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Abstract

This paper proposes the transformed maximum likelihood estimator for short dynamic panel
data models with interactive fixed effects, and provides an extension of Hsiao et al. (2002) that
allows for a multifactor error structure. This is an important extension since it retains the
advantages of the transformed likelihood approach, whilst at the same time allows for observed
factors (fixed or random). Small sample results obtained from Monte Carlo simulations show
that the transformed ML estimator performs well in finite samples and outperforms the GMM
estimators proposed in the literature in almost all cases considered.
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1 Introduction

There now exists an extensive literature on the estimation of linear dynamic panel data models
where the time dimension (77) is short and fixed relative to the cross section dimension (N'), which
is large. Such panels are usually referred to as micro panels, and often arise in microeconometric
applications. For example, many empirical applications based on survey data such as the British
Household Panel Surveys (BHPS) and the Panel Study in Income Dynamics (PSID) are character-
ized by data covering relatively short time periods. Although it is now quite common to include
dynamics in such studies, it is rare to find studies that allow for error cross section dependence as
well. In most empirical applications time dummies are used to deal with cross section dependence,
which is valid only if the time effect is homogeneous over the cross section units. Short T panels
also arise in the cross country empirical growth literature where data is typically averaged over five
to seven years to eliminate the business cycle effects. Both generalized method of moments (GMM)
and likelihood approaches have been advanced to estimate such panel data models. See, for exam-
ple, Anderson and Hsiao (1981), Arellano and Bond (1991), Arellano and Bover (1995), Blundell
and Bond (1998), Hsiao et al. (2002) and Binder et al. (2005).! However, this literature assumes
that the errors are cross sectionally independent, which might not hold in many applications where
cross section units are subject to common unobserved effects, or possibly spatial or network spill-
over effects. Ignoring cross section dependence can have important consequences for conventional
estimators of dynamic panels. Phillips and Sul (2007) study the impact of cross section dependence
modelled as a factor structure on the inconsistency of the pooled least squares estimate of a short
dynamic panel regression. Sarafidis and Robertson (2009) investigate the properties of a number
of standard widely used generalized method of moments (GMM) estimators under cross section
dependence and show that such estimators are inconsistent.

In applications where the spatial patterns are important and can be characterized by known
spatial weight matrices, error cross section dependence is typically modelled as spatial autoregres-
sions and estimated jointly with the other parameters of the dynamic panel data model. Lee and
Yu (2010) provide a review. For small 7', Elhorst (2005) and Su and Yang (2007) consider random
effects as well as fixed effects specifications. In the latter case they apply the first-differencing
operator to eliminate the fixed effects and then use the transformed likelihood approach of Hsiao
et al. (2002) to deal with the initial value problem. The treatment of the initial values in spatial
dynamic panel data models poses additional difficulties and requires further investigation. More
recently Jacobs et al. (2009) discuss GMM estimation of dynamic fixed effect panel data models
featuring spatially correlated errors and endogenous interaction.

However, in addition to the spatial effects it is also likely that the error cross section dependence
could be a result of omitted unobserved common factor(s). This class of models has been the subject
of intensive research over the past five years and robust estimation procedures have been advanced
in the case of panels where N and 7T are both large.? In contrast, little work has been done so far on
the estimation of short 7" dynamic panels where error cross section dependence is due to unobserved
common factors. An early contribution by MaCurdy (1982) features panel models with an error
structure that combines factor schemes with autoregressive-moving average models estimated by
maximum likelihood and used to analyze the error process associated with the earnings of prime

'The analysis of Hsiao et al. (2002) is extended by Hayakawa and Pesaran (2012) to allow for a cross-sectionally
heteroskedastic error term.

?See, for example, Pesaran (2006), Bai (2009), Pesaran and Tosetti (2011), Chudik et al. (2011), and Kapetanios
et al. (2011).



age males. In subsequent work, for the case of a single factor, Holtz-Eakin et al. (1988) and Ahn et
al. (2001), suggest a quasi-differencing approach to purge the factor structure and then use GMM
to consistently estimate the model parameters.®> Nauges and Thomas (2003) follow this approach
in addition to prior first-differencing to eliminate the fixed effect, which they consider separately
from the single common factor structure assumed for the errors. Ahn et al. (2013) extend this
approach to the more general case of a multifactor error structure.

More recently, Robertson and Sarafidis (2013) propose an instrumental variable estimation
procedure that introduces new parameters to represent the unobserved covariances between the
instruments and the factor component of the errors. They show that the resulting estimator is
asymptotically more efficient than the GMM estimator based on quasi-differencing as it exploits
extra restrictions implied by the model. Elhorst (2010) considers a fixed effects dynamic panel with
contemporaneous endogenous interaction effects under small T'. For estimation purposes, he adopts
both the maximum likelihood estimator of Hsiao et al. (2002) and the GMM estimator of Arellano
and Bond (1991). Bai (2013) suggests a quasi-maximum likelihood (ML) approach applied to the
original dynamic panel without differencing (simple or quasi), and uses the approach of Mundlak
(1978) and Chamberlain (1982) to deal with the correlation between the factor loadings and the
regressors, but continues to assume that all factor loadings (including the one associated with the
intercepts) are uncorrelated with the errors.*

In this paper, following Hsiao et al. (2002), we propose an alternative quasi ML approach
applied to the panel data model after first-differencing. In this way, we account for heterogeneity
of the initial values and the common factors in an integrated framework. The proposed estimation
procedure includes the transformed likelihood procedure of Hsiao et al. (2002) as a special case. It
allows for both fixed and interactive effects (the latter based on a random coefficient specification),
and can be used to test the validity of the fixed effects specification against the more general
model with interactive effects. Our procedure differs from the one proposed by Bai (2013) since
he proposes to apply the maximum likelihood (ML) procedure to the level model without time-
invariant fixed effects, whilst we propose to apply the ML procedure to the first-differenced model
where time-invariant fixed effects are removed. The application of the ML approach to dynamic
panel data models without first-differencing requires the fixed effects in the processes generating
the regressors to be uncorrelated with the errors. Otherwise, as shown in Hsiao et al. (2002), the
initial values (y;0) could be subject to an incidental parameter problem. More specifically, reliance
on the Mundlak-Chamberlain device for the specification of y;o employed by Bai (2013) will be
valid only under random effects specification of the processes generating the regressors. However,
this assumption is not required under the transformed likelihood approach, where the quasi ML
approach is applied to first differences. The proposed method can also be readily extended to a
panel VAR framework as in Binder et al. (2005). Monte Carlo simulations are carried out to
investigate the finite sample performance of the transformed ML estimator including a comparison
with several GMM estimators. We find that the transformed ML estimator performs well in almost
all cases considered, while the GMM estimators perform (sometimes) substantially poorly.

The rest of this paper is organized as follows. Section 2 sets out the dynamic model (with
and without regressors) and develops the transformed likelihood approach. Initially we consider
the relatively simple case where in addition to fixed effects the model contains a single unobserved
common factor with interactive effects. In subsection 2.3 we extend our analysis to models with
multiple factors. In Section 3, a review of the GMM approach is provided. In Section 4, we
describe the Monte Carlo experiments and compare bias, root mean square errors , size and power

3The quasi-differencing transformation was originally proposed by Chamberlain (1984). Holtz-Eakin et al. (1988)
implement it in the context of a bivariate panel autoregression.

*See also Sarafidis and Wansbeek (2012) for a recent survey of panel data models with error cross section depen-
dence when T is short.



of the proposed transformed ML estimator to a number of different GMM estimators.> Section 5
concludes.

2 The Likelihood Approach
2.1 AR(1) model

Consider the following first order autoregressive, AR(1), panel data model

Yit = G+ Y1+ & (1)
fit = A\ ft + ug, (’i:1,2,...,N;t:1,2,...,T),

where T is fixed and small relative to N which could be large, a; for ¢ = 1,2, ..., N are the fixed
effects, f; is an unobserved common factor for all 4, u;; are the individual-specific (idiosyncratic)
errors, A\; fori = 1,2, ..., N are factor loadings distributed indepedently of u;; and f;. No restrictions
will be imposed on f; except that g = Af; # 0 for at least some ¢t = 1,2,...,T. Note that this
requirement does not restrict the specification of the model since the excluded case of f; = C (a
fixed constant for all t) is already covered by the explicit inclusion of fixed effects, «;, in the model.
We consider the problem of estimation of «v under the following assumptions:

Assumption 1 || <1 and the AR(1) model given in (1) has started from the infinite past.

Assumption 2 The idiosyncratic shocks, uy (i = 1,2,..,N; t = 1,2,....,T), are independently
2

distributed both across i and t with mean zero and variance o*.
Assumption 3 The unobserved factor loadings, A;, are independently and identically distributed
across i and of the individual specific errors, uji, and the common factor, fi, for alli, j and t with
fixed mean, X\, and a finite variance. In particular,

Assumption 4 The error terms n; and u; are normally distributed.

Remark 1 Assumption 1 is made to simplify the exposition. In the next subsection we consider
the case where the dynamic process has started from a finite past. In such a case it is also possible
to allow for unit roots, namely the case where v = 1.

Remark 2 For each i, the composite error &;, in (1) is heteroskedastic even though it is assumed
that var(u;) = o2 is homoskedastic, namely for each i we have Var(&;|\;) = )\?U?c +o02.  As
shown by Hayakawa and Pesaran (2012), in a recent extension of Hsiao et al. (2002), it could be
possible to allow for heteroskedasticity in u;, but this will not be pursued here. In our approach f;
can be fixed or random.

Remark 3 Under Assumption 4, n; and u;; are considered normally distributed for the application
of the ML approach. The normality assumption is not required as N — 0o, so long as the errors
n; and ui have finite fourth-order moments.

®In these comparisons we do not include Bai’s recent estimator since the computer code for the implementation
of this estimation method has not yet been released. Also, the Monte Carlo evidence provided in Bai (2013) is more
illustrative in nature and does not cover cases where there are fixed effects in the processes generating the regressors
that are correlated with the errors. Further, Bai (2013) does not provide any evidence on size and power of tests
based on his proposed estimator. We intend to include Bai’s estimation method in our comparative analysis once
workable computer codes are released.



Remark 4 No assumptions are made regarding the fixed effects, o;. They could be correlated with
Ai and ug, and need not be cross sectionally independent. For example, c; could follow a spatial
autoregressive specification where cov(ay, aj) # 0 for all i and j.

Under Assumption 3 we can rewrite model (1) as

Vit = 0 +YYii—1+ Nifi +ui
= o +VYii—1 + Ao + 0, fr + wie

We eliminate the individual effects by first-differencing

Ayir = YAY; -1+ XNige + Auy
= YAYi1—1 + g + 19t + Auyy  fort =2,3,...,T. (3)

Under Assumption 1, by recursive substitution, we have the following expression for t = 1
Ayir = \ig1 + vit, (4)

where g1 = Z;'io Ygi—j, v = Zﬁo I A1 with E(v) = 0 and var(vi1) = wo?. Although w
is given by 2/(1 + «) in this model, in general, we treat w as a free parameter to be estimated.

To deal with the incidental parameter problem associated with )\;, instead of quasi-differencing
to eliminate \;, we use (2) and write (3) and (4) as

Ay = Ag1+1;G1 +va
Ay = YAYi1—1 + Mgt + 1,9t + Augg, (t=2,3,...,7).

In matrix notation the above system of equations can be written as
Ay; = AWy + Ag + &, (5)

where Ay; = (Ayi1, Ayiz, -, Ayir)', AW, = (0, Ay, ..., Ayir-1)', 8 = (91,92, -, 97), and §; =
n;g +r;, with r; = (vi1, Ata, ..., Augp)’. From Hsiao et al. (2002) we have that

Using (6) and recalling that n; and u; are independently distributed we have

Var(§;) = 0’Q+o.geg’ =0 (Q+¢ge’) ,

where )
o
_ 9y
6="1
Hence, the log-likelihood function of the transformed model (5) is given by
NT NT N
ty) = ——In(m)- Tln(02) -5 |Q+opgg’|
1 Y X
T 952 Z (Ay; — AWy — Ag) (Q+9gg’)” (Ayi — AWy — Ag). (7)
i=1

4



The log-likelihood in (7) is a function of a fixed number of unknown parameters, ¥ = (v, w, 02, ¢, A, g’)’.
After some algebra (see Section A.2 of the Appendix) it can be written as

N4u¢)::—ghm%)—zm@%—lmuu—%mu+¢g94g
where v; = v;(7) = Ay; — AWy, v =N—1 Z ~, Vi and
By =By (y 1§:vz 9)

It is clear that if ¢ = 0, the log-likelihood simplifies to the case of panels with (pure) time effects
and A is not separately identified from the elements of g. In such a case A is typically set to unity
and T time dummies are introduced to estimate g. In the interactive case where ¢ # 0, g is
not identified separately from ¢ and without loss of generality we can set q =+/¢g and write the
log-likelihood function in (8) as

T T 1 1
N7l (0) = —5 In (27) — 5 In(o?) — fln\ﬂ| - 5111(1 +qd'Q 1q)
lnle Qfl 2 /971 92 /971—
12 ’Q v; — qa N q Hq, q+2kq M . (10)
202 1+q9Q 1q
where 0 = (v,w, 02, k,q')’, and Kk = \/ /.
Taking partial derivatives with respect to x and o2 and solving out for these we have
k= (d0Q'q) g7y, (11)
and N )
/Q_lB Q—l /Q_l\_f
=71 N_lzvgﬂ_lvi—q N 1 9. (a T ) T
1+qQ7'q  (1+qQ7'q)(d'Q 'q)
But using (9) the above expression can also be written as
C1=)\2
2 1| At 4 Q7 'gg! (d'Q19)
14+ q'Q 1q (1+d'271q) (a2 'q)
or equivalently as
N ry—1=)2
_ _ _ q'Q'v)
=71 |N! Vi (Q+aqq) v — ( 12
2O ad) e 01 (g )

In practice, ¥ is likely to be small for sufficiently large N, which ensures a positive estimate for o2,
although this is not guaranteed if IV is small.
Substituting (11) and (12) into (10), we have

1 1

NY(y,w,q) —3 In|Q| — 3 In (1 + q’Q_lq) (13)
(a'19)*

(1+dQ'q) (0’2 1q)

——1In

N
N vi(+ ad’) " vi—
i=1




The transformed ML estimator is obtained by maximizing the above concentrated log-likelihood
function. Having obtained the ML estimators of v, w and q, (which we denote by 4, & and q), the
MLE of 02 and & can then be computed using (11) and (12). To compute the variance-covariance
matrix of 6 = (4,0,62,%, &) we need to make use of the unconcentrated log-likelihood function
given by (10) and compute its second derivatives, either analytically or numerically. For a fixed T
and as N — oo, using standard results from the asymptotic theory of ML estimation we have

AsyVar(VNO) = H71(0)7

where (using the unconcentrated log-likelihood function given by (10))

o 1 0%0(0)
H(0) = p lim [_N 0000’ } '

A consistent estimator of AsyVar(@) can be obtained as

70|

(14)

where the second partial derivatives are evaluated at the MLE, 0= (’Ay,d),&z,/%, q'). The first and
second derivatives of the log-likelihood function are provided in Section A.3 of the Appendix.

2.2 ARX(1) model

Consider next the case where an exogenous variable is included in model (1) and consider the
augmented AR(1) model (which we denote by ARX(1))

yit:ozz'—l—’yyi,t_l—i—ﬂxit—i—)\ift—i—uit, (iz 1,2,...,N;t= 1,2,...,T). (15)

For simplicity we assume that xz;; is a scalar. Extension to the case of multiple regressors is
straightforward at the expense of notational complexity. Taking the first-difference of (15) and
using Assumption 3 we have

Ayt = YAY; -1 + BAZy + Mg + 1;9¢ + Ay, (t=2,3,..,T). (16)

We assume that the regressor x;; is generated either by

o0 o
Tit =M¢+Ct+?9¢ft+zaj6i,t—j, Z\Gj\ < o0, (17)
=0 =0
or o0 o0
Az =c+ Y9t + Z dj&iytfj, Z ’d]| < 00, (18)
=0 =0

where p,; are fixed effects (which could be correlated with u; and/or €;), and ¥; are random
interactive effects distributed independently of u;; and f;.

Assumption 5 The dynamic process given by (16) has started from y; —s with S finite such that
E(Ay; —si1|Azi, Axgo, ..., Axir) = b for all .

Assumption 6 The interactive effects ¥; in Az have constant variance var(d;) = 0129 and are
uncorrelated with A\; and w; for all i and t.



Assumption 7 The error terms €; in x;; are independently distributed over all © and t, with
E(eit) =0 and E(2) = o2, and independent of w;y for all t' and t.

Remark 5 Assumption 5 imposes the restriction that the expected changes in the initial values are
the same across all individuals, but does not necessarily require that |y| < 1 or that all individuals
should start from the same position.

Remark 6 Assumption 7 requires that x; is strictly ezogenous. This can be relaxed by considering
vector autoregressions as in Holtz-FEakin et al. (1988). See also Binder et al. (2005).

Remark 7 While the time variant individual effects, \;, are treated as random they could be corre-
lated with the regressor(s) z;, such that \; = 7'x; + €;, so long as the Mudlank-Chamberlain device
is used to control for this correlation. However, the ;s cannot be correlated across i.

By recursive substitution we have

S—1 S—1 S—1
Ay = 7 Ay _si1+ 8 Z YAz 11—+ N Z Y g1-j + Z v Auii—j
=0 =0 =0
S—1 S-1
= YAy 511+ Z YAz -+ NiGis + Z v A —j,
=0 =0

where g15 = Z}S:_ol I g1—j- This expression shows that Ay;; contains many unknown quantities
such as unknown parameters or unobserved past variables. However, it is possible to derive an
expression for Ay;; based on observed variables and a finite number of parameters as follows.

Theorem 1 Consider model (16) where x;; follows either (17) or (18). Suppose that Assumptions
2, 8, 5, 6, and 7 hold. Then Ay;1 can be expressed as:

Ayt = b+ TF,AXi + v, (19)

where b is a constant, 7 is a T-dimensional vector of constants, Ax; = (Ax;1, Axso, ..., AmiT)/ and
vi1 is independently distributed across i such that E(v;1) =0 and E(v}) = wo? with 0 <w < K <
00.

Proof. See Section A.1 of the Appendiz. m

Remark 8 This theorem establishes the conditions under which the Mundlak-Chamberlain spec-
ification for the initial observations, Ay;1, is valid. The key condition is the restrictions on the
processes generating Ty or Axg. In our application, since we apply first-differencing before ML
estimation we can allow for inclusion of fixed effects in the x; process, but we must rule out the
presence of fized effects in the processes generating Ax;. See Assumption 6.

Using Theorem 1 and (16) the transformed model can be rewritten as
Ay; = AW + g + &,
where @ = (b, 7,7, 8), & = ;8 + 1, Ayi = (Ayi1, Ayiz, ., Ayir)’, i = (vit, Atya, ..., Auyr) and
1 AX, 0 0
0 O Ayir  Azjp

AW, = (20)

0 0 Ayir1 Az



The rest of the analysis follows identically to the AR(1) case where the final expression for the
log-likelihood function, ¢ (yp,w,q), is given by (13), with the difference that v; is now given by

V; = Ayz' - AWsz, (21)

where ¢ = (b, 7', v, 3)" and AW; is defined by (20).

2.3 Extension of the transformed maximum likelihood to the multifactor case

Consider the extension of model (1) to the multifactor case

Yie = ; +7Yit-1+ &
€ = BN+ u, (i=1,2..,Nit=1,2..T), (22)

where f; and A; are m x 1 vectors of unobserved common effects and random interactive effects,
respectively, the latter distributed independently of u;; and f;. Without loss of generality it is
assumed that g; = Af; # 0 for at least some t = 1,2, ...,T. The remaining parameters are specified
as in Section 2.1. It is assumed that the number of factors m is known and that m < 7. To
accommodate multiple factors the following modified versions of Assumptions 3 and 4 are needed:

Assumption 8 The unobserved factor loadings, A;, are independently and identically distributed
across i and of the individual specific errors, uj;, and the common factor, f;, for all i, j and t, with
fized means, X, and a finite variance. In particular,

where §, is an m X m symmetric positive definite matriz, ||| < K and ||Q,| < K for some
positive constant K < oo.

Assumption 9 The error terms n; and u; are normally distributed.

Under Assumptions 8 and 9 and following similar derivations as in the single factor case we
have

NI(0) o —%mmy—%ln\IerQ'Q*lm (24)

_Tln{ N7 V(924 QQ) v }
2 VO QAN Qe Q) Qo ly [
where @ = ('y,w,vec(Q)')/, Q= a‘lGQ,l/Q with G = (g,,82,....,g7)" and g; = Z;io ngl,j, and
A=1,+ QN 'Q. The restrictions implied by Q = o"lGQTl]/2 are not binding, in the sense that
the log-likelihood function is invariant to the choice of the normalization and they are used to
identify the multifactor structure A'g;. Since A and g; are not separately identified their inner
product can be equivalently written as 8'q; where § = o€, 1 2)\, and q; is the " row of Q. For
details of the derivations see Section A.4 of the Appendix. It is also easily verified that (24) reduces
to (13) when m = 1.

In the case where the panel data model contains exogenous regressors the form of the log-
likelihood function is as in (24), with the difference that v; is now defined by (21).



3 The GMM Approach

In this section we provide details of two different GMM estimators proposed in the literature for
the estimation of dynamic panel data models with interactive effects. We shall then use these
estimators in the Monte Carlo experiments for comparison with the transformed ML estimator
proposed in this paper.

3.1 Ahn, Lee and Schmidt (2013)

Ahn et al. (2001) consider a single factor panel model (without specification of a separate fixed effect
component) which they extend to the multifactor case in Ahn et al. (2013). While they consider
static models with weakly exogenous variables, it is straightforward to extend their analysis to the
dynamic case. As Ahn et al. (2001) is a special case of Ahn et al. (2013), we focus on the latter
and consider the model

Vit = o; + Wi+ Nf + e, (i=1,2,..,.N;t=1,2,....,T)
- W;t(s + X,:ft + €it,
Where Wit = (y@t_l,X;t)/, 5 = ("y,ﬁl)/, 5\1 = (041', Ali, ...,)\mi)l and ‘f:t = (Lflta ---,fmt)/ are (Th X 1)
vectors with m = m + 1, and €;; are cross-sectionally and temporally uncorrelated. The individual

specific effects A; are allowed to be correlated with x;;, while x;; is assumed to be strictly or weakly
exogenous. The model in matrix notation can be written as

yi=Wid +FX; + ¢, (25)

where Y, = (yila---ayiT)/a Wz = (“.{il""’WZT)/’ g; — (Sil,...,SiT), and F = (fl,...,fT)/ isaT x
m matrix. To separately identify F from A;, the authors impose m? restrictions on the factors
themselves such that F = (¥’ 1) where ¥ is a (T — /) X 7 matrix of unrestricted parameters.
Let H= (I;_.,—%), so that HF = (Lp_ =) (¥, 17) = O¢p_n)xm- Then, pre-multiplying
equation (25) by H' removes the unobservable effects so that

Hy, =HW,6 + H'e;,
or
= Wi+ (Ir_s ® ¥) vec(¥) — (vec(Wi)’ ® IT,m) vec(d' @ W) + &; — WE;,
where ¥i = (Uit oo Yim—m)s ¥i = Wi —sii1s o Ui)s Wi = (Wit oo, Wir—i)'s Wi = (Wit g1, ooy Wit )

\I’/: (’lpl, ceey ,lpT—fn)? El = (62‘1, ...,€i7T_ﬁ-L),, and Ez = (gi,T—ﬁH—l: ..‘,El‘T),.
The t*" equation is given by

yir = 8'wit + i — Yy Wb + v, (i=1,.,Nit=1,..,T — ), (26)
where vy = (g5 — ¥}&;). Then, if x; is strictly exogenous, we end up with (7" — m)(T —
m + 1)/2 + kT(T — m) moment conditions given by FE[z;v;] = 0, for t = 1,...,T — m, where
zit = (Yi0, -, Yit—1, X1, -, Xpp)'. In matrix notation the moment conditions can be written as

E[Zivi(8)] = 0, where Z; = diag(z{y, ... Z; 7_z), Vi(0) = (vi1, ..., vi7—m)" and 6 = (8',4") with
P = vec(W).



Then the one-step and two-step GMM estimators are given respectively by

N L -1 L
alstep - arg min ( Z ) (N Z Z{LZ7,> (N Z Z{Lvl(0>> )
i=1 =1 =1

and

N -1 N
1 A A 1
Hgstep = arg min ( ZVZ 1) (N Zzl Zfivi(01St€p)vi(013t€p)’zi> (N lzl Z;Vi(0)> . (27)

The continuous updating GMM estimator (CUE) is given by

A 1 ZN 1 ZN g ZN

The asymptotic covariance matrix of the above estimator is given, respectively, by

-1 —1
0 -1 al 16 x—1A al xr—1A
Var@iue) = N7 (Gl W' Gliten)  Glaseg W' Qstep W Gty (Glagey W Gty

(29)
. . - -1
Var@asep) = N (Ghuuep ey Gosten) (30)
and
) _ a1 (v A—1 A -1
Var(Bous) = N (GlppQc wGovr) (31)
where G j= 9g(;)/00’ for j = 1step, 2step, CUE, with g;(0;) = Z/v;(8;) and g(8,) = N"' N | g:(8;),

~

W =N"1 ZZ]L Z'Z;, and (4;=N—1 sz\il gi(0;)gi(8,). The derivatives involved in Gj are com-
puted numerically.

3.2 Nauges and Thomas (2003)

Nauges and Thomas (2003) consider the single factor dynamic panel model given by
Vit = Wi + U, (1=1,2,..,N;t=1,2,..,7), (32)

where u; = a; + A; ft + €i¢. It is assumed that |y| < 1 with the initial values, y;o, treated as given.
It is further assumed that
E(Oéz) = 0, E()\Z) = 0, E(Eit) = 0,

and
E(yiocit) =0, E(ajei) =0, E(Nigir) =0, E(epess) =0, (33)

fori=1,2,...,N,t=1,2,...,T and t # s. As a first step they first difference to eliminate «; so
that (32) becomes
Ayir = 8 Awyp + Auyy, (34)

where
Auge = Nige + Aeiy,

and g; = Af;. In the second step, following Holtz-Eakin et al. (1988), they perform a quasi-
differencing transformation to obtain

Auit — TtAui,t,1 = Agit — rtAsi,t,l, (Z = 1, 2, ceey N; t= 3,4, ...,T),

10



where 7 = g1/g1—1 = (ft — fi—1)/(fi—1 — fi—2). Using (34) it follows that
Vit = Auy — TtAUz‘,t—l = (Ayit - T'tAyi,t—l) - 6I(Awit - TtAWi,t—1)~

Under the conditions set out in (33), if x;; is strictly exogenous, the following (T'—2)(T'—1)/2+ kT
(T — 2) moment conditions hold:

E[Zit(Auz‘t — TtAUi7t_1)] = 0, (t = 3, 4, ceey T),

/ oy . .
where z;t = (Yi0, .-, Yit—3; X1, -, Xop) . These moment conditions are non-linear in the parameters,
as the nuisance parameters r}s are estimated jointly with the parameter of interest, . The moment
conditions in matrix notation can be written as

E [Zivi(8)] =0,

where Z; = diag(2z}s, ..., 2,r) and v;(0) = (v3, ..., v;7)’. Based on the above orthogonality condi-
tions, and starting from some initial estimate of 8, in the first step a consistent GMM estimator of
the parameter of interest is obtained as

1Y 1 Y AR
ése = . ~ Zelzz -~ Z/HZZ — Z 20
o =arepin (3 vt012 ) (5 ma) (320

where H is a matrix with 2’s on the main diagonal, —1’s on the first sub-diagonal and 0’s else-
where. Two-step and continuous-updating GMM estimators are obtained similarly to (27) and
(28), respectively. The asymptotic covariance matrix is obtained similarly to (29), (30) and (31).

4 Monte Carlo designs

We investigate by means of Monte Carlo simulations the finite sample properties of the transformed
likelihood approach and compare them to those of the GMM estimators of Ahn, Lee and Schmidt
(2013, ALS) and Nauges and Thomas (2003, NT) described above. We begin by considering the
simple AR(1) model followed by the ARX(1) model with an exogenous regressor.

4.1 AR(1) model with a single factor

In this case the observations on y;; are generated as
Vit = o +VYir—1+&y, fori=1,.. ,N;t=-S+1,..,-1,01,.,T,
5“ = Alft + Ui, Usp ~ iidN(O,O’2),

where |y| < 1. To ensure that y;o are correlated with the fixed effects, «;, and the error terms, &;;,
we assume that the AR(1) processes have started at time ¢t = —S with starting values y; _g. It is
then easily seen that

1 75 S—1
- s .
Yio = 1 5 a; +77Yi,-s + jz(:)’iji,j,

and with S sufficiently large we have

1 S—1
Yio = 1 70&' + Z’ijz‘,—j-
=0

11



To deal with the initial values for each ¢ we generate the T'+ 1 + S observations t = -5 + 1, -5 +
2,...,0,1,...,T using y; —s = 0 and discard the first S = 50, and use the remaining 741 observations
in estimation and inference.

For the unobserved common factor, f;, we consider a determinstic and a stochastic option:

P 0 t=-S+1,...,—1,0
L t=1,2,..,T ’

and

fo=ppfia+ /1= phepi, e ~ @dN(0,1), for t = =S +1,...,=1,0,1,.., T.

We consider a relatively persistent case where p; = 0.9 and without loss of generality set f_g = 0.

Under both specifications of f; we also scale the resultant f; values such that 77! Zle fi2=1.
The values f; for t = =S + 1,...,—1,0 are not scaled. The scaling is done to ensure a particular
average value of fit as explained below. In all experiments each f; is generated once and the same
fs are used in all replications of a given experiment.

The factor loadings, A;, are generated independently of the error terms as

Ai=A+mn; with A=1and n; ~idN(0,1).
However, the fixed effects, «;, are allowed to be correlated with the errors by generating them as
ai =T €+ &+ + &) +vi = Nif + 0 + v,

where f = T7! Ethl fr, w; = T71 Zthl wiz and v; ~ dN(0,1). Thus, the fixed effects are
correlated with the errors in contrast to the factor loadings, A;, that are generated independently of
all the other random variables influencing y;;. Note that both options of generating the unobserved
factors yield a non-zero value for f, and the (correlated) fixed effects specification can not be
generated simply by setting f; = 1. This is because our approach to dealing with the unobserved
common factors rules out the factor loadings to be correlated with the errors, u;:, whilst we do not
rule out correlation between the fixed effects and the errors.

Finally, as shown in Section A.5 of the Appendix, the average fit of the panel AR(1) model is
determined by « and does not depend on 02 = Var(u;), and hence we set 02 = 1. For the key
parameter of the model, v, we consider a medium and a high value, namely v = 0.4 and 0.8, and
consider the following combinations of sample sizes, T = {6,10} and N = {150,300, 500}. For the
GMM estimators of Ahn et al. (2013, ALS) and Nauges and Thomas (2003, NT) we report results
for the one-step, two-step and CU GMM estimators. T" = 6 is the smallest value for which the
ALS GMM estimators are computable. For inference we use the standard errors computed based
on the second derivative of the log-likelihood function given in (14) for the ML estimator. For the
GMM estimators, we use the conventional formulas given in (29), (30) and (31). All derivatives are
evaluated numerically.

We report simulation results for the autoregressive parameter . Specifically, we report the bias
and root mean square error (RMSE). In addition, we present size and power estimates. The power
is computed at {y£0.10,v £ 0.05} for the null values of v = {0.4,0.8}. All tests are carried out at
the 5% significance level and all experiments are replicated 1,000 times.
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4.1.1 Results for the AR(1) case

The simulation results for the AR(1) case are presented in Tables 1 to 4.57 In terms of bias and
RMSE, the transformed ML estimator performs well for all cases. As the sample size N and/or T
increases, the RMSE decreases irrespective of the value of the autoregressive parameter v and the
specification used for f;. With regard to inference, the ML estimator performs well in that it has
correct size for all combinations of N and T'. Power performance is satisfactory though there is the
tendency for the ML estimator to display low power for small positive departures from the null.
For example, when v = 0.8, 7' = 6 and N = {150,300}, the power is quite low for the alternative
v = 0.9 when testing the null v = 0.8. This tendency is also evident when f; is generated as a time
trend. Contrary to the well behaved finite sample properties of the transformed ML estimator,
the performance of the GMM estimators are not generally good. In terms of bias and RMSE, the
GMM estimators are substantially worse than the transformed ML estimator. With regard to size,
the one-step ALS-GMM estimator displays empirical sizes close to the nominal level in many cases.
However, its power is much lower as compared to that of the transformed ML estimator.

4.2 ARX(1) model with a single factor

The observations on y;; for the ARX(1) model are generated as

Yio = @+t + BT+ &, fori=1,2,. Nit=-5+1,-5+2,.,01,..,T,
Eit Aift + wit, ui ~ iidN(0,0%).

As in the AR(1) case, for values of |y| not too close to unity we set y; —g = 0 and note that for S
sufficiently large

1 5-1 S—1
yio® it B Z V@i —j + Z V&
v §=0 j=0
The regressors, x;;, are generated as

Tit = by + i fr + Tit, , Tit = ppiz—1 + /1 — p2eit, (35)

with #; _g =0, for t = =S +1,...,0,1,..., T, where |p,| < 1, p; ~ itdN(0,1), e ~ 4dN(0,1) and
ft is generated as in the AR(1) case. We set p, = 0.8 which yields relatively persistence regressors.
We generate the factor loadings independently as

Vi ~ 1dN(0.5,0%), \i ~ iidN(0.5,0%), (36)

SFor the starting values in the optimization routine used to compute the ML estimators, we use Qin; = Yinis
Winis Qini) With v, ~ U[—0.999,0.999], win; ~ U[1,2] and g¢,ini ~ U[—1,1] where g n; is the tth element of qin,.
In addition w needs to satisfy w > (T'— 1)/T since || = 1 + T(w — 1) > 0. Specifically, we use five such sets
of random starting values and choose the largest among the maximum of the log-likelihood values as the estimate
of the ML estimator. Similarly, for the one-step ALS and NT GMM estimators we use five sets of starting values
Oini, aLs= (Vini» Yins) and Oini NT= (Vipi, Tin;) respectively, where 7,,,; ~ U[—0.999,0.999], ¢, ;.; ~ U[—1,1] with
¢t,ini the tth element of ,,,,, and 7¢ in; ~ U[—l, 1] with 7¢ in; the tth element of r;n;. We select the smallest among
the minimum values of the objective function as the estimate of the one-step ALS and NT GMM estimators. For the
two-step and continuous-updating ALS and NT GMM estimators we use the one-step estimates as the starting value
of the optimization routine.

"In certain cases, the Hessian evaluated at the global maximum for the ML estimator was not positive definite.
The simulation draw for these cases was discarded and an additional draw was generated until the total number of
simulations with a positive definite Hessian reached 1,000. The number of these additional draws decreased for a
fixed T" as N increased, and as T increased for all N.
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and to ensure that the fixed effects, «;, are correlated with the regressors, as well as with the errors,

we generate them as
T

a=T7"! sz‘t + Nif + W+ v,
t=1
where as in the AR(1) case, f =T 321 fi, @ = T 321wy and v; ~ 4dN(0,1).
We set the remaining parameters bearing in mind that in the case of ARX(1) panels the average
R? is at least as large as 2. In particular, from the results for the R? derived in Section A.5 of the
Appendix we have that

BVar(Zx) + [(N_l >, 03) (T_l S ff) + 02} 7
FVar(ia) + (NLEN, @) (T 5L, £2) + 0

with the equality holding when § = 0 and where ¢; = $9; + A;. In view of (35) Var(z;) = 1 and

without loss of generality we set 3 = 1. Also, recall that 71 Zthl f? = 1. For comparability with

the AR(1) case we set v = (0.4,0.8) and determine o2, 03, and 0% such that RZ — 72 =0.1. To
this end we note that )
R2 — 2 (1-9%)

Y 14NN 2402

=11

R; > 72

p— 9

=0.1.

Further, for sufficiently large N and noting that \; and ¢; are generated independently (see (36))
it follows that

- 1
N e —p BPof o} + (14 9%

Hence with 5 = 1 we have
_ o (1=-7)
2+0%+03 +02

R2 — A2

2 =0.1.

We set a?\ = a% = 02 and using the above result we obtain

5 0.8—1972
o° = 03 > 0.

Finally, we consider the same combinations of 7"and N as in the AR(1) case, namely 7' = {6, 10}
and N = {150, 300,500}, and discard the first 50 observations basing estimation on the remaining
observations over the period t = 0,1,....T. Note that after first-differencing we end up with T
observations for estimation of v and 5. The standard errors used for inference are based on the
same formulas as those used in the AR(1) case with all derivatives computed numerically.

We report simulation results for the same set of statistics as in the AR(1) case, for both ~y
and f, including size and power. Power is computed for the null values of (v, 3) = {0.4,1.0} and
(v,B8) = {0.8,1.0}. As previously, all tests are carried out at the 5% significance level and all
experiments are replicated 1,000 times.

Under strict exogeneity, for the ALS and NT GMM estimators there are so many moment
conditions and using all of them causes a large finite sample bias. Hence, we use only a subset
of moment conditions for the exogenous variable x;. Specifically, for ALS GMM we use z; =
(Yi0s +oos Yit—1, Tity e z;7)", since wyi and W, in (26) contain ;4 and ; 7—pm, ..., zip. Similarly, for
NT GMM we use zi = (Yi0, ---» Yi,t—m—2, Til, ..., xit) . Recall that m is the number of unobserved
factors which, in the case of current experiments, is set to 1.
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4.2.1 Results for the ARX(1) case

Simulation results for the ARX(1) model are summarized in Tables 5 to 8.8 In terms of bias
and RMSE, the results are very similar to the AR(1) case. As the sample size increases, the
RMSE decreases in all cases. The sizes are close to the nominal level in all cases and, contrary
to the AR(1) case, the power is reasonably high even for v = 0.8 and N = 150 irrespective of
the specification of f;. The augmentation of the AR(1) model with exogenous regressors has also
benefited the GMM estimators who show improved performance as compared to the results obtained
for the AR(1) model. However, the transformed ML estimator continues to outperform the GMM
estimators (sometimes substantially) both in terms of bias and RMSE. In terms of size, all the
GMM estimators exihibit large size distortions in almost all cases. An exception is the one-step
NT-GMM with 7" = 6, v = 0.8 and f; ~AR(1). In this case, the empirical size is close to the
nominal one, but power is lower than the transformed ML estimator.

4.3 AR(1) model with two factors

The observations on y;; for the AR(1) model are generated as
Yit = o +VYit—1+E&y, fori=1,...,N;t=-5+1,..,-1,0,1,..,T
€ = Mifut+ Naifor +uie = Nfy +wi,  wig ~ iidN(0,0%),

where f; = (fit, for) and A; = (A14, Ag;)’, with the initial values of y;; for |y| < 1 dealt with as in
the single factor case.
The unobserved common factors, fp;, are generated as

fft = pféff,t—l + \/ 1- p?‘fgffta Efer ~ ”dN(O7 1)7 for £ = 1,2t = -5+ 1,..,-1,0,1,..,T,

with pr, = 0.9, and without loss of generality f; g = 0. As in the single factor case, we scale the

resultant fy; values such that 7! Z?:l fer? = 1 (the past values fy for t = =S +1,...,—1,0 are
not scaled) to ensure a particular average value of fit.

The factor loadings, A\; = (A1;, Ag;)’ are generated independently of the error terms and all other
variables influencing y;; as

Aoii = XA+ 1y, with A =1 and 5y ~ 4dN(0,1).
The fixed effects, ay, are allowed to be correlated with the errors by generating them as
Q= T_1(€i1 + éig + ...+ £ZT) +v; = )\1if1 + )\QifQ + u; + v;,

where f, = T7! Zthl fu, 0=1,2,1; =T7! Zthl ugt, and v; ~ 15dN (0, 1).
As mentioned earlier, since the average fit of the panel AR(1) model is solely determined by =y
(a result which holds irrespective of the number of factors) we set 02 = 1.

8As starting values, in the case of the ML estimation we use @ini = (@}, Wini,Qln;) Wwith ¢, =
(Binis Tinis Yinis Bini)l7 where b;n; and 7in; are obtained as the OLS estimates of (19), 8,,; ~ UJ0, 1], and the remain-
ing parameters are generated as in the AR(1) case using five sets of starting values. For the one-step ALS and NT
GMM estimators we use @ini, ALS= (YinisBini» Vini) 0 Oini, NT= (VinisBini»Tini) respectively, where 8,,, ~ U[0, 1],
and the remaining parameters are generated as in the AR(1) case using five sets of starting values. For the CUE, for
both ALS and NT we use the parameter estimates obtained from the one-step GMM.
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4.3.1 Results for the AR(1) case

Simulation results for the AR(1) model are provided in Tables 9 and 10. Since the single factor
results showed that the GMM estimators do not work well, we consider here the transformed ML
estimator only. From the tables we find that the behaviour of the proposed estimator for the two
factor case is similar to that of the single factor case. In particular, the bias of the transformed ML
estimator is very small and RMSE decreases as N increases. In terms of inference, sizes are close
to the nominal level and power is relatively high except for some cases with v = 0.8.

4.4 ARX(1) model with two factors

The dependent variable, y;;, for the ARX(1) model is generated as
Yit = QG +YYir—1+ Pri+E&y, fori=12 . Nit=-5S+1,-5+2,.,0,1,..,7T),
Eq = N 4wy, uy ~ iidN(0,0%).

The regressors, x;;, are generated as

Ty = p; + Oify + Ty, By = pulip1 + /1 — pleu, (37)
with i‘i7_5 =0fort= —S+1, ceuy 0, 1, veuy T, where 191 = (7911', 7921’)/7 My ~ iidN(O, 1), Eit ™~ iidN(O, 1),
and fp, £ = 1,2, are generated as in the AR(1) case, and p, = 0.8. The factor loadings 9¥; =
(914, 02;)" and A; = (A1;, A2;)’ are generated independently as

Dg; ~ 1idN(0.5,025), Aoi ~ iidN(0.5,0%,), £=1,2, (38)

and to ensure that the fixed effects, «;, are correlated with the regressors, as well as with the errors,
as in the single factor case we generate them as

o = Ti + Aifi + Aaifa + i + i,
where 7; = T~! Zthl x;t, and the remaining parameters are set as in the two factor AR(1) model.

In setting the remaining parameters, using results in Section A.5 of the Appendix, for the two
factor case we have

o B*Var(Zq) + KN_l Y C%z) (T_l Y f12t> + (N_l Y C%z) (T_l i f22t> + 02} 72 o2
= e '7 )
Y o

B2Var(Zi) + <N_1 Zi\il c%z) (T_l 23;1 f12t> + <N_1 Zz]il ng) (T_l Z?:l f22t> +0?
where ¢g; = 9 + i, £ = 1,2. From (37) we have that Var(Z;) = 1 and we set 8 = 1. For
comparability with the AR(1) case v = (0.4,0.8) and o2, ai\, and 0219, ¢ = 1,2, are determined
such that RZ —~2 =0.1, as in the single factor case. Thus, recalling that 7! Z;‘FZI f€2t =1

_ 17
- 1+N_1Z£1C%¢+N_122‘N=10%i+‘72
and for sufficiently large N since A; and 9; are generated independently (see (38)) we have
1
4

R;—VQ

=0.1,

Nt Zi\il C%i —p /62‘7(%19 + J?)\ +-(1+ 5)2, for ¢ =1,2.

For 8 =1 we then obtain
1-— ’y2

R2 — 4% = =0.1.
Y 3+ 0lg +0t\ + 055+ 03, +0?

Setting J%ﬁ = a%)\ = 0319 = 03)\ = 02 and using the above result yields

9 0.7—72

- > 0.
o 05
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4.4.1 Results for the ARX(1) case

Simulation results for the ARX(1) model are provided in Tables 11 and 12. As in the AR(1) case
only the transformed ML estimator is considered. The results show that bias is very small and that
RMSE decreases as N and 7T increase. In addition, size is close to its nominal value and power is
high in all cases.

5 Conclusion

In this paper we proposed the transformed maximum likelihood estimator for short dynamic panel
data models with interactive fixed effects. This is a natural extension of Hsiao, Pesaran, and
Tahmiscioglu (2002) to incorporate a factor structure in the error, while retaining the advantages
of the transformed likelihood approach. Monte Carlo simulations were carried out to investigate
the finite sample behaviour of the proposed estimator and to compare its performance with several
GMM estimators available in the literature. The simulation results showed that the ML estimator
performs well in finite samples and outperforms the GMM estimators in almost all cases considered.
In our analysis we assumed that the number of factors is known. Estimating the number of factors
in the current setting where 7" is short and N tends to infinity is a topic for future research.
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Table 1: Bias(x100) and RMSE(x100) for the AR(1) model with a single factor (1" = 6)
T=6,v=04, fi ~AR(1)

N =150 N =300 N =500

Estimator | Bias RMSE | Bias RMSE | Bias RMSE

(x100) (x100) | (x100) (x100) | (x100) (x100)

ML 034 626 | 001 427 | 0.16  3.31

ALS(1step) | -17.20  33.97 | -16.65 30.94 | -17.82  29.22
ALS(2step) | -15.94  32.21 | -16.14 29.60 | -16.62 27.89
ALS(CUE) | -16.51 33.99 | -14.99 29.36 | -17.08 28.87
NT(1step) | -58.44 60.78 | -60.38 61.31 | -61.05 61.62
NT(2step) | -57.94 60.32 | -60.58 61.38 | -61.31 61.76
NT(CUE) | -64.14 66.30 | -65.22 65.72 | -65.35  65.64

T=6,v=0.38, ft ~AR(1)
N =150 N =300 N =500
Estimator Bias RMSE | Bias RMSE | Bias RMSE
(x100) (x100) | (x100) (x100) | (x100) (x100)
ML -0.14 7.35 0.04 5.63 0.15 4.71

ALS(1step) | -34.26  48.24 | -28.17 39.85 | -27.57 37.15
ALS(2step) | -35.26  49.17 | -29.50 40.56 | -28.70 37.97
ALS(CUE) | -33.98 50.34 | -27.33  40.68 | -26.74 37.55
NT(1step) | -59.14  85.47 | -65.45 89.77 | -71.95 93.70
NT(2step) | -56.65 82.48 | -60.66 84.75 | -66.43  87.70
NT(CUE) | -57.22 83.70 | -58.49 81.90 |-61.448 83.58

T =6,v=04, fi ~trend
N =150 N = 300 N = 500
Estimator Bias RMSE | Bias RMSE | Bias RMSE
(x100) (x100) | (x100) (x100) | (x100) (x100)
ML 0.23 8.12 -0.02 5.45 0.05 4.16

ALS(1step) | -19.00  33.04 | -19.87 27.96 | -19.84 24.86
ALS(2step) | -18.62  32.37 | -19.63 27.68 | -19.11  23.95
ALS(CUE) | -18.83  34.47 | -19.58 28.67 | -18.95 24.38
NT(1step) | -12.74 54.24 | -20.47 58.26 | -28.74  60.59
NT(2step) | -13.36  55.40 | -21.22 59.06 | -29.30 61.14
NT(CUE) | -18.64 62.90 | -24.75 62.83 | -31.45 63.35

T=26,v=0.38, fi ~trend
N =150 N =300 N =500
Estimator Bias RMSE | Bias RMSE | Bias RMSE
(x100) (x100) | (x100) (x100) | (x100) (x100)

ML -3.21 13.36 | -1.68 10.36 | -0.43 8.34
ALS(1step) | -34.76  51.98 | -34.05 52.22 | -35.43 53.05
ALS(2step) | -37.44 54.36 | -36.70  55.01 | -36.99  54.37
ALS(CUE) | -35.42  56.23 | -34.47 55.11 | -35.13  54.39
NT(1step) | -49.95 63.27 | -61.37 73.58 | -71.26  81.07
NT(2step) | -50.83  64.44 | -61.79 74.83 | -72.50 82.81
NT(CUE) | -60.29 80.38 | -72.93 89.58 | -83.87 96.77

Notes: y;; is generated as yir = o +YYs,1—1+E&p, Ei¢ = i St +uit, use ~ 16dN(0, 02),i=1,2,...,N;t = —49,48,...0, 1, ..., T, with
Yi,—50 = 0 and 02 = 1. The factor is generated as: f; = prfe—1+4/1— p?,afh efr ~ 1wdN(0,1), for t = —49,48,...0,1,..., T,
with f_50 =0, and py = 0.9, in the case where fi ~AR(1); fr = 0 for all ¢ = —49,48,...0, and f; =t for 1,2,..., T, in the case
where f; ~ trend. Under both specifications of f¢, the resultant f; values are scaled such that 7—1 Zthl ft2 = 1. The values of
fi for t = —49, 48, ...0 are not scaled. The factor loadings, A;, are generated as A; = A+n; with A =1 and n; ~ #dN(0,1). The
fixed effects, a;, are generated as oy = T~ (&5 + &+ ...+ &) +vi = A f+1;+v;, where f =T71 Z?:l fe, g =T71 23:1 Wits
and v; ~ #dN(0,1). Each f; is generated once and the same f/s are used throughout the replications. The first 50 observations
are discarded. ML is the proposed transformed maximum likelihood estimator. ALS(j) and NT(j) with j = 1step, 2step, CUE

are the one step, two step and continuous updating GMM estimators of Ahn et al. (2013), and Nauges and Thomas (2003),
respectively. All experiments are based on 1,000 replications.
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Table 2: Bias(x100)

See notes to Table 1.

and RMSE(x100) (7" = 10) for the AR(1) model with a single factor

T =10, v = 04, f; ~AR(1)

N =150 N = 300 N =500
Estimator Bias RMSE | Bias RMSE | Bias RMSE
(x100) (x100) | (x100) (x100) | (x100) (x100)
ML 0.30 4.47 0.01 3.11 -0.09 2.28
ALS(1step) | 15.18 23.26 | 10.06  18.99 6.69 15.39
ALS(2step) | 12.45 20.40 7.03 15.88 3.58 11.42
ALS(CUE) | 11.66  19.92 3.68 13.94 0.91 9.66
NT(1step) | -35.40 41.02 | -43.60 44.20 | -47.11 47.48
NT(2step) | -41.82 47.14 | -51.89  52.29 | -55.49  55.69
NT(CUE) | -56.39 61.07 | -61.56 61.62 | -61.87 61.90
T =10, v = 0.8, f; ~AR(1)
N =150 N = 300 N = 500
Estimator Bias RMSE | Bias RMSE | Bias RMSE
(x100) (x100) | (x100) (x100) | (x100) (x100)
ML 0.30 6.01 0.12 4.59 0.06 3.63
ALS(1step) | -5.35 9.68 -5.01 9.08 -4.51 9.84
ALS(2step) | -8.12 11.72 -7.58 11.15 -6.71 11.49
ALS(CUE) | -3.92 10.87 | -3.49 9.64 -3.04 10.27
NT(1step) 2.32 31.97 0.98 36.27 | -0.05  40.53
NT(2step) | -5.33  34.26 | -5.70  37.08 | -5.72  40.21
NT(CUE) | -7.64 37.24 | -9.28 39.41 | -10.04 39.70
T =10,~v=04, fi ~ trend
N =150 N = 300 N =500
Estimator Bias RMSE | Bias RMSE | Bias RMSE
(x100) (x100)|(x100) (x100)|(x100) (x100)
ML 0.21 4.18 0.21 4.18 -0.09 2.28
ALS(1step) | -9.06 12.94 | -9.06 12.94 6.69 15.39
ALS(2step) | -9.59 13.61 -9.59 13.61 3.58 11.42
ALS(CUE) | -11.77 15.28 | -11.77 15.28 0.91 9.66
NT(1step) | -24.10  52.37 | -24.10  52.37 | -47.11 47.48
NT(2step) | -27.60 55.35 | -27.60 55.35 | -55.49  55.69
NT(CUE) | -24.64 61.13 | -24.64 61.13 | -61.87 61.90
T=6,v=0.8, ft ~trend
N =150 N = 300 N = 500
Estimator Bias RMSE | Bias RMSE | Bias RMSE
(x100) (x100) | (x100) (x100) | (x100) (x100)
ML -0.10 6.92 0.15 5.39 -0.06 4.24
ALS(1step) | -10.74 18.61 | -11.93 21.10 | -13.84 23.54
ALS(2step) | -11.89  16.89 | -12.85 19.63 | -17.46 24.11
ALS(CUE) | -10.15 20.96 | -12.66 24.69 | -16.94 28.01
NT(1step) | -46.57 60.17 | -60.55 72.32 | -75.19  83.16
NT(2step) | -49.44 63.01 | -63.07 75.26 | -78.42 87.33
NT(CUE) | -56.11 77.72 | -77.00 93.18 | -95.74 105.41
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Table 3: Size(%) and power(%) for the AR(1) model with a single factor (1" = 6)
T=6,7 =04, fi ~AR(1)
N =150 N =300 N =500
Power(Hy) Size Power(Hi)| Power(Hi) Size Power(H;i) | Power(H;y) Size Power(Hy)
Estimators \ v|0.30 0.35 0.40 0.45 0.50 | 0.30 0.35 0.40 0.45 0.50 | 0.30 0.35 0.40 0.45 0.50
ML 38.1 145 5.4 12.1 400 | 64.2 23.2 4.7 20.8 655 | 83.8 351 48 286 85.6
ALS(1step) 6.1 48 3.7 38 43 8.5 5.9 4.8 4.2 4.5 13.0 7.0 4.1 3.1 3.2
ALS(2step) 159 13.7 11.6 11.1 109 | 26.0 18.8 14.0 119 11.6 | 33.6 23.2 159 126 11.9
ALS(CUE) 134 11.2 101 9.0 86 | 17.0 11.0 8.3 6.6 6.1 25.0 171 114 8.1 7.7
NT(Istep) 92.3 89.4 86.0 82.1 77.0 | 99.9 99.8 99.1 97.8 96.0 |100.0 100.0 100.0 99.9 99.6
NT(2step) 95.6 94.0 91.7 89.1 83.6 |100.0 99.7 99.3 98.9 98.5 [100.0 100.0 100.0 100.0 99.8
NT(CUE) 99.0 99.0 98.8 97.8 95.4 |100.0 100.0 100.0 100.0 100.0|100.0 100.0 100.0 100.0 100.0
T =6, =08, J ~AR(1)
N =150 N = 300 N = 500
Power(H1) Size Power(Hi)| Power(Hi) Size Power(Hi) | Power(H1) Size Power(Hp)
Estimators \ v|0.70 0.75 0.80 0.85 0.90 | 0.70 0.75 0.80 0.85 0.90 | 0.70 0.75 0.80 0.85 0.90
ML 309 156 5.8 23 5.6 | 422 20.7 6.4 1.7 12.0 | 55.4 25.8 438 2.6 473
ALS(1step) 8.1 64 53 44 3.7 8.8 7.1 5.6 4.6 3.5 8.8 7.7 6.2 4.6 3.6
ALS(2step) [19.1 16.1 13.9 11.8 10.0 | 18.6 15.7 12.7 109 83 | 184 158 128 10.5 8.7
ALS(CUE) 15.1 12.8 109 94 7.8 | 159 13.6 11.8 9.7 7.8 15.6 13.8 11.5 10.0 8.0
NT(1step) 56.1 55.6 55.2 54.5 54.0 | 63.4 63.3 629 62.7 62.7 | 69.2 69.0 689 689 69.7
NT(2step) 59.1 58.6 58.5 58.1 57.6 | 64.3 63.9 63.9 638 642|694 693 693 69.3 705
NT(CUE) 54.1 53.8 53.5 53.3 53.4 | 57.8 57.7T 57.7 57.5 57.7 | 57.6 57.6 57.6 57.7 59.1
T =6,v=04, fi ~trend
N =150 N = 300 N = 500
Power(H1) Size Power(Hi)| Power(H;i) Size Power(H;i) | Power(H;1) Size Power(H;)
Estimators \ v[0.30 0.35 0.40 0.45 0.50 | 0.30 0.35 0.40 0.45 0.50 | 0.30 0.35 0.40 0.45 0.50
ML 28.7 144 6.0 96 239|454 189 50 137 436 | 66.3 24.0 58 21.0 67.6
ALS(1step) 64 54 41 33 26 9.4 6.5 3.8 2.0 1.2 185 13.2 8.0 4.5 2.2
ALS(2step) |14.1 10.8 9.9 82 6.8 | 19.7 152 105 7.6 53 | 271 193 13.0 8.3 5.0
ALS(CUE) 98 82 73 56 4.1 |150 106 7.2 4.7 3.1 | 220 152 100 5.9 3.1
NT(1step) 47.0 45.5 43.1 40.6 38.2 | 67.2 67.5 68.7 71.8 74.0| 783 84.1 90.2 93.7 95.7
NT(2step) 48.8 47.7 475 474 469 | 67.7 693 715 755 788 | 79.5 858 91.0 945 96.5
NT(CUE) 56.6 55.7 56.3 56.7 58.6 | 69.6 71.4 745 787 81.8 | 793 855 915 94.8 96.6
T =6,v=0.8, fi ~trend
N =150 N = 300 N =500
Power(H1) Size Power(Hi)| Power(H;) Size Power(H;i) | Power(H;i) Size Power(H;)
Estimators \ v[0.70 0.75 0.80 0.85 0.90 | 0.70 0.75 0.80 0.85 0.90 | 0.70 0.75 0.80 0.85 0.90
ML 225 16.0 103 53 23 [219 151 7.9 3.1 1.3 [ 252 134 5.1 1.7 1.4
ALS(1step) 41 32 28 1.8 1.1 6.0 4.5 3.0 2.3 1.8 7.3 5.0 3.7 2.8 2.0
ALS(2step) 135 11.5 81 6.8 5.0 | 155 13.3 115 9.7 72 | 204 165 142 107 8.3
ALS(CUE) 100 7.7 59 46 39 | 133 113 93 7.6 6.1 | 15.1 12.2 9.5 7.4 6.6
NT(1step) 32.2 31.7 30.8 30.1 28.2| 46.6 458 44.6 43.7 429 | 60.2 59.6 59.1 57.8 56.9
NT(2step) 31.8 31.0 30.8 30.4 294 | 46.4 456 449 44.0 429 | 59.5 59.0 585 57.8 56.6
NT(CUE) 41.4 41.0 41.0 40.4 40.0 | 52.8 52.7 524 52.0 51.6 | 646 644 64.3 64.0 63.6

See notes to Table 1.
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Table 4: Size(%) and power(%) for the AR(1) model with a single factor (T" = 10)

T =10, 5 = 0.4, fi ~AR(I)
N =150 N =300 N =500
Power(Hy) Size Power(Hi)| Power(Hi) Size Power(H;i) | Power(H;y) Size Power(Hy)
Estimators \ v|0.30 0.35 0.40 0.45 0.50 | 0.30 0.35 0.40 0.45 0.50 | 0.30 0.35 0.40 0.45 0.50
ML 62.5 20.2 6.3 21.6 66.9 | 89.2 379 5.7 38.0 91.1 ] 99.1 584 3.2 548 99.7
ALS(1step) 13.6 16.3 20.0 22.4 253 | 12.1 153 209 258 29.8 | 11.6 142 19.0 23.7 293
ALS(2step) [55.8 60.4 66.9 70.6 75.5 | 51.3 47.2 50.7 584 68.2 | 585 39.9 349 452 63.9
ALS(CUE) |24.9 25.9 29.7 31.7 33.0 | 36.2 29.2 24.0 250 30.0 | 482 30.1 187 20.7 36.5
NT(Istep) 94.3 91.0 86.8 784 68.3 | 99.9 99.7 988 97.7 93.4 |100.0 100.0 100.0 99.9 99.8
NT(2step) 99.1 98.9 98.3 96.7 94.6 |100.0 100.0 100.0 100.0 99.9 |100.0 100.0 100.0 100.0 100.0
NT(CUE) 98.4 98.4 98.3 98.4 98.4 |100.0 100.0 100.0 100.0 100.0|100.0 100.0 100.0 100.0 100.0
T =10, v = 0.8, Ji ~AR(1)
N =150 N = 300 N = 500
Power(H1) Size Power(Hi)| Power(Hi) Size Power(Hi) | Power(H1) Size Power(Hp)
Estimators \ v|0.70 0.75 0.80 0.85 0.90 | 0.70 0.75 0.80 0.85 0.90 | 0.70 0.75 0.80 0.85 0.90
ML 37.0 18.1 4.7 39 158 53.8 249 48 5.0 545|721 338 50 134 845
ALS(1step) |25.6 16.5 4.6 1.1 4.1 | 262 16.6 7.3 2.5 49 | 291 170 7.5 4.6 9.0
ALS(2step) [79.5 74.2 61.3 45.0 35.5| 77.2 70.9 59.1 43.8 35.8 | 72.7 66.7 583 451 37.0
ALS(CUE) 29.0 23.3 180 15.0 176 | 37.7 288 219 157 20.7 | 381 30.3 239 168 21.3
NT(1step) 103 99 86 78 74 |11.8 114 113 11.0 108 | 13.2 13.1 13.1 13.1 139
NT(2step) 21.1 189 172 181 21.1 | 18.0 16.6 15.6 152 195 | 182 174 16.1 164 229
NT(CUE) 25.8 23.2 21.3 219 274 | 23.7 21.7 209 21.3 269 | 198 181 17.6 194 25.0
T =10,~v=0.4, ft ~trend
N =150 N = 300 N = 500
Power(H1) Size Power(Hi)| Power(H;i) Size Power(H;i) | Power(H;1) Size Power(H;)
Estimators \ v[0.30 0.35 0.40 0.45 0.50 | 0.30 0.35 0.40 0.45 0.50 | 0.30 0.35 0.40 0.45 0.50
ML 66.7 23.1 55 236 71.2]92.6 406 48 426 939 99.1 633 4.7 587 99.9
ALS(1step) |23.3 13.7 6.7 2.6 25 | 41.3 32.0 16.6 5.7 0.9 | 482 444 309 11.8 1.7
ALS(2step) [49.2 354 20.2 11.6 10.2 | 69.4 59.0 36.5 157 6.6 | 79.6 753 53.1 21.0 4.9
ALS(CUE) |30.2 22.8 149 9.0 6.5 | 453 389 26.6 11.9 4.7 |541 515 385 164 4.7
NT(1step) 89.3 90.4 90.4 89.2 86.1 | 99.9 99.8 99.8 99.6 99.5 |100.0 100.0 100.0 100.0 100.0
NT(2step) 97.6 97.8 97.6 97.1 96.1 |100.0 100.0 100.0 100.0 100.0|100.0 100.0 100.0 100.0 100.0
NT(CUE) 80.2 80.6 80.6 80.7 80.7 | 97.3 973 973 973 973 | 99.8 99.8 99.8 99.8 99.8
T =10,v=0.8, fi ~ trend
N =150 N = 300 N =500
Power(H1) Size Power(Hi)| Power(H;) Size Power(H;i) | Power(H;i) Size Power(H;)
Estimators \ v[0.70 0.75 0.80 0.85 0.90 | 0.70 0.75 0.80 0.85 0.90 | 0.70 0.75 0.80 0.85 0.90
ML 31.0 155 45 21 113|440 199 54 6.6 394|641 265 48 145 614
ALS(1step) 6.5 28 1.0 03 0.8 | 105 4.5 1.8 1.2 2.0 9.4 5.2 2.3 2.0 3.3
ALS(2step) |41.9 354 25.6 18.1 13.8 | 39.0 31.2 23.1 16.2 150 | 426 388 319 23.0 18.0
ALS(CUE) 194 16.1 14.2 13.2 119 | 25.6 222 193 16.6 16.8 | 32.8 29.7 26.7 24.6 23.2
NT(1step) 47.0 46.0 44.8 43.3 418 | 67.8 673 66.5 657 64.2 | 824 819 81.2 80.6 80.2
NT(2step) 46.7 45.3 446 43.5 43.0 | 63.6 628 623 61.5 604 | 793 79.1 786 779 T7.4
NT(CUE) 479 474 473 47.0 46.9 | 66.8 66.7 66.5 66.2 66.2 | 82.2 82.1 82.1 82.1 82.1

See notes to Table 1.
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Table 5: Bias(x100) and RMSE(x100) for the ARX(1) model with a single factor (17" = 6)
T=6,7v=04,8=10, ft ~AR(])
N =150 N = 300 N =500

Y B Y B Y B

Estimators | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE
(x100) (x100) | (x100) (x100) | (x100) (x100)|(x100) (x100)|(x100) (x100) |(x100) (x100)

ML -0.19 4.29 -0.05 7.41 0.03 3.01 0.05 5.26 -0.05 2.30 0.01 4.08
ALS(1step) | 0.81 16.60 | -3.11 17.23 | -0.87 11.56 | -1.59  11.85 | -1.71 8.16 -0.86 8.51
ALS(2step) | 2.10 17.47 | -5.20  19.40 1.69 11.82 | -4.80 13.42 1.76 8.32 -4.47 9.97
ALS(CUE) | 2.46 22.58 | -7.08 23.84 | -0.70 15.87 | -4.44 15.66 | -2.51 11.59 | -2.93 11.07
NT(1step) -3.70 32.16 4.70 14.58 8.52 24.51 7.37 12.02 15.80 20.97 8.52 10.84
NT(2step) | -6.23  35.96 4.09 16.28 6.58 27.22 6.96 12.90 | 14.76  21.98 8.07 11.01
NT(CUE) | 17.04 41.42 0.60 22.77 | 26.21  35.06 4.72 13.98 | 29.58 31.63 5.70 10.90
T=6,v=038,8=1.0, fi ~AR(1)
N =150 N = 300 N =500

Y B Y B Y B

Estimators | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE
(x100) (x100) | (x100) (x100) | (x100) (x100)|(x100) (x100)|(x100) (x100) |(x100) (x100)

ML -0.06 2.38 -0.07 4.33 -0.10 1.74 0.09 3.14 -0.01 1.32 0.01 2.42
ALS(1step) | -1.35 5.39 3.03 8.29 -2.11 4.17 4.02 6.85 -2.32 3.16 4.29 5.56
ALS(2step) | -0.33 5.20 1.52 7.97 -0.65 3.55 2.02 5.78 -0.67 2.28 2.23 4.26
ALS(CUE) | -0.44 5.90 0.81 8.44 -1.15 3.93 1.87 5.76 -1.21 2.66 1.99 4.32
NT(Istep) | -1.37  14.76 0.51 6.36 5.89 12.26 0.83 4.57 9.39 11.85 0.79 3.65
NT(2step) | -2.45 17.17 0.38 7.20 5.32 13.55 0.69 5.06 9.06 12.37 0.60 3.97
NT(CUE) 8.50 18.47 | -0.09 8.50 14.21  16.97 0.14 5.51 16.50 17.16 0.01 4.22
T=6,y=04,5=1.0, ft ~trend
N =150 N =300 N =500

Y B Y B Y B
Estimators | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE
(x100) (x100) | (x100) (x100)|(x100) (x100) | (x100) (x100) | (x100) (x100)|(x100) (x100)
ML -0.07 5.82 -0.28 8.96 0.07 3.98 -0.08 6.27 -0.07 2.95 0.01 4.77
ALS(1step) | 9.07 36.37 | -13.00 40.27 5.61 36.84 | -8.65  40.08 3.71 37.09 | -6.38  39.69
ALS(2step) | 10.86  36.14 | -16.42 41.33 | 10.57 34.73 | -15.78 39.41 10.68  34.05 | -15.65 38.38
ALS(CUE) 1.58 43.38 -7.24 48.41 -0.94 39.84 -2.94 42.45 -2.13 39.03 -1.24 40.83

NT(1step) 54.52 55.27 -4.96 16.36 59.27 59.32 -5.65 12.47 59.81 59.82 -6.11 10.67
NT(2step) | 55.16 56.00 | -6.97  20.08 | 59.47 59.52 | -8.04 15.34 | 59.87 59.87 | -8.68 13.38
NT(CUE) | 55.52 57.40 | -7.78 27.23 | 59.31 59.43 | -7.13 18.07 | 59.82 59.83 | -6.68 14.17
T=6,7v=08,8=1.0, ft ~trend
N =150 N = 300 N =500

Y B Y B Y B

Estimators | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE
(x100) (x100) | (x100) (x100) | (x100) (x100)|(x100) (x100)|(x100) (x100) |(x100) (x100)

ML -0.09 3.10 -0.14 4.88 -0.11 2.18 0.04 3.44 -0.01 1.65 0.01 2.64
ALS(1step) | 4.65 10.21 -4.82 14.47 4.23 9.69 -3.85 13.19 3.66 9.12 -2.99 12.24
ALS(2step) | 6.54 10.13 | -6.98 13.73 6.95 9.82 -7.09 12.28 7.41 9.79 -7.20 11.61
ALS(CUE) | 4.71 10.38 | -5.36 14.56 4.38 9.43 -4.24 11.94 4.06 8.87 -3.51 10.83
NT(1step) | 18.93 19.50 1.40 6.85 19.86  19.87 1.49 4.93 19.90  19.90 1.44 3.99
NT(2step) | 17.83  18.92 1.24 7.84 19.77  19.80 1.58 5.42 19.89  19.89 1.52 4.26
NT(CUE) | 17.64 19.22 1.67 9.08 19.66  19.71 2.08 6.04 19.84 19.85 2.12 4.70

Notes: ;¢ is generated as yir = o + VYit—1 + BTir + &4y ¢ = Nift + Wity ur ~ #dN(0,02), i = 1,2,...,N;t =
—49,48,...0,1,...,T, with Yi,—50 = 0 and x;; = p; + Gift + Tty ,Liz = p];ji,t71 + /1 *P;%Eity with &; _50 = 0, for t =
—49,48,...0,1,...,T, where p, = 0.8, p; ~ #idN(0, 1), and &;¢ ~ iidN(0,1). The factor f; is generated as in the AR(1) case (see
notes to Table 1). The factor loadings, ¥; and A;, are generated as ¢; ~ iid./\f(O.E),U%) and A; ~ iid]\/’(O.E),O'i), respectively.
The fixed effects, a;, are generated as o; = T~ 1 Zf:l Tit + )\if_—i- u; + v;, where f =71 ZzT:l fe,o s =171 ZzT:1 uit, and
v; ~ itdN(0,1). The remaining parameters are set at 8 = 1, 0’%\ = 0?9 = 02, with 02 = (0.8 —~2)/0.3. Each f; is generated once
and the same f/s are used throughout the replications. The first 50 observations are discarded. ML is the proposed maximum
likelihood estimator. ALS(j) and NT(j) with j = 1step, 2step, CUE are the one step, two step and continuous updating GMM
estimators of Ahn et al. (2013), and Nauges and Thomas (2003), respectively. All experiments are based on 1,000 replications.
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Table 6: Bias(x100) and RMSE(x100) for the ARX(1) model with a single factor (7' = 10)
T =10,y =04,8 =10, f; ~AR(I)
N =150 N = 300 N =500
Y B Y B Y B
Estimators | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE
(x100) (x100) | (x100) (x100) | (x100) (x100)|(x100) (x100)|(x100) (x100) |(x100) (x100)
ML -0.03 2.58 0.12 5.53 -0.10 1.89 0.07 3.99 -0.04 1.42 0.07 3.06
ALS(1step) | 0.62 6.01 -6.28  11.10 0.67 4.60 -6.03 9.11 0.44 3.36 -5.74 7.82
ALS(2step) | 0.90 7.87 | -10.61 16.20 1.55 5.34 | -10.43 13.14 2.04 4.16 | -10.81 12.34
ALS(CUE) | 2.11 12.64 | -9.92  21.91 0.00 8.24 -6.73  13.39 | -1.29 5.51 -5.27 9.33
NT(Istep) | 21.94 26.73 7.16 11.51 | 30.58 31.45 6.63 9.17 33.75  34.16 6.39 8.10
NT(2step) | 20.08 30.04 6.69 14.92 | 31.21  32.96 6.50 10.48 | 34.83  35.68 6.21 8.62
NT(CUE) | 20.45 39.77 3.98 22.90 | 27.29 34.94 6.80 13.07 | 28.77  32.16 7.23 10.48
T=10,7 = 08,8 = 1.0, f; ~AR(L)
N =150 N = 300 N =500
Y B Y B Y B
Estimators | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE
(x100) (x100) | (x100) (x100) | (x100) (x100)|(x100) (x100)|(x100) (x100) |(x100) (x100)
ML -0.04 1.24 0.08 3.03 -0.02 0.89 0.02 2.17 -0.02 0.67 0.03 1.67
ALS(1step) | -0.10 1.75 1.32 4.59 -0.06 1.24 1.32 3.37 -0.09 1.00 1.32 2.82
ALS(2step) | 0.21 2.44 -0.54 5.70 0.63 1.59 -0.68 3.54 0.76 1.31 -0.76 2.71
ALS(CUE) | 0.58 3.78 -1.37 7.84 0.69 1.94 -0.66 4.08 0.59 1.36 -0.49 2.83
NT(Istep) | 11.26 15.39 3.56 5.66 17.35  17.89 3.37 4.63 19.17  19.26 3.36 4.12
NT(2step) 4.78 17.16 2.96 7.32 14.38 16.35 3.01 5.04 17.34 17.84 2.94 4.02
NT(CUE) 4.07 20.70 1.50 10.35 | 12.56  17.06 2.78 5.55 15.27  16.99 2.86 4.30
T =10,v=0.4,8=1.0, ft ~ trend
N =150 N =300 N =500
Y B Y B Y B
Estimators | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE
(x100) (x100) | (x100) (x100)|(x100) (x100) | (x100) (x100) | (x100) (x100)|(x100) (x100)
ML 0.09 3.21 -0.10 6.01 -0.12 2.21 0.00 4.62 0.01 1.76 0.06 3.35
ALS(1step) | 15.28 29.71 | -22.34 36.05 | 15.80 31.79 | -22.74 37.69 | 16.93 33.49 | -23.36 39.17
ALS(2step) | 14.48  30.29 | -23.94 39.68 | 16.55 32.08 | -26.34 41.32 | 19.12 33.90 | -28.93 43.57
ALS(CUE) 6.18 31.25 | -13.34 41.53 2.84 32.14 | -10.09 40.13 4.31 33.29 | -11.11  40.90
NT(1step) 53.85 54.45 -0.06 11.72 59.56 59.58 -0.89 8.76 59.90 59.90 -1.21 6.59
NT(2step) | 53.07  54.25 1.05 18.25 | 59.49  59.51 -0.16  10.97 | 59.90 59.90 | -0.40 7.74
NT(CUE) | 43.81 52.07 2.39 26.83 | 53.89  55.78 7.22 15.00 | 56.43 57.15 8.31 11.77
T=10,v=0.8,83=1.0, ft ~trend
N =150 N = 300 N =500
Y B Y B Y B
Estimators | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE
(x100) (x100) | (x100) (x100)|(x100) (x100)|(x100) (x100)|(x100) (x100) |(x100) (x100)
ML -0.03 1.69 0.02 3.25 -0.03 1.18 -0.02 2.45 0.01 0.89 0.04 1.77
ALS(1step) | 3.77 7.11 -3.49  11.63 2.26 5.44 -1.04 8.92 1.34 3.97 0.69 6.82
ALS(2step) | 4.25 7.03 -5.68  11.12 4.00 5.72 -5.10 8.33 3.72 4.81 -4.35 6.56
ALS(CUE) | 3.13 7.89 -4.75  12.76 2.25 5.35 -3.04 7.81 1.73 3.78 -1.81 5.36
NT(1step) | 19.51 19.64 3.53 5.91 19.90 19.90 3.89 5.18 19.90 19.90 4.06 4.80
NT(2step) | 16.30 18.01 2.61 7.80 19.81 19.82 2.67 5.06 19.90  19.90 2.78 4.08
NT(CUE) | 11.21  19.33 2.28 10.71 | 17.92  18.66 3.48 6.24 18.96  19.17 3.71 5.03

See notes to Table 5.
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Table 7a: Size(%) and power(%) for the ARX(1) model with a single factor (T'= 6, f; ~AR(1))
T=6,7=04,8=1.0, . ~AR(I)
N =150 | N =300 | N =500
8l
Power(H1) Size Power(Hi) [Power(H:1) Size Power(Hp) [ Power(H1) Size Power(Hyp)
Estimators \ v|0.30 0.35 0.40 0.45 0.50 | 0.30 0.35 0.40 0.45 0.50 | 0.30 0.35 0.40 0.45 0.50
ML 68.2 25.0 58 21.6 656|919 389 7.1 425 922 99.0 60.6 59 6I.4 99.0
ALS1(1step) |37.2 22.1 15.2 16.7 26.3 | 48.7 27.1 15.2 15.8 29.8 | 62.4 32.6 15.6 15.0 37.2
ALS1(2step) |45.3 32.8 25.6 28.8 38.9 | 44.1 28.2 19.7 27.9 48.6 | 47.9 25.7 18.0 35.1 63.2
ALS1(CUE) |56.3 48.2 41.7 40.0 46.0 | 62.0 47.1 37.7 36.1 39.5 | 70.1 50.7 35.1 30.5 39.8
NT1(Istep) [29.5 31.6 35.2 38.1 41.4 | 19.8 26.8 35.6 45.5 57.5 | 16.7 30.4 46.1 61.3 73.0
NT1(2step) |41.6 434 45.8 49.4 549 | 33.8 40.0 48.7 53.6 61.8 | 25.4 38.2 51.3 62.3 72.5
NT1(CUE) |54.7 59.8 65.0 71.6 75.7 | 57.1 66.6 74.8 82.5 88.7 | 61.9 77.6 88.0 93.2 96.9
B
Power(H1) Size Power(Hi) [Power(H1) Size Power(H:) [ Power(H:) Size Power(Hip)
Estimators \ 4[0.90 0.95 1.00 1.05 1.10 | 0.90 0.95 1.00 1.05 1.10 | 0.90 0.95 1.00 1.05 1.10
ML 26.3 10.6 3.9 9.7 233|476 14.7 4.2 159 46.3 | 68.0 21.2 4.7 22.0 684
ALS1(1step) |21.7 154 11.5 12.7 17.5 | 27.3 144 85 12.1 22.7 | 34.8 143 7.5 12,5 30.2
ALS1(2step) |34.0 24.5 204 21.8 27.3 | 44.1 26.9 158 14.1 21.9 | 60.5 32.8 16.7 11.8 23.0
ALS1(CUE) [41.1 324 29.5 30.2 344 | 43.3 294 20.7 21.5 29.9 | 50.7 28.8 17.1 16.5 31.0
NT1(1step) |13.3 12.8 14.4 21.0 34.2 | 10.1 11.0 22.1 39.7 61.2 | 6.6 104 32.1 60.1 84.6
NT1(2step) [23.7 21.5 24.2 32.1 445 | 175 17.1 26.8 44.5 62.0 | 114 14.2 35.0 61.3 81.9
NT1(CUE) [32.9 30.4 34.1 394 46.6 | 24.3 21.5 27.1 38.5 53.4 | 20.8 17.4 30.6 47.4 70.1
T=6,y=038,8=1.0,ft ~AR(1)
N =150 | N =300 | N =500

Power(H1) Size Power(H:) [ Power(Hi) Size Power(Hp) [ Power(H1) Size Power(Hyp)
Estimators \ 7 [0.70 0.75 0.80 0.85 0.90 | 0.70 0.75 0.80 0.85 0.90 | 0.70 0.75 0.80 0.85 0.90
ML 99.8 56.1 5.1 56.8 97.2 [100.0 86.2 6.1 81.6 100.0|100.0 97.3 6.4 95.7 100.0
ALS1(1step) [92.9 55.9 14.6 18.7 62.6 | 99.3 81.5 16.5 23.4 80.7 | 99.9 95.7 21.2 27.8 94.4
ALS1(2step) |91.2 55.8 19.8 36.2 77.4 | 98.8 71.7 13.9 43.6 94.0 |100.0 83.8 11.4 62.8 99.8

ALS1(CUE) |90.9 59.8 24.7 37.0 74.9 | 98.6 76.4 19.1 394 90.4 | 99.9 88.4 16.6 52.3 98.5
NT1(1step) 9.2 6.6 50 40 6.3 27 16 16 7.1 167 | 03 03 6.2 173 30.9
NTI1(2step) |14.3 11.8 10.4 109 15.1 | 54 43 4.5 156 272 | 0.9 0.7 11.5 24.1 36.2
NT1(CUE) 87 82 6.8 116 289 | 2.2 2.0 5.8 356 586 | 00 0.2 32.6 64.4 78.6

Power(H1) Size Power(Hi) [Power(H1) Size Power(H:) [ Power(H;) Size Power(Hip)

Estimators \ £[0.90 0.95 1.00 1.05 1.10 | 0.90 0.95 1.00 1.05 1.10 | 0.90 0.95 1.00 1.05 1.10
ML 619 2I.1 51 19.1 62.0 | 878 34.6 54 374 898 [ 988 540 4.6 550 985
ALS1(1step) |24.0 11.2 125 31.8 58.1 | 28.1 9.4 19.2 54.8 849 | 37.0 53 214 751 979
ALS1(2step) [40.9 20.8 19.1 34.0 60.1 | 50.3 17.5 17.0 47.1 82.6 | 68.5 16.8 154 62.5 95.6
ALS1(CUE) |[43.0 23.8 21.6 33.8 57.1 | 52.5 19.4 17.5 46.7 81.6 | 70.5 20.3 14.9 59.6 94.4
NT1(1step) |32.7 11.7 5.1 14.7 40.2 | 54.0 129 55 254 65.2 | 73.1 22.7 4.8 37.5 83.4
NT1(2step) |42.4 21.7 13.2 23.9 48.1 | 58.2 20.8 10.6 30.5 66.3 | 75.2 27.2 8.4 39.5 823
NT1(CUE) 44.7 26.7 18.0 25.0 45.0 | 59.6 24.9 124 27.6 589 | 76.7 31.6 9.2 32.2 76.3

See notes to Table 5.
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Table 7b: Size(%) and power(%) for the ARX(1) model with a single factor (T' = 6, f; ~ trend)

T=6,y=04,5=1.0, ft ~trend

N =150 [ N =300 I N =500
Power(H1) Size Power(H:) [ Power(H:1) Size Power(H1) | Power(H;p) Size Power(Hyp)
Estimators \ v[0.30 0.35 0.40 0.45 0.50 | 0.30 0.35 0.40 0.45 0.50 | 0.30 0.35 0.40 0.45 0.50
ML 471 189 6.3 135 432[ 716 281 54 265 732|917 415 44 370 921
ALS1(1step) [59.9 51.0 44.1 38.9 38.6 | 79.5 67.4 56.8 47.0 40.4 | 90.6 81.7 71.1 579 46.5
ALS1(2step) |68.4 60.2 53.6 489 479 | 729 62.5 52.2 44.7 43.7 | 799 679 542 454 428
ALS1(CUE) |87.3 823 76.5 70.7 64.0 | 95.3 90.3 83.3 73.6 624 | 985 97.2 92.1 83.6 69.6
NT1(Istep) |78.8 85.2 88.6 91.6 94.0 | 99.2 99.8 99.9 99.9 100.0|100.0 100.0 100.0 100.0 100.0
NT1(2step) |87.6 90.6 92.4 94.3 959 | 99.5 99.6 99.8 100.0 100.0|100.0 100.0 100.0 100.0 100.0
NT1(CUE) [90.8 92.5 93.3 945 95.0 | 98.8 99.1 99.3 99.5 99.6 |100.0 100.0 100.0 100.0 100.0
B
Power(H1) Size Power(Hi) [ Power(H1) Size Power(Hi) | Power(H1) Size Power(Hy)
Estimators \ 4]0.90 0.95 1.00 1.05 1.10 | 0.90 0.95 1.00 1.05 1.10 | 0.90 0.95 1.00 1.05 1.10
ML 217 93 69 89 203385 130 59 13.6 359535 185 46 195 56.7
ALS1(1step) [37.0 36.3 36.5 38.6 41.9 | 36.6 37.7 43.0 50.1 57.5 | 39.0 43.3 52.7 64.0 74.1
ALS1(2step) |44.0 43.0 45.0 46.8 51.4 | 39.5 38.8 41.3 47.0 53.6 | 40.3 38.1 41.8 49.2 572
ALS1(CUE) |51.8 55.0 59.0 64.8 70.2 | 46.7 54.4 63.5 724 81.2 | 51.7 621 733 852 924
NT1(1step) |22.1 149 10.2 9.3 104 | 370 21.8 11.6 7.9 10.3 | 523 31.6 153 9.7 113
NT1(2step) 37.1 30.1 234 20.6 22.6 | 50.4 35.5 244 16.5 15.5 | 64.2 446 285 176 15.6
NT1(CUE) |42.3 39.6 383 375 37.1|48.9 39.0 29.9 26.2 27.7 | 554 419 304 244 259
T=6,y=038,8=1.0, ft ~trend
N =150 N =300 | N =500
8l
Power(H1) Size Power(H:) [ Power(Hi1) Size Power(Hi) | Power(H;p) Size Power(Hyp)
Estimators \ v[0.70 0.75 0.80 0.85 0.90 | 0.70 0.75 0.80 0.85 0.90 | 0.70 0.75 0.80 0.85 0.90
ML 92.1 404 6.1 39.0 89.0 [100.0 68.0 5.8 64.8 99.3 [100.0 87.2 57 86.6 99.9
ALS1(1step) [82.9 66.3 49.1 52.1 69.8 | 949 79.8 48.9 52.1 785 | 98.2 888 48.0 5H4.1 87.1
ALS1(2step) |75.0 65.1 57.1 69.3 87.1 | 87.1 66.0 56.2 79.4 97.3 | 91.5 67.1 62.6 89.8 99.5
ALS1(CUE) |80.6 71.6 585 62.1 76.8 | 92.2 79.8 52.8 60.7 87.4 | 979 86.1 49.6 645 94.4
NT1(1step) 05 04 03 03 07 |00 00 00 00 29|00 00 00 14 4038
NT1(2step) 04 03 03 04 20|00 00 00 01 86 | 00 00 01 42 5538
NT1(CUE) 1.1 10 06 07 25|00 00 00 01 85|00 00 00 41 537
B
Power(H1) Size Power(Hi) [ Power(H1) Size Power(Hi) | Power(H1) Size Power(Hy)
Estimators \ 4[0.90 0.95 1.00 1.05 1.10 | 0.90 0.95 1.00 1.05 1.10 | 0.90 0.95 1.00 1.05 1.10
ML 579 188 5.7 17.3 54.8 821 337 52 31.1 840 [ 971 471 52 489 96.5
ALS1(1step) |50.8 43.4 38.8 34.4 36.0 | 50.9 43.0 47.9 59.2 614 | 51.4 40.0 52.0 77.8 784
ALS1(2step) |66.1 53.6 43.0 37.0 34.5 | 75.6 58.2 48.7 46.1 46.8 | 85.4 63.9 53.4 57.7 578
ALS1(CUE) |60.3 48.9 43.6 424 46.1 | 63.1 50.1 45.0 51.4 ©58.7 | 68.7 46.6 47.7 69.1 73.1
NT1(1step) |26.3 9.6 50 17.8 41.8 | 449 11.0 55 276 66.8 | 63.5 162 7.5 434 86.5
NT1(2step) |37.0 18.4 15.1 26.7 49.5 | 479 15.5 10.1 34.7 70.0 | 65.0 19.8 11.0 474 86.5
NT1(CUE) |38.7 21.1 21.3 324 514|464 16.0 145 38.8 71.8 |59.1 180 141 51.6 89.0

See notes to Table 5.
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Table 8a: Size(%) and power(%) for the ARX(1) model with a single factor (7" = 10, f; ~AR(1))

T =10,v=04,8=1.0, fi ~AR(1)
I N =300 I N =500
b

Power(H1) Size Power(Hi) | Power(H;) Size Power(Hi) | Power(Hi) Size Power(Hp)
Estimators \ v| 0.30 0.35 0.40 0.45 0.50 | 0.30 0.35 0.40 0.45 0.50 | 0.30 0.35 0.40 0.45 0.50
ML 97.1 473 52 485 96.4 [100.0 79.0 6.0 740 99.9 [100.0 93.5 4.5 93.8 100.0
ALS1(1step) | 45.0 15.2 6.8 21.7 54.5 | 68.0 223 7.7 339 76.7| 874 333 7.1 450 90.0
ALSI1(2step) | 70.0 50.6 45.2 59.9 77.6 | 75.4 38.5 30.5 61.7 89.9 | 834 37.1 282 76.9 97.9
ALS1(CUE) | 72.1 64.7 60.6 66.4 73.8 | 79.9 63.5 488 51.2 72.7| 920 726 39.7 41.1 7838
NT1(1step) | 36.5 53.8 64.6 75.7 82.1 | 79.5 91.9 96.6 98.8 99.5 | 98.2 99.6 99.9 100.0 100.0
NT1(2step) | 67.0 72.6 77.0 81.4 85.8 | 81.8 91.4 96.0 97.2 986 | 96.3 983 99.5 99.9 100.0
NT1(CUE) 83.0 84.5 84.0 84.3 83.0 | 76.5 81.4 85.0 87.2 88.6 | 80.3 86.2 91.7 95.1 964
B
Power(H1) Size Power(Hi) | Power(H1) Size Power(H1) | Power(H1) Size Power(Hp)
Estimators \ 4] 0.90 0.95 1.00 1.05 1.10 | 0.90 0.95 1.00 1.05 1.10 | 0.90 0.95 1.00 1.05 1.10
ML 424 139 42 146 437|722 239 49 243 711]90.1 358 53 37.0 91.2
ALSI(Istep) | 48.2 29.9 13.7 52 7.2 | 731 443 177 75 102|864 59.1 234 75 16.2
ALS1(2step) | 82.2 69.6 55.2 44.5 40.3 | 92.3 79.6 584 356 25.0 | 98.1 90.9 70.8 42.5 20.0
ALS1(CUE) | 71.8 65.5 60.6 59.2 59.1 | 76.2 60.3 47.1 41.8 43.6 | 84.5 63.7 41.1 289 42.1

N = 150

NT1(1step) 9.6 10.5 19.1 37.5 583 | 11.7 10.1 24.2 527 80.5| 159 89 322 707 93.3
NT1(2step) | 49.2 45.2 49.6 60.3 71.3 | 31.0 28.3 40.8 62.0 81.5| 285 19.9 44.0 714 91.6
NT1(CUE) | 63.9 63.7 63.6 67.8 72.6 | 43.9 43.1 52.3 64.1 76.6 | 34.5 32.8 53.3 72.7 89.2

T =10,7 = 0.8, 5 = 1.0, f ~AR(])
N =150 I N =300 [ N =500

o
Power(H1) Size Power(Hi) | Power(H;) Size Power(Hp) | Power(Hi) Size Power(Hp)
Estimators \ v | 0.70 0.75 0.80 0.85 0.90 | 0.70 0.75 0.80 0.85 0.90 | 0.70 0.75 0.80 0.85 0.90

ML 100.0 98.9 4.5 96.7 100.0[100.0 100.0 4.6 100.0 100.0[100.0 100.0 5.0 100.0 100.0

ALS1(1step) | 99.1 79.9 4.0 75.0 99.1 | 98.8 96.6 4.2 954 988 | 99.0 98.7 5.0 983 99.0
ALS1(2step) |100.0 87.4 40.0 89.3 99.8 [100.0 96.4 23.4 99.5 100.0|100.0 99.6 24.8 100.0 100.0
ALS1(CUE) | 94.6 77.8 51.0 83.6 95.6 |[100.0 91.3 33.5 97.9 100.0|100.0 99.0 24.8 99.8 100.0
NT1(1step) 28 1.9 75 36.8 53.0 | 0.0 1.6 63.0 813 90.1 | 0.0 67.8 93.5 988 99.7
NT1(2step) 23.2 45.7 53.7 59.2 64.5 | 2.4 40.8 61.7 751 839 | 0.2 67.0 821 923 96.9
NT1(CUE) 27.1 60.1 729 73.6 743 | 6.8 50.7 66.7 735 779 | 2.3 62.6 732 80.5 878

B
Power(H1) Size Power(Hi) | Power(H1) Size Power(Hi) [ Power(H1) Size Power(Hy)
Estimators \ 4] 0.90 0.95 1.00 1.05 1.10 | 0.90 0.95 1.00 1.05 1.10 | 0.90 0.95 1.00 1.05 1.10
ML 91.0 37.3 50 394 916996 65.1 59 655 99.3]100.0 849 5.1 855 100.0
ALS1(1step) | 499 152 6.1 32.0 72.7 | 79.0 21.8 7.2 51.6 942|935 345 84 722 09838
ALS1(2step) | 83.5 57.1 39.4 522 77.7 | 96.3 64.1 21.7 488 92.0 | 99.8 781 17.7 56.9 98.2
ALS1(CUE) | 79.7 61.7 46.7 55.0 72.7 | 94.3 63.3 27.0 51.8 89.4 | 99.1 742 194 62.2 984

NT1(Istep) 303 7.0 13.2 51.5 86.5 | 54.7 7.5 194 758 982 | 752 93 285 925 999
NT1(2step) 61.9 42.8 49.3 70.3 86.7 | 70.0 25.8 33.5 76.8 96.5 | 85.2 23.5 32.1 885 99.9
NTI1(CUE) 70.7 59.5 57.7 66.6 78.2 | 69.5 344 385 72.6 94.7 | 823 27.8 36.0 86.2 99.7

See notes to Table 5.
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Table 8b: Size(%) and power(%) for the ARX(1) model with a single factor (T' = 10, f; ~ trend)
T =10,v=0.4,8=1.0, ft ~trend
N =150 [ N = 300 ] N =500
8l
Power(H1) Size Power(Hp) [ Power(H1) Size Power(H;) | Power(Hi) Size Power(Hp)
Estimators \ v| 0.30 0.35 0.40 0.45 0.50 | 0.30 0.35 0.40 0.45 0.50 | 0.30 0.35 0.40 0.45 0.50
ML 85.3 333 44 342 88.4 995 62.1 4.3 58.0 99.8 [100.0 80.7 4.9 83.2 100.0

ALS1(1step) | 47.1 37.2 36.1 43.7 53.6 | 62.1 48.5 42.1 44.1 56.2 | 79.1 62.3 47.5 46.2 55.5
ALS1(2step) | 74.6 68.3 64.1 67.1 729 | 75.2 62.1 56.4 61.0 719|838 651 53.1 59.1 775
ALS1(CUE) | 84.2 77.5 73.7 70.6 68.7 | 93.7 90.9 825 71.2 54.6 | 93.5 929 898 77.6 53.0
NT1(1step) 96.4 98.6 99.4 99.6 99.8 |100.0 100.0 100.0 100.0 100.0|100.0 100.0 100.0 100.0 100.0
NT1(2step) 96.3 97.6 98.4 99.0 99.6 |100.0 100.0 100.0 100.0 100.0|100.0 100.0 100.0 100.0 100.0
NT1(CUE) 90.4 91.7 92.0 92.8 928 | 96.2 97.2 98.1 981 98.1 | 98.7 98.8 99.2 994 994

Power(H1) Size Power(Hi) ] Power(H:) Size Power(Hy) [ Power(H;1) Size Power(Hyp)
Estimators \ 8] 0.90 0.95 1.00 1.05 1.10 | 0.90 095 1.00 1.05 1.10 | 0.90 0.95 1.00 1.05 1.10
ML 38.2 13.0 5.0 11.0 373 |63.8 239 6.6 223 630839 334 53 340 86.7
ALS1(1step) 53.2 45.1 379 33.5 324 | 57.7 459 399 364 39.8 | 58.2 483 421 41.1 473
ALS1(2step) | 74.1 68.2 63.5 61.7 60.2 | 75.6 66.5 55.7 49.9 50.5 | 83.3 69.4 57.1 492 514
ALS1(CUE) | 65.5 65.1 64.9 68.5 69.6 | 44.7 49.2 589 69.8 804 | 40.4 484 64.0 786 88.0
13.6 284 | 494 215 80 143 352

0

2

NT1(1step) 21.3 12.2 9.5 125 21.7 | 33.7 16.8 9.5
NT1(2step) 55.7 52.7 51.7 53.1 58.0 | 46.1 32.4 27.1 33.7 47.2 | 51.5 30.3 19. 28.4  49.7
NT1(CUE) 63.1 62.0 65.0 66.4 70.0 | 36.9 38.7 48.6 61.5 70.6 | 23.2 27.4 46. 67.8 85.1
T =10,v=0.8,83=1.0, ft ~trend
N =150 | N =300 | N =500
i8d

Power(H1) Size Power(Hp) | Power(H;1) Size Power(Hp) | Power(Hi) Size Power(Hq)
Estimators \ v | 0.70 0.75 0.80 0.85 0.90 | 0.70 0.75 0.80 0.85 0.90 [ 0.70 0.75 0.80 0.85 0.90
ML 100.0 86.7 5.6 83.8 100.0[100.0 99.6 5.6 98.1 100.0[100.0 100.0 5.5 100.0 100.0
ALS1(1step) | 90.3 47.4 28.1 70.4 923 | 96.6 69.1 21.4 80.7 97.1 | 97.7 842 16.0 91.0 97.7
ALS1(2step) 93.5 68.7 63.5 89.9 99.3 | 97.1 56.4 63.7 99.3 100.0| 99.3 522 75.0 99.9 100.0
ALS1(CUE) | 90.0 72.5 70.7 82.6 92.8 | 979 759 51.8 884 99.8 | 99.5 84.7 43.4 96.9 100.0
NT1(1step) 0.1 01 01 38 496 | 0.0 .0 0.2 547 993 | 0.0
NT1(2step) 1.5 73 59.3 786 84.6 | 0.0 0 615 99.1 999 | 0.0
NT1(CUE) 12.5 19.6 63.7 764 789 | 0.5 5 49.6 83.5 89.4 | 0.0
B
Power(H1) Size Power(Hi) ] Power(H:) Size Power(Hy) [ Power(H;1) Size Power(Hp)
Estimators \ 8] 0.90 0.95 1.00 1.05 1.10 | 0.90 1.00 1.05 1.10 | 0.90 0.95 1.00 1.05 1.10
ML 86.6 33.8 5.8 342 875|985 583 6.6 56.6 989 [100.0 79.7 5.0 82.1 100.0
ALS1(1step) 44.8 284 22.1 32.6 51.6 | 55.6 26.9 179 429 782|659 204 149 59.7 94.7
ALS1(2step) | 85.8 70.9 53.9 53.3 64.4 | 96.9 79.8 44.0 342 66.0 | 99.9 91.3 425 258 774
ALS1(CUE) | 78.0 68.0 60.6 61.3 67.3 | 89.8 64.7 38.7 46.3 774|972 71.7 270 503 90.0
NT1(1step) 28.1 6.6 12.7 44.0 824 | 445 7.8 228 755 983|620 6.1 348 934 999
NT1(2step) | 61.8 46.7 46.8 63.8 82.8 | 67.4 27.7 30.7 71.0 949 | 81.0 22.8 283 845 99.6
NT1(CUE) 66.0 59.4 59.2 66.3 78.1 | 59.3 29.7 41.1 747 93.1 | 69.6 21.0 41.6 879 99.4

0.0 23.8 99.7 100.0
4 95.0 100.0 100.0
6 81.0 92.0 95.5

o
Ne)
St

See notes to Table 5.
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Table 9: Bias(x100) and RMSE(x100) of the transformed ML estimator for the AR(1) model

with two factors

T=6,7=04 |1 =107 =04
Bias RMOE | Bias RMGSE
N | (x100) (x100) | (x100) (x100)
150 004 691 | -027 595
300| 0.05  4.81 | -0.12  4.12
500| -0.10 353 | -0.02  3.19
T=6,7y=08 [T =10,7y=038
Bias RMOE | Bias RMGSE
N | (x100) (x100) | (x100) (x100)
150 -1.47 756 | -2.27  8.60
300| -0.59 579 | -0.90 6.33
500| -0.01 503 | -0.20 4.94

Notes: y;¢ is generated as yit = i + VYi,t—1 + &ips Eix = Mifie + X2ifor + i, e ~ 9dN(0,02), i = 1,2,...,N;t =
—49,48,...0,1, ..., T, with y; _50 = 0 and 02 = 1. The factors are generated as: fp; = prefeit—1 +4/1 7p?cesfgt, Efor ~
WdN(0,1), t = —49,48,...0,1,...,T, with f; _50 = 0, and pre = 0.9 for £ =1,2. The resultant fg; values are scaled such that
T-1 23:1 fer? = 1. The values of f; for t = —49,48,...0 are not scaled. The factor loadings are generated as Ag; = A + Neis
with A = 1 and n,; ~ #idN(0,1) for £ = 1,2. The fixed effects, a;, are generated as o; = T 1(&;1 + &g + oo + &) +v5 =
Mif1 + A2ifa + @; + v;, where f = T-1 23:1 for, £ =1,2,a4; =T ZzT:1 uit, and v; ~ itdN(0,1). Each fg is generated
once and the same flfts are used throughout the replications for £ = 1,2. The first 50 observations are discarded. ML is the
proposed maximum likelihood estimator. All experiments are based on 1,000 replications.

Table 10: Size(%) and power(%) of the transformed ML estimator for the AR(1) model with two

factors

T=6,,=04 T=10,7=04
Power(H1) Size Power(H;) |Power(H;:) Size Power(H1)
N\ ~[0.30 0.35 0.40 0.45 0.50 [0.30 0.35 0.40 0.45 0.50
150 [37.8 16.7 5.0 9.4 30.3 [41.5 186 5.6 9.2 34.6
300 |59.9 22,5 5.2 16.5 57.7 655 252 5.0 17.5 66.8
500 |79.0 30.5 4.5 263 81.3 |84.1 34.7 4.3 31.8 88.7

T=6,7=08 T=10,7 =038
Power(H1) Size Power(H;) |Power(H;) Size Power(Hi)
N\ ~[0.70 0.75 0.80 0.85 0.90 [0.70 0.75 0.80 0.85 0.90
150 [34.8 17.0 6.7 1.7 1.4 |326 178 7.7 50 9.1
300 |41.7 209 56 0.7 53 [395 189 5.1 4.2 132
500 |50.8 23.7 55 1.3 253 |47.6 20.0 3.8 4.7 334

See notes to Table 9.
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Table 11: Bias(x100) and RMSE(x100) of the transformed ML estimator for the ARX(1) model
with two factors
T=6 T=10
~ =04 B=1.0 ~ =04 B=1.0
N | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE
(x100) (x100) | (x100) (x100)|(x100) (x100) | (x100) (x100)
150 -0.16 3.82 | 036 586 | 0.00 205 | 001 4.14
300| -0.09 2.64 | -0.17  4.27 | 0.03 142 | -0.02  3.03
500| -0.12  2.01 | -0.02 329 | 0.00 1.08 | 0.08 2.21
T=6 T=10
7 =08 B=1.0 7 =08 B=1.0
N | Bias RMSE | Bias RMSE | Bias RMSE | Bias RMSE
(x100) (x100) | (x100) (x100)|(x100) (x100)|(x100) (x100)
150 0.01 146 | 0.07 232 | 0.0l 069 | 0.02 157
300| -0.02 1.04 | 001 1.67 | 0.0l 052 | -0.03 1.8
500| -0.03  0.77 | -0.04 1.31 | -0.02 039 | 0.0l  0.86

Notes: y;¢ is generated as yir = o +YYit—1 + BTit + &4, Eix = MaS1e + A2i far + wit, uir ~ 1tdN(0, 0?),i=1,2,...,N;t =
—49,48,...0,1,..., T, with y; _50 = 0 and @i = p; + 914 f1e + D24 far + Lir, » Eir = ppdir—1 + /1 — p2eir, with & _50 = 0, for
t=—49,48,...0,1,...,T, where p, = 0.8, u; ~ iidN(0,1), and ;1 ~ itdN(0,1). The factors fs, £ = 1,2, are generated as in the
AR(1) case (see notes to Table 1). The factor loadings are generated as 9¢; ~ #idN(0.5,0%,) and Ag; ~ iidN(0.5,02,) for £ = 1,2,
respectively. The fixed effects, o, are generated as o = Z;+A14 f1+ 24 fo+;+v;, where T; = T 1 Z?:l oy, T71 Z?:l fzzt =1,
a; = T71 Z?:l uit, and v; ~ dN(0,1). The remaining parameters are set at 8 = 1, 0'%19 = 0’%)\ = Ugg = J%/\ = o2, with
02 = (0.7—~%)/0.5. Each fy is generated once and the same f},s are used throughout the replications for £ = 1,2. The first 50
observations are discarded. ML is the proposed maximum likelihood estimator. All experiments are based on 1,000 replications.

Table 12: Size(%) and power(%) of the transformed ML estimator for the ARX(1) model with

two factors
T=6,7=04p8=10 | T=10,7=04 8=10

0l
Power(H1) Size Power(H:i) | Power(H1) Size Power(Hq)
N\~|030 035 040 0.45 0.50 | 0.30 0.35 0.40 0.45 0.50
150 | 785 279 49 30.5 73.7]998 710 6.0 70.8 99.7
300 | 974 496 5.1 474 96.1 [100.0 93.9 4.9 93.8 100.0
500 [100.0 71.9 4.4 683 99.8 [100.0 99.6 5.4 99.5 100.0
B
Power(H;) Size Power(H;p) | Power(H1) Size Power(Hi)
N\~|090 095 1.00 1.05 1.10 | 0.90 0.95 1.00 1.05 1.10
150 | 36.6 109 4.6 14.0 403 | 68.7 23.6 5.3 23.7 684
300 | 69.1 248 5.6 206 642|922 398 7.1 412 916
500 | 86.5 34.2 5.5 33.5 856 |99.1 60.3 53 620 99.2
T=6,7=08 =10 T=10,7=08, 5=10

o
Power(H;) Size Power(H;) | Power(H1) Size Power(Hi)
N\~|0.70 0.75 0.80 0.85 0.90 | 0.70 0.75 0.80 0.85 0.90
150 [100.0 93.5 4.8 91.6 100.0|100.0 100.0 4.0 100.0 100.0
300 [100.0 99.9 5.7 99.3 100.0|100.0 100.0 5.3 100.0 100.0
500 |100.0 100.0 4.4 100.0 100.0|100.0 100.0 4.9 100.0 100.0

B
Power(H;) Size Power(H;) | Power(H1) Size Power(Hq)
N\~|090 095 1.00 1.05 1.10 | 0.90 0.95 1.00 1.05 1.10
150 | 98.9 545 4.6 56.2 98.8 [100.0 87.1 5.1 89.4 100.0
300 |100.0 83.5 4.5 85.0 100.0|100.0 99.1 6.3 99.4 100.0
500 |100.0 96.7 4.7 97.0 100.0|100.0 100.0 4.6 100.0 100.0

See notes to Table 11.
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Appendix
A.1 Proof of Theorem 1

The mean of Ay;; conditional on Ay; —g41 and Az;1—j, (7 =0,1,2...) is given by

Ci1 = E(Aya|Ayi—s+1,Azit, Az, ...)
S—1

= YAy g1+ B8V Azi1j+ G1sE(N|Ayi 541, Azin, Az, ...)

J=0
S—1

= YAy _gi1 + AT + B Y AT 1+ Aiis + G15E(;]| Ayi —s41, Azin, Az, ...).

=1

Conditional on Ax; = (Ax;1, Az, ..., Azyr) we have

E(Cn|Ax;)

S—1

E(v° Ay, —s11 + BAza|AX;) + B Z v E(Ami1_j|AX) + Adis

=1

+915E [E(n;|Ayi — 541, Azit, Az, ...) |Ax;]

S—1

= b+ BAzn + B> (b + wAX) + Ais + Gus(h + ¢/ Ax;)

Jj=1
S—1

1
S—1

= [0+ 8D 49b; + Agus + Gush | + | Ber + B imi + gise | Ax

j=1
= b+ W,AX,L',

=1

where e; = (1,0, ..,0) and the following results are used

E(Al‘i,lfj |AX1)
E[EM;| AYi,—m+1, Azi, Az, ...) | Ax;]

Then

bj+779AXi, (] :0,1,2...)
h—|—(p,AXi.

S—-1

Ayin = (i +Gis [N — BOG|Ayi—s41, Az, Azio, )] + > Aug

Jj=0
S—1

= E((nlAx) + [Cin — B¢l A%)] + Gus [N — Ei|Ayi—s41, Azi, Az, )] + Y 77 Augy g

= b+ F/Axi + v,

where

J=0

S—1

vit = [Ci1 — E(Cin|A%i)] + Gis [N — E(NilAyi,—s+1, Azit, Azig, ...)] + Z v A1,

and

J=0

S—1

(i — BE(Calax) = 77 [Ayi—s11— B(Ayi s Ax)] + B84 [Azin—j — B(Awi1j|Ax;)]

Jj=0

+915 {E(Nil Ayi — 541, Azin, Azig, ...) — E[E(Ni|AYs,—m+1, Azit, Azig, ... ) |Ax] } .
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A.2 Derivation of the log-likelihood

Here we show how (8) is derived from (7). Using
(;Sﬂ_lgg’ﬂ_l

Qtgge) =1 -
(r+s8) [+ 0(z0Tg)

and
[Q+oge| = |2 (1 + 08’27 'g)
the log-likelihood function (7) can be written as

tw) = o (2m) — S In(o?) — 5 o 12| — 5ln(1 + g’ Q7 tg)
1 N ¢Qflgglﬂfl

—=— > (Ay;, — AW;y — \g)’ {9_1

207 £ 1+ o(gQlg)

where Q] =1+ T (w—1). Let v; = v;(y) = Ay; — AW;~, and note that

} (Ayi — AWy — Ag) (A1)

N

_ ¢Q_1gg’ﬂ_1
Vi—Ag'[Ql— Vi— g
;( ) 1+¢ (g2 'g) ( )
N N _ 2 _ 2
= Y vielvi- 0L (ViSt ) +NX\ g lg o(g2e)"
= 1+¢(g'02 'g) 1+¢(g'Q'g)
9N g lv - ¢ (g2 'g) (219
1+¢ (g2 'g)
_ 2 _ 1=
Sy, OT (07) N (gh) + 2 )
= 1+ 0 (g0 Tg)
_ iv'ﬂlv-  Neg'Q 'ByQlg— NX? (g 'g) + 2N (g'2719)
i=1 Z ' 1+ ¢ (g 'g) ’

where ¥ =N v, and By = By(7) = N"' 2N vi(7)vi(7). Therefore, the log-likelihood

2
function, (A.1), can be written as

T T 1 1
N () = —5In (27) — gln(UQ) —5n 12| — 5 n(l+ g’ g)
N rO—1 —1s5 _ \2,/0—1 '1O—1g
_% NS vy, — og'¥ ' ByQ g A,gg g+2\g' Qv
20 — 1+¢(g'Q 'g)

A.3 Derivatives of the log-likelihood function

We give the analytical formulas of the first and second derivatives of the log-likelihood function
(10). Note that
2 (w)| =g (W) =1+T(w-1),

and
T T-1 2 1
T-1|(T-1Nw 2w w
Q—I_L -2
g (w)
2 2w 2(T-2)w—(T-3)] (T—-2)w— (T -23)
1 w (T —2)w— (T —3) (T-1w—(T-2)



T2 T(T —1) T(T —2) T

ot -1 [ T(T-1) (T D? (T-1)(T~2) ... (T-1) ~1
— 2 . . . — QQ
Ow g (w) : : : g (w)
T (T— 1) (T —2) 1
Also
oln|Q| T T

dw  1+Tw-1 gw)
Using the above expressions the first derivatives are given by

N —-1yN 1O~y O—1 ) 1
Nflw — i N1L ZAW{Qflv‘ _ (N Zz:l AWzQ qQqd' Q7 'v; | + KAW Q7 q
Op o2 gt i ? 1+dqQ 1q )
S d%___, SR
Ow 29 (w) 2 (1 + q/Q—lq) g (w)2 202 g i
+(qlq)q) (@2 "By q - #*q' Q" q+2ffq’ﬂ 'v)
202 (1 +q'Q"1q)% g (w)?
+_q/¢BNQ*1q _ q/QleNéq + /‘qu/@q—Z,‘@q/q:)\_/
202 (1+g'Q1q) g (w)? ’
802 20 20'4 1 + qlﬂ 1q
08 1 [rd0lqrqas
8/<; - 0'2 1 + q/Q—lq )
N*lw _ Q_lq B [q’ﬂ—lBNQ—lq o li2q,9_1q+2/{q'ﬂ_1\7] Qil
dq 1+ qIQilq 2 ( + q/Q_lq)Q q
+QIBNQ lq— k2Q 1q+kQ 17
2(1+ 992 1q)

The second derivatives are as follows:

NTLEN AW lad' QAW
1+q'Q'q ’

N
N718908¢’_ S =N AWQQlAWH—(
g > —

N
N7 AWy,

=1

N
q {)q —1 ro—1. .10-1 AT
- N E AW;Q Q v, | +tkAW @
LQ (1+d9 a7y W} [( Z A ) ?

) —q® <N*1 N VZ-AW;) Q-lq
o2 (14+qQ1q)gw)? | —gQ! (Nfl PR VZ-AW§> Pq—KAW dq
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_ N _ _ AN o —
L 0t) -1 N_liv:AW’Q_lv» B (N YL AWQ 1qq'Q 1vi) + kAW Q!q
0020 ot part ! ! 1+q9Q 1q ’
N0 —q AW
OkOg! o2 (1+qQ1q)’
CAC) - (N‘l YN (AW gy + AW lqviQ ) + KAW’Q—1>
dpdq’ o2 (1+qQ1q)
2(NTEY, AW lqq @ty + AW ) (d'R )
+

)

o2 (1+q'Q-1q)*

_,00(0) T2 , ~q'®q+ (1+9'Q7'q) (279 (w))> T ( PR )
N 1 — _ P — N V~(I>VZ'
Owdw — 2g (w)? @ q)< 2(1+q'Q2'q)’ g (w)* 02 (w)® 2_; z

(d'®q) [-q'®ByQ 'q — Q@ 'By®q + £?q' ®q—2kq PV
202 (1+ ¢'Q1q)° g (w)*
(d'®q) (dQ By 1q — k227 1q+26q'Q7 V) {—d'®q+ (1 + d'Q71q) (T'g (w))}
o2 (1 +q'Q1q)’ g (w)"*

+

q'®ByPq
0% (1+ g 1q) g (w)*
(d®ByQ g+ g Q' By®q — k*°q'Pq+2kq'®V) {—q'®q+ (1 + 927 q) (279 (w))}
’ 207 (14 ¢ g ()

9

0020w a 20’4g (w)Q

N

N*l I@ .
g v; Pv;
=1

B [ q'®q

204 (14 ¢'Q271q)% g (w)

1 / —1 'O—1 2 ./ ! f—
— —qPByQ —q Q" 'By®q + k°q Pq—2:kq PV,

204(1+q’Q_1q)g(w)2[ qd®ByO2 'q—q N®q + kg @q—2kq V]
N-1900) _ (kd'®q—q'®V) (1+9'Q 'q) + (—kd'Q g+ Q') (d'®q)

OKdw 029 (w)* (1 4+ g2 1q)?
L00(8) ®q(1+q'Q 'q) — (q'®q) (2q)

N— —
0qdw 9?1 +q21q)’

2} [q'ﬂ_lBNﬂ_lq — /@2q'ﬂ_1q—|—2&q'ﬂ_1\7]

)

®q [qdQ 'ByQ1q — k2q'Q 7 1q+2kq'Q7IV] + ' @q [ By Iq — Q7 Iq+KQ 71V
i 29 (@) (1+ a2 1q)’

2(qd'®q) [ 'ByQ g — k2q'Q 1 q+2kq'Q V] (14 q'Q71q) Q7 !q
- 029 (w)* (1 + g2 1q)*

—®ByQ 1q - Q 'By®q + 2Pq— KBV

029 (w)* (1 4+ q'Q1q)
(—qd'®ByQ2'q — ¢'Q'By®q + kg’ Pq—2kq V) (271q)
029 (w)* (14 q'Q1q)?

)
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N _ _ _ e
_, 00(0) T 1 [NIngﬂlvi—q/Q IByQ1q — k2’2 1q+2kq' Q¥
=1

do200? 204 o6 1+q99Q 1q ’
N-1 o)  kdQ'q-qQv
Okda? o1+ qQ1q) ’
N-1 ol (0) _ dQ 'ByQlq - k2 Q1 q+26q' Q% 0l Q 'ByQ q - k2Q7Iq+rQ 7Y
0qd0* ot (1+qQ1q)’ ot (1+q'Q q) ’
La00)  —qalq
okdk o2 (1+qQ1q)’
= ol () _ (-2 1q + Q) (14 dQ'q) +2(kd'Q 'q - qd'QV) Qg
8(16:% o2 (1 + q/Q_lq)2 )
N1 00O 97 (1+d'Qq) - 20 lqq'Q!
9qoq’ (1+q'Q1q)?

207 1q (@ 'ByQ ! — k2 QT +RVQTT)
B 02 (1+d'2 'q)*
N (d'Q By g — k22 1g+2kq'Q ) Q71

0% (1+qQ'q)’

4(d'Q "By tq - k2q'Q g +2:q' Q1Y) QT qg' Q!
! 0% (1+q'Q2'q)’°

(Q By - £2Q7Y) (Q7'BNQq - £2Qq+RQ7TY) (2Q7)

o?(1+q'Q'q) N o2 (14 q'Q1q)? '

A.4 Derivation of the log-likelihood function in the multifactor
case

Under Assumption 8 we can rewrite model (22) as
yie = i+ yyis1+ N+ ui
= i+ Wie1 + B+ + w
Eliminating the individual effects by first-differencing yields

Ayir = YAy -1+ g\ + Auyy
= YAy +gA+ g+ Auy fort =2,3,..,T. (A.2)

Under Assumption 1, by recursive substitution, we have the following expression for t = 1
Ayir = Nig1 + v, (A.3)

where g1 = > 2% Vigi—j, vi1 = >0 Y9 Au; 1 with E(vi1) = 0 and var(vi1) = ow. Using (23) in
(A.2), this equation together with (A.3) can be written as

Ayan = Ngi+ng1+ v
Ay = YAyi—1 + Ngr + nigr + Augy, (t=2,3,..,7).
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In matrix notation the above system of equations can be expressed as
Ay; = AWy + GA+ €, (A.4)

where Ay; = (Ayi1, Ayiz, ..., Ayir)', AW, = (0, Ayit, .., Ayir-1), G = (81,82, -..87) and §; =
Gn,;+r; with r; = (Uib Augo, ..., AuiT)'.

In equation (A.4) A is not separately identified from the elements of G. Thus, defining the
identity matrix 1,,, = %Q}/ QJQ; 1/ 2, where recall from Assumption 8 that €2, is a positive definite
matrix, we can write

1
G = G-0%0Q 12X = Qk,
o

where Q = (1/0)GQ}7/2 and k = UQ;I/ZA.
Recall further that E(r;r}) = 02Q and since 1, and u;; are independently distributed we have

Var(¢;) = o*Q + GQ,G'=0? (2 + QQ/) .

Hence, the log-likelihood function of the transformed model (A.4) is given by

£6) = -5 n(2m) — S In(@?) - S [+ QQY|
1 & , .
—553 2 (Ayi— AWy - Qr) (2 +QQ)) "(Ay, — AWy —Qk).  (A5)
i=1

For a fixed T', the above log-likelihood function depends only on a fixed number of unknown
parameters, 6 = ('y,w,a2,fe’,vec(Q)'),.

To obtain the ML estimators, since €2 is a positive definite matrix and QQ’ is rank deficinet
(recall that by assumption m < T), we first note that

2+QQ'| = 0| [L,+Q'2'Q|,
and using the Woodbury matrix identity

Q+QQ)" = 9'-0'QIL,.+Qe'Q Qe (A.6)
— Qfl o QleAlelﬂflj

where

A=1,+QQ'qQ

Using these results the log-likelihood function in (A.5) can be written as

N
ANT oy N _N a-lql - AW — Ok’
((0) 5~ In(0%) — S | - In|L,+Q'Q'qQ| 53 ;(Aw AWy — Qk)
x [ -2 'QAT'QQ ] (Ay; - AW,y - Qk), (A7)
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with || =1+ T (w —1). Further, since
N
Y (vi-Qr) [ -Q7'QATIQQ ] (vi — QK)
i=1
N N
= > vilvi— ) viaT'QAT'QQ Ty, - NKQQ TV + NE'QQT'QATIQ QY
=1 =1
~NVOQIQr+NVQ 'QATIQQ Qe+ NKQ Q' Qr—NK'QQ 1QATIQ'Q 'Qk
N N
= > viQlvi— ) vioTlQATIQQ v, - 2NK'QQ IV + 2NK'QQTIQATIQ Y
=1 =1
+NK' QO 'Qr—NK'QQ 1QAIQ QO 1Qk,
where v; = v;(7) = Ay; — AW;v, and ¥ =N~1 Zf\il Vi, (A.7) can be written as

T 1 1
N7(0) —gln(a%—ilnm\—iln}1m+Q’Q*1Q\

1 NN vy, - NIV v lQATlQ
202 | +/[QQ7IQ(In-AT'QQ!Q)k — 2r/[(I,, - QQ'QA Q' QY]

Note that the first two terms in the barckets using (A.6) can be written as

N N N
NN Vi - N Y Vi lQATQ2 v = N Y v (24 QQ) v,
1=1 =1 =1

Hence
-1 T 2 1 1 ro—1
_ 1 NYL vi(Q+QQ) v
202 | +r'[QQ7'Q(I,—AIQQIQ)k — 2+'[(I, — QO 'QAHQ'Q ¥ [~

Also

I,-A'QQ'Q=1,-A'(,+QQ'Q-1,)=1,-A ' (A-I,)=A"",

L,-QQ'QA =1, - (I,+QQ'Q-I,)A =L, - (A-L,)A ' =A""
and

A_lQ,Q_lQ — Im o A—l — Q/Q_lQA_l.
The log-likelihood in (A.8) then becomes
~1 T 2y 1 1 ro-1
N7U() o —n(o )—§ln]Q|—§ln‘Im+QQ Q| (A.9)

L NI vi(©2+QQ)
202 | +K' (In — A Yk —26/A7IQ Q719 |7

Setting the partial derivative of ¢ (6) with respect to k to zero, it now readily follows that

I, - A Y e=AT'Qa 'y,
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which yields (recall that Q has the full column rank of m)
k=(QQ Q) 'Qaly. (A.10)
Next, taking partial derivatives with respect to o and solving out for this we have
N
762 = N1 Zv; (Q+ QQ’)_1 Vi
i=1
+&' (I, — A ) &k —2R'ATIQ'Q7 V. (A.11)

Substituting for & from (A.10) in (A.11) now yields

2 _p1f  NTELV@+QQ) 'y
¢o=T { _‘—,/Q—lgA—ll(Q(/Q—lQ)—EQ/Q_lv . (A.l?)
Finally, substituting (A.10) and (A.12) into (A.9) we obtain

NI(8) —%m\m_%ln\IerQ'Q*IQ

T { NTIYN VI +QQ) v, }

2™ —veQA (e Q) ety

where 6 = (7,w, vec(Q)')/_ Recall that, if required, (€2 + QQ’)_1 can be expanded in terms of Q
using the Woodbury matrix identity in (A.6).

A.5 Derivation of Rf,

Consider the panel data model
Yit = Qi + Vi1 + Bt + &y o = Nift + wa,

Tt = p; + Ok + T, Ti = PrZit—1+ /1 — p2eir,

where ft = (f1t>--~7fmt)/a A; = ()\12‘, ...,)\mi)’, '191 = (1912‘, ~--7'l9mi)/, |’y| < 1 and ’px| < 1. Due to the
dependence of x;; and &;; on the same unobserved factors, f; = (fi,..., fmt)’, the regressors and
the errors of the above regression are correlated. Following Pesaran and Smith (1994) we base the
measurement of R? on the following reduced form regressions

Yit = di + VYit—1 + BTy + Ei, £y = Cify + wip, (A.13)

where
d; = a; + Bu; and ¢; = B9; + ;.

It is clear that in (A.13) the regressors, Z;, and the errors, éit, are uncorrelated and standard
formula for R? can be used. But to deal with the heterogeneity across the different equations in
the panel we use the following average measure of fit

R2—1 N1 Zz]\il V‘”’(git)

Y NN Var(ya)
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Using the above results, and noting that u;; and €; are uncorrelated with f;, it readily follows that

v

Var(&,) = ciVar(f)e + o2,

2Var(iy) + Var £
Var(ye) = B (1% - (S’t).

If we assume that the elements of f; are mutually orthogonal and have zero means we have

_ B2Var(Zi) + [2211 {(Nfl Y C%z‘) (Tfl Y fé2t>} + ‘72} 7

2
& BVar(&a) + > ey { (Nfl Y Ci) <T71 i fKZt) } +o?

)

(A.14)

It is easily seen that ng > ~2 with the equality holding only if 3 = 0, namely when an AR(1)
specification is considered.
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