53.3<br>61.3<br>61.3<br>61.3<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} T = 10\\ \hline \\ \hline$ | $\begin{array}{c} \gamma = 0.\\ \hline Powe \\ 0.70\\ 100.0\\ 96.6\\ 97.1\\ 97.9\\ 0.0\\ 0.5\\ 0.5\\ 0.5\\ 55.6\\ 96.9\\ 89.8\\ 44.5\\ 67.4 \end{array}$                               | $\frac{8, \beta = \frac{1}{2}}{r(H_1)}$ $\frac{1}{0.75}$ $\frac{99.6}{69.1}$ $\frac{69.1}{56.4}$ $\frac{75.9}{0.0}$ $\frac{0.0}{0.5}$ $\frac{1}{0.95}$ $\frac{1}{58.3}$ $\frac{26.9}{79.8}$ $\frac{64.7}{7.8}$ $\frac{7.8}{27.7}$ |                                                                                                                                                                                                                                                                                                  | $\sim trend0 \\ \hline \\ Powe \\ 0.85 \\ 98.1 \\ 80.7 \\ 99.3 \\ 88.4 \\ 54.7 \\ 99.1 \\ 83.5 \\ \hline \\ 99.1 \\ 83.5 \\ \hline \\ 99.1 \\ 83.5 \\ \hline \\ 90.4 \\ 93.4 \\ 24.2 \\ 46.3 \\ 46.3 \\ 75.5 \\ 71.0 \\ \hline \\ \end{cases}$   | $\begin{array}{c} \hline \\ \hline \\ r(H_1) \\ 0.90 \\ 100.0 \\ 97.1 \\ 100.0 \\ 99.8 \\ 99.3 \\ 99.9 \\ 89.4 \\ \hline \\ r(H_1) \\ 1.10 \\ 98.9 \\ 78.2 \\ 66.0 \\ 77.4 \\ 98.3 \\ 94.9 \\ \end{array}$ | Powe<br>0.70<br>100.0<br>97.7<br>99.3<br>99.5<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0                         | r(H <sub>1</sub> )<br>0.75<br>100.0<br>84.2<br>52.2<br>84.7<br>0.0<br>0.4<br>0.6<br>0.4<br>0.4<br>0.95<br>79.7<br>20.4<br>91.3<br>71.7<br>6.1<br>22.8                       | V = 50 Size 0.80 5.5 16.0 75.0 43.4 23.8 95.0 81.0 Size 1.00 5.0 14.9 42.5 27.0 34.8 28.3 | 0<br>Powe<br>0.85<br>100.0<br>99.9<br>96.9<br>99.7<br>100.0<br>92.0<br>Powe<br>1.05<br>82.1<br>59.7<br>25.8<br>50.3<br>93.4<br>84.5 | $\begin{array}{c} r(H_1) \\ 0.90 \\ 100.0 \\ 97.7 \\ 100.0 \\ 100.0 \\ 100.0 \\ 95.5 \\ \hline r(H_1) \\ 1.10 \\ 100.0 \\ 94.7 \\ 77.4 \\ 90.0 \\ 99.9 \\ 99.6 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 8b: Size(%) and power(%) for the ARX(1) model with a single factor  $(T = 10, f_t \sim trend)$  $T = 10, \gamma = 0.4, \beta = 1.0, f_t \sim trend$ 

|     | W10.           | птмот          | actors         |                |
|-----|----------------|----------------|----------------|----------------|
|     | T=6,           | $\gamma = 0.4$ | T = 10,        | $\gamma = 0.4$ |
|     | Bias           | RMSE           | Bias           | RMSE           |
| N   | $(\times 100)$ | $(\times 100)$ | $(\times 100)$ | $(\times 100)$ |
| 150 | 0.04           | 6.91           | -0.27          | 5.95           |
| 300 | 0.05           | 4.81           | -0.12          | 4.12           |
| 500 | -0.10          | 3.53           | -0.02          | 3.19           |
|     | T=6,           | $\gamma = 0.8$ | T = 10,        | $\gamma = 0.8$ |
|     | Bias           | RMSE           | Bias           | RMSE           |
| N   | $(\times 100)$ | $(\times 100)$ | $(\times 100)$ | $(\times 100)$ |
| 150 | -1.47          | 7.56           | -2.27          | 8.60           |
| 300 | -0.59          | 5.79           | -0.90          | 6.33           |
| 500 | -0.01          | 5.03           | -0.20          | 4.94           |

Table 9:  $Bias(\times 100)$  and  $RMSE(\times 100)$  of the transformed ML estimator for the AR(1) model with two factors

Notes:  $y_{it}$  is generated as  $y_{it} = \alpha_i + \gamma y_{i,t-1} + \xi_{it}$ ,  $\xi_{it} = \lambda_{1i}f_{1t} + \lambda_{2i}f_{2t} + u_{it}$ ,  $u_{it} \sim iid\mathcal{N}(0,\sigma^2)$ , i = 1, 2, ..., N; t = -49, 48, ...0, 1, ..., T, with  $y_{i,-50} = 0$  and  $\sigma^2 = 1$ . The factors are generated as:  $f_{\ell t} = \rho_{f\ell}f_{\ell,t-1} + \sqrt{1 - \rho_{f\ell}^2}\varepsilon_{f\ell t}$ ,  $\varepsilon_{f\ell t} \sim iid\mathcal{N}(0,1)$ , t = -49, 48, ...0, 1, ..., T, with  $f_{\ell,-50} = 0$ , and  $\rho_{f\ell} = 0.9$  for  $\ell = 1, 2$ . The resultant  $f_{\ell t}$  values are scaled such that  $T^{-1}\sum_{t=1}^{T}f_{\ell t}t^2 = 1$ . The values of  $f_t$  for t = -49, 48, ...0 are not scaled. The factor loadings are generated as  $\lambda_{\ell i} = \lambda + \eta_{\ell i}$ , with  $\lambda = 1$  and  $\eta_{\ell i} \sim iid\mathcal{N}(0,1)$  for  $\ell = 1, 2$ . The fixed effects,  $\alpha_i$ , are generated as  $\alpha_i = T^{-1}(\xi_{i1} + \xi_{i2} + ... + \xi_{iT}) + v_i = \lambda_{1i}\bar{f}_1 + \lambda_{2i}\bar{f}_2 + \bar{u}_i + v_i$ , where  $\bar{f}_\ell = T^{-1}\sum_{t=1}^{T}f_{\ell t}$ ,  $\ell = 1, 2$ ,  $\bar{u}_i = T^{-1}\sum_{t=1}^{T}u_{it}$ , and  $v_i \sim iid\mathcal{N}(0,1)$ . Each  $f_{\ell t}$  is generated once and the same  $f'_{\ell t}s$  are used throughout the replications for  $\ell = 1, 2$ . The first 50 observations are discarded. ML is the proposed maximum likelihood estimator. All experiments are based on 1,000 replications.

|                      |      |           |               | Ič    | actors   | 5    |           |                |       |                                   |
|----------------------|------|-----------|---------------|-------|----------|------|-----------|----------------|-------|-----------------------------------|
|                      |      | T =       | $6, \gamma =$ | = 0.4 |          |      | T =       | $10, \gamma$ : | = 0.4 |                                   |
|                      | Powe | $er(H_1)$ | Size          | Powe  | $r(H_1)$ | Powe | $er(H_1)$ | Size           | Powe  | $r(H_1)$                          |
| $N \setminus \gamma$ | 0.30 | 0.35      | 0.40          | 0.45  | 0.50     | 0.30 | 0.35      | 0.40           | 0.45  | 0.50                              |
| 150                  | 37.8 | 16.7      | 5.0           | 9.4   | 30.3     | 41.5 | 18.6      | 5.6            | 9.2   | 34.6                              |
| 300                  | 59.9 | 22.5      | 5.2           | 16.5  | 57.7     | 65.5 | 25.2      | 5.0            | 17.5  | 66.8                              |
| 500                  | 79.0 | 30.5      | 4.5           | 26.3  | 81.3     | 84.1 | 34.7      | 4.3            | 31.8  | 88.7                              |
|                      |      | T =       | $6, \gamma =$ | = 0.8 |          |      | T =       | $10, \gamma$ : | = 0.8 |                                   |
|                      | Powe | $er(H_1)$ | Size          | Powe  | $r(H_1)$ | Powe | $er(H_1)$ | Size           | Powe  | $\operatorname{er}(\mathrm{H}_1)$ |
| $N \setminus \gamma$ | 0.70 | 0.75      | 0.80          | 0.85  | 0.90     | 0.70 | 0.75      | 0.80           | 0.85  | 0.90                              |
| 150                  | 34.8 | 17.0      | 6.7           | 1.7   | 1.4      | 32.6 | 17.8      | 7.7            | 5.0   | 9.1                               |
| 300                  | 41.7 | 20.9      | 5.6           | 0.7   | 5.3      | 39.5 | 18.9      | 5.1            | 4.2   | 13.2                              |
| 500                  | 50.8 | 23.7      | 5.5           | 1.3   | 25.3     | 47.6 | 20.0      | 3.8            | 4.7   | 33.4                              |

Table 10: Size(%) and power(%) of the transformed ML estimator for the AR(1) model with two

|     |                | T =            | = 6            |                | T = 10         |                |                |                |  |  |  |  |
|-----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--|--|--|
|     | $\gamma = 0.4$ |                | $\beta = 1.0$  |                | $\gamma =$     | 0.4            | $\beta = 1.0$  |                |  |  |  |  |
| N   | Bias           | RMSE           | Bias           | RMSE           | Bias           | RMSE           | Bias           | RMSE           |  |  |  |  |
|     | $(\times 100)$ |  |  |  |  |
| 150 | -0.16          | 3.82           | 0.36           | 5.86           | 0.00           | 2.05           | 0.01           | 4.14           |  |  |  |  |
| 300 | -0.09          | 2.64           | -0.17          | 4.27           | 0.03           | 1.42           | -0.02          | 3.03           |  |  |  |  |
| 500 | -0.12          | 2.01           | -0.02          | 3.29           | 0.00           | 1.08           | 0.08           | 2.21           |  |  |  |  |
|     |                | T =            | = 6            |                | T = 10         |                |                |                |  |  |  |  |
|     | $\gamma = 0.8$ |                | $\beta = 1.0$  |                | $\gamma = 0.8$ |                | $\beta = 1.0$  |                |  |  |  |  |
| N   | Bias           | RMSE           | Bias           | RMSE           | Bias           | RMSE           | Bias           | RMSE           |  |  |  |  |
|     | $(\times 100)$ |  |  |  |  |
| 150 | 0.01           | 1.46           | 0.07           | 2.32           | 0.01           | 0.69           | 0.02           | 1.57           |  |  |  |  |
| 300 | -0.02          | 1.04           | 0.01           | 1.67           | 0.01           | 0.52           | -0.03          | 1.18           |  |  |  |  |
| 500 | -0.03          | 0.77           | -0.04          | 1.31           | -0.02          | 0.39           | 0.01           | 0.86           |  |  |  |  |

Table 11:  $Bias(\times 100)$  and  $RMSE(\times 100)$  of the transformed ML estimator for the ARX(1) model with two factors

Notes:  $y_{it}$  is generated as  $y_{it} = \alpha_i + \gamma y_{i,t-1} + \beta x_{it} + \xi_{it}$ ,  $\xi_{it} = \lambda_1 i f_{1t} + \lambda_2 i f_{2t} + u_{it}$ ,  $u_{it} \sim iid\mathcal{N}(0, \sigma^2)$ , i = 1, 2, ..., N; t = -49, 48, ...0, 1, ..., T, with  $y_{i,-50} = 0$  and  $x_{it} = \mu_i + \vartheta_{1i} f_{1t} + \vartheta_{2i} f_{2t} + \breve{x}_{it}$ ,  $\breve{x}_{it} = \rho_x \breve{x}_{i,t-1} + \sqrt{1 - \rho_x^2} \varepsilon_{it}$ , with  $\breve{x}_{i,-50} = 0$ , for t = -49, 48, ...0, 1, ..., T, where  $\rho_x = 0.8$ ,  $\mu_i \sim iid\mathcal{N}(0, 1)$ , and  $\varepsilon_{it} \sim iid\mathcal{N}(0, 1)$ . The factors  $f_{\ell t}$ ,  $\ell = 1, 2$ , are generated as in the AR(1) case (see notes to Table 1). The factor loadings are generated as  $\vartheta_{\ell i} \sim iid\mathcal{N}(0.5, \sigma_{\ell \vartheta}^2)$  and  $\lambda_{\ell i} \sim iid\mathcal{N}(0.5, \sigma_{\ell \lambda}^2)$  for  $\ell = 1, 2$ , respectively. The fixed effects,  $\alpha_i$ , are generated as  $\alpha_i = \bar{x}_i + \lambda_{1i} \bar{f}_1 + \lambda_{2i} \bar{f}_2 + \bar{u}_i + v_i$ , where  $\bar{x}_i = T^{-1} \sum_{t=1}^T x_{it}, T^{-1} \sum_{t=1}^T f_{\ell t}^2 = 1$ ,  $\bar{u}_i = T^{-1} \sum_{t=1}^T u_{it}$ , and  $v_i \sim iid\mathcal{N}(0, 1)$ . The remaining parameters are set at  $\beta = 1, \sigma_{1\vartheta}^2 = \sigma_{1\lambda}^2 = \sigma_{2\vartheta}^2 = \sigma_{2\lambda}^2 = \sigma^2$ , with  $\sigma^2 = (0.7 - \gamma^2)/0.5$ . Each  $f_{\ell t}$  is generated once and the same  $f'_{\ell t}s$  are used throughout the replications for  $\ell = 1, 2$ . The first 50 observations are discarded. ML is the proposed maximum likelihood estimator. All experiments are based on 1,000 replications.

|                      |                                        |          |      | twe             | ) iacto                          | ors                                     |                          |      |                   |       |  |
|----------------------|----------------------------------------|----------|------|-----------------|----------------------------------|-----------------------------------------|--------------------------|------|-------------------|-------|--|
|                      | $T = 6, \ \gamma = 0.4, \ \beta = 1.0$ |          |      |                 |                                  | $T = 10, \ \gamma = 0.4, \ \beta = 1.0$ |                          |      |                   |       |  |
|                      | $\gamma$                               |          |      |                 |                                  |                                         |                          |      |                   |       |  |
|                      | $Power(H_1)$ Size                      |          |      | $Power(H_1)$    |                                  | $Power(H_1)$                            |                          | Size | Size $Power(H_1)$ |       |  |
| $N \setminus \gamma$ | 0.30                                   | 0.35     | 0.40 | 0.45            | 0.50                             | 0.30                                    | 0.35                     | 0.40 | 0.45              | 0.50  |  |
| 150                  | 78.5                                   | 27.9     | 4.9  | 30.5            | 73.7                             | 99.8                                    | 71.0                     | 6.0  | 70.8              | 99.7  |  |
| 300                  | 97.4                                   | 49.6     | 5.1  | 47.4            | 96.1                             | 100.0                                   | 93.9                     | 4.9  | 93.8              | 100.0 |  |
| 500                  | 100.0                                  | 71.9     | 4.4  | 68.3            | 99.8                             | 100.0                                   | 99.6                     | 5.4  | 99.5              | 100.0 |  |
|                      | β                                      |          |      |                 |                                  |                                         |                          |      |                   |       |  |
|                      | $Power(H_1)$ Size $Power(H_1)$         |          |      |                 | Power $(H_1)$ Size Power $(H_1)$ |                                         |                          |      |                   |       |  |
| $N \setminus \gamma$ | 0.90                                   | 0.95     | 1.00 | 1.05            | 1.10                             | 0.90                                    | 0.95                     | 1.00 | 1.05              | 1.10  |  |
| 150                  | 36.6                                   | 10.9     | 4.6  | 14.0            | 40.3                             | 68.7                                    | 23.6                     | 5.3  | 23.7              | 68.4  |  |
| 300                  | 69.1                                   | 24.8     | 5.6  | 20.6            | 64.2                             | 92.2                                    | 39.8                     | 7.1  | 41.2              | 91.6  |  |
| 500                  | 86.5                                   | 34.2     | 5.5  | 33.5            | 85.6                             | 99.1                                    | 60.3                     | 5.3  | 62.0              | 99.2  |  |
|                      | $T = 6, \ \gamma = 0.8, \ \beta = 1.0$ |          |      |                 |                                  | $T = 10, \ \gamma = 0.8, \ \beta = 1.0$ |                          |      |                   |       |  |
|                      | $\gamma$                               |          |      |                 |                                  |                                         |                          |      |                   |       |  |
|                      | Powe                                   | $r(H_1)$ | Size | ze $Power(H_1)$ |                                  | $Power(H_1)$                            |                          | Size | $Power(H_1)$      |       |  |
| $N \setminus \gamma$ | 0.70                                   | 0.75     | 0.80 | 0.85            | 0.90                             | 0.70                                    | 0.75                     | 0.80 | 0.85              | 0.90  |  |
| 150                  | 100.0                                  | 93.5     | 4.8  | 91.6            | 100.0                            | 100.0                                   | 100.0                    | 4.0  | 100.0             | 100.0 |  |
| 300                  | 100.0                                  | 99.9     | 5.7  | 99.3            | 100.0                            | 100.0                                   | 100.0                    | 5.3  | 100.0             | 100.0 |  |
| 500                  | 100.0                                  | 100.0    | 4.4  | 100.0           | 100.0                            | 100.0                                   | 100.0                    | 4.9  | 100.0             | 100.0 |  |
|                      | $\beta$                                |          |      |                 |                                  |                                         |                          |      |                   |       |  |
|                      | $Power(H_1)$ Size $Power(H_1)$         |          |      | $Power(H_1)$    |                                  | Size                                    | e Power(H <sub>1</sub> ) |      |                   |       |  |
| $N \setminus \gamma$ | 0.90                                   | 0.95     | 1.00 | 1.05            | 1.10                             | 0.90                                    | 0.95                     | 1.00 | 1.05              | 1.10  |  |
| 150                  | 98.9                                   | 54.5     | 4.6  | 56.2            | 98.8                             | 100.0                                   | 87.1                     | 5.1  | 89.4              | 100.0 |  |
|                      |                                        |          |      | a a             | 100.0                            | 100.0                                   | 00.1                     | 0.0  | 00.4              | 100.0 |  |
| 300                  | 100.0                                  | 83.5     | 4.5  | 85.0            | 100.0                            | 100.0                                   | 99.1                     | 6.3  | 99.4              | 100.0 |  |

Table 12: Size(%) and power(%) of the transformed ML estimator for the ARX(1) model with two factors

## Appendix

## A.1 Proof of Theorem 1

The mean of  $\Delta y_{i1}$  conditional on  $\Delta y_{i,-S+1}$  and  $\Delta x_{i,1-j}$ , (j = 0, 1, 2...) is given by

$$\begin{aligned} \zeta_{i1} &= E\left(\Delta y_{i1} | \Delta y_{i,-S+1}, \Delta x_{i1}, \Delta x_{i0}, \ldots\right) \\ &= \gamma^{S} \Delta y_{i,-S+1} + \beta \sum_{j=0}^{S-1} \gamma^{j} \Delta x_{i,1-j} + \tilde{g}_{1S} E(\lambda_{i} | \Delta y_{i,-S+1}, \Delta x_{i1}, \Delta x_{i0}, \ldots) \\ &= \gamma^{S} \Delta y_{i,-S+1} + \beta \Delta x_{i1} + \beta \sum_{j=1}^{S-1} \gamma^{j} \Delta x_{i,1-j} + \lambda \tilde{g}_{1S} + \tilde{g}_{1S} E(\eta_{i} | \Delta y_{i,-S+1}, \Delta x_{i1}, \Delta x_{i0}, \ldots). \end{aligned}$$

Conditional on  $\Delta \mathbf{x}_i = (\Delta x_{i1}, \Delta x_{i2}, ..., \Delta x_{iT})'$  we have

$$\begin{split} E(\zeta_{i1}|\Delta\mathbf{x}_{i}) &= E(\gamma^{S}\Delta y_{i,-S+1} + \beta\Delta x_{i1}|\Delta\mathbf{x}_{i}) + \beta\sum_{j=1}^{S-1}\gamma^{j}E(\Delta x_{i,1-j}|\Delta\mathbf{x}_{i}) + \lambda\tilde{g}_{1S} \\ &\quad +\tilde{g}_{1S}E\left[E(\eta_{i}|\Delta y_{i,-S+1},\Delta x_{i1},\Delta x_{i0},\ldots)|\Delta\mathbf{x}_{i}\right] \\ &= \gamma^{S}\tilde{b} + \beta\Delta x_{i1} + \beta\sum_{j=1}^{S-1}\gamma^{j}\left(b_{j} + \pi'_{j}\Delta\mathbf{x}_{i}\right) + \lambda\tilde{g}_{1S} + \tilde{g}_{1S}(h + \varphi'\Delta\mathbf{x}_{i}) \\ &= \left(\gamma^{S}\tilde{b} + \beta\sum_{j=1}^{S-1}\gamma^{j}b_{j} + \lambda\tilde{g}_{1S} + \tilde{g}_{1S}h\right) + \left(\beta\mathbf{e}_{1} + \beta\sum_{j=1}^{S-1}\gamma^{j}\pi_{j} + \tilde{g}_{1S}\varphi\right)'\Delta\mathbf{x}_{i} \\ &= b + \pi'\Delta\mathbf{x}_{i}, \end{split}$$

where  $\mathbf{e}_1 = (1, 0, .., 0)'$  and the following results are used

$$E(\Delta x_{i,1-j}|\Delta \mathbf{x}_i) = b_j + \pi'_j \Delta \mathbf{x}_i, \qquad (j = 0, 1, 2...)$$
$$E[E(\eta_i|\Delta y_{i,-m+1}, \Delta x_{i1}, \Delta x_{i0}, ...)|\Delta \mathbf{x}_i] = h + \varphi' \Delta \mathbf{x}_i.$$

Then

$$\begin{aligned} \Delta y_{i1} &= \zeta_{i1} + \tilde{g}_{1S} \left[ \lambda_i - E(\lambda_i | \Delta y_{i,-S+1}, \Delta x_{i1}, \Delta x_{i0}, \ldots) \right] + \sum_{j=0}^{S-1} \gamma^j \Delta u_{i,1-j} \\ &= E(\zeta_{i1} | \Delta \mathbf{x}_i) + [\zeta_{i1} - E(\zeta_{i1} | \Delta \mathbf{x}_i)] + \tilde{g}_{1S} \left[ \lambda_i - E(\lambda_i | \Delta y_{i,-S+1}, \Delta x_{i1}, \Delta x_{i0}, \ldots) \right] + \sum_{j=0}^{S-1} \gamma^j \Delta u_{i,1-j} \\ &= b + \pi' \Delta \mathbf{x}_i + v_{i1}, \end{aligned}$$

where

$$v_{i1} = [\zeta_{i1} - E(\zeta_{i1} | \Delta \mathbf{x}_i)] + \tilde{g}_{1S} [\lambda_i - E(\lambda_i | \Delta y_{i,-S+1}, \Delta x_{i1}, \Delta x_{i0}, ...)] + \sum_{j=0}^{S-1} \gamma^j \Delta u_{i,1-j},$$

and

$$\begin{aligned} \zeta_{i1} - E(\zeta_{i1} | \Delta \mathbf{x}_i) &= \gamma^S \left[ \Delta y_{i,-S+1} - E(\Delta y_{i,-S+1} | \Delta \mathbf{x}_i) \right] + \beta \sum_{j=0}^{S-1} \gamma^j \left[ \Delta x_{i,1-j} - E(\Delta x_{i,1-j} | \Delta \mathbf{x}_i) \right] \\ &+ \tilde{g}_{1S} \left\{ E(\lambda_i | \Delta y_{i,-S+1}, \Delta x_{i1}, \Delta x_{i0}, ...) - E \left[ E(\lambda_i | \Delta y_{i,-m+1}, \Delta x_{i1}, \Delta x_{i0}, ...) | \Delta \mathbf{x}_i \right] \right\}. \end{aligned}$$

## A.2 Derivation of the log-likelihood

Here we show how (8) is derived from (7). Using

$$\left(\mathbf{\Omega} + \phi \mathbf{g}\mathbf{g}'\right)^{-1} = \mathbf{\Omega}^{-1} - \frac{\phi \mathbf{\Omega}^{-1} \mathbf{g}\mathbf{g}' \mathbf{\Omega}^{-1}}{1 + \phi \left(\mathbf{g}' \mathbf{\Omega}^{-1} \mathbf{g}\right)},$$

and

$$|\mathbf{\Omega}+\phi\mathbf{g}\mathbf{g'}| = |\mathbf{\Omega}| (1+\phi\mathbf{g'}\mathbf{\Omega}^{-1}\mathbf{g}),$$

the log-likelihood function (7) can be written as

$$\ell(\boldsymbol{\psi}) = -\frac{NT}{2}\ln(2\pi) - \frac{TN}{2}\ln(\sigma^2) - \frac{N}{2}\ln|\boldsymbol{\Omega}| - \frac{N}{2}\ln(1 + \phi \mathbf{g}' \boldsymbol{\Omega}^{-1} \mathbf{g}) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (\Delta \mathbf{y}_i - \Delta \mathbf{W}_i \gamma - \lambda \mathbf{g})' \left[ \boldsymbol{\Omega}^{-1} - \frac{\phi \boldsymbol{\Omega}^{-1} \mathbf{g} \mathbf{g}' \boldsymbol{\Omega}^{-1}}{1 + \phi(\mathbf{g}' \boldsymbol{\Omega}^{-1} \mathbf{g})} \right] (\Delta \mathbf{y}_i - \Delta \mathbf{W}_i \gamma - \lambda \mathbf{g}) (A.1)$$

where  $|\mathbf{\Omega}| = 1 + T(\omega - 1)$ . Let  $\mathbf{v}_i = \mathbf{v}_i(\gamma) = \Delta \mathbf{y}_i - \Delta \mathbf{W}_i \gamma$ , and note that

$$\sum_{i=1}^{N} (\mathbf{v}_{i} - \lambda \mathbf{g})' \left[ \mathbf{\Omega}^{-1} - \frac{\phi \mathbf{\Omega}^{-1} \mathbf{g} \mathbf{g}' \mathbf{\Omega}^{-1}}{1 + \phi (\mathbf{g}' \mathbf{\Omega}^{-1} \mathbf{g})} \right] (\mathbf{v}_{i} - \lambda \mathbf{g})$$

$$= \sum_{i=1}^{N} \mathbf{v}_{i}' \mathbf{\Omega}^{-1} \mathbf{v}_{i} - \frac{\phi \sum_{i=1}^{N} (\mathbf{v}_{i}' \mathbf{\Omega}^{-1} \mathbf{g})^{2}}{1 + \phi (\mathbf{g}' \mathbf{\Omega}^{-1} \mathbf{g})} + N\lambda^{2} \left[ \mathbf{g}' \mathbf{\Omega}^{-1} \mathbf{g} - \frac{\phi (\mathbf{g}' \mathbf{\Omega}^{-1} \mathbf{g})^{2}}{1 + \phi (\mathbf{g}' \mathbf{\Omega}^{-1} \mathbf{g})} \right]$$

$$-2N\lambda \left[ \mathbf{g}' \mathbf{\Omega}^{-1} \mathbf{\bar{v}} - \frac{\phi (\mathbf{g}' \mathbf{\Omega}^{-1} \mathbf{g}) (\mathbf{g}' \mathbf{\Omega}^{-1} \mathbf{\bar{v}})}{1 + \phi (\mathbf{g}' \mathbf{\Omega}^{-1} \mathbf{g})} \right]$$

$$= \sum_{i=1}^{N} \mathbf{v}_{i}' \mathbf{\Omega}^{-1} \mathbf{v}_{i} - \frac{\phi \sum_{i=1}^{N} (\mathbf{v}_{i}' \mathbf{\Omega}^{-1} \mathbf{g})^{2} - N\lambda^{2} (\mathbf{g}' \mathbf{\Omega}^{-1} \mathbf{g}) + 2N\lambda (\mathbf{g}' \mathbf{\Omega}^{-1} \mathbf{\bar{v}})}{1 + \phi (\mathbf{g}' \mathbf{\Omega}^{-1} \mathbf{g})}$$

$$= \sum_{i=1}^{N} \mathbf{v}_{i}' \mathbf{\Omega}^{-1} \mathbf{v}_{i} - \frac{N\phi \mathbf{g}' \mathbf{\Omega}^{-1} \mathbf{B}_{N} \mathbf{\Omega}^{-1} \mathbf{g} - N\lambda^{2} (\mathbf{g}' \mathbf{\Omega}^{-1} \mathbf{g}) + 2N\lambda (\mathbf{g}' \mathbf{\Omega}^{-1} \mathbf{\bar{v}})}{1 + \phi (\mathbf{g}' \mathbf{\Omega}^{-1} \mathbf{g})},$$

where  $\bar{\mathbf{v}} = N^{-1} \sum_{i=1}^{N} \mathbf{v}_i$ , and  $\mathbf{B}_N = \mathbf{B}_N(\gamma) = N^{-1} \sum_{i=1}^{N} \mathbf{v}_i(\gamma) \mathbf{v}'_i(\gamma)$ . Therefore, the log-likelihood function, (A.1), can be written as

$$N^{-1}\ell(\boldsymbol{\psi}) = -\frac{T}{2}\ln(2\pi) - \frac{T}{2}\ln(\sigma^2) - \frac{1}{2}\ln|\boldsymbol{\Omega}| - \frac{1}{2}\ln(1 + \phi \mathbf{g}'\boldsymbol{\Omega}^{-1}\mathbf{g}) - \frac{1}{2\sigma^2} \left[ N^{-1}\sum_{i=1}^{N} \mathbf{v}'_i \boldsymbol{\Omega}^{-1} \mathbf{v}_i - \frac{\phi \mathbf{g}'\boldsymbol{\Omega}^{-1}\mathbf{B}_N \boldsymbol{\Omega}^{-1}\mathbf{g} - \lambda^2 \mathbf{g}'\boldsymbol{\Omega}^{-1}\mathbf{g} + 2\lambda \mathbf{g}'\boldsymbol{\Omega}^{-1}\bar{\mathbf{v}}}{1 + \phi(\mathbf{g}'\boldsymbol{\Omega}^{-1}\mathbf{g})} \right].$$

## A.3 Derivatives of the log-likelihood function

We give the analytical formulas of the first and second derivatives of the log-likelihood function (10). Note that

$$\left|\mathbf{\Omega}\left(\omega\right)\right| = g\left(\omega\right) = 1 + T\left(\omega - 1\right),$$

and

$$\mathbf{\Omega}^{-1} = \frac{1}{g\left(\omega\right)} \begin{pmatrix} \frac{T}{T-1} & \frac{T-1}{(T-1)\omega} & \dots & \frac{2}{2\omega} & \frac{1}{\omega} \\ T-2 & & & \\ 2 & 2\omega & 2\left[(T-2)\omega - (T-3)\right] & (T-2)\omega - (T-3) \\ 1 & \omega & \dots & (T-2)\omega - (T-3) & (T-1)\omega - (T-2) \end{pmatrix}$$

$$\frac{\partial \mathbf{\Omega}^{-1}}{\partial \omega} = \frac{-1}{g(\omega)^2} \begin{pmatrix} T^2 & T(T-1) & T(T-2) & \dots & T\\ T(T-1) & (T-1)^2 & (T-1)(T-2) & \dots & (T-1)\\ \vdots & \vdots & \vdots & & \dots & \vdots\\ T & (T-1) & (T-2) & \dots & 1 \end{pmatrix} = \frac{-1}{g(\omega)^2} \mathbf{\Phi}.$$

Also

$$\frac{\partial \ln \left| \boldsymbol{\Omega} \right|}{\partial \omega} = \frac{T}{1 + T(\omega - 1)} = \frac{T}{g\left( \omega \right)}.$$

Using the above expressions the first derivatives are given by

$$N^{-1}\frac{\partial\ell(\boldsymbol{\theta})}{\partial\boldsymbol{\varphi}} = \frac{1}{\sigma^2} \left[ N^{-1}\sum_{i=1}^N \Delta \mathbf{W}_i' \boldsymbol{\Omega}^{-1} \mathbf{v}_i - \frac{\left(N^{-1}\sum_{i=1}^N \Delta \mathbf{W}_i' \boldsymbol{\Omega}^{-1} \mathbf{q} \mathbf{q}' \boldsymbol{\Omega}^{-1} \mathbf{v}_i\right) + \kappa \overline{\Delta \mathbf{W}}' \boldsymbol{\Omega}^{-1} \mathbf{q}}{1 + \mathbf{q}' \boldsymbol{\Omega}^{-1} \mathbf{q}} \right],$$

$$\begin{split} N^{-1} \frac{\partial \ell\left(\boldsymbol{\theta}\right)}{\partial \omega} &= -\frac{1}{2} \frac{T}{g\left(\omega\right)} + \frac{\mathbf{q}' \boldsymbol{\Phi} \mathbf{q}}{2\left(1 + \mathbf{q}' \boldsymbol{\Omega}^{-1} \mathbf{q}\right) g\left(\omega\right)^2} + \frac{1}{2\sigma^2 g\left(\omega\right)^2} \left[ N^{-1} \sum_{i=1}^{N} \mathbf{v}'_i \boldsymbol{\Phi} \mathbf{v}_i \right] \\ &+ \frac{\left(\mathbf{q}' \boldsymbol{\Phi} \mathbf{q}\right) \left(\mathbf{q}' \boldsymbol{\Omega}^{-1} \mathbf{B}_N \boldsymbol{\Omega}^{-1} \mathbf{q} - \kappa^2 \mathbf{q}' \boldsymbol{\Omega}^{-1} \mathbf{q} + 2\kappa \mathbf{q}' \boldsymbol{\Omega}^{-1} \mathbf{\bar{v}}\right)}{2\sigma^2 \left(1 + \mathbf{q}' \boldsymbol{\Omega}^{-1} \mathbf{q}\right)^2 g\left(\omega\right)^2} \\ &+ \frac{-\mathbf{q}' \boldsymbol{\Phi} \mathbf{B}_N \boldsymbol{\Omega}^{-1} \mathbf{q} - \mathbf{q}' \boldsymbol{\Omega}^{-1} \mathbf{B}_N \boldsymbol{\Phi} \mathbf{q} + \kappa^2 \mathbf{q}' \boldsymbol{\Phi} \mathbf{q} - 2\kappa \mathbf{q}' \boldsymbol{\Phi} \mathbf{\bar{v}}}{2\sigma^2 \left(1 + \mathbf{q}' \boldsymbol{\Omega}^{-1} \mathbf{q}\right) g\left(\omega\right)^2}, \end{split}$$

$$N^{-1} \frac{\partial \ell\left(\boldsymbol{\theta}\right)}{\partial \sigma^{2}} = -\frac{T}{2\sigma^{2}} + \frac{1}{2\sigma^{4}} \left[ N^{-1} \sum_{i=1}^{N} \mathbf{v}_{i}^{\prime} \boldsymbol{\Omega}^{-1} \mathbf{v}_{i} - \frac{\mathbf{q}^{\prime} \boldsymbol{\Omega}^{-1} \mathbf{q} - \kappa^{2} \mathbf{q}^{\prime} \boldsymbol{\Omega}^{-1} \mathbf{q} + 2\kappa \mathbf{q}^{\prime} \boldsymbol{\Omega}^{-1} \bar{\mathbf{v}}}{1 + \mathbf{q}^{\prime} \boldsymbol{\Omega}^{-1} \mathbf{q}} \right],$$

$$N^{-1} \frac{\partial \ell\left(\boldsymbol{\theta}\right)}{\partial \kappa} = \frac{1}{\sigma^{2}} \left[ \frac{-\kappa \mathbf{q}^{\prime} \boldsymbol{\Omega}^{-1} \mathbf{q} + \mathbf{q}^{\prime} \boldsymbol{\Omega}^{-1} \bar{\mathbf{v}}}{1 + \mathbf{q}^{\prime} \boldsymbol{\Omega}^{-1} \mathbf{q}} \right],$$

$$\begin{split} N^{-1} \frac{\partial \ell\left(\boldsymbol{\theta}\right)}{\partial \mathbf{q}} &= -\frac{\boldsymbol{\Omega}^{-1} \mathbf{q}}{1 + \mathbf{q}' \boldsymbol{\Omega}^{-1} \mathbf{q}} - \left[\frac{\mathbf{q}' \boldsymbol{\Omega}^{-1} \mathbf{B}_N \boldsymbol{\Omega}^{-1} \mathbf{q} - \kappa^2 \mathbf{q}' \boldsymbol{\Omega}^{-1} \mathbf{q} + 2\kappa \mathbf{q}' \boldsymbol{\Omega}^{-1} \mathbf{\bar{v}}}{\sigma^2 \left(1 + \mathbf{q}' \boldsymbol{\Omega}^{-1} \mathbf{q}\right)^2}\right] \boldsymbol{\Omega}^{-1} \mathbf{q} \\ &+ \frac{\boldsymbol{\Omega}^{-1} \mathbf{B}_N \boldsymbol{\Omega}^{-1} \mathbf{q} - \kappa^2 \boldsymbol{\Omega}^{-1} \mathbf{q} + \kappa \boldsymbol{\Omega}^{-1} \mathbf{\bar{v}}}{\sigma^2 \left(1 + \mathbf{q}' \boldsymbol{\Omega}^{-1} \mathbf{q}\right)}. \end{split}$$

The second derivatives are as follows:

$$N^{-1}\frac{\partial\ell(\boldsymbol{\theta})}{\partial\boldsymbol{\varphi}\partial\boldsymbol{\varphi}'} = \frac{1}{\sigma^2} \left[ -N^{-1}\sum_{i=1}^N \Delta \mathbf{W}'_i \mathbf{\Omega}^{-1} \Delta \mathbf{W}_i + \frac{\left(N^{-1}\sum_{i=1}^N \Delta \mathbf{W}_i \mathbf{\Omega}^{-1} \mathbf{q} \mathbf{q}' \mathbf{\Omega}^{-1} \Delta \mathbf{W}'_i\right)}{1 + \mathbf{q}' \mathbf{\Omega}^{-1} \mathbf{q}} \right],$$

$$\begin{split} N^{-1} \frac{\partial \ell\left(\boldsymbol{\theta}\right)}{\partial \boldsymbol{\varphi} \partial \boldsymbol{\omega}} &= \frac{-1}{\sigma^2 g\left(\boldsymbol{\omega}\right)^2} \left[ N^{-1} \sum_{i=1}^N \Delta \mathbf{W}'_i \boldsymbol{\Phi} \mathbf{v}_i \right] \\ &- \left[ \frac{\mathbf{q}' \boldsymbol{\Phi} \mathbf{q}}{\sigma^2 \left(1 + \mathbf{q}' \boldsymbol{\Omega}^{-1} \mathbf{q}\right)^2 g\left(\boldsymbol{\omega}\right)^2} \right] \left[ \left( N^{-1} \sum_{i=1}^N \Delta \mathbf{W}'_i \boldsymbol{\Omega}^{-1} \mathbf{q} \mathbf{q}' \boldsymbol{\Omega}^{-1} \mathbf{v}_i \right) + \kappa \overline{\Delta \mathbf{W}}' \boldsymbol{\Phi} \mathbf{q} \right] \\ &- \frac{1}{\sigma^2 \left(1 + \mathbf{q}' \boldsymbol{\Omega}^{-1} \mathbf{q}\right) g\left(\boldsymbol{\omega}\right)^2} \left[ \begin{array}{c} -\mathbf{q}' \boldsymbol{\Phi} \left( N^{-1} \sum_{i=1}^N \mathbf{v}_i \Delta \mathbf{W}'_i \right) \boldsymbol{\Omega}^{-1} \mathbf{q} \\ -\mathbf{q}' \boldsymbol{\Omega}^{-1} \left( N^{-1} \sum_{i=1}^N \mathbf{v}_i \Delta \mathbf{W}'_i \right) \boldsymbol{\Phi} \mathbf{q} - \kappa \overline{\Delta \mathbf{W}}' \boldsymbol{\Phi} \mathbf{q} \end{array} \right], \end{split}$$

$$\begin{split} N^{-1} \frac{\partial \ell\left(\boldsymbol{\theta}\right)}{\partial \sigma^{2} \partial \varphi} &= \frac{-1}{\sigma^{4}} \left[ N^{-1} \sum_{i=1}^{N} \Delta \mathbf{W}_{i}^{\prime} \Omega^{-1} \mathbf{v}_{i} - \frac{\left(N^{-1} \sum_{i=1}^{N} \Delta \mathbf{W}_{i}^{\prime} \Omega^{-1} \mathbf{q} \mathbf{q}^{\prime} \Omega^{-1} \mathbf{v}_{i}\right) + \kappa \overline{\Delta \mathbf{W}}^{\prime} \Omega^{-1} \mathbf{q}}{1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}} \right], \\ N^{-1} \frac{\partial \ell\left(\boldsymbol{\theta}\right)}{\partial \kappa \partial \varphi^{\prime}} &= \frac{-\mathbf{q}^{\prime} \Omega^{-1} \overline{\Delta \mathbf{W}}}{\sigma^{2} (1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q})}, \\ N^{-1} \frac{\partial \ell\left(\boldsymbol{\theta}\right)}{\partial \varphi \partial \mathbf{q}^{\prime}} &= \frac{-\left(N^{-1} \sum_{i=1}^{N} \left(\Delta \mathbf{W}_{i}^{\prime} \Omega^{-1} \mathbf{q}^{\prime} \Omega^{-1} \mathbf{v}_{i} + \Delta \mathbf{W}_{i}^{\prime} \Omega^{-1} \mathbf{q} \mathbf{v}_{i}^{\prime} \Omega^{-1}\right) + \kappa \overline{\Delta \mathbf{W}}^{\prime} \Omega^{-1} \right)}{\sigma^{2} (1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q})} \\ &+ \frac{2 \left(N^{-1} \sum_{i=1}^{N} \Delta \mathbf{W}_{i}^{\prime} \Omega^{-1} \mathbf{q} (\Omega^{-1} \mathbf{v}_{i} + \kappa \overline{\Delta \mathbf{W}}^{\prime} \Omega^{-1} \mathbf{q}) \left(\mathbf{q}^{\prime} \Omega^{-1}\right)}{\sigma^{2} (1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q})^{2}}, \\ N^{-1} \frac{\partial \ell\left(\boldsymbol{\theta}\right)}{\partial \omega \partial \omega} &= \frac{T^{2}}{2g\left(\omega\right)^{2}} - \left(\mathbf{q}^{\prime} \mathbf{\Phi} \mathbf{q}\right) \left(\frac{-\mathbf{q}^{\prime} \mathbf{\Phi} \mathbf{q} + \left(1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}\right) \left(2Tg\left(\omega\right)\right)}{2\left(1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}\right)^{2} g\left(\omega\right)^{4}}\right) - \frac{T}{\sigma^{2} g\left(\omega\right)^{3}} \left(N^{-1} \sum_{i=1}^{N} \mathbf{v}_{i}^{\prime} \mathbf{\Phi} \mathbf{v}_{i}\right) \\ &+ \frac{\left(\mathbf{q}^{\prime} \mathbf{\Phi} \mathbf{q}\right) \left[-\mathbf{q}^{\prime} \mathbf{\Phi} \mathbf{B}_{N} \Omega^{-1} \mathbf{q} - \mathbf{q}^{\prime} \Omega^{-1} \mathbf{B}_{N} \mathbf{\Phi} \mathbf{q} + \kappa^{2} \mathbf{q}^{\prime} \mathbf{\Phi} \mathbf{q} - 2\kappa \mathbf{q}^{\prime} \mathbf{\Phi} \overline{\mathbf{v}}\right]}{2\sigma^{2} \left(1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}\right)^{2} g\left(\omega\right)^{4}} \\ &+ \frac{\mathbf{q}^{\prime} \mathbf{\Phi} \mathbf{B}_{N} \mathbf{\Phi} \mathbf{q}}{\sigma^{2} \left(1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}\right) g\left(\omega\right)^{4}} \end{split}$$

$$+\frac{\left(\mathbf{q}^{\prime}\boldsymbol{\Phi}\mathbf{B}_{N}\boldsymbol{\Omega}^{-1}\mathbf{q}+\mathbf{q}^{\prime}\boldsymbol{\Omega}^{-1}\mathbf{B}_{N}\boldsymbol{\Phi}\mathbf{q}-\kappa^{2}\mathbf{q}^{\prime}\boldsymbol{\Phi}\mathbf{q}+2\kappa\mathbf{q}^{\prime}\boldsymbol{\Phi}\bar{\mathbf{v}}\right)\left\{-\mathbf{q}^{\prime}\boldsymbol{\Phi}\mathbf{q}+\left(1+\mathbf{q}^{\prime}\boldsymbol{\Omega}^{-1}\mathbf{q}\right)\left(2Tg\left(\omega\right)\right)\right\}}{2\sigma^{2}\left(1+\mathbf{q}^{\prime}\boldsymbol{\Omega}^{-1}\mathbf{q}\right)^{2}g\left(\omega\right)^{4}},$$

$$\begin{split} N^{-1} \frac{\partial \ell(\boldsymbol{\theta})}{\partial \sigma^{2} \partial \omega} &= \frac{-1}{2\sigma^{4} g\left(\omega\right)^{2}} \left[ N^{-1} \sum_{i=1}^{N} \mathbf{v}_{i}^{\prime} \mathbf{\Phi} \mathbf{v}_{i} \right] \\ &- \left[ \frac{\mathbf{q}^{\prime} \mathbf{\Phi} \mathbf{q}}{2\sigma^{4} \left(1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}\right)^{2} g\left(\omega\right)^{2}} \right] \left[ \mathbf{q}^{\prime} \Omega^{-1} \mathbf{B}_{N} \Omega^{-1} \mathbf{q} - \kappa^{2} \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q} + 2\kappa \mathbf{q}^{\prime} \Omega^{-1} \mathbf{\bar{v}} \right] \\ &- \frac{1}{2\sigma^{4} \left(1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}\right) g\left(\omega\right)^{2}} \left[ -\mathbf{q}^{\prime} \mathbf{\Phi} \mathbf{B}_{N} \Omega^{-1} \mathbf{q} - \mathbf{q}^{\prime} \Omega^{-1} \mathbf{B}_{N} \mathbf{\Phi} \mathbf{q} + \kappa^{2} \mathbf{q}^{\prime} \mathbf{\Phi} \mathbf{q} - 2\kappa \mathbf{q}^{\prime} \mathbf{\Phi} \mathbf{\bar{v}} \right], \\ N^{-1} \frac{\partial \ell(\boldsymbol{\theta})}{\partial \kappa \partial \omega} &= \frac{\left(\kappa \mathbf{q}^{\prime} \mathbf{\Phi} \mathbf{q} - \mathbf{q}^{\prime} \mathbf{\Phi} \mathbf{\bar{v}}\right) \left(1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}\right) + \left(-\kappa \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q} + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{\bar{v}}\right) \left(\mathbf{q}^{\prime} \mathbf{\Phi} \mathbf{q}\right)}{\sigma^{2} g\left(\omega\right)^{2} \left(1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}\right)^{2}}, \\ N^{-1} \frac{\partial \ell(\boldsymbol{\theta})}{\partial q \partial \omega} &= \frac{\mathbf{\Phi} \mathbf{q} \left(1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}\right) - \left(\mathbf{q}^{\prime} \mathbf{\Phi} \mathbf{q}\right) \left(\Omega^{-1} \mathbf{q}\right)}{g\left(\omega\right)^{2} \left(1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}\right)^{2}} \\ + \frac{\mathbf{\Phi} \mathbf{q} \left[\mathbf{q}^{\prime} \Omega^{-1} \mathbf{B}_{N} \Omega^{-1} \mathbf{q} - \kappa^{2} \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q} + 2\kappa \mathbf{q}^{\prime} \Omega^{-1} \mathbf{\bar{v}}\right]}{\sigma^{2} g\left(\omega\right)^{2} \left(1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}\right)^{2}} \\ &- \frac{2\left(\mathbf{q}^{\prime} \mathbf{\Phi} \mathbf{q}\right) \left[\mathbf{q}^{\prime} \Omega^{-1} \mathbf{B}_{N} \Omega^{-1} \mathbf{q} - \kappa^{2} \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q} + 2\kappa \mathbf{q}^{\prime} \Omega^{-1} \mathbf{\bar{v}}\right] \left(1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}\right) \Omega^{-1} \mathbf{q}}{\sigma^{2} g\left(\omega\right)^{2} \left(1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}\right)^{4}} \\ &+ \frac{-\mathbf{\Phi} \mathbf{B}_{N} \Omega^{-1} \mathbf{q} - \Omega^{-1} \mathbf{B}_{N} \mathbf{\Phi} \mathbf{q} + \kappa^{2} \mathbf{\Phi} \mathbf{q} - \kappa \mathbf{\Phi} \mathbf{\bar{v}}}{\sigma^{2} g\left(\omega\right)^{2} \left(1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}\right)} \\ &- \frac{\left(-\mathbf{q}^{\prime} \mathbf{\Phi} \mathbf{B}_{N} \Omega^{-1} \mathbf{q} - \mathbf{q}^{\prime} \Omega^{-1} \mathbf{B}_{N} \mathbf{\Phi} \mathbf{q} + \kappa^{2} \mathbf{q}^{\prime} \mathbf{\Phi} \mathbf{q} - 2\kappa \mathbf{q}^{\prime} \mathbf{\Phi} \mathbf{\bar{v}}\right) \left(\Omega^{-1} \mathbf{q}\right)}{\sigma^{2} g\left(\omega\right)^{2} \left(1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}\right)^{2}}, \end{split}$$

$$\begin{split} N^{-1} \frac{\partial \ell(\theta)}{\partial \sigma^{2} \partial \sigma^{2}} &= \frac{T}{2\sigma^{4}} - \frac{1}{\sigma^{6}} \left[ N^{-1} \sum_{i=1}^{N} \mathbf{v}_{i}^{i} \Omega^{-1} \mathbf{v}_{i} - \frac{\mathbf{q}^{\prime} \Omega^{-1} \mathbf{B}_{N} \Omega^{-1} \mathbf{q} - \kappa^{2} \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q} + 2\kappa \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}}{1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}} \right], \\ N^{-1} \frac{\partial \ell(\theta)}{\partial \kappa \partial \sigma^{2}} &= \frac{\kappa \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q} - \kappa^{2} \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q} + 2\kappa \mathbf{q}^{\prime} \Omega^{-1} \bar{\mathbf{v}}}{\sigma^{4} (1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q})^{2}} \right] \Omega^{-1} \mathbf{q} - \frac{\Omega^{-1} \mathbf{B}_{N} \Omega^{-1} \mathbf{q} - \kappa^{2} \Omega^{-1} \mathbf{q} + \kappa \Omega^{-1} \bar{\mathbf{v}}}{\sigma^{4} (1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q})^{2}}, \\ N^{-1} \frac{\partial \ell(\theta)}{\partial \mathbf{q} \partial \sigma^{2}} &= \left[ \frac{\mathbf{q}^{\prime} \Omega^{-1} \mathbf{B}_{N} \Omega^{-1} \mathbf{q} - \kappa^{2} \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q} + 2\kappa \mathbf{q}^{\prime} \Omega^{-1} \bar{\mathbf{v}}}{\sigma^{4} (1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q})^{2}} \right] \Omega^{-1} \mathbf{q} - \frac{\Omega^{-1} \mathbf{B}_{N} \Omega^{-1} \mathbf{q} - \kappa^{2} \Omega^{-1} \mathbf{q} + \kappa \Omega^{-1} \bar{\mathbf{v}}}{\sigma^{4} (1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q})^{2}}, \\ N^{-1} \frac{\partial \ell(\theta)}{\partial \mathbf{q} \partial \kappa} &= \frac{-\mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}}{\sigma^{2} (1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}) + 2 \left(\kappa \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q} - \mathbf{q}^{\prime} \Omega^{-1} \bar{\mathbf{v}}\right) \Omega^{-1} \mathbf{q}}{\sigma^{2} (1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q})^{2}}, \\ N^{-1} \frac{\partial \ell(\theta)}{\partial \mathbf{q} \partial \kappa} &= \frac{(-2\kappa \Omega^{-1} \mathbf{q} + \Omega^{-1} \bar{\mathbf{v}}) \left(1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}\right) + 2 \left(\kappa \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q} - \mathbf{q}^{\prime} \Omega^{-1} \bar{\mathbf{v}}\right) \Omega^{-1} \mathbf{q}}{\sigma^{2} (1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q})^{2}}, \\ N^{-1} \frac{\partial \ell(\theta)}{\partial \mathbf{q} \partial \kappa} &= -\frac{\Omega^{-1} \left(1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}\right) - 2\Omega^{-1} \mathbf{q} \mathbf{q}^{\prime} \Omega^{-1}}{\left(1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}\right)^{2}}}{\sigma^{2} (1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q})^{2}}, \\ N^{-1} \frac{\partial \ell(\theta)}{\partial \mathbf{q} \partial \mathbf{q}^{\prime}} &= -\frac{\Omega^{-1} \left(1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q}\right) - 2\Omega^{-1} \mathbf{q} \mathbf{q}^{\prime} \Omega^{-1}}{\sigma^{2} (1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q})^{2}}}{\rho^{2} (1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q})^{2}}, \\ + \frac{\left(\mathbf{q}^{\prime} \Omega^{-1} \mathbf{B}_{N} \Omega^{-1} \mathbf{q} - \kappa^{2} \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q} + 2\kappa \mathbf{q}^{\prime} \Omega^{-1} \bar{\mathbf{v}}\right) \Omega^{-1}}{\sigma^{2} (1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q})^{2}}} + \frac{\left(\frac{(\Omega^{-1} \mathbf{B}_{N} \Omega^{-1} \mathbf{q} - \kappa^{2} \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q} + 2\kappa \mathbf{q}^{\prime} \Omega^{-1} \bar{\mathbf{v}}\right) \Omega^{-1}}{\sigma^{2} (1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q})^{2}}} \\ + \frac{\left(\Omega^{-1} \mathbf{B}_{N} \Omega^{-1} \mathbf{q} - \kappa^{2} \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q} + 2\kappa \mathbf{q}^{\prime} \Omega^{-1} \bar{\mathbf{v}}\right)}{\sigma^{2} (1 + \mathbf{q}^{\prime} \Omega^{-1} \mathbf{q})}} - \frac{\left(\Omega$$

# A.4 Derivation of the log-likelihood function in the multifactor case

Under Assumption 8 we can rewrite model (22) as

$$y_{it} = \alpha_i + \gamma y_{i,t-1} + \mathbf{f}'_t \boldsymbol{\lambda}_i + u_{it}$$
  
=  $\alpha_i + \gamma y_{i,t-1} + \mathbf{f}'_t \boldsymbol{\lambda} + \mathbf{f}'_t \boldsymbol{\eta}_i + u_{it}.$ 

Eliminating the individual effects by first-differencing yields

$$\Delta y_{it} = \gamma \Delta y_{i,t-1} + \mathbf{g}'_t \boldsymbol{\lambda}_i + \Delta u_{it} = \gamma \Delta y_{i,t-1} + \mathbf{g}'_t \boldsymbol{\lambda} + \mathbf{g}'_t \boldsymbol{\eta}_i + \Delta u_{it} \quad \text{for } t = 2, 3, ..., T.$$
 (A.2)

Under Assumption 1, by recursive substitution, we have the following expression for t = 1

$$\Delta y_{i1} = \lambda_i' \tilde{\mathbf{g}}_1 + v_{i1}, \tag{A.3}$$

where  $\tilde{\mathbf{g}}_1 = \sum_{j=0}^{\infty} \gamma^j \mathbf{g}_{1-j}$ ,  $v_{i1} = \sum_{j=0}^{\infty} \gamma^j \Delta u_{i,1-j}$  with  $E(v_{i1}) = 0$  and  $var(v_{i1}) = \sigma^2 \omega$ . Using (23) in (A.2), this equation together with (A.3) can be written as

$$\Delta y_{i1} = \boldsymbol{\lambda}' \tilde{\mathbf{g}}_1 + \boldsymbol{\eta}'_i \tilde{\mathbf{g}}_1 + v_{i1} \Delta y_{it} = \gamma \Delta y_{i,t-1} + \boldsymbol{\lambda}' \mathbf{g}_t + \boldsymbol{\eta}'_i \mathbf{g}_t + \Delta u_{it}, \qquad (t = 2, 3, ..., T).$$

In matrix notation the above system of equations can be expressed as

$$\Delta \mathbf{y}_i = \Delta \mathbf{W}_i \gamma + \mathbf{G} \boldsymbol{\lambda} + \boldsymbol{\xi}_i, \tag{A.4}$$

where  $\Delta \mathbf{y}_i = (\Delta y_{i1}, \Delta y_{i2}, ..., \Delta y_{iT})', \ \Delta \mathbf{W}_i = (0, \Delta y_{i1}, ..., \Delta y_{i,T-1})', \ \mathbf{G} = (\mathbf{\tilde{g}}_1, \mathbf{g}_2, ..., \mathbf{g}_T)' \text{ and } \mathbf{\xi}_i = \mathbf{G} \boldsymbol{\eta}_i + \mathbf{r}_i \text{ with } \mathbf{r}_i = (v_{i1}, \Delta u_{i2}, ..., \Delta u_{iT})'.$ 

In equation (A.4)  $\lambda$  is not separately identified from the elements of **G**. Thus, defining the identity matrix  $\mathbf{I}_m = \frac{1}{\sigma} \Omega_{\eta}^{1/2} \sigma \Omega_{\eta}^{-1/2}$ , where recall from Assumption 8 that  $\Omega_{\eta}$  is a positive definite matrix, we can write

$$\mathbf{G}oldsymbol{\lambda} = \mathbf{G}rac{1}{\sigma} \mathbf{\Omega}_\eta^{1/2} \sigma \mathbf{\Omega}_\eta^{-1/2} oldsymbol{\lambda} = \mathbf{Q}oldsymbol{\kappa},$$

where  $\mathbf{Q} = (1/\sigma) \mathbf{G} \mathbf{\Omega}_{\eta}^{1/2}$  and  $\kappa = \sigma \mathbf{\Omega}_{\eta}^{-1/2} \boldsymbol{\lambda}$ .

Recall further that  $E(\mathbf{r}_i \mathbf{r}'_i) = \sigma^2 \mathbf{\Omega}$  and since  $\boldsymbol{\eta}_i$  and  $u_{it}$  are independently distributed we have

$$Var(\boldsymbol{\xi}_{i}) = \sigma^{2}\boldsymbol{\Omega} + \mathbf{G}\boldsymbol{\Omega}_{\eta}\mathbf{G}' = \sigma^{2}\left(\boldsymbol{\Omega} + \mathbf{Q}\mathbf{Q}'\right)$$

Hence, the log-likelihood function of the transformed model (A.4) is given by

$$\ell(\boldsymbol{\theta}) = -\frac{NT}{2}\ln(2\pi) - \frac{NT}{2}\ln(\sigma^2) - \frac{N}{2}\ln\left|\boldsymbol{\Omega} + \mathbf{Q}\mathbf{Q}'\right| -\frac{1}{2\sigma^2}\sum_{i=1}^{N}\left(\Delta\mathbf{y}_i - \Delta\mathbf{W}_i\gamma - \mathbf{Q}\boldsymbol{\kappa}\right)'\left(\boldsymbol{\Omega} + \mathbf{Q}\mathbf{Q}'\right)^{-1}\left(\Delta\mathbf{y}_i - \Delta\mathbf{W}_i\gamma - \mathbf{Q}\boldsymbol{\kappa}\right).$$
(A.5)

For a fixed T, the above log-likelihood function depends only on a fixed number of unknown parameters,  $\boldsymbol{\theta} = (\gamma, \omega, \sigma^2, \boldsymbol{\kappa}', vec(\mathbf{Q})')'$ .

To obtain the ML estimators, since  $\Omega$  is a positive definite matrix and  $\mathbf{QQ'}$  is rank deficinet (recall that by assumption m < T), we first note that

$$\left| \mathbf{\Omega} + \mathbf{Q}\mathbf{Q}' \right| = \left| \mathbf{\Omega} \right| \left| \mathbf{I}_m + \mathbf{Q}'\mathbf{\Omega}^{-1}\mathbf{Q} \right|,$$

and using the Woodbury matrix identity

$$\left( \boldsymbol{\Omega} + \mathbf{Q} \mathbf{Q}' \right)^{-1} = \boldsymbol{\Omega}^{-1} - \boldsymbol{\Omega}^{-1} \mathbf{Q} (\mathbf{I}_m + \mathbf{Q}' \boldsymbol{\Omega}^{-1} \mathbf{Q})^{-1} \mathbf{Q}' \boldsymbol{\Omega}^{-1}$$

$$= \boldsymbol{\Omega}^{-1} - \boldsymbol{\Omega}^{-1} \mathbf{Q} \mathbf{A}^{-1} \mathbf{Q}' \boldsymbol{\Omega}^{-1},$$
(A.6)

where

$$\mathbf{A} = \mathbf{I}_m + \mathbf{Q}' \mathbf{\Omega}^{-1} \mathbf{Q}$$

Using these results the log-likelihood function in (A.5) can be written as

$$\ell(\boldsymbol{\theta}) \propto -\frac{NT}{2}\ln(\sigma^2) - \frac{N}{2}\ln|\boldsymbol{\Omega}| - \frac{N}{2}\ln\left|\mathbf{I}_m + \mathbf{Q}'\boldsymbol{\Omega}^{-1}\mathbf{Q}\right| - \frac{1}{2\sigma^2}\sum_{i=1}^{N}\left(\Delta\mathbf{y}_i - \Delta\mathbf{W}_i\boldsymbol{\gamma} - \mathbf{Q}\boldsymbol{\kappa}\right)' \times \left[\boldsymbol{\Omega}^{-1} - \boldsymbol{\Omega}^{-1}\mathbf{Q}\mathbf{A}^{-1}\mathbf{Q}'\boldsymbol{\Omega}^{-1}\right]\left(\Delta\mathbf{y}_i - \Delta\mathbf{W}_i\boldsymbol{\gamma} - \mathbf{Q}\boldsymbol{\kappa}\right), \tag{A.7}$$

with  $|\mathbf{\Omega}| = 1 + T (\omega - 1)$ . Further, since

$$\sum_{i=1}^{N} (\mathbf{v}_{i} - \mathbf{Q}\boldsymbol{\kappa})' \left[ \boldsymbol{\Omega}^{-1} - \boldsymbol{\Omega}^{-1} \mathbf{Q} \mathbf{A}^{-1} \mathbf{Q}' \boldsymbol{\Omega}^{-1} \right] (\mathbf{v}_{i} - \mathbf{Q}\boldsymbol{\kappa})$$

$$= \sum_{i=1}^{N} \mathbf{v}_{i}' \boldsymbol{\Omega}^{-1} \mathbf{v}_{i} - \sum_{i=1}^{N} \mathbf{v}_{i}' \boldsymbol{\Omega}^{-1} \mathbf{Q} \mathbf{A}^{-1} \mathbf{Q}' \boldsymbol{\Omega}^{-1} \mathbf{v}_{i} - N \boldsymbol{\kappa}' \mathbf{Q}' \boldsymbol{\Omega}^{-1} \mathbf{\bar{v}} + N \boldsymbol{\kappa}' \mathbf{Q}' \boldsymbol{\Omega}^{-1} \mathbf{Q} \mathbf{A}^{-1} \mathbf{Q}' \boldsymbol{\Omega}^{-1} \mathbf{\bar{v}}$$

$$- N \bar{\mathbf{v}}' \boldsymbol{\Omega}^{-1} \mathbf{Q} \boldsymbol{\kappa} + N \bar{\mathbf{v}}' \boldsymbol{\Omega}^{-1} \mathbf{Q} \mathbf{A}^{-1} \mathbf{Q}' \boldsymbol{\Omega}^{-1} \mathbf{Q} \boldsymbol{\kappa} + N \boldsymbol{\kappa}' \mathbf{Q}' \boldsymbol{\Omega}^{-1} \mathbf{Q} \mathbf{\kappa} - N \boldsymbol{\kappa}' \mathbf{Q}' \boldsymbol{\Omega}^{-1} \mathbf{Q} \mathbf{A}^{-1} \mathbf{Q}' \boldsymbol{\Omega}^{-1} \mathbf{Q} \boldsymbol{\kappa}$$

$$= \sum_{i=1}^{N} \mathbf{v}_{i}' \boldsymbol{\Omega}^{-1} \mathbf{v}_{i} - \sum_{i=1}^{N} \mathbf{v}_{i}' \boldsymbol{\Omega}^{-1} \mathbf{Q} \mathbf{A}^{-1} \mathbf{Q}' \boldsymbol{\Omega}^{-1} \mathbf{v}_{i} - 2N \boldsymbol{\kappa}' \mathbf{Q}' \boldsymbol{\Omega}^{-1} \bar{\mathbf{v}} + 2N \boldsymbol{\kappa}' \mathbf{Q}' \boldsymbol{\Omega}^{-1} \mathbf{Q} \mathbf{A}^{-1} \mathbf{Q}' \boldsymbol{\Omega}^{-1} \bar{\mathbf{v}} + N \boldsymbol{\kappa}' \mathbf{Q}' \boldsymbol{\Omega}^{-1} \mathbf{Q} \mathbf{A}^{-1} \mathbf{Q}' \boldsymbol{\Omega}^{-1} \mathbf{Q} \mathbf{\kappa},$$

where  $\mathbf{v}_i = \mathbf{v}_i(\gamma) = \Delta \mathbf{y}_i - \Delta \mathbf{W}_i \gamma$ , and  $\bar{\mathbf{v}} = N^{-1} \sum_{i=1}^N \mathbf{v}_i$ , (A.7) can be written as

$$N^{-1}\ell(\boldsymbol{\theta}) \propto -\frac{T}{2}\ln(\sigma^{2}) - \frac{1}{2}\ln|\boldsymbol{\Omega}| - \frac{1}{2}\ln|\mathbf{I}_{m} + \mathbf{Q}'\boldsymbol{\Omega}^{-1}\mathbf{Q}| -\frac{1}{2\sigma^{2}} \left\{ \begin{array}{c} N^{-1}\sum_{i=1}^{N}\mathbf{v}_{i}'\boldsymbol{\Omega}^{-1}\mathbf{v}_{i} - N^{-1}\sum_{i=1}^{N}\mathbf{v}_{i}'\boldsymbol{\Omega}^{-1}\mathbf{Q}\mathbf{A}^{-1}\mathbf{Q}'\boldsymbol{\Omega}^{-1}\mathbf{v}_{i} \\ +\kappa'[\mathbf{Q}'\boldsymbol{\Omega}^{-1}\mathbf{Q}(\mathbf{I}_{m} - \mathbf{A}^{-1}\mathbf{Q}'\boldsymbol{\Omega}^{-1}\mathbf{Q})]\kappa - 2\kappa'[(\mathbf{I}_{m} - \mathbf{Q}'\boldsymbol{\Omega}^{-1}\mathbf{Q}\mathbf{A}^{-1})\mathbf{Q}'\boldsymbol{\Omega}^{-1}\bar{\mathbf{v}}_{i}] \end{array} \right\}$$

Note that the first two terms in the barckets using (A.6) can be written as

$$N^{-1}\sum_{i=1}^{N}\mathbf{v}_{i}'\mathbf{\Omega}^{-1}\mathbf{v}_{i} - N^{-1}\sum_{i=1}^{N}\mathbf{v}_{i}'\mathbf{\Omega}^{-1}\mathbf{Q}\mathbf{A}^{-1}\mathbf{Q}'\mathbf{\Omega}^{-1}\mathbf{v}_{i} = N^{-1}\sum_{i=1}^{N}\mathbf{v}_{i}'\left(\mathbf{\Omega} + \mathbf{Q}\mathbf{Q}'\right)^{-1}\mathbf{v}_{i}.$$

Hence

$$N^{-1}\ell(\boldsymbol{\theta}) \propto -\frac{T}{2}\ln(\sigma^{2}) - \frac{1}{2}\ln|\boldsymbol{\Omega}| - \frac{1}{2}\ln\left|\mathbf{I}_{m} + \mathbf{Q}'\boldsymbol{\Omega}^{-1}\mathbf{Q}\right|$$

$$-\frac{1}{2\sigma^{2}} \left\{ \begin{array}{c} N^{-1}\sum_{i=1}^{N}\mathbf{v}_{i}'\left(\boldsymbol{\Omega} + \mathbf{Q}\mathbf{Q}'\right)^{-1}\mathbf{v}_{i} \\ +\kappa'[\mathbf{Q}'\boldsymbol{\Omega}^{-1}\mathbf{Q}(\mathbf{I}_{m} - \mathbf{A}^{-1}\mathbf{Q}'\boldsymbol{\Omega}^{-1}\mathbf{Q})]\boldsymbol{\kappa} - 2\kappa'[(\mathbf{I}_{m} - \mathbf{Q}'\boldsymbol{\Omega}^{-1}\mathbf{Q}\mathbf{A}^{-1})\mathbf{Q}'\boldsymbol{\Omega}^{-1}\bar{\mathbf{v}}] \end{array} \right\}.$$
(A.8)

 ${\rm Also}$ 

$$\mathbf{I}_m - \mathbf{A}^{-1} \mathbf{Q}' \mathbf{\Omega}^{-1} \mathbf{Q} = \mathbf{I}_m - \mathbf{A}^{-1} \left( \mathbf{I}_m + \mathbf{Q}' \mathbf{\Omega}^{-1} \mathbf{Q} - \mathbf{I}_m \right) = \mathbf{I}_m - \mathbf{A}^{-1} \left( \mathbf{A} - \mathbf{I}_m \right) = \mathbf{A}^{-1},$$
  
$$\mathbf{I}_m - \mathbf{Q}' \mathbf{\Omega}^{-1} \mathbf{Q} \mathbf{A}^{-1} = \mathbf{I}_m - \left( \mathbf{I}_m + \mathbf{Q}' \mathbf{\Omega}^{-1} \mathbf{Q} - \mathbf{I}_m \right) \mathbf{A}^{-1} = \mathbf{I}_m - \left( \mathbf{A} - \mathbf{I}_m \right) \mathbf{A}^{-1} = \mathbf{A}^{-1},$$

and

$$\mathbf{A}^{-1}\mathbf{Q}'\mathbf{\Omega}^{-1}\mathbf{Q} = \mathbf{I}_m - \mathbf{A}^{-1} = \mathbf{Q}'\mathbf{\Omega}^{-1}\mathbf{Q}\mathbf{A}^{-1}.$$

The log-likelihood in (A.8) then becomes

$$N^{-1}\ell(\boldsymbol{\theta}) \propto -\frac{T}{2}\ln(\sigma^{2}) - \frac{1}{2}\ln|\boldsymbol{\Omega}| - \frac{1}{2}\ln\left|\mathbf{I}_{m} + \mathbf{Q}'\boldsymbol{\Omega}^{-1}\mathbf{Q}\right|$$

$$-\frac{1}{2\sigma^{2}} \left\{ \begin{array}{c} N^{-1}\sum_{i=1}^{N}\mathbf{v}_{i}'\left(\boldsymbol{\Omega} + \mathbf{Q}\mathbf{Q}'\right)^{-1}\mathbf{v}_{i} \\ +\kappa'\left(\mathbf{I}_{m} - \mathbf{A}^{-1}\right)\kappa - 2\kappa'\mathbf{A}^{-1}\mathbf{Q}'\boldsymbol{\Omega}^{-1}\bar{\mathbf{v}} \right\} \right\}.$$
(A.9)

Setting the partial derivative of  $\ell(\theta)$  with respect to  $\kappa$  to zero, it now readily follows that

$$\left(\mathbf{I}_m-\mathbf{A}^{-1}
ight)\hat{oldsymbol{\kappa}}=\mathbf{A}^{-1}\mathbf{Q}'\mathbf{\Omega}^{-1}\mathbf{ar{v}},$$

which yields (recall that  $\mathbf{Q}$  has the full column rank of m)

$$\hat{\boldsymbol{\kappa}} = (\mathbf{Q}' \boldsymbol{\Omega}^{-1} \mathbf{Q})^{-1} \mathbf{Q}' \boldsymbol{\Omega}^{-1} \bar{\mathbf{v}}.$$
(A.10)

Next, taking partial derivatives with respect to  $\sigma^2$  and solving out for this we have

$$T\hat{\sigma}^{2} = N^{-1} \sum_{i=1}^{N} \mathbf{v}_{i}' \left( \mathbf{\Omega} + \mathbf{Q}\mathbf{Q}' \right)^{-1} \mathbf{v}_{i} + \hat{\kappa}' \left( \mathbf{I}_{m} - \mathbf{A}^{-1} \right) \hat{\kappa} - 2\hat{\kappa}' \mathbf{A}^{-1} \mathbf{Q}' \mathbf{\Omega}^{-1} \mathbf{\bar{v}}.$$
(A.11)

Substituting for  $\hat{\kappa}$  from (A.10) in (A.11) now yields

$$\hat{\sigma}^{2} = T^{-1} \left\{ \begin{array}{c} N^{-1} \sum_{i=1}^{N} \mathbf{v}_{i}' \left( \mathbf{\Omega} + \mathbf{Q} \mathbf{Q}' \right)^{-1} \mathbf{v}_{i} \\ -\bar{\mathbf{v}}' \mathbf{\Omega}^{-1} \mathbf{Q} \mathbf{A}^{-1} \left( \mathbf{Q}' \mathbf{\Omega}^{-1} \mathbf{Q} \right)^{-1} \mathbf{Q}' \mathbf{\Omega}^{-1} \bar{\mathbf{v}} \end{array} \right\}.$$
(A.12)

Finally, substituting (A.10) and (A.12) into (A.9) we obtain

$$N\bar{\ell}(\boldsymbol{\theta}) \propto -\frac{1}{2}\ln|\boldsymbol{\Omega}| - \frac{1}{2}\ln\left|\mathbf{I}_{m} + \mathbf{Q}'\boldsymbol{\Omega}^{-1}\mathbf{Q}\right| -\frac{T}{2}\ln\left\{\begin{array}{c}N^{-1}\sum_{i=1}^{N}\mathbf{v}_{i}'\left(\boldsymbol{\Omega} + \mathbf{Q}\mathbf{Q}'\right)^{-1}\mathbf{v}_{i}\\-\bar{\mathbf{v}}'\boldsymbol{\Omega}^{-1}\mathbf{Q}\mathbf{A}^{-1}(\mathbf{Q}'\boldsymbol{\Omega}^{-1}\mathbf{Q})^{-1}\mathbf{Q}'\boldsymbol{\Omega}^{-1}\bar{\mathbf{v}}\end{array}\right\}$$

where  $\boldsymbol{\theta} = (\gamma, \omega, vec(\mathbf{Q})')'$ . Recall that, if required,  $(\mathbf{\Omega} + \mathbf{Q}\mathbf{Q}')^{-1}$  can be expanded in terms of  $\mathbf{\Omega}$  using the Woodbury matrix identity in (A.6).

## A.5 Derivation of $R_y^2$

Consider the panel data model

$$y_{it} = \alpha_i + \gamma y_{i,t-1} + \beta x_{it} + \xi_{it}, \quad \xi_{it} = \lambda'_i \mathbf{f}_t + u_{it},$$
$$x_{it} = \mu_i + \vartheta'_i \mathbf{f}_t + \breve{x}_{it}, \quad \breve{x}_{it} = \rho_x \breve{x}_{i,t-1} + \sqrt{1 - \rho_x^2} \varepsilon_{it},$$

where  $\mathbf{f}_t = (f_{1t}, ..., f_{mt})', \lambda'_i = (\lambda_{1i}, ..., \lambda_{mi})', \vartheta_i = (\vartheta_{1i}, ..., \vartheta_{mi})', |\gamma| < 1$  and  $|\rho_x| < 1$ . Due to the dependence of  $x_{it}$  and  $\xi_{it}$  on the same unobserved factors,  $\mathbf{f}_t = (f_{1t}, ..., f_{mt})'$ , the regressors and the errors of the above regression are correlated. Following Pesaran and Smith (1994) we base the measurement of  $\mathbb{R}^2$  on the following reduced form regressions

$$y_{it} = d_i + \gamma y_{i,t-1} + \beta \breve{x}_{it} + \breve{\xi}_{it}, \ \breve{\xi}_{it} = \mathbf{c}'_i \mathbf{f}_t + u_{it},$$
(A.13)

where

$$d_i = \alpha_i + \beta \mu_i \text{ and } \mathbf{c}_i = \beta \boldsymbol{\vartheta}_i + \boldsymbol{\lambda}_i.$$

It is clear that in (A.13) the regressors,  $\check{x}_{it}$ , and the errors,  $\check{\xi}_{it}$ , are uncorrelated and standard formula for  $R^2$  can be used. But to deal with the heterogeneity across the different equations in the panel we use the following average measure of fit

$$R_y^2 = 1 - \frac{N^{-1} \sum_{i=1}^N Var(\check{\xi}_{it})}{N^{-1} \sum_{i=1}^N Var(y_{it})}.$$

Using the above results, and noting that  $u_{it}$  and  $\varepsilon_{it}$  are uncorrelated with  $f_t$ , it readily follows that

$$Var(\breve{\xi}_{it}) = \mathbf{c}'_i Var(\mathbf{f}_t)\mathbf{c}_i + \sigma^2,$$
  
$$Var(y_{it}) = \frac{\beta^2 Var(\breve{x}_{it}) + Var(\breve{\xi}_{it})}{1 - \gamma^2}.$$

If we assume that the elements of  $\mathbf{f}_t$  are mutually orthogonal and have zero means we have

$$R_y^2 = \frac{\beta^2 Var(\check{x}_{it}) + \left[\sum_{\ell=1}^m \left\{ \left( N^{-1} \sum_{i=1}^N c_{\ell i}^2 \right) \left( T^{-1} \sum_{t=1}^T f_{\ell t}^2 \right) \right\} + \sigma^2 \right] \gamma^2}{\beta^2 Var(\check{x}_{it}) + \sum_{\ell=1}^m \left\{ \left( N^{-1} \sum_{i=1}^N c_{\ell i}^2 \right) \left( T^{-1} \sum_{t=1}^T f_{\ell t}^2 \right) \right\} + \sigma^2}.$$
 (A.14)

It is easily seen that  $R_y^2 \ge \gamma^2$  with the equality holding only if  $\beta = 0$ , namely when an AR(1) specification is considered.

## References

Ahn, S. C., Y.H. Lee, and P. Schmidt (2001). GMM estimation of linear panel data models with time-varying individual effects. *Journal of Econometrics 101*, 219-255.

Ahn, S.C., Y.H. Lee, and P. Schmidt (2013). Panel data models with multiple time-varying individual effects. *Journal of Econometrics* 174, 1-14.

Anderson, T.W. and C. Hsiao (1981). Estimation of dynamic models with error components. *Journal of the American Statistical Association* 76, 598-606.

Arellano, M. and S.R. Bond (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. *Review of Economic Studies* 58, 277-297.

Arellano, M. and O. Bover (1995). Another look at the instrumental variable estimation of errorcomponents models. *Journal of Econometrics* 68, 29-52.

Bai, J. (2009). Panel data models with interactive fixed effects. *Econometrica* 77, 1229-1279.

Bai, J. (2013). Likelihood approach to dynamic panel models with interactive effects. Available at SSRN: http://dx.doi.org/10.2139/ssrn.2332992.

Binder, M., C. Hsiao, and M.H. Pesaran (2005). Estimation and inference in short panel vector autoregressions with unit roots and cointegration. *Econometric Theory* 21, 795-837.

Blundell, R. and S.R. Bond (1998). Initial conditions and moment restrictions in dynamic panel data models. *Journal of Econometrics* 87, 115-143.

Chamberlain, G. (1982). Multivariate regression models for panel data. *Journal of Econometrics* 18, 5-46.

Chamberlain, G. (1984). 'Panel Data', in *Handbook of Econometrics*, Volume 2, eds. Z. Griliches and M. Intriligator, Amsterdam: North-Holland, 1247-1318.

Chudik, A., M.H. Pesaran, and E. Tosetti (2011). Weak and strong cross section dependence and estimation of large panels. *The Econometrics Journal* 14, C45-C90.

Elhorst, J.P. (2005). Unconditional maximum likelihood estimation of linear and log-linear dynamic models for spatial panels. *Geographical Analysis 37*, 85-106.

Elhorst, J.P. (2010). Dynamic panels with endogenous interaction effects when T is small. *Regional Science and Urban Economics* 40, 272-282.

Hayakawa, K. and M. H. Pesaran (2012). Robust standard errors in transformed likelihood estimation of dynamic panel data models. CESifo Working Paper Series 3850, CESifo Group Munich.

Holtz-Eakin, D., W. Newey, and H.S. Rosen (1988). Estimating vector autoregressions with panel data. *Econometrica* 56,1371-95.

Hsiao, C., M.H. Pesaran, and A.K. Tahmiscioglu (2002). Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods. *Journal of Econometrics 109*, 107-150.

Jacobs, J.P.A.M, J.E. Ligthart, and H. Vrijburg (2009). Dynamic panel data models featuring endogenous interaction and spatially correlated errors. CentER Discussion Paper Series No. 2009-92.

Kapetanios, G., M.H. Pesaran, and T. Yagamata (2011). Panels with nonstationary multifactor error structures. *Journal of Econometrics 160*, 326-348.

Lee, L. and J. Yu (2010). Some recent developments in spatial panel data models. *Regional Science* and Urban Economics 40, 255-271.

MaCurdy, T.E. (1982). The use of time series processes to model the error structure of earnings in a longitudinal data analysis. *Journal of Econometrics* 18, 83-114.

Mundlak, Y. (1978). On the pooling of time series and cross section data. *Econometrica* 46, 69-85.

Nauges, C. and A. Thomas (2003). Consistent estimation of dynamic panel data models with time-varying individual effects. *Annales d'Economie et de Statistique 70*, 53-74.

Pesaran, M.H. (2006). Estimation and inference in large heterogeneous panels with a multifactor error structure. *Econometrica* 74, 967-1012.

Pesaran, M.H. and R. J. Smith (1994). A generalized  $R^2$  criterion for regression models estimated by the instrumental variables method. *Econometrica* 62, 705-710.

Pesaran, M.H. and E. Tosetti (2011). Large panels with common factors and spatial correlation. *Journal of Econometrics 161*, 182-202.

Robertson, D. and V. Sarafidis (2013). IV estimation of panels with factor residuals. Cambridge Working Paper in Economics No. 1321.

Phillips P. C. B. and D. Sul (2007). Bias in dynamic panel estimation with fixed effects, incidental trends and cross section dependence. *Journal of Econometrics* 137, 162-188.

Sarafidis, V. and D. Robertson (2009). On the impact of error cross-sectional dependence in short dynamic panel estimation. *The Econometrics Journal 12*, 62-81.

Sarafidis V., and T. Wansbeek (2012). Cross-sectional dependence in panel data analysis. *Econo*metric Reviews 31, 483-531.

Su, L. and Z. Yang (2007). QML estimation of dynamic panel data models with spatial errors. Singapore Management University, Manuscript.