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Abstract
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allows for a multifactor error structure. This is an important extension since it retains the
advantages of the transformed likelihood approach, whilst at the same time allows for observed
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that the transformed ML estimator performs well in finite samples and outperforms the GMM
estimators proposed in the literature in almost all cases considered.

JEL Classifications: C12, C13, C23
Keywords: short T dynamic panels, transformed maximum likelihood, multi-factor error structure,
interactive fixed effects
∗The authors would like to thank Vasilis Sarafidis as well as participants at the conference on Cross-sectional

Dependence in Panel Data Models, May 2013, Cambridge, for helpful comments on a preliminary version of the paper.
Part of this paper was written whilst Hayakawa was visiting the University of Cambridge as a JSPS Postdoctoral
Fellow for Research Abroad. He acknowledges financial support from the JSPS Fellowship and the Grant-in-Aid for
Scientific Research (KAKENHI 22730178, 25780153) provided by the JSPS. Pesaran and Smith acknowledge financial
support from the ESRC Grant No. ES/1031626/1.



1 Introduction

There now exists an extensive literature on the estimation of linear dynamic panel data models
where the time dimension (T ) is short and fixed relative to the cross section dimension (N), which
is large. Such panels are usually referred to as micro panels, and often arise in microeconometric
applications. For example, many empirical applications based on survey data such as the British
Household Panel Surveys (BHPS) and the Panel Study in Income Dynamics (PSID) are character-
ized by data covering relatively short time periods. Although it is now quite common to include
dynamics in such studies, it is rare to find studies that allow for error cross section dependence as
well. In most empirical applications time dummies are used to deal with cross section dependence,
which is valid only if the time effect is homogeneous over the cross section units. Short T panels
also arise in the cross country empirical growth literature where data is typically averaged over five
to seven years to eliminate the business cycle effects. Both generalized method of moments (GMM)
and likelihood approaches have been advanced to estimate such panel data models. See, for exam-
ple, Anderson and Hsiao (1981), Arellano and Bond (1991), Arellano and Bover (1995), Blundell
and Bond (1998), Hsiao et al. (2002) and Binder et al. (2005).1 However, this literature assumes
that the errors are cross sectionally independent, which might not hold in many applications where
cross section units are subject to common unobserved effects, or possibly spatial or network spill-
over effects. Ignoring cross section dependence can have important consequences for conventional
estimators of dynamic panels. Phillips and Sul (2007) study the impact of cross section dependence
modelled as a factor structure on the inconsistency of the pooled least squares estimate of a short
dynamic panel regression. Sarafidis and Robertson (2009) investigate the properties of a number
of standard widely used generalized method of moments (GMM) estimators under cross section
dependence and show that such estimators are inconsistent.

In applications where the spatial patterns are important and can be characterized by known
spatial weight matrices, error cross section dependence is typically modelled as spatial autoregres-
sions and estimated jointly with the other parameters of the dynamic panel data model. Lee and
Yu (2010) provide a review. For small T , Elhorst (2005) and Su and Yang (2007) consider random
effects as well as fixed effects specifications. In the latter case they apply the first-differencing
operator to eliminate the fixed effects and then use the transformed likelihood approach of Hsiao
et al. (2002) to deal with the initial value problem. The treatment of the initial values in spatial
dynamic panel data models poses additional diffi culties and requires further investigation. More
recently Jacobs et al. (2009) discuss GMM estimation of dynamic fixed effect panel data models
featuring spatially correlated errors and endogenous interaction.

However, in addition to the spatial effects it is also likely that the error cross section dependence
could be a result of omitted unobserved common factor(s). This class of models has been the subject
of intensive research over the past five years and robust estimation procedures have been advanced
in the case of panels where N and T are both large.2 In contrast, little work has been done so far on
the estimation of short T dynamic panels where error cross section dependence is due to unobserved
common factors. An early contribution by MaCurdy (1982) features panel models with an error
structure that combines factor schemes with autoregressive-moving average models estimated by
maximum likelihood and used to analyze the error process associated with the earnings of prime

1The analysis of Hsiao et al. (2002) is extended by Hayakawa and Pesaran (2012) to allow for a cross-sectionally
heteroskedastic error term.

2See, for example, Pesaran (2006), Bai (2009), Pesaran and Tosetti (2011), Chudik et al. (2011), and Kapetanios
et al. (2011).
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age males. In subsequent work, for the case of a single factor, Holtz-Eakin et al. (1988) and Ahn et
al. (2001), suggest a quasi-differencing approach to purge the factor structure and then use GMM
to consistently estimate the model parameters.3 Nauges and Thomas (2003) follow this approach
in addition to prior first-differencing to eliminate the fixed effect, which they consider separately
from the single common factor structure assumed for the errors. Ahn et al. (2013) extend this
approach to the more general case of a multifactor error structure.

More recently, Robertson and Sarafidis (2013) propose an instrumental variable estimation
procedure that introduces new parameters to represent the unobserved covariances between the
instruments and the factor component of the errors. They show that the resulting estimator is
asymptotically more effi cient than the GMM estimator based on quasi-differencing as it exploits
extra restrictions implied by the model. Elhorst (2010) considers a fixed effects dynamic panel with
contemporaneous endogenous interaction effects under small T . For estimation purposes, he adopts
both the maximum likelihood estimator of Hsiao et al. (2002) and the GMM estimator of Arellano
and Bond (1991). Bai (2013) suggests a quasi-maximum likelihood (ML) approach applied to the
original dynamic panel without differencing (simple or quasi), and uses the approach of Mundlak
(1978) and Chamberlain (1982) to deal with the correlation between the factor loadings and the
regressors, but continues to assume that all factor loadings (including the one associated with the
intercepts) are uncorrelated with the errors.4

In this paper, following Hsiao et al. (2002), we propose an alternative quasi ML approach
applied to the panel data model after first-differencing. In this way, we account for heterogeneity
of the initial values and the common factors in an integrated framework. The proposed estimation
procedure includes the transformed likelihood procedure of Hsiao et al. (2002) as a special case. It
allows for both fixed and interactive effects (the latter based on a random coeffi cient specification),
and can be used to test the validity of the fixed effects specification against the more general
model with interactive effects. Our procedure differs from the one proposed by Bai (2013) since
he proposes to apply the maximum likelihood (ML) procedure to the level model without time-
invariant fixed effects, whilst we propose to apply the ML procedure to the first-differenced model
where time-invariant fixed effects are removed. The application of the ML approach to dynamic
panel data models without first-differencing requires the fixed effects in the processes generating
the regressors to be uncorrelated with the errors. Otherwise, as shown in Hsiao et al. (2002), the
initial values (yi0) could be subject to an incidental parameter problem. More specifically, reliance
on the Mundlak-Chamberlain device for the specification of yi0 employed by Bai (2013) will be
valid only under random effects specification of the processes generating the regressors. However,
this assumption is not required under the transformed likelihood approach, where the quasi ML
approach is applied to first differences. The proposed method can also be readily extended to a
panel VAR framework as in Binder et al. (2005). Monte Carlo simulations are carried out to
investigate the finite sample performance of the transformed ML estimator including a comparison
with several GMM estimators. We find that the transformed ML estimator performs well in almost
all cases considered, while the GMM estimators perform (sometimes) substantially poorly.

The rest of this paper is organized as follows. Section 2 sets out the dynamic model (with
and without regressors) and develops the transformed likelihood approach. Initially we consider
the relatively simple case where in addition to fixed effects the model contains a single unobserved
common factor with interactive effects. In subsection 2.3 we extend our analysis to models with
multiple factors. In Section 3, a review of the GMM approach is provided. In Section 4, we
describe the Monte Carlo experiments and compare bias, root mean square errors , size and power

3The quasi-differencing transformation was originally proposed by Chamberlain (1984). Holtz-Eakin et al. (1988)
implement it in the context of a bivariate panel autoregression.

4See also Sarafidis and Wansbeek (2012) for a recent survey of panel data models with error cross section depen-
dence when T is short.
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of the proposed transformed ML estimator to a number of different GMM estimators.5 Section 5
concludes.

2 The Likelihood Approach

2.1 AR(1) model

Consider the following first order autoregressive, AR(1), panel data model

yit = αi + γyi,t−1 + ξit, (1)

ξit = λift + uit, (i = 1, 2, ..., N ; t = 1, 2, ..., T ),

where T is fixed and small relative to N which could be large, αi for i = 1, 2, ..., N are the fixed
effects, ft is an unobserved common factor for all i, uit are the individual-specific (idiosyncratic)
errors, λi for i = 1, 2, ..., N are factor loadings distributed indepedently of uit and ft. No restrictions
will be imposed on ft except that gt = ∆ft 6= 0 for at least some t = 1, 2, ..., T . Note that this
requirement does not restrict the specification of the model since the excluded case of ft = C (a
fixed constant for all t) is already covered by the explicit inclusion of fixed effects, αi, in the model.
We consider the problem of estimation of γ under the following assumptions:

Assumption 1 |γ| < 1 and the AR(1) model given in (1) has started from the infinite past.

Assumption 2 The idiosyncratic shocks, uit (i = 1, 2, ..., N ; t = 1, 2, ..., T ), are independently
distributed both across i and t with mean zero and variance σ2.

Assumption 3 The unobserved factor loadings, λi, are independently and identically distributed
across i and of the individual specific errors, ujt, and the common factor, ft, for all i, j and t with
fixed mean, λ, and a finite variance. In particular,

λi = λ+ ηi, ηi ∼ IID(0, σ2
η). (2)

Assumption 4 The error terms ηi and uit are normally distributed.

Remark 1 Assumption 1 is made to simplify the exposition. In the next subsection we consider
the case where the dynamic process has started from a finite past. In such a case it is also possible
to allow for unit roots, namely the case where γ = 1.

Remark 2 For each i, the composite error ξit in (1) is heteroskedastic even though it is assumed
that var(uit) = σ2 is homoskedastic, namely for each i we have V ar(ξit |λi ) = λ2

iσ
2
f + σ2. As

shown by Hayakawa and Pesaran (2012), in a recent extension of Hsiao et al. (2002), it could be
possible to allow for heteroskedasticity in uit, but this will not be pursued here. In our approach ft
can be fixed or random.

Remark 3 Under Assumption 4, ηi and uit are considered normally distributed for the application
of the ML approach. The normality assumption is not required as N → ∞, so long as the errors
ηi and uit have finite fourth-order moments.

5 In these comparisons we do not include Bai’s recent estimator since the computer code for the implementation
of this estimation method has not yet been released. Also, the Monte Carlo evidence provided in Bai (2013) is more
illustrative in nature and does not cover cases where there are fixed effects in the processes generating the regressors
that are correlated with the errors. Further, Bai (2013) does not provide any evidence on size and power of tests
based on his proposed estimator. We intend to include Bai’s estimation method in our comparative analysis once
workable computer codes are released.
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Remark 4 No assumptions are made regarding the fixed effects, αi. They could be correlated with
λi and uit, and need not be cross sectionally independent. For example, αi could follow a spatial
autoregressive specification where cov(αi, αj) 6= 0 for all i and j.

Under Assumption 3 we can rewrite model (1) as

yit = αi + γyi,t−1 + λift + uit

= αi + γyi,t−1 + λft + ηift + uit.

We eliminate the individual effects by first-differencing

∆yit = γ∆yi,t−1 + λigt + ∆uit

= γ∆yi,t−1 + λgt + ηigt + ∆uit for t = 2, 3, ..., T. (3)

Under Assumption 1, by recursive substitution, we have the following expression for t = 1

∆yi1 = λig̃1 + vi1, (4)

where g̃1 =
∑∞

j=0 γ
jg1−j , vi1 =

∑∞
j=0 γ

j∆ui,1−j with E(vi1) = 0 and var(vi1) = ωσ2. Although ω
is given by 2/(1 + γ) in this model, in general, we treat ω as a free parameter to be estimated.

To deal with the incidental parameter problem associated with λi, instead of quasi-differencing
to eliminate λi, we use (2) and write (3) and (4) as

∆yi1 = λg̃1 + ηig̃1 + vi1

∆yit = γ∆yi,t−1 + λgt + ηigt + ∆uit, (t = 2, 3, ..., T ).

In matrix notation the above system of equations can be written as

∆yi = ∆Wiγ + λg + ξi, (5)

where ∆yi = (∆yi1,∆yi2, ....,∆yiT )′, ∆Wi = (0,∆yi1, ...,∆yi,T−1)′, g = (g̃1, g2, ..., gT )′, and ξi =
ηig + ri, with ri = (vi1,∆ui2, ...,∆uiT )′. From Hsiao et al. (2002) we have that

E(rir
′
i) = σ2



ω −1 0

−1 2
. . .
. . .
. . . 2 −1

0 −1 2


= σ2Ω. (6)

Using (6) and recalling that ηi and uit are independently distributed we have

V ar(ξi) = σ2Ω+σ2
ηgg′ =σ2

(
Ω+φgg′

)
,

where

φ =
σ2
η

σ2
.

Hence, the log-likelihood function of the transformed model (5) is given by

` (ψ) = −NT
2

ln (2π)− NT

2
ln(σ2)− N

2
ln
∣∣Ω+φgg′

∣∣
− 1

2σ2

N∑
i=1

(∆yi −∆Wiγ − λg)′
(
Ω+φgg′

)−1
(∆yi −∆Wiγ − λg) . (7)
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The log-likelihood in (7) is a function of a fixed number of unknown parameters, ψ = (γ, ω, σ2, φ, λ,g′)′.
After some algebra (see Section A.2 of the Appendix) it can be written as

N−1` (ψ) = −T
2

ln (2π)− T

2
ln(σ2)− 1

2
ln |Ω| − 1

2
ln(1 + φg′Ω−1g)

− 1

2σ2

[
N−1

N∑
i=1

v′iΩ
−1vi −

φg′Ω−1BNΩ−1g − λ2g′Ω−1g+2λg′Ω−1v̄

1 + φ (g′Ω−1g)

]
, (8)

where vi = vi(γ) = ∆yi −∆Wiγ, v̄ =N−1
∑N

i=1 vi and

BN = BN (γ) = N−1
N∑
i=1

vi(γ)v′i(γ). (9)

It is clear that if φ = 0, the log-likelihood simplifies to the case of panels with (pure) time effects
and λ is not separately identified from the elements of g. In such a case λ is typically set to unity
and T time dummies are introduced to estimate g. In the interactive case where φ 6= 0, g is
not identified separately from φ and without loss of generality we can set q =

√
φg and write the

log-likelihood function in (8) as

N−1` (θ) = −T
2

ln (2π)− T

2
ln(σ2)− 1

2
ln |Ω| − 1

2
ln(1 + q′Ω−1q)

− 1

2σ2

[
N−1

N∑
i=1

v′iΩ
−1vi −

q′Ω−1BNΩ−1q− κ2q′Ω−1q+2κq′Ω−1v̄

1 + q′Ω−1q

]
, (10)

where θ = (γ, ω, σ2, κ,q′)′, and κ = λ/
√
φ.

Taking partial derivatives with respect to κ and σ2 and solving out for these we have

κ̂ =
(
q′Ω−1q

)−1
q′Ω−1v̄, (11)

and

σ̂2 = T−1

[
N−1

N∑
i=1

v′iΩ
−1vi −

q′Ω−1BNΩ−1q

1 + q′Ω−1q
−

(
q′Ω−1v̄

)2
(1 + q′Ω−1q) (q′Ω−1q)

]
.

But using (9) the above expression can also be written as

σ̂2 = T−1

[
N−1

N∑
i=1

v′i

[
Ω−1 − Ω−1qq′Ω−1

1 + q′Ω−1q

]
vi −

(
q′Ω−1v̄

)2
(1 + q′Ω−1q) (q′Ω−1q)

]
,

or equivalently as

σ̂2 = T−1

[
N−1

N∑
i=1

v′i
(
Ω + qq′

)−1
vi −

(
q′Ω−1v̄

)2
(1 + q′Ω−1q) (q′Ω−1q)

]
. (12)

In practice, v̄ is likely to be small for suffi ciently large N , which ensures a positive estimate for σ2,
although this is not guaranteed if N is small.

Substituting (11) and (12) into (10), we have

N−1` (γ, ω,q) ∝ −1

2
ln |Ω| − 1

2
ln
(
1 + q′Ω−1q

)
(13)

−T
2

ln

[
N−1

N∑
i=1

v′i
(
Ω + qq′

)−1
vi −

(
q′Ω−1v̄

)2
(1 + q′Ω−1q) (q′Ω−1q)

]
.
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The transformed ML estimator is obtained by maximizing the above concentrated log-likelihood
function. Having obtained the ML estimators of γ, ω and q, (which we denote by γ̂, ω̂ and q̂), the
MLE of σ2 and κ can then be computed using (11) and (12). To compute the variance-covariance
matrix of θ̂ = (γ̂,ω̂,σ̂2,κ̂, q̂′)′ we need to make use of the unconcentrated log-likelihood function
given by (10) and compute its second derivatives, either analytically or numerically. For a fixed T
and as N →∞, using standard results from the asymptotic theory of ML estimation we have

AsyV ar(
√
N θ̂) = H

−1
(θ),

where (using the unconcentrated log-likelihood function given by (10))

H(θ) = p lim
N→∞

[
− 1

N

∂2` (θ)

∂θ∂θ′

]
.

A consistent estimator of AsyV ar(θ̂) can be obtained as

V̂ ar(θ̂) =

−∂2`
(
θ̂
)

∂θ∂θ′

−1

, (14)

where the second partial derivatives are evaluated at the MLE, θ̂ = (γ̂,ω̂,σ̂2,κ̂, q̂′)′. The first and
second derivatives of the log-likelihood function are provided in Section A.3 of the Appendix.

2.2 ARX(1) model

Consider next the case where an exogenous variable is included in model (1) and consider the
augmented AR(1) model (which we denote by ARX(1))

yit = αi + γyi,t−1 + βxit + λift + uit, (i = 1, 2, ..., N ; t = 1, 2, ..., T ). (15)

For simplicity we assume that xit is a scalar. Extension to the case of multiple regressors is
straightforward at the expense of notational complexity. Taking the first-difference of (15) and
using Assumption 3 we have

∆yit = γ∆yi,t−1 + β∆xit + λgt + ηigt + ∆uit, (t = 2, 3, ..., T ). (16)

We assume that the regressor xit is generated either by

xit = µi + ct+ ϑift +

∞∑
j=0

ajεi,t−j ,
∞∑
j=0

|aj | <∞, (17)

or

∆xit = c+ ϑigt +
∞∑
j=0

djεi,t−j ,
∞∑
j=0

|dj | <∞, (18)

where µi are fixed effects (which could be correlated with uit and/or εit), and ϑi are random
interactive effects distributed independently of uit and ft.

Assumption 5 The dynamic process given by (16) has started from yi,−S with S finite such that
E(∆yi,−S+1|∆xi1,∆xi2, ...,∆xiT ) = b̃ for all i.

Assumption 6 The interactive effects ϑi in ∆xit have constant variance var(ϑi) = σ2
ϑ and are

uncorrelated with λi and uit for all i and t.
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Assumption 7 The error terms εit in xit are independently distributed over all i and t, with
E(εit) = 0 and E(ε2

it) = σ2
ε, and independent of uit′ for all t

′ and t.

Remark 5 Assumption 5 imposes the restriction that the expected changes in the initial values are
the same across all individuals, but does not necessarily require that |γ| < 1 or that all individuals
should start from the same position.

Remark 6 Assumption 7 requires that xit is strictly exogenous. This can be relaxed by considering
vector autoregressions as in Holtz-Eakin et al. (1988). See also Binder et al. (2005).

Remark 7 While the time variant individual effects, λi, are treated as random they could be corre-
lated with the regressor(s) xi, such that λi = π′xi + εi, so long as the Mudlank-Chamberlain device
is used to control for this correlation. However, the λ′is cannot be correlated across i.

By recursive substitution we have

∆yi1 = γS∆yi,−S+1 + β
S−1∑
j=0

γj∆xi,1−j + λi

S−1∑
j=0

γjg1−j +
S−1∑
j=0

γj∆ui,1−j

= γS∆yi,−S+1 + β
S−1∑
j=0

γj∆xi,1−j + λig̃1S +
S−1∑
j=0

γj∆ui,1−j ,

where g̃1S =
∑S−1

j=0 γ
jg1−j . This expression shows that ∆yi1 contains many unknown quantities

such as unknown parameters or unobserved past variables. However, it is possible to derive an
expression for ∆yi1 based on observed variables and a finite number of parameters as follows.

Theorem 1 Consider model (16) where xit follows either (17) or (18). Suppose that Assumptions
2, 3, 5, 6, and 7 hold. Then ∆yi1 can be expressed as:

∆yi1 = b+ π′∆xi + vi1, (19)

where b is a constant, π is a T -dimensional vector of constants, ∆xi = (∆xi1,∆xi2, ...,∆xiT )′ and
vi1 is independently distributed across i such that E(vi1) = 0 and E(v2

i1) = ωσ2 with 0 < ω < K <
∞.
Proof. See Section A.1 of the Appendix.

Remark 8 This theorem establishes the conditions under which the Mundlak-Chamberlain spec-
ification for the initial observations, ∆yi1, is valid. The key condition is the restrictions on the
processes generating xit or ∆xit. In our application, since we apply first-differencing before ML
estimation we can allow for inclusion of fixed effects in the xit process, but we must rule out the
presence of fixed effects in the processes generating ∆xit. See Assumption 6.

Using Theorem 1 and (16) the transformed model can be rewritten as

∆yi = ∆Wiϕ+ λg + ξi,

where ϕ = (b,π′, γ, β)′ , ξi = ηig + ri, ∆yi = (∆yi1,∆yi2, ...,∆yiT )′, ri = (vi1,∆ui2, ...,∆uiT )′ and

∆Wi =


1 ∆x′i 0 0
0 0 ∆yi1 ∆xi2
...

...
...

...
0 0 ∆yi,T−1 ∆xiT

 . (20)
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The rest of the analysis follows identically to the AR(1) case where the final expression for the
log-likelihood function, ¯̀(ϕ, ω,q) , is given by (13), with the difference that vi is now given by

vi = ∆yi −∆Wiϕ, (21)

where ϕ = (b,π′, γ, β)′ and ∆Wi is defined by (20).

2.3 Extension of the transformed maximum likelihood to the multifactor case

Consider the extension of model (1) to the multifactor case

yit = αi + γyi,t−1 + ξit,

ξit = f ′tλi + uit, (i = 1, 2, ..., N ; t = 1, 2, ..., T ), (22)

where ft and λi are m × 1 vectors of unobserved common effects and random interactive effects,
respectively, the latter distributed independently of uit and ft . Without loss of generality it is
assumed that gt = ∆ft 6= 0 for at least some t = 1, 2, ..., T . The remaining parameters are specified
as in Section 2.1. It is assumed that the number of factors m is known and that m < T . To
accommodate multiple factors the following modified versions of Assumptions 3 and 4 are needed:

Assumption 8 The unobserved factor loadings, λi, are independently and identically distributed
across i and of the individual specific errors, ujt, and the common factor, ft, for all i, j and t, with
fixed means, λ, and a finite variance. In particular,

λi = λ+ ηi, ηi ∼ IID(0,Ωη), (23)

where Ωη is an m × m symmetric positive definite matrix, ‖λ‖ < K and ‖Ωη‖ < K for some
positive constant K <∞.

Assumption 9 The error terms ηi and uit are normally distributed.

Under Assumptions 8 and 9 and following similar derivations as in the single factor case we
have

N ¯̀(θ) ∝ −1

2
ln |Ω| − 1

2
ln
∣∣Im+Q′Ω−1Q

∣∣ (24)

−T
2

ln

{
N−1

∑N
i=1 v′i (Ω + QQ′)−1

vi
−v̄′Ω−1QA−1(Q′Ω−1Q)−1Q′Ω−1v̄

}
,

where θ =
(
γ, ω, vec(Q)′

)′
, Q = σ−1GΩ

1/2
η with G = (g̃1,g2, ...,gT )′ and g̃1 =

∑∞
j=0 γ

jg1−j , and

A = Im + Q′Ω−1Q. The restrictions implied by Q = σ−1GΩ
1/2
η are not binding, in the sense that

the log-likelihood function is invariant to the choice of the normalization and they are used to
identify the multifactor structure λ′gt. Since λ and gt are not separately identified their inner
product can be equivalently written as δ′qt where δ = σΩ

−1/2
η λ, and qt is the tth row of Q. For

details of the derivations see Section A.4 of the Appendix. It is also easily verified that (24) reduces
to (13) when m = 1.

In the case where the panel data model contains exogenous regressors the form of the log-
likelihood function is as in (24), with the difference that vi is now defined by (21).
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3 The GMM Approach

In this section we provide details of two different GMM estimators proposed in the literature for
the estimation of dynamic panel data models with interactive effects. We shall then use these
estimators in the Monte Carlo experiments for comparison with the transformed ML estimator
proposed in this paper.

3.1 Ahn, Lee and Schmidt (2013)

Ahn et al. (2001) consider a single factor panel model (without specification of a separate fixed effect
component) which they extend to the multifactor case in Ahn et al. (2013). While they consider
static models with weakly exogenous variables, it is straightforward to extend their analysis to the
dynamic case. As Ahn et al. (2001) is a special case of Ahn et al. (2013), we focus on the latter
and consider the model

yit = αi + w′itδ + λ′ift + εit, (i = 1, 2, ..., N ; t = 1, 2, ..., T )

= w′itδ + λ̃
′
if̃t + εit,

where wit = (yi,t−1,x
′
it)
′, δ = (γ,β′)′, λ̃i = (αi, λ1i, ..., λmi)

′ and f̃t = (1, f1t, ..., fmt)
′ are (m̃ × 1)

vectors with m̃ = m+ 1, and εit are cross-sectionally and temporally uncorrelated. The individual
specific effects λi are allowed to be correlated with xit, while xit is assumed to be strictly or weakly
exogenous. The model in matrix notation can be written as

yi = Wiδ + F̃λ̃i + εi, (25)

where yi = (yi1, ..., yiT )′, Wi = (wi1, ...,wiT )′, εi = (εi1, ..., εiT )′ and F̃ = (f̃1, ..., f̃T )′ is a T ×
m̃ matrix. To separately identify F̃ from λ̃i, the authors impose m̃2 restrictions on the factors
themselves such that F̃ = (Ψ′, Im̃)′ where Ψ is a (T − m̃)× m̃ matrix of unrestricted parameters.
Let H = (IT−m̃,−Ψ)′, so that H′F̃ = (IT−m̃,−Ψ)(Ψ′, Im̃)′ = 0(T−m̃)×m̃. Then, pre-multiplying
equation (25) by H′ removes the unobservable effects so that

H′yi = H′Wiδ + H′εi,

or

ẏi = Ẇiδ + Ψÿi −ΨẄiδ + ε̇i −Ψε̈i

= Ẇiδ+
(
IT−m̃ ⊗ ÿ′i

)
vec(Ψ)−

(
vec(Ẅi)

′ ⊗ IT−m̃
)
vec(δ′ ⊗Ψ) + ε̇i −Ψε̈i,

where ẏi = (yi1, ..., yi,T−m̃)′, ÿi = (yi,T−m̃+1, ..., yiT )′, Ẇi = (wi1, ...,wi,T−m̃)′, Ẅi = (wi,T−m̃+1, ...,wiT )′,
Ψ′= (ψ1, ...,ψT−m̃), ε̇i = (εi1, ..., εi,T−m̃)′, and ε̈i = (εi,T−m̃+1, ..., εiT )′.

The tth equation is given by

yit = δ′wit +ψ′tÿi −ψ′tẄiδ + vit, (i = 1, ..., N ; t = 1, ..., T − m̃), (26)

where vit = (εit − ψ′tε̈i). Then, if xit is strictly exogenous, we end up with (T − m̃)(T −
m̃ + 1)/2 + kT (T − m̃) moment conditions given by E[zitvit] = 0, for t = 1, ..., T − m̃, where
zit = (yi0, ..., yi,t−1,x

′
i1, ...,x

′
iT )′. In matrix notation the moment conditions can be written as

E [Z′ivi(θ)] = 0, where Zi = diag(z′i1, ..., z
′
i,T−m̃), vi(θ) = (vi1, ..., vi,T−m̃)′ and θ = (δ′,ψ′)′ with

ψ = vec(Ψ).
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Then the one-step and two-step GMM estimators are given respectively by

θ̂1step = arg min
θ

(
1

N

N∑
i=1

vi(θ)′Zi

)(
1

N

N∑
i=1

Z′iZi

)−1(
1

N

N∑
i=1

Z′ivi(θ)

)
,

and

θ̂2step = arg min
θ

(
1

N

N∑
i=1

vi(θ)′Zi

)(
1

N

N∑
i=1

Z′ivi(θ̂1step)vi(θ̂1step)
′Zi

)−1(
1

N

N∑
i=1

Z′ivi(θ)

)
. (27)

The continuous updating GMM estimator (CUE) is given by

θ̂CUE = arg min
θ

(
1

N

N∑
i=1

vi(θ)′Zi

)(
1

N

N∑
i=1

Z′ivi(θ)vi(θ)′Zi

)−1(
1

N

N∑
i=1

Z′ivi(θ)

)
. (28)

The asymptotic covariance matrix of the above estimator is given, respectively, by

V ar(θ̂1step) = N−1
(
Ĝ′1stepŴ

−1Ĝ1step

)−1
Ĝ′1stepŴ

−1Ω̂1stepŴ
−1Ĝ1step

(
Ĝ′1stepŴ

−1Ĝ1step

)−1

(29)

V ar(θ̂2step) = N−1
(
Ĝ′2stepΩ̂

−1
2stepĜ2step

)−1
, (30)

and
V ar(θ̂CUE) = N−1

(
Ĝ′CUEΩ̂−1

CUEĜCUE

)−1
, (31)

where Ĝj= ∂ḡ(θ̂j)/∂θ
′ for j = 1step, 2step, CUE, with gi(θ̂j) = Z′ivi(θ̂j) and ḡ(θ̂j) = N−1

∑N
i=1 gi(θ̂j),

Ŵ =N−1
∑N

i=1 Z′iZi, and Ω̂j=N
−1
∑N

i=1 gi(θ̂j)gi(θ̂j)
′. The derivatives involved in Ĝj are com-

puted numerically.

3.2 Nauges and Thomas (2003)

Nauges and Thomas (2003) consider the single factor dynamic panel model given by

yit = w′itδ + uit, (i = 1, 2, ..., N ; t = 1, 2, ..., T ), (32)

where uit = αi + λift + εit. It is assumed that |γ| < 1 with the initial values, yi0, treated as given.
It is further assumed that

E(αi) = 0, E(λi) = 0, E(εit) = 0,

and
E(yi0εit) = 0, E(αiεit) = 0, E(λiεit) = 0, E(εitεis) = 0, (33)

for i = 1, 2, ..., N , t = 1, 2, ..., T and t 6= s. As a first step they first difference to eliminate αi so
that (32) becomes

∆yit = δ′∆wit + ∆uit, (34)

where
∆uit = λigt + ∆εit,

and gt = ∆ft. In the second step, following Holtz-Eakin et al. (1988), they perform a quasi-
differencing transformation to obtain

∆uit − rt∆ui,t−1 = ∆εit − rt∆εi,t−1, (i = 1, 2, ..., N ; t = 3, 4, ..., T ),
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where rt = gt/gt−1 = (ft − ft−1)/(ft−1 − ft−2). Using (34) it follows that

vit = ∆uit − rt∆ui,t−1 = (∆yit − rt∆yi,t−1)− δ′(∆wit − rt∆wi,t−1).

Under the conditions set out in (33), if xit is strictly exogenous, the following (T −2)(T −1)/2+kT
(T − 2) moment conditions hold:

E[zit(∆uit − rt∆ui,t−1)] = 0, (t = 3, 4, ..., T ),

where zit = (yi0, ..., yi,t−3; x′i1, ...,x
′
iT )′. These moment conditions are non-linear in the parameters,

as the nuisance parameters r′ts are estimated jointly with the parameter of interest, δ. The moment
conditions in matrix notation can be written as

E
[
Z′ivi(θ)

]
= 0,

where Zi = diag(z′i3, ..., z
′
iT ) and vi(θ) = (vi3, ..., viT )′. Based on the above orthogonality condi-

tions, and starting from some initial estimate of θ, in the first step a consistent GMM estimator of
the parameter of interest is obtained as

θ̂1step = arg min
θ

(
1

N

N∑
i=1

vi(θ)′Zi

)(
1

N

N∑
i=1

Z′iHZi

)−1(
1

N

N∑
i=1

Z′ivi(θ)

)
,

where H is a matrix with 2’s on the main diagonal, −1’s on the first sub-diagonal and 0’s else-
where. Two-step and continuous-updating GMM estimators are obtained similarly to (27) and
(28), respectively. The asymptotic covariance matrix is obtained similarly to (29), (30) and (31).

4 Monte Carlo designs

We investigate by means of Monte Carlo simulations the finite sample properties of the transformed
likelihood approach and compare them to those of the GMM estimators of Ahn, Lee and Schmidt
(2013, ALS) and Nauges and Thomas (2003, NT) described above. We begin by considering the
simple AR(1) model followed by the ARX(1) model with an exogenous regressor.

4.1 AR(1) model with a single factor

In this case the observations on yit are generated as

yit = αi + γyi,t−1 + ξit, for i = 1, ..., N ; t = −S + 1, ...,−1, 0, 1, .., T,

ξit = λift + uit, uit ∼ iidN (0, σ2),

where |γ| < 1. To ensure that yi0 are correlated with the fixed effects, αi, and the error terms, ξit,
we assume that the AR(1) processes have started at time t = −S with starting values yi,−S . It is
then easily seen that

yi0 =
1− γS
1− γ αi + γSyi,−S +

S−1∑
j=0

γjξi,−j ,

and with S suffi ciently large we have

yi0 ≈
1

1− γαi +
S−1∑
j=0

γjξi,−j .
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To deal with the initial values for each i we generate the T + 1 + S observations t = −S + 1,−S +
2, ...., 0, 1, ..., T using yi,−S = 0 and discard the first S = 50, and use the remaining T+1 observations
in estimation and inference.

For the unobserved common factor, ft, we consider a determinstic and a stochastic option:

ft =

{
0 t = −S + 1, ...,−1, 0
t t = 1, 2, ..., T

,

and
ft = ρfft−1 +

√
1− ρ2

fεft, εft ∼ iidN (0, 1), for t = −S + 1, ...,−1, 0, 1, .., T.

We consider a relatively persistent case where ρf = 0.9 and without loss of generality set f−S = 0.

Under both specifications of ft we also scale the resultant ft values such that T−1
∑T

t=1 ft
2 = 1.

The values ft for t = −S + 1, ...,−1, 0 are not scaled. The scaling is done to ensure a particular
average value of fit as explained below. In all experiments each ft is generated once and the same
f ′ts are used in all replications of a given experiment.

The factor loadings, λi, are generated independently of the error terms as

λi = λ+ ηi with λ = 1 and ηi ∼ iidN (0, 1).

However, the fixed effects, αi, are allowed to be correlated with the errors by generating them as

αi = T−1(ξi1 + ξi2 + ...+ ξiT ) + vi = λif̄ + ūi + vi,

where f̄ = T−1
∑T

t=1 ft, ūi = T−1
∑T

t=1 uit and vi ∼ iidN (0, 1). Thus, the fixed effects are
correlated with the errors in contrast to the factor loadings, λi, that are generated independently of
all the other random variables influencing yit. Note that both options of generating the unobserved
factors yield a non-zero value for f̄ , and the (correlated) fixed effects specification can not be
generated simply by setting ft = 1. This is because our approach to dealing with the unobserved
common factors rules out the factor loadings to be correlated with the errors, uit, whilst we do not
rule out correlation between the fixed effects and the errors.

Finally, as shown in Section A.5 of the Appendix, the average fit of the panel AR(1) model is
determined by γ and does not depend on σ2

u = V ar(uit), and hence we set σ2
u = 1. For the key

parameter of the model, γ, we consider a medium and a high value, namely γ = 0.4 and 0.8, and
consider the following combinations of sample sizes, T = {6, 10} and N = {150, 300, 500}. For the
GMM estimators of Ahn et al. (2013, ALS) and Nauges and Thomas (2003, NT) we report results
for the one-step, two-step and CU GMM estimators. T = 6 is the smallest value for which the
ALS GMM estimators are computable. For inference we use the standard errors computed based
on the second derivative of the log-likelihood function given in (14) for the ML estimator. For the
GMM estimators, we use the conventional formulas given in (29), (30) and (31). All derivatives are
evaluated numerically.

We report simulation results for the autoregressive parameter γ. Specifically, we report the bias
and root mean square error (RMSE). In addition, we present size and power estimates. The power
is computed at {γ ± 0.10, γ ± 0.05} for the null values of γ = {0.4, 0.8}. All tests are carried out at
the 5% significance level and all experiments are replicated 1,000 times.

12



4.1.1 Results for the AR(1) case

The simulation results for the AR(1) case are presented in Tables 1 to 4.6,7 In terms of bias and
RMSE, the transformed ML estimator performs well for all cases. As the sample size N and/or T
increases, the RMSE decreases irrespective of the value of the autoregressive parameter γ and the
specification used for ft. With regard to inference, the ML estimator performs well in that it has
correct size for all combinations of N and T . Power performance is satisfactory though there is the
tendency for the ML estimator to display low power for small positive departures from the null.
For example, when γ = 0.8, T = 6 and N = {150, 300}, the power is quite low for the alternative
γ = 0.9 when testing the null γ = 0.8. This tendency is also evident when ft is generated as a time
trend. Contrary to the well behaved finite sample properties of the transformed ML estimator,
the performance of the GMM estimators are not generally good. In terms of bias and RMSE, the
GMM estimators are substantially worse than the transformed ML estimator. With regard to size,
the one-step ALS-GMM estimator displays empirical sizes close to the nominal level in many cases.
However, its power is much lower as compared to that of the transformed ML estimator.

4.2 ARX(1) model with a single factor

The observations on yit for the ARX(1) model are generated as

yit = αi + γyi,t−1 + βxit + ξit, for i = 1, 2, ..., N ; t = −S + 1,−S + 2, .., 0, 1, ..., T,

ξit = λift + uit, uit ∼ iidN (0, σ2).

As in the AR(1) case, for values of |γ| not too close to unity we set yi,−S = 0 and note that for S
suffi ciently large

yi0 ≈
1

1− γαi + β
S−1∑
j=0

γjxi,−j +
S−1∑
j=0

γjξi,−j .

The regressors, xit, are generated as

xit = µi + ϑift + x̆it, , x̆it = ρxx̆i,t−1 +
√

1− ρ2
xεit, (35)

with x̆i,−S = 0, for t = −S + 1, ..., 0, 1, ..., T , where |ρx| < 1, µi ∼ iidN (0, 1), εit ∼ iidN (0, 1) and
ft is generated as in the AR(1) case. We set ρx = 0.8 which yields relatively persistence regressors.

We generate the factor loadings independently as

ϑi ∼ iidN (0.5, σ2
ϑ), λi ∼ iidN (0.5, σ2

λ), (36)

6For the starting values in the optimization routine used to compute the ML estimators, we use θini = (γini,
ωini,q

′
ini)
′ with γini ∼ U [−0.999, 0.999], ωini ∼ U [1, 2] and qt,ini ∼ U [−1, 1] where qt,ini is the tth element of qini.

In addition ω needs to satisfy ω > (T − 1)/T since |Ω| = 1 + T (ω − 1) > 0. Specifically, we use five such sets
of random starting values and choose the largest among the maximum of the log-likelihood values as the estimate
of the ML estimator. Similarly, for the one-step ALS and NT GMM estimators we use five sets of starting values
θini,ALS= (γini,ψ

′
ini)
′ and θini,NT= (γini, r

′
ini)
′ respectively, where γini ∼ U [−0.999, 0.999], ψt,ini ∼ U [−1, 1] with

ψt,ini the tth element of ψini, and rt,ini ∼ U [−1, 1] with rt,ini the tth element of rini. We select the smallest among
the minimum values of the objective function as the estimate of the one-step ALS and NT GMM estimators. For the
two-step and continuous-updating ALS and NT GMM estimators we use the one-step estimates as the starting value
of the optimization routine.

7 In certain cases, the Hessian evaluated at the global maximum for the ML estimator was not positive definite.
The simulation draw for these cases was discarded and an additional draw was generated until the total number of
simulations with a positive definite Hessian reached 1,000. The number of these additional draws decreased for a
fixed T as N increased, and as T increased for all N .
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and to ensure that the fixed effects, αi, are correlated with the regressors, as well as with the errors,
we generate them as

αi = T−1
T∑
t=1

xit + λif̄ + ūi + vi,

where as in the AR(1) case, f̄ = T−1
∑T

t=1 ft, ūi = T−1
∑T

t=1 uit and vi ∼ iidN (0, 1).
We set the remaining parameters bearing in mind that in the case of ARX(1) panels the average

R2 is at least as large as γ2. In particular, from the results for the R2 derived in Section A.5 of the
Appendix we have that

R2
y =

β2V ar(x̆it) +
[(
N−1

∑N
i=1 c

2
i

)(
T−1

∑T
t=1 f

2
t

)
+ σ2

]
γ2

β2V ar(x̆it) +
(
N−1

∑N
i=1 c

2
i

)(
T−1

∑T
t=1 f

2
t

)
+ σ2

≥ γ2,

with the equality holding when β = 0 and where ci = βϑi + λi. In view of (35) V ar(x̆it) = 1 and
without loss of generality we set β = 1. Also, recall that T−1

∑T
t=1 f

2
t = 1. For comparability with

the AR(1) case we set γ = (0.4, 0.8) and determine σ2, σ2
λ, and σ

2
ϑ such that R

2
y − γ2 = 0.1. To

this end we note that

R2
y − γ2 =

(
1− γ2

)
1 +N−1

∑N
i=1 c

2
i + σ2

= 0.1.

Further, for suffi ciently large N and noting that λi and ϑi are generated independently (see (36))
it follows that

N−1∑N
i=1 c

2
i →p β

2σ2
ϑ + σ2

λ +
1

4
(1 + β)2.

Hence with β = 1 we have

R2
y − γ2 =

(
1− γ2

)
2 + σ2

ϑ + σ2
λ + σ2

= 0.1.

We set σ2
λ = σ2

ϑ = σ2 and using the above result we obtain

σ2 =
0.8− γ2

0.3
> 0.

Finally, we consider the same combinations of T and N as in the AR(1) case, namely T = {6, 10}
and N = {150, 300, 500}, and discard the first 50 observations basing estimation on the remaining
observations over the period t = 0, 1, ....T . Note that after first-differencing we end up with T
observations for estimation of γ and β. The standard errors used for inference are based on the
same formulas as those used in the AR(1) case with all derivatives computed numerically.

We report simulation results for the same set of statistics as in the AR(1) case, for both γ
and β, including size and power. Power is computed for the null values of (γ, β) = {0.4, 1.0} and
(γ, β) = {0.8, 1.0}. As previously, all tests are carried out at the 5% significance level and all
experiments are replicated 1,000 times.

Under strict exogeneity, for the ALS and NT GMM estimators there are so many moment
conditions and using all of them causes a large finite sample bias. Hence, we use only a subset
of moment conditions for the exogenous variable xit. Specifically, for ALS GMM we use zit =
(yi0, ..., yi,t−1, xit, ..., xiT )′ , since wit and Ẅit in (26) contain xit and xi,T−m, ..., xiT . Similarly, for
NT GMM we use zit = (yi0, ..., yi,t−m−2, xi1, ..., xit)

′ . Recall that m is the number of unobserved
factors which, in the case of current experiments, is set to 1.

14



4.2.1 Results for the ARX(1) case

Simulation results for the ARX(1) model are summarized in Tables 5 to 8.8 In terms of bias
and RMSE, the results are very similar to the AR(1) case. As the sample size increases, the
RMSE decreases in all cases. The sizes are close to the nominal level in all cases and, contrary
to the AR(1) case, the power is reasonably high even for γ = 0.8 and N = 150 irrespective of
the specification of ft. The augmentation of the AR(1) model with exogenous regressors has also
benefited the GMM estimators who show improved performance as compared to the results obtained
for the AR(1) model. However, the transformed ML estimator continues to outperform the GMM
estimators (sometimes substantially) both in terms of bias and RMSE. In terms of size, all the
GMM estimators exihibit large size distortions in almost all cases. An exception is the one-step
NT-GMM with T = 6, γ = 0.8 and ft ∼AR(1). In this case, the empirical size is close to the
nominal one, but power is lower than the transformed ML estimator.

4.3 AR(1) model with two factors

The observations on yit for the AR(1) model are generated as

yit = αi + γyi,t−1 + ξit, for i = 1, ..., N ; t = −S + 1, ...,−1, 0, 1, .., T

ξit = λ1if1t + λ2if2t + uit = λ′ift + uit, uit ∼ iidN (0, σ2),

where ft = (f1t, f2t)
′ and λi = (λ1i, λ2i)

′, with the initial values of yit for |γ| < 1 dealt with as in
the single factor case.

The unobserved common factors, f`t, are generated as

f`t = ρf`f`,t−1 +
√

1− ρ2
f`εf`t, εf`t ∼ iidN (0, 1), for ` = 1, 2; t = −S + 1, ...,−1, 0, 1, .., T,

with ρf` = 0.9, and without loss of generality f`,−S = 0. As in the single factor case, we scale the

resultant f`t values such that T−1
∑T

t=1 f`t
2 = 1 (the past values f`t for t = −S + 1, ...,−1, 0 are

not scaled) to ensure a particular average value of fit.
The factor loadings, λi = (λ1i, λ2i)

′ are generated independently of the error terms and all other
variables influencing yit as

λ`i = λ+ η`i, with λ = 1 and η`i ∼ iidN (0, 1).

The fixed effects, αi, are allowed to be correlated with the errors by generating them as

αi = T−1(ξi1 + ξi2 + ...+ ξiT ) + vi = λ1if̄1 + λ2if̄2 + ūi + vi,

where f̄` = T−1
∑T

t=1 f`t, ` = 1, 2, ūi = T−1
∑T

t=1 uit, and vi ∼ iidN (0, 1).
As mentioned earlier, since the average fit of the panel AR(1) model is solely determined by γ

(a result which holds irrespective of the number of factors) we set σ2
u = 1.

8As starting values, in the case of the ML estimation we use θini = (ϕ′ini, ωini,q
′
ini)
′ with ϕini =

(bini,π
′
ini, γini, βini)

′
, where bini and πini are obtained as the OLS estimates of (19), βini ∼ U [0, 1], and the remain-

ing parameters are generated as in the AR(1) case using five sets of starting values. For the one-step ALS and NT
GMM estimators we use θini,ALS= (γini,βini,ψ

′
ini)
′ and θini,NT= (γini,βini, r

′
ini)
′ respectively, where βini ∼ U [0, 1],

and the remaining parameters are generated as in the AR(1) case using five sets of starting values. For the CUE, for
both ALS and NT we use the parameter estimates obtained from the one-step GMM.
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4.3.1 Results for the AR(1) case

Simulation results for the AR(1) model are provided in Tables 9 and 10. Since the single factor
results showed that the GMM estimators do not work well, we consider here the transformed ML
estimator only. From the tables we find that the behaviour of the proposed estimator for the two
factor case is similar to that of the single factor case. In particular, the bias of the transformed ML
estimator is very small and RMSE decreases as N increases. In terms of inference, sizes are close
to the nominal level and power is relatively high except for some cases with γ = 0.8.

4.4 ARX(1) model with two factors

The dependent variable, yit, for the ARX(1) model is generated as

yit = αi + γyi,t−1 + βxit + ξit, for i = 1, 2, ..., N ; t = −S + 1,−S + 2, .., 0, 1, ..., T ),

ξit = λ′ift + uit, uit ∼ iidN (0, σ2).

The regressors, xit, are generated as

xit = µi + ϑ′ift + x̆it, , x̆it = ρxx̆i,t−1 +
√

1− ρ2
xεit, (37)

with x̆i,−S = 0 for t = −S+1, ..., 0, 1, ..., T , where ϑi = (ϑ1i, ϑ2i)
′, µi ∼ iidN (0, 1), εit ∼ iidN (0, 1),

and f`t, ` = 1, 2, are generated as in the AR(1) case, and ρx = 0.8. The factor loadings ϑi =
(ϑ1i, ϑ2i)

′ and λi = (λ1i, λ2i)
′ are generated independently as

ϑ`i ∼ iidN (0.5, σ2
`ϑ), λ`i ∼ iidN (0.5, σ2

`λ), ` = 1, 2, (38)

and to ensure that the fixed effects, αi, are correlated with the regressors, as well as with the errors,
as in the single factor case we generate them as

αi = x̄i + λ1if̄1 + λ2if̄2 + ūi + vi,

where x̄i = T−1
∑T

t=1 xit, and the remaining parameters are set as in the two factor AR(1) model.
In setting the remaining parameters, using results in Section A.5 of the Appendix, for the two

factor case we have

R2
y =

β2V ar(x̆it) +
[(
N−1

∑N
i=1 c

2
1i

)(
T−1

∑T
t=1 f

2
1t

)
+
(
N−1

∑N
i=1 c

2
2i

)(
T−1

∑T
t=1 f

2
2t

)
+ σ2

]
γ2

β2V ar(x̆it) +
(
N−1

∑N
i=1 c

2
1i

)(
T−1

∑T
t=1 f

2
1t

)
+
(
N−1

∑N
i=1 c

2
2i

)(
T−1

∑T
t=1 f

2
2t

)
+ σ2

≥ γ2,

where c`i = βϑ`i + λ`i, ` = 1, 2. From (37) we have that V ar(x̆it) = 1 and we set β = 1. For
comparability with the AR(1) case γ = (0.4, 0.8) and σ2, σ2

`λ, and σ
2
`ϑ, ` = 1, 2, are determined

such that R2
y − γ2 = 0.1, as in the single factor case. Thus, recalling that T−1

∑T
t=1 f

2
`t = 1

R2
y − γ2 =

1− γ2

1 +N−1
∑N

i=1 c
2
1i +N−1

∑N
i=1 c

2
2i + σ2

= 0.1,

and for suffi ciently large N since λi and ϑi are generated independently (see (38)) we have

N−1∑N
i=1 c

2
`i →p β

2σ2
`ϑ + σ2

`λ +
1

4
(1 + β)2, for ` = 1, 2.

For β = 1 we then obtain

R2
y − γ2 =

1− γ2

3 + σ2
1ϑ + σ2

1λ + σ2
2ϑ + σ2

2λ + σ2
= 0.1.

Setting σ2
1ϑ = σ2

1λ = σ2
2ϑ = σ2

2λ = σ2 and using the above result yields

σ2 =
0.7− γ2

0.5
> 0.
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4.4.1 Results for the ARX(1) case

Simulation results for the ARX(1) model are provided in Tables 11 and 12. As in the AR(1) case
only the transformed ML estimator is considered. The results show that bias is very small and that
RMSE decreases as N and T increase. In addition, size is close to its nominal value and power is
high in all cases.

5 Conclusion

In this paper we proposed the transformed maximum likelihood estimator for short dynamic panel
data models with interactive fixed effects. This is a natural extension of Hsiao, Pesaran, and
Tahmiscioglu (2002) to incorporate a factor structure in the error, while retaining the advantages
of the transformed likelihood approach. Monte Carlo simulations were carried out to investigate
the finite sample behaviour of the proposed estimator and to compare its performance with several
GMM estimators available in the literature. The simulation results showed that the ML estimator
performs well in finite samples and outperforms the GMM estimators in almost all cases considered.
In our analysis we assumed that the number of factors is known. Estimating the number of factors
in the current setting where T is short and N tends to infinity is a topic for future research.
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Table 1: Bias(×100) and RMSE(×100) for the AR(1) model with a single factor (T = 6)
T = 6, γ = 0.4, ft ∼AR(1)

N = 150 N = 300 N = 500
Estimator Bias RMSE Bias RMSE Bias RMSE

(×100) (×100) (×100) (×100) (×100) (×100)
ML 0.34 6.26 0.01 4.27 -0.16 3.31

ALS(1step) -17.20 33.97 -16.65 30.94 -17.82 29.22
ALS(2step) -15.94 32.21 -16.14 29.60 -16.62 27.89
ALS(CUE) -16.51 33.99 -14.99 29.36 -17.08 28.87
NT(1step) -58.44 60.78 -60.38 61.31 -61.05 61.62
NT(2step) -57.94 60.32 -60.58 61.38 -61.31 61.76
NT(CUE) -64.14 66.30 -65.22 65.72 -65.35 65.64

T = 6, γ = 0.8, ft ∼AR(1)
N = 150 N = 300 N = 500

Estimator Bias RMSE Bias RMSE Bias RMSE
(×100) (×100) (×100) (×100) (×100) (×100)

ML -0.14 7.35 0.04 5.63 0.15 4.71
ALS(1step) -34.26 48.24 -28.17 39.85 -27.57 37.15
ALS(2step) -35.26 49.17 -29.50 40.56 -28.70 37.97
ALS(CUE) -33.98 50.34 -27.33 40.68 -26.74 37.55
NT(1step) -59.14 85.47 -65.45 89.77 -71.95 93.70
NT(2step) -56.65 82.48 -60.66 84.75 -66.43 87.70
NT(CUE) -57.22 83.70 -58.49 81.90 -61.448 83.58

T = 6, γ = 0.4, ft ∼ trend
N = 150 N = 300 N = 500

Estimator Bias RMSE Bias RMSE Bias RMSE
(×100) (×100) (×100) (×100) (×100) (×100)

ML 0.23 8.12 -0.02 5.45 0.05 4.16
ALS(1step) -19.00 33.04 -19.87 27.96 -19.84 24.86
ALS(2step) -18.62 32.37 -19.63 27.68 -19.11 23.95
ALS(CUE) -18.83 34.47 -19.58 28.67 -18.95 24.38
NT(1step) -12.74 54.24 -20.47 58.26 -28.74 60.59
NT(2step) -13.36 55.40 -21.22 59.06 -29.30 61.14
NT(CUE) -18.64 62.90 -24.75 62.83 -31.45 63.35

T = 6, γ = 0.8, ft ∼ trend
N = 150 N = 300 N = 500

Estimator Bias RMSE Bias RMSE Bias RMSE
(×100) (×100) (×100) (×100) (×100) (×100)

ML -3.21 13.36 -1.68 10.36 -0.43 8.34
ALS(1step) -34.76 51.98 -34.05 52.22 -35.43 53.05
ALS(2step) -37.44 54.36 -36.70 55.01 -36.99 54.37
ALS(CUE) -35.42 56.23 -34.47 55.11 -35.13 54.39
NT(1step) -49.95 63.27 -61.37 73.58 -71.26 81.07
NT(2step) -50.83 64.44 -61.79 74.83 -72.50 82.81
NT(CUE) -60.29 80.38 -72.93 89.58 -83.87 96.77

Notes: yit is generated as yit = αi+γyi,t−1+ξit, ξit = λift+uit, uit ∼ iidN (0, σ2), i = 1, 2, ..., N ; t = −49, 48, ...0, 1, ..., T, with

yi,−50 = 0 and σ2 = 1. The factor is generated as: ft = ρfft−1 +
√

1− ρ2f εft, εft ∼ iidN (0, 1), for t = −49, 48, ...0, 1, ..., T,

with f−50 = 0, and ρf = 0.9, in the case where ft ∼AR(1); ft = 0 for all t = −49, 48, ...0, and ft = t for 1, 2, ..., T, in the case

where ft ∼ trend. Under both specifications of ft, the resultant ft values are scaled such that T−1
∑T
t=1 ft

2 = 1. The values of
ft for t = −49, 48, ...0 are not scaled. The factor loadings, λi, are generated as λi = λ+ηi with λ = 1 and ηi ∼ iidN(0, 1). The
fixed effects, αi, are generated as αi = T−1(ξi1+ξi2+...+ξiT )+vi = λif̄+ūi+vi, where f̄ = T−1

∑T
t=1 ft, ūi = T−1

∑T
t=1 uit,

and vi ∼ iidN (0, 1). Each ft is generated once and the same f ′ts are used throughout the replications. The first 50 observations
are discarded. ML is the proposed transformed maximum likelihood estimator. ALS(j) and NT(j) with j = 1step, 2step, CUE
are the one step, two step and continuous updating GMM estimators of Ahn et al. (2013), and Nauges and Thomas (2003),
respectively. All experiments are based on 1,000 replications.
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Table 2: Bias(×100) and RMSE(×100) (T = 10) for the AR(1) model with a single factor

T = 10, γ = 0.4, ft ∼AR(1)
N = 150 N = 300 N = 500

Estimator Bias RMSE Bias RMSE Bias RMSE
(×100) (×100) (×100) (×100) (×100) (×100)

ML 0.30 4.47 0.01 3.11 -0.09 2.28
ALS(1step) 15.18 23.26 10.06 18.99 6.69 15.39
ALS(2step) 12.45 20.40 7.03 15.88 3.58 11.42
ALS(CUE) 11.66 19.92 3.68 13.94 0.91 9.66
NT(1step) -35.40 41.02 -43.60 44.20 -47.11 47.48
NT(2step) -41.82 47.14 -51.89 52.29 -55.49 55.69
NT(CUE) -56.39 61.07 -61.56 61.62 -61.87 61.90

T = 10, γ = 0.8, ft ∼AR(1)
N = 150 N = 300 N = 500

Estimator Bias RMSE Bias RMSE Bias RMSE
(×100) (×100) (×100) (×100) (×100) (×100)

ML 0.30 6.01 0.12 4.59 0.06 3.63
ALS(1step) -5.35 9.68 -5.01 9.08 -4.51 9.84
ALS(2step) -8.12 11.72 -7.58 11.15 -6.71 11.49
ALS(CUE) -3.92 10.87 -3.49 9.64 -3.04 10.27
NT(1step) 2.32 31.97 0.98 36.27 -0.05 40.53
NT(2step) -5.33 34.26 -5.70 37.08 -5.72 40.21
NT(CUE) -7.64 37.24 -9.28 39.41 -10.04 39.70

T = 10, γ = 0.4, ft ∼ trend
N = 150 N = 300 N = 500

Estimator Bias RMSE Bias RMSE Bias RMSE
(×100) (×100) (×100) (×100) (×100) (×100)

ML 0.21 4.18 0.21 4.18 -0.09 2.28
ALS(1step) -9.06 12.94 -9.06 12.94 6.69 15.39
ALS(2step) -9.59 13.61 -9.59 13.61 3.58 11.42
ALS(CUE) -11.77 15.28 -11.77 15.28 0.91 9.66
NT(1step) -24.10 52.37 -24.10 52.37 -47.11 47.48
NT(2step) -27.60 55.35 -27.60 55.35 -55.49 55.69
NT(CUE) -24.64 61.13 -24.64 61.13 -61.87 61.90

T = 6, γ = 0.8, ft ∼ trend
N = 150 N = 300 N = 500

Estimator Bias RMSE Bias RMSE Bias RMSE
(×100) (×100) (×100) (×100) (×100) (×100)

ML -0.10 6.92 0.15 5.39 -0.06 4.24
ALS(1step) -10.74 18.61 -11.93 21.10 -13.84 23.54
ALS(2step) -11.89 16.89 -12.85 19.63 -17.46 24.11
ALS(CUE) -10.15 20.96 -12.66 24.69 -16.94 28.01
NT(1step) -46.57 60.17 -60.55 72.32 -75.19 83.16
NT(2step) -49.44 63.01 -63.07 75.26 -78.42 87.33
NT(CUE) -56.11 77.72 -77.00 93.18 -95.74 105.41

See notes to Table 1.

19



Table 3: Size(%) and power(%) for the AR(1) model with a single factor (T = 6)
T = 6, γ = 0.4, ft ∼AR(1)

N = 150 N = 300 N = 500
Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)

Estimators \ γ 0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50
ML 38.1 14.5 5.4 12.1 40.0 64.2 23.2 4.7 20.8 65.5 83.8 35.1 4.8 28.6 85.6

ALS(1step) 6.1 4.8 3.7 3.8 4.3 8.5 5.9 4.8 4.2 4.5 13.0 7.0 4.1 3.1 3.2
ALS(2step) 15.9 13.7 11.6 11.1 10.9 26.0 18.8 14.0 11.9 11.6 33.6 23.2 15.9 12.6 11.9
ALS(CUE) 13.4 11.2 10.1 9.0 8.6 17.0 11.0 8.3 6.6 6.1 25.0 17.1 11.4 8.1 7.7
NT(1step) 92.3 89.4 86.0 82.1 77.0 99.9 99.8 99.1 97.8 96.0 100.0 100.0 100.0 99.9 99.6
NT(2step) 95.6 94.0 91.7 89.1 83.6 100.0 99.7 99.3 98.9 98.5 100.0 100.0 100.0 100.0 99.8
NT(CUE) 99.0 99.0 98.8 97.8 95.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

T = 6, γ = 0.8, ft ∼AR(1)
N = 150 N = 300 N = 500

Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)
Estimators \ γ 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90

ML 30.9 15.6 5.8 2.3 5.6 42.2 20.7 6.4 1.7 12.0 55.4 25.8 4.8 2.6 47.3
ALS(1step) 8.1 6.4 5.3 4.4 3.7 8.8 7.1 5.6 4.6 3.5 8.8 7.7 6.2 4.6 3.6
ALS(2step) 19.1 16.1 13.9 11.8 10.0 18.6 15.7 12.7 10.9 8.3 18.4 15.8 12.8 10.5 8.7
ALS(CUE) 15.1 12.8 10.9 9.4 7.8 15.9 13.6 11.8 9.7 7.8 15.6 13.8 11.5 10.0 8.0
NT(1step) 56.1 55.6 55.2 54.5 54.0 63.4 63.3 62.9 62.7 62.7 69.2 69.0 68.9 68.9 69.7
NT(2step) 59.1 58.6 58.5 58.1 57.6 64.3 63.9 63.9 63.8 64.2 69.4 69.3 69.3 69.3 70.5
NT(CUE) 54.1 53.8 53.5 53.3 53.4 57.8 57.7 57.7 57.5 57.7 57.6 57.6 57.6 57.7 59.1

T = 6, γ = 0.4, ft ∼ trend
N = 150 N = 300 N = 500

Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)
Estimators \ γ 0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50

ML 28.7 14.4 6.0 9.6 23.9 45.4 18.9 5.0 13.7 43.6 66.3 24.0 5.8 21.0 67.6
ALS(1step) 6.4 5.4 4.1 3.3 2.6 9.4 6.5 3.8 2.0 1.2 18.5 13.2 8.0 4.5 2.2
ALS(2step) 14.1 10.8 9.9 8.2 6.8 19.7 15.2 10.5 7.6 5.3 27.1 19.3 13.0 8.3 5.0
ALS(CUE) 9.8 8.2 7.3 5.6 4.1 15.0 10.6 7.2 4.7 3.1 22.0 15.2 10.0 5.9 3.1
NT(1step) 47.0 45.5 43.1 40.6 38.2 67.2 67.5 68.7 71.8 74.0 78.3 84.1 90.2 93.7 95.7
NT(2step) 48.8 47.7 47.5 47.4 46.9 67.7 69.3 71.5 75.5 78.8 79.5 85.8 91.0 94.5 96.5
NT(CUE) 56.6 55.7 56.3 56.7 58.6 69.6 71.4 74.5 78.7 81.8 79.3 85.5 91.5 94.8 96.6

T = 6, γ = 0.8, ft ∼ trend
N = 150 N = 300 N = 500

Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)
Estimators \ γ 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90

ML 22.5 16.0 10.3 5.3 2.3 21.9 15.1 7.9 3.1 1.3 25.2 13.4 5.1 1.7 1.4
ALS(1step) 4.1 3.2 2.8 1.8 1.1 6.0 4.5 3.0 2.3 1.8 7.3 5.0 3.7 2.8 2.0
ALS(2step) 13.5 11.5 8.1 6.8 5.0 15.5 13.3 11.5 9.7 7.2 20.4 16.5 14.2 10.7 8.3
ALS(CUE) 10.0 7.7 5.9 4.6 3.9 13.3 11.3 9.3 7.6 6.1 15.1 12.2 9.5 7.4 6.6
NT(1step) 32.2 31.7 30.8 30.1 28.2 46.6 45.8 44.6 43.7 42.9 60.2 59.6 59.1 57.8 56.9
NT(2step) 31.8 31.0 30.8 30.4 29.4 46.4 45.6 44.9 44.0 42.9 59.5 59.0 58.5 57.8 56.6
NT(CUE) 41.4 41.0 41.0 40.4 40.0 52.8 52.7 52.4 52.0 51.6 64.6 64.4 64.3 64.0 63.6

See notes to Table 1.
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Table 4: Size(%) and power(%) for the AR(1) model with a single factor (T = 10)
T = 10, γ = 0.4, ft ∼AR(1)

N = 150 N = 300 N = 500
Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)

Estimators \ γ 0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50
ML 62.5 20.2 6.3 21.6 66.9 89.2 37.9 5.7 38.0 91.1 99.1 58.4 3.2 54.8 99.7

ALS(1step) 13.6 16.3 20.0 22.4 25.3 12.1 15.3 20.9 25.8 29.8 11.6 14.2 19.0 23.7 29.3
ALS(2step) 55.8 60.4 66.9 70.6 75.5 51.3 47.2 50.7 58.4 68.2 58.5 39.9 34.9 45.2 63.9
ALS(CUE) 24.9 25.9 29.7 31.7 33.0 36.2 29.2 24.0 25.0 30.0 48.2 30.1 18.7 20.7 36.5
NT(1step) 94.3 91.0 86.8 78.4 68.3 99.9 99.7 98.8 97.7 93.4 100.0 100.0 100.0 99.9 99.8
NT(2step) 99.1 98.9 98.3 96.7 94.6 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0
NT(CUE) 98.4 98.4 98.3 98.4 98.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

T = 10, γ = 0.8, ft ∼AR(1)
N = 150 N = 300 N = 500

Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)
Estimators \ γ 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90

ML 37.0 18.1 4.7 3.9 15.8 53.8 24.9 4.8 5.0 54.5 72.1 33.8 5.0 13.4 84.5
ALS(1step) 25.6 16.5 4.6 1.1 4.1 26.2 16.6 7.3 2.5 4.9 29.1 17.0 7.5 4.6 9.0
ALS(2step) 79.5 74.2 61.3 45.0 35.5 77.2 70.9 59.1 43.8 35.8 72.7 66.7 58.3 45.1 37.0
ALS(CUE) 29.0 23.3 18.0 15.0 17.6 37.7 28.8 21.9 15.7 20.7 38.1 30.3 23.9 16.8 21.3
NT(1step) 10.3 9.9 8.6 7.8 7.4 11.8 11.4 11.3 11.0 10.8 13.2 13.1 13.1 13.1 13.9
NT(2step) 21.1 18.9 17.2 18.1 21.1 18.0 16.6 15.6 15.2 19.5 18.2 17.4 16.1 16.4 22.9
NT(CUE) 25.8 23.2 21.3 21.9 27.4 23.7 21.7 20.9 21.3 26.9 19.8 18.1 17.6 19.4 25.0

T = 10, γ = 0.4, ft ∼ trend
N = 150 N = 300 N = 500

Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)
Estimators \ γ 0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50

ML 66.7 23.1 5.5 23.6 71.2 92.6 40.6 4.8 42.6 93.9 99.1 63.3 4.7 58.7 99.9
ALS(1step) 23.3 13.7 6.7 2.6 2.5 41.3 32.0 16.6 5.7 0.9 48.2 44.4 30.9 11.8 1.7
ALS(2step) 49.2 35.4 20.2 11.6 10.2 69.4 59.0 36.5 15.7 6.6 79.6 75.3 53.1 21.0 4.9
ALS(CUE) 30.2 22.8 14.9 9.0 6.5 45.3 38.9 26.6 11.9 4.7 54.1 51.5 38.5 16.4 4.7
NT(1step) 89.3 90.4 90.4 89.2 86.1 99.9 99.8 99.8 99.6 99.5 100.0 100.0 100.0 100.0 100.0
NT(2step) 97.6 97.8 97.6 97.1 96.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
NT(CUE) 80.2 80.6 80.6 80.7 80.7 97.3 97.3 97.3 97.3 97.3 99.8 99.8 99.8 99.8 99.8

T = 10, γ = 0.8, ft ∼ trend
N = 150 N = 300 N = 500

Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)
Estimators \ γ 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90

ML 31.0 15.5 4.5 2.1 11.3 44.0 19.9 5.4 6.6 39.4 64.1 26.5 4.8 14.5 61.4
ALS(1step) 6.5 2.8 1.0 0.3 0.8 10.5 4.5 1.8 1.2 2.0 9.4 5.2 2.3 2.0 3.3
ALS(2step) 41.9 35.4 25.6 18.1 13.8 39.0 31.2 23.1 16.2 15.0 42.6 38.8 31.9 23.0 18.0
ALS(CUE) 19.4 16.1 14.2 13.2 11.9 25.6 22.2 19.3 16.6 16.8 32.8 29.7 26.7 24.6 23.2
NT(1step) 47.0 46.0 44.8 43.3 41.8 67.8 67.3 66.5 65.7 64.2 82.4 81.9 81.2 80.6 80.2
NT(2step) 46.7 45.3 44.6 43.5 43.0 63.6 62.8 62.3 61.5 60.4 79.3 79.1 78.6 77.9 77.4
NT(CUE) 47.9 47.4 47.3 47.0 46.9 66.8 66.7 66.5 66.2 66.2 82.2 82.1 82.1 82.1 82.1

See notes to Table 1.
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Table 5: Bias(×100) and RMSE(×100) for the ARX(1) model with a single factor (T = 6)
T = 6, γ = 0.4, β = 1.0, ft ∼AR(1)

N = 150 N = 300 N = 500
γ β γ β γ β

Estimators Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)

ML -0.19 4.29 -0.05 7.41 0.03 3.01 0.05 5.26 -0.05 2.30 0.01 4.08
ALS(1step) 0.81 16.60 -3.11 17.23 -0.87 11.56 -1.59 11.85 -1.71 8.16 -0.86 8.51
ALS(2step) 2.10 17.47 -5.20 19.40 1.69 11.82 -4.80 13.42 1.76 8.32 -4.47 9.97
ALS(CUE) 2.46 22.58 -7.08 23.84 -0.70 15.87 -4.44 15.66 -2.51 11.59 -2.93 11.07
NT(1step) -3.70 32.16 4.70 14.58 8.52 24.51 7.37 12.02 15.80 20.97 8.52 10.84
NT(2step) -6.23 35.96 4.09 16.28 6.58 27.22 6.96 12.90 14.76 21.98 8.07 11.01
NT(CUE) 17.04 41.42 0.60 22.77 26.21 35.06 4.72 13.98 29.58 31.63 5.70 10.90

T = 6, γ = 0.8, β = 1.0, ft ∼AR(1)
N = 150 N = 300 N = 500

γ β γ β γ β
Estimators Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)
ML -0.06 2.38 -0.07 4.33 -0.10 1.74 0.09 3.14 -0.01 1.32 0.01 2.42

ALS(1step) -1.35 5.39 3.03 8.29 -2.11 4.17 4.02 6.85 -2.32 3.16 4.29 5.56
ALS(2step) -0.33 5.20 1.52 7.97 -0.65 3.55 2.02 5.78 -0.67 2.28 2.23 4.26
ALS(CUE) -0.44 5.90 0.81 8.44 -1.15 3.93 1.87 5.76 -1.21 2.66 1.99 4.32
NT(1step) -1.37 14.76 0.51 6.36 5.89 12.26 0.83 4.57 9.39 11.85 0.79 3.65
NT(2step) -2.45 17.17 0.38 7.20 5.32 13.55 0.69 5.06 9.06 12.37 0.60 3.97
NT(CUE) 8.50 18.47 -0.09 8.50 14.21 16.97 0.14 5.51 16.50 17.16 0.01 4.22

T = 6, γ = 0.4, β = 1.0, ft ∼ trend
N = 150 N = 300 N = 500

γ β γ β γ β
Estimators Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)
ML -0.07 5.82 -0.28 8.96 0.07 3.98 -0.08 6.27 -0.07 2.95 0.01 4.77

ALS(1step) 9.07 36.37 -13.00 40.27 5.61 36.84 -8.65 40.08 3.71 37.09 -6.38 39.69
ALS(2step) 10.86 36.14 -16.42 41.33 10.57 34.73 -15.78 39.41 10.68 34.05 -15.65 38.38
ALS(CUE) 1.58 43.38 -7.24 48.41 -0.94 39.84 -2.94 42.45 -2.13 39.03 -1.24 40.83
NT(1step) 54.52 55.27 -4.96 16.36 59.27 59.32 -5.65 12.47 59.81 59.82 -6.11 10.67
NT(2step) 55.16 56.00 -6.97 20.08 59.47 59.52 -8.04 15.34 59.87 59.87 -8.68 13.38
NT(CUE) 55.52 57.40 -7.78 27.23 59.31 59.43 -7.13 18.07 59.82 59.83 -6.68 14.17

T = 6, γ = 0.8, β = 1.0, ft ∼ trend
N = 150 N = 300 N = 500

γ β γ β γ β
Estimators Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)
ML -0.09 3.10 -0.14 4.88 -0.11 2.18 0.04 3.44 -0.01 1.65 0.01 2.64

ALS(1step) 4.65 10.21 -4.82 14.47 4.23 9.69 -3.85 13.19 3.66 9.12 -2.99 12.24
ALS(2step) 6.54 10.13 -6.98 13.73 6.95 9.82 -7.09 12.28 7.41 9.79 -7.20 11.61
ALS(CUE) 4.71 10.38 -5.36 14.56 4.38 9.43 -4.24 11.94 4.06 8.87 -3.51 10.83
NT(1step) 18.93 19.50 1.40 6.85 19.86 19.87 1.49 4.93 19.90 19.90 1.44 3.99
NT(2step) 17.83 18.92 1.24 7.84 19.77 19.80 1.58 5.42 19.89 19.89 1.52 4.26
NT(CUE) 17.64 19.22 1.67 9.08 19.66 19.71 2.08 6.04 19.84 19.85 2.12 4.70

Notes: yit is generated as yit = αi + γyi,t−1 + βxit + ξit, ξit = λift + uit, uit ∼ iidN (0, σ2), i = 1, 2, ..., N ; t =

−49, 48, ...0, 1, ..., T, with yi,−50 = 0 and xit = µi + ϑift + x̆it, , x̆it = ρxx̆i,t−1 +
√

1− ρ2xεit, with x̆i,−50 = 0, for t =
−49, 48, ...0, 1, ..., T , where ρx = 0.8, µi ∼ iidN (0, 1), and εit ∼ iidN (0, 1). The factor ft is generated as in the AR(1) case (see
notes to Table 1). The factor loadings, ϑi and λi, are generated as ϑi ∼ iidN (0.5, σ2ϑ) and λi ∼ iidN (0.5, σ2λ), respectively.
The fixed effects, αi, are generated as αi = T−1

∑T
t=1 xit + λif̄ + ūi + vi, where f̄ = T−1

∑T
t=1 ft, ūi = T−1

∑T
t=1 uit, and

vi ∼ iidN (0, 1). The remaining parameters are set at β = 1, σ2λ = σ2ϑ = σ2, with σ2 = (0.8−γ2)/0.3. Each ft is generated once
and the same f ′ts are used throughout the replications. The first 50 observations are discarded. ML is the proposed maximum
likelihood estimator. ALS(j) and NT(j) with j = 1step, 2step, CUE are the one step, two step and continuous updating GMM
estimators of Ahn et al. (2013), and Nauges and Thomas (2003), respectively. All experiments are based on 1,000 replications.
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Table 6: Bias(×100) and RMSE(×100) for the ARX(1) model with a single factor (T = 10)
T = 10, γ = 0.4, β = 1.0, ft ∼AR(1)

N = 150 N = 300 N = 500
γ β γ β γ β

Estimators Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)

ML -0.03 2.58 0.12 5.53 -0.10 1.89 0.07 3.99 -0.04 1.42 0.07 3.06
ALS(1step) 0.62 6.01 -6.28 11.10 0.67 4.60 -6.03 9.11 0.44 3.36 -5.74 7.82
ALS(2step) 0.90 7.87 -10.61 16.20 1.55 5.34 -10.43 13.14 2.04 4.16 -10.81 12.34
ALS(CUE) 2.11 12.64 -9.92 21.91 0.00 8.24 -6.73 13.39 -1.29 5.51 -5.27 9.33
NT(1step) 21.94 26.73 7.16 11.51 30.58 31.45 6.63 9.17 33.75 34.16 6.39 8.10
NT(2step) 20.08 30.04 6.69 14.92 31.21 32.96 6.50 10.48 34.83 35.68 6.21 8.62
NT(CUE) 20.45 39.77 3.98 22.90 27.29 34.94 6.80 13.07 28.77 32.16 7.23 10.48

T = 10, γ = 0.8, β = 1.0, ft ∼AR(1)
N = 150 N = 300 N = 500

γ β γ β γ β
Estimators Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)
ML -0.04 1.24 0.08 3.03 -0.02 0.89 0.02 2.17 -0.02 0.67 0.03 1.67

ALS(1step) -0.10 1.75 1.32 4.59 -0.06 1.24 1.32 3.37 -0.09 1.00 1.32 2.82
ALS(2step) 0.21 2.44 -0.54 5.70 0.63 1.59 -0.68 3.54 0.76 1.31 -0.76 2.71
ALS(CUE) 0.58 3.78 -1.37 7.84 0.69 1.94 -0.66 4.08 0.59 1.36 -0.49 2.83
NT(1step) 11.26 15.39 3.56 5.66 17.35 17.89 3.37 4.63 19.17 19.26 3.36 4.12
NT(2step) 4.78 17.16 2.96 7.32 14.38 16.35 3.01 5.04 17.34 17.84 2.94 4.02
NT(CUE) 4.07 20.70 1.50 10.35 12.56 17.06 2.78 5.55 15.27 16.99 2.86 4.30

T = 10, γ = 0.4, β = 1.0, ft ∼ trend
N = 150 N = 300 N = 500

γ β γ β γ β
Estimators Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)
ML 0.09 3.21 -0.10 6.01 -0.12 2.21 0.00 4.62 0.01 1.76 0.06 3.35

ALS(1step) 15.28 29.71 -22.34 36.05 15.80 31.79 -22.74 37.69 16.93 33.49 -23.36 39.17
ALS(2step) 14.48 30.29 -23.94 39.68 16.55 32.08 -26.34 41.32 19.12 33.90 -28.93 43.57
ALS(CUE) 6.18 31.25 -13.34 41.53 2.84 32.14 -10.09 40.13 4.31 33.29 -11.11 40.90
NT(1step) 53.85 54.45 -0.06 11.72 59.56 59.58 -0.89 8.76 59.90 59.90 -1.21 6.59
NT(2step) 53.07 54.25 1.05 18.25 59.49 59.51 -0.16 10.97 59.90 59.90 -0.40 7.74
NT(CUE) 43.81 52.07 2.39 26.83 53.89 55.78 7.22 15.00 56.43 57.15 8.31 11.77

T = 10, γ = 0.8, β = 1.0, ft ∼ trend
N = 150 N = 300 N = 500

γ β γ β γ β
Estimators Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)
ML -0.03 1.69 0.02 3.25 -0.03 1.18 -0.02 2.45 0.01 0.89 0.04 1.77

ALS(1step) 3.77 7.11 -3.49 11.63 2.26 5.44 -1.04 8.92 1.34 3.97 0.69 6.82
ALS(2step) 4.25 7.03 -5.68 11.12 4.00 5.72 -5.10 8.33 3.72 4.81 -4.35 6.56
ALS(CUE) 3.13 7.89 -4.75 12.76 2.25 5.35 -3.04 7.81 1.73 3.78 -1.81 5.36
NT(1step) 19.51 19.64 3.53 5.91 19.90 19.90 3.89 5.18 19.90 19.90 4.06 4.80
NT(2step) 16.30 18.01 2.61 7.80 19.81 19.82 2.67 5.06 19.90 19.90 2.78 4.08
NT(CUE) 11.21 19.33 2.28 10.71 17.92 18.66 3.48 6.24 18.96 19.17 3.71 5.03

See notes to Table 5.
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Table 7a: Size(%) and power(%) for the ARX(1) model with a single factor (T = 6, ft ∼AR(1))
T = 6, γ = 0.4, β = 1.0, ft ∼AR(1)

N = 150 N = 300 N = 500
γ

Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)
Estimators \ γ 0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50

ML 68.2 25.0 5.8 21.6 65.6 91.9 38.9 7.1 42.5 92.2 99.0 60.6 5.9 61.4 99.0
ALS1(1step) 37.2 22.1 15.2 16.7 26.3 48.7 27.1 15.2 15.8 29.8 62.4 32.6 15.6 15.0 37.2
ALS1(2step) 45.3 32.8 25.6 28.8 38.9 44.1 28.2 19.7 27.9 48.6 47.9 25.7 18.0 35.1 63.2
ALS1(CUE) 56.3 48.2 41.7 40.0 46.0 62.0 47.1 37.7 36.1 39.5 70.1 50.7 35.1 30.5 39.8
NT1(1step) 29.5 31.6 35.2 38.1 41.4 19.8 26.8 35.6 45.5 57.5 16.7 30.4 46.1 61.3 73.0
NT1(2step) 41.6 43.4 45.8 49.4 54.9 33.8 40.0 48.7 53.6 61.8 25.4 38.2 51.3 62.3 72.5
NT1(CUE) 54.7 59.8 65.0 71.6 75.7 57.1 66.6 74.8 82.5 88.7 61.9 77.6 88.0 93.2 96.9

β
Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)

Estimators \ β 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10
ML 26.3 10.6 3.9 9.7 23.3 47.6 14.7 4.2 15.9 46.3 68.0 21.2 4.7 22.0 68.4

ALS1(1step) 21.7 15.4 11.5 12.7 17.5 27.3 14.4 8.5 12.1 22.7 34.8 14.3 7.5 12.5 30.2
ALS1(2step) 34.0 24.5 20.4 21.8 27.3 44.1 26.9 15.8 14.1 21.9 60.5 32.8 16.7 11.8 23.0
ALS1(CUE) 41.1 32.4 29.5 30.2 34.4 43.3 29.4 20.7 21.5 29.9 50.7 28.8 17.1 16.5 31.0
NT1(1step) 13.3 12.8 14.4 21.0 34.2 10.1 11.0 22.1 39.7 61.2 6.6 10.4 32.1 60.1 84.6
NT1(2step) 23.7 21.5 24.2 32.1 44.5 17.5 17.1 26.8 44.5 62.0 11.4 14.2 35.0 61.3 81.9
NT1(CUE) 32.9 30.4 34.1 39.4 46.6 24.3 21.5 27.1 38.5 53.4 20.8 17.4 30.6 47.4 70.1

T = 6, γ = 0.8, β = 1.0, ft ∼AR(1)
N = 150 N = 300 N = 500

γ
Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)

Estimators \ γ 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90
ML 99.8 56.1 5.1 56.8 97.2 100.0 86.2 6.1 81.6 100.0 100.0 97.3 6.4 95.7 100.0

ALS1(1step) 92.9 55.9 14.6 18.7 62.6 99.3 81.5 16.5 23.4 80.7 99.9 95.7 21.2 27.8 94.4
ALS1(2step) 91.2 55.8 19.8 36.2 77.4 98.8 71.7 13.9 43.6 94.0 100.0 83.8 11.4 62.8 99.8
ALS1(CUE) 90.9 59.8 24.7 37.0 74.9 98.6 76.4 19.1 39.4 90.4 99.9 88.4 16.6 52.3 98.5
NT1(1step) 9.2 6.6 5.0 4.0 6.3 2.7 1.6 1.6 7.1 16.7 0.3 0.3 6.2 17.3 30.9
NT1(2step) 14.3 11.8 10.4 10.9 15.1 5.4 4.3 4.5 15.6 27.2 0.9 0.7 11.5 24.1 36.2
NT1(CUE) 8.7 8.2 6.8 11.6 28.9 2.2 2.0 5.8 35.6 58.6 0.0 0.2 32.6 64.4 78.6

β
Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)

Estimators \ β 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10
ML 61.9 21.1 5.1 19.1 62.0 87.8 34.6 5.4 37.4 89.8 98.8 54.0 4.6 55.0 98.5

ALS1(1step) 24.0 11.2 12.5 31.8 58.1 28.1 9.4 19.2 54.8 84.9 37.0 5.3 21.4 75.1 97.9
ALS1(2step) 40.9 20.8 19.1 34.0 60.1 50.3 17.5 17.0 47.1 82.6 68.5 16.8 15.4 62.5 95.6
ALS1(CUE) 43.0 23.8 21.6 33.8 57.1 52.5 19.4 17.5 46.7 81.6 70.5 20.3 14.9 59.6 94.4
NT1(1step) 32.7 11.7 5.1 14.7 40.2 54.0 12.9 5.5 25.4 65.2 73.1 22.7 4.8 37.5 83.4
NT1(2step) 42.4 21.7 13.2 23.9 48.1 58.2 20.8 10.6 30.5 66.3 75.2 27.2 8.4 39.5 82.3
NT1(CUE) 44.7 26.7 18.0 25.0 45.0 59.6 24.9 12.4 27.6 58.9 76.7 31.6 9.2 32.2 76.3

See notes to Table 5.
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Table 7b: Size(%) and power(%) for the ARX(1) model with a single factor (T = 6, ft ∼ trend)
T = 6, γ = 0.4, β = 1.0, ft ∼ trend

N = 150 N = 300 N = 500
γ

Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)
Estimators \ γ 0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50

ML 47.1 18.9 6.3 13.5 43.2 71.6 28.1 5.4 26.5 73.2 91.7 41.5 4.4 37.0 92.1
ALS1(1step) 59.9 51.0 44.1 38.9 38.6 79.5 67.4 56.8 47.0 40.4 90.6 81.7 71.1 57.9 46.5
ALS1(2step) 68.4 60.2 53.6 48.9 47.9 72.9 62.5 52.2 44.7 43.7 79.9 67.9 54.2 45.4 42.8
ALS1(CUE) 87.3 82.3 76.5 70.7 64.0 95.3 90.3 83.3 73.6 62.4 98.5 97.2 92.1 83.6 69.6
NT1(1step) 78.8 85.2 88.6 91.6 94.0 99.2 99.8 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0
NT1(2step) 87.6 90.6 92.4 94.3 95.9 99.5 99.6 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
NT1(CUE) 90.8 92.5 93.3 94.5 95.0 98.8 99.1 99.3 99.5 99.6 100.0 100.0 100.0 100.0 100.0

β
Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)

Estimators \ β 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10
ML 21.7 9.3 6.9 8.9 20.3 38.5 13.0 5.9 13.6 35.9 53.5 18.5 4.6 19.5 56.7

ALS1(1step) 37.0 36.3 36.5 38.6 41.9 36.6 37.7 43.0 50.1 57.5 39.0 43.3 52.7 64.0 74.1
ALS1(2step) 44.0 43.0 45.0 46.8 51.4 39.5 38.8 41.3 47.0 53.6 40.3 38.1 41.8 49.2 57.2
ALS1(CUE) 51.8 55.0 59.0 64.8 70.2 46.7 54.4 63.5 72.4 81.2 51.7 62.1 73.3 85.2 92.4
NT1(1step) 22.1 14.9 10.2 9.3 10.4 37.0 21.8 11.6 7.9 10.3 52.3 31.6 15.3 9.7 11.3
NT1(2step) 37.1 30.1 23.4 20.6 22.6 50.4 35.5 24.4 16.5 15.5 64.2 44.6 28.5 17.6 15.6
NT1(CUE) 42.3 39.6 38.3 37.5 37.1 48.9 39.0 29.9 26.2 27.7 55.4 41.9 30.4 24.4 25.9

T = 6, γ = 0.8, β = 1.0, ft ∼ trend
N = 150 N = 300 N = 500

γ
Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)

Estimators \ γ 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90
ML 92.1 40.4 6.1 39.0 89.0 100.0 68.0 5.8 64.8 99.3 100.0 87.2 5.7 86.6 99.9

ALS1(1step) 82.9 66.3 49.1 52.1 69.8 94.9 79.8 48.9 52.1 78.5 98.2 88.8 48.0 54.1 87.1
ALS1(2step) 75.0 65.1 57.1 69.3 87.1 87.1 66.0 56.2 79.4 97.3 91.5 67.1 62.6 89.8 99.5
ALS1(CUE) 80.6 71.6 58.5 62.1 76.8 92.2 79.8 52.8 60.7 87.4 97.9 86.1 49.6 64.5 94.4
NT1(1step) 0.5 0.4 0.3 0.3 0.7 0.0 0.0 0.0 0.0 2.9 0.0 0.0 0.0 1.4 40.8
NT1(2step) 0.4 0.3 0.3 0.4 2.0 0.0 0.0 0.0 0.1 8.6 0.0 0.0 0.1 4.2 55.8
NT1(CUE) 1.1 1.0 0.6 0.7 2.5 0.0 0.0 0.0 0.1 8.5 0.0 0.0 0.0 4.1 53.7

β
Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)

Estimators \ β 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10
ML 57.9 18.8 5.7 17.3 54.8 82.1 33.7 5.2 31.1 84.0 97.1 47.1 5.2 48.9 96.5

ALS1(1step) 50.8 43.4 38.8 34.4 36.0 50.9 43.0 47.9 59.2 61.4 51.4 40.0 52.0 77.8 78.4
ALS1(2step) 66.1 53.6 43.0 37.0 34.5 75.6 58.2 48.7 46.1 46.8 85.4 63.9 53.4 57.7 57.8
ALS1(CUE) 60.3 48.9 43.6 42.4 46.1 63.1 50.1 45.0 51.4 58.7 68.7 46.6 47.7 69.1 73.1
NT1(1step) 26.3 9.6 5.0 17.8 41.8 44.9 11.0 5.5 27.6 66.8 63.5 16.2 7.5 43.4 86.5
NT1(2step) 37.0 18.4 15.1 26.7 49.5 47.9 15.5 10.1 34.7 70.0 65.0 19.8 11.0 47.4 86.5
NT1(CUE) 38.7 21.1 21.3 32.4 51.4 46.4 16.0 14.5 38.8 71.8 59.1 18.0 14.1 51.6 89.0

See notes to Table 5.
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Table 8a: Size(%) and power(%) for the ARX(1) model with a single factor (T = 10, ft ∼AR(1))

T = 10, γ = 0.4, β = 1.0, ft ∼AR(1)
N = 150 N = 300 N = 500

γ
Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)

Estimators \ γ 0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50
ML 97.1 47.3 5.2 48.5 96.4 100.0 79.0 6.0 74.0 99.9 100.0 93.5 4.5 93.8 100.0

ALS1(1step) 45.0 15.2 6.8 21.7 54.5 68.0 22.3 7.7 33.9 76.7 87.4 33.3 7.1 45.0 90.0
ALS1(2step) 70.0 50.6 45.2 59.9 77.6 75.4 38.5 30.5 61.7 89.9 83.4 37.1 28.2 76.9 97.9
ALS1(CUE) 72.1 64.7 60.6 66.4 73.8 79.9 63.5 48.8 51.2 72.7 92.0 72.6 39.7 41.1 78.8
NT1(1step) 36.5 53.8 64.6 75.7 82.1 79.5 91.9 96.6 98.8 99.5 98.2 99.6 99.9 100.0 100.0
NT1(2step) 67.0 72.6 77.0 81.4 85.8 81.8 91.4 96.0 97.2 98.6 96.3 98.3 99.5 99.9 100.0
NT1(CUE) 83.0 84.5 84.0 84.3 83.0 76.5 81.4 85.0 87.2 88.6 80.3 86.2 91.7 95.1 96.4

β
Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)

Estimators \ β 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10
ML 42.4 13.9 4.2 14.6 43.7 72.2 23.9 4.9 24.3 71.1 90.1 35.8 5.3 37.0 91.2

ALS1(1step) 48.2 29.9 13.7 5.2 7.2 73.1 44.3 17.7 7.5 10.2 86.4 59.1 23.4 7.5 16.2
ALS1(2step) 82.2 69.6 55.2 44.5 40.3 92.3 79.6 58.4 35.6 25.0 98.1 90.9 70.8 42.5 20.0
ALS1(CUE) 71.8 65.5 60.6 59.2 59.1 76.2 60.3 47.1 41.8 43.6 84.5 63.7 41.1 28.9 42.1
NT1(1step) 9.6 10.5 19.1 37.5 58.3 11.7 10.1 24.2 52.7 80.5 15.9 8.9 32.2 70.7 93.3
NT1(2step) 49.2 45.2 49.6 60.3 71.3 31.0 28.3 40.8 62.0 81.5 28.5 19.9 44.0 71.4 91.6
NT1(CUE) 63.9 63.7 63.6 67.8 72.6 43.9 43.1 52.3 64.1 76.6 34.5 32.8 53.3 72.7 89.2

T = 10, γ = 0.8, β = 1.0, ft ∼AR(1)
N = 150 N = 300 N = 500

γ
Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)

Estimators \ γ 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90
ML 100.0 98.9 4.5 96.7 100.0 100.0 100.0 4.6 100.0 100.0 100.0 100.0 5.0 100.0 100.0

ALS1(1step) 99.1 79.9 4.0 75.0 99.1 98.8 96.6 4.2 95.4 98.8 99.0 98.7 5.0 98.3 99.0
ALS1(2step) 100.0 87.4 40.0 89.3 99.8 100.0 96.4 23.4 99.5 100.0 100.0 99.6 24.8 100.0 100.0
ALS1(CUE) 94.6 77.8 51.0 83.6 95.6 100.0 91.3 33.5 97.9 100.0 100.0 99.0 24.8 99.8 100.0
NT1(1step) 2.8 1.9 7.5 36.8 53.0 0.0 1.6 63.0 81.3 90.1 0.0 67.8 93.5 98.8 99.7
NT1(2step) 23.2 45.7 53.7 59.2 64.5 2.4 40.8 61.7 75.1 83.9 0.2 67.0 82.1 92.3 96.9
NT1(CUE) 27.1 60.1 72.9 73.6 74.3 6.8 50.7 66.7 73.5 77.9 2.3 62.6 73.2 80.5 87.8

β
Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)

Estimators \ β 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10
ML 91.0 37.3 5.0 39.4 91.6 99.6 65.1 5.9 65.5 99.3 100.0 84.9 5.1 85.5 100.0

ALS1(1step) 49.9 15.2 6.1 32.0 72.7 79.0 21.8 7.2 51.6 94.2 93.5 34.5 8.4 72.2 98.8
ALS1(2step) 83.5 57.1 39.4 52.2 77.7 96.3 64.1 21.7 48.8 92.0 99.8 78.1 17.7 56.9 98.2
ALS1(CUE) 79.7 61.7 46.7 55.0 72.7 94.3 63.3 27.0 51.8 89.4 99.1 74.2 19.4 62.2 98.4
NT1(1step) 30.3 7.0 13.2 51.5 86.5 54.7 7.5 19.4 75.8 98.2 75.2 9.3 28.5 92.5 99.9
NT1(2step) 61.9 42.8 49.3 70.3 86.7 70.0 25.8 33.5 76.8 96.5 85.2 23.5 32.1 88.5 99.9
NT1(CUE) 70.7 59.5 57.7 66.6 78.2 69.5 34.4 38.5 72.6 94.7 82.3 27.8 36.0 86.2 99.7

See notes to Table 5.
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Table 8b: Size(%) and power(%) for the ARX(1) model with a single factor (T = 10, ft ∼ trend)
T = 10, γ = 0.4, β = 1.0, ft ∼ trend

N = 150 N = 300 N = 500
γ

Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)
Estimators \ γ 0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50

ML 85.3 33.3 4.4 34.2 88.4 99.5 62.1 4.3 58.0 99.8 100.0 80.7 4.9 83.2 100.0
ALS1(1step) 47.1 37.2 36.1 43.7 53.6 62.1 48.5 42.1 44.1 56.2 79.1 62.3 47.5 46.2 55.5
ALS1(2step) 74.6 68.3 64.1 67.1 72.9 75.2 62.1 56.4 61.0 71.9 83.8 65.1 53.1 59.1 77.5
ALS1(CUE) 84.2 77.5 73.7 70.6 68.7 93.7 90.9 82.5 71.2 54.6 93.5 92.9 89.8 77.6 53.0
NT1(1step) 96.4 98.6 99.4 99.6 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
NT1(2step) 96.3 97.6 98.4 99.0 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
NT1(CUE) 90.4 91.7 92.0 92.8 92.8 96.2 97.2 98.1 98.1 98.1 98.7 98.8 99.2 99.4 99.4

β
Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)

Estimators \ β 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10
ML 38.2 13.0 5.0 11.0 37.3 63.8 23.9 6.6 22.3 63.0 83.9 33.4 5.3 34.0 86.7

ALS1(1step) 53.2 45.1 37.9 33.5 32.4 57.7 45.9 39.9 36.4 39.8 58.2 48.3 42.1 41.1 47.3
ALS1(2step) 74.1 68.2 63.5 61.7 60.2 75.6 66.5 55.7 49.9 50.5 83.3 69.4 57.1 49.2 51.4
ALS1(CUE) 65.5 65.1 64.9 68.5 69.6 44.7 49.2 58.9 69.8 80.4 40.4 48.4 64.0 78.6 88.0
NT1(1step) 21.3 12.2 9.5 12.5 21.7 33.7 16.8 9.5 13.6 28.4 49.4 21.5 8.0 14.3 35.2
NT1(2step) 55.7 52.7 51.7 53.1 58.0 46.1 32.4 27.1 33.7 47.2 51.5 30.3 19.0 28.4 49.7
NT1(CUE) 63.1 62.0 65.0 66.4 70.0 36.9 38.7 48.6 61.5 70.6 23.2 27.4 46.2 67.8 85.1

T = 10, γ = 0.8, β = 1.0, ft ∼ trend
N = 150 N = 300 N = 500

γ
Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)

Estimators \ γ 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90
ML 100.0 86.7 5.6 83.8 100.0 100.0 99.6 5.6 98.1 100.0 100.0 100.0 5.5 100.0 100.0

ALS1(1step) 90.3 47.4 28.1 70.4 92.3 96.6 69.1 21.4 80.7 97.1 97.7 84.2 16.0 91.0 97.7
ALS1(2step) 93.5 68.7 63.5 89.9 99.3 97.1 56.4 63.7 99.3 100.0 99.3 52.2 75.0 99.9 100.0
ALS1(CUE) 90.0 72.5 70.7 82.6 92.8 97.9 75.9 51.8 88.4 99.8 99.5 84.7 43.4 96.9 100.0
NT1(1step) 0.1 0.1 0.1 3.8 49.6 0.0 0.0 0.2 54.7 99.3 0.0 0.0 23.8 99.7 100.0
NT1(2step) 1.5 7.3 59.3 78.6 84.6 0.0 0.0 61.5 99.1 99.9 0.0 0.4 95.0 100.0 100.0
NT1(CUE) 12.5 19.6 63.7 76.4 78.9 0.5 0.5 49.6 83.5 89.4 0.0 0.6 81.0 92.0 95.5

β
Power(H1) Size Power(H1) Power(H1) Size Power(H1) Power(H1) Size Power(H1)

Estimators \ β 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10
ML 86.6 33.8 5.8 34.2 87.5 98.5 58.3 6.6 56.6 98.9 100.0 79.7 5.0 82.1 100.0

ALS1(1step) 44.8 28.4 22.1 32.6 51.6 55.6 26.9 17.9 42.9 78.2 65.9 20.4 14.9 59.7 94.7
ALS1(2step) 85.8 70.9 53.9 53.3 64.4 96.9 79.8 44.0 34.2 66.0 99.9 91.3 42.5 25.8 77.4
ALS1(CUE) 78.0 68.0 60.6 61.3 67.3 89.8 64.7 38.7 46.3 77.4 97.2 71.7 27.0 50.3 90.0
NT1(1step) 28.1 6.6 12.7 44.0 82.4 44.5 7.8 22.8 75.5 98.3 62.0 6.1 34.8 93.4 99.9
NT1(2step) 61.8 46.7 46.8 63.8 82.8 67.4 27.7 30.7 71.0 94.9 81.0 22.8 28.3 84.5 99.6
NT1(CUE) 66.0 59.4 59.2 66.3 78.1 59.3 29.7 41.1 74.7 93.1 69.6 21.0 41.6 87.9 99.4

See notes to Table 5.

27



Table 9: Bias(×100) and RMSE(×100) of the transformed ML estimator for the AR(1) model
with two factors

T = 6, γ = 0.4 T = 10, γ = 0.4
Bias RMSE Bias RMSE

N (×100) (×100) (×100) (×100)
150 0.04 6.91 -0.27 5.95
300 0.05 4.81 -0.12 4.12
500 -0.10 3.53 -0.02 3.19

T = 6, γ = 0.8 T = 10, γ = 0.8
Bias RMSE Bias RMSE

N (×100) (×100) (×100) (×100)
150 -1.47 7.56 -2.27 8.60
300 -0.59 5.79 -0.90 6.33
500 -0.01 5.03 -0.20 4.94

Notes: yit is generated as yit = αi + γyi,t−1 + ξit, ξit = λ1if1t + λ2if2t + uit, uit ∼ iidN (0, σ2), i = 1, 2, ..., N ; t =

−49, 48, ...0, 1, ..., T, with yi,−50 = 0 and σ2 = 1. The factors are generated as: f`t = ρf`f`,t−1 +
√

1− ρ2f`εf`t, εf`t ∼
iidN (0, 1), t = −49, 48, ...0, 1, ..., T, with f`,−50 = 0, and ρf` = 0.9 for ` = 1, 2. The resultant f`t values are scaled such that

T−1
∑T
t=1 f`t

2 = 1. The values of ft for t = −49, 48, ...0 are not scaled. The factor loadings are generated as λ`i = λ + η`i,
with λ = 1 and η`i ∼ iidN(0, 1) for ` = 1, 2. The fixed effects, αi, are generated as αi = T−1(ξi1 + ξi2 + ... + ξiT ) + vi =

λ1if̄1 + λ2if̄2 + ūi + vi, where f̄` = T−1
∑T
t=1 f`t, ` = 1, 2, ūi = T−1

∑T
t=1 uit, and vi ∼ iidN (0, 1). Each f`t is generated

once and the same f ′`ts are used throughout the replications for ` = 1, 2. The first 50 observations are discarded. ML is the
proposed maximum likelihood estimator. All experiments are based on 1,000 replications.

Table 10: Size(%) and power(%) of the transformed ML estimator for the AR(1) model with two
factors

T = 6, γ = 0.4 T = 10, γ = 0.4
Power(H1) Size Power(H1) Power(H1) Size Power(H1)

N \ γ 0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50
150 37.8 16.7 5.0 9.4 30.3 41.5 18.6 5.6 9.2 34.6
300 59.9 22.5 5.2 16.5 57.7 65.5 25.2 5.0 17.5 66.8
500 79.0 30.5 4.5 26.3 81.3 84.1 34.7 4.3 31.8 88.7

T = 6, γ = 0.8 T = 10, γ = 0.8
Power(H1) Size Power(H1) Power(H1) Size Power(H1)

N \ γ 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90
150 34.8 17.0 6.7 1.7 1.4 32.6 17.8 7.7 5.0 9.1
300 41.7 20.9 5.6 0.7 5.3 39.5 18.9 5.1 4.2 13.2
500 50.8 23.7 5.5 1.3 25.3 47.6 20.0 3.8 4.7 33.4

See notes to Table 9.
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Table 11: Bias(×100) and RMSE(×100) of the transformed ML estimator for the ARX(1) model
with two factors

T = 6 T = 10
γ = 0.4 β = 1.0 γ = 0.4 β = 1.0

N Bias RMSE Bias RMSE Bias RMSE Bias RMSE
(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)

150 -0.16 3.82 0.36 5.86 0.00 2.05 0.01 4.14
300 -0.09 2.64 -0.17 4.27 0.03 1.42 -0.02 3.03
500 -0.12 2.01 -0.02 3.29 0.00 1.08 0.08 2.21

T = 6 T = 10
γ = 0.8 β = 1.0 γ = 0.8 β = 1.0

N Bias RMSE Bias RMSE Bias RMSE Bias RMSE
(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)

150 0.01 1.46 0.07 2.32 0.01 0.69 0.02 1.57
300 -0.02 1.04 0.01 1.67 0.01 0.52 -0.03 1.18
500 -0.03 0.77 -0.04 1.31 -0.02 0.39 0.01 0.86

Notes: yit is generated as yit = αi + γyi,t−1 + βxit + ξit, ξit = λ1if1t + λ2if2t + uit, uit ∼ iidN (0, σ2), i = 1, 2, ..., N ; t =

−49, 48, ...0, 1, ..., T, with yi,−50 = 0 and xit = µi + ϑ1if1t + ϑ2if2t + x̆it, , x̆it = ρxx̆i,t−1 +
√

1− ρ2xεit, with x̆i,−50 = 0, for
t = −49, 48, ...0, 1, ..., T , where ρx = 0.8, µi ∼ iidN (0, 1), and εit ∼ iidN (0, 1). The factors f`t, ` = 1, 2, are generated as in the
AR(1) case (see notes to Table 1). The factor loadings are generated as ϑ`i ∼ iidN (0.5, σ2`ϑ) and λ`i ∼ iidN (0.5, σ2`λ) for ` = 1, 2,

respectively. The fixed effects, αi, are generated as αi = x̄i+λ1if̄1+λ2if̄2+ūi+vi, where x̄i = T−1
∑T
t=1 xit, T

−1∑T
t=1 f

2
`t = 1,

ūi = T−1
∑T
t=1 uit, and vi ∼ iidN (0, 1). The remaining parameters are set at β = 1, σ21ϑ = σ21λ = σ22ϑ = σ22λ = σ2, with

σ2 = (0.7−γ2)/0.5. Each f`t is generated once and the same f ′`ts are used throughout the replications for ` = 1, 2. The first 50
observations are discarded. ML is the proposed maximum likelihood estimator. All experiments are based on 1,000 replications.

Table 12: Size(%) and power(%) of the transformed ML estimator for the ARX(1) model with
two factors

T = 6, γ = 0.4, β = 1.0 T = 10, γ = 0.4, β = 1.0
γ

Power(H1) Size Power(H1) Power(H1) Size Power(H1)
N \ γ 0.30 0.35 0.40 0.45 0.50 0.30 0.35 0.40 0.45 0.50
150 78.5 27.9 4.9 30.5 73.7 99.8 71.0 6.0 70.8 99.7
300 97.4 49.6 5.1 47.4 96.1 100.0 93.9 4.9 93.8 100.0
500 100.0 71.9 4.4 68.3 99.8 100.0 99.6 5.4 99.5 100.0

β
Power(H1) Size Power(H1) Power(H1) Size Power(H1)

N \ γ 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10
150 36.6 10.9 4.6 14.0 40.3 68.7 23.6 5.3 23.7 68.4
300 69.1 24.8 5.6 20.6 64.2 92.2 39.8 7.1 41.2 91.6
500 86.5 34.2 5.5 33.5 85.6 99.1 60.3 5.3 62.0 99.2

T = 6, γ = 0.8, β = 1.0 T = 10, γ = 0.8, β = 1.0
γ

Power(H1) Size Power(H1) Power(H1) Size Power(H1)
N \ γ 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90
150 100.0 93.5 4.8 91.6 100.0 100.0 100.0 4.0 100.0 100.0
300 100.0 99.9 5.7 99.3 100.0 100.0 100.0 5.3 100.0 100.0
500 100.0 100.0 4.4 100.0 100.0 100.0 100.0 4.9 100.0 100.0

β
Power(H1) Size Power(H1) Power(H1) Size Power(H1)

N \ γ 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10
150 98.9 54.5 4.6 56.2 98.8 100.0 87.1 5.1 89.4 100.0
300 100.0 83.5 4.5 85.0 100.0 100.0 99.1 6.3 99.4 100.0
500 100.0 96.7 4.7 97.0 100.0 100.0 100.0 4.6 100.0 100.0

See notes to Table 11.
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Appendix

A.1 Proof of Theorem 1

The mean of ∆yi1 conditional on ∆yi,−S+1 and ∆xi,1−j , (j = 0, 1, 2...) is given by

ζi1 = E (∆yi1|∆yi,−S+1,∆xi1,∆xi0, ...)

= γS∆yi,−S+1 + β
S−1∑
j=0

γj∆xi,1−j + g̃1SE(λi|∆yi,−S+1,∆xi1,∆xi0, ...)

= γS∆yi,−S+1 + β∆xi1 + β
S−1∑
j=1

γj∆xi,1−j + λg̃1S + g̃1SE(ηi|∆yi,−S+1,∆xi1,∆xi0, ...).

Conditional on ∆xi = (∆xi1,∆xi2, ...,∆xiT )′ we have

E(ζi1|∆xi) = E(γS∆yi,−S+1 + β∆xi1|∆xi) + β

S−1∑
j=1

γjE(∆xi,1−j |∆xi) + λg̃1S

+g̃1SE [E(ηi|∆yi,−S+1,∆xi1,∆xi0, ...)|∆xi]

= γS b̃+ β∆xi1 + β
S−1∑
j=1

γj
(
bj + π′j∆xi

)
+ λg̃1S + g̃1S(h+ϕ′∆xi)

=

γS b̃+ β
S−1∑
j=1

γjbj + λg̃1S + g̃1Sh

+

βe1 + β
S−1∑
j=1

γjπj + g̃1Sϕ

′∆xi

= b+ π′∆xi,

where e1 = (1, 0, .., 0)′ and the following results are used

E(∆xi,1−j |∆xi) = bj + π′j∆xi, (j = 0, 1, 2...)

E [E(ηi|∆yi,−m+1,∆xi1,∆xi0, ...)|∆xi] = h+ϕ′∆xi.

Then

∆yi1 = ζi1 + g̃1S [λi − E(λi|∆yi,−S+1,∆xi1,∆xi0, ...)] +

S−1∑
j=0

γj∆ui,1−j

= E(ζi1|∆xi) + [ζi1 − E(ζi1|∆xi)] + g̃1S [λi − E(λi|∆yi,−S+1,∆xi1,∆xi0, ...)] +

S−1∑
j=0

γj∆ui,1−j

= b+ π′∆xi + vi1,

where

vi1 = [ζi1 − E(ζi1|∆xi)] + g̃1S [λi − E(λi|∆yi,−S+1,∆xi1,∆xi0, ...)] +

S−1∑
j=0

γj∆ui,1−j ,

and

ζi1 − E(ζi1|∆xi) = γS [∆yi,−S+1 − E(∆yi,−S+1|∆xi)] + β
S−1∑
j=0

γj [∆xi,1−j − E(∆xi,1−j |∆xi)]

+g̃1S {E(λi|∆yi,−S+1,∆xi1,∆xi0, ...)− E [E(λi|∆yi,−m+1,∆xi1,∆xi0, ...)|∆xi]} .
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A.2 Derivation of the log-likelihood

Here we show how (8) is derived from (7). Using(
Ω+φgg′

)−1
= Ω−1 − φΩ−1gg′Ω−1

1 + φ (g′Ω−1g)
,

and ∣∣Ω+φgg′
∣∣ = |Ω|

(
1 + φg′Ω−1g

)
,

the log-likelihood function (7) can be written as

` (ψ) = −NT
2

ln (2π)− TN

2
ln(σ2)− N

2
ln |Ω| − N

2
ln(1 + φg′Ω−1g)

− 1

2σ2

N∑
i=1

(∆yi −∆Wiγ − λg)′
[
Ω−1 − φΩ−1gg′Ω−1

1 + φ (g′Ω−1g)

]
(∆yi −∆Wiγ − λg) ,(A.1)

where |Ω| = 1 + T (ω − 1) . Let vi = vi(γ) = ∆yi −∆Wiγ, and note that
N∑
i=1

(vi − λg)′
[
Ω−1 − φΩ−1gg′Ω−1

1 + φ (g′Ω−1g)

]
(vi − λg)

=

N∑
i=1

v′iΩ
−1vi −

φ
∑N

i=1

(
v′iΩ

−1g
)2

1 + φ (g′Ω−1g)
+Nλ2

[
g′Ω−1g −

φ
(
g′Ω−1g

)2
1 + φ (g′Ω−1g)

]

−2Nλ

[
g′Ω−1v̄ −

φ
(
g′Ω−1g

) (
g′Ω−1v̄

)
1 + φ (g′Ω−1g)

]

=
N∑
i=1

v′iΩ
−1vi −

φ
∑N

i=1

(
v′iΩ

−1g
)2 −Nλ2

(
g′Ω−1g

)
+ 2Nλ

(
g′Ω−1v̄

)
1 + φ (g′Ω−1g)

=
N∑
i=1

v′iΩ
−1vi −

Nφg′Ω−1BNΩ−1g −Nλ2
(
g′Ω−1g

)
+ 2Nλ

(
g′Ω−1v̄

)
1 + φ (g′Ω−1g)

,

where v̄ =N−1
∑N

i=1 vi, and BN = BN (γ) = N−1
∑N

i=1 vi(γ)v′i(γ). Therefore, the log-likelihood
function, (A.1), can be written as

N−1` (ψ) = −T
2

ln (2π)− T

2
ln(σ2)− 1

2
ln |Ω| − 1

2
ln(1 + φg′Ω−1g)

− 1

2σ2

[
N−1

N∑
i=1

v′iΩ
−1vi −

φg′Ω−1BNΩ−1g − λ2g′Ω−1g+2λg′Ω−1v̄

1 + φ (g′Ω−1g)

]
.

A.3 Derivatives of the log-likelihood function

We give the analytical formulas of the first and second derivatives of the log-likelihood function
(10). Note that

|Ω (ω)| = g (ω) = 1 + T (ω − 1) ,

and

Ω−1 =
1

g (ω)


T T − 1 ... 2 1

T − 1 (T − 1)ω ... 2ω ω
T − 2

2 2ω 2 [(T − 2)ω − (T − 3)] (T − 2)ω − (T − 3)
1 ω ... (T − 2)ω − (T − 3) (T − 1)ω − (T − 2)


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∂Ω−1

∂ω
=
−1

g (ω)2


T 2 T (T − 1) T (T − 2) . . . T

T (T − 1) (T − 1)2 (T − 1)(T − 2) . . . (T − 1)
...

...
... . . .

...
T (T − 1) (T − 2) . . . 1

 =
−1

g (ω)2 Φ.

Also
∂ ln |Ω|
∂ω

=
T

1 + T (ω − 1)
=

T

g (ω)
.

Using the above expressions the first derivatives are given by

N−1∂` (θ)

∂ϕ
=

1

σ2

N−1
N∑
i=1

∆W′
iΩ
−1vi −

(
N−1

∑N
i=1 ∆W′

iΩ
−1qq′Ω−1vi

)
+ κ∆W

′
Ω−1q

1 + q′Ω−1q

 ,

N−1∂` (θ)

∂ω
= −1

2

T

g (ω)
+

q′Φq

2 (1 + q′Ω−1q) g (ω)2 +
1

2σ2g (ω)2

[
N−1

N∑
i=1

v′iΦvi

]

+
(q′Φq)

(
q′Ω−1BNΩ−1q− κ2q′Ω−1q+2κq′Ω−1v̄

)
2σ2 (1 + q′Ω−1q)2 g (ω)2

+
−q′ΦBNΩ−1q− q′Ω−1BNΦq + κ2q′Φq−2κq′Φv̄

2σ2 (1 + q′Ω−1q) g (ω)2 ,

N−1∂` (θ)

∂σ2
= − T

2σ2
+

1

2σ4

[
N−1

N∑
i=1

v′iΩ
−1vi −

q′Ω−1BNΩ−1q− κ2q′Ω−1q+2κq′Ω−1v̄

1 + q′Ω−1q

]
,

N−1∂` (θ)

∂κ
=

1

σ2

[
−κq′Ω−1q + q′Ω−1v̄

1 + q′Ω−1q

]
,

N−1∂` (θ)

∂q
= − Ω−1q

1 + q′Ω−1q
−
[
q′Ω−1BNΩ−1q− κ2q′Ω−1q+2κq′Ω−1v̄

σ2 (1 + q′Ω−1q)2

]
Ω−1q

+
Ω−1BNΩ−1q− κ2Ω−1q+κΩ−1v̄

σ2 (1 + q′Ω−1q)
.

The second derivatives are as follows:

N−1 ∂` (θ)

∂ϕ∂ϕ′
=

1

σ2

−N−1
N∑
i=1

∆W′
iΩ
−1∆Wi +

(
N−1

∑N
i=1 ∆WiΩ

−1qq′Ω−1∆W′
i

)
1 + q′Ω−1q

 ,

N−1 ∂` (θ)

∂ϕ∂ω
=

−1

σ2g (ω)2

[
N−1

N∑
i=1

∆W′
iΦvi

]

−
[

q′Φq

σ2 (1 + q′Ω−1q)2 g (ω)2

][(
N−1

N∑
i=1

∆W′
iΩ
−1qq′Ω−1vi

)
+κ∆W

′
Φq

]

− 1

σ2 (1 + q′Ω−1q) g (ω)2

 −q′Φ
(
N−1

∑N
i=1 vi∆W′

i

)
Ω−1q

−q′Ω−1
(
N−1

∑N
i=1 vi∆W′

i

)
Φq−κ∆W

′
Φq

 ,
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N−1 ∂` (θ)

∂σ2∂ϕ
=
−1

σ4

N−1
N∑
i=1

∆W′
iΩ
−1vi −

(
N−1

∑N
i=1 ∆W′

iΩ
−1qq′Ω−1vi

)
+ κ∆W

′
Ω−1q

1 + q′Ω−1q

 ,
N−1 ∂` (θ)

∂κ∂ϕ′
=

−q′Ω−1∆W

σ2 (1 + q′Ω−1q)
,

N−1 ∂` (θ)

∂ϕ∂q′
=
−
(
N−1

∑N
i=1

(
∆W′

iΩ
−1q′Ω−1vi + ∆W′

iΩ
−1qv′iΩ

−1
)

+ κ∆W
′
Ω−1

)
σ2 (1 + q′Ω−1q)

+
2
(
N−1

∑N
i=1 ∆W′

iΩ
−1qq′Ω−1vi + κ∆W

′
Ω−1q

) (
q′Ω−1

)
σ2 (1 + q′Ω−1q)2 ,

N−1∂` (θ)

∂ω∂ω
=

T 2

2g (ω)2 −
(
q′Φq

)(−q′Φq+
(
1 + q′Ω−1q

)
(2Tg (ω))

2 (1 + q′Ω−1q)2 g (ω)4

)
− T

σ2g (ω)3

(
N−1

N∑
i=1

v′iΦvi

)

+
(q′Φq)

[
−q′ΦBNΩ−1q− q′Ω−1BNΦq + κ2q′Φq−2κq′Φv̄

]
2σ2 (1 + q′Ω−1q)2 g (ω)4

−
(q′Φq)

(
q′Ω−1BNΩ−1q− κ2q′Ω−1q+2κq′Ω−1v̄

) {
−q′Φq +

(
1 + q′Ω−1q

)
(Tg (ω))

}
σ2 (1 + q′Ω−1q)3 g (ω)4

+
q′ΦBNΦq

σ2 (1 + q′Ω−1q) g (ω)4

+

(
q′ΦBNΩ−1q + q′Ω−1BNΦq− κ2q′Φq+2κq′Φv̄

) {
−q′Φq+

(
1 + q′Ω−1q

)
(2Tg (ω))

}
2σ2 (1 + q′Ω−1q)2 g (ω)4

,

N−1 ∂` (θ)

∂σ2∂ω
=

−1

2σ4g (ω)2

[
N−1

N∑
i=1

v′iΦvi

]

−
[

q′Φq

2σ4 (1 + q′Ω−1q)2 g (ω)2

] [
q′Ω−1BNΩ−1q− κ2q′Ω−1q+2κq′Ω−1v̄

]
− 1

2σ4 (1 + q′Ω−1q) g (ω)2

[
−q′ΦBNΩ−1q− q′Ω−1BNΦq + κ2q′Φq−2κq′Φv̄

]
,

N−1∂` (θ)

∂κ∂ω
=

(κq′Φq− q′Φv̄)
(
1 + q′Ω−1q

)
+
(
−κq′Ω−1q + q′Ω−1v̄

)
(q′Φq)

σ2g (ω)2 (1 + q′Ω−1q)2 ,

N−1∂` (θ)

∂q∂ω
=

Φq
(
1 + q′Ω−1q

)
− (q′Φq)

(
Ω−1q

)
g (ω)2 (1 + q′Ω−1q)2

+
Φq

[
q′Ω−1BNΩ−1q− κ2q′Ω−1q+2κq′Ω−1v̄

]
+ q′Φq

[
Ω−1BNΩ−1q− κ2Ω−1q+κΩ−1v̄

]
σ2g (ω)2 (1 + q′Ω−1q)2

−
2 (q′Φq)

[
q′Ω−1BNΩ−1q− κ2q′Ω−1q+2κq′Ω−1v̄

] (
1 + q′Ω−1q

)
Ω−1q

σ2g (ω)2 (1 + q′Ω−1q)4

+
−ΦBNΩ−1q−Ω−1BNΦq + κ2Φq−κΦv̄

σ2g (ω)2 (1 + q′Ω−1q)

−
(
−q′ΦBNΩ−1q− q′Ω−1BNΦq + κ2q′Φq−2κq′Φv̄

) (
Ω−1q

)
σ2g (ω)2 (1 + q′Ω−1q)2 ,
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N−1 ∂` (θ)

∂σ2∂σ2
=

T

2σ4
− 1

σ6

[
N−1

N∑
i=1

v′iΩ
−1vi −

q′Ω−1BNΩ−1q− κ2q′Ω−1q+2κq′Ω−1v̄

1 + q′Ω−1q

]
,

N−1 ∂` (θ)

∂κ∂σ2
=

κq′Ω−1q− q′Ω−1v̄

σ4 (1 + q′Ω−1q)
,

N−1 ∂` (θ)

∂q∂σ2
=

[
q′Ω−1BNΩ−1q− κ2q′Ω−1q+2κq′Ω−1v̄

σ4 (1 + q′Ω−1q)2

]
Ω−1q− Ω−1BNΩ−1q− κ2Ω−1q+κΩ−1v̄

σ4 (1 + q′Ω−1q)
,

N−1∂` (θ)

∂κ∂κ
=

−q′Ω−1q

σ2 (1 + q′Ω−1q)
,

N−1∂` (θ)

∂q∂κ
=

(
−2κΩ−1q + Ω−1v̄

) (
1 + q′Ω−1q

)
+ 2

(
κq′Ω−1q− q′Ω−1v̄

)
Ω−1q

σ2 (1 + q′Ω−1q)2 ,

N−1 ∂` (θ)

∂q∂q′
= −

Ω−1
(
1 + q′Ω−1q

)
− 2Ω−1qq′Ω−1

(1 + q′Ω−1q)2

−
2Ω−1q

(
q′Ω−1BNΩ−1 − κ2q′Ω−1+κv̄′Ω−1

)
σ2 (1 + q′Ω−1q)2

+

(
q′Ω−1BNΩ−1q− κ2q′Ω−1q+2κq′Ω−1v̄

)
Ω−1

σ2 (1 + q′Ω−1q)2

+
4
(
q′Ω−1BNΩ−1q− κ2q′Ω−1q+2κq′Ω−1v̄

)
Ω−1qq′Ω−1

σ2 (1 + q′Ω−1q)3

+

(
Ω−1BNΩ−1 − κ2Ω−1

)
σ2 (1 + q′Ω−1q)

−
(
Ω−1BNΩ−1q− κ2Ω−1q+κΩ−1v̄

) (
2q′Ω−1

)
σ2 (1 + q′Ω−1q)2 .

A.4 Derivation of the log-likelihood function in the multifactor
case

Under Assumption 8 we can rewrite model (22) as

yit = αi + γyi,t−1 + f ′tλi + uit

= αi + γyi,t−1 + f ′tλ+ f ′tηi + uit.

Eliminating the individual effects by first-differencing yields

∆yit = γ∆yi,t−1 + g′tλi + ∆uit

= γ∆yi,t−1 + g′tλ+ g′tηi + ∆uit for t = 2, 3, ..., T. (A.2)

Under Assumption 1, by recursive substitution, we have the following expression for t = 1

∆yi1 = λ′ig̃1 + vi1, (A.3)

where g̃1 =
∑∞

j=0 γ
jg1−j , vi1 =

∑∞
j=0 γ

j∆ui,1−j with E(vi1) = 0 and var(vi1) = σ2ω. Using (23) in
(A.2), this equation together with (A.3) can be written as

∆yi1 = λ′g̃1 + η′ig̃1 + vi1

∆yit = γ∆yi,t−1 + λ′gt + η′igt + ∆uit, (t = 2, 3, ..., T ).
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In matrix notation the above system of equations can be expressed as

∆yi = ∆Wiγ + Gλ+ ξi, (A.4)

where ∆yi = (∆yi1,∆yi2, ....,∆yiT )′, ∆Wi = (0,∆yi1, ...,∆yi,T−1)′, G = (g̃1,g2, ...,gT )′ and ξi =
Gηi+ri with ri = (vi1,∆ui2, ...,∆uiT )′.

In equation (A.4) λ is not separately identified from the elements of G. Thus, defining the
identity matrix Im = 1

σΩ
1/2
η σΩ

−1/2
η , where recall from Assumption 8 that Ωη is a positive definite

matrix, we can write

Gλ = G
1

σ
Ω1/2
η σΩ−1/2

η λ = Qκ,

where Q = (1/σ)GΩ
1/2
η and κ = σΩ

−1/2
η λ.

Recall further that E(rir
′
i) = σ2Ω and since ηi and uit are independently distributed we have

V ar(ξi) = σ2Ω + GΩηG
′=σ2

(
Ω + QQ′

)
.

Hence, the log-likelihood function of the transformed model (A.4) is given by

` (θ) = −NT
2

ln (2π)− NT

2
ln(σ2)− N

2
ln
∣∣Ω + QQ′

∣∣
− 1

2σ2

N∑
i=1

(∆yi −∆Wiγ −Qκ)′
(
Ω + QQ′

)−1
(∆yi −∆Wiγ −Qκ) . (A.5)

For a fixed T , the above log-likelihood function depends only on a fixed number of unknown
parameters, θ =

(
γ, ω, σ2,κ′, vec(Q)′

)′
.

To obtain the ML estimators, since Ω is a positive definite matrix and QQ′ is rank deficinet
(recall that by assumption m < T ), we first note that∣∣Ω + QQ′

∣∣ = |Ω|
∣∣Im+Q′Ω−1Q

∣∣ ,
and using the Woodbury matrix identity(

Ω + QQ′
)−1

= Ω−1 −Ω−1Q(Im + Q′Ω−1Q)−1Q′Ω−1 (A.6)

= Ω−1 −Ω−1QA−1Q′Ω−1,

where

A = Im + Q′Ω−1Q.

Using these results the log-likelihood function in (A.5) can be written as

` (θ) ∝ −NT
2

ln(σ2)− N

2
ln |Ω| − N

2
ln
∣∣Im+Q′Ω−1Q

∣∣− 1

2σ2

N∑
i=1

(∆yi −∆Wiγ −Qκ)′

×
[
Ω−1 −Ω−1QA−1Q′Ω−1

]
(∆yi −∆Wiγ −Qκ) , (A.7)
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with |Ω| = 1 + T (ω − 1). Further, since

N∑
i=1

(vi −Qκ)′
[
Ω−1 −Ω−1QA−1Q′Ω−1

]
(vi −Qκ)

=

N∑
i=1

v′iΩ
−1vi −

N∑
i=1

v′iΩ
−1QA−1Q′Ω−1vi −Nκ′Q′Ω−1v̄ +Nκ′Q′Ω−1QA−1Q′Ω−1v̄

−N v̄′Ω−1Qκ+N v̄′Ω
−1

QA−1Q′Ω−1Qκ+Nκ′Q′Ω−1Qκ−Nκ′Q′Ω−1QA−1Q′Ω−1Qκ

=
N∑
i=1

v′iΩ
−1vi −

N∑
i=1

v′iΩ
−1QA−1Q′Ω−1vi − 2Nκ′Q′Ω−1v̄ + 2Nκ′Q′Ω−1QA−1Q′Ω−1v̄

+Nκ′Q′Ω−1Qκ−Nκ′Q′Ω−1QA−1Q′Ω−1Qκ,

where vi = vi(γ) = ∆yi −∆Wiγ, and v̄ =N−1
∑N

i=1 vi, (A.7) can be written as

N−1` (θ) ∝ −T
2

ln(σ2)− 1

2
ln |Ω| − 1

2
ln
∣∣Im+Q′Ω−1Q

∣∣
− 1

2σ2

{
N−1

∑N
i=1 v′iΩ

−1vi −N−1
∑N

i=1 v′iΩ
−1QA−1Q′Ω−1vi

+κ′[Q′Ω−1Q(Im−A−1Q′Ω−1Q)]κ− 2κ′[(Im −Q′Ω−1QA−1)Q′Ω−1v̄]

}
Note that the first two terms in the barckets using (A.6) can be written as

N−1
N∑
i=1

v′iΩ
−1vi −N−1

N∑
i=1

v′iΩ
−1QA−1Q′Ω−1vi = N−1

N∑
i=1

v′i
(
Ω + QQ′

)−1
vi.

Hence

N−1` (θ) ∝ −T
2

ln(σ2)− 1

2
ln |Ω| − 1

2
ln
∣∣Im+Q′Ω−1Q

∣∣ (A.8)

− 1

2σ2

{
N−1

∑N
i=1 v′i (Ω + QQ′)−1

vi
+κ′[Q′Ω−1Q(Im−A−1Q′Ω−1Q)]κ− 2κ′[(Im −Q′Ω−1QA−1)Q′Ω−1v̄]

}
.

Also

Im−A−1Q′Ω−1Q = Im −A−1
(
Im + Q′Ω−1Q− Im

)
= Im −A−1 (A− Im) = A−1,

Im−Q′Ω−1QA−1 = Im −
(
Im + Q′Ω−1Q− Im

)
A−1 = Im − (A− Im) A−1 = A−1,

and
A−1Q′Ω−1Q = Im −A−1 = Q′Ω−1QA−1.

The log-likelihood in (A.8) then becomes

N−1` (θ) ∝ −T
2

ln(σ2)− 1

2
ln |Ω| − 1

2
ln
∣∣Im+Q′Ω−1Q

∣∣ (A.9)

− 1

2σ2

{
N−1

∑N
i=1 v′i (Ω + QQ′)−1

vi
+κ′

(
Im −A−1

)
κ− 2κ′A−1Q′Ω−1v̄]

}
.

Setting the partial derivative of ` (θ) with respect to κ to zero, it now readily follows that(
Im −A−1

)
κ̂= A−1Q′Ω−1v̄,
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which yields (recall that Q has the full column rank of m)

κ̂ = (Q′Ω−1Q)−1Q′Ω−1v̄. (A.10)

Next, taking partial derivatives with respect to σ2 and solving out for this we have

T σ̂2 = N−1
N∑
i=1

v′i
(
Ω + QQ′

)−1
vi

+κ̂′
(
Im −A−1

)
κ̂− 2κ̂′A−1Q′Ω−1v̄. (A.11)

Substituting for κ̂ from (A.10) in (A.11) now yields

σ̂2 = T−1

{
N−1

∑N
i=1 v′i (Ω + QQ′)−1

vi
−v̄′Ω−1QA−1(Q′Ω−1Q)−1Q′Ω−1v̄

}
. (A.12)

Finally, substituting (A.10) and (A.12) into (A.9) we obtain

N ¯̀(θ) ∝ −1

2
ln |Ω| − 1

2
ln
∣∣Im+Q′Ω−1Q

∣∣
−T

2
ln

{
N−1

∑N
i=1 v′i (Ω + QQ′)−1

vi
−v̄′Ω−1QA−1(Q′Ω−1Q)−1Q′Ω−1v̄

}
where θ =

(
γ, ω, vec(Q)′

)′
. Recall that, if required, (Ω + QQ′)−1 can be expanded in terms of Ω

using the Woodbury matrix identity in (A.6).

A.5 Derivation of R2
y

Consider the panel data model

yit = αi + γyi,t−1 + βxit + ξit, ξit = λ′ift + uit,

xit = µi + ϑ′ift + x̆it, x̆it = ρxx̆i,t−1 +
√

1− ρ2
xεit,

where ft = (f1t, ..., fmt)
′, λ′i = (λ1i, ..., λmi)

′, ϑi = (ϑ1i, ..., ϑmi)
′, |γ| < 1 and |ρx| < 1. Due to the

dependence of xit and ξit on the same unobserved factors, ft = (f1t, ..., fmt)
′, the regressors and

the errors of the above regression are correlated. Following Pesaran and Smith (1994) we base the
measurement of R2 on the following reduced form regressions

yit = di + γyi,t−1 + βx̆it + ξ̆it, ξ̆it = c′ift + uit, (A.13)

where
di = αi + βµi and ci = βϑi + λi.

It is clear that in (A.13) the regressors, x̆it, and the errors, ξ̆it, are uncorrelated and standard
formula for R2 can be used. But to deal with the heterogeneity across the different equations in
the panel we use the following average measure of fit

R2
y = 1− N−1

∑N
i=1 V ar(ξ̆it)

N−1
∑N

i=1 V ar(yit)
.
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Using the above results, and noting that uit and εit are uncorrelated with ft, it readily follows that

V ar(ξ̆it) = c′iV ar(ft)ci + σ2,

V ar(yit) =
β2V ar(x̆it) + V ar(ξ̆it)

1− γ2
.

If we assume that the elements of ft are mutually orthogonal and have zero means we have

R2
y =

β2V ar(x̆it) +
[∑m

`=1

{(
N−1

∑N
i=1 c

2
`i

)(
T−1

∑T
t=1 f

2
`t

)}
+ σ2

]
γ2

β2V ar(x̆it) +
∑m

`=1

{(
N−1

∑N
i=1 c

2
`i

)(
T−1

∑T
t=1 f

2
`t

)}
+ σ2

. (A.14)

It is easily seen that R2
y ≥ γ2 with the equality holding only if β = 0, namely when an AR(1)

specification is considered.
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