I study students’ inferences about school quality from performance-based rankings in a dynamic setting. Schools differ in location and unobserved quality, students differ in location and ability. Short-lived students observe a school ranking as a signal about schools’ relative quality, but this signal also depends on the ability of schools’ past intakes. Students apply to schools, trading off expected quality against proximity. Oversubscribed schools select applicants based on an admission rule. In steady-state equilibrium, I find that rankings are more informative if oversubscribed schools select more able applicants or if students care less about distance to school.
Performance-Based Rankings and School Quality*

Claudia Herresthal†

June 9, 2017

Abstract

I study students’ inferences about school quality from performance-based rankings in a dynamic setting. Schools differ in location and unobserved quality, students differ in location and ability. Short-lived students observe a school ranking as a signal about schools’ relative quality, but this signal also depends on the ability of schools’ past intakes. Students apply to schools, trading off expected quality against proximity. Oversubscribed schools select applicants based on an admission rule. In steady-state equilibrium, I find that rankings are more informative if oversubscribed schools select more able applicants or if students care less about distance to school.

Keywords: performance-based rankings, information acquisition, endogenous signal, consumer choice

JEL codes: D83, I21, H75

*I would like to thank Meg Meyer, as well as Ricardo Alonso, Inga Deimen, Peter Esö, Pawel Gola, Johannes Hörner, Kohei Kawamura, Gilat Levy, Marco Ottaviani, Ines Moreno de Barreda, Anna Sanktjohanser, Alex Teytelboym, Collin Raymond, the conference and seminar participants at Econometric Society EWM, Econometric Society World Congress, Royal Economic Society Conference, York Symposium for Game Theory, Bonn, Cambridge, Cologne, Edinburgh and Oxford for valuable comments and feedback. I thank the Royal Economic Society for financial support.

†Queens’ College, University of Cambridge, Silver Street, Cambridge CB3 9ET, UK, cl.herresthal@gmail.com.
1 Introduction

Performance-based school rankings are released in order to allow families to compare schools in terms of their quality. However, what can performance tell families about a school’s intrinsic quality? Performance is partially determined by the ability of their past student intake and families cannot perfectly observe which schools had the most able intakes in the past. Similarly, treatment outcomes for medical procedures are published so that those seeking treatment can compare the quality of health care providers. Yet, treatment outcomes also depend on the prior health conditions of past patients, and it is often unclear which provider treated the sickest patients in the past.\footnote{Estimates of value-added have been published, but they do not eliminate the inference problem (Kane et al. [2002], Wilson and Piebalga [2008], Dranove et al. [2003]). In addition, estimates of schools’ value-added are rarely used by students (Coldron et al. [2008], Imberman and Lovenheim [2013]).}

This paper studies such an inference problem in a dynamic infinite-horizon setting, using the example of school rankings. Students face a choice between two capacity-constrained schools of unknown quality. Each cohort of students observes a school ranking, but does not observe past student intakes. The probability that a school ranks high depends on its quality and on the ability of its student intake in the previous cohort. If intakes were equally able across schools, then the better school would be more likely to rank high. In addition, if a school had a more able intake, its chances of ranking high would increase, irrespective of its quality. It is possible that the worse school is more likely to rank high than the better school, provided the worse school’s intake is sufficiently more able. If students believe that the high-ranked school is more likely to be better, then the high-ranked school will have a larger applicant pool and admit a more able intake than the other school. Could we end up in a situation in which the worse school always ranks higher and students believe it to be the better school? In the long run, would the chances that students identify the better school improve if schools were assigned equally able intakes regardless of which school attracted more applicants?

I show that, in the long run, students are more likely to infer which school is of better quality if the high-ranked school admits a more able intake rather than if each school admits an equally able intake. This may seem counterintuitive at first. After all, it could be that the worse school happened to admit a sufficiently more able intake such that it is more likely to rank high than the better school. This would imply that the ranking is on average a misleading indicator of school quality, which is not the case if intake ability was equal across schools. In addition, once the worse school is more likely to rank high than the better school, the worse school would also be more likely to attract a very able intake again and rank high again, implying that one misleading ranking is likely to be followed by another. This again is not the case if intake ability was equal across schools. However, this reasoning is flawed. One has to take into account that if the better school happened to admit a more able intake, this would increase its chances of ranking high and, hence,
increase the chances that the ranking accurately reflects schools’ relative quality. In addition, in this case, better quality and a more able intake both work in favor of the better school. Therefore, the better school is more likely than the worse school to maintain a high rank. Hence, in equilibrium, the better school is more likely to rank high than the worse school, and the ranking is more likely to reflect schools’ relative quality accurately if in each cohort the high-ranked school admits a more able intake.

In the baseline model, in each of infinitely many periods, a continuum of short-lived students are matched with two infinitely-lived schools. Students differ in ability and location, schools differ in their location and quality. School quality is unobserved. Students observe a ranking of schools drawn from an endogenously determined distribution. The signal is informative about schools’ relative quality, but biased in favor of the school which admitted more high-ability students in the most recent period. Each student applies to one school. Schools are capacity-constrained. All applicants are accepted if there is sufficient capacity. Otherwise, applicants are selected based on an exogenously given admission policy which is characterized by what share of applicants are admitted based on ability rather than proximity. Each student derives a benefit from attending the better school and incurs a transport cost proportional to the distance to the school they attend. Applications are costless.

I find that, in steady-state equilibrium, students are weakly better informed about the relative quality of schools if students perceive schools to be less horizontally differentiated, i.e. if the distribution of transport costs would shift down (in the sense of first-order stochastic dominance). Therefore, reducing the barriers to choice and making it easier for students to pick the school of highest expected quality facilitates learning about school quality over time. In addition, I find that students are better informed about the relative quality of schools if oversubscribed schools select a higher proportion of their intake based on ability. This suggests that admission policies such as giving priorities to local students or allocating places by lottery have negative implications for how informative rankings are in the long run.

A secondary focus of this paper is to understand what role students’ inference about school quality plays in the context of recent educational reforms. Policymakers in the US and the UK have aimed to raise the overall quality of schools by first giving families a choice over which school to apply to and then putting pressure on undersubscribed schools to improve or close down. To capture that undersubscribed schools are under pressure to improve, I extend the baseline model by assuming that an undersubscribed school is replaced by a new school with some probability and the new school’s quality is drawn from the same distribution as the original school’s quality. I find that if i) an oversubscribed school selects a larger share of their intake based on ability or ii) if transport costs are lower, the average quality of schools improves, but the benefits accrue only to high-ability students. Hence, policymakers may face a trade-off: more selection by schools increases how informative rankings are and leads to worse schools closing down, however, the
benefits of improved school quality then accrue disproportionately to more able students, because they are more likely to gain access to better schools.

This paper relates to the literature on observational learning, because it studies a setting in which the inference problem faced by agents in the current period is influenced by the choices of agents in past periods. However, in observational learning models, past agents’ choices are directly observable and convey information about private signals received by these agents. By contrast, in this model, past agents’ choices are not directly observable and agents do not receive private signals. Instead, agents observe a limited window of past realization of a public signal, and the distribution from which this public signal is drawn depends on past agents’ choices. Most work in the social learning literature assumes that agents observe the entire history of predecessors’ choices. Lobel et al. [2007] model agents with a limited window of observation, but their focus is on conditions for convergence whereas my focus is on the comparative statics in steady-state. Callander and Hörner [2009] propose a steady-state analysis but focus on agents inferring information from the relative frequency with which actions were taken by predecessors.

Many observational learning papers are interested in whether or not eventually all future agents will make the same choice (herd) and whether or not this choice is the one that yields the highest payoff. In the baseline model, I assume that the worse school is never certain to rank high even it has admitted more able students than the other school. Therefore, a worse school cannot maintain a high rank forever, and it cannot happen that the majority of students will always apply to the worse school. In Section 9.2, I assume that if a school has admitted a sufficiently able intake then it is certain to rank high, irrespective of its quality. Then it is possible that the worse school maintains a high rank forever if an oversubscribed school admits a more able intake, but not if intake ability was equal across schools. However, from an ex-ante point of view, it is more likely that the better school will be the one which maintains a high rank forever.

Further, this paper relates to models in which a decision-maker runs sequential tests before taking an action under uncertainty. Meyer [1991] studies a decision-maker (DM) who aims to learn which of two (non-strategic) workers is of higher ability. In each of a fixed number of periods, the DM can sequentially design biased contests. In the last period, the DM optimally assigns the bias in favor of the worker he believes to be of higher ability. The reason is that if this worker loses despite the contest being biased in his favor, then this is strong evidence that he is of lower ability. In this paper, learning is facilitated if the school of higher expected quality admits a more able intake and hence enjoys a bias in its favor. However, the reason why is different because students cannot condition their application choices on whether the better-performing school had better students or not. In addition, intakes are not assigned by a forward-looking DM, but by short-sighted students who do not take into account how their application choices will affect future rankings.

2E.g. see Bikhchandani et al. [1992].
The existing theoretical literature on performance-based rankings has not yet studied students’ inference in a dynamic setting. Gavazza and Lizzeri [2007] study how transparency about school performance may affect schools differently depending on whether they can select between students, but they do not consider how the allocation of students to schools affects the informativeness of rankings over time. De Fraja and Landeras [2006] study effects on attainment when students choose between schools based on rankings, but their focus lies on the incentives for schools to exert effort while the average intake ability at each school is assumed to vary exogenously with schools’ relative performance.

My paper contributes the insight that what consumers infer about quality from past performance may vary depending on how consumers are matched with providers. This has not been taken into account by the literature on matching algorithms, which usually designs the optimal algorithm assuming students have complete information about schools. Yet if students are incompletely informed about the quality of schools then the student allocation today may influence future students’ beliefs about schools’ qualities and hence what preferences they will submit to the algorithm. In addition, this insight has not been taken into account by empirical estimation strategies identifying how sensitive consumers’ demand is to quality.

My paper’s predictions are consistent with recent empirical evidence. In the context of health care, Chandra et al. [2016] study patients’ allocation to hospitals in the US over a period in which it became easier for patients to access information about hospital performance. They find that there is a correlation between a hospital’s market share, its performance and its quality at a given point in time and that this correlation is growing over time, and that it is stronger when excluding emergency admissions, i.e. patients who had a lower (transport) cost of choosing between hospitals. In the context of higher education, Hoxby [2009] shows that as the cost of long-distance communication and transportation have decreased over the past 60 years, students’ choice of college has become less sensitive to the distance of a college from their home and meanwhile top US colleges have become more selective.

This paper outlines the model in Section 2. Section 3 introduces the inference problem in an illustrative example. Sections 4-6 solve for equilibrium and conduct comparative statics and welfare analysis. Section 7 incorporates supply side effects and Section 8 peer effects. Robustness checks in Section 9 analyze situations in which students observe a longer window of observations, performance can depend solely on intake ability or schools cannot select among applicants based on ability. Section 10 concludes.

3E.g. Abdulkadiroglu and Sönmez [2003]
4E.g. for education see Black [1999], Bayer and McMillan [2005], Burgess et al. [2015], Imberman and Lovenheim [2013], Hastings and Weinstein [2007], for health care see Gaynor et al. [2012].
5Performance is measured by clinical outcomes (survival/readmission) and quality is measured by the adherence to clinical guidelines.
2 Model

In each of infinitely many periods, a continuum of short-lived students are matched with two infinitely-lived schools. Students differ in ability and location, schools differ in their location and unobserved quality. Students observe a (ranking) signal about school quality drawn from an endogenously determined distribution. The signal is informative about schools’ relative quality and is biased in favor of the school which admitted more high-ability students in the most recent period. Each student applies to one school. Schools are capacity-constrained. All applicants are accepted if there is sufficient capacity. Otherwise, applicants are selected based on an exogenously given admission policy. Each student’s payoff depends on both the quality and proximity of the school to which they are admitted.

Setting: Time is discrete and the horizon is infinite \(t = 0, 1, \ldots \). There is a continuum of students (the players) and two (non-strategic) schools.

Schools: Schools are infinitely-lived. One school is located at each end of a Hotelling line on \([0, 1]\). I denote the school located at 0 by \(X \) and the school located at 1 by \(Y \). Each school has a capacity of unit mass. An action for a school is to select among applicants based on an exogenously given admission rule as described below. The state of the world \(\omega \in \{\omega^X, \omega^Y\} \) determines if school \(X \) is of better quality (\(\omega^X \)) or if school \(Y \) is of better quality (\(\omega^Y \)) where \(\Pr(\omega^X) = \Pr(\omega^Y) = \frac{1}{2} \).

Students: Each student lives for one period only. A student’s type is given by \((\lambda, \alpha)\), where \(\lambda \in [0, 1] \) denotes the student’s location on the Hotelling line and \(\alpha \in \{H, L\} \) denotes their ability, which is either high (\(\alpha = H \)) or low (\(\alpha = L \)). In each period, there is a unit mass of high-ability students and a unit mass of low-ability students. The distribution of location parameter \(\lambda \) is restricted only in that it is continuous, symmetric about \(\lambda = \frac{1}{2} \) and independent of ability.\(^6\) An action \(a \in \{a_X, a_Y\} \) for a student is to choose whether to apply to school \(X \) (\(a = a_X \)) or to school \(Y \) (\(a = a_Y \)).

Rankings: Each period \(t \geq 0 \), a binary signal about school quality is realized, denoted by \(W_t \in \{W_t^X, W_t^Y\} \). I will refer to signal \(W_t \) as a ranking of schools and refer to \(W_t^i \) as the event that school \(i = X, Y \) is the most recent winning school. The probability that school \(X \) wins, denoted by \(g(W_t^X | h_t^X, \omega) \in [0, 1] \), is a function of \((h_t^X, \omega)\), where \(h_t^X \in [0, 1] \) denotes the share of high-ability students at school \(X \). Therefore, the signal realization depends not only on the state of the world, i.e. on schools’ qualities, but also on the endogenously determined allocation of students. The signal technology is independent of the school’s location, i.e. it holds that for any \(\kappa \in [0, 1] \):

\[
g(W_t^X | h_t^X = \kappa, \omega^X) = g(W_t^Y | h_t^Y = \kappa, \omega^Y) .
\] (1)

In addition, \(g(W_t^X | h_t^X, \omega^X) \) is independent of \(t \), continuous and differentiable in \(h_t^X \) and satisfies

\(^6\)Equilibrium existence and comparative statics results would be qualitatively unchanged if the distribution were not continuous. I assume continuity to simplify the exposition.
the following two properties. First, the better school has a performance advantage. If school X is
the better school ($\omega = \omega^X$), then for the same share of high-ability students enrolled, school X is
more likely to win than school Y, i.e. for any $\kappa \in [0,1]$:

$$g(W_t^X|h_t^X = \kappa, \omega^X) - g(W_t^Y|h_t^Y = \kappa, \omega^X) > 0,$$

and analogously if $\omega = \omega^Y$.\(^7\) Second, a more able intake introduces an upward bias in performance.
If school X is the better school ($\omega = \omega^X$), its chances of winning increase in the share of high-
ability students enrolled at school X, i.e. for any $\kappa \in [0,1]$:

$$\frac{\partial}{\partial \kappa} g(W_t^X|h_t^X = \kappa, \omega^X) \geq 0,$$

and analogously if $\omega = \omega^Y$.

In the Online Appendix in Section B.4, I show the results of the baseline model hold as long as
the distribution of signals satisfies the conditions outlined above. For the ease of exposition, I will
conduct the analysis for the following specific functional form:

$$g(W_t^X|h_t^X, \omega^X) = s + \frac{\kappa - \frac{1}{2}}{2} d,$$

and analogously if $\omega = \omega^Y$, where parameter $s \in (1, 2]$ reflects the better school’s performance
advantage and parameter $d \in [0, 2 - s)$ reflects the bias due to an imbalanced allocation of high-ability
students. This functional form simplifies the exposition because the better school’s performance
advantage does not vary with the student allocation.\(^8\)

Admission rule: A local student for school $i = X, Y$ is a student whose nearest school is school
i. Each school admits all its applicants, unless a school has received more than a unit mass of
applicants and is oversubscribed. If oversubscribed, a school uses the following rule: first, it
admits all local high-ability applicants and a proportion $p \in [0,1]$ out of the pool of non-local
high-ability applicants. Then it fills its remaining capacity with local low-ability applicants. If
it has admitted all local low-ability applicants and still has spare capacity then it will prioritize
high-ability over low-ability applicants.\(^9\) Rejected applicants enroll at the other school.

Timing: Initially, Nature draws a state of the world.\(^10\) In each period $t = 0, 1, \ldots$, students first

\(^7\)Note that this assumption excludes the possibility that the worse school wins with probability 1, i.e.
$Pr(W_t^Y|h_t^Y = 1, \omega^X) = 1$. Section 9.2 studies the implications of allowing for this possibility.

\(^8\)The specific functional form given by (4) satisfies property (2) since $s > 1$ and also satisfies property (3) since $d \geq 0$.

\(^9\)In Section 9.3, I relax the assumption that an oversubscribed school can select applicants based on ability and
show that the key insights still apply if high-ability students have a higher valuation for attending a better school than
low-ability students.

\(^10\)Equilibrium existence and comparative statics results would be qualitatively unchanged if the schools’ relative
observe the ranking realization in period \(t - 1 \) \((W_{t-1})\) if \(t > 0 \) and then each student applies to one school. Then schools admit applicants based on the admission rule. Next, students’ payoffs are realized. Lastly, a ranking (signal) \(W_t \) is drawn.\(^{11}\)

Information: The location of each school and students’ types are public.\(^{12}\) The state of the world is unobserved, but its distribution is known. Students in period \(t > 0 \) do not observe any past actions or signals except for the most recent signal \(W_{t-1}.\)\(^{13}\) Hence, for students in period \(t > 0 \) an information set corresponds to signal realization \(W_{t-1}.\) Denote the information set of students in period \(t = 0 \) by \(W_{t-1} = \emptyset.\) The structure of the game is common knowledge.

Strategies: A strategy for a student specifies if they apply to school \(X \) or school \(Y \) at any information set given their type and the current period. Denote the strategy of a student of type \((\lambda, \alpha) \) in period \(t \) by \(\sigma(t, (\lambda, \alpha), W_{t-1}) \in \{a_X, a_Y\} \) or \(\sigma_{t, \lambda, \alpha}(W_{t-1}) \in \{a_X, a_Y\}.\)

Payoffs: Applications are costless and a student’s payoff only depends on the school at which they enroll. Let the payoff of a student of type \((\lambda, \alpha) \) in period \(t \) in state of the world \(\omega \) be denoted by \(\pi(t, (\lambda, \alpha), \epsilon, \omega) \in \mathbb{R} \) or \(\pi_{t, \lambda, \alpha}(\epsilon, \omega) \in \mathbb{R}, \) where \(\epsilon \in \{e^X, e^Y\} \) and \(\epsilon^i \) denotes the event that they enroll at school \(i.\) The student derives a constant benefit of \(V > 0 \) if and only if they enroll at the better school. In addition, they incur a cost equal to their distance from the school.\(^{14}\) Hence,

\[
\pi_{t, \lambda, \alpha}(\epsilon, \omega) = \begin{cases}
V \cdot 1_{\omega = \omega^X} (\omega) - \lambda & \text{if } \epsilon = e^X \\
V \cdot 1_{\omega = \omega^Y} (\omega) - (1 - \lambda) & \text{if } \epsilon = e^Y
\end{cases}
\]

(5)

where \(1_{\omega = \omega^i} (\omega) = 1 \) if \(\omega = \omega^i \) and 0 otherwise. Note that a student’s realized payoff at any given enrollment and state of the world is independent of period \(t \) and independent of their ability \(\alpha.\)

Let \(E(\pi_{t, \lambda, \alpha}(\epsilon^i) | W_{t-1}) \) denote the expected payoff of a student of type \((\lambda, \alpha) \) in period \(t \) if enrolled at school \(i \) conditional on observing signal \(W_{t-1}.\) Let \(Pr(\epsilon^i | \sigma_t, (\alpha, \lambda), W_{t-1}, p) \in [0, 1] \) denote the probability that a student of type \((\lambda, \alpha) \) in period \(t \) enrolls at school \(i \) given the strategy profile is \(\sigma_t \) and schools’ admission rule is characterized by \(p.\) Students choose their application strategy such as to maximize their expected payoff taking as given the strategy profile of other students in the same period and schools’ exogenous admission rule, i.e.

\[
\max_{\sigma_{t, \lambda, \alpha}} E(\pi_{t, \lambda, \alpha} | W_{t-1}) = \sum_{i = X, Y} Pr(\epsilon^i | \sigma_t, (\alpha, \lambda), W_{t-1}, p) E(\pi_{t, \lambda, \alpha}(\epsilon^i) | W_{t-1}).
\]

(6)

quality (state of the world) would change with some exogenously determined probability each period.

\(^{11}\)In Section 7, I allow for schools’ qualities to change endogenously in response to students’ application choices.

\(^{12}\)Results are not affected by i) what information students have about their child’s ability or by ii) what students observe about other students’ types as long as the aggregate distribution of types is known.

\(^{13}\)My results do not hinge on the assumption that only the most recent ranking is observed, as shown in Section 9.1.

\(^{14}\)In Section 8, I allow for students’ payoff to depend on the ability of their child’s peers.
Since students will base their decision on the difference in their expected payoffs between applying to one school rather than the other, it will be convenient to define transport cost $c(\lambda) \in [0,1]$ as the additional distance a student in location λ needs to travel to reach their non-local compared to their local school, i.e. $c(\lambda) = |(1-\lambda) - \lambda| \in [0,1]$, with distribution $F(c)$.

Equilibrium Concept: The equilibrium concept is a Perfect Bayesian Equilibrium (PBE). A PBE is a strategy profile $\{\overline{\sigma}_t\}_{t \geq 0}$ and a system of beliefs $\{\mu_t(\omega|W_{t-1})\}_{t \geq 0}$, where beliefs map signal realizations into probability distributions over states of the world, such that i) in every period t for any type of student (λ, α), strategy $\sigma_{t,\lambda,\alpha} \in \overline{\sigma}_t$ is optimal given the profile of strategies of all other types of students in period t, $\overline{\sigma}_t = \overline{\sigma}_t \setminus \{\sigma_{t,\lambda,\alpha}\}$, and given their beliefs $\mu_t(\omega|W_{t-1})$ and ii) the system of beliefs $\{\mu_t(\omega|W_{t-1})\}_{t \geq 0}$ is derived from strategy profile $\{\overline{\sigma}_t\}_{t \geq 0}$ according to Bayes’ rule. In particular, $\mu_t(\omega|W_{t-1})$ is the posterior belief based on the signal distribution of W_{t-1} constructed from the strategy profile of students in past periods $\{\overline{\sigma}_\tau\}_{0 \leq \tau \leq t-1}$.

I am interested in the equilibrium as $t \to \infty$. In order to study this limit, I use the concept of steady-state equilibrium. A steady state consists of a time-invariant strategy profile $\overline{\sigma}_{t \geq 0}$ and a stationary distribution $Pr(W|\omega)$. A time-invariant strategy profile $\overline{\sigma}_{t \geq 0}$ implies that some constant share $h_t = \overline{h}$ of high-ability students will enroll at the most recent winning school in every period. Given $\{\overline{\sigma}_t\}_{t \geq 0}$, the stationary distribution solves

$$Pr(W^X|\omega^X) = \sum_{j=X,Y} g(W^X|h^j = \overline{h}, \omega^X) Pr(W^j|\omega^X). \quad (7)$$

A steady-state equilibrium is a steady state with a time-invariant profile $\{\overline{\sigma}_t\}_{t \geq 0}$ such that i) for any type of student (λ, α), strategy $\sigma_{\lambda,\alpha} \in \overline{\sigma}$ is optimal given the profile of strategies of all other types of students $\overline{\sigma} = \sigma \setminus \{\sigma_{\lambda,\alpha}\}$ and given their beliefs $\mu(\omega|W)$ and ii) beliefs $\mu(\omega|W)$ are the posterior beliefs about the state of the world derived according to Bayes’ rule given the stationary distribution $Pr(W|\omega)$. This implies that if the signal distribution happened to be equal to the stationary distribution in steady-state equilibrium in some period T, then there is no reason for students in periods $T+1, T+2, \ldots$ to deviate from the steady-state equilibrium strategy profile. I focus on steady-state equilibria in which the strategy profile is symmetric with respect to schools’ identities, i.e. $\sigma_{t,\lambda,\alpha}(W^j_{t-1}) = \sigma_{t-1,\lambda,\alpha}(W^j_{t-1})$ for $i = X,Y$ and $j \neq i$ for any t. This implies that in equilibrium students’ application strategies only depend on their distance to the most recent winning school, irrespective of whether school X or school Y is the most recent winning school.
2.1 Remarks on Modelling Choices

Admission Policy - Schools’ admission policy is characterized by parameter \(p \). The higher \(p \) the larger the extent to which an oversubscribed school selects on ability.\(^{15}\) If \(p = 0 \) then intake ability would be equal across schools, independent of students’ application choices.\(^{16}\) If \(p = 1 \) then an oversubscribed school would admit all high-ability applicants and, consequently, intakes are less balanced the more high-ability students have applied to the oversubscribed school. An increase in \(p \) could capture that regulation allows schools to select a larger share of students based on aptitude, or that schools are allowed to use a more accurate measure of aptitude (e.g. introduction of admission tests).

Transport Costs - Transport costs capture that students perceive schools as horizontally differentiated along dimensions unrelated to quality. If all students were located at \(\lambda = \frac{1}{2} \) then \(c = 0 \), and students would evaluate schools based on their relative quality only. If all students were evenly split between the end points, i.e. between \(\lambda = 0 \) and \(\lambda = 1 \), then \(c(\lambda) = 1 \) for all students. A negative shift in the sense of FOSD of \(F(c) \) reduces the extent to which students perceive schools as horizontally differentiated. Location is an important feature which different students evaluate differently. However, students may also perceive schools as horizontally differentiated because schools specialize in different areas, e.g. humanities versus sciences, and then transport costs could also be thought of as representing students’ preferences over the area of specialization.

Ranking Distribution - The school ranking is drawn from a distribution which depends on schools’ relative quality and on the allocation of high-ability students. For evidence that there is residual noise in rankings see Kane et al. [2002]. The property that the better school enjoys a strict performance advantage (see (2)) ensures that the worse school never wins with probability 1, even if it admitted all high-ability students. This assumption is crucial to prevent a “self-fulfilling” cycle of rankings. In Section 9.2, I relax this assumption and assume that if the share of high-ability students exceeds a certain threshold then a school will win with probability 1, irrespective of its quality. Then a form of herding can arise. The fact that only the ranking based on the most recent performance can be observed is motivated by the fact that this ranking is the most easily accessible, e.g. in England this is the one circulated by the media, but my results do not hinge on this assumption as shown in Section 9.1. The assumption that students observe rank-order information rather than continuous performance measures is motivated by the fact that rank-order information is easy to process, whereas making sense of the size of the difference in performance measures is relatively difficult.

\(^{15}\)For the results on learning about school quality, the important feature of the admission process is that an oversubscribed school takes at least as large a share of high-ability applicants as the other school (see also Section 9.3).

\(^{16}\)Admission lotteries \((p = 0) \) are commonly used by charter schools and by some magnet schools in the US and are becoming more common practice for oversubscribed UK state schools.
3 Illustrative Example

The following example will illustrate how students in successive periods draw inferences about schools’ relative quality from the performance-based ranking they observe, starting in period 0 when the first ranking is constructed. In particular, I will compare how well informed students in period 1 are compared to students in period 2. I will show that students in period 2 are better informed than students in period 1, despite the fact that in each period students only observe the most recent ranking. This example is useful to build intuition for how students draw inferences about school qualities in steady-state equilibrium, as analyzed in detail in Section 4.2. In addition, it will highlight why analyzing a steady-state equilibrium makes comparative statics more tractable. To this end, the example will use a simplified set-up.

There are two students in each period, one is of high ability and one is of low ability. Suppose there are no transport costs, i.e. $c = 0$. Each school has capacity for one student. If both students apply to the same school then the high-ability student is admitted with probability $\frac{1+\rho}{2}$, and the rejected student attends the other school. Denote by h_i^t the event that the high-ability student enrolls at school i. If the high-ability student enrolls at the better school, the better school wins with probability $g(W^X_i|h^X_t, \omega^X) = g(W^Y_i|h^Y_t, \omega^Y) = \frac{1}{2}(s + d)$. (8)

In period 0 students have no access to rankings. They believe each school is equally likely to be better. Suppose each student picks a school at random to which they apply.

In period 1 students observe which school won based on the allocation of students in period 0, i.e. they observe W_0. To form a belief about which distribution this signal is drawn from conditional on the state of the world, they need to form a conjecture about the student allocation in period 0. Consistent with the strategies of students in period 0, they conjecture that the high-ability student in period 0 was equally likely to enroll at the better or the worse school for any given state of the world, i.e.

$$Pr(h^X_0 | \omega^X) = Pr(h^Y_0 | \omega^Y) = \frac{1}{2}. \quad (9)$$

Based on this conjecture, students in period 1 infer that the most recent winning school, W_0, was drawn from the distribution which assigns the following probability to the better school winning:

$$Pr(W^X_0 | \omega^X) = g(W^X_0 | h^X_0, \omega^X) Pr(h^X_0 | \omega^X) + g(W^X_0 | h^Y_0, \omega^X) Pr(h^Y_0 | \omega^X)$$

$$= \frac{1}{2} \left[\frac{1}{2} (s + d) \right] + \frac{1}{2} \left[\frac{1}{2} (s - d) \right] = \frac{s}{2} \geq \frac{1}{2} \quad (10)$$

and $Pr(W^Y_0 | \omega^Y) = Pr(W^X_0 | \omega^X)$. And hence, they update their beliefs that the most recent winning
school, W_0, is the better school as follows:

$$Pr \left(\omega^X | W_0^X \right) = \frac{Pr \left(W_0^X | \omega^X \right) Pr \left(\omega^X \right)}{Pr \left(W_0^X | \omega^X \right) Pr \left(\omega^X \right) + \left(1 - Pr \left(W_0^X | \omega^X \right) \right) Pr \left(\omega^X \right)}$$

$$= Pr \left(W_0^X | \omega^X \right) = \frac{s}{2} \geq \frac{1}{2} \quad (11)$$

and analogously for $Pr \left(\omega^Y | W_0^Y \right)$.

As students in period 1 infer that the most recent winning school, W_0, is more likely to be the better school, both students will apply to W_0.

In period 2 students observes which school that won in period 1, W_1, but not which school won in period 0, W_0. They form a conjecture about the student allocation in period 1. Consistent with the strategy profile of students in the previous two periods, they conjecture how likely it is that the high-ability student in period 1 enrolled at the better school:

$$Pr \left(h_1^X | \omega^X \right) = Pr \left(W_0^X | \omega^X \right) \left(\frac{1+p}{2} \right) + Pr \left(W_1^X | \omega^X \right) \left(\frac{1-p}{2} \right)$$

$$= \frac{1 + p \left(s-1 \right)}{2} \geq \frac{1}{2} \quad (12)$$

and $Pr \left(h_1^Y | \omega^Y \right) = Pr \left(h_1^X | \omega^X \right)$. Based on this conjecture, they conclude that that the most recent winner, W_1, was drawn from the distribution which assigns the following probability to the better school winning:

$$Pr \left(W_1^X | \omega^X \right) = Pr \left(W_1^Y | \omega^Y \right) = \frac{s + dp \left(s-1 \right)}{2} \geq \frac{s}{2} \quad (13)$$

And hence, they update their beliefs that the most recent winner, W_1, is the better school as follows:

$$Pr \left(\omega^X | W_1^X \right) = Pr \left(W_1^X | \omega^X \right) = \frac{s + dp \left(s-1 \right)}{2} \geq \frac{s}{2} \quad (14)$$

and analogously for $Pr \left(\omega^Y | W_1^Y \right) = Pr \left(\omega^X | W_1^X \right)$.

I can now make the key comparison between posterior beliefs held by students in period 2 and period 1, i.e. between (11) and (14). Students in period 2 are better informed than students in period 1, despite the fact that in each period students only have access to the most recent ranking. The reason is that, relative to the ranking observed in period 1, the ranking observed in period 2 is more likely to have been generated in a situation in which the high-ability student attended the better school. That is, the ranking observed by students in period 2 is more likely to have been generated in a situation in which the performance bias due to intake ability worked in favor of the better school. This is the case because students in period 1 had better information about school
quality than students in period 0. The same logic applies to students in future periods, and therefore
the inference about quality will improve over time.

The fact that students in period 2 are better informed than students in period 1 can be further
illustrated by comparing extreme cases. If an oversubscribed school were to select among applic-
ations at random \((p = 0)\) then the high-ability student in period 0 would be just as likely to enroll
at the better school as the high-ability student in period 1. Consequently, students in period 2
would be just as well informed as students in period 1. Similarly, if the likelihood of winning were
independent of intake ability \((d = 0)\), students in period 2 would be as well informed as students
in period 1. By contrast, if an oversubscribed school selects some share of its intake on ability
\((p > 0)\) and if intake ability improves the chances of ranking high \((d > 0)\) then rankings are no
longer independent. The ranking in period 2 will be biased in favor of the school students in period
1 believed to be better and this feature allows information to aggregate over time.

In the remainder of the paper, I will focus on a steady state in which the application strategy
profile of students is constant across periods, resulting in a constant share of high-ability students
enrolled at the most recent winning school. To construct students’ posterior beliefs in such an
steady state, it is not necessary to reason through choices of students in each previous period as in
the example above. Instead, it is possible to directly derive the stationary probability that a better
school wins and then construct students’ posterior beliefs about how likely it is that the school that
they observe winning is the better of the two schools.

4 Steady-State Equilibrium

This section will solve for a steady-state equilibrium. I will show that, in equilibrium, students
believe that the most recent winning school is more likely to be the better school and students
apply to the most recent winning school if and only if i) it is their local school or ii) it is their
non-local school and their transport costs fall below a cut-off level.

Definition 1: Given the most recent winning school \(W_{t-1}\), mobility in period \(t\), \(m_t \in [0, 1]\), is
defined as the share of non-local students who apply to this school.

There is a one-to-one map between the strategy profile of students in period \(t\) and the level
of mobility \(m_t\) (as illustrated in Figure 1). In an abuse of terminology, I will refer to the level of
mobility \(m_t\) as the strategy profile in period \(t\).

I will solve for steady-state equilibrium mobility \(m^*\) in three steps. First, I will take as given
posterior beliefs about the state of the world held by students in period \(t\) and derive the optimal
strategy profile \(m_t\) in terms of these beliefs. Second, I will take as given a time-invariant strategy
Figure 1: Students are distributed along a line between school X and school Y. Those with high transport costs live closer to their respective local school. The figure depicts the situation in which school X is the most recent winner and therefore receives applications from all local students, and from the share of non-local students whose transport costs lie below the cut-off \(C_t \). Mobility is defined as the share of students who apply to their non-local winning school.

profile, \(m_t = \hat{m} \) for all \(t \), and derive the stationary distribution, \(Pr(W|\omega^t) \), in steady state for \(i = X, Y \). Given this stationary distribution, I will compute (time-invariant) posterior beliefs about the state of the world in terms of \(\hat{m} \). Finally, I will solve for fixed points, i.e. I will find a time-invariant strategy profile \(m^* \) such that \(m^* \) is optimal given posterior beliefs and posterior beliefs are based on the stationary distribution in steady state, i.e. \(m^* = \bar{m}_t = \hat{m} \).

A fixed point always exists since the optimal mobility level \(\bar{m}_t \) increases in the posterior belief that the most recent winner is the better school and this posterior belief increases in steady-state mobility level \(\hat{m} \). However, the fixed point is not necessarily unique. At the end of the section, I will motivate my selection of the smallest fixed point by showing that this corresponds to the limit of the sequence of (non-steady-state) equilibrium strategy profiles \(\{m_t\}_{t \geq 0} \) as \(t \to \infty \), assuming no ranking is available to students in period \(t = 0 \), as in the example in Section 3.

4.1 Optimal Mobility

First, I will derive optimal mobility given beliefs. Suppose students in period \(t \) believe that the most recent winning school is weakly more likely to be the better of the two schools and their beliefs are independent of whether this is school X or Y. It is helpful to introduce informativeness \(I_t \) as a shortcut for how these beliefs enter students’ expected payoff in period \(t \).\(^{17}\)

\(^{17}\)Off the equilibrium path, \(I_t \in [-1, 1] \) and if \(I_t < 0 \) then \(\bar{m}_t = F(\|V \cdot I_t\|) \) would refer to the share of students who apply to their non-local losing school.
Definition 2: Informativeness in period t, $I_t \in [0, 1]$, is defined as

$$I_t \equiv Pr(\omega^i|W_{t-1}^i) - Pr(\omega^j|W_{t-1}^i)$$ \hspace{1cm} (15)

for $i, j = X, Y$ and $i \neq j$, where $Pr(\omega^i|W_{t-1}^i)$ denotes the posterior beliefs held by students in period t that school i is the better school conditional on the realization of the most recent winning school.

Lemma 1 [Optimal mobility given Informativeness]

The optimal strategy profile of students in period t given informativeness I_t is given by

$$\bar{m}_t = F(V \cdot I_t).$$ \hspace{1cm} (16)

Proof of Lemma 1: There is no downside for a student to apply to the school at which their expected payoff conditional on enrollment is higher. In the worst case their application gets rejected and they enroll at the other school, which results in the same expected payoff as if they had applied there. Hence, a student in period t of type (λ, α) applies to school X if and only if the expected payoff conditional on enrollment is higher:

$$E(\pi_t, \lambda, \alpha(\epsilon^X_t)|W_{t-1}^X) - E(\pi_t, \lambda, \alpha(\epsilon^Y_t)|W_{t-1}^X) \geq 0,$$

where ϵ^j_t denotes the event that the student enrolls at school j.

Suppose $W_{t-1} = W_{t-1}^X$. Then by enrolling at school X rather than at school Y a student derives a benefit V if school X is better, but loses V if school X is worse. In addition, they incur the additional transport costs $c(\lambda)$ if school X is their non-local school, but save these costs if school X is local:

$$E(\pi_t, \lambda, A(\epsilon^X_t)|W_{t-1}^X) - E(\pi_t, \lambda, A(\epsilon^Y_t)|W_{t-1}^X) =
\begin{cases}
V \cdot I_t + c(\lambda) & \text{if } \lambda \leq \frac{1}{2} \\
V \cdot I_t - c(\lambda) & \text{if } \lambda > \frac{1}{2}
\end{cases}$$

(18)

and analogously for $W_{t-1} = W_{t-1}^Y$.

Therefore, any student for whom school W_{t-1} is local will apply to W_{t-1}. However, a student for whom school W_{t-1} is non-local will apply if and only if their transport cost $c(\lambda)$ satisfy $C_t \geq c(\lambda)$

\(^{18}\)This implies that a student’s optimal strategy is independent of the strategy of other students in the same period.

\(^{19}\)Note that a non-local low-ability applicant is indifferent between applying to either school, but for all other types it is a strictly dominant strategy to apply to the school with a higher expected payoff conditional on enrollment.
where the cut-off \(C_t \) is defined as follows:

\[
C_t \equiv V \cdot I_t. \tag{19}
\]

Hence, the share of non-local students who apply to the most recent winning school is

\[
\bar{m}_t = F(C_t) = F(V \cdot I_t). \quad \Box \tag{20}
\]

Mobility is a measure of how responsive application choices are to informativeness in equilibrium. If students believed that each school was equally likely to be better, \(I_t = 0 \), then each student would apply to their local school, \(m_t = 0 \). If students believed that the period-\(t-1 \) winning school is likely to be better, \(I_t > 0 \), then some students face a trade-off between attending the closer school and attending the school of higher expected quality. Mobility measures the share of students who choose to apply to the school of higher expected quality.

4.2 Steady-state Informativeness

Next, I will derive informativeness in steady state given a time-invariant strategy profile \(m_t = \hat{m} \) for all \(t \).

Lemma 2 [Informativeness given time-invariant Mobility]

The unique steady-state level of informativeness given mobility \(m_t = \hat{m} \) is

\[
I(\hat{m}) = \frac{s-1}{1-p \cdot d \cdot \hat{m}} \geq 0. \tag{21}
\]

Proof of Lemma 2: The sequence of signal realizations \(\{W_t\}_{t>0} \) follows a time-homogeneous Markov process. It is a Markov process because the distribution \(g(W_t|h_i^t, \omega) \) from which \(W_t \) is drawn depends on the share \(h_i^t \) of high-ability students at school \(i \), which in turn depends on only the most recent signal realization \(W_{t-1} \) for any given mobility level \(m_t \). Given that mobility is time-invariant, the process is time-homogeneous and the share of high-ability students at the most recent winning school is \(h_t = \frac{1+p\hat{m}}{2} \) for every \(t \). If \(s < 2 \), the process is irreducible and hence has a
unique stationary distribution which for any t solves:

$$Pr(W^X|\omega^X) = g \left(W^X|h^X = \frac{1+p\hat{m}}{2}, \omega^X \right) Pr(W^X|\omega^X) +$$

$$g \left(W^X|h^X = \frac{1-p\hat{m}}{2}, \omega^X \right) [1 - Pr(W^X|\omega^X)]$$

$$= \left[\frac{s}{2} + \left(\frac{1+p\hat{m}}{2} - \frac{1}{2} \right) d \right] Pr(W^X|\omega^X) +$$

$$\left[\frac{s}{2} + \left(\frac{1-p\hat{m}}{2} - \frac{1}{2} \right) d \right] [1 - Pr(W^X|\omega^X)].$$

(22)

and analogously for $Pr(W^Y|\omega^Y)$. Hence,

$$Pr(W^X|\omega^X) = Pr(W^Y|\omega^Y) = \frac{s - p \cdot d \cdot \hat{m}}{2(1 - p \cdot d \cdot \hat{m})}.$$

(23)

By Bayes’ rule and by the symmetry of the setting:

$$Pr(\omega^X|W^X) = \frac{Pr(W^X|\omega^X) Pr(\omega^X)}{Pr(W^X|\omega^X) Pr(\omega^X) + [1 - Pr(W^X|\omega^X)] Pr(\omega^X)} = Pr(W^X|\omega^X)$$

(24)

and analogously for $Pr(\omega^Y|W^Y)$. The level of informativeness follows. If $s = 2$ then $d = 0$ and $I = 1$. $I \geq 0$ since $s > 1$ and $p, d, \hat{m} \in [0, 1]$. \square

Informativeness strictly increases in the level of steady-state mobility \hat{m} if an oversubscribed school selects a strictly positive proportion of non-local high-ability applicants ($p > 0$) and if the chances of winning strictly increase in the share of high-ability students ($d > 0$). In this case, when a school ranks higher, students not only infer that it is likely to be of higher quality, but also that it is likely to have had a large proportion of high-ability students. This is because the chances of ranking higher increase with the proportion of high-ability students enrolled at the school given $d > 0$. The share of high-ability students enrolled is informative about what students in earlier periods expected schools’ relative quality to be, since it is the oversubscribed school which gets to select a share $p > 0$ of non-local applicants based on their ability. The higher the level of mobility \hat{m}, the higher the likelihood that the majority of high-ability students are enrolled at the school of better expected quality, and hence the higher is the likelihood that the current winner is the better school. \(^{20}\)

Informativeness strictly increases in the level of steady-state mobility given $p > 0$ and $d > 0$ because a better school has a performance advantage over a worse school, $s > 1$. To see why, consider the transition probabilities of the Markov process between the signal realization that the

\(^{20}\)This corresponds to the dynamics illustrated in the example in Section 3.
the better school wins and the signal realization that the worse school wins given time-invariant mobility level \hat{m} (illustrated in Figure 2). At $\hat{m} = 0$, the probability that the better school wins in period t is independent of the signal realization in period $t - 1$, and the better school is strictly more likely to win than the worse school since $s > 1$. By contrast, at $\hat{m} > 0$, the signal realization in period t depends on the signal realization in period $t - 1$. As mobility \hat{m} rises, it is more likely that the signal realization in period t is the same as the signal realization in period $t - 1$, irrespective of whether the better or the worse school won in period $t - 1$. This implies that not only a truthful ranking (better school wins) but also a misleading ranking (worse school wins) is more likely to be repeated. Yet, an increase in mobility raises the stationary probability that the better school wins, since the better school is strictly more likely to win than the worse school at any given level of mobility \hat{m}.\footnote{Note that I assume that the worse school never wins with probability 1, which implies that the worse school winning is never an absorbing state. For a discussion about how results are affected when this assumption is relaxed see Section 9.2.}

4.3 Fixed Point

I characterize a steady-state equilibrium by the fixed point of mobility m^* such that mobility m^* is optimal given posterior beliefs and posterior beliefs are based on the signal distribution in steady state at mobility m^* (as illustrated in Figure 3):

$$m^* = F \left(V \cdot I(m^*) \right).$$ (25)
Figure 3: The graph shows the optimal mobility level \bar{m}, which characterizes the optimal strategy profile of students in steady state, as a function of steady-state mobility level \hat{m}. The intersection with the 45-degree line shows the steady-state equilibrium level of mobility m^\ast. This graph is drawn assuming F is a Uniform distribution on $[0, 1]$, $V = 1$, $\theta = \frac{1}{2}$, $s = \frac{3}{2}$, $p = d = \frac{1}{2}$.

Proposition 1 [Equilibrium]: A steady-state equilibrium level of mobility m^\ast is characterized by

$$m^\ast = F \left(\frac{V \cdot s - 1}{1 - p \cdot d \cdot m^\ast} \right)$$

(26)

and the corresponding steady-state equilibrium level of informativeness $I(m^\ast)$ is given by

$$I(m^\ast) = \frac{s - 1}{1 - p \cdot d \cdot m^\ast}.$$

(27)

Such a steady-state equilibrium level of mobility (and informativeness) always exists.

Proof of Proposition 1: $I(\hat{m})$ is increasing in \hat{m} since $s > 1$, $p, d > 0$. Then $F(V \cdot I(\hat{m}))$ is monotone increasing in $\hat{m} \in [0, 1]$ since $V > 0$ and $F(\cdot)$ is increasing. By Tarski’s fixed point theorem, there exists an m^\ast such that $F(V \cdot I(m^\ast)) = m^\ast$. □

4.4 Convergence to Steady-State Equilibrium

In the remainder of the paper, I will focus on the smallest steady-state equilibrium level of mobility and informativeness. This is a natural choice because the sequence of (non-steady-state) equilibrium mobility levels $\{m_t\}_{t \geq 0}$ converges to the the smallest steady-state equilibrium mobility level as $t \to \infty$, given that no ranking is available to students in period 0. The dynamics in a non-steady-state equilibrium are similar to those illustrated in the example in Section 3.
Proposition 2 [Convergence] Consider the sequence \(\{I_t\}_{t \geq 0} \) defined by informativeness in period 0,

\[I_0 = 0, \]

and by the following recurrence equation for informativeness in all periods \(t > 0 \),

\[I_t = s - 1 + F (V \cdot I_{t-1}) p \cdot d \cdot I_{t-1}. \]

The sequence \(\{I_t\}_{t \geq 0} \) corresponds to the sequence of levels of informativeness in non-steady-state equilibrium. As \(t \to \infty \), \(\{I_t\}_{t \geq 0} \) converges to the smallest steady-state equilibrium level of informativeness, denoted by \(I^1* \). As \(\{I_t\}_{t \geq 0} \) converges so does the sequence of mobility levels \(\{m_t\}_{t \geq 0} \). The sequence \(\{m_t\}_{t \geq 0} \) converges to the smallest steady-state equilibrium level of mobility, denoted by \(m^1* \), where

\[m^1* = F (V \cdot I^1*). \]

See Appendix for proof. In period 0, students do not observe a ranking of schools and, hence, believe that each school is equally likely to be better. In equilibrium, students in any period \(t > 0 \) know the distribution from which the ranking in period \(t - 1 \) is drawn (see example in Section 3). The ranking distribution in period \(t \) depends only on ranking distribution in period \(t - 1 \) because students’ optimal strategy profile depends only on the ranking realization in period \(t - 1 \) (Markov property). The sequence of levels of informativeness that arises in equilibrium is increasing and will converge as \(t \to \infty \). Starting from a level of informativeness equal to zero, such a sequence will converge to the smallest steady-state equilibrium level of informativeness. As steady-state equilibrium levels of informativeness and mobility are jointly ordered, this also implies that the sequence of mobility levels will converge to the smallest steady-state equilibrium level of mobility.\(^{22}\)

5 Comparative statics

This section will analyze how both the informativeness of rankings and the share of high-ability students at the better school vary across different environments. The following analysis will focus on the steady-state equilibrium associated with the smallest level of mobility \((m^1*) \), henceforth equilibrium level of mobility (see Section 4.4). For the remainder of the paper, all proofs can be found in the Appendix.

\(^{22}\)For any time-invariant mobility level, the sequence of levels of informativeness converges. However, it may not converge to a steady-state equilibrium level.
Theorem 1 [Comparative Statics]

1. An increase in the proportion \(p \) of non-local high-ability applicants admitted by an oversubscribed school, or

2. a negative shift in the sense of FOSD of the distribution \(F(c) \) of transport costs, or

3. an increase in the performance advantage \(d \) due to a more able intake, or

4. an increase in the performance advantage \(s \) due to superior school quality

- increases the equilibrium level of mobility and the informativeness of rankings, and
- increases the share of high-ability students attending the better school.

Changes 1.-3. increase the chances that the most recent winning school will win again, irrespective of its quality. For changes 1. and 2., this is because the most recent winning school admits an even larger share of high-ability students given any posterior beliefs about schools’ relative quality - either i) a larger share of high-ability applicants is admitted from any given applicant pool or ii) the applicant pool increases. For change 3., this is because the most recent winning school derives an even larger performance advantage from admitting the majority of high-ability students. Since a better school is more likely to win all else equal, these changes increase the likelihood that the better school wins in steady state. Therefore, informativeness increases. This the same argument used to show that steady-state informativeness increases in the time-invariant mobility level in Section 4.2. Change 4. increases the performance advantage of the better school hence raises informativeness independent of student allocations. As informativeness increases at any given level of steady-state mobility, optimal mobility rises and hence equilibrium mobility rises (as shown in Figure 4).

The result (1.) shows that balancing intakes across schools \((p = 0) \) rather than allowing oversubscribed schools to select on ability \((p > 0) \) may hinder learning about school quality, when students base their choices on a limited history of rankings. This is because imbalanced intakes do not simply add noise to performance-based rankings, but help the current ranking to convey information about past performance. Despite recent debate about whether such practices should be used more widely (e.g. Noden et al. [2014]), their consequences on the informativeness of rankings have not yet been investigated.23 The result demonstrates that schools’ admission practices affect the allocation of students to schools not only directly, but also indirectly by affecting what students infer about school quality and hence where they apply. This aspect has so far been ignored

23Gavazza and Lizzeri [2007] study how information about school quality affects efficiency for different admission codes, but not how admission codes affect information.
in the design of matching algorithms, which usually assume students have complete information such that the algorithm itself does not affect what students will learn about schools.

In addition, the result (2.) shows that learning about school quality from rankings is facilitated if it is less costly for students to choose a school based on its perceived quality. This result predicts that the introduction of school choice facilitated learning about quality, because students no longer had to move to the school’s attendance area to be admitted, but could apply from outside this area and then commute. Furthermore, in areas where students have a larger set of schools within a reasonable distance, these schools’ relative performance should be a stronger indicator about their quality than in areas where students have less choice. The result fits with the observation that the rising selectivity at top US colleges coincides with a decrease in the cost of attending a university further from home (Hoxby [2009]). In addition, it fits with empirical evidence that for patients who require non-emergency care (lower transport cost) the correlation between hospital quality and market share is higher than for patients who require emergency treatment (Chandra et al. [2016]). Finally, transport costs in the model can represent other forms of perceived horizontal differentiation between schools, e.g. different schools may differ in their area of specialization (arts versus sciences) and students differ in their preferences over specializations. In areas where schools are more homogeneous, rankings should be more informative about schools’ relative quality. This
suggests that if students are offered a more diverse set of schools to choose from then they are more likely to find a school that matches their individual needs, but they are less likely to learn which school is of better quality.

Recent policy efforts have focused on providing more students with information about schools’ performance. In my framework, the cost c could be interpreted as the cost to look up the most recent ranking, but unlike in the baseline model these costs would then be incurred independent of where the student ends up applying. Students would trade off researching schools and potentially applying to a better-performing school against remaining uninformed and applying to their local school. Therefore, a reduction in costs would again trigger more students to apply to the better-performing school, and my results suggest that such policies would contribute to improving the informativeness of rankings.\(^{24}\)

Finally, the results (3.)-(4.) are interesting in the light of a recent trend in the US and UK towards using value-added measures of school performance. In the context of this model, I would expect a value-added measure to simultaneously raise the performance advantage s of the better school and lower the performance advantage d due to a more able intake. The rise in s improves informativeness, the fall in d reduces informativeness. This shows that reducing the influence of student ability on performance is not equivalent to reducing other forms of noise in rankings because past allocations convey information about earlier performance. Therefore, if value-added measures are less sensitive to intake ability, then to increase informativeness these measures need to raise sensitivity to underlying school quality sufficiently.

\section{Welfare}

This section analyzes how a social planner would optimally assign students to schools if he were subject to the same informational constraints as students, i.e. he can condition this assignment only on each student’s type (their transport costs and their ability) and on the identity of the most recent winning school W_{t-1}. This exercise will highlight how students’ equilibrium strategy profile deviates from the socially optimal allocation.

I will start by defining the social welfare function. I will allow for the possibility that society derives a larger or lower benefit from assigning a high-ability student rather than a low-ability student to the better school.\(^ {25}\) Suppose school X is the most recent winning school. \(E \)\(^ {24}\)

\(^{24}\)That access to performance information can increase applications to well-performing schools has been shown by Hastings and Weinstein [2007].

\(^{25}\)School quality and intake ability could be complements in the social welfare function, for example, if society values a well-educated elite. Alternatively, school quality and intake ability could be substitutes, for example, because society values a more equal distribution of skills.
social welfare in period t is given by

$$
E \left(\Pi_t | W_t^X \right) = V \Pr \left(\omega^X | W_{t-1}^X \right) [\eta h_t + 1 - h_t] \\
+ V \left(1 - \Pr \left(\omega^X | W_{t-1}^X \right) \right) [h_t + \eta (1 - h_t)] \\
- 2 \int_0^{F^{-1}(\eta_{t-1}/2)} c dF(c),
$$

where h_t denotes the share of high-ability students being allocated to the most recent winner, F^{-1} denotes the inverse of F and $\eta \in (0, \infty)$ measures the extent to which society values an increase in the share of high-ability students at the better school. School quality and intake ability are complements if $\eta > 1$, and substitutes if $\eta < 1$.

For any given share $h_t \neq \frac{1}{2}$ of high-ability students assigned to W_{t-1}^X, the social planner has to assign some students to their non-local schools. This welfare function already incorporates that the social planner minimizes the total expenditure on transport costs by choosing the students who incur the lowest additional transport costs within each ability group.

Next, I will define the social planner’s problem. I will assume the social planner commits to allocating share $h_t = h$ of high-ability students to the most recent winning school in each period t such as to maximize expected social welfare in steady state. In steady state, the signal distribution is stationary given $h_t = h$ and, hence, expected welfare is constant across periods, i.e. $\Pi_t = \Pi$. This implies that the social planner solves

$$
\max_h E \left(\Pi | W^X \right) = V \Pr \left(\omega^X | W^X \right) [\eta h + 1 - h] \\
+ V \left(1 - \Pr \left(\omega^X | W^X \right) \right) [h + \eta (1 - h)] \\
- 2 \int_0^{F^{-1}(\eta / 2)} c dF(c),
$$

such that

$$
\Pr \left(W^X | \omega^X \right) = \sum_{j=X,Y} g \left(W^X | h^j = h, \omega^X \right) \Pr \left(W^j | \omega^X \right)
$$

and similarly for $\Pr \left(W^Y | \omega^Y \right)$. The social planner’s assignment choice will influence social welfare at any given signal distribution, and importantly, it will also influence the stationary signal distribution. This captures that the current assignment of students to schools not only affects current welfare, but also affects future welfare indirectly because it affects how informative future

26 Note that if a share h_t of high-ability students are allocated to the most recent winner then this implies that the remaining capacity is equal to $1 - h_t$ and filled with low-ability students.

27 The welfare function only counts transport costs incurred in excess of the (unavoidable) cost of assigning each student to their local school.
rankings will be about school quality. As a benchmark, suppose the social planner is myopic, i.e. he chooses his optimal allocation taking the signal distribution as given. The assignment in steady state is denoted by h_m. Contrast, this with the scenario in which the social planner is forward-looking, i.e. he chooses his optimal allocation h_f also taking into account how this will affect the stationary signal distribution.

Proposition 3 [Welfare]

A myopic (forward-looking) social planner commits to allocating a share h_m (h_f) of high-ability students to the most recent winning school in each period such as to maximize expected welfare in steady state. If $\eta = 1$, i.e. if there are neither complements nor substitutes between school quality and intake ability, then $h_f = h_m = \frac{1}{2}$. If $\eta > 1$, i.e. if there are complements, then $h_f \geq h_m \geq \frac{1}{2}$. If $\eta < 1$, i.e. if there are substitutes, then $h_m \leq \frac{1}{2}$ and $h_f \geq h_m$.

First, consider $\eta = 1$, which corresponds to a utilitarian social planner. The optimal allocation is such that each student is assigned to their local school, irrespective of whether the social planner is myopic or forward-looking, i.e. $h_m = h_f = \frac{1}{2}$. This is because the benefit V is independent of the match between school quality and intake ability and transport costs are minimized if each student attends their local school.

Second, consider $\eta > 1$, i.e. the case of complements. A myopic social planner will allocate the majority of high-ability students to the school of higher expected quality, i.e. $h_m \geq \frac{1}{2}$. This is because the net benefit from increasing the share of high-ability students and reducing the share of low-ability students at the school of higher expected quality outweighs the additional spending on transport costs. In addition, if the social planner is forward-looking, he would like to allocate an even larger share of high-ability students to the school of higher expected quality than when he is myopic, i.e. $h_f \geq h_m \geq \frac{1}{2}$. This is because he also takes into account that increasing the share of high-ability students at the school of higher expected quality improves how likely it is that the most recent winner is the better school and therefore allows him to exploit complementarities even more.

Third, consider $\eta < 1$, i.e. the case of substitutes. If the social planner is myopic, he will allocate the majority of low-ability students to the school of higher expected quality, i.e. $h_m \leq \frac{1}{2}$. Again, a forward-looking social planner would allocate more high-ability students to the better performing school than a myopic one in order to improve how informative the ranking is about relative school quality. However, it is unclear whether or not a forward-looking planner will allocate the majority of low-ability students to the school of higher expected quality, i.e. whether $h_f \geq \frac{1}{2}$ or $h_f \leq \frac{1}{2}$. This is because when school quality and intake ability are substitutes then the social

28A myopic social planner disregards how the allocation today will affect the informativeness of future signals, but welfare in steady state incorporates these effects on informativeness in the expected per-period payoff.
planner faces a tension between utilizing the acquired information about school quality to improve the assignment and choosing the assignment to improve the information about quality.

To highlight several externalities between students, compare students’ equilibrium profile of strategies with the social planner’s optimal allocation. First, consider the socially optimal benchmark if \(\eta = 1 \). In equilibrium, some students apply to their non-local school because each student compares only their individual gain from attending the school of higher expected quality with the additional transport costs incurred, but they do not take into account that they may take up a place that would have otherwise been available for a student living closer to the school. Second, consider the socially optimal benchmark if \(\eta > 1 \) (\(\eta < 1 \)). In equilibrium, students may apply to the school of higher expected quality despite the fact that society would derive a greater benefit if a student of higher (lower) ability took their place instead. Conversely, a student may not apply to the school of higher expected quality even if it would be socially optimal, because they do not take into account that benefit derived by society may exceed the additional transport costs. Finally, students do not take into account that their allocation will influence the ranking available to students in future periods.

7 Extension: Endogenous School Qualities

This extension will analyze how overall school quality and students’ access to good schools is affected when an undersubscribed school is replaced by a new school with some probability.

In the baseline model, school qualities are assumed to be constant over time. Therefore, students’ application strategies affect the allocation of students to schools, but not the overall quality of schools. However, the reforms which enabled students to apply to non-local schools were introduced with the aim to raise the overall quality of schools. The idea was to reduce funding for schools which failed to attract applicants, thereby putting pressure on unpopular schools to change or close down. In this extension, I will incorporate that a lack of applicants can trigger a school to change quality with some probability. Such a change in quality could reflect changes in a school’s leadership or teacher body. The new school’s quality is drawn from the same distribution as the initial quality such that a replacement does not necessarily imply an improvement in quality, e.g. the new principal may not be recruited from a superior pool than the old principal. This replacement assumption allows me to study a steady-state equilibrium in which the overall quality of schools depends on students’ application strategies, and students’ application strategies are optimal given the distribution of school qualities.

The set-up of the baseline model is amended in the following way. A school’s quality in period \(t \), denoted by \(Q_t \in \{ G, B \} \), is either good (\(Q_t = G \)) or bad (\(Q_t = B \)). At the beginning of period \(t = 0 \), each school’s quality is drawn independently at random such that \(Pr (Q_0 = G) = \frac{1}{2} \). In each
period $t \geq 0$, after students’ payoffs have been realized, but before the ranking of schools is drawn, a school which was undersubscribed in period t is replaced with probability $\gamma \in [0, 1]$, whereas the other school is not replaced. If a school is replaced, then a new quality is drawn independently at random such that $\Pr (Q_t = G) = \frac{1}{2}$. If a school is not replaced, its quality remains the same as in the previous period. School’s location remains fixed throughout. Denote the underlying pair of school qualities at the end of period t by $Q^X_t Q^Y_t \in \{ GG_t, GB_t, BG_t, BB_t \}$. As in the baseline model, if school X is the better school ($Q^X_t Q^Y_t = GB_t$) then the probability that school X wins with a share h^X_t of high-ability applicants is given by:

$$g \left(W^X_t | h^X_t, GB_t \right) = \frac{s}{2} + \left(h^X_t - \frac{1}{2} \right) d,$$ \hspace{1cm} (34)$$

and $g \left(W^X_t | h^Y_t, BG_t \right) = g \left(W^X_t | h^X_t, GB_t \right)$. In addition, if schools are of equal quality, the probability that school X wins is given by:

$$g \left(W^X_t | h^X_t, GG_t \right) = g \left(W^X_t | h^X_t, BB_t \right) = \frac{1}{2} + \left(h^X_t - \frac{1}{2} \right) d,$$ \hspace{1cm} (35)$$

since neither school has an advantage due to superior quality, i.e. $s = 1$.\footnote{In steady state, it is irrelevant how the relative performance of schools of the same quality is determined, due to the symmetry of the set-up.} I will continue to assume that students only observe the most recent ranking of schools. School replacements are not observed.

A steady state is a time-invariant mobility, i.e. $m_t = \hat{m}$ for all t, and a joint distribution of the pair of school qualities ($Q^X_t Q^Y_t$) and the signal of schools’ relative quality (W_{t-1}) such that the joint distribution is stationary given $m_t = \hat{m}$. A \textit{steady-state equilibrium} is a steady state such that the time-invariant mobility $m_t = m^*$ is optimal given the stationary joint distribution. A student’s optimal application strategy will depend on the difference between the posterior belief that the most recent winner is strictly better and the likelihood that the most recent winner is strictly worse. Therefore, informativeness in period t will be defined as:

$$I_t \equiv \Pr (GB_{t-1} | W^X_{t-1}) - \Pr (BG_{t-1} | W^X_{t-1}) = \Pr (BG_{t-1} | W^Y_{t-1}) - \Pr (GB_{t-1} | W^Y_{t-1}) \hspace{1cm} (36)$$

I will refer to the case in which $\gamma = 0$ as the case in which school quality is \textit{exogenous}, whereas I will refer to the case in which $\gamma > 0$ as the case in which school quality is \textit{endogenous}.\footnote{Note that $\gamma = 0$ does not recover the baseline model, because in the baseline model I restricted attention to situations in which school qualities are different. However, the qualitative insights of the baseline model apply if $\gamma = 0$.} School quality is endogenous if $\gamma > 0$ because the likelihood that a school is replaced depends on students’
application choices in equilibrium.

I will first repeat some of the comparative static exercises of Theorem 1 assuming endogenous school qualities.

Proposition 4 [Endogenous Quality - Comparative Statics]

If school qualities are endogenous, i.e. \(\gamma > 0 \), then

1. *an increase in the proportion \(p \) of non-local high-ability applicants admitted by an oversubscribed school, or*

2. *a negative shift in the sense of FOSD of the distribution \(F(c) \) of transport costs*

- increases the equilibrium level of mobility and the informativeness of rankings, and

- increases the average fraction of good schools, and

- increases the share of high-ability students but decreases the share of low-ability students who attend a good school.

For proof see Online Appendix. Any change in the environment which raises equilibrium informativeness and mobility at any given distribution of school qualities will have two effects. First, it will raise the share of high-ability students at the relatively better school (sorting effect), as in the case of exogenous school qualities. Second, it will raise the average fraction of good schools (quality effect). The average fraction of good schools rises, although the proportion of good schools closing down must equal to the proportion of good schools opening up to remain in steady state. Nonetheless, the average length of time that a good school operates increases. Both the quality and the sorting effect cause the share of high-ability students at good schools to increase. However, the share of low-ability students at good schools decreases because the sorting effect is of first order, while the quality effect is of second order. Therefore, a policymaker may face a trade-off between efficiency (better schools) and equity (higher positive assortative sorting).

The next proposition analyzes changes to the equilibrium when school qualities become endogenous.
Proposition 5 [Endogenous Quality vs Exogenous Quality]

If school qualities are endogenous, i.e. $\gamma > 0$ rather than $\gamma = 0$, then

- the level of mobility and informativeness remains unchanged, and
- the average fraction of good schools increases, and
- both the share of low-ability students and the share of high-ability students who attend a good school increases.

Mobility and informativeness remain unaffected as school qualities become endogenous for two reasons. First, informativeness in steady-state equilibrium is independent of γ for $\gamma > 0$, because the relative frequency with which a good rather than a bad school is replaced is unaffected by γ, and hence the relative frequency with which a good school ranks higher than a bad school is also unaffected. Second, the chances that schools are of different quality at any given point in time is unaffected by whether $\gamma = 0$ or $\gamma > 0$ because a new school is equally likely to be good or bad.

Replacing an undersubscribed school by a new school increases the overall quality of schools for the same reasons as outlined above (quality effect). However, given mobility is unaffected, there is no change in sorting. Since any school is more likely to be good while the allocation of students conditional on the most recent ranking is unaffected, both ability groups benefit from linking school replacement to students’ application choices.

To highlight the additional dynamic effects due to endogenous school qualities, it is helpful to repeat the exercise in Section 6 and compare the social planner’s optimal allocation when he is myopic compared to when he is forward-looking. Suppose the most recent losing school is replaced with probability γ and the social planner can determine the share h of high-ability students at the most recent winning school.

Proposition 6 [Endogenous Quality - Welfare]

Suppose there are neither complements nor substitutes between school quality and intake ability, i.e. $\eta = 1$. If school qualities are endogenous, $\gamma > 0$, a forward-looking social planner would allocate a larger share of high-ability students to the most recent winner than a myopic social planner: $h^f \geq h^m = \frac{1}{2}$.

Given there are neither complements nor substitutes between school quality and intake ability, a myopic social planner will allocate each student to their local school, just as he would if school

31In particular, for any given time-invariant mobility level \tilde{m}, γ only affects how quickly the joint distribution of school qualities and rankings converges to its stationary distribution, but not the stationary distribution itself.
qualities were exogenous. However, a forward-looking social planner will allocate more high-ability students to the most recent winner because he thereby raises the average fraction of good schools in steady state.

In the baseline model with exogenous school qualities, it is socially inefficient that some students apply to their non-local school when it is the most recent winner. However, when school qualities are endogenous, there is a further inefficiency which may alleviate the first: Students do not take into account that applying to the most recent winner entails a benefit for students in future periods because it increases the average fraction of good schools in future periods.

8 Extension: Peer Effects

This extension will incorporate that students may not only care about the quality of the school but also about the ability of their peers. Students’ inference problem, which is the focus of this paper, would still persist even in the presence of such peer effects. The ranking of schools is influenced by students who attended these schools in the past, not by their contemporary peers. If I incorporate concerns for peers, the findings of the baseline model change in two important ways. First, the smallest equilibrium levels of mobility and informativeness increase relative to the baseline model which demonstrates that peer effects can reinforce the increase in informativeness and sorting described in the baseline model. Second, unlike in the baseline model, a negative equilibrium level of mobility may exist.\footnote{Rothstein [2006] examines the relative valuation of peers versus observed school effectiveness in Tiebout choice, and points out that a multiplicity of equilibria arises if students value peers, in some of which students do not sort according to school effectiveness. The negative level of equilibrium mobility which can arise in my model has a similar flavor, but my model also shows that peer effects can strengthen the informativeness of school performance rankings.}

The set-up of the baseline model is amended in the following way. Students derive a benefit $V > 0$ in the event that the school they attend wins, rather than in the event that this school is better. Hence, the realized payoff of a student in period t of type (λ, α) conditional on enrolling at school $i = X, Y$ and conditional on the ranking realization in period t is given by:

$$
\pi_{t, \lambda, \alpha}(\epsilon, W_t) = \begin{cases}
V \cdot 1_{W_t = W_t^X}(W_t) - \lambda & \text{if } \epsilon = \epsilon^X \\
V \cdot 1_{W_t = W_t^Y}(W_t) - (1 - \lambda) & \text{if } \epsilon = \epsilon^Y
\end{cases}
$$

(37)

where $1_{W_t = W_t^i}(W_t) = 1$ if $W_t = W_t^i$ and 0 otherwise for $i = X, Y$. This implies that their payoff increases in both the school’s quality and the ability of the current intake. Parameter d measures how strongly the signal of school quality is biased in favor of the school with more high-ability students. In the context of this extension, parameter d can be interpreted as the strength of peer effects. The stronger peer effects, the stronger students’ preference for the school with a higher
number of high-ability students, all else equal.

Proposition 7 [Peer Effects] 1.) The smallest positive equilibrium levels of mobility and informativeness increase as i) peer effects are stronger (d larger), or as ii) an oversubscribed school selects a larger proportion p of non-local high-ability applicants. 2.) Some share of students may apply to the non-local losing school, i.e. a negative equilibrium level of mobility may exist, and it is more likely to exist as i) peer effects are stronger (d larger), or as ii) an oversubscribed school selects a larger proportion p of non-local high-ability applicants.

For proof see Online Appendix. Given the presence of peer effects, if students expect a larger share of high-ability students to apply to the most recent winner, then this raises their benefit of attending this school for any given level of informativeness. In addition, it raises the benefit by more the more an oversubscribed school selects on ability or the stronger peer effects are. As a larger share of students applies to the winning school, informativeness rises by more, reinforcing the initial effect. Therefore, stricter selection on ability or stronger peer effects unambiguously raise the smallest equilibrium levels of mobility and informativeness.

The introduction of peer effects can give rise to steady-state equilibria associated with a negative level of mobility, i.e. students incur costs to travel to the most recent loser. Students may still believe that the most recent winning school is more likely to be the better school. Yet if they expect the share of high-ability students who will enroll at the most recent loser to be sufficiently high, the expected benefit derived from better peers at a worse school may outweigh the expected benefit derived from a better school with worse peers. These equilibria are more likely to arise if peer effects are stronger (d higher) or if oversubscribed schools admit an even larger share of high-ability students (p higher).

9 Robustness Checks

This section shows to what extent my findings are robust to changes in some of the assumptions.

9.1 Longer Window of Rankings

I have assumed that students only observe the most recent ranking. The insights of this paper still apply if students observed a longer window of rankings. If this were the case, students would have access to some of the information based on which students in previous periods applied to schools. However, crucially, they still would not have access to all the information available to students in all previous periods. Therefore, it is still true that rankings would convey some additional information about the relative quality of schools if students in each period applied to the school which they
expect to be of higher quality. This is the feature on which the proofs for equilibrium existence and comparative statics results are based.

In the Online Appendix, I analytically solve for steady-state informativeness, when, in each period t, students observe the two most recent rankings. Students’ strategy profile is characterized by a pair of mobility levels, one conditional on the same school winning in both of the two most recent periods and one conditional on a different school winning in each of these periods. I show that the stationary distribution of rankings is such that it is uninformative to observe a different school win in each ranking, independent of the pair of mobility levels. In addition, I show that observing the same school win is informative, and weakly more so the higher the level of mobility conditional on observing the same school win and independent of the level of mobility conditional on observing different schools win.

9.2 Self-fulfilling Rankings and Herding

The property that the better school has a strict performance advantage relative to the worse school (see (2)) implies that the worse school never wins for certain, independent of the share of high-ability students admitted. Suppose I were to allow for the possibility that there exists some critical level \bar{h} for the share of high-ability students such that if $h > \bar{h}$ then school $i = X, Y$ is guaranteed to win.\(^{33}\) Then for some sufficiently high level of mobility, the stationary distribution of rankings in steady state would no longer be unique. It would either assign probability 1 to the worse school winning or probability 1 to the better school winning. This is because for a sufficiently high level of mobility, a self-perpetuating cycle could arise in which the same school continues to win, because once it has attracted sufficiently many high-ability students to win it will then be able to attract these high-ability students again and again. In the terminology of the social learning literature, a herd will arise. In this situation, it is no longer true that the realized level of informativeness necessarily increases in the proportion p of non-local high-ability applicants admitted by an oversubscribed school. However, the higher the proportion p of non-local high-ability applicants selected, the more likely it is that the better school rather than the worse school will be the first to reach the critical level \bar{h}. Therefore, from an ex-ante perspective, informativeness is still at least as high if oversubscribed schools select on ability as if intakes are balanced across schools.

\(^{33}\)The baseline model has abstracted away from this to keep the analysis tractable. The baseline model can be thought of as capturing situations in which there is sufficiently high differentiation between schools such that intakes will not become too unbalanced across schools, or situations in which students’ abilities are relatively homogeneous so that the performance advantage from taking on more able students is not too large.
9.3 Admission not based on Ability

Even in situations in which schools cannot select among applicants based on their ability, the insights developed in this paper can be useful. In the baseline model, an increase in mobility strictly increases steady-state informativeness only if the most recent winner (and hence oversubscribed school) admits some non-local high-ability applicants, i.e. \(p > 0 \). However, an alternative set of assumptions could also ensure that the most recent winner admits more high-ability students and that this share of high-ability students increases in informativeness.

As an example, I will show that this is the case if I assume students with high-ability students derive a larger benefit from attending a better school, i.e. \(V^H > V^L \), and if the distribution for transport costs is Uniform. The assumption that \(V^H > V^L \) is supported by empirical evidence that students of higher socio-economic status are more likely to seek out better-performing schools, e.g. see Hastings et al. [2005], Allen et al. [2014]. Students’ application strategies would not only depend on their location, but also on their ability. High-ability students would be willing to incur higher transport costs than low-ability students to attend the most recent winning school at any given level of informativeness. Hence, the applicant pool of the most recent winning school will contain more high-ability than low-ability students. Therefore, even if this school selects among applicants at random, it will admit more high-ability students than the other school. In addition, for any increase in informativeness, the most recent winner will receive relatively more applicants from high-ability students. More detail can be found in the Online Appendix.

In addition, even if a school had to admit those students who live nearest to the school, some of the effects captured in this model may still be present. Students would consider the quality of the school when choosing where to live (Tiebout choice). If students with higher-ability students are more likely to move into the proximity of the better-performing school, either because they value school quality more or because they are more likely to be able to afford housing there, then again a better-performing school may admit more high-ability students.

10 Conclusion

This paper studies students’ inferences about school quality from rankings, when students in each period observe which of two schools performed better in the previous period, but they do not observe past allocations or applications. I develop a dynamic framework which allows a tractable analysis of students’ inferences about school quality and analyze comparative statics in a steady-state equilibrium. I find that a performance-based ranking is more informative about school quality if an oversubscribed school selects a larger share of its intake based on ability. I also find that such a ranking is more informative if it is less costly for students to attend a non-local school.

\[^{34} \text{I assume } V^H < 1 \text{ such that not all high-ability students apply to the most recent winner. } \]
My findings contribute to a better understanding of how students choose between schools, and in particular which factors determine how responsive students’ demand is to the underlying quality of schools. These findings are important in the light of recent discussions on school choice and on the design of school admission codes. I view the framework developed as a building block for future research on analyzing the link between information and match outcomes. In addition, the framework is also suitable to explore what could cause persistent differences between schools to arise, and a starting point to explore how schools build and maintain reputations over time when students have limited access to past performance information.

A Appendix

A.1 Proposition 2

The sequence of levels of informativeness in non-steady-state equilibrium satisfies (28) because students in period 0 do not observe a signal and, hence, their posterior beliefs equal their (uninformative) prior beliefs. In addition, the equilibrium sequence satisfies (29), since by (24) it follows that

\[I_t = \Pr(\omega^X|W_{t-1}^X) - \Pr(\omega^Y|W_{t-1}^X) = \Pr(W_{t-1}^X|\omega^X) - \Pr(W_{t-1}^X|\omega^Y) \]

\[= \Pr(W_{t-1}^X|\omega^X) - \Pr(W_{t-1}^Y|\omega^X) = 2\Pr(W_{t-1}^X|\omega^X) - 1, \]

(38)

and since the stationary distribution must satisfy

\[\Pr(W_{t-1}^X|\omega^X) = g \left(W_{t-1}^X|W_{t-1}^X + \frac{1+m_{t-1}}{2}, \omega^X \right) \Pr(W_{t-2}^X|\omega^X) + \]

\[+ g \left(W_{t-1}^Y|W_{t-1}^X + \frac{1-m_{t-1}}{2}, \omega^X \right) \Pr(W_{t-2}^Y|\omega^X) \]

\[= \left[\frac{s}{2} + \left(\frac{p \cdot m_{t-1}}{2} \right) d \right] \Pr(W_{t-2}^X|\omega^X) + \]

\[- \left[\frac{s}{2} - \left(\frac{p \cdot m_{t-1}}{2} \right) d \right] \Pr(W_{t-2}^Y|\omega^X) \]

\[= \frac{s}{2} + \frac{p \cdot d \cdot m_{t-1}}{2} I_{t-1} \]

(39)

and since (16) holds.

Next, I will show that the sequence \(\{I_t\}_{t \geq 0} \) converges to its smallest fixed point \(I^{1*} \). Any increasing sequences converges to its least upper bound. The sequence \(\{I_t\}_{t \geq 0} \) is increasing by the following induction argument. Define

\[Z(I_{t-1}) = s - 1 + p \cdot d \cdot F(V \cdot I_{t-1}) \cdot I_{t-1} \in [0, 1] \]

(40)
$Z(I_t)$ increases in I_t given $F(\cdot)$ is positive and increasing, $V > 0$, $p \geq 0$, $d \geq 0$ and $I_t \geq 0$. Since $s > 1$,

$$I_1 = Z(I_0) \geq I_0 = 0,$$

and due to $Z(\cdot)$ being increasing for all I_t,

$$I_t = Z(I_{t-1}) \geq Z(I_{t-2}) = I_{t-1}.$$

Since $\{I_t\}_{t \geq 0}$ is increasing, it converges to its least upper bound. Next, I will show that this least upper bound is given by the smallest fixed point I^{1*}. Suppose I^{1*} was not the least upper bound. Then there would be some $\tilde{I} \in [0,1]$ such that $\tilde{I} < I^{1*}$ and $Z(\tilde{I}) > I^{1*}$. Since I^{1*} is a fixed point, this implies $Z(\tilde{I}) > Z(I^{1*})$. But this contradicts the fact that $Z(\cdot)$ is increasing.

Given (20), $V > 0$ and $F(\cdot)$ is increasing, m_t increases in I_t. Hence, as $\{I_t\}_{t \geq 0}$ converges so does $\{m_t\}_{t \geq 0}$. Further, the smallest equilibrium level of informativeness I^{1*} corresponds to the smallest equilibrium level of mobility m^{1*}.

A.2 Theorem 1

Define

$$\Gamma(I, F, p, d, s, V) = \frac{s-1}{1-p \cdot d \cdot F(V \cdot I)} \in [0,1].$$

Denote the parameter subject to exogenous change by $z \in Z$, where Z is a subset of \mathbb{R}. To simplify notation, I will suppress all arguments other than z and I and write $\Gamma(z, I) : Z \times [0,1] \to [0,1]$. For any $z \in Z$, $\Gamma(z, I)$ is continuous and increasing in I since $s > 1$, $d, p \geq 0$, $F(\cdot)$ is positive and increasing. I will show that $\Gamma(z, I)$ is increasing in z for all $I \in [0,1]$. After Corollary 1, (p. 446), in Milgrom and Roberts [1994] (henceforth MR), this implies that the smallest fixed point of $\Gamma(z, I)$, denoted by $I^{1*}(z)$, is increasing in z. I will prove statements 1.-4. in Theorem 1 by choosing z to be the variable of interest:

1. $\Gamma(p, I)$ is increasing in p at every I since $s > 1$, $d \geq 0$ and $F(\cdot) \geq 0$.

2. For any I, and any $F(\cdot)$ and $\bar{F}(\cdot)$, such that $F(\cdot)$ first-order stochastically dominates $\bar{F}(\cdot)$, it holds that

$$F(V \cdot I) \leq \bar{F}(V \cdot I).$$

Hence,

$$\frac{s-1}{1-p \cdot d \cdot F(V \cdot I)} \geq \frac{s-1}{1-p \cdot d \cdot \bar{F}(V \cdot I)}.$$

3. $\Gamma(d, I)$ is non-decreasing in d at every I since $s > 1$, $p \geq 0$ and $F(\cdot) \geq 0$.

4. Since $\Gamma(d, I)$ is non-decreasing in s at every I since $p, d, F(\cdot) < 1$.

For 1.-4., by MR, I^{1*} is non-decreasing in z. For 1., 3. and 4., since $m^{1*} = F(V \cdot I^{1*})$, $F(\cdot)$

35
is increasing and $V > 0$, m^{1*} is increasing in z. For 2., since $m^{1*} = F(V \cdot I^{1*})$, $F(\cdot)$ is increasing, $V > 0$ and (41), m^{1*} is increasing with a negative shift in the sense of FOSD of $F(\cdot)$.

A.3 Proposition 3 [Welfare]

A social planner solves (32) subject to (33).

If $\eta = 1$, then this simplifies to

$$
\max_h E (\Pi | W) = V - 2 \int_0^{F^{-1}(h - \frac{1}{2})} c dF(c),
$$

which is independent of posterior beliefs $Pr(\omega | W)$ and therefore independent of the stationary ranking distribution $Pr(W | \omega)$. Whether the social planner is myopic or forward-looking, welfare is maximized at $h_m = h_f = \frac{1}{2}$. For any $h \in [0, 1]$, there exists a unique distribution $Pr(W | \omega)$ such that (33) is satisfied because the sequence of ranking realizations follows a irreducible time-homogeneous Markov process.

Suppose $\eta \neq 1$. The social welfare function is not differentiable at $h = \frac{1}{2}$. Suppose the social planner solves

$$
\max_{h \in \mathcal{H}} E (\Pi | W) \text{ subject to (33)},
$$

first for $\mathcal{H} = [0, \frac{1}{2}]$ and then for $\mathcal{H} = [\frac{1}{2}, 1]$ and finally chooses the global maximum.

If the social planner is myopic, i.e. if he treats the stationary distribution as given, then the first derivative of expected social welfare if $\mathcal{H} = [0, \frac{1}{2}]$ or if $\mathcal{H} = [\frac{1}{2}, 1]$ is given by

$$
V \left[2Pr(\omega^X | W^X) - 1 \right] (\eta - 1) - \frac{\partial}{\partial h} \left[2 \int_0^{F^{-1}(h - \frac{1}{2})} c dF(c) \right]. \quad (42)
$$

By the proof of Lemma 2 for $h = \frac{1 + \hat{p} \hat{m}}{2}$, it holds that

$$
2Pr(\omega^X | W^X) - 1 = 2Pr(W^X | \omega^X) - 1 = \frac{s - 1}{1 - d \cdot (2h - 1)} \geq 0. \quad (43)
$$

Suppose $\eta > 1$. Then if $\mathcal{H} = [0, \frac{1}{2}]$ the optimum is $h_m = \frac{1}{2}$ since (42) is positive for any $h_m \in [0, \frac{1}{2}].$. Hence, the optimal $h_m \in (0, 1]$ must satisfy $h_m \geq \frac{1}{2}$.

Suppose $\eta < 1$. Then if $\mathcal{H} = [\frac{1}{2}, 1]$ the optimum is $h_m = \frac{1}{2}$ since (42) is negative for any $h_m \in [\frac{1}{2}, 1]$. Hence, the optimal $h_m \in [0, 1]$ must satisfy $h_m \leq \frac{1}{2}$.

35 As h rises for $\mathcal{H} = [0, \frac{1}{2}]$ more students are assigned to their local school, so expenditure on transport costs decreases.

36 As h rises for $\mathcal{H} = [\frac{1}{2}, 1]$ fewer students are assigned to their local school, so expenditure on transport costs increases.
If the social planner is forward-looking, i.e. if he takes into account that his choice will influence the stationary distribution, then the first derivative of expected social welfare if \(H = [0, \frac{1}{2}] \) or if \(H = [\frac{1}{2}, 1] \) is given by

\[
V \left[2Pr(\omega^X|W^X) - 1 \right] (\eta - 1) + \frac{\partial}{\partial h} Pr(\omega^X|W^X) [V ((\eta - 1) (2h - 1))] \\
- \frac{\partial}{\partial h} \left[2 \int_{0}^{F^{-1}(\frac{h}{2})} c dF(c) \right].
\] (44)

Since (43) is increasing in \(h \), it holds that

\[
\frac{\partial}{\partial h} Pr(\omega^X|W^X) = \frac{\partial}{\partial h} \frac{s - d \cdot (2h - 1)}{2 (1 - d \cdot (2h - 1))} \geq 0.
\] (45)

Suppose \(\eta > 1 \). Then if \(H = [0, \frac{1}{2}] \), then \(h_f = \frac{1}{2} \) since (44) is positive at \(h_m = \frac{1}{2} \) given (43) and (45). If \(H = [\frac{1}{2}, 1] \), then \(h_f \geq h_m \geq \frac{1}{2} \) since either i) \(h_m = \frac{1}{2} \) and (44) is positive at \(h_m = \frac{1}{2} \), or ii) \(h_m > \frac{1}{2} \) and (44) is positive at \(h_m \) since (42) must be zero at \(h_m \) and (45) holds. Hence, \(h_f \geq h_m \) for \(H \in [0, 1] \).

Suppose \(\eta < 1 \). Then if \(H = [\frac{1}{2}, 1] \), then \(h_f \geq \frac{1}{2} \) since (44) is positive at \(h_m = \frac{1}{2} \) given (43) and (45). If \(H = [0, \frac{1}{2}] \), then \(h_f \geq h_m \) since either i) \(h_m = \frac{1}{2} \) and (44) is positive at \(h_m = \frac{1}{2} \) or ii) \(h_m < \frac{1}{2} \) and (44) is positive at \(h_m \) since (42) must be zero at \(h_m \) and (45) holds. Hence, \(h_f \geq h_m \) for \(H \in [0, 1] \).

B Online Appendix

B.1 Extensions: Endogenous School Qualities

Lemma 3: For \(\gamma \geq 0 \), a steady-state equilibrium level of mobility \(m^* \) is characterized by

\[
m^* = F \left(V \cdot \frac{s - 1}{2 (1 - p \cdot d \cdot m^*)} \right)
\] (46)

and the corresponding steady-state equilibrium level of informativeness \(I(m^*) \) is given by

\[
I(m^*) = \frac{s - 1}{2 (1 - p \cdot d \cdot m^*)}.
\] (47)

Such a steady-state equilibrium level of mobility (and informativeness) always exists.

I will first derive the stationary joint distribution of the pair of school qualities and of the signal \(W_{t-1} \) given \(m = \hat{m} \). Since I focus on symmetric equilibria, it is sufficient to define a realization by
the quality of the winning school and the quality of the losing school, but not their identities. I will denote a realization by an unordered pair of school qualities and whenever schools differ in quality I indicate the quality of the winning school by an upper bar, i.e.
\[\bar{G}B_t \] denotes the realization that one school is good and one is bad and the good school is the most recent winner, and similarly \[\bar{B}G_t \] denotes the realization that one school is good and one is bad and the bad school is the most recent winner. Therefore, I denote the stationary joint distribution by the vector \(\rho \) where

\[
\rho \equiv \left(Pr(GG), Pr(\bar{G}B), Pr(\bar{B}G), Pr(BB) \right).
\]

The Markov process is defined by the following matrix \(T \) of transition probabilities between possible realizations in two consecutive periods:

\[
T = \begin{pmatrix}
Pr(GG_t|GG_{t-1}) & Pr(\bar{G}B_t|GG_{t-1}) & Pr(\bar{B}G_t|GG_{t-1}) & Pr(BB_t|GG_{t-1}) \\
Pr(\bar{G}G_t|\bar{G}B_{t-1}) & Pr(\bar{G}B_t|\bar{G}B_{t-1}) & Pr(\bar{B}G_t|\bar{G}B_{t-1}) & Pr(BB_t|\bar{G}B_{t-1}) \\
Pr(GG_t|\bar{B}G_{t-1}) & Pr(\bar{G}B_t|\bar{B}G_{t-1}) & Pr(\bar{B}G_t|\bar{B}G_{t-1}) & Pr(BB_t|\bar{B}G_{t-1}) \\
Pr(GG_t|BB_{t-1}) & Pr(\bar{G}B_t|BB_{t-1}) & Pr(\bar{B}G_t|BB_{t-1}) & Pr(BB_t|BB_{t-1}) \\
\end{pmatrix}.
\]

Each transition probability is comprised of two parts: i) the undersubscribed losing school in period \(t - 1 \) is replaced with probability \(\gamma \) by a new school which is of a different quality with probability \(\frac{1}{2} \), and ii) the oversubscribed winning school in \(t - 1 \) admits a share \(\hat{m}p \) of high-ability non-local students. The pair of school qualities and the allocation of high-ability students then determine the
winner in period t. The transition matrix T has the following entries:

\[
\begin{align*}
Pr(GB_t|GG_{t-1}) &= \frac{\gamma}{2} \left[\frac{1}{2} (s + \hat{mpd}) \right] \\
Pr(BG_t|GG_{t-1}) &= \frac{\gamma}{2} \left[1 - \frac{1}{2} (s + \hat{mpd}) \right] \\
Pr(BB_t|GB_{t-1}) &= \frac{\gamma}{2} \left[\frac{1}{2} (s - \hat{mpd}) \right] \\
Pr(BB_t|BG_{t-1}) &= \frac{\gamma}{2} \left[1 - \frac{1}{2} (s - \hat{mpd}) \right] \\
Pr(GB_t|GB_{t-1}) &= \left[1 - \frac{\gamma}{2} \right] \left[\frac{1}{2} (s + \hat{mpd}) \right] \\
Pr(BG_t|GB_{t-1}) &= \left[1 - \frac{\gamma}{2} \right] \left[1 - \frac{1}{2} (s + \hat{mpd}) \right] \\
Pr(GB_t|BB_{t-1}) &= \left[1 - \frac{\gamma}{2} \right] \left[\frac{1}{2} (s - \hat{mpd}) \right] \\
Pr(BG_t|BG_{t-1}) &= \left[1 - \frac{\gamma}{2} \right] \left[1 - \frac{1}{2} (s - \hat{mpd}) \right]
\end{align*}
\]

\[
Pr(GG_t|GG_{t-1}) = Pr(BB_t|BB_{t-1}) = 1 - \frac{\gamma}{2}
\]

\[
Pr(GG_t|GB_{t-1}) = Pr(BB_t|BG_{t-1}) = \frac{\gamma}{2}
\]

and the remaining entries are equal to 0.

If the Markov process characterized by T is both irreducible and aperiodic it has a unique stationary distribution which is defined by the row vector ρ that satisfies both

\[\rho = \rho T\quad (48)\]

and

\[Pr(GG) + Pr(GB) + Pr(BG) + Pr(BB) = 1.\quad (49)\]

If $\gamma > 0$ then the stationary distribution is defined by

\[Pr(GG) = Pr(GB) = \frac{1}{4} \frac{(s - p \cdot d \cdot \hat{m})}{1 - p \cdot d \cdot \hat{m}}\quad (50)\]

\[Pr(BG) = Pr(BB) = \frac{1}{4} \frac{(2 - s - p \cdot d \cdot \hat{m})}{1 - p \cdot d \cdot \hat{m}}.\quad (51)\]

If $\gamma = 0$, then the stationary distribution is defined by

\[Pr(GG) = Pr(BB) = \frac{1}{4}\quad (52)\]
Students’ optimal application strategy is again described by (17) and (18), where informativeness is defined as

\[I_t(\hat{m}) \equiv Pr(GB_{t-1}|W_{t-1}^X) - Pr(BG_{t-1}|W_{t-1}^X) \]
\[= Pr(BG_{t-1}|W_{t-1}^Y) - Pr(GB_{t-1}|W_{t-1}^Y), \]

since by enrolling at school \(X \) rather than at school \(Y \) a student derives a benefit \(V \) if school \(X \) is better, loses \(V \) if school \(X \) is worse and neither gains nor loses if schools are of the same quality.

For \(\gamma \geq 0 \), informativeness in steady state is given by (47). Since optimal mobility in terms of informativeness is given by (16), the steady-state equilibrium mobility and informativeness solve (25). Existence follows by Tarki’s fixed point theorem for the same reasons given in the proof of Proposition 1.

B.1.1 Proposition 4

Part 1: The equilibrium levels of mobility and informativeness of rankings in Lemma 3 are identical to the equilibrium levels in the baseline model up to a scaling factor. Hence, by the proof of Theorem 1, mobility and informativeness weakly increase (1.) in \(p \) and (2.) with a negative shift in the sense of FOSD of \(F \).

Part 2: The average fraction of good schools in equilibrium, denoted by \(\Theta \), is given by:

\[
\Theta = \begin{cases}
Pr(GG) + \frac{1}{2} Pr(GB) + \frac{1}{2} Pr(BG) = \frac{s-1+2(1-p \cdot d \cdot m^*)}{4(1-p \cdot d \cdot m^*)} & \text{if } \gamma > 0 \\
\frac{1}{2} & \text{if } \gamma = 0
\end{cases}
\]

(55)

1. \(\frac{d\Theta}{dp} \geq 0 \) since

\[
\frac{d\Theta}{dp} = \frac{\partial \Theta}{\partial p} + \frac{\partial \Theta}{\partial m^*} \frac{\partial m^*}{\partial p},
\]

where \(\frac{\partial m^*}{\partial p} \geq 0 \) given Part 1,

\[
\frac{\partial \Theta}{\partial m^*} = \frac{p \cdot d \cdot (s-1)}{2(1-p \cdot d \cdot m^*)^2} \geq 0
\]

(57)
and
\[\frac{\partial \Theta}{\partial p} = \frac{m_{1*} \cdot d \cdot (s-1)}{2 (1-p \cdot d \cdot m_{1*})^2} \geq 0. \]

2. \(\Theta \) increases with a negative shift in the sense of FOSD of \(F(\cdot) \) since \(F(\cdot) \) affects \(\Theta \) only through its effect on \(m_{1*} \), \(\Theta \) weakly increases in \(m_{1*} \) by (57) and \(m_{1*} \) weakly increases with a negative shift in the sense of FOSD of \(F(\cdot) \).

Part 3: Denote the share of high-ability students at a good school in equilibrium by \(h_G \), and the share of low-ability students at a good school in equilibrium by \(l_G \). Since the share of high-ability students at the most recent winner is \(\frac{1}{2} (1+m_{1*}p) \),

\[h_G = \Pr(GG) + \frac{1}{2} (1+m_{1*}p) \Pr(GB) + \frac{1}{2} (1-m_{1*}p) \Pr(BG) \]

\[l_G = \Pr(GG) + \frac{1}{2} (1-m_{1*}p) \Pr(GB) + \frac{1}{2} (1+m_{1*}p) \Pr(BG). \]

Using the stationary probabilities derived in the proof of Lemma 3 for \(\gamma > 0 \):

\[h_G = \frac{s+1-m_{1*}p(2d-(s-1))}{4(1-dm_{1*}p)} \]

\[l_G = \frac{s+1-m_{1*}p(2d+(s-1))}{4(1-dm_{1*}p)}. \]

1. \(\frac{dh_G}{dp} \geq 0 \) since

\[\frac{dh_G}{dp} = \frac{\partial h_G}{\partial p} + \frac{\partial h_G}{\partial m_{1*}} \cdot \frac{\partial m_{1*}}{dp}, \]

where \(\frac{\partial m_{1*}}{dp} \geq 0 \) given Part 1,

\[\frac{\partial h_G}{\partial p} = \frac{m_{1*}(s-1)(1+d)}{4 [1-dpm_{1*}]^2} \geq 0 \]

and

\[\frac{\partial h_G}{\partial m_{1*}} = \frac{p(s-1)(1+d)}{4 [1-dpm_{1*}]^2} \geq 0. \]

In addition, \(\frac{dl_G}{dp} \geq 0 \) since

\[\frac{dl_G}{dp} = \frac{\partial l_G}{\partial p} + \frac{\partial l_G}{\partial m_{1*}} \cdot \frac{\partial m_{1*}}{dp}, \]

41
where \(\frac{\partial m^1}{\partial p} \geq 0 \) given Part 1,

\[
\frac{\partial l_G}{\partial p} = -\frac{m^1(s-1)(1-d)}{4[1-d pm^1]^2} \leq 0
\]

(63)

and

\[
\frac{\partial l_G}{\partial m^1} = -\frac{p(s-1)(1-d)}{4[1-d pm^1]^2} \leq 0.
\]

(64)

2. \(h_G \) increases and \(l_G \) decreases with a negative shift in the sense of FOSD of \(F(\cdot) \) because such a shift affects \(h_G \) and \(l_G \) only through its effect on \(m^1 \), \(m^1 \) weakly increases with such a shift by Part 1, \(h_G \) weakly increases in \(m^1 \) by (61) while \(l_G \) weakly decreases in \(m^1 \) by (64).

B.1.2 Proposition 5

Part 1: Informativeness and mobility are unaffected by \(\gamma \) as shown in Lemma 3.

Part 2: The difference in the average fraction of good schools when quality is endogenous versus exogenous is given by:

\[
\Theta(\gamma > 0) - \Theta(\gamma = 0) = \frac{s-1 + 2(1-p \cdot d \cdot m^1)}{4(1-p \cdot d \cdot m^1)} - \frac{1}{2}
\]

\[
= \frac{s-1}{4(1-p \cdot d \cdot m^1)} \geq 0
\]

Part 3: Since mobility is unchanged by Part 1, the share of high-ability students at the most recent winner is unchanged. In steady state, this implies that the share of high-ability students at the relatively better school is unchanged. If school qualities become endogenous, the average fraction of good schools increases by Part 2 and, hence, the fraction of students of each ability type at a good school increases. Using (58) and (59):

\[
h_G(\gamma > 0) - h_G(\gamma = 0) = l_G(\gamma > 0) - l_G(\gamma = 0) = \frac{s-1}{4(1-p \cdot d \cdot m^1)} \geq 0.
\]
B.1.3 Proposition 6

Given that there are no complements or substitutes, the social benefit is equal to the benefit V weighted by the share of students enrolled at a good school in steady state:

$$E(\Pi) = V \left[2 \Pr(GG) + \Pr(\overline{GB}) + \Pr(\overline{BG}) \right] - 2 \int_0^{F^{-1}(\frac{1}{2})} c dF(c)$$

$$= 2V\Theta - 2 \int_0^{F^{-1}(\frac{1}{2})} c dF(c)$$

where $\Pr(GG), \Pr(\overline{GB})$ and $\Pr(\overline{BG})$ are given by the stationary joint distribution ρ of school qualities and rankings derived in Lemma 3 and the fraction Θ of good schools is given by (55).

A myopic social planner takes ρ as given, and therefore Θ as given, when he chooses h such as to maximize $E(\Pi)$. He chooses $h_m = \frac{1}{2}$ because he treats the benefit as independent of h and cost is minimized at $h = \frac{1}{2}$. A forward-looking social planner takes into account that his choice of h affects ρ and hence Θ. Since the social benefit increases in the fraction Θ of good schools, and since the fraction Θ of good schools weakly increases in the proportion of non-local high-ability students admitted to the most recent winning school by (57), the social benefit weakly increases in h. Therefore, a forward-looking social planner will never choose a lower h than a myopic social planner: $h_f \geq h_m$.

B.2 Extensions: Peer Effects

Lemma 4 A steady-state equilibrium level of mobility is characterized by

$$m^* = F \left[V \cdot \left(\frac{(s-1)^2}{1 - p \cdot d \cdot m^*} + p \cdot d \cdot m^* \right) \right]$$

and the corresponding steady-state equilibrium level of informativeness is given by

$$I(m^*) = \frac{s-1}{1 - p \cdot d \cdot m^*}.$$ \hspace{1cm} (65)

Such equilibrium steady-state levels of mobility (and informativeness) always exist.

A student still optimally applies to the school at which their expected payoff conditional on enrollment is higher. Suppose $W_{t-1} = W^X_{t-1}$. Then by enrolling at school X rather than at school Y a student derives a benefit V if school X wins, but loses V if school X loses in period t. As in the baseline model, they incur the additional transport costs $c(\lambda)$ if school X is their non-local school,
but save these costs if school X is local:

$$E(\pi_{t,\lambda,\alpha}\epsilon^X_t; W^X_{t-i}) - E(\pi_{t,\lambda,\alpha}\epsilon^Y_t; W^X_{t-i})$$

$$= \begin{cases}
V \cdot [\Pr (W^X_t | W^X_{t-i}) - \Pr (W^Y_t | W^X_{t-i})] + c(\lambda) & \text{if } \lambda \leq \frac{1}{2} \\
V \cdot [\Pr (W^X_t | W^X_{t-i}) - \Pr (W^Y_t | W^X_{t-i})] - c(\lambda) & \text{if } \lambda > \frac{1}{2},
\end{cases}$$

where

$$\Pr (W^X_t | W^X_{t-i}) - \Pr (W^Y_t | W^X_{t-i}) = \sum_{i=X,Y} \Pr (W^X_t | W^X_{t-i}, \omega^i) \Pr (\omega^i | W^X_{t-i}) - \sum_{i=X,Y} \Pr (W^Y_t | W^X_{t-i}, \omega^i) \Pr (\omega^i | W^X_{t-i})$$

$$= \left[g \left(W^X_t | h^X_{t-1} = \frac{1+p \cdot \hat{m}_t}{2}, \omega^X \right) + g \left(W^Y_t | h^X_{t-1} = \frac{1+p \cdot \hat{m}_t}{2}, \omega^Y \right) \right] \Pr (\omega^X | W^X_{t-i})$$

$$- \left[g \left(W^X_t | h^X_{t-1} = \frac{1-p \cdot \hat{m}_t}{2}, \omega^Y \right) + g \left(W^Y_t | h^X_{t-1} = \frac{1-p \cdot \hat{m}_t}{2}, \omega^X \right) \right] \Pr (\omega^Y | W^X_{t-i})$$

$$= [s - 1 + p \cdot d \cdot \hat{m}_t] \Pr (\omega^X | W^X_{t-i})$$

$$+ [1 - s + p \cdot d \cdot \hat{m}_t] \Pr (\omega^Y | W^X_{t-i})$$

$$= [s - 1 + p \cdot d \cdot \hat{m}_t] \Pr (W^X_{t-i-1} | \omega^X)$$

$$+ [1 - s + p \cdot d \cdot \hat{m}_t] \Pr (W^Y_{t-i-1} | \omega^X)$$

$$= (s - 1) I_t + p \cdot d \cdot \hat{m}_t,$$

where the second to last equality follows by Bayes’ rule and symmetry. Therefore, students apply to their non-local winning school if and only if their transport costs satisfy $c(\lambda) \leq C_t$, where

$$C_t (\hat{m}_t, I_t) = V \cdot [(s - 1) I_t + p \cdot d \cdot \hat{m}_t].$$

Hence, the optimal strategy profile given informativeness is

$$m_t = F(V \cdot [(s - 1) I_t + p \cdot d \cdot \hat{m}_t]).$$

Steady-state informativeness $I(m)$ is still given by (57). I will allow for $m_t \in [-1, 1]$ where a negative level of mobility represents the situation in which a share $|m_t|$ of students in period t apply to their non-local losing school. It is still true that $I(m) \in [0, 1]$ and I will allow F to evaluate
negative values such that \(F(-c) = -F(c) \). Equilibrium steady-state is characterized by

\[
m^* = F \left(V \cdot (s - 1) I(m^*) + p \cdot d \cdot m^* \right)
\]

\[
= F \left(V \cdot \left(s - 1 \frac{s - 1}{1 - p \cdot d \cdot m^*} + p \cdot d \cdot m^* \right) \right)
\]

(67)

Since \(F \left(V \cdot \left(s - 1 \frac{s - 1}{1 - p \cdot d \cdot m} + p \cdot d \cdot m \right) \right) \) is weakly increasing in \(m \) and since \(m \) is bounded, Tarki’s fixed point theorem implies that there exists some \(m^* \) such that (67) is satisfied.

B.2.1 Proposition 7

Define

\[
\Gamma \equiv F \left(V \cdot \left(s - 1 \frac{s - 1}{1 - p \cdot d \cdot m} + p \cdot d \cdot m \right) \right)
\]

1. For any \(m \in [0, 1] \), \(\frac{\partial}{\partial m} \Gamma \geq 0 \), \(\frac{\partial}{\partial d} \Gamma \geq 0 \) and \(\frac{\partial}{\partial p} \Gamma \geq 0 \), therefore the smallest equilibrium level of mobility increases in \(d \) or in \(p \) after Corollary 1 in Milgrom and Roberts [1994]. Given (66), the smallest equilibrium level of informativeness also increases in \(d \) or in \(p \).

2. A negative equilibrium level of mobility exists if and only if \(m = \Gamma(m) \) for some \(m < 0 \). Since there exist feasible parameter combinations such that \(V \cdot \left(s - 1 \frac{s - 1}{1 - p \cdot d \cdot m} + p \cdot d \cdot m \right) < 0 \) for \(m < 0 \), there exists some \(F \) such that \(m = \Gamma(m) \) for some \(m < 0 \). Such a fixed point is weakly more likely to exist the lower \(V \cdot \left(s - 1 \frac{s - 1}{1 - p \cdot d \cdot m} + p \cdot d \cdot m \right) \) at any \(m < 0 \). Therefore, it is more likely to exist if \(d \) increases or if \(p \) increases.

B.3 Robustness Checks

B.3.1 Longer window of Rankings

Denote the realization of the past two rankings by a pair \((W_{t-1}, W_{t-2}) = (W_{t-1}^i, W_{t-2}^j)\), where \(i, j = X, Y \). Given \((W_{t-1}, W_{t-2}) = (W_{t-1}^i, W_{t-2}^j)\), denote by \(m_{ij} \) the share of non-local students who apply to \(W_{t-1}^i \) and denote the level of informativeness by

\[
I_{ij} \equiv Pr \left(\omega^{|W_{t-1}^i, W_{t-2}^j} \right) - Pr \left(\omega^{|W_{t-1}^j, W_{t-2}^j} \right).
\]

Proposition 8 A steady-state equilibrium vector of mobility \(m^* = (m_{XX}^*, m_{XY}^*, m_{YX}^*, m_{YY}^*) \) is characterized by

\[
m_{XX}^* = F \left[V \cdot \frac{s - 1}{1 - p \cdot d \cdot m_{XX}^*} \right]
\]

(68)
and

\[m_{XX}^* = m_{YY}^* \]

and

\[m_{XY}^* = m_{YX}^* = 0, \]

and the corresponding steady-state equilibrium vector of informativeness is given by

\[I_{XX}(m^*) = I_{YY}(m^*) = \frac{s - 1}{1 - p \cdot d \cdot m^*} \tag{69} \]

and

\[I_{XY}(m^*) = I_{YX}(m^*) = 0. \]

Such equilibrium steady-state vectors of mobility (and informativeness) always exist.

Optimal mobility is given by \(m_{ij} = F(V \cdot I_{ij}) \) for the same reason as in Lemma 1. Next, I will find informativeness in terms of mobility. First, derive steady-state informativeness at time-invariant vector of mobility levels \(\hat{m} = (\hat{m}_{XX}, \hat{m}_{XY}, \hat{m}_{YX}, \hat{m}_{YY}) \). In a symmetric steady-state equilibrium, students’ optimal mobility does not depend on the identity of the winning schools, but only on whether the same or a different school won in period \(t - 1 \) than in period \(t - 2 \). Hence, I restrict attention to \(\hat{m}_{XX} = \hat{m}_{YY} \) and \(\hat{m}_{XY} = \hat{m}_{YX} \).

Suppose the state is \(\omega^X \). The stationary distribution of \((W_{t-1}, W_{t-2}) \) is defined by the vector \(\rho \):

\[\rho \equiv (Pr(W_{t-1}^X, W_{t-2}^X), Pr(W_{t-1}^X, W_{t-2}^Y), Pr(W_{t-1}^Y, W_{t-1}^X), Pr(W_{t-1}^Y, W_{t-1}^Y)) . \]

The Markov process of \((W_{t-1}, W_{t-2}) \) is defined by the following matrix \(T \) of transition probabilities:

\[
T = \begin{pmatrix}
\frac{1}{2} (s + \hat{m}_{XX} pd) & 0 & 1 - \frac{1}{2} (s + \hat{m}_{XX} pd) & 0 \\
\frac{1}{2} (s + \hat{m}_{XY} pd) & 0 & 1 - \frac{1}{2} (s + \hat{m}_{XY} pd) & 0 \\
0 & \frac{1}{2} (s - \hat{m}_{XY} pd) & 0 & 1 - \frac{1}{2} (s - \hat{m}_{XY} pd) \\
0 & \frac{1}{2} (s - \hat{m}_{XX} pd) & 0 & 1 - \frac{1}{2} (s - \hat{m}_{XX} pd)
\end{pmatrix}.
\]

The Markov process of \((W_{t-1}, W_{t-2}) \) has a unique stationary distribution defined by the row vector \(\rho \) that satisfies both

\[\rho = \rho T \tag{70} \]

and

\[Pr(W_{t-1}^X, W_{t-2}^X) + Pr(W_{t-1}^X, W_{t-2}^Y) + Pr(W_{t-1}^Y, W_{t-1}^X) + Pr(W_{t-1}^Y, W_{t-1}^Y) = 1. \tag{71} \]
By Bayes’ rule:

\[
Pr(\omega^X|W_t^i, W_{t-1}^i, W_{t-2}^i) = \frac{Pr(W_t^i, W_{t-1}^i, W_{t-2}^i|\omega^X)Pr(\omega^X)}{Pr(W_t^i, W_{t-1}^i, W_{t-2}^i|\omega^X)Pr(\omega^X) + Pr(W_t^i, W_{t-1}^i, W_{t-2}^i|\omega^Y)Pr(\omega^Y)}.
\]

The same reasoning holds for \(\omega^Y\).

Solving for posterior beliefs yields:

\[I_{XY}(\hat{m}_{XX}, \hat{m}_{XY}) = I_{YX}(\hat{m}_{XX}, \hat{m}_{XY}) = 0\]

and

\[I_{YY}(\hat{m}_{XX}, \hat{m}_{XY}) = I_{XX}(\hat{m}_{XX}, \hat{m}_{XY}) = \frac{s-1}{1 - \hat{m}_{XX} \cdot d \cdot p} \geq 0.\]

If \(\hat{m}_{XY}\) increases, then the levels of informativeness \(I_{XY}(\hat{m}_{XX}, \hat{m}_{XY})\) and \(I_{XX}(\hat{m}_{XX}, \hat{m}_{XY})\) remain unchanged. If \(\hat{m}_{XX}\) increases, \(I_{XY}(\hat{m}_{XX}, \hat{m}_{XY})\) remains unchanged, while \(I_{XX}(\hat{m}_{XX}, \hat{m}_{XY})\) weakly increases. Hence, the vector of optimal mobilities \((\hat{m}_{XX}, \hat{m}_{XY})\) increases in the vector of levels of informativeness \((I_{XX}, I_{XY})\), which increases in the vector of steady-state mobilities \((\hat{m}_{XX}, \hat{m}_{XY})\). In addition, \((m_{XX}, m_{XY}) \in [0,1]^2\). Therefore, Tarki’s fixed point theorem applies.

B.3.2 Admission not based on Ability

Suppose a student of ability \(A = H, L\) derives benefit \(V_A\) of enrolling at the better school, where \(1 > V_H > V_L > 0\). Assume that an oversubscribed school uses a lottery to assign places to applicants, and that a student’s chances of being allocated a place conditional on applying are independent of their location and their ability. Let \(m_A\) denote the share of students of ability \(A = H, L\) who apply to their non-local winning school. Suppose \(F\) is Uniform on \([0,1]\), such that \(F(c) = c\).

Proposition 9 A steady-state equilibrium level of informativeness is given by

\[
I^* = \frac{(s-1) (2 + (V_H + V_L) \cdot I^*)}{2 + (V_H + V_L) \cdot I^* - 2d ((V_H - V_L) \cdot I^*)}
\]

and the corresponding steady-state equilibrium vector of mobility is characterized by

\[(m^*_H, m^*_L) = (V_H \cdot I^*, V_L \cdot I^*).\]

Such equilibrium steady-state level of informativeness (and vector of mobility) always exist.
By Lemma 1, optimal mobility of students in period t in terms of period-t informativeness is given by:

$$\left(m_{t,H}, m_{t,L}\right) = \left(V_H \cdot I_t, V_L \cdot I_t\right). \quad (72)$$

The stationary distribution of the signal $Pr(W^i|\omega^i)$ for $i = X, Y$ at time-invariant mobility vector $\hat{m} = (\hat{m}_H, \hat{m}_L)$ satisfies

$$Pr(W^i|\omega^i) = g\left(W^i|h^i = \frac{1 + \hat{m}_H}{2 + \hat{m}_H + \hat{m}_L}, \omega^i\right) Pr(W^i|\omega^i)$$

$$+ g\left(W^i|h^i = \frac{1 + \hat{m}_L}{2 + \hat{m}_H + \hat{m}_L}, \omega^i\right) \left(1 - Pr(W^i|\omega^i)\right)$$

where the most recent winner chooses at random from a mass $\frac{1}{2} + \frac{1}{2} \hat{m}_H$ of high-ability applicants and mass $\frac{1}{2} + \frac{1}{2} \hat{m}_L$ of low-ability applicants. By Bayes’ rule and symmetry, informativeness in steady state is given by:

$$I(\hat{m}_H, \hat{m}_L) = \frac{(s - 1) (2 + \hat{m}_H + \hat{m}_L)}{2 + \hat{m}_H + \hat{m}_L - 2d (\hat{m}_H - \hat{m}_L)}.$$ \quad (73)

Note that if $\hat{m}_H = \hat{m}_L$ then $I(\hat{m}_H, \hat{m}_L) = s - 1$ which is the level of informativeness if intakes are balanced across schools.

Given (72) and (73), equilibrium steady-state is characterized by

$$I^* = \frac{(s - 1) (2 + (V_H + V_L) \cdot I^*)}{2 + (V_H + V_L) \cdot I^* - 2d ((V_H - V_L) \cdot I^*)}.$$

Define

$$\Gamma(I) \equiv \frac{(s - 1) (2 + (V_H + V_L) \cdot I)}{2 + (V_H + V_L) \cdot I - 2d (V_H - V_L) \cdot I}. \quad (74)$$

$$\frac{\partial \Gamma(I)}{\partial I} = \frac{(s - 1) 4d (V_H - V_L)}{(2 + (V_H + V_L) \cdot I - 2d (V_H - V_L) \cdot I)^2} \geq 0,$$

since $d \geq 0$, $s > 1$ and $V_H > V_L$. Since I is bounded, by Tarski’s fixed point theorem, a fixed point I^* satisfying $I^* = \Gamma(I^*)$ exists.
B.4 General Signal Distribution

To simplify notation, define \(g : h \rightarrow [0, 1] \) to be the probability that the better school wins in period \(t \) if a share \(h \) of high-ability students is enrolled at the better school, i.e.

\[
g(h) \equiv \Pr(W^X|h_{t-1}^X = h, \omega^X) = \Pr(W^Y|h_{t-1}^Y = h, \omega^Y)
\]

for \(i = X, Y \) and \(t = 0, 1, \ldots \). For any \(\kappa \in [0, 1] \), property (2) corresponds to

\[
g(h) > 1 - g(1 - h) \tag{75}
\]

and property (3) corresponds to

\[
\frac{\partial}{\partial h} g(h) \geq 0. \tag{76}
\]

Define \(u(m) = \frac{1 + pm}{2} \in [0, 1] \). Then \(u(-m) = 1 - u(m) \).

Lemma 2A: The unique steady-state level of informativeness given mobility \(m_t = \hat{m} \) is

\[
I(\hat{m}) = g(u(\hat{m}))-\frac{(1-g(1-g(\hat{m})))}{g(1-u(\hat{m}))+1-g(u(\hat{m}))} \geq 0. \tag{77}
\]

Proof Lemma 2A: A general solution to (23) is given by

\[
Pr(W^X|\omega^X) = Pr(W^Y|\omega^Y) = \frac{g(1-u(\hat{m}))}{1-g(u(\hat{m}))+g(1-u(\hat{m}))}. \tag{78}
\]

Given (24), informativeness follows. \(I(\hat{m}) \geq 0 \) since \(g(u(\hat{m})) > (1-g(u(\hat{m}))) \) by (75) and \(g(1-u(\hat{m}))-g(u(\hat{m})) \leq 0 \) given \(g \in [0, 1] \).

Proposition 1A [Equilibrium]: A steady-state equilibrium level of mobility \(m^* \) is characterized by

\[
m^* = F \left(V: \frac{g(u(m^*))-(1-g(1-u(m^*)))}{g(1-u(m^*))+1-g(u(m^*))} \right) \tag{79}
\]

and the corresponding steady-state equilibrium level of informativeness \(I(m^*) \) is given by

\[
I(m^*) = \frac{g(u(m^*))-(1-g(1-u(m^*)))}{g(1-u(m^*))+1-g(u(m^*))}. \tag{80}
\]

Such a steady-state equilibrium level of mobility (and informativeness) always exists.
Proof of Proposition 1A: Substitute (77) into (16). Follow the proof of Proposition 1 given

\[\frac{\partial}{\partial m} I(\hat{m}) \geq 0 \]

\[\Leftrightarrow \left[\frac{\partial}{\partial m} g(u(\hat{m})) - \frac{\partial}{\partial m} g(1 - u(\hat{m})) \right] [g(u(\hat{m})) - (1 - g(1 - u(\hat{m})))] \geq 0, \]

since \(g(u(\hat{m})) - (1 - g(1 - u(\hat{m}))) > 0 \) by property (75) and both \(\frac{\partial}{\partial m} (g(u(\hat{m})) - g(1 - u(\hat{m}))) \geq 0 \) by property (76).

Proposition 2A [Convergence] Take Proposition 2 and substitute (29) for \(I - 1 \) is increasing in \(I - 1 \geq 0 \) and given property (3). By property (2), it follows that \(I_1 = Z(I_0) = g \left(\frac{1}{2} \right) - \left(1 - g \left(\frac{1}{2} \right) \right) \geq I_0 = 0. \)

The remaining steps are as in the proof of Proposition 2.
Proof of Theorem 1: Define
\[\Gamma (I, p, F, V) = \frac{g(u(F(V \cdot I))) - (1 - g(1 - u(F(V \cdot I)))))}{1 - g(u(F(V \cdot I)) + g(1 - u(F(V \cdot I)))}. \]

\(\Gamma (z, I) \) is increasing in \(I \) at any \(I \in [0, 1] \) since \(\frac{d\Gamma}{dI} = \frac{\partial \Gamma}{\partial u} \frac{\partial u}{\partial I} \) and \(\frac{d\Gamma}{du} \geq 0 \) by Lemma 2A and \(\frac{\partial u}{\partial I} \geq 0 \) since \(p \geq 0, V > 0 \) and \(F(\cdot) \) is increasing.

1. \(\Gamma (p, I) \) is increasing in \(p \) since \(\frac{d\Gamma}{dp} = \frac{\partial \Gamma}{\partial u} \frac{\partial u}{\partial p} \) and \(\frac{d\Gamma}{du} \geq 0 \) by Lemma 2A and \(\frac{\partial u}{\partial p} \geq 0 \) since \(I \geq 0, V > 0 \) and \(F(\cdot) \) is increasing.

2. If \(F(\cdot) \) first-order stochastically dominates \(\tilde{F}(\cdot) \), then \(u(F(V \cdot I)) \leq u(\tilde{F}(V \cdot I)) \). Since \(\Gamma (F, I) \) increases in \(u \), this implies that \(\Gamma (F, I) \leq \Gamma (\tilde{F}, I) \).

The remaining steps are as in the proof of Theorem 1 for the special function form.

Proof of Proposition 3: For any \(h \in [0, 1] \)
\[2Pr(\omega^X|W^X) - 1 = 2Pr(W^X|\omega^X) - 1 = \frac{g(h) - (1 - g(1 - h))}{1 - g(h) + g(1 - h)} \geq 0 \] (83)
since (77) is positive at \(\hat{m} = \frac{2h - 1}{p} \) as shown in the proof of Lemma 2A.

For any \(h \in [0, 1] \)
\[\frac{\partial}{\partial h} Pr(\omega^X|W^X) \geq 0 \] (84)
since (77) is increasing in \(\hat{m} \) and \(\hat{m} = \frac{2h - 1}{p} \) as shown in the proof of Proposition 1A.

References

