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”All the business of war, indeed all the business of life, is endeavour to
find out what you don’t know by what you do; that’s what I called ‘guess
what was the other side of the hill’ ”

Duke of Wellington

1 Introduction

Forecasts play a central role in decision making under uncertainty. Good forecasts

are those that lead to good decisions, in the sense that the expected payoff to the

decision maker using the forecast is greater than it would be otherwise.1 In the case of

inflation forecasts, which we consider below, the Bank of England makes forecasts to

help it set monetary policy to keep inflation within a target range.2 The payoff is the

variation of inflation around target. However, it is not clear how one would quantify

the contribution of the forecast to the payoff in terms of a specific central bank loss

function.

Since forecasts are designed to inform decisions, they are inherently linked to policy

making. However, there is an issue as to whether one should use the same model

for both forecasting and setting the policy instruments. Different questions require

different types of model to answer them. A policy model might be quite large, while a

forecasting model might be quite small. There is also an issue of how transparent the

model should be. It may be difficult to interpret why a machine learning statistical

model makes the predictions it does and this can be a major disadvantage when policy

requires communication of a persuasive narrative.

In recent years forecasting has been influenced by the increasing availability of high-

dimensional data, improvements in computational power and advances in econometrics

and machine learning techniques. In some areas, such as meteorology, this has resulted

in improved forecasts, increasing the number of hours ahead for which accurate predic-

tions can be made. The improved forecasts lead to better decision making as people

1The linkage between forecasting and decision making is discussed in Granger and Pesaran
(2000a,b), who argue in favour of a closer link between the decision and forecast evaluation prob-
lems. Pesaran and Skouras (2004) provide a more general survey of decision theoretic approaches to
forecast evaluation.

2The letter of 26 June 2023 by Huw Pill, Bank chief economist to the chair of the House of Commons
Treasury Committee sets out his assessment of the role played by the forecasts in the policy process.
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change their behaviour in response to the predictions and the effect of such responses on

mortality from heat and cold is examined in Shrader, Bakkensen, and Lemoine (2023).

Despite advances in data, computation and technique, the improvement in accuracy

of weather forecasts has not been matched by economic forecasts. This is a cause for

concern, since as emphasised in the classic analysis of Whittle (1983), prediction and

control are inherently linked and decisions over such elements of economic management

as monetary policy are dependent on a view of the future.

Macroeconomic forecasting is challenging because lags in responses to policies or

shocks are long and variable and the economic system is responsive, events prompting

changes in the structure of the economy. Forecasting tends to be relatively successful

during normal times, but in times of crises and change, in the face of large shocks

or structural changes, when accurate predictions are most needed, forecasters tend to

fail. For instance, inflation was 5.4% in December 2021. This was the last figure they

had when, in February 2022, the Bank forecast that inflation would peak at 7.1% in

2022q2, and fall to 5.5% in 2023q1, and be back within target at 2.6% in 2024q1. The

2023q1 actual was 10.2%, almost 5 percentage points higher than forecast. This burst

in inflation was a global phenomenon and other central banks made similar errors.

Economic forecasters may use purely statistical models or more structural economic

models, which include the policy variables and important economic linkages. We will

call these more structural models ‘policy models’, given the way structural has a number

of interpretations. The statistical models will typically be conditional on information

available at the time of the forecast, which may be inaccurate: knowing where one

is at the time of forecast, nowcasting, is an important element. Policy models may

also be conditional on assumed future values. The Bank of England makes forecasts

conditional on market expectations of future interest rates, assumptions about future

energy prices and government announcements about future fiscal policy as well as

other measures. Wrong assumptions about those future values may cause problems as

it did for the Bank in August 2022, when it anticipated a rise in energy prices but not

the government response to them, so over-estimated inflation. There is also a policy

issue as to whether fiscal and monetary policy should be determined independently by

different institutions or jointly.

If both statistical and policy models are used, there is an issue as to how to integrate
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them. In September 2018, the Bank of England Independent Evaluation Office, IEO

reported back to Court of the Bank on the implementation and impact of the 2015 IEO

review of forecasting performance. In response some ’non-structural’ models had been

introduced as a source of challenge, and outputs were routinely shown to the Monetary

Policy Committee as a way of cross checking the main forecast. Some but not all

members found them helpful, but there was no desire to develop more models of this

sort. Internally they had not been integrated into the forecast process as a source of

challenge.” Forecast averaging has been widely shown to improve forecast performance,

but forming averages on many variables may lack coherence and consistency.

Forecasts by central banks fulfill multiple purposes including as a means of commu-

nication to influence expectations in the wider economy. This also makes it difficult to

choose a loss function to evaluate forecasts. For instance, Bank of England forecasts

for inflation at a 2 year horizon are always close to the target of 2 per cent. Even were

the Bank to think it unlikely that it could get back to target within 2 years, it might

feel that its credibility might be damaged were it to admit that. An institutional issue

is who ”owns” the forecast. The Bank of England forecast is the responsibility of the

9 member Monetary Policy Committee (MPC); other central banks have different sys-

tems. For instance the US Federal Reserve has a staff forecast not necessarily endorsed

by the decision makers.

There is an issue about the optimal amount of information to use: both with respect

to breadth, how many variables, and length, how long a run of data. With respect to

breadth, in principle, one should use information on as many variables as possible and

not just for the country being forecast, since in a networked world foreign variables

contain information. This is the information that is used in the Global VAR (GVAR)

whose use is surveyed in Chudik and Pesaran (2016). While the use of many variables

might imply a large model, in practice quite parsimonious small models tend to be

difficult to beat in forecasting competitions.

With respect to length, in a May 2023 hearing, the Chair of the House of Commons

Treasury Select Committee asked the chief economist of the Bank of England, Huw

Pill: ”Are you saying that, despite the Bank of England having been in existence for

over 300 years, you look at only the last 30 years when you think about what the risks

are to inflation?”. Pill emphasised the importance of the policy regime, which had
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been different in the past 30 years of inflation targeting than in earlier high inflation

periods. The 30 years up to 2019 had also been different in terms of the absence of

large real shocks, like Covid-19 and the effects of the Russian invasion of Ukraine.

Whether it is statistical or policy, the model will typically be supplemented by a

judgemental input, justified by the argument that the forecaster has a larger informa-

tion set than the model. In evidence to the Treasury Select Committee in September

2023, Sir Jon Cunliffe said: ”We start with the model. All models are caricatures of

real life. There is a suite of models; that is the starting point. But then the MPC itself

puts judgments that change the model, and we have made some quite big judgments

in the past about inflation persistence and the like. Finally, when we have the best

collective view of the committee, which is our judgment on top of the model, the model

keeps us honest. It ensures that there is a general equilibrium and we cannot just move

things around.”

In short, macroeconomic forecasting faces important challenges. It depends on how

forecasts are announced and used in the decision making process. To deal with a con-

stantly changing economic environment, forecasts must continually adapt to new data

sets, statistical techniques and theory-based economic insights, knowing that there are

still key variables that might have been left out, either due to difficulties in measure-

ment, oversight or ignorance. Forecasters must answer a range of difficult questions.

What sample periods and potential variables to consider? How to decide which vari-

ables to use for forecasting, and whether to use the same sample periods for variable

selection and for forecasting? Should one use ensemble forecasting from forecasts ob-

tained either from different models or from the same model estimated over different

sample sizes or with different degrees of down-weighting? One must only be hum-

bled by the sheer extent of the uncertainty that these choices entail. It is within this

wider context that this paper tries to formalize some elements of the problem of fore-

casting with high-dimensional data and illustrates the various issues involved with an

application to forecasting UK inflation.

The rest of this paper is organized as follows. Section 2 sets out the high-dimensional

forecasting framework we will be considering. Section 3 considers ”known knowns”,

selecting relevant variables from a known active set. Section 4 considers ”known un-

knowns” where there are known to be unobserved latent variables. Section 5 presents
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the empirical application on forecasting UK inflation. Section 6 contains some con-

cluding comments.

2 The high-dimensional forecasting problem

Suppose the aim is to forecast a scalar target variable, denoted by yT+h, at time T , for

the future dates, T + h, h = 1, 2, ..., H. Given the historical observations the optimal

forecast of the target variable, yT+h, depends on how the forecasts are used, namely

the underlying decision problem. In practice, specifying loss functions associated with

decision problems is hard, hence the tendency to fall back on mean squared error loss.

Under this loss function the optimal forecasts are given by conditional expectations,

E (yT+h |IT ), where IT is the set of available information, and expectations are formed

with respect to the joint probability distribution of the target variable and the set of

potential predictors under consideration. But when the number of potential predictors,

say K, is large even this result is too general to be of much use in practice.

The high-dimensional nature of the forecasting problem also presents a challenge

of its own when we come to multi-step ahead forecasting when forecasts of the target

variable are required for different horizons, h = 1, 2, ..., H. Many decision problems

require having forecasts many periods ahead, months, years and even decades ahead.

Monetary policy is often conducted over the business cycle, at least 2-3 years ahead

of the policy formulation. Climate change policy requires forecasts over many decades

ahead. In interpreting Pharaoh’s dreams, Joseph considered a two-period decision

problem whereby seven years of plenty are predicted to be followed by seven years

of drought. Multi-horizon forecasting is relatively straightforward when the number

of potential predictors is small and a complete system of equations, such as a vector

autoregression (VAR), can be used to generate forecasts for different horizons from

the same forecasting model in an iterative manner. Such an iterated approach is not

feasible, and might not even be desirable, when the number of potential predictors is

too large, since future forecasts of predictors are also needed to generate forecasts of

yT+h for h ≥ 2. This is why in high-dimensional set ups multi-period ahead forecasts

are typically formed using different models for different horizons. This is known as the

direct approach and avoids the need for forward iteration by directly regressing the
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target variable yt+h on the predictors at time t, thus possibly ending up with different

models and/or estimates for each h.3

To be more specific, ignoring intercepts and factors which we introduce below,

suppose yt is the first element of the high-diemnsional vector wt, assumed to follow

the first order VAR model,

wt = Φwt−1 + ut. (1)

Higher order VARs can be written as first order VARs using the companion form.

The error vector, ut, satisfies the orthogonality condition E (ut |It−1 ) = 0, where

It−1 = (wt−1,wt−2, ...). Then

wT+h = ΦhwT + uh,T+h, (2)

where, except for h = 1, the overlapping observations cause the error in (2) to have

the moving average structure of order h− 1:

uh,t+h = ut+h +Φut+h−1 +Φ2ut+h−2 + ...+Φh−1ut+1.

Under the VAR specification E (uh,T+h |IT ) = 0, for h = 1, 2, ... and the optimal (in

the mean squared error sense) h-step ahead forecast of wT+h is E (wT+h |IT ) = ΦhwT .

But given that in most forecasting applications the dimension of wt is large, it is not

feasible to estimate Φ directly without imposing strong sparsity restrictions. Instead

we take the target variable, yT+h, to be the first element of wT+h and consider the

direct regression

yt+h = ϕ′
hwt + uh,t+h ,

where ϕ′
h is the first row of Φh, and uh,t+h is the first element of uh,t+h. We still face a

high-dimensional problem since there are a large number of potential covariates in wt.

We consider the implementation of the direct approach under two scenarios concerning

the potential predictors. First, when it is known that the target variable yt+h is a

sparse linear function of a large set of observed variables xt (a subset of wt) in the

sense that yt+h depends on a small number of covariates that are known to be a subset

of wt, known as the ‘active set’. The machine learning literature focuses on this case,

3Marcellino, Stock, and Watson (2006) discuss the pros and cons of iterated and direct approaches
to forecasting when K is small, and the target variable and the predictors can be jointly modelled
as low-dimensional VARs or VARMAs. It is shown that if the underlying VAR model is correctly
specified then iterated forecasts, being coherent, are preferred to direct forecasts. However, under mis-
specification direct forecasts could perform better. Pesaran, Pick, and Timmermann (2011) reconsider
the comparison of iterated and direct forecasts to factor augmented VARs.
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which we refer to as the case of ”known knowns”. Second, when yt+h could also depend

on a few latent (unobserved) factors, ft, not directly included in the active set, which

we call the case of ”known unknowns”.

Specifically, we suppose that for each h, yt+h can be approximated by the following

linear model, where the predictors are also elements of wt in the high-dimensional VAR

(1),

yt+h = ch + a′
hzt +

K∑
j=1

βjhI(j ∈ DGP )xjt + ψ′
hft + uh,t+h , (3)

for t = 1, 2, ..., T − h, where ch is the intercept, zt is a vector of small number, p,

of pre-selected covariates included across all horizons h. Obvious examples, include

lagged values of the target variable (yt, yt−1, ...). Other variables can also be included

in zt on the basis of a priori theory or strong beliefs. The second component of yt+h

specifies the subset of variables in the active set xt = (x1t, x2t, ...., xKt)
′. I(j ∈ DGP )

is an indicator variable which takes the value of unity if xjt is included in the data

generating process (DGP) for yt+h and zero otherwise. It is only if I(j ∈ DGP ) = 1

that βjh will be identified. The number of variables included in the DGP is given by

k =
∑K

j=1 I(j ∈ DGP ), which is supposed to be small and fixed as T (and possibly

K) become large. This assumption imposes sparsity on the relationship between the

target and the variables in the active set. In addition, we allow for a small number of

latent factors, ft, that represent other variables influencing yt+h that are not observed

directly, but known to be present - the known unknowns.

Giannone, Lenza, and Primiceri (2021) contrast sparse methods, that select a

few variables from the active set as predictors, such as Lasso and OCMT discussed

below, and dense methods, that select all the variables in the active set but attach

small weights to many of them, such as principal components (PC), ridge regression

and other shrinkage techniques. Rather than having to choose between sparse and

dense predictors, we consider approaches that combine the two. We apply sparse

selection methods to the variables in the active set, and use dense shrinkage methods

to approximate ft from a wider set of variables with xt included as a subset. We

first consider the selection problem, known knowns, where we know the active set of

potential covariates, and we then consider known unknowns where there are unobserved

factors.
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3 Known knowns

In the case of known knowns, forecasts are obtained assuming that yt+h is a linear

function of xt

yt+h = ch + a′
hzt +

K∑
j=1

βhjxjt + uh,t+h, for t = 1, 2, ..., T, (4)

subject to some penalty condition on {βhj}. Some of the covariates, xjt, could be

transformations of other covariates, such as interaction terms. It is assumed that the

model is correctly specified, in the sense that, apart from zt, the variables that drive

yt+h are all included in the active set, xt = (x1t, x2t, ...., xKt)
′.

Many standard forecasting techniques result from the particular choice of the penalty

function. Shrinkage estimators such as ridge or some Bayesian forecasts can be derived

using the ℓ2 norm
∑K

i=1 β
2
hj < Ch < ∞. Lasso (least absolute shrinkage and selection

operator) follows when the ℓ1 norm is used
∑K

i=1 |βhj| < Ch < ∞. The difference is

shown in Figure 1 below in Tibshirani (1996) where the ℓ1 norm yields corner solutions

with many of the coefficients, βhj, estimated to be zero. In contrast, the use of ℓ2 norm

yields non-zero estimates for all the coefficients with many very close to zero.

Figure 1: Estimation for the Lasso (left) and ridge (right) regression
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There are a very large number of penalized techniques. Elastic net regularisation

has both an ℓ1 and an ℓ2 penalty, with ridge regression and Lasso being special cases.

There are also a large number of variants of Lasso, including adaptive Lasso, grouped

Lasso, double Lasso. We will focus on Lasso itself, which we use in our empirical

application and which we will compare to OCMT as an alternative procedure which is

based on inferential rather than penalized procedures.

3.1 Lasso

Lasso estimates βh by solving the following optimization problem:

min
βh

{
T∑
t=1

(yt+h − ch − β′
hxt)

2
+ λhT

K∑
i=1

|βhi|

}
, (5)

where βh = (βh1, βh2, ..., βhK)
′, xKt = (x1t, x2t, ...., xKt)

′ for a given choice of the ”tun-

ing” parameter, λhT . The variable selection consistency of Lasso has been investigated

by Zhao and Yu (2006), Meinshausen and Bühlmann (2006) and more recently by Lahiri

(2021). The key condition is the so-called ”Irrepresentable Condition, IRC” that places

restrictions on the magnitudes of the correlations between the signals (X1h, standard-

ized) and the rest of the covariates (X2h, standardized), taken as given (deterministic).

The IRC is:

IRC:
∥∥∥(T−1X′

2hX1h)
(
T−1X′

1hX1h

)−1
sign(β0

h)
∥∥∥
∞
< 1, (6)

where β0
h = (β0

1h, β
0
2h, ..., β

0
khh

)′ denotes the vector of true signal coefficients.4 The IRC

condition is met for pure noise variables, but need not hold for proxy variables, noise

variables that are correlated with the true signals.

To appreciate the significance of the IRC, suppose the DGP contains x1t and x2t

and the rest of the covariates in the active set are x3t, x4t, ..., xKt. Denote the sample

correlation coefficient between x1t and x2t by ρ̂ (ρ̂2 < 1) and the sample correlation

coefficient of x1t and x2t with the rest of the covariates in the active set by ρ̂1s, ρ̂2s, for

s = 3, 4, ..., K. Then, dropping the subscript h, the IRC for the sth covariate is given

by ∣∣∣∣∣∣[sign (β01) , sign (β02)]′
(

1 ρ̂

ρ̂ 1

)−1(
ρ̂1s

ρ̂2s

)∣∣∣∣∣∣ < 1

4The number of signals, kh, could vary with h.
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which yields

|sign (β01) (ρ̂1s − ρ̂ρ̂2s) + sign (β02) (ρ̂2s − ρ̂ρ̂1s)| < 1− ρ̂2

for s = 3, 4, ..., K. In this example there are two cases to consider: A: sign (β02) =

sign (β01) ; and B: sign (β02) = −sign (β01) . For case A sups |ρ̂1s + ρ̂2s| < 1 + ρ̂, and

for case B sups |ρ̂1s − ρ̂2s| < 1 − ρ̂. Since the signs of the coefficients are unknown,

for all possible values of ρ̂, ρ̂1s and ρ̂2s, we can ensure the IRC condition is met if

|ρ̂|+ sups |ρ̂1s|+ sups |ρ̂2s| < 1. This example shows the importance of the correlations

between the true covariates in the DGP as well as between the true covariates and

the other members of the active set that do not belong to the DGP. The IRC is quite

a stringent condition and it is not just when one has proxies in the active set that

are highly correlated with the true covariates that Lasso will tend to choose too many

variables. In practice one cannot check the IRC condition since one does not know

which variables are the true signals.

In addition to the IRC it is also required that

MinC: minj=1,2,...,k

∣∣β0
jh

∣∣ > (2T )−1λhT

∣∣∣(T−1X′
1hX1h

)−1
sign(β0

h)
∣∣∣
j
,

Penalty Condition : T−1λhT = o(1).

The penalty condition, which follows from MinC, says that the penalty has to rise with

T , but not too fast and not too slowly. The expansion rate of λhT depends on the

magnitude and the sign of β0
jh, and the correlations of signals with the proxy variables.

Lahiri (2021) shows that the penalty condition can be relaxed to limT→∞ T−1λhT <

lim infT→∞ dhT , where

dhT = 2min
j

∣∣β0
jh

∣∣ / ∣∣∣(T−1X′
1hX1h

)−1
sign(β0

h)
∣∣∣
j
.

The above conditions do not restrict the choice of λhT very much, hence the recourse

to cross-validation to determine it. In practice, λhT is calibrated using M -fold cross-

validation techniques. The observations, t = 1, 2, ..., T , are partitioned into M disjoint

subsets (folds), of size approximately m = T/M. Then M − 1 subsets are used for

training and one for evaluation. This is repeated with each fold being used in turn for

evaluation. M is typically set to 5 or 10. Cross-validation methods are often justified

in machine learning literature under strong assumptions, such as independence and

parameter stability across the sub-samples used in cross-validation. These assumptions

are rarely met in the case of economic time series data, an issue that is discussed further

in the context of the empirical example in Section 5.
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3.2 OCMT

The need for cross-validation is avoided in the procedure proposed by Chudik, Kapetan-

ios, and Pesaran (2018), (CKP). This is the ”One Covariate at a time Multiple

Testing” (OCMT) procedure, where covariates are selected one at a time, using

t−statistic for testing the significance of the variables in the active set, individually.5

Ideas from the multiple testing literature are used to control the false discovery rate,

and ensure the selected covariates encompass the true covariates (signals) with prob-

ability tending to unity, under certain regularity conditions. Like Lasso, OCMT has

no difficulty in dealing with (pure) noise variables, and is very effective at eliminating

them. Also, like Lasso, it requires some min condition such as
∣∣β0

jh

∣∣ >>√k log(K)
T

, for

j = 1, 2, ..., k.6 But because it considers a single variable at a time, OCMT does not

require the IRC condition to hold and is not affected by the correlation between the

members of the DGP as Lasso is. Instead it requires the number of pseudo signals, say

k∗T , to rise not faster than
√
T . Chudik, Pesaran, and Sharifvaghefi (2023), discussed

below, is primarily concerned with parameter instability, but Section 4 of that paper

has a detailed comparison of the assumptions required for Lasso and OCMT under

parameter stability.

OCMT’s condition on k∗T has been recently relaxed by Sharifvaghefi (2023) who

allows k∗T → ∞, with T . He considers the following DGP

yt+h = ch + a′
hzt +

K∑
j=1

βjhI(j ∈ DGP )xjt + uh,t+h , (7)

where as before zt is a known vector of pre-selected variables, and it is assumed that the

k signals are contained in the known active set SK,t = {xjt, j = 1, 2, ..., K}. Note that

for now the DGP in (7) does not include the additional latent factors, ft, introduced

in (3). Without loss of generality, consider the extreme case where there are no noise

variables and all proxy or pseudo signal variables (xjt, for j = k + 1, k + 2, ..., K) are

correlated with the signals, x1t = (x1t,x2t, ..., xkt)
′. In this case k∗T rises with K and

5Since t-ratios are invariant to scale, no pre-standardization of the covariates in the active set is
required. This is in contrast to Lasso which is typically implemented after in-sample standardization
of the covariates.

6To simplify the exposition we have dropped explicit reference to the forecast horizon, h. But
in practice, and as we shall see from the empirical applications below, the number and identity of
selected signals could differ with h.
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OCMT is no longer applicable. However, in this case by construction the signals, x1t,

become latent factors for the proxy variables and we have

xjt = ϕj0 +
k∑

i=1

ϕjixit + εjt = ϕj0 + ϕ′
jx1t + εjt,

for j = k+1, k+2, ...., K. Although the identity of these common factors are unknown,

they can be approximated by the principal components of the variables in the active

set. Specifically, following Sharifvaghefi (2023), denote the latent factors that result in

non-zero correlations between the noise variables in the active set and the signals by

κt and consider the factor model

xjt = κ′
jκt+vjt, for j = 1, 2, ..., K , (8)

where κj, for j = 1, 2, ..., K are the factor loadings and the errors, vjt, are weakly cross-

correlated and distributed independently of the factors and their loadings. Under (8),

the DGP, (7), can be written equivalently as

yt+h = ch + a′
hzt + b′

hκt +
K∑
j=1

βjhI(j ∈ DGP )vjt + uh,t+h , (9)

where bh =
∑K

j=1 I(j ∈ DGP )βjhκj. When κt and vjt are known, the problem

reduces to selecting vjt from Sv
K,t = {vjt, j = 1, 2, ..., K} , conditional on zt and κt.

Sharifvaghefi shows that the OCMT selection can be carried out using the principal

component estimators of κt and vjt - denoted by κ̂t and v̂jt, if both K and T are large.

He labels this procedure as generalized OCMT (GOCMT).

3.3 GOCMT

The GOCMT procedure simply augments the OCMT regressions with the PCs, κ̂t,

and considers the statistical significance of v̂jt for each j, one at the time. Lasso-

factor models have also been considered by Fan, Ke, and Wang (2020) and Hansen

and Liao (2019). In practice, since xj = Ξ̂ψ̂j + v̂j, where Ξ̂ =(κ̂1, κ̂2, ..., κ̂T )
′, then

MΞ̂xj = MΞ̂v̂j, where MΞ̂ = IT − Ξ̂
(
Ξ̂′Ξ̂

)−1

Ξ̂′, and GOCMT reduces to OCMT

when zt is augmented with κ̂t, where the statistical significance of xjt as a predictor

of yt+h is evaluated for each j, one at a time. Like OCMT, GOCMT allows for the

multiple testing nature of the procedure (K separate tests - with K large) by increasing

the level of significance with K. The number of PCs, dim(κ̂t), can be determined using

one of the criteria suggested in the factor literature.
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In the first stage, K separate OLS regressions are computed, where the variables

in the active set are entered one at a time:

yt+h = ch + a′
hzt + b′

hκ̂t + ϕjhxjt + ej,h,t+h, t = 1, 2, ..., T , for j = 1, 2, ..., K, (10)

Denote the t-ratio of ϕjh by tϕ̂j,(1)
. Then variable j is selected if

Ĵj,(1) = I
[∣∣∣tϕ̂j,(1)

∣∣∣ > cp(K, δ)
]
, for j = 1, 2, ..., K , (11)

where cp(K, δ) is a critical value function given by

cp(K, δ) = Φ−1
(
1− p

2Kδ

)
, (12)

p is the nominal size (usually set to 5%), Φ−1(·) is the inverse of a standard normal

distribution function and δ is a fixed constant set in the interval [1, 1.5]. In the second

step a multivariate regression of yt+h on zt and all the selected regressors is considered

for inference and forecasting. Note that at the moment it is assumed that κt does not

directly affect yt+h, it only enters through the xjt. It represents the signals, the com-

mon factors correlated with the proxies, and provides a way of filtering the correlations

in the first step.

When the covariates are not highly correlated, OCMT applies irrespective of

whether K is small or large relative to T , so long as T = ⊖ (Kc), for any finite c > 0.

But to allow for highly correlated covariates, GOCMT requiresK to be sufficiently large

to enable the identification of κt. In cases where K is not that large, it might be a good

idea to augment the active set for the target variable, yt+h, SK,t = {xjt, j = 1, 2, ..., K},
with covariates for other variables determined simultaneously with yt+h, ending up with

K > K covariates for identification of κt. GOCMT does not impose any restriction

on the correlations between the variables other than that they cannot be perfectly

collinear.

3.4 High-dimensional variable selection in presence of param-

eter instability

OCMT has also been recently generalized by Chudik, Pesaran, and Sharifvaghefi (2023)

to deal with parameter instability. Under parameter instability OCMT correctly selects

the covariates with non-zero average (over time) effects, using the full sample. However

the adverse effects of changing parameters on the forecast may mean that while the

full sample is the best to use for selection, it need not be the best to use for estimating
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the forecasting model. Instead, it may be better to use shorter windows or weight the

observations in the light of the evidence on break points and break sizes.

Determining the appropriate window or weighting for the observations before esti-

mation is a difficult problem and no fully satisfactory procedure seems to be available.

It is common in finance to use rolling windows of 60 or 120 months, but one problem

with shorter windows is that if you have periods of instability interspersed with periods

of stability, like the Great Moderation, estimates using a short window from the stable

period may understate the degree of uncertainty. This happened during the financial

crisis when the short windows used for estimation did not reflect past turbulence. Sim-

ilarly, the Bank of England estimating their models using the low inflation regime of

the past 30 years discounted the evidence from the high inflation regime of the 1970s

and 1980s.

While identifying the date of a break might not be difficult, identifying the size

of the break may be problematic if the break point is quite recent. If there is a

short time since the break, there is little data on which to estimate the post-break

coefficient with any degree of precision. If there is a long time since the break, then

using post break data is sensible. Pesaran, Pick, and Pranovich (2013) examine optimal

forecasts in the presence of continuous and discrete structural breaks. These present

quite different sorts of challenges. With continuous breaks the parameters change

often by small amounts. With discrete breaks the parameters change rarely but by

large amounts. They propose weighting observations to obtain optimal forecasts in

the MSFE sense and derive optimal weights for one step ahead forecasts for the two

types of break. Under continuous breaks, their approach largely recovers exponential

smoothing weights. Under discrete breaks between two regimes the optimal weights

follow a step function that allocates constant weights within regimes but different

weights in different regimes. In practice, the time and size of the break is uncertain and

they investigate robust optimal weights. Averaging forecasts with different weighting

schemes, for instance with exponential smoothing parameters between 0.96 and 0.99,

may also be a way to produce more robust forecasts.
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4 Known unknowns

So far we have considered techniques (penalized regressions and OCMT) that assume

yt+h depends on zt and a subset of a set of covariates - the active set - which is assumed

known. In contrast, shrinkage type techniques such as PCs, (implicitly) assume that

yt+h depends on zt and the m× 1 vector of unknown factors ft

yt+h = ch + a′
hzt + θ′hft + uh,t+h.

This is a simple example of techniques that in our terminology can be viewed as be-

longing to a class of forecasting models based on known unknowns. The uncertainty

about ft is resolved assuming it can be identified from a known active set, such as

SK,t = {xjt, j = 1, 2, ..., K}. Individual covariates in SK,t are not considered for selec-

tion (although a few could be pre-selected and included in zt). To forecast yt+h one still

requires to forecast the PCs and to allow for the uncertainty regarding m = dim(ft).

Factor augmented VARs (FAVAR), initially proposed by (Bernanke, Boivin, and

Eliasz, 2005, BBE), augment the standard VAR models with a set of unobserved com-

mon factors. In the context of our set up, FAVAR can be viewed as a generalized

version of (3), where yt+h is a vector and zt =
{
yt,yt−1, ...,yt−p

}
. BBE argue that

small VARs gave implausible impulse response functions, such as the ”price puzzle”,

which were interpreted as reflecting omitted variables. One response was to add vari-

ables and use larger VARs, but this route rapidly runs out of degrees of freedom,

since Central Bankers monitor hundreds of variables. The FAVAR was presented as a

solution to this problem. Big Bayesian VARs are an alternative solution.

The assumptions that underlie both penalized regression and PC shrinkage are

rather strong. The former assumes that ft can affect yt+h only indirectly through xjt,

j = 1, 2, ..., K, and the latter does not allow for individual variable selection. Suppose

that ft also enters (7) then the model can be written as (3) above, repeated here for

convenience:

yt+h = ch + a′
hzt +

K∑
j=1

βjhI(j ∈ DGP )xjt + ψ′
hft + uh,t+h.

The forecasting problem now involves both selection and shrinkage. The ft can be

identified by, for instance, the PCs of the augmented active set xjt, j = 1, 2..., K,K +

1, ...,K which can be wider than the active set of covariates used to predict yt. There

is a variety of other ways that the unobserved ft could be estimated, but we use PCs
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as an example, since they are widely used.

The missing factors are unlikely to be only specific to the target variable under con-

sideration. For example, if yt+h is UK inflation, the missing factor(s) could be external

to the UK. Inflation and output growth in other countries could be equally relevant.

Call this vector of global factors gt. A natural extension is to introduce forecast equa-

tions for other countries (entities) who have close trading relationships with UK and

use penalized panel regressions, where the panel dimension allows identification of the

known unknowns.

Suppose there are N other units (countries) that are affected by observed country

specific covariates, zit, i = 1, 2, ..., N, and xi,jt for j = 1, 2, ..., Ki, plus domestic latent

factors fit, and global latent factors, gt. The forecasting equations are now generalized

as

yi,t+h = ch + a′
ihzit +

Ki∑
j=1

βijhI(j ∈ DGPi)xi,jt+

θ′ihfit + ψ′
ihgt + ui,h,t+h,

where ki =
∑Ki

j=1 I(j ∈ DGPi) is small with Ki quite large, for i = 0, 1, 2, ..., n. For

the country-specific covariates we postulate that there is an augmented active set

xi,jt = γ′ijfit + vi,jt, j = 1, 2, ..., Ki, Ki+1, ....,Ki,

where fit are latent factors. The global factors are then identified as the common

components of the country-specific factors, namely

fit = Ψigt + ξit ,

for i = 1, 2, .., N , with N large.

Variable selection for the target variable (say UK inflation) can now proceed by

applying GOCMT, with the UK model augmented with UK-specific PCs, f̂it as well

as the PC estimator of the global factor, gt, that drives the country specific factors.

This can be extracted from f̂it as PCs of the country-specific PCs. In addition to

common factor dependence, countries are also linked through trade and other more

local features (culture, language). Such ”network” effects can be captured by using

”starred” variables, to use the GVAR terminology. A simple example would be (for
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i = 0, 1, ...., N)

yi,t+h = cih + δihy
∗
it + a′

ihzit +

Ki∑
j=1

βijhI(j ∈ DGPi)xi,jt+ (13)

θ′ihfit + ψ′
ihgt + ui,h,t+h ,

where i = 0 represents UK, and y∗it =
∑N

j=1wijyjt, wij (trade weights) measures the rel-

ative importance of country j in determination of country ith target variable. Similarly,

z∗
it =

∑N
j=1w

∗
ijzjt can also be added to the model if deemed necessary.

The network effects can be included either as an element of zit or could be made

subject to variable selection. The problem becomes much more complicated if we try

to relate yi,t+h simultaneously to y∗i,t+h. Further, for forecasting, following Chudik,

Grossman, and Pesaran (2016), one might also need to augment the UK regressions

with time series, forecasting models for the common factors.

Equation (13) allows for a number of different approaches to dimension reduction.

As has been pointed out by Wainwright (2019) : “Much of high-dimensional statistics

involves constructing models of high-dimensional phenomena that involve some implicit

form of low-dimensional structure, and then studying the statistical and computational

gains afforded by exploiting this structure”. Shrinkage methods, like PCs, assume a low

dimensional factor structure. The two selection procedures that we have considered,

Lasso and OCMT, exploit different aspects of the low-dimensional sparsity structure

assumed for the underlying data generating process. Lasso restricts the magnitude of

the correlations within and between the signals and the noise variables. OCMT limits

the rate at which the number of proxy variables rises with the sample size. GOCMT

relaxes this restriction by filtering out the effects of latent factors that bind the proxies

to the true signals before implementing the OCMT procedure.

5 Forecasting UK inflation

5.1 Introduction

We apply the procedures proposed above to the problem of forecasting quarterly UK

inflation at horizons h = 1, 2 and 4. Given this choice of target variable, we need to

choose the samples used for variable selection and estimation, the pre-selected variables
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to include in zt, the variables to include in the active set SK,t = {xjt, j = 1, 2, ..., K},
and the variable selection techniques to use.

Since we have emphasised the importance of international network effects, we need

to use a quarterly dataset that includes a large number of countries to estimate global

factors and to allow the construction of the y∗it variables that appear in (13). The

Global VAR (GVAR) data set provides such a source. The publicly available data set

compiled by Mohaddes and Raissi (2024) covers 1979q1-2023q3. We are very grateful

to them for extending the data. While the latest GVAR dataset goes up to 2023q3 we

only had access to data till 2023q1 when we started the forecasting exercise, the results

of which are reported in this paper, but the data that we used matches that GVAR

2023 vintage which was released in January 2024.7

The data base includes quarterly macroeconomic data for 6 variables (log real GDP,

y, the rate of inflation, dp, short-term interest rate, r, long-term interest rate, lr, the log

deflated exchange rate, ep, and log real equity prices, eq), for 33 economies as well as

data on commodity prices (oil prices, poil, agricultural raw material, pmat, and metals

prices, pmetal). These 33 countries cover more than 90% of world GDP. The GVAR

data was supplemented with other specific UK data on money, wages, employment and

vacancies, in the construction of the active set discussed below.

In the light of the argument in Chudik, Pesaran, and Sharifvaghefi (2023), we use

the full sample beginning in 1979q1 for variable selection. There are arguments for

down-weighting earlier data for estimation when there have been structural changes,

as discussed by Pesaran, Pick, and Pranovich (2013). However, the full sample was

used both for variable selection and estimation of the forecasting model in order to

allow evidence from the earlier higher inflation regime to inform both aspects.

The target variable is average annual UK inflation, labelled DPUK4, defined as

πt+h = 100 × log(pt+h/pt+h−4), where pt is the UK consumer price index taken from

the IMF International Financial Statistics. Two sets of variables are considered for

inclusion in zt. The first set, which we label AR2, includes lags of the target variable

πt, πt−1 (or equivalently πt and ∆πt).Given the importance we attach to global variables

and network effects, the second set, which we label ARX2, also includes π∗
t , π

∗
t−1

7GVAR Data 1979q1-2023q3 (2023 Vintage) is available at https://www.mohaddes.org/gvar, fur-
ther material on the GVAR is provided at https://sites.google.com/site/gvarmodelling/gvar-toolbox

18



(or equivalently π∗
t and ∆π∗

t ) where π∗
t is a measure of UK specific foreign inflation

constructed using UK trade weights with the other countries.8

If there is a global factor in inflation, the inflation rates of different countries will

be highly correlated and tend to move together. Figure 2 demonstrates that this is in

fact the case. It plots the inflation rates for 19 countries over the period 1979-2022. It

is clear that they do move together, reflecting a strong common factor. The dispersion

is somewhat greater in the high inflation 1980s. At times individual countries break

away from the herd with idiosyncratic bursts of inflation, like New Zealand in the mid

1980s. But it is striking that inflation in every country increases from 2020.

Figure 2: Inflation Across Advanced Economies

To demonstrate the importance of the global factor for the UK, Figure 3 plots πt,

and π∗
t , UK inflation and UK specific foreign inflation. The two series move together,

8Specifically, π∗
t =

∑
j wjπjt, where πjt is the inflation rate in country j and wj is the trade weight

of country j with UK.
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Figure 3: UK and UK-specific global inflation

and from the mid 1990s they are very close. This indicates that not only is one unlikely

to be able to explain UK inflation just by UK variables but that there are good reasons

to include this UK specific measure of foreign inflation in one of our specifications

for zt. The GVAR estimates also indicate the higher sensitivity of the UK to foreign

variables than the US or euro area. This is not surprising, they are larger, less open,

economies.

5.2 Active set

We now turn to the choice of the members of the active set, SK,t = {xjt, j = 1, 2, ..., K} ,
some of which may be included in zt. While our focus is on forecasting not on building

a coherent economic model, our choice of the covariates in the active set is motivated by

the large Phillips curve literature, which suggests important roles for demand, supply

and expectations variables. The demand and supply variables in the active set are

both domestic and foreign from both product and labour markets. Expectations are

captured by financial variables. Interaction terms were not included, but the non-
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linearities that have been investigated in the literature may be picked up by the latent

foreign variables. These are represented by y∗it terms, UK specific measures of foreign

inflation and output. Explicit measures of fit and gt did not seem to be needed.

Accordingly, we consider 26 covariates (xjt) listed in Table 1, and their changes

∆xjt = xjt−xj,t−1, giving an active set with K = 52 variables to select from. Whereas

in a regression including current and lagged values of a regressor (say xt and xt−1)

is equivalent to including current and change (namely xt and ∆xt), in selection the

two specifications can result in different outcomes. Including ∆xt is better since, as

compared to xt−1, it is less correlated with the level of the other variables in the active

set. The 26 included covariates are measured as four-quarter rates of change, changes

or averages to match the definition of the target variable. The rates of change are per

cent per annum.

UK goods market demand indicators: rate of change of output, two measures

of the output gap: log output minus either a P = 8 or P = 12 quarter moving average

of log output, Gap(yt, P ) = yt − P−1
∑P

p=1 yt−p;

UK labour market demand indicators: rate of change of UK employment,

vacancies, and average weekly earnings and the change in unemployment;

UK financial indicators: annual averages of UK short and long interest rates,

the rate of change of money, UK M4, and of UK real equity prices;

Global cost pressures on the UK: rate of change of the price of oil, metals,

materials, UK import prices and deflated dollar exchange rate;

Foreign demand and supply variables: UK specific global measures, foreign

inflation, rate of change of foreign output and two measures of the foreign output gap:

log foreign output minus either an 8 or 12 quarter moving average of log foreign output.

In addition, large country variables were added: annual average of US short and long

interest rates, rates of change of US output and prices, and of Chinese output.
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Table 1: List of covariates for UK inflation forecasting

Variable Description

DPUK4 4 quarter UK rate of inflation,

DYUK4 4 quarter rate of change of UK real GDP

GAPUK8 UK log real GDP relative to its 8 quarter moving average

GAPUK12 UK log real GDP relative to its 12 quarter moving average

DEMUK4 4 quarter rate of change of UK employment

DVUK4 4 quarter rate of change of UK vacancies

DUUK 4 quarter change in UK unemployment

DWUK4 4 quarter rate of change of average weekly earnings,

RUK4 4 quarter average UK short interest rate

LRUK4 4 quarter average UK long interest rate

DMUK4 4 quarter rate of change of UK M4 money

DEQUK4 4 quarter rate of change of UK real equity prices

DPOIL4 4 quarter rate of change of oil prices

DPMAT4 4 quarter rate of change of material prices

DPMETAL4 4 quarter rate of change of metal prices

DPMUK4 4 quarter rate of change of UK import prices

DEPUK4 4 quarter rate of change of UK deflated dollar exchange rate

DPSUK4 UK specific measure of 4 quarter foreign inflation

DYSUK4 4 quarter rate of change of UK specific foreign real GDP

RUS4 4 quarter average US short interest rate

LRUS4 4 quarter average US long interest rate

DYCHINA4 4 quarter rate of change of Chinese real GDP

GAPSUK8 UK specific log foreign real GDP relative to 8 quarter moving average

GAPSUK12 UK specific log foreign real GDP relative to 12 quarter moving average

DYUS4 4 quarter rate of change of US real GDP

DPUS4 4 quarter US rate of inflation

5.3 Variable selection

5.3.1 Variable selection procedures

We consider Lasso, Lasso conditional on zt, and GOCMT conditional on zt. With

Lasso, the variables are standardized in-sample before implementing variable selec-
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tion. The Lasso penalty parameter, λT , is estimated using 10 fold cross-validation

(CV), across subsets of the observations. As noted above, the assumptions needed for

standard CV procedures, for instance those used in the program cv.glmnet, are not

appropriate for time series. Time series show features such as persistence and chang-

ing variance that are incompatible with those assumptions. In the standard procedure

the CV subsets (folds) are typically chosen randomly. This is appropriate if the ob-

servations are independent draws from a common distribution, but this is not the case

with time series. Since order matters in time series, we retain the time order of the

data within each subset. See Bergmeir, Hyndman, and Koo (2018) who provide Monte

Carlo evidence on various procedures suggested for the case of serially correlated data.

We use all the data, and do not leave gaps between subsets. In addition, the standard

procedure chooses the λ̂hT that minimises the pooled MSE over the ten subsets. But

when variances differ substantially over subsets pooling is not appropriate, instead we

follow Chudik, Kapetanios, and Pesaran (2018, CKP), and use the average of the λ̂hT

chosen in each subset. Full details are provided in the online simulation appendix to

CKP (2018).

As well as standard Lasso, for consistency with OCMT, we also generated Lasso

forecasts conditional on zt by including a pre-selected set of variables zt in the optimiza-

tion problem (5). This generalized Lasso procedure solves the following optimization

problem:

min
ah,βh

{
T∑
t=1

(yt+h − ch − a′
hzt − β′

hxt)
2
+ λT

K∑
i=1

|βhi|

}
, (14)

where the penalty is applied only to the variables in the active set, xt, and not to the

pre-selected variables, zt. The above optimization problem can be solved in two stages.

In the first stage the common effects of zt are filtered out by regressing yt+h and xt on

the pre-selected variables zt and saving the residuals ey.z and exj.z, j = 1, 2, .., K. In the

second stage Lasso is applied to these residuals. A proof that this two-step procedure

solves the constrained minimization problem in (14) is provided by Sharifvaghefi and

reproduced in the Appendix.

In the OCMT critical value function, cp(K, δ) = Φ−1
(
1− p

2Kδ

)
, we set p = 0.05

and δ = 1. With K = 52 this means that we only retain variables with t-ratios (in

absolute value) exceeding c0.05(52, 1) = 3.3. We also experimented with setting δ = 1.5,
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which yields, c0.05(52, 1.5) = 3.82. The results were reasonably robust and we focus on

the baseline choice of δ = 1, also recommended by CKP.

We implement Lasso and OCMT conditional on two pre-selected sets of variables,

either an AR2 written as level and change zt = (πt, ∆πt)
′ or given the role of foreign

inflation, shown above, the AR2 augmented by the level and change of the UK specific

measure of foreign inflation, denoted ARX, zt = (πt, ∆πt,π
∗
t ,∆π

∗
t )

′. As noted above,

for selection including current and change is better than including current and lag. For

comparative purposes we also generated forecasts with the pre-selected variables only,

namely the AR2 forecasts generated from the regressions

AR2 : πt+h = ch + a1πt + a2h∆πt + uh,t+h,

and the ARX forecasts generated from

ARX : πt+h = ch + a1hπt + a2h∆πt + a3hπ
∗
t + a4h∆π

∗
t + uh,t+h.

Variable selection is carried out recursively, for each forecast horizon h separately,

using an expanding windows approach. All data samples start in 1979q2 and end in

the quarter that forecasts are made. To forecast the average inflation over the four

quarters to 2020q1 using a forecast horizon of h = 4, the sample used for selection

and estimation ends in 2019q1. The end of the sample is then moved to 2019q2 to

forecast the average inflation over the four quarters to 2020q2, and so on. Similarly,

to forecast the average inflation over the four quarters to 2020q1 using h = 2, the

sample ends in 2019q3, and using h = 1 the sample ends in 2019q4. These sequences

continue one quarter at a time until the models are selected and estimated to forecast

inflation over the four quarters to 2023q1. Thus for h = 4, there are 17 samples used

for variable selection, while for h = 2 and h = 1 there are 15 and 14 such variable

selection samples. This process of recursive model selection and estimation means that

the variables selected can change from quarter to quarter, and for each forecast horizon,

h.

Section S-3 of the online supplement list the variables selected by each of the pro-

cedures, for each quarter and each forecast horizon. The main features are summarised

here.
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5.3.2 Number of variables selected

Table 2 gives the minimum, maximum, and average number of variables selected for

the 3 forecast horizons and 5 variable selection procedures. Except for AR2-OCMT,

at h = 4, OCMT chooses fewer variables than Lasso. Lasso conditional on the pre-

selected variables selects a larger number of variables in total than the standard Lasso

without conditioning. Conditioning on pre-selected variables is much more important

for OCMT as compared to Lasso. This finding is in line with the theoretical results

obtained by Sharifvaghefi (2023) who establishes the importance of conditioning on

the latent factors when applied to an active set with highly correlated covariates. The

number of variables Lasso selects falls with the forecast horizon,9 whilst the number

of variables selected by OCMT rises with the horizon. These results show that Lasso

and OCMT could select very different models for forecasting.

Table 2: Number of variables selected by Lasso and OCMT including preselected

Forecast horizon, h, in quarters
Total number of pre-selected and selected variables

h = 1 h = 2 h = 4
Min Max Mean .. Min Max Mean .. Min Max Mean

Lasso 7 12 8.1 5 9 6.1 3 6 5.2
AR2-Lasso 5 11 8.2 9 16 13.5 8 11 9.5
AR2-OCMT 2 3 2.2 4 5 4.5 5 14 6.2
ARX-Lasso 8 16 12.4 12 19 16.3 2 15 9.9
ARX-OCMT 4 4 4 5 5 5 5 8 5.8

Note: The reported results are based on 14, 15 and 17 variable selection samples for 1, 2 and 4 quarter

ahead models, respectively. The AR2 and ARX components include 2 and 4 pre-selected variables,

respectively.

As expected, the number of variables selected by Lasso correlates with the esti-

mates of the penalty parameter λ̂hT , computed by cross-validation. These values are

summarized in Table 3. For all three Lasso applications the mean of the estimated

penalty parameter increases with the forecast horizon, though more slowly for the

9This is possibly because, as h increases the β0
h get smaller in (6), the IRC is more likely to be

satisfied and Lasso is less likely to falsely select additional variables.
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specifications that include pre-selected variables. For Lasso (without pre-selection) the

number of variables selected falls with the forecast horizon because of the increasing

penalty parameter. This is not as clear cut for the specifications including pre-selected

variables.

Table 3: Estimates of the Lasso penalty parameter computed by 10-fold cross-
validation procedure.

Forecast horizon, h, in quarters
h = 1 h = 2 h = 4

Min Max Mean .. Min Max Mean .. Min Max Mean
Lasso 0.07 0.12 0.11 0.22 0.31 0.26 0.33 0.47 0.41
AR2-Lasso 0.08 0.10 0.09 0.09 0.14 0.11 0.18 0.27 0.22
ARX-Lasso 0.04 0.08 0.06 0.07 0.12 0.09 0.15 0.33 0.22

Note: The reported estimates are based on Lasso penalty estimates (obtained from 10-fold cross-

validation) for 14, 15 and 17 variable selection samples for 1, 2, and 4 quarter ahead models, respec-

tively.

5.3.3 OCMT: selected variables by horizon

OCMT selects only a few variables in addition to the pre-selected UK and UK-specific

foreign inflation (πt,∆πt,π
∗
t , and ∆π∗

t ).
10 For h = 1, the variables selected are given in

sub-section S-3.1.1 of the online supplement. In addition to the 2 pre-selected variables

(πt,∆πt), AR2-OCMT selects the rate of change of wages (DWUK4) for samples ending

in 2021q2, 2021q4 and 2022q1, and no other variables. ARX-OCMT does not select

any additional variables for any of the 14 variable selection samples!

For h = 2, the variables selected are given in subsection S-3.1.2 of the online

supplement. AR2-OCMT selects the rates of change of money (DMUK4) and exchange

rate (DEPUK4) from samples ending in 2019q3 to 2020q3, then the rate of change of

wages is added till the sample ending in 2022q2, from then the rates of change of

money (DMUK4) and wages (DWUK4) are selected. ARX-OCMT selects just the rate

10The OCMT results reported here are based on the critical value function given by (12) with δ = 1.
Using the larger value of δ = 1.5 reduces the number of selected variables for a few of sample periods,
but the outcomes are generally robust to the choice on δ on the interval [1, 1.5]. The selection results
for OCMT with δ = 1.5 are reported in the online supplement.
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of change of money (DMUK4) as an additional variable in every sample for h = 2.

For h = 4, the variables selected are given in subsection S-3.1.3 of the online

supplement. AR2-OCMT chooses the same 3 extra variables - the rate of change of

money (DMUK4) and exchange rate (DEPUK4) as well as the UK-specific measure

of foreign inflation (DPSUK4, π∗
t ) - for every sample ending from 2019q1 to 2021q1.

Then, in the sample ending in 2021q2, AR2-OCMT chooses 12 extra variables. The

number of variables selected then falls to 7 in 2021q3, 6 in 2021q4, 5 in 2022q1 and 4 in

2022q2−2022q4. These 4 are the rate of change of money (DMUK4), of material prices

(DPMAT4), of wages (DWUK4), and π∗
t (DPSUK4). The number of variables selected

falls to 3 in the sample ending in 2023q1 when the foreign inflation measure is no longer

selected. ARX-OCMT chooses the rate of change of employment (DEMUK4) and of

money for samples ending in 2019q1 − 2021q4, then adds material prices in 2022q1,

and selects just the rate of change of money for the last four samples.

5.3.4 Lasso: selected variables by horizon

Lasso selections for each sample and horizon are given in the online supplement, sub-

section S-3.2. Lasso tends to select more variables than OCMT so we give less detail.

Table 4 lists the variables chosen by standard Lasso at each horizon and the number

of times they were chosen out of the maximum number of possible samples: 14, for

h = 1, 15 for h = 2, and 17 for h = 4. UK inflation, πt (DPUK4) is always chosen in

every sample at every horizon as is the UK measure of foreign inflation, π∗
t (DPSUK4).

The change in UK inflation, ∆πt, (DDPUK4) is chosen in every sample in the case of

models for h = 1, and h = 2, but never for h = 4. The change in foreign inflation ∆π∗
t

(DDPSUK4) is chosen in every sample at h = 1, in 3 samples at h = 2 but never at

h = 4. Thus Lasso provides considerable support for the choice of pre-selected variables

in zt that include foreign inflation as well as the two lagged inflation variables.

Apart from these variables, the rate of change of wages and of money figure strongly

when using Lasso. The rate of change of wages (DWUK4) is chosen in all the samples

for h = 1 and h = 2 and 14 of the 17 samples for h = 4. The rate of change of money

(DMUK) is chosen in 10 of the 14 samples for h = 1, and in every sample for h = 2

and h = 4. Money and wages are also chosen by OCMT but the rate of change of the

exchange rate selected by OCMT is never chosen by Lasso.
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When h = 1 Lasso also always selects two other variables, namely the change in

long interest rates (DLRUK4), and import price inflation (DPMUK).

Table 4: The number of times covariates from the active set are selected by Lasso at
different forecast horizons

Horizon Selected covariates
h = 1 h = 2 h = 4

DPUK4 14 15 17 4 quarter UK rate of inflation
DPSUK4 14 15 17 UK specific measure of 4 quarter foreign inflation
DWUK4 14 15 14 4 quarter rate of change of average weekly earnings
DDPUK4 14 15 0 Change in 4 quarter UK rate of inflation
DPMUK 14 8 0 4 quarter rate of change of UK import prices
DLRUK4 14 4 0 Change in 4 quarter average UK long interest rate
DDPSUK4 14 3 0 Change in UK specific measure of 4 quarter foreign inflation
DMUK 10 15 17 4 quarter rate of change of UK M4 money
DRUK4 2 0 0 Change in 4 quarter average UK short interest rate
DEMUK4 1 0 6 4 quarter rate of change of UK employment
DDPOIL4 1 0 0 Change in 4 quarter rate of change of the oil price
DDEQUK4 1 0 0 Change in 4 quarter rate of change of UK equity prices
DDYSUK4 1 0 0 Change in 4 quarter rate of change of UK foreign real GDP
DGAPSUK12 1 0 0 UK log foreign real GDP relative to 8 quarter moving average
DPUS4 0 2 2 4 quarter US rate of inflation

Note: The number of variable selection samples are 14, 15 and 17 for h = 1, 2, and 4 quarter ahead

models, respectively.

5.4 Forecasts

The point forecasts of inflation for h = 1, 2 and h = 4 for the various selection pro-

cedures are summarized in Section S-4 of the online supplement. For each forecast

horizon we have 13 forecasts and their realizations for the quarters 2020q1 to 2023q1

inclusive. These are summarised in Table 5 below. We use root mean square forecast

error (RMSFE) as our forecast evaluation criterion. Since 13 forecast errors represent

a very short evaluation sample with considerable serial correlation, testing for the sig-

nificance of the loss differences using the Diebold and Mariano (1995) test would not

be reliable, and is not pursued here.
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5.4.1 One quarter ahead forecasts

Figure 4 gives plots of actual inflation and forecasts one quarter ahead. Section S-4.1

of the online supplement gives the point forecasts. For h = 1, ARX has the lowest

RMSFE, the π∗
t and ∆π∗

t improve forecast performance relative to the AR2. AR2-

OCMT adds wage growth in three periods. Lasso suffers from choosing too many

variables relative to OCMT. The forecasts are very similar, except Lasso predicted

a large drop in 2020q3 with a subsequent rebound. This results from selecting an

output gap measure, when UK output dropped sharply in 2020q2. This sharp drop

and rebound was also a feature of Lasso forecasts at other horizons. The Bank of

England over-estimated inflation in 2022q4, correctly anticipating higher energy prices

but not anticipating the government energy price guarantees.

Figure 4: One quarter ahead forecasts.
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5.4.2 Two quarter ahead forecasts

Figure 5 gives plots of actual inflation and forecasts two quarters ahead. Section S-

4.2 of the online supplement gives the values. For h = 2, ARX again has the lowest

RMSFE. ARX-OCMT selects money growth in every period. Lasso selects between 5

and 9 variables.

Figure 5: Plot of forecasts two quarters ahead

5.4.3 Four quarter ahead forecasts

Figure 6 gives plots of actual inflation and forecasts four quarters ahead. Section S-

4.3 of the online supplement gives the values. The case of h = 4 is the only one

where the ARX does not have the lowest RMSFE. The lowest RMSFE is obtained by

AR2-OCMT. It does well by having a very high inflation forecast in 2022Q2. This

corresponds to the selection of 12 extra variables in the sample ending in 2021q2. It

then rejoins the pack in 2022q3.
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Figure 6: Plot of forecasts four quarters ahead

5.4.4 Summary

Table 5 brings together the RMSFE for each of the selection methods at the different

horizons. Both the variable selection and forecasting exercises highlight the importance

of taking account of persistence and foreign inflation for UK inflation forecasting. Lasso

selects πt and π∗
t in all three forecast horizon models. ARX which includes UK and

foreign inflation as pre-selected variables tends to perform best in forecasting but in

the present application the OCMT component does not seem to add much once the

pre-selected variables are included. However, Lasso performs rather poorly when it is

conditioned on the preselected variables.
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Table 5: Root mean square forecast errors by forecast horizons, h=1,2 and 4 over the
period 2020q1-2023q1

Forecast Source h=1 h=2 h=4
AR2 0.9141 1.6039 3.2524
ARX 0.7884 1.3813 2.9883
Lasso 0.9696 1.4109 3.0131
AR2–Lasso 0.9617 2.8719 4.3440
ARX–Lasso 0.8750 2.9231 4.5021
AR2–OCMT 0.9233 1.6800 2.4643
ARX–OCMT 0.7884 1.4217 3.2470
Bank of England 1.3288 1.6959 3.0042

Note: The RMSFE figures are taken from online supplement Tables S-4.1, S-4.2, and S-4.3. The least

value for RMSFE for each forecast horizon is shown in bold.

5.5 Contemporaneous drivers

Our forecasts of πt+h are based on variables observed at time t, and do not depend

on any conditioning. But, as noted above with respect to the Bank of England, it is

common to condition on contemporaneous values of variables which are considered as

proximate causes of the variable to be forecast. Even if such causal variables can be

identified, however, it does not mean that they help with forecasting - often such causal

variables are themselves difficult to forecast. The Bank of England over-estimated

inflation in 2022q4, correctly anticipating higher energy prices but not anticipating the

government energy price guarantees. This illustrates the dangers of conditioning on

variables that cannot be forecast. Understanding does not necessarily translate into

better forecasts. For example, knowing the causes of earthquakes does not necessarily

help in predicting them in a timely manner.

This point can be illustrated by including contemporaneous changes in oil prices,

in the UK inflation equation (over the period pre Covid-19 and the full sample) for

the case h = 1. For both samples ∆poilt+1 are highly statistically significant, but their

lagged values ∆poilt are not.
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Table 6: Contemporaneous and lagged effects of oil price changes on UK inflation
(πt+1)

Covariates 1979q2–2019q4 1979q2–2022q4
πt 0.936 0.936 0.957 0.962

(13.40) (12.97) (13.70) (13.23)
πt−1 –0.134 –0.136 –0.145 –0.151

(–2.05) (–2.02) (–2.20) (–2.21)
π∗
t 0.480 0.512 0.600 0.524

(4.14) (3.31) (5.50) (4.39)
π∗
t−1 –0.381 –0.316 –0.504 –0.432

(–3.28) (–2.52) (–4.64) (–3.61)
∆poilt+1 0.013 · 0.012 ·

(3.40) · (3.91) ·
∆poilt · 0.006 · 0.005

· (1.47) · (1.37)
R̄2 0.953 0.950 0.952 0.948
SER 0.612 0.631 0.626 0.651

6 Conclusion

High dimensional data are not a panacea; the data must have some predictive content

which might come from spatial or temporal sequential patterns. Forecasting is par-

ticularly challenging either if there are unknown unknowns (factors that are not even

thought about) or if there are known factors that are falsely believed to be impor-

tant. When there are new global factors, like Covid-19, or when a relevant variable

has shown little variation over the sample period, forecasting their effect is going to be

problematic.

Many forecasting problems require a hierarchical structure where latent factors at

local and global levels are explicitly taken into account. This is particularly relevant

for macro forecasting in an increasingly inter-connected world. It is important that we

allow for global factors in national forecasting exercises - and GVAR was an attempt

in this direction.
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A number of key methodological issues were illustrated with a simple approach to

forecasting UK inflation which has become a topic of public discussion. This example

showed both the power of parsimonious models and the importance of global factors.

There remain many challenges. How to allow for regime change and parameter in-

stability in the case of high-dimensional data analysis? How to choose data samples?

Our recent research suggests that it is best to use long time series samples for variable

selections, but consider carefully what sample to use for forecasting. Given a set of

selected variables, parameter estimation can be based on different window sizes, or

down-weighting. Should we use ensemble or forecast averaging? Forecast averaging

will only work if the covariates used to forecast the target variable are driven by strong

common factors, otherwise one will be averaging over noise.

There are some more general lessons. Econometric and statistical models must not

become a straightjacket. Forecasters should be open minded about factors not included

in their model, and acknowledge that forecasts are likely to be wrong if unexpected

shocks hit.
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Appendix

The Lasso procedure with a set of preselected variables11

Let y = (y1, y2, · · · , yT )′ be the vector of observations for the target variable. Sup-

pose we have a vector of pre-selected covariates denoted by zt = (z1t, z2t, · · · , zmt)
′. Ad-

ditionally, there is a vector of covariates denoted by xt = (x1t, x2t, · · · , xnt)′, from which

we aim to select the relevant ones for the target variable using the Lasso procedure.

We can further stack the observations for zt and xt in matrices Z = (z1, z2, · · · , zT )′

and X = (x1,x2, · · · ,xT )
′, respectively. For a given value of the tuning parameter, λ,

the Lasso problem can be written as:(
δ̂(λ), β̂(λ)

)′
= argminbz ,b

{
(y − Zbz −Xb)′ (y − Zbz −Xb) + λ∥b∥1

}
.

Partition X = (X1,X2) where X1 is the matrix of covariates with the corresponding

vector of estimated coefficients, β̂1(λ), different from zero and X2 is the matrix of

covariates with the corresponding vector of estimated coefficients, β̂2(λ), equal to zero.

So, Xβ̂(λ) = X1β̂1(λ). By the first order conditions we have:

X′
1

(
y − Zδ̂(λ)−X1β̂1(λ)

)
− λsign

(
β̂1(λ)

)
= 0, (A.15)

Z′
(
y − Zδ̂(λ)−X1β̂1(λ)

)
= 0. (A.16)

and

−λ1 ≤ X′
2

(
y − Zδ̂(λ)−X1β̂1(λ)

)
≤ λ1, (A.17)

Where 1 represents a vector of ones. We can further conclude from Equation (A.16)

that:

δ̂(λ) = (Z′Z)
−1

Z′
(
y −X1β̂1(λ)

)
. (A.18)

By substituting δ̂(λ) from (A.18) into (A.15), we have

X′
1

(
y −X1β̂1(λ)− Z (Z′Z)

−1
Z′
(
y −X1β̂1(λ)

))
− λsign

(
β̂1(λ)

)
= 0.

11We are grateful to Dr. Mahrad Sharifvaghefi for providing the proofs in this appendix.
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We can further write this as:

X′
1

(
I− Z (Z′Z)

−1
Z′
)(

y −X1β̂1(λ)
)
− λsign

(
β̂1(λ)

)
= 0.

Therefore,

X̃′
1

(
ỹ − X̃1β̂1(λ)

)
− λsign

(
β̂1(λ)

)
= 0, (A.19)

where X̃1 = MZX1, ỹ = MZy and MZ = I− Z (Z′Z)−1 Z′.

Similarly, by substituting δ̂(λ) from (A.18) into (A.17), we have

−λ1 ≤ X̃′
2

(
ỹ − X̃1β̂1(λ)

)
≤ λ1. (A.20)

Note that (A.19) and (A.20) are the first order conditions of the following Lasso prob-

lem:

β̂(λ) = argminb

{(
ỹ − X̃b

)′ (
ỹ − X̃b

)
+ λ||b||1

}
. (A.21)

Therefore, we can first obtain the estimator of the vector coefficients for X, β̂(λ), by

solving the Lasso problem given by (A.21) and then estimate the vector of coefficients

for Z, δ̂(λ), by using Equation (A.18).
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S-1 Introduction

This online supplement presents the details of the methods used to forecast UK infla-

tion, the variables selected and the results obtained. For this purpose the framework

set out in the paper can be summarised as:

πt+h = ch + a′
hzt +

K∑
j=1

βjhI(j ∈ DGP )xjt + uh,t+h. (S.1)

The target variable is average annual UK inflation, labelled DPUK4, defined as

πt+h = 100 × log(pt+h/pt+h−4), where pt is the UK consumer price index taken from

the IMF International Financial Statistics.12 zt is the vector of pre-selected variables

which we set to (πt,∆πt) or (πt,∆πt,π
∗
t , and ∆π∗

t ). The active set, xjt, j = 1, 2, ..., K,

is the list of variables from which selection is made.

The active set consists of the 26 variables detailed in Table 1 of the paper plus

their first differences (in total K = 52). As noted in the paper, whereas including a

current and lagged value is equivalent to including a current value and its change in

estimation, it is not in the selection. We denote Ah
m as the active set corresponding to

model m among the 9 models that are examined. For each horizon, selection proceeds

recursively using an expanding window starting in 1979q2 initially ending in 2019q1,

for h = 4, 2019q3 for h = 2, and 2019q4 for h = 4. The window then expands one

quarter at a time to 2023q1. We end up with 13 point forecasts for the quarters

2020q1− 2023q1. Since the model is re-estimated for each forecast period and horizon,

the variables selected may change by quarter and horizon.

S-2 Models

The first two models set all the βjh = 0 and differ in what is included in zt.

The AR2 model is:

πt+h = ch + a1hπt + a2h∆πt + uh,t+h.

12In terms of the GVAR data, which report dpt = log(pt/pt−1) where pt is the CPI, πt is defined
by πt = 100× (dpt + dpt−1 + dpt−2 + dpt−3).
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The ARX adds UK-specific foreign inflation, π∗
t and its change:

πt+h = ch + a1hπt + a2h∆πt + a3hπ
∗
t + a4h∆π

∗
t + uh,t+h

The next model sets a′
h = 0 and just selects using Lasso, which performs a variable

selection from the whole active set of 52 variables inclusive of πt,∆πt,π
∗
t , and ∆π∗

t . All

covariates are standardized before solving the following minimization problem:

min
β∈R|Ah

Lasso
|

1

2T

T∑
t=1

πt+h − ch −
∑

j∈Ah
Lasso

x̃tjβj

2

+ λ
∑

j∈Ah
Lasso

∥βj∥1 ,

where x̃tj = (xjt − x̄jT )/sjT , x̄jT = T−1
∑T

t=1 xjt and sjT = T−1
∑T

t=1 (xjt − x̄jT ).

|Ah
Lasso| represents the cardinality of the active set, and || · ||1 is the ℓ1-norm. The

regularization parameter λ̂hT is chosen via 10-fold cross-validation (CV). As discussed

in the paper we adapt the standard CV procedures to take account of the persistence

and changing variance of time series data. In the standard procedure the CV subsets

(folds) are typically chosen randomly, but since these are time series where order mat-

ters, we retain the order of the time series data in construction of subsets using all the

data, not dropping observations between subsets. In addition, the standard 10-fold

procedure chooses the λ̂hT that minimises the pooled MSE over the ten subsets. But

when variances differ substantially over subsets, pooling is not appropriate, instead we

follow Chudik, Kapetanios, and Pesaran (2018, CKP), and use the average of the λ̂hT

chosen in each subset. Full details are provided in the online simulation appendix to

CKP (2018).

We considered a number of Lasso models where we did not apply selection to the

AR2 or ARX variables which were included in the zt. Then Lasso was applied to

the active set having removed the effect of zt. This gives models AR2-LASSO; ARX-

LASSO. We now consider GOCMT-based Models. Like OCMT, GOCMT allows for the

multiple testing nature of the procedure (K separate tests - with K large) by increasing

the level of significance with K. But it also includes the principal component of the

standardised values of the active set, κ̂t, to allow for the correlations between the

variables. In the first stage, K separate OLS regressions are computed entering the
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variables from the active set one at a time, together with any zt and κ̂t:

yt+h = ch + a′
hzt + b′

hκ̂t + ϕjhxjt + ej,h,t+h, t = 1, 2, ..., T , for j = 1, 2, ..., K,

Denote the t-ratio of ϕjh by tϕ̂j,(1)
. Then variable j is selected if

Ĵj,(1) = I
[∣∣∣tϕ̂j,(1)

∣∣∣ > cp(K)
]
, for j = 1, 2, ..., K,

where the critical value is given by

cp(K, δ) = Φ−1
(
1− p

2Kδ

)
.

p is the nominal size set to 5%, Φ−1(·) is the inverse of a standard normal distribution

function and δ is a fixed constant set close to 1. We experiment with two values for δ,

δ = 1 and δ = 1.5.

The principal component κ̂t is used just to control for correlations across the vari-

ables in the active set at the selection stage, it is not included in the final forecast

regression. The AR2-OCMT model includes the AR2 in the zt and applies GOCMT

to the rest of the active set, similarly for ARX-OCMT.

Thus we have a set of 9 models: (1) AR2, (2) ARX, (3) LASSO, (4) AR2-LASSO,

(5) ARX-LASSO, (6) AR2-OCMT (δ = 1), (7) ARX-OCMT (δ = 1), (8) AR2-OCMT

(δ = 1.5), (9) ARX-OCMT (δ = 1.5).

S-3 Variable Selection

This section sets out the variables chosen by each selection method for each horizon by

the quarter in which the sample ended. The abbreviations for the variables are given

in Table 1, in the paper.

S-3.1 Variables selected by OCMT

S-3.1.1 For h=1 quarter ahead models

This sub-section sets out the variables chosen by OCMT for h = 1.
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AR2-OCMT selects DWUK for samples ending in 2021q2, 2021q4 and 2022q1 and

no other additional variables. ARX-OCMT (δ = 1), AR2-OCMT (δ = 1.5), and

ARX-OCMT (δ = 1.5) do not select any additional variables.

S-3.1.2 For h=2 quarter ahead models

This sub-section sets out the variables chosen by OCMT for h = 2.

Table S.1: Selected Variables by AR2-OCMT (δ = 1) 2q Ahead

# Ending Year
2019q3 2019q4 2020q1 2020q2 2020q3 2020q4

1 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4
2 DEPUK4 DEPUK4 DEPUK4 DEPUK4 DEPUK4 DEPUK4
3 · · · · · DWUK4

2021q1 2021q2 2021q3 2021q4 2022q1 2022q2
1 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4
2 DEPUK4 DEPUK4 DEPUK4 DEPUK4 DEPUK4 DEPUK4
3 DWUK4 DWUK4 DWUK4 DWUK4 DWUK4 DWUK4

2022q3 2022q4 2023q1
1 DMUK4 DMUK4 DMUK4
2 DWUK4 DWUK4 DWUK4

δ = 1

ARX-OCMT δ = 1 selects just DMUK4 for every sample.
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Table S.2: Selected Variables by AR2-OCMT (δ = 1.5) 2q Ahead

# Ending Year
2019q3 2019q4 2020q1 2020q2 2020q3 2020q4

1 · · · · · DMUK4

2021q1 2021q2 2021q3 2021q4 2022q1 2022q2
1 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4
2 · DWUK4 DWUK4 DWUK4 DWUK4 DWUK4

2022q3 2022q4 2023q1
1 DWUK4 · ·
2 · · ·

δ = 1.5

ARX-OCMT δ = 1.5 selects DMUK4 for 2020q4-2022q2.

S-3.1.3 For h=4 quarter ahead models

This sub-section sets out the variables chosen by OCMT selection method for h = 4.
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Table S.3: Selected Variables by AR2-OCMT (δ = 1) 4q Ahead

# Ending Year
2019q1 2019q2 2019q3 2019q4 2020q1 2020q2

1 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4
2 DEPUK4 DEPUK4 DEPUK4 DEPUK4 DEPUK4 DEPUK4
3 DPSUK4 DPSUK4 DPSUK4 DPSUK4 DPSUK4 DPSUK4

2020q3 2020q4 2021q1 2021q2 2021q3 2021q4
1 DMUK4 DMUK4 DMUK4 DDYUK4 DEMUK4 LRUK4
2 DEPUK4 DEPUK4 DEPUK4 DGAPUK8 LRUK4 DMUK4
3 DPSUK4 DPSUK4 DPSUK4 DGAPUK12 DMUK4 DPMAT4
4 · · · DEMUK4 DPMAT4 DPSUK4
5 · · · RUK4 DPSUK4 LRUS4
6 · · · LRUK4 LRUS4 DWUK4
7 · · · DMUK4 DWUK4 ·
8 · · · DPMAT4 · ·
9 · · · DPSUK4 · ·
10 · · · RUS4 · ·
11 · · · LRUS4 · ·
12 · · · DWUK4 · ·

2022q1 2022q2 2022q3 2022q4 2023q1
1 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4
2 DPMAT4 DPMAT4 DPMAT4 DPMAT4 DPMAT4
3 DPSUK4 DPSUK4 DPSUK4 DPSUK4 DWUK4
4 LRUS4 DWUK4 DWUK4 DWUK4 ·
5 DWUK4 · · · ·

δ = 1
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Table S.4: Selected Variables by ARX-OCMT (δ = 1) 4q Ahead

# Ending Year
2019q1 2019q2 2019q3 2019q4 2020q1 2020q2

1 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4
2 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4

2020q3 2020q4 2021q1 2021q2 2021q3 2021q4
1 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4
2 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4

2022q1 2022q2 2022q3 2022q4 2023q1
1 DEMUK4 DMUK4 DMUK4 DMUK4 DMUK4
2 DMUK4 · · · ·
3 DPMAT4 · · · ·

δ = 1

Table S.5: Selected Variables by AR2-OCMT (δ = 1.5) 4q Ahead

# Ending Year
2019q1 2019q2 2019q3 2019q4 2020q1 2020q2

1 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4

2020q3 2020q4 2021q1 2021q2 2021q3 2021q4
1 DMUK4 DMUK4 DMUK4 DGAPUK8 DMUK4 DMUK4
2 · · · DGAPUK12 DPSUK4 DPMAT4
3 · · · DEMUK4 LRUS4 DPSUK4
4 · · · LRUK4 · ·
5 · · · DMUK4 · ·
6 · · · DPMAT4 · ·
7 · · · DPSUK4 · ·
8 · · · LRUS4 · ·

2022q1 2022q2 2022q3 2022q4 2023q1
1 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4
2 DPMAT4 DPMAT4 DPMAT4 DWUK4 DWUK4
3 DPSUK4 DWUK4 DWUK4 · ·
4 DWUK4 · · · ·

δ = 1.5
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Table S.6: Selected Variables by ARX-OCMT (δ = 1.5) 4q AheadA

# Ending Year
2019q1 2019q2 2019q3 2019q4 2020q1 2020q2

1 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4
2 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4

2020q3 2020q4 2021q1 2021q2 2021q3 2021q4
1 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4
2 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4

2022q1 2022q2 2022q3 2022q4 2023q1
1 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4

δ = 1.5
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S-3.2 Variables selected by Lasso

S-3.2.1 For h=1 quarter ahead models

This sub-section sets out the variables chosen by Lasso for h = 1.

Table S.7: Selected Variables by Lasso 1q Ahead

Ending Year
# 2019q4 2020q1 2020q2 2020q3 2020q4 2021q1 2021q2
1 DPUK4 DPUK4 DPUK4 DPUK4 DPUK4 DPUK4 DPUK4

2 DDPUK4 DDPUK4 DDPUK4 DDPUK4 DDPUK4 DDPUK4 DDPUK4

3 DLRUK4 DLRUK4 DRUK4 DLRUK4 DLRUK4 DEMUK4 DLRUK4

4 DMUK4 DMUK4 DLRUK4 DMUK4 DMUK4 DRUK4 DMUK4

5 DPMUK4 DPMUK4 DMUK4 DPMUK4 DPMUK4 DLRUK4 DPMUK4

6 DPSUK4 DPSUK4 DDPOIL4 DPSUK4 DPSUK4 DMUK4 DPSUK4

7 DDPSUK4 DDPSUK4 DPMUK4 DDPSUK4 DWUK4 DDEQUK4 DDPSUK4

8 DWUK4 DWUK4 DPSUK4 DWUK4 · DPMUK4 DWUK4

9 · · DDPSUK4 · · DPSUK4 ·
10 · · DDYSUK4 · · DDPSUK4 ·
11 · · DGAPSUK12 · · DWUK4 ·
12 · · DWUK4 · · · ·
λ 0.1094 0.1093 0.0736 0.1098 0.1101 0.0741 0.1099

# 2021q3 2021q4 2022q1 2022q2 2022q3 2022q4 2023q1

1 DPUK4 DPUK4 DPUK4 DPUK4 DPUK4 DPUK4 DPUK4

2 DDPUK4 DDPUK4 DDPUK4 DDPUK4 DDPUK4 DDPUK4 DDPUK4

3 DLRUK4 DLRUK4 DLRUK4 DLRUK4 DLRUK4 DLRUK4 DLRUK4

4 DMUK4 DMUK4 DMUK4 DPMUK4 DPMUK4 DPMUK4 DPMUK4

5 DPMUK4 DPMUK4 DPMUK4 DPSUK4 DPSUK4 DPSUK4 DPSUK4

6 DPSUK4 DPSUK4 DPSUK4 DDPSUK4 DDPSUK4 DDPSUK4 DDPSUK4

7 DDPSUK4 DDPSUK4 DDPSUK4 DWUK4 DWUK4 DWUK4 DWUK4

8 DWUK4 DWUK4 DWUK4 · · · ·
λ 0.1096 0.1091 0.1091 0.1104 0.1128 0.1159 0.1184

Note: λ̂hT is the estimate of the Lasso penalty parameter computed by 10-fold cross-validation.
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Table S.8: Selected Variables by AR2-Lasso 1q Ahead

Ending Year
# 2019q4 2020q1 2020q2 2020q3 2020q4 2021q1 2021q2
1 DEMUK4 DMUK4 DEMUK4 DEMUK4 DMUK4 DPSUK4 DMUK4

2 DMUK4 DPSUK4 DLRUK4 DDWUK4 DPSUK4 DDPSUK4 DDEQUK4

3 DPSUK4 DDPSUK4 DMUK4 DLRUK4 DDPSUK4 DWUK4 DPSUK4

4 DDPSUK4 DGAPSUK8 DPMUK4 DMUK4 DWUK4 · DDPSUK4

5 DGAPSUK8 DGAPSUK12 DPSUK4 DDEQUK4 · · DWUK4

6 DGAPSUK12 DWUK4 DDPSUK4 DPMUK4 · · ·
7 DWUK4 · DGAPSUK8 DPSUK4 · · ·
8 · · DGAPSUK12 DDPSUK4 · · ·
9 · · DWUK4 DWUK4 · · ·

λ̂hT 0.0883 0.0913 0.0823 0.0767 0.0899 0.0955 0.0919

# 2021q3 2021q4 2022q1 2022q2 2022q3 2022q4 2023q1
1 DMUK4 DLRUK4 DLRUK4 DLRUK4 DLRUK4 DLRUK4 DLRUK4

2 DDEQUK4 DMUK4 DMUK4 DDEQUK4 DMUK4 DDEQUK4 DDEQUK4

3 DPSUK4 DDEQUK4 DDEQUK4 DPMUK4 DDEQUK4 DPMUK4 DPMUK4

4 DDPSUK4 DPMUK4 DPMUK4 DPSUK4 DPMUK4 DPSUK4 DPSUK4

5 DWUK4 DPSUK4 DPSUK4 DDPSUK4 DPSUK4 DDPSUK4 DDPSUK4

6 · DDPSUK4 DDPSUK4 DWUK4 DDPSUK4 DWUK4 DWUK4

7 · DWUK4 DWUK4 · DWUK4 · ·
λ̂hT 0.0952 0.0927 0.0878 0.0874 0.0787 0.0904 0.0840

Note: λ̂hT is the estimate of the Lasso penalty parameter computed by 10-fold cross-validation.
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Table S.9: Selected Variables by ARX-Lasso 1q Ahead

Ending Year
# 2019q4 2020q1 2020q2 2020q3 2020q4 2021q1 2021q2
1 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4

2 DVUK4 DVUK4 DVUK4 DVUK4 DDWUK4 DVUK4 DVUK4

3 DDWUK4 DDWUK4 DDWUK4 DDWUK4 DLRUK4 DDWUK4 DDWUK4

4 DLRUK4 DLRUK4 DLRUK4 DLRUK4 DMUK4 DLRUK4 DLRUK4

5 DMUK4 DMUK4 DMUK4 DMUK4 DDEQUK4 DMUK4 DMUK4

6 DYCHINA4 DYCHINA4 DDEQUK4 DDEQUK4 · DDEQUK4 DDEQUK4

7 DGAPSUK8 DGAPSUK8 DGAPSUK8 · · DPMUK4 DPUS4

8 DGAPSUK12 DGAPSUK12 DGAPSUK12 · · DPUS4 DWUK4

9 · · · · · DWUK4 ·
λ̂hT 0.0659 0.0678 0.0665 0.0702 0.0796 0.0562 0.0639

# 2021q3 2021q4 2022q1 2022q2 2022q3 2022q4 2023q1
1 DEMUK4 DEMUK4 DDYUK4 DDYUK4 DDYUK4 DEMUK4 DEMUK4

2 DLRUK4 DLRUK4 DEMUK4 DEMUK4 DEMUK4 DDVUK4 DDVUK4

3 DMUK4 DMUK4 DDVUK4 DDVUK4 DDVUK4 DDWUK4 DLRUK4

4 DDEQUK4 DDEQUK4 DDUUK DDUUK DDUUK DLRUK4 DMUK4

5 · DWUK4 DLRUK4 DLRUK4 DLRUK4 DMUK4 DDEQUK4

6 · · DMUK4 DMUK4 DMUK4 DDEQUK4 DPMUK4

7 · · DDEQUK4 DDEQUK4 DDEQUK4 DDPMAT4 DYCHINA4

8 · · DDPMAT4 DDPMAT4 DDPMAT4 DPMUK4 DWUK4

9 · · DPMUK4 DPMUK4 DPMUK4 DYCHINA4 ·
10 · · DYCHINA4 DYCHINA4 DYCHINA4 DDPUS4 ·
11 · · DPUS4 DDPUS4 DDPUS4 DWUK4 ·
12 · · DWUK4 DWUK4 DWUK4 · ·
λ̂hT 0.0752 0.0714 0.0422 0.0457 0.0456 0.0550 0.0624

Note: λ̂hT is the estimate of the Lasso penalty parameter computed by 10-fold cross-validation.
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S-3.2.2 For h=2 quarter ahead models

This sub-section sets out the variables chosen by Lasso for h = 2.

Table S.10: Selected Variables by Lasso 2q Ahead

Ending Year
# 2019q3 2019q4 2020q1 2020q2 2020q3 2020q4 2021q1 2021q2
1 DPUK4 DPUK4 DPUK4 DPUK4 DPUK4 DPUK4 DPUK4 DPUK4

2 DDPUK4 DDPUK4 DDPUK4 DDPUK4 DDPUK4 DDPUK4 DDPUK4 DDPUK4

3 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4

4 DPSUK4 DPSUK4 DPSUK4 DPSUK4 DPSUK4 DPSUK4 DPSUK4 DPMUK4

5 DWUK4 DWUK4 DWUK4 DWUK4 DWUK4 DWUK4 DWUK4 DPSUK4

6 · · · · · · · DWUK4

λ̂hT 0.3113 0.3114 0.2494 0.2813 0.3133 0.2521 0.2529 0.2521

# 2021q3 2021q4 2022q1 2022q2 2022q3 2022q4 2023q1

1 DPUK4 DPUK4 DPUK4 DPUK4 DPUK4 DPUK4 DPUK4

2 DDPUK4 DDPUK4 DDPUK4 DDPUK4 DDPUK4 DDPUK4 DDPUK4

3 DLRUK4 DMUK4 DMUK4 DMUK4 DLRUK4 DLRUK4 DLRUK4

4 DMUK4 DPMUK4 DPMUK4 DPMUK4 DMUK4 DMUK4 DMUK4

5 DPMUK4 DPSUK4 DPSUK4 DPSUK4 DPMUK4 DPMUK4 DPMUK4

6 DPSUK4 DWUK4 DWUK4 DWUK4 DPSUK4 DPSUK4 DPSUK4

7 DWUK4 · · · DDPSUK4 DDPSUK4 DDPSUK4

8 · · · · DWUK4 DPUS4 DPUS4

9 · · · · · DWUK4 DWUK4

λ̂hT 0.2196 0.2490 0.2475 0.3112 0.2221 0.2297 0.2366

Note: λ̂hT is the estimate of the Lasso penalty parameter computed by 10-fold cross-validation.
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Table S.11: Selected Variables by AR2-LASSO 2q Ahead

Ending Year
# 2019q3 2019q4 2020q1 2020q2 2020q3 2020q4
1 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4

2 DVUK4 DVUK4 DVUK4 DVUK4 DVUK4 DVUK4

3 DDWUK4 DDWUK4 DDWUK4 DDWUK4 DDWUK4 DDUUK

4 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4 DDWUK4

5 DPMAT4 DPMUK4 DPMAT4 DPMAT4 DPMAT4 DLRUK4

6 DPMUK4 DDPMUK4 DPMUK4 DPMUK4 DPMUK4 DMUK4

7 DDPMUK4 DPSUK4 DDPMUK4 DDPMUK4 DDPMUK4 DPMAT4

8 DEPUK4 DDPSUK4 DEPUK4 DEPUK4 DEPUK4 DDPMETAL4

9 DPSUK4 DDYCHINA4 DPSUK4 DPSUK4 DPSUK4 DDPMUK4

10 DDPSUK4 DGAPSUK8 DDPSUK4 DDPSUK4 DDPSUK4 DEPUK4

11 DYCHINA4 DWUK4 DDYCHINA4 DDYCHINA4 DDYCHINA4 DPSUK4

12 DDYCHINA4 · DGAPSUK8 DGAPSUK8 DGAPSUK8 DDPSUK4

13 DGAPSUK8 · DWUK4 DWUK4 DWUK4 DGAPSUK8

14 DWUK4 · · · · DWUK4

λ̂hT 0.0966 0.1298 0.1020 0.1084 0.0955 0.0941

# 2021q1 2021q2 2021q3 2021q4 2022q1 2022q2
1 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4

2 DVUK4 DVUK4 DVUK4 DDWUK4 DDUUK4 DDUUK4

3 DDUUK DDUUK DDUUK DLRUK4 DLRUK4 DLRUK4

4 DDWUK4 DDWUK4 DDWUK4 DMUK4 DMUK4 DMUK4

5 DLRUK4 DLRUK4 DLRUK4 DPMAT4 DPMAT4 DPMAT4

6 DMUK4 DMUK4 DMUK4 DPMUK4 DPMUK4 DPMUK4

7 DPMAT4 DPMAT4 DPMAT4 DDPMUK4 DDPMUK4 DDPMUK4

8 DDPMETAL4 DDPMETAL4 DDPMUK4 DPSUK4 DPSUK4 DPSUK4

9 DDPMUK4 DDPMUK4 DEPUK4 DDPSUK4 DDPSUK4 DDPSUK4

10 DEPUK4 DEPUK4 DPSUK4 DWUK4 DWUK4 DWUK4

11 DPSUK4 DPSUK4 DDPSUK4 · · ·
12 DDPSUK4 DDPSUK4 DWUK4 · · ·
13 DWUK4 DWUK4 · · · ·
λ̂hT 0.1005 0.0955 0.1043 0.1164 0.1127 0.1237

# 2022q3 2022q4 2023q1
1 DEMUK4 DEMUK4 DDUUK4

2 DDUUK4 DDUUK4 DMUK4

3 DLRUK4 DLRUK4 DPMUK4

4 DMUK4 DMUK4 DDPMUK4

5 DPMAT4 DPMAT4 DPSUK4

6 DPMUK4 DPMUK4 DDPSUK4

7 DDPMUK4 DDPMUK4 DWUK4

8 DPSUK4 DPSUK4 ·
9 DDPSUK4 DDPSUK4 ·
10 DWUK4 DWUK4 ·
λ̂hT 0.1232 0.1252 0.1406

Note: λ̂hT is the estimate of the Lasso penalty parameter computed by 10-fold cross-validation.
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Table S.12: Selected Variables by ARX-Lasso 2q Ahead

# Ending Year
2019q3 2019q4 2020q1 2020q2 2020q3 2020q4

1 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4

2 DVUK4 DVUK4 DVUK4 DVUK4 DVUK4 DVUK4

3 DDWUK4 DDWUK4 DDWUK4 DDWUK4 DDWUK4 DDUUK4

4 DLRUK4 DLRUK4 DLRUK4 DLRUK4 DLRUK4 DDWUK4

5 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4 DLRUK4

6 DPMAT4 DPMAT4 DPMAT4 DPMAT4 DDPMUK4 DMUK4

7 DDPMAT4 DDPMUK4 DDPMUK4 DDPMUK4 DEPUK4 DPMAT4

8 DPMUK4 DEPUK4 DEPUK4 DEPUK4 DYCHINA4 DDPMETAL4

9 DDPMUK4 DYCHINA4 DYCHINA4 DYCHINA4 DGAPSUK8 DDPMUK4

10 DEPUK4 DDYCHINA4 DDYCHINA4 DDYCHINA4 DDPUS4 DEPUK4

11 DYCHINA4 DGAPSUK8 DGAPSUK8 DGAPSUK8 · DYCHINA4

12 DDYCHINA4 DDPUS4 DDPUS4 DDPUS4 · DGAPSUK8

13 DGAPSUK8 · · · · DPUS4

14 DDPUS4 · · · · DDPUS4

15 DWUK4 · · · · DWUK4

λ̂hT 0.0757 0.0925 0.0920 0.0920 0.1036 0.0713

# 2021q1 2021q2 2021q3 2021q4 2022q1 2022q2
1 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4

2 DVUK4 DVUK4 DVUK4 DVUK4 DDUUK DDUUK

3 DDUUK DDUUK DDUUK DDUUK DDWUK4 DLRUK4

4 DDWUK4 DDWUK4 DDWUK4 DDWUK4 DLRUK4 DMUK4

5 DLRUK4 DLRUK4 DLRUK4 DLRUK4 DMUK4 DPMUK4

6 DMUK4 DMUK4 DMUK4 DMUK4 DPMAT4 DDPMUK4

7 DPMAT4 DPMAT4 DPMAT4 DPMAT4 DPMUK4 DYCHINA4

8 DDPMETAL4 DDPMETAL4 DDPMETAL4 DDPMETAL4 DDPMUK4 DWUK4

9 DDPMUK4 DDPMUK4 DDPMUK4 DDPMUK4 DEPUK4 ·
10 DEPUK4 DEPUK4 DEPUK4 DEPUK4 DYCHINA4 ·
11 DYCHINA4 DYCHINA4 DYCHINA4 DYCHINA4 DDPUS4 ·
12 DPUS4 DPUS4 DPUS4 DPUS4 DWUK4 ·
13 DDPUS4 DDPUS4 DDPUS4 DWUK4 · ·
14 DWUK4 DWUK4 DWUK4 · · ·
λ̂hT 0.0699 0.0666 0.0739 0.0921 0.0964 0.1092

# 2022q3 2022q4 2023q1
1 DEMUK4 DEMUK4 DEMUK4

2 DDUUK DDUUK DDUUK

3 DDWUK4 DDWUK4 DDWUK4

4 RUK4 RUK4 DLRUK4

5 DLRUK4 DLRUK4 DMUK4

6 DMUK4 DMUK4 DPMUK4

7 DPMUK4 DDPMAT4 DDPMUK4

8 DDPMUK4 DPMUK4 DYCHINA4

9 DYCHINA4 DDPMUK4 DWUK4

10 DDPUS4 DYCHINA4 ·
11 DWUK4 DDPUS4 ·
12 · DWUK4 ·
λ̂hT 0.1046 0.0974 0.1191

Note: λ̂hT is the estimate of the Lasso penalty parameter computed by 10-fold cross-validation.
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S-3.2.3 For h=4 quarter ahead models

This sub-section sets out the variables chosen by Lasso for h = 4.

Table S.13: Selected Variables by Lasso 4q Ahead

# Ending Year
2019q1 2019q2 2019q3 2019q4 2020q1 2020q2

1 DPUK4 DPUK4 DPUK4 DPUK4 DPUK4 DPUK4
2 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4
3 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4
4 DPMAT4 DPMAT4 DPMAT4 DPMAT4 DPMAT4 DPMAT4
5 DPSUK4 DPSUK4 DPSUK4 DPSUK4 DPSUK4 DPSUK4
6 DWUK4 DWUK4 DWUK4 DWUK4 DWUK4 DWUK4

λ̂hT 0.3345 0.3346 0.3823 0.3824 0.3829 0.3610

2020q3 2020q4 2021q1 2021q2 2021q3 2021q4
1 DPUK4 DPUK4 DPUK4 DPUK4 DPUK4 DPUK4
2 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4
3 DPMAT4 DPMAT4 DPMAT4 DPMAT4 DPSUK4 DPMAT4
4 DPSUK4 DPSUK4 DPSUK4 DPSUK4 · DPSUK4
5 DWUK4 · DWUK4 · · DWUK4

λ̂hT 0.3874 0.3897 0.4401 0.4394 0.4613 0.4296

2022q1 2022q2 2022q3 2022q4 2023q1
1 DPUK4 DPUK4 DPUK4 DPUK4 DPUK4
2 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4
3 DPMAT4 DPMAT4 DPMAT4 DPMAT4 DPMAT4
4 DPSUK4 DPSUK4 DPSUK4 DPSUK4 DPSUK4
5 DWUK4 DWUK4 DWUK4 DPUS4 DPUS4
6 · · · DWUK4 DWUK4

λ̂hT 0.4506 0.4632 0.4669 0.4163 0.4240

Note: λ̂hT is the estimate of the Lasso penalty parameter computed by 10-fold cross-validation.
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Table S.14: Selected Variables by AR2-Lasso 4q Ahead

# Ending Year
2019q1 2019q2 2019q3 2019q4 2020q1 2020q2

1 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4
2 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4
3 DPMAT4 DPMAT4 DPMAT4 DPMAT4 DPMAT4 DPMAT4
4 DDPMUK4 DDPMUK4 DDPMUK4 DDPMUK4 DDPMUK4 DDPMUK4
5 DPSUK4 DEPUK4 DEPUK4 DEPUK4 DEPUK4 DEPUK4
6 DDPSUK4 DPSUK4 DPSUK4 DPSUK4 DPSUK4 DPSUK4
7 DGAPSUK8 DDPSUK4 DDPSUK4 DDPSUK4 DDPSUK4 DDPSUK4
8 · DGAPSUK8 DGAPSUK8 DDYCHINA4 DDYCHINA4 DDYCHINA4
9 · · · DGAPSUK8 DGAPSUK8 DGAPSUK8

λ̂hT 0.2357 0.2233 0.2237 0.1999 0.1998 0.2014

2020q3 2020q4 2021q1 2021q2 2021q3 2021q4
1 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4
2 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4 DMUK4
3 DPMAT4 DPMAT4 DPMAT4 DPMAT4 DPMAT4 DPMAT4
4 DDPMUK4 DDPMUK4 DDPMUK4 DDPMUK4 DDPMUK4 DDPMUK4
5 DEPUK4 DEPUK4 DEPUK4 DPSUK4 DPSUK4 DPSUK4
6 DPSUK4 DPSUK4 DPSUK4 DDPSUK4 DDPSUK4 DDPSUK4
7 DDPSUK4 DDPSUK4 DDPSUK4 · · ·
8 DDYCHINA4 DDYCHINA4 DGAPSUK8 · · ·
9 DGAPSUK8 DGAPSUK8 · · · ·

λ̂hT 0.1901 0.1902 0.1780 0.2158 0.2170 0.2106

2022q1 2022q2 2022q3 2022q4 2023q1
1 DEMUK4 DMUK4 DMUK4 DDUUK DDUUK
2 DMUK4 DPMAT4 DPMAT4 DMUK4 DMUK4
3 DPMAT4 DDPMUK4 DDPMUK4 DPMAT4 DPMAT4
4 DDPMUK4 DPSUK4 DPSUK4 DDPMUK4 DDPMUK4
5 DPSUK4 DDPSUK4 DDPSUK4 DPSUK4 DPSUK4
6 DDPSUK4 DDYSUK4 DWUK4 DDPSUK4 DDPSUK4
7 · DWUK4 · DYUS4 DWUK4
8 · · · DWUK4 ·

λ̂hT 0.2735 0.2513 0.2736 0.2493 0.2522

Note: λ̂hT is the estimate of the Lasso penalty parameter computed by 10-fold cross-validation.
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Table S.15: Selected Variables by ARX-Lasso 4q Ahead

# Ending Year
2019q1 2019q2 2019q3 2019q4 2020q1 2020q2

1 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4
2 DMUK4 DMUK4 DVUK4 DMUK4 DMUK4 DVUK4
3 DPMAT4 DPMAT4 DMUK4 DPMAT4 DPMAT4 DMUK4
4 DGAPSUK8 DDPMUK4 DPMAT4 DDPMUK4 DDPMUK4 DPMAT4
5 · DEPUK4 DDPMUK4 DEPUK4 DEPUK4 DDPMUK4
6 · DGAPSUK8 DEPUK4 DGAPSUK8 DGAPSUK8 DEPUK4
7 · · DGAPSUK8 · · DDYCHINA4
8 · · · · · DGAPSUK8
9 · · · · · DPUS4
10 · · · · · DDPUS4

λ̂hT 0.2349 0.2238 0.2020 0.2139 0.2127 0.1579

2020q3 2020q4 2021q1 2021q2 2021q3 2021q4
1 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4 DEMUK4
2 DVUK4 DVUK4 DVUK4 DMUK4 DVUK4 DVUK4
3 DMUK4 DMUK4 DMUK4 DPMAT4 DMUK4 DMUK4
4 DPMAT4 DPMAT4 DPMAT4 DDPMUK4 DPMAT4 DPMAT4
5 DDPMUK4 DDPMUK4 DDPMUK4 · DDPMUK4 DDPMUK4
6 DEPUK4 DEPUK4 DEPUK4 · DEPUK4 ·
7 DDYCHINA4 DDYCHINA4 DGAPSUK8 · DPUS4 ·
8 DGAPSUK8 DGAPSUK8 · · · ·
9 DPUS4 DPUS4 · · · ·
10 DDPUS4 DDPUS4 · · · ·
λ̂hT 0.1471 0.1583 0.1923 0.2166 0.1847 0.1930

2022q1 2022q2 2022q3 2022q4 2023q1
1 DEMUK4 DEMUK4 DMUK4 DMUK4 DMUK4
2 DVUK4 DMUK4 DPMAT4 DPMAT4 DPMAT4
3 DMUK4 DPMAT4 · · ·
4 DPMAT4 DDPMUK4 · · ·
5 DDPMUK4 DDYSUK4 · · ·

λ̂hT 0.2017 0.2330 0.2932 0.2719 0.3251

Note: λ̂hT is the estimate of the Lasso penalty parameter computed by 10-fold cross-validation.
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S-4 Realizations and Forecasts

S-4.1 h=1 quarter ahead forecasts

Table S.16: One Quarter Ahead Forecast Results

Models Actual AR2 ARX Lasso Lasso-AR2

2020q1 1.6808 1.4930 1.5005 1.4411 1.1366

2020q2 0.7819 1.9051 1.8708 1.7274 1.2898

2020q3 0.7678 0.7901 0.3358 –1.6184 –1.7781

2020q4 0.7147 1.0091 0.9193 1.0883 0.9987

2021q1 0.9211 0.9482 0.8014 1.2458 1.0556

2021q2 2.0533 1.1989 1.3852 1.7410 1.4759

2021q3 2.6215 2.4556 2.7557 3.1343 3.0982

2021q4 4.3095 2.8118 2.9337 3.1241 3.0738

2022q1 5.3960 4.6293 4.8813 4.8406 5.0132

2022q2 7.6259 5.4458 5.7835 5.8914 6.0747

2022q3 8.3877 7.8385 8.1711 8.0610 8.3580

2022q4 8.9856 8.0723 8.2705 8.6325 8.7409

2023q1 8.6111 8.5777 8.3988 8.7458 9.0455

2023q2 7.9164 7.2945 7.6445 7.8217

RMSFE 0.9141 0.7884 0.9696 0.9617

Lasso-ARX OCMT-AR2 OCMT-ARX OCMT-AR2 OCMT-ARX

δ = 1 δ = 1 δ = 1.5 δ = 1.5
2020q1 1.3148 1.4930 1.5005 1.4930 1.5005

2020q2 1.8793 1.9051 1.8708 1.9051 1.8708

2020q3 –0.9434 0.7901 0.3358 0.7901 0.3358

2020q4 1.4325 1.0091 0.9193 1.0091 0.9193

2021q1 1.1040 0.9482 0.8014 0.9482 0.8014

2021q2 1.7652 1.1989 1.3852 1.1989 1.3852

2021q3 2.6691 3.0457 2.7557 2.4556 2.7557

2021q4 3.0872 2.8118 2.9337 2.8118 2.9337

2022q1 4.9254 4.5468 4.8813 4.6293 4.8813

2022q2 5.9782 5.4612 5.7835 5.4458 5.7835

2022q3 8.6872 7.8385 8.1711 7.8385 8.1711

2022q4 9.1017 8.0723 8.2705 8.0723 8.2705

2023q1 9.3315 8.5777 8.3988 8.5777 8.3988

2023q2 7.6670 7.9164 7.2945 7.9164 7.2945

RMSFE 0.8750 0.9233 0.7884 0.9141 0.7884

Notes: The ”Actual” column gives the realized inflation rate for quarter t, the other columns the

forecasts for each model. RMSFE is the Root Mean Square Forecast Error. Lasso models are estimated

using the code of Chudik, Kapetanios, and Pesaran (2018).
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Figure S.1: One Quarter Ahead Forecast Plots
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S-4.2 h=2 quarters ahead forecasts

Table S.17: Two Quarters Ahead Forecast Results

Models Actual AR2 ARX Lasso Lasso-AR2
2020q1 1.6808 1.9854 1.6773 1.7494 1.8994
2020q2 0.7819 1.6115 1.5979 1.4380 0.8428
2020q3 0.7678 2.0705 1.9977 1.8217 2.0103
2020q4 0.7147 0.8941 0.1859 0.5350 –4.7147
2021q1 0.9211 1.2182 1.0423 1.3422 7.7188
2021q2 2.0533 1.1590 0.9049 1.5683 1.6895
2021q3 2.6215 1.4199 1.6725 1.8149 1.9367
2021q4 4.3095 2.6839 3.0931 3.6585 2.0096
2022q1 5.3960 2.9218 3.1026 3.3691 2.2883
2022q2 7.6259 4.7324 5.1079 4.7079 4.9191
2022q3 8.3877 5.3660 5.8973 5.6290 5.9572
2022q4 8.9856 7.7515 8.2645 7.4422 7.9237
2023q1 8.6111 7.7117 8.0551 8.1659 8.4389
2023q2 8.1422 7.8532 7.9158 7.4686
2023q3 7.3340 6.2890 6.1918 5.7513
RMSFE 1.6039 1.3813 1.4109 2.8719

Lasso-ARX OCMT-AR2 OCMT-ARX OCMT-AR2 OCMT-ARX
δ = 1 δ = 1 δ = 1.5 δ = 1.5

2020q1 1.8915 1.7638 1.4778 1.9854 1.6773
2020q2 1.0312 1.4532 1.5288 1.6115 1.5979
2020q3 2.2963 1.9038 1.8882 2.0705 1.9977
2020q4 –3.5975 1.1311 0.3795 0.8941 0.1859
2021q1 8.4157 1.6797 1.5628 1.2182 1.0423
2021q2 2.1084 1.5683 1.3765 1.6344 1.3765
2021q3 1.9160 1.8149 2.1371 1.8554 2.1371
2021q4 1.9221 3.3262 3.3351 3.5873 3.3351
2022q1 2.2122 3.0279 3.0481 3.1239 3.0481
2022q2 4.0165 4.4689 4.9381 4.4676 4.9381
2022q3 6.3907 5.2246 5.6954 5.2253 5.6954
2022q4 8.4832 7.0244 7.8871 6.9260 7.8871
2023q1 9.1288 6.8038 7.5799 6.9298 8.0551
2023q2 8.0515 7.2864 7.4267 8.1422 7.8532
2023q3 5.8963 6.3556 5.6673 7.3340 6.2890
RMSFE 2.9231 1.6880 1.4217 1.6662 1.4037

Notes: The ”Actual” column gives the realized inflation rate at period t, the other columns the

forecasts for each model. RMSFE is the Root Mean Square Forecast Error. Lasso models are estimated

using the code of Chudik, Kapetanios, and Pesaran (2018).
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Figure S.2: Two Quarters Ahead Forecast Plots
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S-4.3 h=4 quarters ahead forecasts

Table S.18: Four Quarters Ahead Forecast Results

Models Actual AR2 ARX Lasso Lasso-AR2
2020q1 1.6808 2.3062 1.6093 1.6462 1.8149
2020q2 0.7819 2.3417 2.2183 1.8204 1.9359
2020q3 0.7678 2.2620 1.7780 1.5496 1.4110
2020q4 0.7147 2.0491 2.0380 1.5778 0.8652
2021q1 0.9211 2.1876 2.0822 1.5795 1.4660
2021q2 2.0533 1.6754 0.5406 0.5873 –7.2149
2021q3 2.6215 1.6277 1.3694 2.0021 8.3843
2021q4 4.3095 1.5822 1.1737 2.3696 1.1065
2022q1 5.3960 1.6856 2.1203 2.7836 1.4914
2022q2 7.6259 2.3353 2.9872 3.3813 2.8290
2022q3 8.3877 2.6974 2.9742 2.5152 2.8806
2022q4 8.9856 3.6744 4.2203 3.4427 3.5490
2023q1 8.6111 4.3493 5.1543 4.2743 4.6459
2023q2 5.7823 6.6329 4.7789 5.1198
2023q3 6.2075 6.7753 4.7462 5.4047
2023q4 6.6574 6.2714 4.8914 4.0569
2024q1 6.3149 4.6141 3.7130 2.6772
RMSFE 3.2524 2.9883 3.0131 4.3440

Lasso-ARX OCMT-AR2 OCMT-ARX OCMT-AR2 OCMT-ARX
δ = 1 δ = 1 δ = 1.5 δ = 1.5

2020q1 1.7270 1.6437 1.3401 1.7873 1.3401
2020q2 1.9359 1.6977 1.9417 1.8175 1.9417
2020q3 1.6059 1.5965 1.4484 1.7514 1.4484
2020q4 0.9909 1.6540 1.9467 1.7858 1.9467
2021q1 –0.1663 1.7455 1.7464 1.8576 1.7464
2021q2 –4.6085 1.7584 0.4562 2.0774 0.4562
2021q3 8.6921 2.2141 1.3667 2.5984 1.3667
2021q4 1.5211 2.0870 0.7506 2.4724 0.7506
2022q1 1.8425 2.2670 1.5652 2.5388 1.5652
2022q2 2.8290 8.3146 2.4832 3.6200 2.4832
2022q3 0.6644 3.5159 2.7159 2.9876 2.7159
2022q4 2.1661 4.2029 3.7504 3.1511 3.7504
2023q1 3.1894 4.8976 4.6815 4.0785 4.7542
2023q2 4.9977 4.5467 5.7679 4.4758 5.7679
2023q3 5.4954 4.6832 5.6688 4.6143 5.6688
2023q4 4.9713 4.7016 5.2734 4.9634 5.2734
2024q1 2.9576 3.6366 3.1912 4.2441 3.1912
RMSFE 4.5021 2.4643 3.2470 2.9795 3.2402

Notes: The ”Actual” column gives the realized inflation rate at period t, the other columns the

forecasts for each model. RMSFE is the Root Mean Square Forecast Error. Lasso models are estimated

using the code of Chudik, Kapetanios, and Pesaran (2018).
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Figure S.3: Four Quarters Ahead Forecast Plots
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