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Abstract

This paper is part I of a two-part paper. It proposes a two-stage game to analyze imperfect
competition of producers in zonal power markets with a day-ahead and a real-time market.
We consider strategic producers in both markets. They need to take both markets into
account when deciding what to bid in each market. The demand shocks between these
markets are modeled by several scenarios. The two-stage game is formulated as a Two-
stage Stochastic Equilibrium Problem with Equilibrium Constraints (TS-EPEC). Then it
is further reformulated as a two-stage stochastic Mixed-Integer Linear Program (MILP).
The solution of this MILP gives the Subgame Perfect Nash Equilibrium (SPNE). To tackle
multiple SPNE, we design a procedure which finds all SPNE with different total dispatch
costs. The proposed MILP model is solved using Benders decomposition embedded in the
CPLEX solver. The proposed MILP model is demonstrated on the 6-node and the IEEE
30-node example systems.

Keywords: Two-stage game, Zonal pricing, Two-stage equilibrium problem with
equilibrium constraints, Wholesale electricity market
JEL Classification: C61, C63, C72, D43, L13, L94

1. Introduction

Liberalized electricity markets are settled in multiple stages: a day-ahead market, a
real-time market and sometimes an intra-day market in-between. It is well-known from the
seminal work by [1] that sequential trading can have significant influence on competition.
Sequential trading is particularly relevant for Europe, which is divided into zones with uni-
form day-ahead prices. The European day-ahead market neglects transmission constraints
inside zones, while all transmission constraints are considered in real-time [2]. Overloading
of intra-zonal transmission lines are relieved by counter-trading in the real-time market.
The difference between the representations of the transmission constraints gives different
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prices in the two stages. This creates an arbitrage opportunity for producers. As shown by
[3–6], a producer located at an export-constrained node can increase its payoff by increasing
its sales in the day-ahead market and then buy back power at a lower price in the real-time
market. This strategy is called the increase-decrease (inc-dec) game. The inc-dec game
contributed to the electricity crisis in California and to that California and other markets
in US switched from zonal to nodal pricing which takes into account all transmission con-
straints in both day-ahead and real-time markets [6]. The game has also been observed in
the British electricity market [7].

In power markets, two-stage games are often modeled by Two-stage Stochastic Equilib-
rium Problems with Equilibrium Constraints (TS-EPEC). The solution of such a TS-EPEC
gives the Subgame Perfect Nash equilibrium (SPNE) - an outcome that is sequentially ra-
tional and where no producer can increase its payoff by changing its bid unilaterally. TS-
EPECs allow us to model the structure of the two-stage markets where the outcome of one
stage affects and is affected by the outcome of another stage. Strategic bidding of producers
in a forward market and in a spot market is modeled using a TS-EPEC in [8] and [9]. The
model in [8] assumes that the producers competing in the forward market are price-takers.
This assumption ignores that the producers can influence the price in the forward market
through their bids. The strategic bidding of producers in the forward market is considered
in [9] but the network constraints are ignored. A recent study in [10] analyzes the impact of
transparency in the forward market on the strategic behavior of producers in both forward
and spot markets. The studies [8–10] analyze the two-stage power markets without network
constraints. Authors in [11] investigate optimality conditions of the TS-EPEC model under
the condition that the demand in the spot market has a finite distribution. The sufficient
conditions for the existence of SPNE under no uncertainty is analyzed in [12]. The studies
[11, 12] analyze the two-stage power markets under nodal pricing.

Various researchers have analyzed competition in zonal markets. Authors in [13] and
[14] approximate the two stages of the game by one stage. The study in [15] considers a non-
market based redispatch without the inc-dec game. Authors in [4] consider a competitive
market and analyze the imperfections caused by arbitrage opportunities. The study in
[5] considers both imperfect competition and arbitrage opportunities but their analysis is
limited to two-node networks. In previous paper [16], we evaluate designs of a zonal power
market with imperfect competition. The two-stage game is formulated as a TS-EPEC
and then the TS-EPEC is reformulated as a Mixed-Integer Bilinear Program (MIBLP).
Unfortunately, the MIBLP model is computationally burdensome and hard to solve.

The contributions of this paper are as follows: (a) it proposes a zonal real-time market
which is reminiscent of the real-time markets in the Nordic countries. The proposed zonal
market is formulated by including additional constraints to the primal minus dual formu-
lation of a nodal real-time market model. (b) Based on the proposed zonal market, this
paper proposes a two-stage game to analyze imperfect competition and the inc-dec game in
the two-stage zonal markets. The two-stage game is formulated as a TS-EPEC. Then the
TS-EPEC is reformulated as a MILP model. (c) The MILP model may result in multiple
SPNE. To tackle this situation, we develop an iterative procedure that finds all SPNE that
have different total dispatch costs. The proposed MILP model and the iterative procedure
are demonstrated on the 6-node and the modified IEEE 30-node example systems. The
impacts of the inc-dec game are carefully analyzed.
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The rest of the paper is organized as follows. The symbols used in the mathematical
models are presented in Section 2. Section 3 derives the MILP model of the two-stage game
in the zonal power market and in the nodal power market. We use the nodal two-stage
power market as our benchmark model. The method to tackle multiple SPNE is explained
in section 4. An illustrative example and a case study are presented in Sections 5 and 6,
respectively. Section 7 concludes the paper.

2. Nomenclature

The main symbols are presented below. Additional symbols are introduced throughout
the text.
Indices
u Producer, u = 1, ..., U
n Power system node, n = 1, ..., N
z Zone, z = 1, ..., Z
k Transmission line, k = 1, ...,K
l Inter-zonal line, l = 1, ..., L
s Net demand deviation scenario, s = 1, ..., S
a Bidding action of producer, a = 0, ..., A
i,(j) Bidding strategy for real-time (day-ahead) market, i = 1, ..., I (j = 1, ..., J)
r Day-ahead bid combination, r = 1, ..., AU

Parameters (upper-case letters)
Hk,n Nodal PTDF matrix,
H ′

l,z Zonal PTDF matrix,

Cu Marginal cost of producer u,
Cup
u Marginal up-regulation cost of producer u,

Cdn
u Marginal down-regulation cost of producer u,

Gu Capacity of producer u,
Fk Capacity of transmission line k,
F̄l Capacity of inter-zonal line l,
Dn Net demand at node n,
W̄n,s Wind production at node n,
∆Wn,s Deviation in net-demand at node n,
σs Probability of scenario s,
Bu,a Step size of day-ahead bid action a,

B̂u,a,(B̃u,a) Step size of up-regulation (down-regulation) bid action a,
Variables (lower-case letters)
ĉu Price bid of producer u,
ĉupu , (ĉdnu ) Up-regulation (down-regulation) price bid of producer u,
xu,a Binary variable for day-ahead bidding decision of producer u in action a,
xupu,a, (xdnu,a) Binary variable for up-regulation (down-regulation) bidding decision of

producer u,
gu Day-ahead dispatch level of producer u,
gupu,s, (gdnu,s) Up (down) regulation provided by producer u in scenario s,

vn,s Wind spillage at node n in scenario s,
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ρn,s, (ωz) Real-time (day-ahead) market price at node n (in zone z),
φu,s Real-time profit of producer u in scenario s,
πu Day-ahead profit of producer u.

3. Mathematical Model

We consider a two-stage market where the first stage is the zonal day-ahead market
and the second stage is the zonal real-time market. We assume that oligopoly producers
participate in both markets. Competition in the two-stage electricity market is modeled as
a two-stage game under uncertainty. The structure of the two-stage game is illustrated in
Fig. 1. In the first stage, each producer decides its day-ahead bid by taking into account the
Nash equilibrium (NE) in the zonal real-time market and its competitors’ predicted day-
ahead bids. The market operator forecasts the net-demand and clears the zonal day-ahead
market. In the second stage, each producer decides its regulation bid by taking into account
the given day-ahead dispatch results and expectations for its competitors’ regulation bids.
The market operator collects the regulation bids from all producers and it clears the zonal
real-time market with the actual net-demand. We want to find the SPNE in this two-stage
game. The most straightforward way of solving for a SPNE is to use backward induction,
i.e. to solve the game backwards. Thus, we start with the last stage, the zonal real-time
market.
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Producer 

1

Producer 
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Producer 
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Day-ahead 

bid

Price and 

dispatch

Day-ahead 

bid

Price and 

dispatch

Regulation 
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Nash equilibrium in the real-time market (8)
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(Box B)

(Box E)
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(15)
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Operator
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(Box D)

Market

Operator

(3)

(Box A)

Figure 1: Roadmap of the mathematical derivations in this paper, the numbers in parenthesis refer to
the mathematical models of each box,⇐⇒: Strategic interactions, →: Information exchange between the
market operator and producers

3.1. Nash equilibrium in the zonal real-time market

The Nash equilibrium between producers is reached when no producer wants to deviate
unilaterally from the chosen bidding strategy. This is formulated in (1).

Es[φu,s] ≥ Es[φ
(i)
u,s] ∀u, i (1)
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Constraint (1) ensures that for each producer the expected real-time profit in the chosen
strategy Es[φu,s] is always greater than or equal to the expected real-time profit in all

alternative strategies Es[φ
(i)
u,s] while holding its competitors’ strategies fixed.

In the nodal real-time market, the market operator runs a bid-based, security-constrained
economic dispatch in order to dispatch the regulation bids. This is modeled in (2).

Minimize
gupu,s,gdnu,s,vn,s

∑
s,u

σs(ĉ
up
u g

up
u,s − ĉdnu gdnu,s) (2a)

Subject to:∑
u

(gu + gupu,s − gdnu,s) =
∑
n

(vn,s +Dn −∆Wn,s) : (αs) ∀s (2b)

Fk −
∑
n

Hk,n(
∑
n:u

(gu + gupu,s − gdnu,s)− vn,s −Dn + ∆Wn,s) ≥ 0 : (µk,s), ∀k, s (2c)

0 ≤ gupu,s ≤ Gu − gu : (κu,s, βu,s) ∀u, s (2d)

0 ≤ gdnu,s ≤ gu : (ψu,s, ϕu,s) ∀u, s (2e)

0 ≤ vn,s ≤ W̄n + ∆Wn,s : (θn,s, χn,s) (2f)

Problem (2) is a Linear Program (LP). Objective function (2a) minimizes the total
regulation cost while satisfying energy balance constraint (2b) and transmission constraint
(both upper and lower bounds of a transmission line), regulation and wind spillage limits
(2c),(2d)-(2e) and (2f), respectively. gu is the given dispatch level in the day-ahead market.
The Lagrange multipliers of each constraint are given in parenthesis.

In this study, we consider a zonal real-time market where the producers are paid a
marginal zonal price, if the system imbalance and the direction of its accepted regulation
bid is in the same direction. Otherwise they are paid with its bid price1. The proposed
zonal real-time market is illustrated in Fig. 2.

Day-ahead 

market 

Net-demand in 

the real-time 

Firms 

Real-time 

dispatch

Real-time 

zonal price

Day-ahead 

schedules

Regulation 

bids

Zonal real-time 

market design

Zonal pricing 

constraint

(3f)-(3g) 

Primal minus 

dual model of 

(2) 

Figure 2: The proposed zonal real-time market considered in this study

1This zonal real-time market is similar to the real-time markets in the Nordic countries, where most bids
are paid a zonal price, but bids that are accepted in the counter-trading process, which relaxes overloaded
lines, are paid as bid.
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Our proposed zonal real-time market is based on duality theory and the real-time zonal
prices and quantities are calculated in one stage. To formulate it, we use the primal minus
dual model [17]. We write the primal minus dual model of (2) and add constraint (3f)
which gives a uniform price inside a zone. Moreover, we add constraint (3g) to ensure that
all producers make nonnegative profit in the zonal real-time market. Our proposed zonal
real-time market is represented by (Box A) in Fig 1 and its LP model is set out in (3).

Maximize
Π

∑
s,u

σs(−ĉupu gupu,s + ĉdnu gdnu,s)−
∑
s

(αs(
∑
u

gu −
∑
n

(Dn −∆Wn,s))+∑
k

µk,s(Fk −
∑
n

Hk,n(
∑
u:n

gu −Dn + ∆Wn,s)) +
∑
u

(βu,s(Gu − gu) + ϕu,sgu)+∑
n

χn,s(Wn + ∆Wn,s)) (3a)

Subject to:

Constraints (2b)− (2f) : (λAs , λ
B
k,s, λ

C
u,s, λ

D
u,s, λ

E
u,s, λ

F
u,s, λ

G
n,s, λ

H
n,s) (3b)

− σsĉupu + αs −
∑
n:u,k

Hk,nµk,s + κu,s − βu,s = 0 : (λIu,s), ∀u, s (3c)

σsĉ
dn
u − αs +

∑
n:u,k

Hk,nµk,s + ψu,s − ϕu,s = 0 : (λJu,s), ∀u, s (3d)

− αs +
∑
k

Hk,nµk,s + θn,s − χn,s = 0 : (λKn,s), ∀n, s (3e)

ρ′z,s = (αs −
∑
k

Hk,nµk,s)/σs : (λLn,s),∀n ∈ z, ∀s (3f)

φu,s ≥ 0 : (λMu,s), ∀u, s (3g)

µk,s, κu,s, βu,s, ψu,s, ϕu,s, θn,s, χn,s ≥ 0 : (λNk,s, λ
O
u,s, λ

P
u,s, λ

Q
u,s, λ

R
u,s, λ

S
n,s, λ

T
n,s) (3h)

φu,s = (Rz,sβu,s(Gu − gu) +Rz,sϕu,sgu)/σs + Cdn
u gdnu,s − Cup

u gupu,s + ĉupu g
up
u,s − ĉdnu gdnu,s, ∀u, s

(3i)

The set of decision variables in (3) is Π ={gupu,s, gdnu,s, vn,s, αs, µk,s, κu,s, βu,s ,ψu,s,
ϕu,s,θn,s, χn,s, ρ

′
z,s, φu,s}. (3c)-(3h) are the constraints of the dual of problem (2). ρ′z,s

is the real-time zonal price. The Lagrange multipliers related to each constraint are given
in parenthesis. Note that in constraint (3b), Lagrange multipliers given in parenthesis are
assigned to the constraints (2b)-(2f) in the context of optimization model (3). The original
profit function in this zonal real-time market is formulated in (4).

φu,s = gupu,s(
∑
z:u

Rz,s(
∑
n:u

ρn,s − ĉupu ) + ĉupu − Cup
u ) + gdnu,s(

∑
z:u

Rz,s(ĉ
dn
u −

∑
n:u

ρn,s) + Cdn
u − ĉdnu )

(4)

Parameters Rz,s and Rz,s are the indicators of the imbalance at each zone in each

scenario. Rz,s is set to 1 if there is deficit of generation in zone z in scenario s. Otherwise it
is set to 0. Rz,s is set to 1 if there is excess of generation in zone z in scenario s. Otherwise
it is set to 0. The nodal real-time price is calculated as ρn,s=(αs−

∑
kHk,nµk,s) /σs. From
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the stationary conditions of (2), (shown in (3c), (3d)) and the complementary slackness
conditions for (2d) and (2e), the original profit function in (4) is reformulated as in (3i).

Optimization problem (3) is linear so the Karush-Kuhn-Tucker (KKT) conditions are
both necessary and sufficient [18]. The stationary, dual feasibility and strong duality con-
ditions of (3) are derived in (5a)-(5l), (5m) and (5n), respectively.

− σsĉupu + λAs −
∑
n:u

∑
k

Hk,nλ
B
k,s + λCu,s − λDu,s + λMu,sĉ

up
u − λMu,sCup

u = 0, ∀u, s (5a)

σsĉ
dn
u − λAs +

∑
n:u

∑
k

Hk,nλ
B
k,s + λEu,s − λFu,s + λMu,sC

dn
u − λMu,sĉdnu = 0, ∀u, s (5b)

λAs −
∑
k

Hk,nλ
B
k,s − λGn,s + λHn,s = 0, ∀n, s (5c)∑

n

(λLn,s/σs −∆Wn,s − λKn,s) +
∑
u

(λIu,s − λJu,s) = 0, ∀s (5d)

− Fk +
∑
n

Hk,n(∆Wn,s −Dn + λKn,s + λLn,s/σs +
∑
u:n

(gu + λJu,s − λIu,s)) + λNk,s = 0, ∀k, s

(5e)

λIu,s + λOu,s = 0, ∀u, s (5f)

gu −Gu − λIu,s +
∑
z:u

Rz,s(Gu − gu)λMu,s/σs + λPu,s = 0, ∀u, s (5g)

λJu,s + λQu,s = 0, ∀u, s (5h)

gu + λJu,s −
∑
z:u

Rz,sguλ
M
u,s/σs − λRu,s = 0, ∀u, s (5i)

λKn,s + λSn,s = 0, ∀n, s (5j)

λTn,s − λKn,s − (Wn + ∆Wn,s) = 0, ∀n, s (5k)∑
n∈z

λLn,s = 0 : (δ(32)
z,s ), ∀z, s (5l)

λBk,s, λ
C
u,s, λ

D
u,s, λ

E
u,s, λ

F
u,s, λ

G
n,s, λ

H
n,s, λ

M
u,s, λ

N
k,s, λ

O
u,s, λ

P
u,s, λ

Q
u,s, λ

R
u,s, λ

S
n,s, λ

T
n,s ≥ 0 (5m)

σs
∑
u

(−ĉupu gupu,s + ĉdnu gdnu,s)− (αs(
∑
u

gu −
∑
n

(Dn −∆Wn,s)) +
∑
k

µk,s(Fk−∑
n

Hk,n(
∑
n:u

gu −Dn + ∆Wn,s)) +
∑
u

(βu,s(Gu − gu) + ϕu,sgu) +
∑
n

χn,s(Wn + ∆Wn,s))−

(λAs (
∑
u

gu −
∑
n

(Dn −∆Wn,s)) +
∑
k

λBk,s(Fk −
∑
n

(Hk,n(
∑
n:u

gu + ∆Wn,s −Dn)))+∑
u

(λDu,s(Gu − gu) + λFu,sgu − λIu,sĉupu σs + λJu,sĉ
dn
u σs) +

∑
n

λHn,s(Wn + ∆Wn,s)) = 0, ∀s

(5n)

We approximate the regulation bids by a set of discrete values [19]. We assume that
each producer selects its price-bid from an individual set of discrete values. This means
that the same price bid cannot be selected by two or more producers and we do not need
a rationing rule. The discrete approximation is modeled in (6) using binary variables xupu,a
and xdnu,a.
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ĉupu =
∑
a

B̂u,ax
up
u,aC

up
u , ĉdnu =

∑
a

B̃u,ax
dn
u,aC

dn
u (6)

Using this approximation, the bidding problem of a producer in the zonal real-time
market is to maximize the expected real-time profit (Es[φu,s]=

∑
s σsφu,s) subject to (3b)-

(3i), (5) and (6). This profit maximization problem is represented by (Box B) in Fig. 1.
It has six sets of bilinear terms after applying discrete approximation (6): (i) xupu,ag

up
u,s in

(3i) and (5n), (ii) xdnu,ag
dn
u,s in (3i) and (5n), (iii) λIu,sx

up
u,a in (5n), (iv) λJu,sx

dn
u,a in (5n),

(v) λMu,sx
up
u,a in (5a) and (vi) λMu,sx

dn
u,a in (5b). These bilinear terms are in the form of the

product of continuous variables and binary variables. These types of bilinearities can be
linearized using McCormick reformulation [20]. Using McCormick reformulation, bilinear
term xupu,ag

up
u,s is linearized in (7) where ϑu,a,s is a new variable. This technique is applied

to other bilinear terms which has the same form.

gupu,s +Gu(xupu,a − 1) ≤ ϑu,a,s ≤ gupu,s (7a)

0 ≤ ϑu,a,s ≤ Gux
up
u,a (7b)

Since each producer chooses its regulation bid from a discrete set, the set of its alterna-

tive strategies {ĉup,(i)u , ĉ
dn,(i)
u } can be formed by different combinations of binary variables

xupu,a and xdnu,a. We can calculate each producer’s expected profit in all alternative strategies
while holding its competitors’ strategies fixed. This enables us to replace the objective func-
tion of each producer’s bidding problem by (1). Accordingly, the problem of each producer
is transformed into a system of Mixed-Integer Linear Constraints (MILC). Similarly, the
MILC model of all other producers are formed. Solving all those MILCs together gives us
the Nash equilibrium in the zonal real-time market given the day-ahead dispatch decisions.
This is represented by (Box C) in Fig. 1 and formulated as a feasibility problem in (8).

Find Θ = {xupu,a, xdnu,a, ĉupu , ĉdnu , λAs , λ
B
k,s, λ

C
u,s, λ

D
u,s, λ

E
u,s, λ

F
u,s, λ

G
n,s, λ

H
n,s, λ

I
u,s, λ

J
u,s, λ

K
n,s, λ

L
n,s,

λMu,s, λ
N
k,s, λ

O
u,s, λ

P
u,s, λ

Q
u,s, λ

R
u,s, λ

S
n,s, λ

T
n,s} ∪ {xupu,a, xdnu,a, ĉupu , ĉdnu , λAs , λ

B
k,s, λ

C
u,s, λ

D
u,s, λ

E
u,s, λ

F
u,s,

λGn,s, λ
H
n,s, λ

I
u,s, λ

J
u,s, λ

K
n,s, λ

L
n,s, λ

M
u,s, λ

N
k,s, λ

O
u,s, λ

P
u,s, λ

Q
u,s, λ

R
u,s, λ

S
n,s, λ

T
n,s}(i) ∪Π ∪Π(i) (8a)

Such that

Nash equilibrium constraint (1) (8b)

Constraints (3b)− (3i), (5), (6) (8c)

Linerization of (i)− (vi) as in (7) (8d)

Constraints (3b)(i) − (3i)(i), (5)(i), (6)(i), ∀i (8e)

Linerization of (i)(i) − (vi)(i) as in (7), ∀i (8f)

Here (8c), (8d) and (8e), (8f) are written for the Nash equilibrium strategy and for the
alternative strategies, respectively.

3.2. The SPNE of the two-stage game

Each producer bids to the zonal day-ahead market given the day-ahead bids of its
competitors and considering the Nash equilibrium in the zonal real-time market (feasibility
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problem (8)). The SPNE between producers is reached when no producer wants to deviate
unilaterally from the chosen bidding strategy. This is formulated in (9).

πu + Es[φu,s] ≥ π(j)
u + Es[φ

(i),(j)
u,s ] ∀u, i, j (9)

Here πu and π
(j)
u are the day-ahead profit of producer u in the chosen strategy and in

alternative day-ahead strategy (j), respectively. It can be expressed as πu = (
∑

z:u ωz −
Cu)gu. Here ωz is the day-ahead price in zone z and

∑
z:u ωz represents the day-ahead price

in zone z where producer u is located.
Price and dispatch in the zonal day-ahead market are decided by an economic dispatch

problem. It is represented by (Box D) in Fig. 1 and formulated in (10).

Minimize
gu

∑
u

ĉugu (10a)

Subject to:∑
u

gu =
∑
n

Dn : (ξ) (10b)

F̄l −
∑
z

H ′
l,z(

∑
u:z

gu −
∑
n:z

Dn) ≥ 0 : (γl), ∀l (10c)

0 ≤ gu ≤ Gu : (ηu, νu), ∀u (10d)

The dispatch cost in the zonal day-ahead market is minimized in (10a) considering the
energy balance constraint (10b), the inter-zonal transmission limits (10c) and the generation
limits (10d). The stationary, dual feasibility and strong duality conditions of (10) are
derived in (11a), (11b) and (11c), respectively.

− ĉu + ξ −
∑
z:u,l

H ′
l,zγl + ηu − νu = 0, ∀u (11a)

γl, ηu, νu ≥ 0 (11b)

−
∑
u

ĉugu − (ξ
∑
n

−Dn +
∑
l

γl(F̄l −
∑
z

H ′
l,z(

∑
n:z

−Dn)) +
∑
u

νuGu) = 0 (11c)

Similar to the zonal real-time market, we approximate the day-ahead bids by a set of
discrete values [19]. This is modeled by binary variables xu,a in (12).

ĉu =
∑
a

Bu,axu,aCu (12)

The zonal price in the day-ahead market can be calculated as ωz = ξ−
∑

lH
′
l,zγl. From

(11a) and the complementary slackness conditions for (10d), the day-ahead profit function
is formulated in (13).

πu = νuGu + guCu(
∑
a

Bu,axu,a − 1), ∀u (13)

Bilinear term guxu,a appears both in (13) and (11c). It is linearized using the McCormick
reformulation as explained before. After this linearization, since the day-ahead dispatch
decision (gu) is a variable, we face nine sets of bilinear terms in the resulting model. These
are (vii) βu,sgu in (5n) and (3i), (viii) ϕu,sgu in (5n) and (3i), (ix) µk,s

∑
n,n:uHk,ngu in

(5n), (x) λBk,s
∑

n,n:uHk,ngu in (5n), (xi) λDu,sgu in (5n), (xii) λFu,sgu in (5n), (xiii) λMu,sgu

in (5g) and (5i), (xiv) αs
∑

u gu in (5n) and (xv) λAs
∑

u gu in (5n). The bilinear terms in
(xiv) and (xv) are reformulated using (10b). Since

∑
u gu =

∑
nDn in (10b), we replace
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∑
u gu by

∑
nDn in (xiv) and (xv). The following lemma helps in linearizing bilinear

terms (vii)-(xiii).

Lemma 1
Day-ahead dispatch quantity gu is a discrete variable.

Proof. Since (a) Parameters (Gu, Dn, Fk) are given in (10), (b) price bids are flat and (c)
price bids are selected from an individual and finite set of discrete values, the corresponding
dispatch interactions are also selected from a finite set of discrete values.2

Using Lemma 1, gu is formulated by binary variables yu,r in (14).

gu =
∑
r

Eu,ryu,r, ∀u and
∑
r

yu,r ≤ 1, ∀u (14)

Here parameter Eu,r is the day-ahead dispatch of producer u in bid combination r.
Suppose there are U producers in the zonal day-ahead market and each producer has A
bid alternatives, then we have AU bid combinations and index r is defined as r = 1, ..., AU .
Parameter Eu,r is calculated by solving problem (10) for all AU bid combinations. This
calculation can be performed in parallel.

Since gu is a discrete variable, the bilinear terms in (vii)-(xiii) can be linearized using
the McCormick reformulation. The bidding problem of a producer in both zonal day-ahead
and zonal real-time market is represented by (Box E) in Fig. 1 and set out in (15).

Maximize
Ψ

πu + Es[φu,s] (15a)

Subject to:

Constraints (8), (10b)− (10d), (11), (12), (13), (14) (15b)

Linerization of guxu,a and (vii)− (xiii) as in (7) (15c)

The set of decision variables in (15) is Ψ ={gu, ξ, γl, ηu, νu, xu,a, ĉu, πu, yu,r} ∪ Θ.
Inequality (9) is reformulated in (16c) by introducing the nonnegative slack variable ζu.

ζu represents the deviation from the SPNE. The SPNE of the two-stage bidding game is
found when

∑
u ζu equals to zero. The SPNE problem is represented by (Box F) in Fig. 1

and its formulation can be written as the MILP model in (16).

Minimize
Φ

∑
u

ζu (16a)

Subject to:

ζu ≥ 0, ∀u (16b)

πu + Es[φu,s]− π(j)
u − Es[φ

(i),(j)
u,s ] + ζu ≥ 0 ∀u, i, j (16c)

Es[φu,s] ≥ Es[φ
(i),(j)
u,s ] ∀u, i, j (16d)

Constraints (15b), (15c) (16e)

Constraints (15b)(j), (15c)(j), ∀j (16f)

2This lemma means that the zonal day-ahead economic dispatch model is originally a discretely-
constrained LP model.The LP model we assumed for deriving the KKT conditions is the relaxation of
the discretely-constrained LP model with zero duality gap.
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The set of decision variables in (16) is Φ ={ζu} ∪ {gu, ξ, γl, ηu, νu, xu,a,ĉu, πu, yu,r}(j)
∪ Ψ.

We use a nodal two-stage market as our benchmark in this study. Mathematically, we
model it as a zonal system with one node per zone. We replace indices l and z by indices
k and n, respectively. Parameters F̄l and H ′

l,z are replaced by, parameters Fk and Hk,n,
respectively.

4. Tackling Multiple SPNE

The stochastic MILP model in (16) may have one, multiple or no optimal solution
(note that every optimal solution where

∑
u ζu = 0 is a SPNE). The number of SPNE is

dependent on the number of producers and the number of the bidding strategies available
for each producer. In this study, our approach is to find all SPNE which have different
total dispatch costs. To implement this, after a SPNE has been found, we add constraint
(17) to the stochastic MILP model in (16). TDC and TDC(q) represent the total dispatch
cost in the new SPNE and already found SPNE q, respectively. ε is a very small positive
scalar.

TDC =
∑
s,u

σs(ĉ
up
u g

up
u,s − ĉdnu gdnu,s) +

∑
u

ĉugu (17a)

|TDC − TDC(q)| ≥ ε, ∀q (17b)

Constraint (17b) is not linear. We linearize it in (18) by introducing binary variable tq
as in [21]. Constraint (18) ensures that any SPNE with the same total dispatch cost will
not be considered again. Ξ is a sufficiently large scalar.

− ε+ Ξtq ≥ TDC − TDC(q) ≥ ε− (1− tq)Ξ, ∀q (18)

The whole procedure to find all SPNE with different total dispatch costs is outlined in
Algorithm 1.

Algorithm 1: Solution procedure for finding all SPNE with different dispatch
costs

Step 1: Construct parameter Eu,r.;
for r=1 to AU do

Set ĉu = ĉ
(r)
u ;

Solve model (10) and store Eu,r = gu;

end
Step 2: Find all SPNE with different dispatch costs;
repeat

Solve MILP model (16) and update q = q + 1;
Add constraint (18) to MILP model (16);

until (
∑

u ζu > 0);
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5. Illustrative Example

We use the 6-node system shown in Fig. 3 to illustrate producers’ bidding behavior in
the two-stage zonal market.

3

2 5

61

u1

4
u3w1

w2u2

Zone 1 Zone 2

Figure 3: Single line diagram of 6-node example system, u1,u2, u3: Conventional producers, W1,W2: Wind
farms

The proposed model in (16) is solved using the Benders decomposition embedded in
the CPLEX solver of the GAMS platform. In order to reduce the solution time, the GUSS
facility of GAMS is used for calculating Eu,r in Step 1 of Algorithm 1. The data related
to the system is shown in Table 1. To have a zonal system with different zonal prices, the
transmission capacities of the lines between nodes 1-2, 2-5, and 1-6 are set to 35 MW, 70
MW and 65 MW, respectively. The transmission capacity of the other lines is set to 100
MW. The market operator sets the flow limits between two zones at 120 MW for the zonal
day-ahead dispatch. Two wind farms are connected to nodes 3 and 6 which generates at
30 MWh in the zonal day-ahead market. The deviation from the wind generation (∆Wn,s)
is assumed to be between -9 MWh and 9 MWh and this interval is sampled by 7 scenarios
showed in Table 2. We assume that each producer has 3 bidding actions for day-ahead price
bids with 0%, 10% mark-up and 10% mark-down. The permissible up-regulation and down-
regulation bids have 0%, 10%, 20% mark-up and 0%, 10%, 20% mark-down, respectively.

Table 1: Producer and load data for the 6-node system

u Cu Cup
u Cdn

u Gu Load Dn

($/MWh) ($/MWh) ($/MWh) (MW) (MWh)

u1 12.5 25 7.5 150 n2 120

u2 11.5 21 6.5 250 n5 100

u3 13.5 23 8.5 150 n6 60

Table 2: The net-demand deviation scenarios

s1 s2 s3 s4 s5 s6 s7

∆Wn,s 9 6 3 0 -3 -6 -9

Algorithm 1 is employed in the 6-node system. Two SPNE which have different total
dispatch costs are found in the zonal two-stage market and one SPNE is found for the
benchmark model. They are reported in Table 3.
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Table 3: The subgame perfect Nash equilibrium in the 6-node system

Zonal SPNE-1 Zonal SPNE-2 Nodal SPNE
u1 u2 u3 u1 u2 u3 u1 u2 u3

ĉu 11.25 12.65 14.85 12.5 12.65 14.85 12.5 12.65 13.5
($/MWh)

ĉupu 25 25.2 27.6 25 25.2 27.6 25 25.2 27.6
($/MWh)

ĉdnu 6 5.2 8.5 6 5.2 8.5 6.75 6.5 7.65
($/MWh)

Table 3 shows that export-constrained producer u1 chooses a day-ahead bid to be the
cheapest producer in the market in both zonal SPNE. In zonal SPNE-1 it chooses a day-
ahead bid which is lower than its marginal cost, which is consistent with the inc-dec game.
In zonal SPNE-2 it bids its marginal cost to the zonal day-ahead market. These bidding
decisions make producer u1 the cheapest producer in the market and it is dispatched at
full capacity in the zonal day-ahead market. Table 4 shows that producers u2 and u3 are
dispatched 60 MWh and 10 MWh, respectively. The zonal price in the day-ahead market
becomes 12.65 $/MWh in zone 1 and 14.85 $/MWh in zone 2. Table 5 shows that the
day-ahead profit of u1, u2 and u3 is 22.5 $/h, 69 $/h and 13.5 $/h, respectively. Note that
in both zonal SPNE-1 and zonal SPNE-2, the market outcomes (i.e. dispatch quantities,
prices, profits) are the same. However, the total dispatch costs in zonal SPNE-1 and in
zonal SPNE-2 are different since the bids are different.

Table 4: The dispatch in zonal day-ahead and zonal real-time markets in 6-node system

gu (gupu,s,gdnu,s) (MWh,MWh)
(MWh) s1 s2 s3 s4 s5 s6 s7

u1 150 (0,59.6) (0,56.4) (0,53.2) (0,50) (0,46.8) (0,44.5) (0,43)
u2 60 (41.6,0) (44.4,0) (47.2,0) (50,0) (52.8,0) (54.6,0) (55.7,0)
u3 10 (0,0) (0,0) (0,0) (0,0) (0,0) (1.9,0) (5.3,0)

Table 5: The day-ahead profit and the total expected profit of producers in 6-node system

Zonal SPNE-1 and -2 Nodal SPNE
u1 u2 u3 u1 u2 u3

πu ($/h) 22.5 69 13.5 0 155.3 0
πu + Es[φu,s] ($/h) 79.3 276.8 15.8 3.9 166 11.8

The day-ahead dispatch overloads line 1-2 by 29.2 MW. Node 1 is the export constrained
node and node 2 is the import-constrained node. The market operator dispatches the
down-regulation bid of producer u1 and the up-regulation bids of producer u2 to relive this
overloading. The counter-traded volumes in each scenario are shown in bold in Table 4.
In contrast, no lines are overloaded in the benchmark case so no inc-dec game is observed.
The profit in the zonal real-time market is calculated as in (4). The zonal prices and the
profit of the producers in the zonal real-time market are presented in Table 6. Note that
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there is no imbalance in s4 therefore no real-time price is calculated in s4 (the payments to
the producers are settled by their bid-prices in s4).

Table 6: The zonal prices and the profits of each producer in the zonal real-time market in 6-node system

s1 s2 s3 s4 s5 s6 s7

ρ′z,s
($/MWh)

z1 6 6 6 - 25.2 25.5 25.2
z2 8.5 8.5 8.5 - 27.6 27.6 27.6

φu,s
($/h)

u1 89.4 84.6 79.8 75 70.2 66.6 64.5
u2 174.7 186.5 198.2 210 221.8 229.3 233.9
u3 0 0 0 0 0 8.7 24.4

Table 5 shows the total expected profit of producers in zonal SPNE-1, zonal SPNE-2 and
nodal SPNE. In zonal SPNE-1 and zonal SPNE-2, the total expected profit of producers
u1, u2 and u3 is 79.3 $/h, 276.8 $/h and 15.8 $/h, respectively. In nodal SPNE, the total
expected profit of producers u1, u2 and u3 is 3.9 $/h, 166 $/h, 11.8 $/h, respectively. We
see that playing the inc-dec game increases u1’s total profit by 19.3 times as compared to
the benchmark case.

The dispatch costs in zonal SPNE-1, zonal SPNE-2, nodal SPNE and in the competitive
bidding case where all producers bid their true marginal costs in the nodal two-stage market
are illustrated in Table 7. Table 7 shows that employing zonal pricing increases the total
dispatch cost by 695.7 $/h (24.2%) in zonal SPNE-1 or 883.2 $/h (30.8%) in zonal SPNE-2
as compared to the benchmark case. The increase in the dispatch cost is due to the inc-
dec game which increases the dispatch cost in the zonal real-time market by more than
9 times as compared to the benchmark. We see that when the producers submit their
strategic bids which do not correspond to their true marginal costs, the total dispatch cost
in the benchmark increases by 8.7% as compared to the competitive bidding case where all
producers bid their true marginal costs in the nodal two-stage market.

Table 7: The dispatch cost (DC) in the day-ahead (DA) and in the real-time (RT) markets in 6-node system,
CB: Competitive bidding in nodal two-stage market

DC ($/h) DC ($/h)

DA RT Total DA RT Total

Zonal SPNE-1 2595 972.1 3567.1 Zonal SPNE-2 2782 972.1 3754.6

Nodal SPNE 2770.3 101.1 2871.4 CB 2550 74.6 2642.6

6. Modified IEEE 30-node system

The IEEE 30-node example system in [22] is modified and used in this study. We
consider 5 competing producers. The system is split into three zones as in [23]. To have
a zonal system with different zonal prices, the capacity of the lines between nodes 1-2 and
27-28 are changed from 130 MW and 65 MW to 55 MW. The load at each node presented in
[22] is increased by 50%. For the zonal day-ahead market dispatch, the market operator sets
the flow limits between zones 1-2, 1-3 and 2-3 to 66 MW, 70 MW and 80 MW, respectively.
The data related to the producers is presented in Table 8.
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Table 8: Producer data for the modified IEEE 30-node system

Node Cu Cup
u Cdn

u Gu

($/MWh) ($/MWh) ($/MWh) (MW)

u1 22 23 31.5 12.5 100

u2 27 20.5 30.5 11.5 100

u3 13 23.5 33.5 14.5 100

u4 1 26.5 36.5 17.5 100

u5 2 25 35.5 16.5 100

Three wind farms are connected to nodes 6, 10 and 17. Each wind farm generates at 27
MWh in the zonal day-ahead market. The deviation from the day-ahead wind production
(∆Wn,s) is assumed between -7.9 MWh and 7.9 MWh, and this interval is sampled by 11
scenarios. We consider price bids with the same mark-up and mark-down values as in the
6-node system.

Using algorithm 1, we find four SPNE which have different dispatch costs in the zonal
two-stage market and two SPNE in the benchmark model. They are shown in Table 9.

Table 9: The subgame perfect Nash equilibria in the modified IEEE 30-node system

Zonal SPNE-1 Zonal SPNE-2

ĉu ĉupu ĉdnu ĉu ĉupu ĉdnu
($/MWh) ($/MWh) ($/MWh) ($/MWh) ($/MWh) ($/MWh)

u1 25.3 34.65 10 25.3 34.65 10

u2 22.55 30.5 9.2 22.55 30.5 9.2

u3 21.15 40.2 11.6 23.5 40.2 11.6

u4 23.85 36.5 14 23.85 36.5 14

u5 27.5 39.05 16.5 27.5 39.05 16.5

Zonal SPNE-3 Zonal SPNE-4

ĉu ĉupu ĉdnu ĉu ĉupu ĉdnu
($/MWh) ($/MWh) ($/MWh) ($/MWh) ($/MWh) ($/MWh)

u1 25.3 34.65 10 25.3 34.65 10

u2 22.55 30.5 9.2 22.55 30.5 9.2

u3 21.15 40.2 11.6 23.5 40.2 11.6

u4 26.5 36.5 14 26.5 36.5 14

u5 27.5 39.05 16.5 27.5 39.05 16.5

Nodal SPNE-1 Nodal SPNE-2

ĉu ĉupu ĉdnu ĉu ĉupu ĉdnu
($/MWh) ($/MWh) ($/MWh) ($/MWh) ($/MWh) ($/MWh)

u1 25.3 37 10 23 37.8 10

u2 22.55 36.6 9.2 22.55 36.6 9.2

u3 25.85 40.2 13.05 25.85 40.2 13.05

u4 29.15 43.8 15.75 29.15 43.8 15.75

u5 22.5 39.05 14.85 25 42.6 14.85
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Table 9 shows that in all zonal SPNE, the producers u3 and u4, the export-constrained
producers, choose a day-ahead bid which is lower than producers u1 and u5, respectively.
The dispatch quantities in both markets are the same for all zonal SPNE, as shown in Table
10. We observe that producers u3 and u4 are dispatched at their full capacity. However,
producers u1 and u5 are dispatched, below their full capacity, at 30 MW and 15 MW,
respectively. The zonal prices in the zonal day-ahead market are 27.5 $/MWh in zone 1,
26.4 $/MWh in zone 2 and 25.3 $/MWh in zone 3. Table 11 shows that the day-ahead
profit of producers u1, u2, u3, u4 and u5 is 69 $/h, 480 $/h, 300 $/h, 100 $/h and 37.5 $/h,
respectively.

The day-ahead zonal dispatch overloads the intra-zonal lines between nodes 1-2 and
nodes 12-13 by 28.55 MW and 35 MW. To relieve this overloading, the market operator
dispatches the up-regulation bid of producer u5 and the down-regulation bids of producers
u3 and u4. The counter-traded volumes in each scenario is illustrated in bold fonts in Table
10. In both nodal SPNE, the day-ahead dispatch does not overload any transmission lines
in the network and no inc-dec game is observed. The total expected profit both in all
zonal SPNE and in all nodal SPNE is presented in Table 11. In all zonal SPNE, the total
expected profit of u1, u2, u3, u4 and u5 is 69 $/h, 480 $/h, 401.5 $/h, 187,8 $/h and 250.8
$/h, respectively. In nodal SPNE-1 and nodal SPNE-2, the total expected profit of u1, u2,
u3, u4 and u5 is 485.3 $/h, 203 $/h, 112.8 $/h, 44.5 $/h and 425.4 $/h, respectively. We
see that playing the inc-dec game increases the total profit of export-constrained producers
u3 and u4 by 2.6 times and 3.2 times, respectively.

Table 10: The dispatch in zonal day-ahead and zonal real-time markets in the modified IEEE 30-node
system

gu (gupu,s,gdnu,s) (MWh,MWh)

(MWh) s1 s2 s3 s4 s5

u1 30 (0,0) (0,0) (0,0) (0,0) (0,0)

u2 100 (0,0) (0,0) (0,0) (0,0) (0,0)

u3 100 (0,35) (0,35) (0,35) (0,35) (0,35)

u4 100 (0,30.6) (0,29.6) (0,28.4) (0,27.3) (0,26.2)

u5 15 (41.9,0) (45.6,0) (49.2,0) (52.8,0) (56.5,0)

(gupu,s,gdnu,s) (MWh,MWh)

s6 s7 s8 s9 s10 s11

u1 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

u2 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

u3 (0,35) (0,35) (0,35) (0,35) (0,35) (0,35)

u4 (0,25.1) (0,24) (0,22.8) (0,21.7) (0,20.6) (0,19.5)

u5 (60.1,0) (63.7,0) (67.3,0) (70.9,0) (74.6,0) (78.2,0)

The dispatch costs in all zonal and nodal SPNE and in the competitive bidding case
where all producers bid their true marginal costs in the nodal two-stage market are illus-
trated in Table 12. Table 12 shows that employing zonal pricing increases the total dispatch
cost by 13-19.2% as compared to the benchmark case according to the SPNE selection. We
observe that when the producers submit their strategic bids which do not correspond to
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Table 11: The day-ahead profit and the total expected profit in the modified IEEE 30-node system

Zonal SPNE-1, -2, -3 and -4 Nodal SPNE-1 and -2

u1 u2 u3 u4 u5 u1 u2 u3 u4 u5

πu ($/h) 69 480 300 100 37.5 485.3 198 112.8 1.1 416

πu + Es[φu, s] ($/h) 69 480 401.5 187.8 250.8 485.3 203 112.8 44.5 425.4

their true marginal costs, the total dispatch cost in the benchmark increases by 4.3-4.6%
as compared to the competitive bidding case where all producers bid their true marginal
costs in the nodal two-stage market.

Table 12: The dispatch cost (DC) in the day-ahead (DA) and in the real-time (RT) markets in the modified
IEEE 30-node system, CB: Competitive bidding in nodal two-stage market

DC ($/h) DC ($/h)

DA RT Total DA RT Total

Zonal SPNE-1 7926.5 1588.6 9515.1 Zonal SPNE-2 8161.6 1589.6 9751.2

Zonal SPNE-3 8191.5 1590.6 9782.1 Zonal SPNE-4 8426.5 1591.6 10018.1

Nodal SPNE-1 8210.9 186.1 8397 Nodal SPNE-2 8230.9 186.1 8417

CB 7919 128.5 8047

Our numerical analysis reveals two types of players in two-stage zonal markets. Produc-
ers located in export-constrained nodes u1 in 6-node system and u3, u4 in the modified IEEE
30-node system behave as strategic arbitrageurs. They submit bids below their marginal
costs in the zonal day-ahead market. As in the inc-dec game, they overload lines for which
capacity constraints are neglected in the zonal day-ahead auction. In the zonal real-time
market, they get dispatched to relax the overloaded lines. There are also other producers
which submit a price bid higher than their marginal cost to exercise standard market power
in both zonal day-ahead and zonal real-time markets. The proposed MILP model in this
paper can successfully detect all of these strategic behaviors.

7. Conclusion

This paper proposes a two-stage game to analyze imperfect competition in two-stage
zonal markets. We formulate the two-stage game as a MILP model. Our proposed model
may have multiple SPNE. We design an iterative approach to find all SPNE for which
dispatch costs are different. The developed MILP model and the iterative approach are
demonstrated on the 6-node and the modified IEEE 30-node systems. Our numerical results
show that the inc-dec game can be used by export-constrained producers to increase their
profits drastically, by several hundred percent. Moreover, zonal pricing with the inc-dec
game can increase the dispatch costs by 10-30% in comparison to nodal pricing.

The inc-dec game is not due to the lack of competition, it is due to the misrepresentation
of transmission constraints in the day-ahead market. One possible remedy is to improve
the representation of transmission constraint in the day-ahead market. This could be done
by dividing electricity markets into a larger number of zones.
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