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The empirical analysis of the determinants of economic growth has generated a large
literature among economists and applied researchers. This literature is plagued by a
number of problems that can have important consequences for statistical inference and
economic implications.! In a critical survey, Brock and Durlauf (2001) argue that much
empirical work in this area suffers from “incredible” assumptions that are difficult to
defend. Temple (2000) highlights three key issues: (i) model uncertainty, (ii) parameter
heterogeneity, and (iii) outliers. This research proposal investigates the robustness of
inference about growth determinants to these specification problems, and specifically
operationalises the Bayesian bootstrap which provides a semi-parametric analysis of
the linear model. In doing so we accommodate data uncertainty within a model av-
eraging framework that requires no distributional assumptions other than multinomial
sampling.

A recent and quickly growing literature has utlised model averaging techniques? to
address model uncertainty and the effect on inference and policy analysis on growth de-
terminants. Early papers that address model uncertainty in growth regressions include
Fernandez, Ley and Steel (2001), and Sala-i-Martin, Doppelhofer and Miller (2004). Re-
cently, model averaging has been applied in the context of growth empirics to investigate
the sensitivity to prior information (Ley and Steel, 2009), and predictive performance
(Eicher, Papageorgiou and Raftery, 2009).

Studies which have considered uncertainty due to parameter heterogeneity in growth
empirics include Durlauf and Johnson (1995), Brock and Durlauf (2001), an entire spe-
cial issue of the Journal of Macroeconomics edited by Papageorgiou (2007), Masanjala
and Papageorgiou (2008) and Tan (2009). A common feature of these studies is the
use of prior knowledge which generally involves conditioning on a particular mechanism

thought to generate heterogeneity in the distribution of coefficients of interest. Statis-
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Durlauf, Johnson and Temple (2008) give an excellent critical survey over the econometric methods
and challenges in empirical research on economic growth.

2For recent surveys see Hoeting, Madigan, Raftery and Volinsky (1999) or Doppelhofer (2008).



tical inference and economic implications in these papers are therefore conditional on
correctly specifying the source of parameter heterogeneity.

Outliers due to measurement errors or specification problems is a major problem en-
countered in the empirical growth literature. Schultz (1999, p. 71) notes that “Macroe-
conomic studies of growth often seek to explain differences in economic growth rates
across countries in terms of [several variables|. However, these estimates are plagued
by measurement error and specification problems.” Deaton (2010) critically discusses
measures of income across countries and over time. In a recent paper, Ciccone and
Jarocinski (2010) investigate the sensitivity of inference on growth determinants when
using different vintages of the Penn World Tables. Despite these data and specification
problems, Zaman, Rousseeuw and Orhan (2001) note that a remarkably low number of
papers address issues of robustness in the economic literature.

If specification problems are known a priori, it would be straightforward to adapt
the growth model accordingly. In the more realistic case when the precise form of model
misspecification are not known, inference should be conducted in a robust manner. One
possible approach to modeling outlying observations is the introduction of mean-shifts.
For example, Hendry and Santos (2005) propose to saturate the regression model by
introducing a large number of dummy variables. Treating each outlying observation
differently is problematic in the context of data limitations and model uncertainty in
the empirical growth literature. Furthermore, economic theory offers little guidance

about the appropriate form of parameter heterogeneity.

1 Robust Model Averaging

A flexible approach to robust estimation becomes all the more important in the presence
of model uncertainty, when theory gives us little guidance about the correct model.
Empirical researchers were initially restricted by limitations in statistical techniques
and computing resources. Leamer (1982) and Leamer and Leonard (1983) propose so-
called extreme bounds analysis (EBA) to test the sensitivity of parameters of interest
to changes in the set of alternative models, represented by different combinations of
additional control variables. Sturm and de Haan (2005) apply a version of EBA that
uses re-weighted least squares first developed by Rousseeuw (1984). Zaman et al. (2001)
highlight the importance of robust inference when applying least trimmed squares to a
simple growth regression.

Much of the advances in robust methods in Bayesian inference have been confined
to single models. A notable exception is the work of Hoeting, Raftery, and Madigan
(1996), who develop an approach that simultaneously accounts for model uncertainty
and outlier identification by introducing a prior for the proportion of outlying observa-
tions. Recently, Gottardo and Raftery (2007) adopt a unifying approach to Bayesian
robust variable and transformation selection. Magnus, Wan and Zhang (2010) use a
version of the weighted average least squares (or WALS) estimator with nonspherical

disturbances in an analysis of the Hong Kong housing market.



Doppelhofer and Weeks (2011) contribute to the existing literature by dealing with
model uncertainty and allowing for heterogeneity of unknown form, generated either
by outliers or neglected parameter heterogeneity. They adopt a wvariance-inflation ap-
proach that accommodates outliers and robustifies inference against unknown aberrant
observations. The variance-inflation model has the advantage of being parsimonious and
flexible, which makes it attractive given the numerous specification and data problems
that plague the empirical growth literature. As an example, consider a combination
of two distributions, with low and high variance, and within these distributions ob-
servations are identically and independently distributed. Combining these two gives a
mixture distribution with different variances. Heterogeneous parameters can be han-
dled through mixture distributions over one or more parameters (random coefficients
model), but this would quickly get cumbersome with a large number of parameters.
Fernandez and Steel (2000) examine Bayesian inference within the confines of the lin-
ear regression model, focussing on the theoretical basis of independent sampling from
a scale mixture of normal distributions of the regression errors.

In both Classical and Bayesian settings parameter estimates will be sensitive to the
particular set of assumptions which underlie the approach. The robust model averaging
approach introduced in Doppelhofer and Weeks (2011) combines model averaging with a
flexible and parsimonious mixture model that allows for fat-tailed errors compared to the
normal benchmark case. Inference and economic analysis are made robust with respect
to outliers and unequal variances by allowing a priori for thicker tails of the distribution
of regression errors compared to normal benchmark model averaging. Suppose that the

regressions errors are independently normally distributed:
e ~ N(0,0°Q)

with diagonal covariance matrix € = diag(wi, ...,wy). The errors for each observation
(or country ¢ = 1, ..., N) are scaled by a variance inflation term w; with an independent
mixing distribution. Geweke (1993) demonstrates the equivalence of such a normal
mixture model with an independent Chi-square prior to a model where errors are drawn
from an independent Student-t distribution, where the degrees of freedom determine
the fatness of the tails and the prior weight on outliers.

This approach to robustness, and that of alternative approaches based on mixture
models, depends on parametric (prior) assumptions about the distribution of errors. In
the context of model uncertainty about potential growth determinants, it is our goal
to accommodate observations with different degrees of reliance within a robust frame-
work that also addresses other aspects of model uncertainty. A standard approach to
robustify inference is the use of heteroscedasticity-consistent standard errors (HCSE).
Although biased in finite samples, HCSE represents an improvement upon OLS esti-
mates using a minimal set of assumptions (see White, 1980; MacKinnon and White,
1985). Lancaster (2009) demonstrates that HCSE are reasonable approximations to

the posterior standard deviations around the OLS estimator (see also Poirier, 2008).



Conditional on having estimated the covariance matrix €2, all other quantities of inter-
est for a given model are estimated by using Generalized Least Squares (GLS) instead
of Ordinary Least Squares (OLS). The parameters of the model are drawn from their
respective conditional distributions using the Gibbs sampler.

Below we introduce the Bayesian Bootstrap that we will use to address both the

question of data uncertainty for a given model, with minimal prior information.

2 The Bayesian Bootstrap

An alternative approach to robust inference is to use the Bayesian bootstrap developed
by Rubin (1981). One variant of this approach, so-called Bagging (short for Bootstrap
Aggregating) is used to generate robust predictions accounting for data problems (see
Breiman, 1996; and Clyde and Lee, 2001). The logic of the Bayesian bootstrap is to
consider parameters as functionals of the data (i.e. moment conditions) and to sample
directly from the posterior distribution of the data.

In the context of a single model, Poirier (2008) shows that posterior weights can then
be used to weight individual observations such that the resulting parameter estimates
have a weighted least squares representation. Consider first a particular model and
associated set of regressors X. Let Z = {y;, x;} denote rows of the data matrix, then
we may consider rows of Z as realizations of multinomial variates on, for example,
G + 1 points of support with probabilities {wy}. The Bayesian bootstrap assigns an
appropriate prior distribution to the data, namely to the vector of probabilities w =
{wy}. An obvious candidate is the Dirichlet distribution which is conjugate to the
multinomial distribution in the same way that the beta is conjugate to the binomial
distribution. We can then construct the posterior distribution of the data, which in turn
can be used to obtain the posterior distribution of the parameters 3 = B(w), given that
B has been defined as a functional on the distribution of Z. As Lancaster (2009)
emphasises, this estimation framework does not impose restrictions on the conditional

distribution of y given X, accommodating both non-linearity and heteroscedasticity.
The Linear Model and the Bayesian Bootstrap

An application of Bayesian bootstrap to the linear model is provided below.
Let z; = (yi,x;) where x; is the i'th row of X. Define the functional 3 by the
condition that
EX'(y—X'8) = 0.

Thus,
B =[BEX'X)EX'y)

where a typical element of E(X'X) is Y 1" ; x;x;;w; and a typical element of E(X'y) is

Z?:l x;yiwi. (Defined in this way 3 is the coefficient vector in the linear projection of



y on X). Thus we can write 3 as
B = (X'PX)"'X'Py

where P = diag{w;}. As P varies from realisation to realisation so does 8 and this
variation is the Bayesian bootstrap (posterior) distribution of 3.3

Suppose we now add uncertainty over the model m = 1,..., M, represented by
regressors X,,. Combining the Bayesian bootstrap with model averaging, weights are
applied both at the level of the model, and at the level of the observation the linear

predictor for an outcome Y can then be written as
1k
Y= >y, (1)

where Y7 = Z% 7(m| X, Y,w")Y" denotes the predictor for the ™ bootstrap sample
adjusted for model uncertainty. }A//,"L = X;nB:n is the predicted value for the m‘"* model
and the r'* bootstrap sample, with m(m|X,,,Y,w") the attendant posterior weight.
Note that parameter estimates Brm are calculated conditional on model m and using
weights w”. By averaging over the R bootstrap samples, the overall predictor Y accounts
for both uncertainty at the level of the model, and uncertainty on the reliability of
individual observations. Inference is then unconditional with respect to a space of
models, and also made robust to outliers and parameter heterogeneity.

This research project is designed to extend the robust model averaging introduced by
Doppelhofer and Weeks (2011), and in doing so integrate the Bayesian Bootstrap within
a modelling framework that admits uncertainty over the true model. Our approach can

be summarised by the following layers of model and data uncertainty:

1. uncertainty over correct models m = 1, ..., M, representing, for example, uncertain

growth determinants X,,

2. uncertainty over distribution of errors and possibility of outliers: here we will use
Bayesian bootstrap to free us from strong parametric priors; alternatively, use

some parametric prior (as in Doppelhofer and Weeks, 2011)

3. uncertainty over missing observations: refer to weighted hot-deck imputations

that samples from posterior distribution of the data p(Y, X,,)

We plan to relate the implied posterior distributions back to the three layers of

uncertainty which are important in the context of robustness of growth determinants:

e Robust inference on economic growth: Sala-i-Martin, Doppelhofer and Miller
(2004); Doppelhofer and Weeks (2011)

3The exact details of how the Bayesian bootstrap is implemented, and how the posterior distribution
of w is generated, will be developed in the proposal.



e Outliers: Temple (2000); Zaman, Rousseeuw and Orhan (2001); Ciccone and
Jarocisnski (2010)

e Missing data: Deaton (2010)
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