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1. Introduction

Economic policy and shifts in input market prices often have significant effects on the marginal

costs of firms and can prompt strategic responses that are hard to predict. Changing costs may

be a direct objective of regulation, for example, when it puts a price on an externality such as

carbon emissions or introduces a minimum wage. In other cases, like the emergence of fracking

technology that has reduced energy costs for many US companies, the shift is market-driven.

Such cost shifts can have important– and potentially highly heterogeneous– impacts on the

profitability of firms. An ex ante understanding of these profit implications can be critical to

the evaluation and successful implementation of policy on one hand and to the formulation of

corporate strategy on the other.

However, estimating the firm-level profit impacts of a cost shift is not straightforward. In

general, its profit impact will depend on the firm’s own production technology, the structure of

demand, and its rivals’strategic responses. The last factor is particularly challenging in that

modelling it usually requires information on the identities of all firms, each of their production

technologies, the nature of product differentiation, what variables the firms compete on, the

intensity of competition in the market, and so forth. Our aim here is to present an approach

that radically simplifies this problem.

In the first part of the paper, we introduce a new reduced-form model: “generalized linear

competition”(GLC). We developed GLC to respond to Sutton’s (2007) call for economists to

derive “predictions which are robust across a range of model specifications which are deemed

reasonable.”GLC makes weaker assumptions than typical models of imperfect competition. It

assumes that firm i, but not necessarily any other firm, is a cost-minimizer that takes input

prices as given and operates a technology with linear production costs. The core assumption

is that firm i follows a linear product-market strategy; in standard models, this corresponds

to a linear supply schedule as implied by its first-order condition. GLC also allows firm i to

reduce its exposure to the cost shift: under environmental regulation, this is switching to cleaner

inputs; faced with a minimum wage, it is using less labour-intensive processes.

GLC makes no assumptions about the consumer demand system, on the technologies and

strategies of firm i’s rivals, or about “equilibrium”. In this sense, our approach is consistent
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with notions of bounded rationality of firms and/or consumers (Ellison, 2006; Spiegler, 2011).

A further implication is that we can leave open (i) how many competing firms/products there

are in the market; (ii) the extent to which firms’products are substitutes or complements in

demand; (iii) the extent to which firms’choices are strategic substitutes or complements (Bulow

et al., 1985).

We use GLC to quantify the impacts of a cost shift and its winners and losers. The cost

shift raises firm i’s unit cost and affects those of its rivals in an arbitrary way. In the spirit of

Chetty (2009), we show how firm-level cost pass-through, i.e., the fraction of i’s cost increase

that is passed onto i’s price, is a suffi cient statistic for the profit impact.1 That is, all relevant

information on i’s demand and supply conditions is contained in this single metric. We show

that higher pass-through implies a more favourable profit impact; a firm’s profit falls with the

cost shift if and only if its pass-through is below 100%.

To see the idea underlying GLC, consider firm i which competes à la Cournot in a differen-

tiated products market, with marginal costMCi = ci+τ , where τ represents a cost shifter, and

a demand curve pi = α − βxi − δ
∑

j 6=i xj . Make no assumptions on its rivals’technologies or

strategies. Firm i’s first-order condition for profit-maximization implies a linear supply sched-

ule xi = 1
β (pi − ci − τ). Now suppose that the cost shifter τ tightens by dτ and this raises its

rivals’marginal costs in an arbitrary way. How does this affect i’s profits? By construction, i’s

pass-through rate (dpi/dτ)/(dMCi/dτ) captures the impact on its profit margin (pi −MCi).

Moreover, due to the linear supply schedule, the change in its sales xi is proportional to this

pass-through rate. Rivals’cost shocks and competitive responses matter only insofar as they

affect i’s price– but this is precisely what is captured in i’s pass-through rate. We show how

to derive i’s profit impact in a way that does not require knowledge of the demand parameters

(α, β, δ) or of i’s other costs ci.

This basic logic extends to a rich class of oligopoly models. GLC’s structure nests, among

others: Cournot-Nash, Stackelberg and conjectural-variation models (with linear demand);

1We differ from the “firm-specific”rate of pass-through used in merger analysis (Ashenfelter et al., 1998); this
asks how much of the cost saving achieved only by the two merging firms is passed onto consumers. We also
differ from a firm-specific pass-through rate based on a cost change incurred only by a single firm. Muehlegger
and Sweeney (2020) study how pass-through estimates vary as the scope of the cost shift widens to more firms.
Our GLC framework allows for arbitrary cost changes across firms.
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Bertrand and Cournot models with linearly differentiated products; multi-stage models such

as Allaz and Vila (1993)’s model with forward contracting; a linear version of supply function

equilibrium (Klemperer and Meyer, 1989); behavioural theories of competition such as Al-Najjar

et al. (2008)’s model with sunk cost bias; and models with common ownership of firms (O’Brien

and Salop, 2000) which feature prominently in the current debate on the competitive impacts

of institutional stock ownership (Azar et al., 2018).

GLC’s structure also applies to richer “multidimensional”models of competition. In our

baseline version of GLC, firm i sells a single product into a single market at a single price.

We show that its logic extends to (i) workhorse models of multiproduct Bertrand and Cournot

competition and a linear version of the upgrades approach (Johnson and Myatt, 2003, 2006),

(ii) multimarket competition on a network (Elliott and Galeotti, 2019), and (iii) oligopolistic

price discrimination (Hazledine, 2006). Across all of these models, a multidimensional version

of firm-level cost pass-through is a suffi cient statistic for the profit impact.

While it is intuitive, the critical role played by pass-through is far from obvious. In recent

work, Weyl and Fabinger (2013) show, in a general class of symmetric oligopoly models, that

a market-wide rate of cost pass-through in response to a cost shift that is uniform across firms

is a useful tool to understand market performance.2 As Miller et al. (2017) write: “the effect

on producer surplus [of a market-wide cost shock] depends on pass-through and a conduct

parameter that equals the multiplicative product of firm margins and the elasticity of market

demand”. By contrast, within the GLC family, the firm-level profit impact depends solely on

firm-level pass-through– no additional information about conduct parameter(s) is needed. This

simplification of incidence analysis is a primary attraction of GLC.

The second part of the paper illustrates the usefulness of the GLC framework by estimating

the profit impacts of introducing carbon pricing in the domestic US airline market. This setting

is important in its own right: emissions from airline travel are projected to grow well into the

21st century and economic regulation is likely as countries seek to implement internationally-

agreed climate targets in a cost-effective manner. At a price of $30 per ton of carbon dioxide,

the annual “value”of US airlines’total carbon emissions is around $4 billion.

2Recent work by Miklos-Thal and Shaffer (2020) re-examines some results related to the concept of an exoge-
nous increase in competition used by Weyl and Fabinger (2013).
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Like many other industries, aviation is characterized by important demand, cost and conduct

heterogeneities between firms. First, airlines’ products are differentiated in terms of service

quality, legroom, loyalty schemes, luggage allowances, and so on. Second, an airline’s costs

depend on its aircraft fleet (e.g., size, age, fuel effi ciency) which varies widely across carriers.

As a result, airlines incur heterogeneous cost shocks even when exposed to the same carbon

price on the same route. Third, airlines operate different portfolios of routes (e.g., short-haul vs

long-haul flights) and conduct across routes is heterogeneous at the airline-level (e.g., low-cost vs

legacy carriers) and route-level (i.e., the same carrier competes differently on different routes).

This multifaceted heterogeneity makes very challenging the task of estimating the impact of

new regulation.

Leveraging GLC, we estimate the firm-level profit impacts of carbon pricing in three steps.

First, we estimate pass-through for individual carriers. Using quarterly ticket price data for

1,334 domestic US carrier-routes over the period 2004—2013, we estimate pass-through of fuel

costs utilizing plausibly exogenous variation in fuel prices as an instrument. Our baseline

specification is a standard unbalanced panel with fixed effects for each carrier-route and year-

quarter; we also control for variation in demand conditions, non-fuel costs and proxies for

competition. Our results show significant intra-industry heterogeneity in pass-through: the

large legacy carriers (American, Delta, United and US Airways) have pass-through that is

significantly smaller than 100%; by contrast, thanks to its more fuel-effi cient planes, the major

low-cost carrier Southwest has pass-through above 100%.

Second, we discuss and verify that GLC’s assumptions are a reasonable approximation to

firm i’s production technology and competitive environment in the airline setting. Third, we

use GLC’s suffi cient-statistics results to calculate the profit impacts. At a $30/tCO2 carbon

price, reflecting differences in pass-through, legacy carriers’profits fall by $234 million while

Southwest is a winner with a profit increase of $98 million.3 Overall, the industry’s profits

decline due to climate regulation, albeit only modestly.

Finally, we show how GLC’s structure can be used for welfare analysis and to endogenize the

extent of regulation. A social planner sets a “political economy”carbon price in the presence of

3For comparison, the annual “value”of emissions in our sample is approximately $400 million.
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two distortions: market power (Buchanan, 1969) and political lobbying (Grossman and Help-

man, 1994). We find that the resulting endogenous carbon price of $17.68/tCO2 lies 41% below

an illustrative Pigouvian benchmark of $30/tCO2; under our baseline parameter values, carbon

pricing achieves an overall welfare gain of $77 million. This welfare analysis requires additional

assumptions: GLC now applies to all firms in the industry and consumers are utility-maximizers;

we still do not need to select a specific mode of competition.

Related literature. This paper contributes to several strands of literature. First, we in-

troduce a different approach to the kind of structural modelling typically employed in industrial

organization (Bresnahan, 1989; Berry et al., 1995; Nevo, 2001; Reiss and Wolak, 2007; Einav

and Levin, 2010). By making specific assumptions about consumer demand, firms’ produc-

tion technologies and the mode of competition, and then estimating a full set of primitives,

structural models have been widely used for counterfactual policy analysis. This paper of-

fers an alternative methodology for the case of cost shifts; its major advantages are allowing for

model uncertainty (Sutton, 2007) and radically reducing the computational burden (Knittel and

Metaxoglou, 2014).4 We sidestep estimation of the demand system (and the well-known chal-

lenge of determining an appropriate market definition), and show how firm-level pass-through

can be suffi cient information to “close the model”.5

Second, we add to a rich empirical literature spanning macro- and microeconomics that has

estimated pass-through in response to a variety of cost shocks, including to excise taxes, input

prices, and exchange rates. Empirical work typically reports a single rate of cost pass-through at

the market-level. Depending on the detailed market context, it finds evidence of “incomplete”

pass-through below 100% (e.g., De Loecker et al., 2016), “complete”100% pass-through (e.g.,

Fabra and Reguant, 2014) as well as pass-through above 100% (e.g., Miller et al., 2017). In this

paper, we show the value of shifting attention to how pass-through behaves at the level of an

individual firm. While prior work has emphasized inter-industry heterogeneity in pass-through

4Given prior knowledge of firm-level pass-through, profit impacts can be estimated with GLC using only
cross-sectional data for the firms of interest. The data requirement for implementation of GLC via pass-through
estimation is comparable to that for structural models: data on prices and quantities of the input factor plus an
instrument for the cost shift.

5Put differently, consider a market with n firms each selling one product. Structural IO modeling, in general,
requires specification and estimation of n demand equations as well as n supply equations. With GLC, we specify
only i’s supply curve and show how i’s profit impact can be captured by i’s pass-through rate– which contains
all relevant information about the remaining 2n− 1 model equations.
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due to differences in competition, demand and technology (Ganapati et al., 2019), our empirical

results highlight intra-industry pass-through heterogeneity.

Third, our paper adds to a growing environmental-economics literature that studies the

impacts of emissions pricing on industry. This literature has so far focused on markets with

limited product differentiation: electricity and heavy industry such as cement and steel. A key

theme is that the profit impacts of carbon pricing at the industry-level are typically modest; this

has been found using several different modeling approaches: general equilibrium (Bovenberg et

al., 2005), Cournot-style oligopoly (Hepburn et al., 2013) and event study (Bushnell et al., 2013).

Our GLC-based analysis extends the theory to richer modes of competition. Our empirical

findings confirm modest profit impacts at the industry-level but also highlight how this masks

substantial variation in the sign and extent of profit changes at the firm-level.

Fourth, we contribute to the literature on competition in the airline industry. This literature

has been primarily concerned with estimating competitiveness and issues of market structure

(Brander and Zhang, 1990; Kim and Singal, 1993; Berry and Jia, 2010) and the role and impact

of financial constraints (Busse, 2002; Borenstein, 2011); recent work has also highlighted differ-

ences between legacy and low-cost carriers and the special role played by Southwest (Goolsbee

and Syverson, 2008; Ciliberto and Tamer, 2009). This paper finds new evidence showing that

large heterogeneity across carriers exists in terms of pass-through as well. We also provide the

first, to our knowledge, formal economic assessment of future US climate regulation on this

industry that helps understand how carriers have different incentives to influence regulation.

The rest of the paper is organized as follows. Section 2 sets out GLC, relates it to existing

oligopoly models, and derives our main result on firm-level pass-through as a suffi cient sta-

tistic. Section 3 extends GLC to multiple products, markets, and prices. Section 4 presents

the econometric estimation of pass-through for US airlines. Section 5 discusses the empirical

implementation of GLC and presents our estimates on the producer, consumer and total welfare

impacts of carbon pricing. Section 6 concludes.6

6Appendix A contains proofs of our theoretical results while Appendix B contains further details on our
empirical analysis. Appendix C discusses extensions to welfare analysis and endogenous regulation.
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2. Generalized linear competition (GLC)

This section introduces a simple reduced-form model which we call “generalized linear compe-

tition”(GLC). As discussed in the introduction, we have in mind a change in policy, regulation

or market prices that leads to a shift in the unit costs of firms in a particular industry. We first

set out GLC’s key features and place it in the context of existing oligopoly models. We then

derive our main result on the impact of a cost shift on the profits of an individual firm, explain

how it compares to existing approaches in the literature, and test for its robustness using Monte

Carlo analysis. For expositional clarity, the following discussion is mostly couched in terms of

a cost shift that arises due to regulation.

2.1. Setup of the GLC model. Firm i competes in an industry with n firms, selling an

output quantity xi of its product at a price pi. Let N = {1, 2, ..., n} denote the set of firms. Let

ei be one of the inputs that i uses in production. Regulation imposes a cost τ on each unit of

this input ei. In the case of environmental regulation, the regulated factor corresponds to firm

i’s emissions (e.g., of carbon dioxide); it is standard in the literature to view emissions as an

input to production (Baumol and Oates, 1988). Regulation then corresponds to putting a price

τ on the environmental externality. Another example is minimum wage regulation for which ei

is labour input (Draca et al., 2011)

In general, firm i’s profits can be written as Πi = pixi − Ci(xi, ei) − τei, where pixi is its

sales revenue and its total costs are made up of its operating costs Ci(xi, ei) plus its regulatory

costs τei. The regulation may also apply to all (“complete regulation”), some or none of the

other firms in the industry (“incomplete regulation”). More specifically, let φk ∈ {0, 1} be an

indicator variable which equals 1 if firm k is subject to the regulation and equals 0 otherwise.

Our setup has φi = 1 for firm i but does not rely on any particular assumptions about the φjs

of its rivals (j 6= i). Let the vector Φ = (φk)k∈N summarize the scope of regulation.

GLC makes four assumptions about the production technology and supply behaviour of

firm i. These are taken to hold over some interval τ ∈ [τ , τ ] of interest over which the extent of

regulation varies:

A1. (Input price-taking) Firm i takes input prices, including the regulation τ , as given.

A1 is a standard assumption which is appropriate for many forms of regulation, including a
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tax on emissions.7

A2. (Cost-minimizing inputs) Firm i chooses its inputs, including the regulated factor ei,

optimally so as to minimize its total costs Ci(xi, ei) + τei of producing output xi.

A2 is a also canonical assumption in microeconomic theory.8

A3. (Constant returns to scale) Firm i’s optimized total costs faced with regulation τ are

linear in output Ci(xi, ei)+τei = ki(τ)xi, with unit cost ki(τ) = ci(τ)+τzi(τ) where ci(τ) is its

per-unit operating cost and zi ≡ ei/xi is its “regulatory intensity”(use of the regulated factor

per unit of output).

A3 is a more substantive assumption that is common across several strands of the literature,

including the theory of pass-through (Bulow and Pfleiderer, 1983; Anderson et al., 2001; Weyl

and Fabinger 2013), empirical industrial organization (Berry et al., 1995; Nevo, 2001; Reiss and

Wolak, 2007), environmental regulation under imperfect competition (Requate, 2006; Fowlie

et al., 2016; Miller et al., 2017) and in the analysis of the profit impacts of a minimum wage

(Ashenfelter and Smith, 1979; Draca et al., 2011). It rules out, at least over the range τ ∈ [τ , τ ],

the presence of (binding) capacity constraints.

Combining A1—A3, standard production theory shows that, in response to tighter regulation,

zi(τ) ≤ zi(τ) and ci(τ) ≥ ci(τ). In other words, the firm reduces its use of the regulated input

and instead uses more of other inputs; this saves on direct regulation-related costs (lower zi)

but incurs higher unit costs on other inputs (higher ci).9 For environmental regulation, this

represents abatement: a lower emissions intensity zi(τ) comes at a per-unit abatement cost

[ci(τ)− c(τ)] ≥ 0.10 For minimum-wage regulation, it represents a reduction in the labour

intensity of output, achieved by substitution towards more capital-intensive processes. If such

factor substitution is infeasible or unprofitable then zi(τ) = zi(τ).

7 In Section 5, we use the GLC structure to endogenize the choice of regulation τ by government.
8For market-based environmental regulation, it implies the textbook result that, at the optimum, the emissions

price equals i’s marginal cost of reducing emissions, that is, − ∂
∂ei

Ci(xi, ei) = τ . If regulation applies to multiple
firms (φj = 1 for at least one firm j 6= i) their marginal costs of emissions reductions are equalized, yielding the
well-known effi ciency property of market-based regulation (Baumol and Oates, 1988).

9We do not require any specific functional-form assumptions on the relationship between zi and ci.
10GLC’s technology is consistent with standard properties from the environmental literature. Write i’s op-

erating costs as Ci(xi, ei) = ci(τ)xi, where emissions ei are optimally chosen given output xi; equivalently,
the emissions intensity zi ≡ ei/xi is optimally chosen given output xi. As usual, emissions and output are
complements: ∂

∂xi
Ci(xi, ei) = ci(τ) and so, given xi, higher ei implies higher zi and hence lower ci, that is,

∂2Ci(xi, ei)/∂xi∂ei < 0.
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A key implication is that, by the envelope theorem, dki(τ)/dτ = zi(τ), that is, firm i’s unit

cost increase arising from a small tightening in regulation is given by its optimized regulatory

intensity at that level of regulation. At the optimum, the increased costs due to input substi-

tution are of second order. Therefore, if the extent of regulation rises from an initial level τ to

a higher τ , the corresponding increase in i’s optimal unit cost equals ∆ki(τ , τ) =
∫ τ
s=τzi(s)ds.

It is useful to consider an example of GLC’s A1—A3 at work. Firm i may have access to a

technology that reduces its factor intensity by ζi at a cost of gi(ζi) per unit of output. Faced

with regulation τ tightening from τ to τ its optimized unit cost of production becomes ki(τ) =

minζi [ci(τ) + τ(zi(τ)− ζi) + gi(ζi)]. Denoting the cost-minimizing value as ζ
∗
i (τ) = g−1

i (τ),

it follows that its optimal regulatory intensity becomes zi(τ) = zi(τ) − ζ∗i (τ), achieved at an

incremental unit cost of gi(ζ∗i (τ)).11

Remark 1. While our exposition focuses on regulation that is effectively an input tax, GLC

nests an output tax as a special case where firm i’s regulatory intensity satisfies zi(τ) ≡ 1 for

all τ ∈ [τ , τ ]. GLC can also apply to command-and-control regulation for which the govern-

ment mandates a particular usage of inputs; an example is mandatory blending of biofuels into

gasoline. In such cases, i’s unit cost increase dki(τ)/dτ = zi(τ) arises from a regulation τ that

is not an input price and zi(τ) = zi if factor substitution is infeasible.

Remark 2. GLC can be applied to market-driven cost shifts such as a fall in energy costs due

to fracking technology. For example, firm i may source natural gas as an input to production

at a market price τ with a factor intensity zi(τ) per unit of output. An advance in technology

reduces the market price of natural gas, to which firm i responds optimally as per A1—A3. As

will become clear, GLC can also accommodate firm-specific differences in input prices (that is,

i’s rivals may pay different prices than τ for natural gas).

The final assumption is the defining feature of GLC:

A4. (Linear product market behaviour) Firm i’s product market behaviour satisfies xi(τ) =

ψi [pi(τ)− ki(τ)], where ψi > 0 is a constant and [pi(τ)− ki(τ)] > 0 is its profit margin.

11For the cost-minimization problem to be well-behaved, we assume gi(0) = g′i(0) = 0, g′′i (ζi) > 0, and that
the optimal g−1i (τ) ≤ zi(τ) such that zi(τ) ≥ 0.
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A4 says that firm i behaves such that its output is in (fixed) proportion to the profit margin

it achieves. Intuitively, it sells more or prices higher into a more attractive market: its supply

curve is (linearly) upward-sloping. The substantive restriction here is that the proportionality

factor ψi does not vary with the regulation τ . While regulation can shift firm i’s supply schedule

it does not alter the slope of that schedule.

GLC makes no assumptions on the technology, behaviour or rationality of firm i’s rivals.

These firms need not be input price-takers (A1), need not choose inputs optimally (A2), have

constant-returns technologies (A3) or employ a linear product-market strategy (A4). Firm i’s

rivals may therefore have a degree of market power or be a competitive fringe.

GLC also makes no assumptions on the demand system in the industry or on the nature of

consumer behaviour. An implication is that we can leave open (i) how many products there

are in the market (so that regulation may induce exit of firm i’s rivals and/or new entry); (ii)

the extent to which other firms’products are substitutes or complements to i’s; (iii) the extent

to which firms’products are strategic substitutes or strategic complements to i’s. We therefore

do not have to adopt a particular market definition or impose market clearing (that is, demand

equals supply at the market-level).

Hence, GLC has no equilibrium concept; it does not necessarily restrict attention to a Nash

equilibrium (or some variation thereof). In this sense, it is much more general than standard

models in which all firms are assumed to be Nash profit-maximizers. Moreover, A4 is consistent

with heuristics or other “rule-of-thumb” behaviour by firm i that may itself not be profit-

maximizing (though we do require cost-minimization as per A2).

2.2. Special cases of GLC. To illustrate GLC’s scope, we next set out examples of

widely-used models of imperfect competition for which A4 is satisfied. In these models, given

A1—A3 and a linear demand structure, an individual firm i’s first-order condition for profit-

maximization directly yields a linear supply schedule that takes the form of A4.

Cournot competition with a linear market demand curve p = α−β
∑

i∈N xi. It is easy to

check that firm i’s first-order condition directly implies ψi = β−1 (∀i). Including a firm-specific

conjectural variation vi ≡
(∑

j∈N\i dxj
)
/dxi (Bresnahan, 1989) leads to ψi = [β(1 + vi)]

−1,

still consistent with the GLC. This also nests as a special case a linear Stackelberg model with
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multiple leaders and multiple followers (Daughety, 1990).

Bertrand or Cournot competition with horizontal and/or vertical product differ-

entiation. Let firm i’s demand pi = αi − xi − δ
∑

j∈N\i xj , where δ ∈ (0, 1) is an inverse

measure of horizontal differentiation and αi 6= αj reflects vertical differentiation; this leads to

ψi = 1 (∀i) for Cournot and correspondingly to ψi = [1 + δ(n− 2)]/ [(1− δ)[1 + δ(n− 1)]] (∀i)

for Bertrand (Hackner, 2000). The latter is independent of τ as long as the set of active firms

N and degree of product heterogeneity are unaffected. A richer “semi-linear”demand system

pi = αi−βixi−fi(x1, ..., xj 6=i, ..., xn) remains part of the GLC, for any cross-price effects implied

by the function fi(·).

Spatial competition on a Salop circle (Salop, 1979). A uniform mass M of consumers

is distributed around a circle, where location indexes consumer preference and and a linear

transportation cost t serves as an index of product differentiation. There are n firms located

symmetrically around the circle that compete on price. In this setting, firm i’s demand takes

the linear form Di = M/n + (p − pi)/t, where its neighbours set a price equal to p, and so its

first-order condition yields A4 with ψi = 1/t (∀i).

A linear version of supply function equilibrium (Klemperer and Meyer, 1989).

Demand is linear p = 1 −
∑

i∈N xi and firm i has a linear supply schedule of the form xi =

σi+µ(p−k), where it chooses σi (Menezes and Quiggin, 2012). Even though the strategy space

has an affi ne supply function, firm i’s first-order condition features A4 with ψi = [1 + (n− 1)µ]

(∀i).12

Linear competition with common ownership between firms (O’Brien and Salop,

2000). If the shareholders of firm i also own a fraction ωi of its rival firm j, then the incentives of

i’s managers will be to maximize Πi+ωiΠj . The implications of such shareholder diversification

have recently received attention for US airlines (Azar et al., 2018) and several other industries.

With Cournot competition, linear demand, and assuming symmetry with ωi = ω (∀i), this

yields ψi = [β(1 + ω)]−1 (∀i).

12We have modified the setup of Menezes and Quiggin (2012) slightly, by dropping their normalization in
terms of production costs, without affecting any of the conclusions. The argument leading to A4 does not rely on
symmetric marginal costs. If costs are symmetric, with ki = k (∀i), then the equilibrium price in our specification
is p∗ = (1 + nk [1 + (n− 1)µ]) / (1 + n [1 + (n− 1)µ]), which tends to the Cournot solution as µ→ 0 and to the
Bertrand paradox as µ→∞.
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GLC is more flexible than standard oligopoly models along important dimensions. First,

firms within the GLC may think they are playing a different game. Second, they may be using

different choice variables (e.g. one firm chooses price and another firm chooses quantity). Third,

by allowing ψi to vary across firms, GLC does not impose that a firm with a higher market

share necessarily has a higher profit margin. This feature is “baked into”many of the above

oligopoly models via the restriction ψi = ψ (∀i).

Remark 3. GLC can represent the outcome of tacit collusion but not necessarily the strategies

supporting it. On one hand, appropriate choice of firm-level conjectural variation parameters

makes it is possible to generate collusive quantities and prices. On the other hand, A4 does not

explicitly feature the underlying trigger strategies that might support a collusive outcome.

Remark 4. Despite the linearity of A1—A4, GLC does not imply that firm i’s “pricing func-

tion” pi(k1(·), ..., ki(·), ...kn(·)) is necessarily linear in its arguments. For example, with Nash

differentiated-products competition with linear demand pi = αi − xi − δ
∑

j∈N\i xj the pric-

ing function is indeed linear in all firms’ marginal costs but for semi-linear demand pi =

αi − βixi − fi(x1, ..., xj 6=i, ..., xn) it is not.

GLC also encompasses richer multi-stage models in which product-market competition oc-

curs at the final stage of the game. Such models are commonly solved backwards to obtain

the subgame-perfect Nash equilibrium. The key point is that, given A1—A3 and anticipating

the choices made in subsequent stages, maximizing behaviour in the first stage yields supply

schedules consistent with A4. Examples include the following:

Forward contracting and vertical integration (Allaz and Vila, 1993; Bushnell et

al., 2008). In the first stage, firms can trade in a forward market; in the second stage, firms

compete à la Cournot given their forward positions (Allaz and Vila, 1993). With linear demand

p = α − β
∑

i∈N xi, the subgame-perfect equilibrium features ψi = (β/n)−1 (∀i) (Ritz, 2014);

this is again independent of the regulation τ as long as n is fixed. With strategic substitutes,

firms commit to selling forward a fraction of their production– which intensifies competition. A

model setup in which the first stage instead involves either long-term contracts with customers

or vertical integration into retail markets is strategically equivalent (Bushnell et al., 2008).
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Competition with behavioural biases: misallocation of sunk costs (Al-Najjar, et al.,

2008). Firm i maximizes accounting profits which “erroneously”include some of its fixed costs,

at a rate of si > 0 per unit of output. In the first stage, firms learn about the impacts of costing

in a distortion game before differentiated Bertrand competition in the second stage. With linear

demand Di = a− bpi + g
∑

j∈N\i pj and symmetric firms, the equilibrium features si = s∗ > 0

and a constant ψi = ψ (both ∀i).13 With strategic complements, firms in equilibrium set prices

that are partially based on sunk costs so as to soften competition.

The assumptions needed for such multi-stage models to form part of GLC are stronger than

for the benchmark models discussed previously. The reason is that firm i’s supply schedule

taking the form of A4 hinges on Nash-maximizing behaviour of i’s rivals in the second stage;

this determines their aggregate best response in the product market which, in turn, is what

firms in the first stage seek to strategically influence. By contrast, in simpler oligopoly models,

profit-maximization by firm i alone yields a first-order condition that directly takes the form of

A4– irrespective of the behaviour of i’s rivals.

Remark 5. GLC is conceptually distinct from classes of oligopoly models that are aggregative

games (Corchón, 1994; Acemoglu and Jensen, 2013) or potential games (Monderer and Shapley,

1996). To see this, note that Cournot-Nash competition with linear market demand p = α −

β
∑

i∈N xi is an aggregative game, a potential game, and also a member of GLC. However,

with differentiated-products demand for firm i of pi = α − βixi −
∑

j∈N\i δijxj , it is no longer

aggregative nor a potential game (unless δij = δji for all i and j 6= i) but still yields A4.

Remark 6. GLC is consistent with the standard paradigm that firms base their decision-

making on marginal costs. However, GLC does not require this assumption and instead can

allow for alternatives such as average-cost pricing. Simply think of firm i’s unit cost ki(τ) =

ci(τ) + τzi(τ) from A3 instead as its average cost where ci(τ) also incorporates its fixed costs.

All else equal, regulation τ raises firm i’s marginal and average cost by the same amount. A1

applies in the same way, A2 then requires that firm i’s use of technology minimizes its average

cost, and A4 then says that i’s product-market strategy is based on average cost.

13Specifically, using the results in Section 5 of Al-Najjar et al. (2008), ψi = [b/(2b +
g)]
[
b (1 + g/[2b− (n− 1)g])− (n− 1)g2/[2b− (n− 1)g]

]
.
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2.3. The profit impact of a cost shift. We wish to quantify the impact of regulation τ

on firm i’s profits. Suppose that the extent of regulation rises from initial level τ to a higher τ .

Of particular interest are the special cases in which (i) a new regulation is introduced, that is,

τ ≡ 0, and (ii) regulation is tightened by a small amount, that is, τ → τ .

Let Πi(τ ; Φ) denote firm i’s optimized profits as a function of regulation, and similarly ei(τ)

is its optimal use of the regulated factor, and define ∆Πi(τ , τ ; Φ) ≡ [Πi(τ ; Φ)−Πi(τ ; Φ)] as the

change in profits due to regulation. Observe that, if firm i does not respond to the tightening

of regulation in any way, and its rivals do not change their behaviour either, then its profits

simply decline according to ∆Πi(τ , τ ; Φ) = −[(τ − τ)ei(τ)], that is, by the “static” impact of

regulation associated with its initial quantity of the regulated factor. This static benchmark

is easy to calculate insofar as minimal information is available on firm i’s initial position. Our

main objective is to find a parsimonious result for the “dynamic”profit impact that takes into

account the responses of firm i and its rivals.14

We will see that firm-level pass-through plays a central role for the profit impact of regula-

tion. Define firm i’s marginal rate of cost pass-through as:

ρi(τ ; Φ) ≡ dpi(τ ; Φ)/dτ

dki(τ)/dτ
. (1)

The denominator captures by how much i’s optimal unit cost ki(τ) responds to a small tightening

in regulation; as explained above, given A1—A3, the envelope theorem implies dki(τ)/dτ = zi(τ).

The numerator captures by how much i’s product price changes. This will, in general, be driven

by the cost increases incurred by firm i and its rivals, as reflected by the scope of regulation

Φ = (φk)k∈N , as well as by their demand conditions and product-market behaviour.

In standard oligopoly models, in which A1—A4 apply to all n firms, given the scale τ and

scope Φ of regulation, firm i’s equilibrium price pi(τ ; Φ) = pi(k1(φ1τ), ..., ki(τ), ...kn(φnτ)) is

a function of the marginal costs of all firms. So the price response dpi(τ ; Φ)/dτ captures any

relevant changes in these costs, also reflecting the scope Φ of regulation. Our firm-level pass-

through rate therefore reflects the impact of regulation on all players, including heterogeneity

14Our use of the “static” vs “dynamic” terminology here is in the spirit of the distinction between static vs
dynamic scoring in the public finance literature, where the latter takes into account behavioural responses in
response to a tax cut rather than treating the tax base as fixed (see, e.g., Mankiw and Weinzierl, 2006). The
GLC model setup is static in a temporal sense.
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across firms. It is distinct from the market-wide pass-through rate considered in much of the

literature for which firms’marginal costs rise uniformly.15 For a given price change, a firm that

experiences half the cost increase of a rival has firm-level pass-through twice as high.

Two further definitions will be useful. First, denote i’s average rate of cost pass-through

over the interval τ ∈ [τ , τ ] as:

ρi(τ , τ ; Φ) ≡ ∆pi(τ , τ ; Φ)

∆ki(τ , τ)
=

∫ τ
τ=τ [ρi(τ ; Φ)zi(τ)] dτ∫ τ

τ=τ zi(τ)dτ
(2)

Average pass-through corresponds to the discrete changes in prices and costs that are typically

observed in empirical data. For small changes in regulation τ → τ , average and marginal

cost pass-through are locally approximately equal, ρi(τ , τ ; Φ) ' ρi(τ ; Φ). Second, define an

inverse measure of the extent of factor substitution over the interval τ ∈ [τ , τ ] as gi(τ , τ) ≡

[
∫ τ
τ=τ zi(τ)dτ ]/[(τ − τ)zi(τ)] > 0.We have gi(τ , τ) = 1 for all τ ∈ [τ , τ ] if regulation is an output

tax (for which zi(τ) ≡ 1 for all τ ∈ [τ , τ ]) or if factor substitution is infeasible. For a small

tightening of regulation, τ → τ , we have gi(τ , τ) ' 1.

We thus obtain our first main result for GLC.

Proposition 1. Under GLC, as defined by A1—A4, regulation τ with scope Φ affects firm i’s

profits Πi according to:

(a) For a “small”tightening of regulation from τ to τ (with τ → τ):

∆Πi(τ , τ ; Φ)|τ→τ ' (τ − τ)
dΠi(τ ; Φ)

dτ

∣∣∣∣
τ=τ

= −2[1− ρi(τ ; Φ)][(τ − τ)ei(τ)].

(b) In general, for a “large”tightening of regulation from τ to τ :

∆Πi(τ , τ ; Φ) = −2

∫ τ

τ=τ
[1− ρi(τ)]ei(τ)dτ = −2[1− ρi(τ , τ ; Φ)]Ωi(τ , τ ; Φ)[(τ − τ)ei(τ)],

where:

Ωi(τ , τ ; Φ) ≡ gi(τ , τ)

(
1− gi(τ , τ)[1− ρi(τ , τ ; Φ)][(τ − τ)zi(τ)]/pi(τ)

2[pi(τ)− ki(τ)]/pi(τ)

)
> 0.

(c) Suppose that firm i’s (i) cost increase is modest relative to its initial price, that is, [(τ −

15 If both demand and costs are symmetric across firms, and A1—A4 apply to all firms, then our measure of
pass-through typically coincides with market-wide pass-through.
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τ)zi(τ)]/pi(τ) is “small”, and (ii) regulatory intensity is approximately constant, that is, zi(τ) '

zi(τ). Then, for a “large”tightening of regulation from τ to τ :

∆Πi(τ , τ ; Φ) ' −2[1− ρi(τ , τ ; Φ)][(τ − τ)ei(τ)].

Part (a) of Proposition 1 makes precise how, to first order, firm i’s rate of cost pass-through

alone is a suffi cient statistic for the profit impact of regulation τ . That is, firm-level pass-

through is the only thing that matters for going from the “static”estimate of the profit impact

(i.e., ∆Πi(τ , τ ; Φ) = −[(τ − τ)ei(τ)]) to the “dynamic”GLC result. The resulting very simple

expression for the profit impact applies to all models that are part of the GLC family.

Firm i’s pass-through rate captures all relevant information about supply and demand: the

production technologies of i’s rivals, the degree of product differentiation, what variables the

firms compete on, how competitive or collusive the market is, any entry or exit by rivals, and

so on. In our setting, pass-through therefore also captures the import of behavioural biases or

“irrationality”on the part of firms and/or consumers. Whatever their other differences, if any

two theories within the GLC imply identical pass-through for firm i, then they also imply an

identical profit impact (for a given initial ei(τ)).

To understand the result, recall that the profit impact is made up of two effects: that on i’s

profit margin and that on its sales. The first role of i’s pass-through rate is that, by construction,

it captures the impact of regulation on its own profit margin. Its second role is that, due to the

linear supply schedule given by A4, the change in its sales is proportional to its pass-through

rate. Rivals’cost shocks and competitive responses matter only insofar as they affect i’s price–

but this is precisely what i’s pass-through rate captures. These two roles drive the “twoness”of

∆Πi(τ , τ ; Φ) ' −2[1 − ρi(τ ; Φ)][(τ − τ)ei(τ)]. Therefore pass-through signs the profit impact:

i’s profits fall if and only if its pass-through rate is less than 100%; then its profit margin shrinks

and, by A4, it also experiences weaker sales. Conversely, with pass-through above 100%, the

firm benefits from tighter regulation as both its profit margin and sales volume rise.

While it is intuitive, this critical role played by pass-through is also far from obvious. Weyl

and Fabinger (2013) present, for a general class of symmetric oligopoly models, a simple formula

for the impact of a market-wide cost change on aggregate producer surplus (see, also, Atkin
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and Donaldson, 2015). The profit impact that corresponds to Proposition 1(a) depends on

a market-wide rate of pass-through as well as on a “conduct parameter” that incorporates

the level of firms’profit margins and a (symmetrized) price elasticity of market demand. By

contrast, within GLC, the first-order firm-level profit impact depends solely on pass-through–

no additional information about conduct parameter(s) is needed. This further simplification

of incidence analysis is the primary attraction of GLC. Compared to existing literature, GLC

allows for near-arbitrary heterogeneity across firms but makes heavy use of the linear structure

implied by A4.

Another feature of the result is that the first-order profit impact ∆Πi is independent of the

proportionality term ψi from A4. As we have seen, different models within the GLC family

differ in terms of the their implied ψi. Yet Proposition 1(a) tells us that this does not matter for

the profit impact. The reason is scaling: by A4, the level of xi(τ) = ψi [pi(τ)− ki(τ)] and the

change dxi(τ) = ψi [dpi(τ)− dki(τ)] are both proportional to ψi. But the corresponding use of

the regulatory factor ei(τ) = ψizi(τ) [pi(τ)− ki(τ)] is also proportional to ψi. This means that

the profit impact per unit of the initial use of the regulatory factor ei(τ) does not depend on ψi.

This is also one reason for why Proposition 1(a) applies without requiring separate information

about own-price and cross-price elasticities of demand.16

Part (b) provides a general result that applies for a “large” tightening of regulation. The

profit impact can be written as the integral of marginal profit impacts over the interval τ ∈

[τ , τ ], starting from the “small” tightening characterized by part (a). While instructive, the

resulting integral is less useful because it does not immediately relate to firm i’s initial use

of regulated factor ei(τ). The next expression therefore restates the profit impact relative to

the familiar static estimate (i.e., −[(τ − τ)ei(τ)]); the dynamic effects are now captured by

the term 2[1 − ρi(τ , τ ; Φ)]Ωi(τ , τ ; Φ). Analogous to before, it is now the average pass-through

rate, relative to 100%, that signs the profit impact. The additional term Ωi(τ , τ ; Φ) depends

on several other firm characteristics such as the factor-substitution measure gi(τ , τ) and firm

i’s initial price-cost markup [pi(τ)− ki(τ)]/pi(τ).

16Of course, industry characteristics such as the degree of product differentiation are likely to affect the pass-
through rate ρi– so they can certainly matter indirectly for ∆Πi. The point of Proposition 1(a), is that, even
if they also affect i’s supply behaviour, via A4’s proportionality term ψi, this aspect is irrelevant for the profit
impact (conditional on ρi).
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As emphasized by Chetty (2009), surplus measures in economic models are typically highly

non-linear functions; as a consequence, suffi cient-statistics approaches like ours tend to focus on

first-order surplus impacts like in part (a)– which can be seen as the outcome of linearization

around an initial equilibrium. The result in part (b) begins to morph back into a structural

approach, notably in that it includes terms such as firm i’s price-cost markup. Nonetheless,

Proposition 1(b) still captures GLC’s spirit of simplifying and highlighting the critical role

played by pass-through at the firm-level.

Part (c) provides a “mid-way”result with a particular view towards empirical implementa-

tion. The basic challenge at this juncture is that, on one hand, the formula for the profit impact

from part (a) is highly appealing for its simplicity while, on the other hand, the more involved

result from part (b) may be more relevant insofar as cost shifts observed in empirical data are not

literally infinitesimal. Part (c) bridges these two results by making two additional assumptions.

First, a “static”measure of the size of i’s (non-infinitesimal) cost shift, relative to its initial

product price, [(τ − τ)zi(τ)]/pi(τ) should be “small”. This should be relatively easy to check in

many applications, based on “pre-shock”data. Second, either the design of regulation or firm i’s

production technology should imply that its regulatory intensity is approximately constant over

the interval, zi(τ) ' zi(τ), so that gi(τ , τ) ' 1. This may follow from the institutional context

or may be checked in the data. Taken together, these assumptions imply that Ωi(τ , τ ; Φ) ' 1,

and so the estimated profit impact ∆Πi(τ , τ ; Φ) ' −2[1− ρi(τ , τ ; Φ)][(τ − τ)ei(τ)] again takes

the same simple form as in part (a). The validity of this approach will depend on the particular

application being considered but we hope that it will prove particularly useful in practice.

Remark 7. GLC accommodates other margins of adjustment that can be challenging for em-

pirical work. First, consumer preferences may vary as a by-product of regulation; for example,

following the introduction of a soda tax, some consumers may discover that healthier drinks are

not so bad after all– and therefore alter their purchasing behaviour. Second, regulation may in-

duce firm i’s rivals to reposition their products; for example, faced with climate regulation, firms

may redesign products to be “greener”. In both cases, Proposition 1 can continue to apply. To

illustrate the logic, write firm i’s demand as pi = αi(τ)−βixi−δi(τ)
∑

j∈N\i xj (with δi ≤ βi) so

regulation may indirectly affect firm i’s demand conditions by changing willingness-to-pay αi(τ)
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and/or the differentiation parameter δi(τ). The key point is that, firm i’s first-order condition

for quantity still satisfies A4 so pass-through remains a (first-order) suffi cient statistic.

Up to this point, we have treated i’s pass-through rate as a parameter. To progress further,

there are two basic approaches. The first– albeit against the spirit of GLC– is to select a

specific model of competition and derive the theory-based rate of pass-through. The second

is to combine the structural result from Proposition 1 with firm-level empirical estimates of

pass-through; we pursue this approach later on for the US airline industry.

2.4. Robustness to non-linearities: Monte Carlo results. The GLC structure relies

heavily on linearity of firm i’s costs and its supply-side behaviour. We now use Monte Carlo

simulations to explore quantitatively its robustness to model misspecification. The setting

features two departures from GLC’s assumptions: firms may have non-constant marginal cost

(A3 fails) and the demand system may be non-linear (A4 fails). The idea is that a researcher

can estimate pass-through but does not know the true model of competition so relies on GLC.

Following Hepburn et al. (2013), we assume that the true model is an augmented version

of homogenous-product Cournot competition. The salient additional model parameters are

as follows. The inverse demand curve is p(X) where X is total industry output; let ξ ≡

−Xp′′(X)/p′(X) be an index of demand curvature, so demand is convex (concave) if ξ ≥ 0

(ξ < 0), and firm i’s market share is given by si ≡ xi/X ∈ (0, 1). There is a competitiveness

parameter θ > 0 which nests Cournot-Nash behaviour when θ = 1 and lower values of θ

correspond to more intense competition. Finally, the slope of the marginal cost function is

given by m and is identical across firms, and m ≡ −m/p′ ≥ 0 is a measure of cost convexity.

For simplicity, we focus on the robustness of our first-order result from Proposition 1(a) for a

marginal change in “complete”regulation that covers all firms in the market (i.e., Φ ≡ 1). Define

a profit-impact factor γi ≡ 2(1−ρi) that captures the wedge between the “static”and “dynamic”

profit impacts such that ∆Πi(τ , τ) ' −γi[(τ − τ)ei(τ)] under GLC. Translating Proposition 7

of Hepburn et al. (2013) into our context yields firm i’s true profit-impact parameter γ̃i in the

presence of demand and cost non-linearities:

γ̃i(τ , τ)|τ→τ = 2(1− ρi) +
θ

(θ +m)
θsiξρi −

m

(θ +m)
(1− ρi),

20



where Cournot equilibrium pass-through is given by ρi = [n/(n+θ(1−ξ)+m)]
(

1
n

∑n
j=1 zj

)
/zi

and (θ + m) > 0 by stability of equilibrium. Note that pass-through incorporates the effects

of both demand curvature (Bulow and Pfleiderer, 1983; Seade, 1985) and cost curvature. With

linear demand and constant marginal costs (ξ = m = 0), A3 is met and each firm’s first-order

condition satisfies A4 so Proposition 1(a) applies: γ̃i = 2(1 − ρi) ≡ γi. The first additional

effect stems from demand: if true demand is convex with ξ > 0 then this pushes γ̃i up so GLC’s

γi underestimates the adverse profit shock. This effect is quantitatively modest if either the

market is very competitive (low θ) or firm i’s market share si is small or the pass-through rate

ρi itself is small. The second additional effect arises from costs: if these are convex with m > 0

this pushes down γ̃i (as long as ρi ≤ 1) so GLC then yields an overestimate.

Two qualitative conclusions follow. First, GLC exhibits no systematic bias: depending on

the precise way in which A3 and/or A4 are violated, it may over- or underestimate the true

profit impact. Second, the impacts of plausible departures from A3 may partially offset those

of A4. Most demand curves used by economists are (weakly) convex and it is probably true

that the case of convex costs, at equilibrium, is more likely than concave costs (especially for

emissions-intensive industries). These two departures from GLC’s assumptions tend to work in

opposite directions such that γ̃i ≈ 2(1− ρi) ≡ γi may still be a reasonable approximation.

We now use Monte Carlo analysis to further explore misspecification in a quantitative man-

ner. In the following design, we create 10,000 hypothetical industries for which, on average,

A3 is violated for each firm and so A4 is also violated for each firm. The design also yields

significant heterogeneity in firms’marginal costs and regulatory intensities.17 In particular, for

each industry, we draw six sets of parameters to reflect model uncertainty underlying GLC:

1. The number of firms is drawn uniformly as n ∈ [2, 8], with an integer constraint, to create

a relatively concentrated market structure;

2. The market competitiveness parameter is drawn uniformly as θ ∈ [0, 1] so that competi-

tion, on average, lies mid-way between perfect competition and Cournot-Nash;

3. For each of the n ∈ [2, 8] firms in the industry, firm i’s market share is drawn uniformly

17Second-order conditions and stability conditions are always satisfied given our parameter assumptions below.
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as si ∈ (0, 1); then firms’market shares are re-normalized so that they sum to 100%;

4. The cost convexity metric is drawn uniformly as m ∈ [0, 1] leading to modestly convex

costs so that A3 is violated;

5. Demand curvature ξ is drawn uniformly from five discrete values {−1,−1
2 , 0,

1
2 , 1}, in line

with the common assumption from economic theory that demand is log-concave ξ ≤ 1

(Bagnoli and Bergstrom, 2005). This range includes three convex demand systems used in

an influential paper on oligopolistic pricing by Genesove and Mullin (1998): linear (ξ = 0),

quadratic (ξ = 1
2), exponential (ξ = 1) as well as their concave counterparts. While linear

demand (ξ = 0) remains focal, A4 is nonetheless violated as A3 is already violated;

6. For each of the n ∈ [2, 8] firms in the industry, firm i’s relative regulatory intensity

zi ≡ zi/
(

1
n

∑n
j=1 zj

)
is drawn uniformly as zi ∈ [1

2 ,
3
2 ] so that each firm experiences a cost

shock between 50% smaller or larger than the industry average.

We then draw one firm from each industry, such that we have 10,000 firms, and complete the

analysis of the true model and the misspecified GLC in four steps. For each firm, we calculate:

(1) the true firm-level pass-through rate ρi(n, θ, ξ, zi) (“true CPT”), (2) the true profit-impact

factor γ̃i(ρi, θ, si, ξ,m) (“true PIF”), (3) GLC’s estimated profit-impact factor γi(ρi) = 2(1−ρi)

(“GLC PIF”), and (4) GLC’s error εi ≡ γi − γ̃i. A crucial point is that GLC’s PIF picks up

the variation in the true CPT even if A3 and A4 are violated.18

Table 1 summarizes parameter draws and results. Firm-level pass-through rates ρi vary

widely between around 30% up to almost 200%, partly driven by variation in the size of a firm’s

cost shock relative to its rivals. Similarly, there is large variation in true PIFs, with some firms

being hit hard (γ̃i > 1, so the dynamic profit impact is worse than the static impact) and others

benefitting from regulation (γ̃i < 0). Overall, the average GLC PIF of γi = .205 lies close to

the average true PIF of γ̃i = .156. Figure 1 is a kernel density plot of the true PIF and GLC

PIF over all draws: the means are strikingly close. The true PIF has a slightly larger spread

but overall distributions are quite similar in shape.

18See Miller et al. (2016) for an analysis of noisy or biased pass-through estimation.
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In sum, this analysis suggests that, as long as a researcher is able to obtain good estimates

of cost pass-through, GLC can perform reasonably well even in situations with significant model

misspecification on the demand and/or cost side.

Remark 8. In a differentiated-products context, the empirical industrial-organization litera-

ture (Berry et al., 1995; Nevo, 2001; Reiss and Wolak, 2007) employs discrete-choice models

with a logit demand structure. This literature typically makes assumptions equivalent to GLC’s

A1—A3: firms are cost-minimizers with constant marginal costs of production that take input

prices as given. However, the non-linearity of the logit demand leads to a firm’s first-order

condition for price departing from A4. The literature on merger analysis has used Monte Carlo

simulations to explore functional-form assumptions on demand: Crooke et al. (1999) and Miller

et al. (2016) both find that the estimated consumer price changes due to a merger are roughly

equal under linear and logit demand. This suggests that GLC’s structure does not necessarily

yield very different conclusions than existing empirical IO approaches. An advantage of GLC

is its semi-parametric nature: unlike fully-specified structural models, Proposition 1 requires

functional-form assumptions to be made only for firm i.

3. Multidimensional GLC

In our baseline model of GLC, firm i sells a single product into a single market at a single price.

Our “multidimensional” extension to GLC in this section shows how the basic insight– firm-

level pass-through as a suffi cient statistic for the profit impact of a cost shift– applies in settings

with multiple products, multiple markets and multiple prices. While GLC, of course, cannot be

a fully general model of competition– given its reliance on supply-side linearity– these further

results considerably extend its reach.

3.1. Model setup. Firm i competes in an industry with the scope of its offering captured

by the set M . For each “component”m ∈M of its offering, it sells an output quantity xim at a

price pim. The scope of its offering can capture, for example: (1) the same product being offered

in different markets (multimarket competition); (2) the same product being offered at different

prices in the same market (price discrimination); or (3) a range of products being offered in the

same market (multiproduct competition).
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Generalizing baseline GLC, let eim be one of the inputs that i uses in production of element

m ∈ M so its total use of this factor of production is ei =
∑

m∈M eim. Regulation imposes a

cost τ on each unit of this input ei. There a set of Nm firms that are active in component m

of its offering (including firm i itself). Let φkm ∈ {0, 1} be an indicator variable which equals

1 if firm k ∈ Nm that is active in firm i’s component m is subject to the regulation and equals

0 otherwise. Let Φ = (φkm)k∈Nm,m∈M summarize the scope of regulation across firm i’s rivals.

With complete regulation, φkm = 1 for all k ∈ Nm, m ∈M .

In general, firm i’s profits across its offering are Πi ≡
∑

m∈M Πim =
∑

m∈M pimxim −

Ci(xi, ei)− τei, where pimxim is its sales revenue on component m ∈M , and its total costs are

made up of its operating costs Ci(xi, ei), where xi = (xim)m∈M , ei = (eim)m∈M are the vectors

of its output and factor use, plus its regulatory costs τei.

Multidimensional GLC extends A1—A4 from baseline GLC about the production technology

and supply behaviour of firm i across each component m ∈ M of its offering, again taken to

hold over some interval τ ∈ [τ , τ ] of interest:

A1M. (Input price-taking) Firm i takes input prices, including the regulation τ , as given.

A2M. (Cost-minimizing inputs) Firm i chooses its inputs, including its use of the regulated

factor ei, optimally so as to minimize its total costs Ci(xi, ei) + τei of producing its output

vector xi.

A3M. (Constant returns to scale) Firm i’s optimized total costs faced with regulation τ are

linear in outputs Ci(xi, ei) + τei =
∑

m∈M kim(τ)xim, with the unit cost of component m given

by kim(τ) = cim(τ) + τzim(τ) where cim(τ) is its per-unit operating cost and zim ≡ eim/xim is

its regulatory intensity (use of the regulated factor per unit of output)

A4M. (Linear product market behaviour) Firm i’s product market behaviour regarding compo-

nentm satisfies xim(τ) = ψim [pim(τ)− kim(τ)], where ψim > 0 is a constant and [pim(τ)− kim(τ)] >

0 is its profit margin.

The economics of these four assumptions is analogous to A1—A4 in baseline GLC. A1M and

A2M are standard: firm i is a cost-minimizer and a price-taker in input markets. A3M extends

the notion of constant marginal costs to a multidimensional setting, allowing for the regulatory

intensity zim to vary across the components of i’s offering. For example, its products may have
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different emissions intensities– and hence different exposures to an emissions tax. Finally, A4M

is again the defining supply-linearity feature of GLC; the parameter ψim may also vary across

i’s offering. Relative to baseline GLC, an additional (implicit) assumption here is that the scope

of firm i’s offering M does not vary with regulation τ .

Multidimensional GLC also makes no assumptions about consumer preferences and the

demand system, rivals’technology and behaviour, (strategic) substitutes vs (strategic) comple-

ments, the equilibrium concept, and so on. We show below that, given A1M—A3M, the core

assumption of A4M is satisfied for a range of models from the existing industrial-organization

literature that have multidimensional features– including recent models in the literature of

multiproduct competition, price discrimination, and networked markets.

3.2. Main result. We wish to quantify the impact of regulation τ on firm i’s profits under

multidimensional GLC, and a multidimensional version of firm-level cost pass-through will play

a central role. Let Πi(τ) denote firm i’s optimized overall profits as a function of regulation,

and similarly ei(τ) is its optimal use of the regulated factor.

We now introduce three sets of useful definitions. First, define firm i’s marginal rate of cost

pass-through in component m ∈M of its offering as:

ρim(τ ; Φ) ≡ dpim(τ ; Φ)/dτ

dkim(τ)/dτ
(3)

The denominator captures by how much i’s optimal unit cost kim(τ) responds to a small tight-

ening in regulation; given A1M—A3M, the envelope theorem implies dkim(τ)/dτ = zim(τ). The

numerator captures the change in i’s product price on component m. Denote i’s average rate

of cost pass-through on m over the interval τ ∈ [τ , τ ] as:

ρim(τ , τ ; Φ) ≡ ∆pim(τ , τ ; Φ)

∆kim(τ , τ)
=

∫ τ
τ=τ [ρim(τ ; Φ)zim(τ)] dτ∫ τ

τ=τ zim(τ)dτ
(4)

For small changes in regulation τ → τ , average and marginal cost pass-through are locally

approximately equal, ρim(τ , τ ; Φ) ' ρim(τ ; Φ).

Second, we translate these pass-through definitions into a multidimensional context. Define

firm i’s multidimensional rate of marginal cost pass-through as a weighted average of its pass-
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through across the components of its offering:

ρMi (τ ; Φ) ≡
∑
m∈M

ωim(τ)ρim(τ ; Φ) (5)

where the weights are by its use of the regulated factor, ωim(τ) ≡ eim(τ)/ei(τ) ∈ (0, 1) so that∑
m∈M ωim(τ) = 1. We also define a multidimensional rate of average cost pass-through as

follows:

ρMi (τ , τ ; Φ) ≡
∑
m∈M

ωim(τ)ρim(τ , τ ; Φ). (6)

Note that the weights ωim(τ) here are by firm i’s initial use of the regulated factor. This will be

the relevant definition for our next result and has the advantage of typically being observable

“pre-shock”from an empirical perspective.

Third, define an inverse measure of the extent of factor substitution on component m over

the interval τ ∈ [τ , τ ] as gim(τ , τ) = [
∫ τ
τ=τ zim(τ)dτ ]/[(τ − τ)zim(τ)] > 0. We have gim(τ , τ) = 1

for all τ ∈ [τ , τ ] and m ∈M if regulation is an output tax (for which zim(τ) ≡ 1 for all τ ∈ [τ , τ ]

and m ∈M) or if factor substitution is infeasible. For a small tightening of regulation, τ → τ ,

we have gim(τ , τ) ' 1 for all m ∈M .

This delivers a direct analog to Proposition 1 from baseline GLC:

Proposition 2. Under multidimensional GLC, as defined by A1M—A4M, a regulation τ with

scope Φ affects firm i’s profits Πi according to:

(a) For a “small”tightening of regulation from τ to τ (with τ → τ):

∆Πi(τ , τ ; Φ)|τ→τ ' (τ − τ)
dΠi(τ ; Φ)

dτ

∣∣∣∣
τ=τ

= −2[1− ρMi (τ ; Φ)][(τ − τ)ei(τ)].

(b) In general, for a “large”tightening of regulation from τ to τ :

∆Πi(τ , τ ; Φ) = −2
∑
m∈M

[1− ρim(τ , τ ; Φ)][(τ − τ)eim(τ)]Ωim(τ , τ ; Φ),

where:

Ωim(τ , τ ; Φ) ≡ gim(τ , τ)

(
1− gim(τ , τ)[1− ρim(τ , τ ; Φ)][(τ − τ)zim(τ)/pim(τ)]

2[pim(τ)− kim(τ)]/pim(τ)

)
> 0.

(c) Suppose that for each component m ∈ M of firm i’s offering (i) its cost increase is modest
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relative to its initial price, that is, [(τ−τ)zim(τ)]/pim(τ) is “small”, and (ii) regulatory intensity

is approximately constant, that is, zim(τ) ' zim(τ). Then, for a “large”tightening of regulation

from τ to τ :

∆Πi(τ , τ ; Φ) ' −2[1− ρMi (τ , τ ; Φ)][(τ − τ)ei(τ)].

Proposition 2 establishes firm-level cost pass-through as a suffi cient statistic in multidimen-

sional settings. As under baseline GLC, the “static”profit impact is given by ∆Πi(τ , τ ; Φ) =

−(τ − τ)ei(τ), where firm i’s initial use of the regulated factor covers all components of its

offering. In direct parallel to Proposition 1, Proposition 2’s parts (a)-(c) present three ways of

going to the “dynamic”version that captures the strategic responses by firm i and its rivals.

Part (a) gives a first-order approximation that shows how i’s multidimensional (marginal)

pass-through rate determines its profit impact. The intuition is as under baseline GLC: given the

linearity of i’s costs and supply, firm-level pass-through captures both margin and sales impacts

for each individual component– and the weights then aggregate up to obtain a multidimensional

profit impact. Once again, therefore, pass-through signs the profit impact: i’s profits fall if and

only if its multidimensional pass-through rate is less than 100%.

Under multidimensional GLC, there is an additional “portfolio effect” that is not present

in the baseline GLC. The profit impact for firm i is relatively more favourable to the extent

that more important offerings (with higher weights ωim) also have higher pass-through (higher

ρim), as this raises its multidimensional pass-through ρ
M
i which in turn raises ∆Πi (for a given

overall exposure to regulation, ei).

Part (b) presents a general result that applies to discrete changes in regulation.

Part (c), with an eye towards empirical implementation, introduces two additional conditions

that are straightforward generalizations of those in Proposition 1(c): for each componentm ∈M

of firm i’s offering, the cost shocks due to regulation are “small”relative to product prices and

there is limited scope for factor substitution. Under these conditions, the simplicity of the

result in part (a) is restored and multidimensional (average) pass-through alone re-emerges as

a suffi cient statistic. Empirical implementation therefore does not require knowledge of firm i’s

supply parameters, (ψim)m∈M from A4M– or of conduct parameters and price and cross-price

elasticities of demand. Note also that the weights in part (a) and part (c) both reflect the initial
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exposure ωim(τ) = eim(τ)/ei(τ) of each component.

It is worth emphasizing that A1M—A4M do allow for interdependencies between the M

components of i’s offering; put differently, Proposition 2 is not a trivial extension to Propo-

sition 1. To see why, consider a duopoly selling two products A and B. In a standard

model of multiproduct pricing, firm i’s equilibrium price for product A can be written as

pi(kiA(τ), kjA(τφjA); kiB(τ), kjB(τφjB)): it depends on its own and its rival j’s marginal costs

for both products. The key point is that i’s pass-through rate ρiA for product A will reflect any

pricing spillovers emanating from product B– and this is captured by the formula in Proposi-

tion 2. On the cost side, multidimensional GLC allows for i’s unit cost to be identical across

its offering, kim(τ) = ki(τ), such that its cost shocks across components are also interlinked.

3.3. Special cases of multidimensional GLC. We next present examples of models that

fit into the structure of multidimensional GLC. In each of these models, given A1M—A3M,

GLC’s core feature of supply linearity as per A4M is satisfied– and so Proposition 2 applies.

Multiproduct Cournot competition. Firm i offering consists of M products for which

A1M—A3M are assumed to hold, and it chooses quantity for each product. For product m ∈M ,

there is a set of Nm firms, including firm i itself. Firm i’s product m ∈ M has a linear inverse

demand curve given by: pim = αim −
∑

j∈Nm βjmxjm −
∑

k∈M�m
∑

j∈Nk γjkxjkwhich depends

via (βjm)j∈Nm on firm i’s and rivals’ supplies of product m as well as via (γjk)k∈M\m,j∈Nk

on firm i’s and rivals’supplies of all other products apart from product m. GLC requires no

assumptions about all of these parameters other than that they are constants; products can be

arbitrarily substitutes or complements. 19

Firm i’s overall profits Πi =
∑

m∈M (pim − kim)xim and so the first-order condition for xim

is given by: 0 = ∂Πi
∂xim

= (pim− kim)−
(
βim +

∑
k∈M�m γik

)
ximwhere the latter term captures

the cross-effect of the output quantity xim of product m on the prices of other products. By

inspection, this first-order condition for product m ∈ M satisfies A4M with ψim ≡ 1/(βim +∑
k∈M\m γik). Therefore, this workhorse model is a member of multidimensional GLC and so

Proposition 2 applies. As with baseline GLC, rivals’products could be entering and exiting–

19See Armstrong and Vickers (2018) and Nocke and Schutz (2018) for recent equilibrium analysis of multiprod-
uct oligopoly pricing.
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that is, the sets of firms (Nm)m∈M could vary with τ– as long as this does not affect (ψim)m∈M ;

insofar as this is relevant for firm i’s profit impact, it is captured by its product-level pass-

through rates (ρim)m∈M .

Multiproduct Bertrand competition. The basic setup here is the same except that firm

i now chooses prices. Firm i’s product m has a linear demand curve given by: xim = αim −∑
j∈Nm βjmpjm−

∑
k∈M�m

∑
j∈Nk γjkpjk where the parameters (βjm)j∈Nm and (γjk)k∈M\m,j∈Nk

are again taken to be constants.

Firm i’s overall profits Πi =
∑

m∈M (pim − kim)xim so the first-order condition for pim is:

0 = ∂Πi
∂pim

= xim−(pim−kim)βim−
∑

k∈M�m(pik−kik)γik.Clearly, more work is needed to make

this fit into the multidimensional GLC. A common simplifying assumption in the industrial-

organization literature (see, e.g., Verboven, 2012) is that a firms’products have symmetric profit

margins, with (pim − kim) = µi for all m ∈M . In our setting, this also implies symmetric cost

pass-through across products, with ρim = ρMi for all m ∈ M . While admittedly restrictive,

this may still be a reasonable approximation of empirical behaviour in retail pricing where firms

commonly set identical prices across different regional markets despite wide variation in demand

conditions and competition (DellaVigna and Gentzkow, 2019). Recall that GLC is designed to

admit such “behavioural” (and potentially irrational) pricing strategies. Given this, it follows

that the first-order condition now satisfies A4M with ψim ≡ (βim +
∑

k∈M\m γik). Therefore,

a partially-symmetric linear version of multiproduct Bertrand competition is also a member of

multidimensional GLC.

Multiproduct quality competition: Upgrades approach. We next consider a simplified

version of the upgrades approach (Johnson and Myatt, 2003, 2006; Johnson and Rhodes, 2018)

to multiproduct quality competition. Each of n ≥ 2 firms offers two product qualities: low-

quality q1 and high-quality q2, where q2 > q1. We consider a special case of the model that

yields linear demand structures– so that GLC’s A4M holds.

A consumer of type θ has multiplicative willingness-to-pay v(θ, q) = θq for a single unit with

quality q ∈ {q1, q2}. There is a unit mass of potential buyers with uniformly distributed types

θ ∼ U [0, 1]. Let Y i
1 denote the combined number of low- and high-quality units produced by

firm i, let Y i
2 be the number of high-quality units, so that (Y i

1 −Y i
2 ) is the number of low-quality
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units. Similarly, let Y1 =
∑n

i=1 Y
i

1 be the industry supply of both qualities and Y2 =
∑n

i=1 Y
i

2

that of high-quality. In the upgrades approach, the former is interpreted as the number of

“baseline”units while the latter is the number of “upgrades”(from low to high quality). Due

to multiplicative preferences and uniform types, both demand curves pB(Y1) = (1− Y1)q1 and

pU (Y2) = (1−Y2)(q2− q1) are linear. The total price of the high-quality product is the baseline

price plus the upgrade price, pB + pU .

We assume that multidimensional GLC’s A1M—A3M are satisfied for both firm i’s baseline

and upgrade products. Firm i’s unit cost for the low-quality product is kiB(τ) = ciB(τ) +

τziB(τ) while it is kiU (τ) = ciU (τ) + τziU (τ) for the upgrade, where the corresponding regulatory

intensities, ziB ≡ ei1/Y
i

1 and z
i
U ≡ ei2/Y

i
2 , are both optimally chosen given τ . Hence, by the

envelope theorem, dkim(τ)/dτ = zim(τ) for m ∈ {B,U}.

Firm i’s overall profits are therefore given by:

Πi(τ) = [pB(Y1)− kiB(τ)](Y i
1 − Y i

2 ) + [pB(Y1) + pU (Y2)− kiB(τ)− kiU (τ)]Y i
2

= [pB(Y1)− kiB(τ)]Y i
1︸ ︷︷ ︸

=Πi
B

+ [pU (Y2)− kiU (τ)]Y i
2︸ ︷︷ ︸

=Πi
U

,

where it separately chooses Y i
1 and Y

i
2 (subject to Y

i
1 ≥ Y i

2 ). It is easy to check that the two

first-order conditions for Y i
1 and Y

i
2 satisfy multidimensional GLC’s A4M, with ψ

i
B = 1/q1 and

ψiU = 1/(q2 − q1). The upgrades approach has the general feature that the baseline units and

upgrades are neither substitutes nor complements. A substantive restriction is that regulation τ

does not alter the quality levels q1, q2 offered by firms. Hence Proposition 2 pins down the profit

impact, with pass-through defined as ρim ≡ [dpm(τ)/dτ ]/[dkim(τ)/dτ ] for product m ∈ {B,U}.

As in the previous extensions, it is worth stressing that this follows directly from firm i’s

first-order conditions. There are no restrictions on its rivals’technologies or behaviour or on

the equilibrium concept– though the upgrades approach does involve assumptions about the

maximizing behaviour of consumers.

Multimarket network competition. Firms often compete by selling their product across

multiple markets. Recent work in the networks literature has sought to understand how strategic

interaction and network structure affect market outcomes (Bramoullé et al., 2014). We here

show how a simple linear model of network competition, used by Elliott and Galeotti (2019) in
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the context of antitrust investigations, fits into the GLC framework.

The model has n ≥ 2 firms selling a product into a set of M ≥ 2 different consumer

markets. Firm i has production capacity Ki and sells xim = σimKi units into market l, where∑
m∈M σim = 1, so σim ∈ (0, 1) reflects i’s presence in market m. Given firms’overall capacities

K, the price in market m is determined by a linear demand curve pm(K) = αm − βXm,

where Xm =
∑n

i=1 σimKi and the demand parameter αm may vary across markets. Firm

i’s overall sales to all M markets are xi =
∑

m∈M xim = Ki, that is, it sells up to capacity.

On the production side, the good sold by firm i has the same cost structure across consumer

markets. We assume that its unit cost satisfies A1M—A3M which, given symmetry, becomes

isomorphic to baseline GLC’s A1—A3– with an optimized unit cost ki(τ) and regulation intensity

zi(τ) ≡ ei(τ)/xi(τ) for each market m ∈M

Firm i chooses its capacity Ki to maximize its overall profits Πi(K; τ) =
∑

m∈M [pm(K) −

ki(τ)]σimKi, which yields the first-order condition:
∑

m∈M [pl(K)−ki(τ)]σim−β
∑

m∈M σ2
imKi =

0 that defines i’s optimal capacity as a function of the network structure as well as demand

and cost conditions.20 Let pi ≡
∑

m∈M σimpm be i’s weighted-average price across its markets,

and use this to rewrite i’s first-order condition as: pi(τ) − ki(τ) =
(
β
∑

m∈M σ2
im

)
Ki(τ),now

also making explicit dependencies on regulation τ . This supply schedule has exactly the

same form as baseline GLC’s A4, with a constant slope parameter, ψi = 1/(β
∑

m∈M σ2
im),

that reflects the production network and demand conditions. Proposition 2 follows by letting

ρMi ≡ [dpi(τ)/dτ ]/[dki(τ)/dτ ] denote i’s multidimensional rate of cost pass-through (and noting

that the weights ωim = σim for all m ∈M).

This example shows how our GLC result on firm-level pass-through applies to a multimarket

setting. A conceptual difference compared to the networks literature is that Proposition 2 is

derived by making assumptions only about firm i itself. There are no assumptions as such on

the technology or behaviour of i’s rivals; all salient characteristics of the network are captured

in i’s pass-through rate ρMi . A substantive restriction, also employed in the linear-quadratic

games that are widely studied in the networks literature, is that the network structure g is

20While this network model clearly has a multidimensional flavour, the combination of symmetric costs and a
single choice variable mean that its structure effectively boils down to baseline GLC.
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fixed; in our case, it does not vary with regulation τ .21

Oligopolistic price discrimination. In practice, consumers often pay different prices for the

same good; for example, airlines sell tickets at different prices depending on when a customer

buys. We next show how Proposition 2 applies to a model of oligopolistic price discrimination

(Hazledine, 2006; Kutlu, 2017).

Consumers have unit demand for a homogeneous product (e.g., an economy flight from A

to B), with a distribution of v(X) = 1 − X (so the Xth keenest consumer has value 1 − X).

There are M ≥ 2 price buckets with class m priced at pm = 1−X1− ...−Xm, where Xm is the

number of units sold in class m, so earlier buckets have higher prices. This demand system is an

oligopolistic extension of a setup in Varian (1985); the number of buckets measures the extent

of price discrimination. Each firm i ∈ N chooses how much of each bucket to supply (xim)Mm=1.

On the production side, the good sold by firm i has the same cost structure across price buck-

ets. Its unit cost satisfies A1M—A3M which, given symmetry, becomes isomorphic to baseline

GLC’s A1—A3– with an optimized unit cost ki(τ) and regulation intensity zi(τ) ≡ ei(τ)/xi(τ)

for each bucket m ∈ M . For expositional simplicity, we here also assume that all firms have

identical unit costs.22 Firm symmetry implies that xim/xi = Xm/X (for all i ∈ N). Given

regulation τ , firm i’s overall profits are given by Πi =
∑M

m=1 Πim =
∑M

m=1[pm − ki(τ)]xim

This model of third-degree price discrimination has a complex demand structure: the price

for one bucket depends on firms’output choices for all other buckets. However, at the symmetric

Nash equilibrium, any firm i’s optimality condition for price bucket m can be written as [pm −

ki(τ)] = hm(m,M,n)xim. The key feature is that the proportionality term hm(m,M,n) depends

only on market structure and the number of price buckets. Therefore, multidimensional GLC’s

A4M is satisfied and Proposition 2 applies, as long as regulation τ does not alter M or n. The

weights underlying multidimensional pass-through, ρMi (τ ; Φ) ≡
∑

m∈M ωim(τ)ρim(τ ; Φ), here

satisfy ωim(τ) ≡ eim(τ)/ei(τ) = Xm(τ)/X(τ) given that regulatory intensity is the same across

21The networks literature characterizes Nash equilibrium based on the first-order conditions of all firms. It
would typically define gij ≡

(∑m
l=1 σilσjl

)/∑m
l=1 σ

2
il as a key measure of the closeness of competition between

firms i and j across the m markets so that the n× n matrix g represents the network of interaction. (If i and j
serve distinct subsets of markets, then σilσjl = 0 for all l and so also gij = 0; if they serve identical markets, then
σil = σjl for all l and so gij = 1.) The central results in the literature use different network measures– notably
Bonacich centrality– to characterize Nash equilibrium (Ballester et al., 2006; Bramoullé et al., 2014).
22The main points about GLC also obtain in richer setups with asymmetric costs among firms and conduct

other than Cournot-Nash.
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price buckets and firms are symmetric.

The central result in this strand of literature is that price discrimination does not change the

average price paid by consumers. Greater price discrimination (higher M) raises (lowers) the

prices paid by high-value (low-value) consumers but, due to the linear model structure, leaves the

average price unchanged.23 In particular, the average price pave(M) ≡
∑M

m=1
Xm
X pm = pave(1)

for all M ≥ 2, where pave(1) is the uniform Cournot price.

This result also has significant implications for pass-through. It implies immediately that

the change in price due to regulation satisfies d
dτ pave(M) = d

dτ

∑M
m=1

Xm(τ)
X(τ) pm(τ) = d

dτ pave(1)

for all M ≥ 2. Firm i’s rate of cost pass-through for price bucket m is defined as ρim ≡

[dpm(τ)/dτ ]/[dki(τ)/dτ ] and multidimensional pass-through ρMi (τ ; Φ) ≡
∑

m∈M ωim(τ)ρim(τ ; Φ).

The weights satisfy ωim(τ) = Xm(τ)/X(τ) so ρMi (τ ; Φ) = [ ddτ pave(M)]/[dki(τ)/dτ ] is also con-

stant with respect to the extent of price discrimination M . Greater price discrimination affects

relative prices and relative pass-through– but the average rate of pass-through is unaffected.

In sum, this extension (i) shows how GLC’s main results extend to a setting with price

discrimination, and (ii) provides a microfoundation, within the context of GLC, for working

with cost pass-through based on an average of dispersed market prices.

4. Empirical analysis of cost pass-through for US airlines

In the rest of the paper, we demonstrate the applicability and usefulness of the GLC framework

by estimating the impact of introducing carbon pricing to the domestic US airline market. The

empirical implementation of GLC is based on three main steps. First, the scale τ and scope Φ

of the cost shift needs to be identified and a corresponding estimate of firm i’s rate of cost pass-

through obtained. Second, GLC’s assumptions must be deemed a reasonable approximation

to firm i’s production technology and competitive environment. Third, the appropriate GLC

results must be used to calculate the impacts of regulation. Given prior knowledge of firm-level

pass-through, profit impacts can be estimated via GLC using only cross-sectional data for the

firms of interest. If, as we do here, firm-level pass-through needs to be estimated, then the

data requirement increases to include data on prices and quantities of the input factor, plus an

instrument for the cost shift.

23Price discrimination still benefits firms because sales expand to otherwise excluded low-value consumers.
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4.1. Background on aviation and climate change policy. Airlines currently produce

around 2.5% of global CO2 emissions (McCollum et al., 2009); as these emissions occur high up

in the atmosphere, an effect known as climatic forcing means that the proportion of “effective”

emissions is around twice as high. Airline emissions are projected to grow well into the 21st cen-

tury due to rising global demand for air travel and limited scope for large-scale substitution away

from jet engines. As other sectors of the economy, such as electricity generation, decarbonize

more quickly the role of aviation in future climate policy is set to grow. Economic regulation

appears increasingly likely as countries seek to implement internationally-agreed climate targets

in a cost-effective manner.24

In this paper, we study the domestic US airline market. This is the world’s largest aviation

market, producing around 28% of global aviation emissions, but has so far not been subject

to carbon pricing. At a baseline carbon price of $30/tCO2, aviation’s 2013 emissions of 120

million tCO2 would have had a value of $3.6 billion. We study the domestic market because

international aviation is regulated under a separate organization and set of agreements.25

There is a rich literature that explores many important features of US aviation markets,

principally the presence of market power and firm heterogeneity. The number of firms competing

on a given route is typically small, and it is widely acknowledged that despite deregulation

airlines continue to exercise market power (Brander and Zhang, 1990; Borenstein and Rose,

2007; Ciliberto and Tamer, 2009). Over the period we study, US aviation was dominated by

four large legacy carriers (American, Delta, United and US Airways) and a large low-cost carrier,

Southwest Airlines. Legacy airlines were established on interstate routes before deregulation in

1978; they tend to operate hub-and-spoke networks with relatively high costs and high levels

of service while low-cost airlines tend to offer direct flights at lower prices (Borenstein, 1992).

A recurring theme in the literature is the importance of this heterogeneity and the central role

played by Southwest, sometimes labelled the “Southwest is special” effect. From the 1980s

onwards, Southwest’s low costs, innovative business model and generally astute management

24Aviation is already subject to carbon pricing in some international jurisdictions such as the EU’s emissions
trading scheme.
25The first global aviation emissions reduction agreement was negotiated by the UN’s International Civil

Aviation Organization (ICAO) and signed by its 191 member nations in October 2016; it amounts to a carbon-
offset scheme for emissions growth after 2020.
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have made it an especially disruptive and profitable competitor, with large impacts on incumbent

prices and profits (Borenstein, 2011; Morrison, 2001; Borenstein and Rose, 2007; Goolsbee and

Syverson, 2008; Ciliberto and Tamer, 2009).26 We follow this literature by ensuring potential

heterogeneity between Southwest and the legacy carriers is captured in our analysis.

4.2. Description of the data. As is standard in the airline literature, we take a product

to be a seat on a flight by airline i on route j at time t. Our dataset is a panel of price and

cost data for airlines over the period 2004Q1—2013Q4.27 For each carrier i, route j and quarter

t, we have the average ticket price pijt, the average per-person fuel cost kijt, and a vector of

covariates. All monetary quantities are in real 2013Q4 USD. We restrict our attention to the

four large legacy carriers (American, Delta, United and US Airways) and one large low-cost

carrier (Southwest) operating throughout the period.28 The resulting dataset is an unbalanced

panel, with N = 1334 carrier-routes and T = 40 quarters, a total of 36,650 observations. The

routes in our sample make up 27% by revenue of all domestic US aviation activity over the

period.

We construct the data by combining elements of three datasets from the US Bureau of

Transportation Statistics. Price data come from the DB1A Origin and Destination Survey, a

10% sample of all airline tickets sold.29 Prices are for a one-way trip; all round-trip tickets are

split equally into two one-way observations. A route is defined by its origin and destination

airports, regardless of direction. Following much of the airlines literature, we exclude indirect

flights.30 Finally, we exclude carrier-routes that had fewer than 1,000 passengers per quarter

(i.e. 83 per week). For the resulting observations we calculate pijt, an average of all fares

26The “Southwest is special” effect is widely recognised beyond the economics literature. See, for example,
Heskett and Sasser (2010) and Tully (2015) for business discussions.
27The start year was chosen to exclude the effects of 9/11 from our dataset. The end date avoids the 2015

“mega merger”between American Airlines and US Airways.
28There are now many more low-cost carriers, but these were either small or non-existent at the start of our

period, so we do not include them.
29We use a cleaned version of the DB1A provided by Severin Borenstein. The following ticket types are excluded:

international, first class, frequent flier (those with a price less than $20), entry errors (price higher than $9,998 or
five times the industry standard for that route-time), and open or circular itineraries. Observations are aggregated
up to the carrier-route-time level. Our multidimensional GLC results, applied to the upgrades approach (Johnson
and Myatt, 2003, 2006), provide a microfoundation for the widespread approach in the literature of analyzing
economy-class tickets in a separable way from business or first-class tickets.
30 Indirect flights– involving a change of aircraft at another airport en route, using the airline’s hub-and-spoke

network– are well-known to have different economic characteristics to direct flights. Excluding indirect flights is,
therefore, commonplace in the airlines literature (e.g., Borenstein and Rose, 1994; Goolsbee and Syverson, 2008;
Gerardi and Shapiro, 2009).
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purchased on carrier-route ij in quarter t.

The remaining datasets (T-100 and Form 41) are used to construct kijt, the average per-

passenger fuel cost for flying with carrier i on route j in time t.31 This is the total fuel cost

for a given flight divided by the number of passengers on that flight (Appendix B describes

this procedure in more detail). Given there is currently no variation in carbon prices for US

airlines, our empirical approach is to estimate fuel cost pass-through — the dollar increase in

prices following a dollar increase in fuel costs. There is a constant relationship whereby 1 gallon

of jet fuel produces 0.00957 tons of CO2 when burned; for an airline, fuel and carbon costs are

therefore equivalent and pass-through rates should be the same.32

The value of fuel cost kijt is determined by three factors: (i) the market price of jet fuel,

which tracks the crude oil price; (ii) the fuel effi ciency of the passenger’s journey, driven by

the type and age of aircraft used, the configuration the seating and the proportion of seats

filled (any other variation in the airline’s physical operating procedures can also influence this

factor); and (iii) the carrier’s use of hedging or other financial instruments when buying fuel.

This varies significantly between carriers and over time for a given carrier. For example, in

our sample period, Southwest was known for its extensive use of hedging, while US Airways

never hedged. Carriers therefore ended up paying very different prices: in 2008 (when oil prices

were rising) US Airways paid 30% more for each gallon of fuel than Southwest, whereas in 2009

(when oil prices fell) it paid 18% less.33

Table 2 presents descriptive statistics on airlines’prices, costs and other variables related

to competition and environmental performance. The four legacy carriers are grouped together

(Table C1 in Appendix C gives descriptive statistics by carrier and confirms the similarity of the

legacy carriers compared to Southwest). Southwest tends to fly larger numbers of passengers

on shorter routes than the legacy carriers; it charges lower prices and has lower fuel costs and

31The overlap between the DB1A and T-100 is good but not perfect (see Goolsbee and Syverson, 2008, for a
fuller discussion). Merging with data from T-100 results in around 10% of DB1A revenue being dropped.
32A similar approach of using variation in other input costs to estimate the impact of future environmental

costs is also taken by Miller et al. (2017). In related work, Ganapati et al. (2016) estimate the pass-through of
energy input prices across six US manufacturing industries while Bushnell and Humber (2017) focus on the pass-
through of natural gas prices in the fertilizer industry and its implications for the allocation of carbon emissions
permits.
33We do not have detailed data on the precise extent of hedging by each carrier at each point in time. Turner

and Lim (2015) document and analyse the different hedging strategies of US airlines, and the different effective
fuel prices that result.
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emissions. Revenue and numbers of competitors are broadly similar across routes.

Figure 2 shows trends over the period for each carrier type. Figure 2(a) compares Southwest’s

average per-passenger fuel cost with the spot price of jet fuel. They track each other reasonably

closely, with a lag indicating the presence of hedging, which also smooths out the peak and

trough from the 2008 price spike. Note also the substantial variation in fuel costs over the

period. Figure 2(b) plots average ticket prices (left axis) against per-passenger fuel costs (right

axis) for Southwest. As expected, there is a positive correlation. Figure 2(c) shows per-passenger

fuel costs for the legacy carriers and how they compare to the spot price of jet fuel. Fuel costs

follow spot prices more closely than for Southwest, consistent with a more limited use of hedging.

Figure 2(d) shows ticket prices and fuel costs for the legacy carriers; as for Southwest, these

appear to be closely related.

4.3. Step 1: Estimating pass-through. The first step in simulating the effect of carbon

pricing in the US aviation industry is to identify the scale τ and scope Φ of regulation and

obtain an estimate of firm i’s rate of cost pass-through. We assume a federal carbon price that

is equally applied across all airlines (Φ = 1). To estimate firm i’s rate of cost pass-through, we

follow the recent pass-through literature (e.g., Fabra and Reguant, 2014; Atkin and Donaldson,

2015; Stolper, 2016; Miller et al., 2017) and use as our baseline specification a panel data

regression of quarterly average prices pijt on average per-passenger fuel costs kijt. We allow

for pass-through heterogeneity by interacting costs with carrier identity —either Southwest or

a legacy carrier —and estimate the following equation:

pijt = ρSkijt · Si + ρLkijt · Li +X ′ijtβ + λt + ηij + εijt. (7)

The parameter of interest is ρ, the average rate of cost pass-through across routes. By interacting

fuel cost kijt with dummies Si and Li that are equal to 1 for Southwest and legacy carriers,

respectively, we obtain pass-through rates ρS and ρL for the two carrier types. Controls (Xijt),

time effects (λt), fixed effects (ηij), and residuals (εijt) are explained below.

The per-passenger fuel cost kijt in equation (7) is potentially endogenous. It depends in its

denominator on the number of passengers flying in quarter t, which in turn will generally be an

outcome of the price pijt. To address this, we use the spot price of jet fuel as an instrument for
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fuel cost kijt.34 Since the price of jet fuel is determined by the global oil price, it is exogenous to

passenger numbers on a particular route, satisfying the exclusion restriction. To accommodate

potential hedging, we include three lags of spot prices. We also include a term interacting

distance with fuel costs, in order to capture the differential impact of spot fuel prices on the

dollar fuel cost of flights of different lengths. The first stage regressions are given by:

kijt ·ai =
3∑
q=0

γqft−q ·ai+
3∑
q=0

δqft−q ·ai ·dij +X ′ijtβ+µt+ θij +ωijt for each ai ∈ {Si, Li} (8)

where ft is the spot fuel price, dij is the route distance, and the remaining controls are the same

as in Equation (7).

Equations (7) and (8) include a vector of controls Xijt which capture changes in supply and

demand: (i) We include GDP growth to proxy for demand because jet fuel prices closely track

the oil price, which may be systematically related to demand for air travel. We use the average

GDP growth of the two states at either end of the route. (ii) We construct an index of the

main non-fuel costs, at the carrier level, principally made up of labour and aircraft maintenance

costs. (iii) We include the number of all competing legacy carriers on route j. (iv) We also

include the number of all competing low-cost carriers, as these may have a different impact to

other competitors. (v) We include carrier size, the total number of passengers travelling on all

of airline i’s routes in a given quarter, as a measure of overall demand for airline i’s product.

Time effects are controlled for using indicators for each year-quarter t and ηij and θij capture

carrier-route level fixed effects. Standard errors are clustered at the carrier-route level. Finally,

we weight observations by carrier-route emissions, so smaller routes do not disproportionately

affect the resulting carrier-level pass-through estimates and corresponding to our definition of

multidimensional pass-through.35

34We use jet fuel price data from Bloomberg (JETINYPR index, New York Harbor 54-Grade Jet Fuel).
35Our specification does not directly include competitors’costs, as this makes estimation infeasible because of

a curse of dimensionality problem. The literature on pass-through estimation takes a variety of approaches to
deal with this problem, for example by imposing functional form or other restrictions to reduce the number of
parameters to estimate (see, for example, Miller et al., 2017). Our approach is to allow firm i on route j to have
costs kijt that may be correlated in any arbitrary way with any other rival’s costs. The substantive assumption
is that the relationship between own and rivals’costs is unchanging over the period we study. If this holds, then
our pass-through rates capture both own-cost and rival-cost effects. In this respect our approach is similar to
both Atkin and Donaldson (2015) and Stolper (2016).

38



4.4. Estimation results. Table 3 shows our main estimation results. Column 1 presents the

OLS coeffi cients. Interestingly, the pass-through is not only significantly higher for Southwest

than the legacy carriers, but also these are on either side of 1. Column 2 provides the baseline

results correcting for the cost endogeneity through 2SLS. Southwest’s pass-through rate is 1.42

and significantly greater than 1 (p-value: 0.001), whereas the legacy carriers’pass-through is

0.66 and significantly smaller than 1 (p-value: 0.001). This means that when Southwest’s costs

rise, their rise in equilibrium price more than offsets this. The opposite is true for the legacy

carriers. Both coeffi cients are higher than their counterparts in column 1, confirming the OLS

downward bias, while at the same time revealing the same qualitative pattern. To the best of

our knowledge, the finding of pass-through heterogeneity between Soutwest and legacy carriers

in the US airline industry is novel. We document, therefore, a new dimension in which the

“Southwest is special”result operates.

The rest of the control coeffi cients generally have the expected signs. We see that greater

competition lowers prices, and that competition from low-cost carriers has a large additional

effect. Non-fuel costs raise prices as expected. GDP growth and carrier size seem to have a

negative relationship with price. The first stage results are also as expected: both the spot

price of jet fuel and its interaction with distance have a positive relationship with per-passenger

fuel costs, and the Sanderson-Windmeijer F-statistics provide very strong evidence that the

instruments are relevant in all cases, in line with past pass-through literature.

Column 3 shows the results of estimating the same equations on the subsample of the full

dataset that gives a balanced panel. These results are for the ‘stable’routes only– those that

were operated continuously by the same airlines throughout the period. The near-identical

results for the balanced and unbalanced panel suggest that both newly opened routes and

routes shortly to be discontinued appear to have the same pass-through as the stable routes.

This is encouraging for the external validity of our estimates.

4.5. Pass-through heterogeneity. What explains the heterogeneity in pass-through rates?

To answer this we can decompose the difference in pass-through rates into three factors: route

portfolio, production costs, and demand asymmetries. First, from the descriptive statistics in

Table 2 it is clear that Southwest operates considerably shorter routes than the legacy carriers.
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Short-haul flights are likely to have systematically different characteristics: on the demand side,

there are more close substitutes (such as car, bus or rail travel); on the supply side, entry may

be more or less diffi cult, so there may be differences in market power (e.g., Brander and Zhang,

1990; Berry and Jia, 2010). To quantify the importance of route portfolios, we present in column

4 of Table 3 the results using only routes common to both Southwest and the legacy carriers.36

We find that Southwest’s pass-through rate falls significantly, to 0.98, while the legacy carriers’

pass-through remains statistically unchanged, at 0.52. Hence, 39% of the difference in pass-

through rates between Southwest and legacy carriers (Table 3, column 2) can be attributed to

route portfolio differences.37

Second, we quantify the importance of production cost heterogeneity. Southwest has lower

average fuel costs on common routes: $30.37 per passenger compared to $40.59 for the legacy

carriers. This is principally due to use of newer aircraft and more effi cient seating configurations.

Absent any demand asymmetries, prices would have been equal and from equation (4) the

pass-through rates of any two firms (i and j) are related only by their relative cost shocks,

ρj/ρi = ∆ki/∆kj . Using the fuel cost figures for the common routes, Southwest’s superior fuel

effi ciency can explain 23% of the original difference in baseline pass-through rates.38

Third, the remaining 38% of the pass-through differential can be attributed to demand-side

asymmetries between carriers, based on their differentiated-product offering. An alternative,

but perhaps less likely explanation, is that these demand asymmetries are driven in addition by

differences in competitive conduct across common routes.39

4.6. Further results and robustness. We have explored a large number of robustness

tests and alternative specifications, and find that our central result of pass through greater than

1 for Southwest and less than 1 for the legacy carriers is robust. We summarize the results here,

while Appendix B contains further details. First, in Appendix B.2 we re-estimate our baseline

results but allowing for heterogeneity at the individual airline level, rather than grouping the

36To achieve a fully like-for-like comparison of pass-through rates we run an unweighted regression.
37The difference in coeffi cient across all routes is 1.418− 0.661 = 0.757, whereas the difference across common

routes is 0.983− 0518 = 0.465, hence (0.757− 0.465)/0.757 = 0.39.
38All else equal, we would expect Southwest’s predicted pass-through rate to be 0.692, which explains (0.692−

0.518)/0.757 = 0.23 of the difference in coeffi cients in Table 3 (column 2).
39To add together the above elements of this back-of-the-envelope decomposition, we implicitly require the

ratio of fuel effi ciencies ∆ki/∆kj between Southwest and the legacy carriers to be the same for the whole sample
as it was in the common routes.
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legacy carriers together. Table B2, column 2, reveals that Southwest remains the only carrier

to have a pass-through rate significantly greater than 1. Second, in Appendix B.3 we explore

a larger set of control variables that address additional demand- and supply-side factors that

could be relevant to airlines’ pricing choices (GDP per capita, population, network density,

potential entry by Southwest à la Goolsbee and Syverson (2008) and the effect of bankruptcy).

The pass-through rates in Table B4 remain qualitatively and statistically unchanged. Third, in

Appendix B.4 we present results of estimating Equation (7) on a route-by-route level rather than

as a panel, in a way closely related to the Mean Group estimator in Pesaran and Smith (1995)

and the estimation strategy used in Atkin and Donaldson (2015). The principal advantage

of this approach relative to panel regressions is that it allows for greater heterogeneity across

routes within an airline, at the cost of less comprehensive time controls. The results in Table

B5 are again similar to our baseline.

5. Calculating the impacts of carbon pricing using GLC

In this section, we combine our pass-through estimates with GLC theory to calculate the pre-

dicted impact of a carbon price on US airlines.

5.1. Step 2: Verifying GLC’s assumptions. The second step, before applying GLC’s

results, is to verify that the underlying assumptions are a reasonable approximation to firm

i’s production technology and competitive environment. GLC requires no specific assumptions

about demand functions, the mode of competition, competitors’ technologies and strategies,

rationality or equilibrium. Many of these factors are unknown for airlines, and there will be

considerable intra-industry heterogeneity. As each airline operates in multiple markets, we use

multidimensional GLC and next discuss its assumptions.

Input price-taking (A1M) is a reasonable assumption in that any airline cannot influence the

global oil price, which is the primary determinant of its jet fuel price. Likewise, the price-taking

assumption is appropriate in the context of an emissions tax.

Cost-minimizing inputs (A2M) also appears reasonable for airlines. Fuel costs are often an

airline’s largest cost, amounting to 20−50% of its total cost base (Zhang and Zhang, 2017), so it

clearly has strong incentives to minimize fuel costs. Future carbon costs are likely to be managed

in conjunction with an airline’s overall commodity-market exposure, so we expect these to be
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similarly optimized. Examples of fuel/emissions reductions by airlines include adjusting flight

time, cabin weight, and leasing newer aircraft. These kinds of reversible, continuous and often

operational changes are consistent with our framework; anything that airlines did in the past

in response to fuel prices, they are likely to do again in response to a carbon price.40

Constant returns to scale (A3M) is a more substantive assumption, though it is standard in

much of the airlines literature.41 The evidence on whether it holds empirically is inconclusive:

while some studies estimate modest scale economies others find no such evidence (Zhang and

Zhang, 2017) so our analysis is consistent with the notion that these are relatively weak in

comparison with the marginal price-cost shifts studied here.42 Note also that the presence of

fixed costs is not an issue for the application of GLC.

Linear product market behaviour (A4M) is a key assumption underlying GLC. A direct

test of whether A4M holds in a given setting would require full information on marginal costs.

Obtaining such information is known to be extremely diffi cult in most markets. The alternative

of estimating marginal costs through a structural model (for example, Bresnahan, 1989; Berry,

et al., 1995; Nevo, 2001) would require a whole set of additional assumptions that defeats the

purpose of using the GLC framework in the first place. Instead, an indirect way to test this

assumption is by providing evidence that demand does not exhibit significant non-linearities;

as explained above, given A1M-A3M, standard models of imperfect competition then imply

that A4M holds. We conduct two relevant empirical tests. First, we estimate pass-through on

monopoly routes using our baseline model (7). The estimated pass-through is 0.6 (Table B6

in Appendix B) and statistically not different from 0.5, which is the pass-through rate for a

monopolist facing linear demand (Bulow and Pfleiderer, 1983). This is in line with Genakos and

Pagliero (2019), who find a similar result for monopolists in the retail petroleum market. This

result provides direct evidence that demand convexity is not significant for monopoly routes.

40Other abatement activities that fit less well with our approach are one-off, predominantly capital changes,
such as purchasing new aircraft or installing wing tips. If these kinds of abatement dominate over the period we
study, our historic pass-through results may give less good predictions of the impact of future carbon pricing.
41Brander and Zhang (1990) discuss how to conceptualise constant marginal costs in the case of airlines; Berry

and Jia (2010) estimate marginal costs which are constant for a given vector of route characteristics.
42There is stronger evidence for economies of scope: a higher network density of its route portfolio can confer a

competitive advantage on an airline– but this is not inconsistent with GLC theory. As is common in the airlines
literature, our empirical analysis does not account for potentially complex network effects with other routes (see,
e.g., Ciliberto and Tamer, 2009).
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Second, given that GLC allows for non-linearities in rivals’prices (see Remark 4), we directly

test for the existence of non-linear demand terms in own price in duopoly and triopoly markets.

In both cases, we fail to reject the null of insignificant coeffi cients (details are in Appendix B.5).

In sum, A1M-A3M combined with evidence of no significant demand non-linearities provide

empirical support to maintain A4M in our application.

5.2. Step 3: Profit impacts of an exogenous carbon price. Given that A1M-A4M

hold, we can apply multidimensional GLC’s Proposition 2 to estimate the profit impacts of a

carbon price. We begin by examining the impact of an exogenous carbon price of $30/tCO2,

which is roughly the social cost of carbon (SCC) reported by Nordhaus (2017) and calculated

by the US government.43 Importantly for the external validity of our results, the wide variation

of jet fuel prices over our period exceeds by a considerable margin the variation in costs that a

$30/tCO2 carbon price would induce. Hence, our simulated carbon-price shock lies within the

range of fuel cost shocks that airlines responded to over the sample period.

Using our baseline pass-through estimates (Table 3, column 2) and Proposition 2(c), the

impact of a $30/tCO2 carbon price is summarised in Table 4, columns 1-3.44 The legacy

carriers’profits are expected to fall by approximately $234 million, whereas Southwest’s profits

increase by $98 million. As a percentage of revenue, these amounts correspond to a 1.60%

decrease for the legacy carriers and a 1.55% increase for Southwest. The intuition is that, on

average, legacy carriers’pass-through is less than 100%, so their profit margins decline as costs

increase; by multidimensional GLC’s A4M, this leads to a fall in their sales and profits. For

Southwest, this logic applies in reverse and so its profits increase due to carbon regulation. The

overall effect on the airline industry is a $136 million (or alternatively a modest 0.65%) decline

in profits. This is much less than the $463 million profit decline from a naive “static”calculation

43The US Interagency Working Group on Social Cost of Greenhouse Gases (IAWG 2016) has compared and
averaged the results of the major models that are used to estimate the SCC. The results for the end of our period
of study are around $30/tCO2.
44Proposition 2(c) also requires two auxiliary conditions: (i) the cost shock due to regulation is "small" relative

to product price and (ii) there is limited scope for factor substitution. First, from Table 2, emissions costs at
$30/tCO2 are about 3% of the average ticket price for both Southwest and legacy carriers. Second, clearly there
is limited scope for large-scale jet fuel substitution. However, in practice, airlines can increase fuel effi ciency by
adjusting various aspects of a flight (e.g., route and altitude to minimize the impact of wind, holding patterns
and taxiing between runway and terminal, etc.). We estimate empirically that a 1% increase in carbon prices
decreases the emissions’ intensity by -0.03% for legacy carriers to -0.01% for Southwest (results not reported
here, available on request). In sum, we interpret both auxiliary conditions of Proposition 2(c) as being met (more
details in Appendix B.6).
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(= −
∑n

i=1(τ − τ)ei(τ)). GLC’s results identify the winners and losers from carbon pricing, and

therefore also inform us about the likely political game to be played.

While our finding of pass-through heterogeneity in the airline industry is novel, the con-

clusions on the calculated profit impact via GLC are consistent with several findings in the

literature. Goolsbee and Syverson (2008), Ciliberto and Tamer (2009) and Berry and Jia (2010)

variously point to Southwest being more effi cient, better able to cope with shocks, or especially

threatening to its rivals (the “Southwest is special”effect discussed above). Gaudenzi and Buc-

ciol (2016) report jet fuel price rises are associated with significantly more negative stock-market

returns for legacy carriers than for Southwest. While these authors stress differences in hedging

strategies, our findings offer a new explanation for their results.

5.3. Consumer surplus and social welfare. We now extend our analysis by showing

how the multidimensional GLC structure– combined with some additional assumptions– yields

results on social welfare (see Appendix C.1 for details).

To be able to make statements about welfare, we introduce two additional assumptions.

A5M assumes that aggregate consumer surplus S can be written in terms of a gross consumer

utility function V (·) that depends on the quantities of the products offered by all firms in the

market. Our formulation continues to allow for a wide range of demand-side properties such

as substitutes and complements, differentiated products, and so on; we do not require specific

functional-form assumptions on V (·). A6M assumes that environmental damages D(E) depend

on industry-wide emissions E. In other words, which firms produce emissions does not matter;

only the aggregate is relevant. This is the appropriate setup for climate change.

Social welfare can therefore be written as W (τ) = S(τ) + Π(τ) + τE(τ) −D(E(τ)), where

the third term is government revenue.45 To obtain welfare results, which depend on industry

wide-profits Π, we now assume that multidimensional GLC’s A1M—A4M hold for each firm in

the industry.

We thus obtain two further suffi cient-statistics results summarized in Proposition 3. First,

the change in consumer surplus (∆S) is driven by the rate of industry-average multidimensional

pass-through ρ̃M ≡
∑n

i=1
ei
E ρ

M
i . Second, the change in social welfare (∆W ) depends on ρ̃

Mas

45Government revenue from carbon pricing is a transfer from producers.

44



well as the induced change in industry-wide emissions (dE(τ)/dτ). This shows how pass-through

is also critical for welfare analysis under GLC.

Column (3) of Table 4 applies these results to US airlines. Based on our carrier-level pass-

through estimates, we obtain an industry-average pass-through rate ρ̃M = 0.853. This yields

that consumer surplus declines by $395 million at our $30/tCO2 carbon price. Conversely, we

find that social welfare rises by $49 million: the reduction in consumer surplus and industry

profits is outweighed by environmental gains.46 However, our confidence levels do not allow

us to rule out the possibility that total welfare declines at the lower end of our pass-through

estimates (for which the decline in industry profits is larger).

5.4. Political economy and an endogenous carbon price. So far we have focused on a

regulation τ that is exogenous. However, one could argue that regulation cannot be treated as a

“manna from heaven”, especially for an influential industry like US airlines. We therefore show

in Proposition 4 (see Appendix C.2 for details), for the case of an emissions tax, how regulation

can be endogenized using multidimensional GLC’s A1M—A6M. This analysis brings together

two strands of prior research: (1) an influential literature following Grossman and Helpman

(1994) in which firms lobby a government “for sale”; (2) a classic literature following Buchanan

(1969) on the optimal design of emissions taxes under imperfect competition in the product

market.47 In the model, the government cares about social welfare– which includes the social

cost of carbon emissions– but also gains utility from “contributions” by corporate lobbyists.

Proposition 4 derives the optimal carbon price τ∗(λ) as a function of the Grossman-Helpman

lobbying parameter λ. It generalizes existing literature to richer modes of imperfect competition

and provides a unifying result in terms of the industry-average of firm-level pass-through rates.

We apply this result to US airlines. Both distortions push downwards the equilibrium

carbon price: (1) as industry-average pass-through ρ̃M = 0.853 lies below 100%, the industry

collectively opposes a carbon tax and lobbies the government to water it down;48 (2) to mitigate

46To obtain this result, we estimate the induced change in industry-wide emissions using our airlines data,
confirming that carbon pricing reduces aggregate emissions, dE(τ)/dτ < 0. A detailed description is given in
Appendix B.7.
47By assumption, the government does not have access to another policy instrument (such as a price control)

to directly address market power.
48The exception is that, by GLC’s logic, Southwest should individually endorse the carbon tax.
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deadweight losses from market power, the government lessens the increase in product prices by

softening the carbon price. Taking the social marginal damage as $30/tCO2, and calibrating λ

using prior literature, we find an endogenous carbon price of $17.68/tCO2– around 41% lower

than the Pigouvian benchmark. The profit impacts of regulation, shown in columns (4)-(6)

of Table 4, are therefore less pronounced for the endogenous carbon price: a loss of only 0.94

percentage points for the legacy carriers and a gain of only 0.91 percentage points for Southwest.

This translates into a welfare gain of around $77.3 million. As expected, this exceeds the welfare

change under the exogenous carbon price; furthermore, our confidence levels now allow us to

rule out a negative welfare impact.49

6. Conclusions

We have developed GLC– a new, simple, flexible reduced-form model of imperfect competition

that nests many existing oligopoly models as special cases. We showed how firm-level cost

pass-through alone is a suffi cient statistic for the profit impact of regulation on individual

firms. Compared with existing literature, GLC relies heavily on supply linearity but allows

near-arbitrary firm heterogeneity and does not require information about conduct parameters

and markups or assumptions about rationality or equilibrium. We also showed how the GLC

structure can be used for welfare analysis and to endogenize the extent of regulation. To

illustrate GLC’s empirical usefulness, we estimated ex ante the impacts of future carbon pricing

for US airlines. We found significant intra-industry heterogeneity in pass-through between low-

cost and legacy carriers, driven by differences in product portfolios, cost structures and consumer

demand. From a policy perspective, we therefore expect these carrier types to have very different

incentives to embrace climate regulation.

We developed GLC with the objective of a simple yet robust modelling approach that can

be put to use on a range of policy issues across different industries. We hope that GLC will

prove useful in other single-industry contexts that, like airlines, are characterized by complex

firm heterogeneity in demand, costs and conduct. This is common feature of many applications

in industrial organization but it is also increasingly relevant for work in public economics, for

49We can also decompose the “shortfall”in carbon pricing relative to the Pigouvian benchmark: the Buchanan
market-power effect accounts for almost 90% of the shortfall– and is therefore empirically much stronger than
the Grossman-Helpman lobbying effect. A detailed description is given in Appendix B.8.
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example, studying the welfare impacts of a soda tax. GLC also lends itself to cross-industry

analysis that seeks to apply a consistent economic structure across many different industries.

This a common feature of work in macroeconomics and international trade, such as examining

the impact of tariff reforms in reducing production costs, and in labour economics, such as

studying the impact of a minimum wage. GLC’s comparative advantage lies in lower complexity

in conducting ex ante policy evaluations, rooted in the theory of imperfect competition, but

without requiring commitment to a particular model or notion of equilibrium.
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Appendices
A. Proofs

Proof of Proposition 1. We begin with some preliminaries and then prove parts (a)—
(c) of the result. In general, using A1, firm i’s profits as a function of regulation τ are
given by Πi(τ) = pi(τ)xi(τ) − Ci(xi(τ), ei(τ)) − τei(τ). Using A2 and A3, it follows that
[Ci(xi(τ), ei(τ)) + τei(τ)] = ki(τ)xi(τ) as ei(τ) = zi(τ)xi(τ) and ki(τ) = ci(τ) + τzi(τ), so firm
i’s (optimized) profits can be written as Πi(τ) = [pi(τ) − ki(τ)]xi(τ). We now pin down the
change in firm i’s profits ∆Πi(τ , τ ; Φ) ≡ [Πi(τ ; Φ)− Πi(τ ; Φ)] in response to a regulation with
scope Φ tightening from τ to τ under the respective assumptions of parts (a)—(c).

For part (a), a “small” tightening of regulation from τ to τ (with τ → τ) means that the
profit impact can be written as a linearization around the initial profit level:

∆Πi(τ , τ ; Φ)|τ→τ ' (τ − τ)
dΠi(τ ; Φ)

dτ

∣∣∣∣
τ=τ

.

By A4, xi(τ) = ψi[pi(τ)− ki(τ)], so firm i’s profits can be written as Πi(τ) = ψi[pi(τ)− ki(τ)]2.
Hence performing the differentiation gives:

dΠi(τ ; Φ)

dτ

∣∣∣∣
τ=τ

= 2ψi[pi(τ)− ki(τ)]

(
dpi(τ)

dτ

∣∣∣∣
τ=τ

− dki(τ)

dτ

∣∣∣∣
τ=τ

)

= 2xi(τ)

(
dpi(τ)

dτ

∣∣∣∣
τ=τ

− dki(τ)

dτ

∣∣∣∣
τ=τ

)
= 2xi(τ)[ρi(τ ; Φ)− 1]zi(τ)

= −2ei(τ)[1− ρi(τ ; Φ)],

where the second equality again uses A4, the third equality uses dki(τ)/dτ = zi(τ), which
follows from A1—A3 and the envelope theorem, as well as the definition of the marginal rate of
firm-level cost pass-through ρi(τ ; Φ) ≡ [dpi(τ ; Φ)/dτ ]/[dki(τ)/dτ ], and the fourth equality uses
the definition of the regulatory intensity zi ≡ ei/xi. This completes the proof of part (a).

For part (b), the change in firm i’s profits in response to a “large” tightening in regula-
tion from τ to τ can be written as the integral of small changes as characterized in part (a),
∆Πi(τ , τ ; Φ) = 2

∫ τ
τ=τ [dΠi(τ ; Φ)/dτ ]dτ. Alternatively it can be expressed as:

∆Πi(τ , τ ; Φ) = [pi(τ)− ki(τ)]∆xi(τ , τ ; Φ) + [∆pi(τ , τ ; Φ)−∆ki(τ , τ)]xi(τ) +

[∆pi(τ , τ ; Φ)−∆ki(τ , τ)]∆xi(τ , τ ; Φ),

where note that the unit cost increase ∆ki(τ , τ) does not depend on Φ as it is internal to firm
i (by A1-A3). The first two terms together make up the “first-order effect”on profits and the
third term represents the “second-order effect”. Next we derive expressions for these two effects
in terms of pass-through.

For the first-order effect, by A4, xi(τ) = ψi[pi(τ) − ki(τ)] so that the change in firm i’s
output in response to tighter regulation satisfies:

∆xi(τ , τ ; Φ) = ψi[∆pi(τ , τ ; Φ)−∆ki(τ , τ)].

Using this, the two parts of the first-order effect can be re-written in combined form as:

[pi(τ)− ki(τ)]∆xi(τ , τ ; Φ) + [∆pi(τ , τ ; Φ)−∆ki(τ , τ)]xi(τ) = 2xi(τ)[∆pi(τ , τ ; Φ)−∆ki(τ , τ)]
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Next we rewrite this in terms of firm i’s initial use of the regulated factor as follows:

2xi(τ)[∆pi(τ , τ ; Φ)−∆ki(τ , τ)] = 2xi(τ)[ρi(τ , τ ; Φ)− 1]∆ki(τ , τ)

= 2ei(τ)[ρi(τ , τ ; Φ)− 1]
∆ki(τ , τ)

zi(τ)

= 2ei(τ)[ρi(τ , τ ; Φ)− 1]

∫ τ
τ=τ zi(τ)

zi(τ)

= 2(τ − τ)ei(τ)[ρi(τ , τ ; Φ)− 1]gi(τ , τ),

where the first equality uses the definition of the average rate of firm-level cost pass-through,
ρi(τ , τ ; Φ) ≡ ∆pi(τ , τ ; Φ)/∆ki(τ , τ), the second equality uses the definition of the regulatory
intensity zi ≡ ei/xi, the third equality uses ∆ki(τ , τ) =

∫ τ
τ=τ zi(τ), which follows from A1—A3

and the envelope theorem, and the fourth equality uses our definition of the extent of factor
substitution, gi(τ , τ) = [

∫ τ
τ=τ zi(τ)dτ ]/[(τ − τ)zi(τ)] > 0.

For the second-order effect, similarly, we rewrite as follows:

[∆pi(τ , τ ; Φ)−∆ki(τ , τ)]∆xi(τ , τ ; Φ) = ∆ki(τ , τ)[ρi(τ , τ ; Φ)− 1]∆xi(τ , τ ; Φ)

= (τ − τ)zi(τ)gi(τ , τ)[ρi(τ , τ ; Φ)− 1]∆xi(τ , τ ; Φ)

= (τ − τ)ei(τ)gi(τ , τ)[ρi(τ , τ ; Φ)− 1]
∆xi(τ , τ ; Φ)

xi(τ)
,

where the first equality again uses the definition of average pass-through ρi, the second equality
uses the relationship ∆ki(τ , τ) =

∫ τ
τ=τ zi(τ)dτ = (τ −τ)zi(τ)gi(τ , τ), and the third equality uses

the definition of the regulatory intensity zi ≡ ei/xi. The output change follows as:

∆xi(τ , τ ; Φ)

xi(τ)
=
ψi[∆pi(τ , τ ; Φ)−∆ki(τ , τ)]

ψi[pi(τ)− ki(τ)]

=
∆ki(τ , τ)[ρi(τ , τ ; Φ)− 1]

[pi(τ)− ki(τ)]

=
(τ − τ)zi(τ)gi(τ , τ)[ρi(τ , τ ; Φ)− 1]

[pi(τ)− ki(τ)]

=
[(τ − τ)zi(τ)/pi(τ)]gi(τ , τ)[ρi(τ , τ ; Φ)− 1]

[pi(τ)− ki(τ)]/pi(τ)
,

where the first equality uses A4, the second equality uses the definition of pass-through ρi, the
third uses the definition of the extent of factor substitution gi, and the fourth equality is simple
rearranging. This finally allows us to write the second-order effect as:

[∆pi(τ , τ ; Φ)−∆ki(τ , τ)]∆xi(τ , τ ; Φ) = (τ − τ)ei(τ)gi(τ , τ)[ρi(τ , τ ; Φ)− 1]×

× [(τ − τ)zi(τ)/pi(τ)]gi(τ , τ)[ρi(τ , τ ; Φ)− 1]

[pi(τ)− ki(τ)]/pi(τ)
.

Using these expressions for the first- and second-order effects in the initial expression for the
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profit impact of firm i shows that:

Πi(τ , τ ; Φ) = [pi(τ)− ki(τ)]∆xi(τ , τ ; Φ) + [∆pi(τ , τ ; Φ)−∆ki(τ , τ)]xi(τ)+

+ [∆pi(τ , τ ; Φ)−∆ki(τ , τ)]∆xi(τ , τ ; Φ)

= 2[(τ − τ)ei(τ)][ρi(τ , τ ; Φ)− 1]gi(τ , τ)

(
1 +

[(τ − τ)zi(τ)/pi(τ)]gi(τ , τ)[ρi(τ , τ ; Φ)− 1]

2[pi(τ)− ki(τ)]/pi(τ)

)
= −2[(τ − τ)ei(τ)][1− ρi(τ , τ ; Φ)]gi(τ , τ)

(
1− gi(τ , τ)[1− ρi(τ , τ ; Φ)][(τ − τ)zi(τ)/pi(τ)]

2[pi(τ)− ki(τ)]/pi(τ)

)
= −2[1− ρi(τ , τ ; Φ)][(τ − τ)ei(τ)]Ωi(τ , τ ; Φ),

where the final equality uses the definition

Ωi(τ , τ ; Φ) ≡ gi(τ , τ)

(
1− gi(τ , τ)[1− ρi(τ , τ ; Φ)][(τ − τ)zi(τ)]/pi(τ)

2[pi(τ)− ki(τ)]/pi(τ)

)
as claimed, and Ωi(τ , τ ; Φ) > 0 follows because xi(τ) + ∆xi(τ , τ ; Φ) > 0, that is, firm i remains
active, by assumption (as is implicit in A4) following the tightening of regulation. This completes
part (b) of the result.

For part (c), under the two maintained assumptions (i) cost increase is modest relative to its
initial price, that is, [(τ−τ)zi(τ)]/pi(τ) is “small”, and (ii) regulatory intensity is approximately
constant, that is, zi(τ) ' zi(τ), the result follows immediately from the expression derived in
part (b). In particular, the second assumption implies gi(τ , τ) ' 1 which, combined with the
first assumption, then implies Ωi(τ , τ ; Φ) ' 1, and so:

∆Πi(τ , τ ; Φ) ' −2[1− ρi(τ , τ ; Φ)][(τ − τ)ei(τ)],

as claimed, thus completing the final part (c) of the proof.
Proof of Proposition 2. In general, using A1M, firm i’s profits across its offering as a function
of regulation τ is given by: Πi =

∑
m∈M pimxim − Ci(xi, ei) − τei. Using multidimensional

GLC’s A2M and A3M, it follows that [Ci(xi(τ), ei(τ)) + τei(τ)] =
∑

m∈M kim(τ)xim(τ) as
eim(τ) = zim(τ)xim(τ) and kim(τ) = cim(τ) + τzim(τ), so firm i’s (optimized) profits become:

Πi(τ) =
∑
m∈M

{[pim(τ)− kim(τ)]xim(τ)} .

We now prove parts (a)—(c) of the result. For part (a), by A4M, xim(τ) = ψim[pim(τ)−kim(τ)],
and so firm i’s profits can be written as Πi(τ) =

∑
m∈M ψim[pim(τ)− kim(τ)]2. With a “small”

tightening of a regulation τ with scope Φ from τ to τ (with τ → τ), the profit impact can be
written as a linearization around the initial profit level:

∆Πi(τ , τ ; Φ)|τ→τ ' (τ − τ)
dΠi(τ ; Φ)

dτ

∣∣∣∣
τ=τ

.

Hence performing the differentiation gives:

dΠi(τ ; Φ)

dτ

∣∣∣∣
τ=τ

= 2
∑
m∈M

xim(τ)

(
dpim(τ)

dτ

∣∣∣∣
τ=τ

− dkim(τ)

dτ

∣∣∣∣
τ=τ

)
= 2

∑
m∈M

xim(τ)[ρim(τ ; Φ)− 1]zim(τ)

= 2
∑
m∈M

eim(τ)[ρim(τ ; Φ)− 1]

= −2ei(τ)[1− ρMi (τ ; Φ)],
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where the first equality uses A4M, the second equality uses the definition of marginal cost
pass-through for component m ∈ M , ρim(τ ; Φ) ≡ [dpim(τ ; Φ)/dτ ]/[dkim(τ)/dτ ] as well as
dkim(τ)/dτ = zim(τ) from the envelope theorem (A1M-A3M), the third equality uses definition
of the regulatory intensity zim ≡ eim/xim for component m ∈ M , and the fourth equality
uses the definition of multidimensional cost pass-through, ρMi (τ ; Φ) ≡

∑
m∈M ωim(τ)ρim(τ ; Φ),

where ωim(τ) ≡ eim(τ)/ei(τ) as well as
∑

m∈M ωim(τ) = 1.

For part (b), the change in firm i’s profits in response to a “large” tightening in regula-
tion from τ to τ can be written as the integral of small changes as characterized in part (a),
∆Πi(τ , τ ; Φ) = 2

∫ τ
τ=τ [dΠi(τ ; Φ)/dτ ]dτ. Alternatively it can be expressed as:

∆Πi(τ , τ ; Φ) =
∑
m∈M

{
[pim(τ)− kim(τ)]∆xim(τ , τ ; Φ) + [∆pim(τ , τ ; Φ)−∆kim(τ , τ)]xim(τ)+

+[∆pim(τ , τ ; Φ)−∆kim(τ , τ)]∆xim(τ , τ ; Φ)

}

where note that the unit cost increases ∆kim(τ , τ) do not depend on Φ as they are internal to
firm i (by A1M-A3M). The first two terms together make up the “first-order effect”on profits
and the third term represents the “second-order effect”. Next we derive expressions for these
two effects in terms of pass-through.

For the first-order effect, by A4M, xim(τ) = ψim[pim(τ)−kim(τ)] so that the change in firm
i’s output of component m of its offering in response to tighter regulation satisfies:

∆xim(τ , τ ; Φ) = ψim[∆pim(τ , τ ; Φ)−∆kim(τ , τ)].

Using this, the two parts of the first-order effect can be re-written in combined form as:∑
m∈M

{[pim(τ)− kim(τ)]∆xim(τ , τ ; Φ) + [∆pim(τ , τ ; Φ)−∆kim(τ , τ)]xim(τ)}

= 2
∑
m∈M

xim(τ)[∆pim(τ , τ ; Φ)−∆kim(τ , τ)]

Next we rewrite this in terms of firm i’s initial use of the regulated factor as follows:

2
∑
m∈M

xim(τ)[∆pim(τ , τ ; Φ)−∆kim(τ , τ)] = 2
∑
m∈M

xim(τ)[ρim(τ , τ ; Φ)− 1]∆kim(τ , τ)

= 2
∑
m∈M

eim(τ)[ρim(τ , τ ; Φ)− 1]
∆kim(τ , τ)

zim(τ)

= 2
∑
m∈M

eim(τ)[ρim(τ , τ ; Φ)− 1]

∫ τ
τ=τ zim(τ)

zim(τ)

= 2(τ − τ)
∑
m∈M

eim(τ)[ρim(τ , τ ; Φ)− 1]gim(τ , τ),

where the first equality uses the definition of the average rate of firm-level cost pass-through on
component m, ρim(τ , τ ; Φ) ≡ ∆pim(τ , τ ; Φ)/∆kim(τ , τ), the second equality uses the definition
of the regulatory intensities zim ≡ eim/xim, the third equality uses ∆kim(τ , τ) =

∫ τ
τ=τ zim(τ),

which follows from A1M-A3M and the envelope theorem, and the fourth equality uses our
definition of the extent of factor substitution, gim(τ , τ) = [

∫ τ
τ=τ zim(τ)dτ ]/[(τ − τ)zim(τ)] > 0.
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For the second-order effect, similarly, we rewrite as follows:∑
m∈M

[∆pim(τ , τ ; Φ)−∆kim(τ , τ)]∆xim(τ , τ ; Φ) =
∑
m∈M

∆kim(τ , τ)[ρim(τ , τ ; Φ)− 1]∆xim(τ , τ ; Φ)

= (τ − τ)
∑
m∈M

zim(τ)gim(τ , τ)[ρim(τ , τ ; Φ)− 1]∆xim(τ , τ ; Φ)

= (τ − τ)
∑
m∈M

eim(τ)gim(τ , τ)[ρim(τ , τ ; Φ)− 1]
∆xim(τ , τ ; Φ)

xim(τ)
,

where the first equality again uses the definition of average pass-through ρim, the second equal-
ity uses the relationship ∆kim(τ , τ) =

∫ τ
τ=τ zim(τ)dτ = (τ − τ)zim(τ)gim(τ , τ), and the third

equality uses the definition of the regulatory intensity zim ≡ eim/xim. The output change
follows as:

∆xim(τ , τ ; Φ)

xim(τ)
=
ψim[∆pim(τ , τ ; Φ)−∆kim(τ , τ)]

ψim[pim(τ)− kim(τ)]

=
∆kim(τ , τ)[ρim(τ , τ ; Φ)− 1]

[pim(τ)− kim(τ)]

=
(τ − τ)zim(τ)gim(τ , τ)[ρim(τ , τ ; Φ)− 1]

[pim(τ)− kim(τ)]

=
[(τ − τ)zim(τ)/pim(τ)]gim(τ , τ)[ρim(τ , τ ; Φ)− 1]

[pim(τ)− kim(τ)]/pim(τ)
,

where the first equality uses A4M, the second equality uses the definition of pass-through ρim,
the third uses the definition of the extent of factor substitution gim, and the fourth equality is
simple rearranging. This finally allows us to write the second-order effect as:∑

m∈M
[∆pim(τ , τ ; Φ)−∆kim(τ , τ)]∆xim(τ , τ ; Φ)

= (τ − τ)
∑
m∈M

{
eim(τ)gim(τ , τ)[ρim(τ , τ ; Φ)− 1]

[(τ − τ)zim(τ)/pim(τ)]gim(τ , τ)[ρim(τ , τ ; Φ)− 1]

[pim(τ)− kim(τ)]/pim(τ)

}
.

Using these expressions for the first- and second-order effects in the initial expression for the
profit impact of firm i shows that:

Πi(τ , τ ; Φ) =
∑
m∈M

{
[pim(τ)− kim(τ)]∆xim(τ , τ ; Φ) + [∆pim(τ , τ ; Φ)−∆kim(τ , τ)]xim(τ)

+[∆pim(τ , τ ; Φ)−∆kim(τ , τ)]∆xim(τ , τ ; Φ)

}
= 2(τ − τ)

∑
m∈M

eim(τ)[ρim(τ , τ ; Φ)− 1]gim(τ , τ)+

+ (τ − τ)
∑
m∈M

{
eim(τ)gim(τ , τ)[ρim(τ , τ ; Φ)− 1]

[(τ − τ)zim(τ)/pim(τ)]gim(τ , τ)[ρim(τ , τ ; Φ)− 1]

[pim(τ)− kim(τ)]/pim(τ)

}

= −2(τ − τ)

[ ∑
m∈M eim(τ)[1− ρim(τ , τ ; Φ)]gim(τ , τ)−∑

m∈M

{
eim(τ)gim(τ , τ)[1− ρim(τ , τ ; Φ)] [(τ−τ)zim(τ)/pim(τ)]gim(τ ,τ)[1−ρim(τ ,τ ;Φ)]

2[pim(τ)−kim(τ)]/pim(τ)

} ]
= −2

∑
m∈M

[1− ρim(τ , τ ; Φ)][(τ − τ)eim(τ)]Ωim(τ , τ ; Φ),
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where the final equality uses the definition

Ωim(τ , τ ; Φ) ≡ gim(τ , τ)

(
1− gim(τ , τ)[1− ρim(τ , τ ; Φ)][(τ − τ)zim(τ)/pim(τ)]

2[pim(τ)− kim(τ)]/pim(τ)

)
as claimed, and Ωim(τ , τ ; Φ) > 0 follows because xim(τ) + ∆xim(τ , τ ; Φ) > 0, that is, firm i
remains active on each elementm, by assumption (as is implicit in A4M) following the tightening
of regulation. This completes part (b) of the result.

For part (c), under the two maintained assumptions that (i) the cost increase on each
component m is modest relative to its initial price, that is, [(τ − τ)zim(τ)]/pim(τ) is “small”for
all m ∈ M , and (ii) its regulatory intensity on each component m is approximately constant,
that is, zim(τ) ' zim(τ), the result follows immediately from the expression derived in part (b).
In particular, the second assumption implies gim(τ , τ) ' 1 for all m ∈M which, combined with
the first assumption, then implies Ωim(τ , τ ; Φ) ' 1 for all m ∈M , and so:

Πi(τ , τ ; Φ) ' −2
∑
m∈M

[1− ρim(τ , τ ; Φ)][(τ − τ)eim(τ)] = −2[1− ρMi (τ , τ ; Φ)][(τ − τ)ei(τ)]

using the definition of multidimensional average pass-through ρMi (τ , τ ; Φ) ≡
∑

m∈M ωim(τ)ρim(τ , τ ; Φ),
and thus completing the final part (c) of the proof.

B. Data construction and further results
B.1. Data construction. Ticket price pijt we obtain from the cleaned DB1A data pro-
vided by Severin Borenstein (the raw DB1A data, along with all the data below, are from the
Bureau of Transportation Statistics). We drop any non-direct tickets for ijt, and then con-
vert the nominal prices to real 2013Q4 USD using St. Louis Fed CPI data (as we do with all
monetary variables).

Per-passenger fuel cost kijt is constructed as follows, with the raw variable names given
parentheses. First we use the Form 41 (Schedule P-5.2) dataset, which contains carrier-aircraft-
time specific fuel costs (fuel_fly_ops), which we denote kilt. Following O’Kelly (2012), we
assume the fuel used to fly route j is a linear function of distance dj with a non-zero intercept:
kilj = b0ilt + b1iltdilj . The fixed cost comes from the fuel used in take-off and landing, and any
airport related activities; the variable cost is the ‘miles per gallon’fuel consumption at cruising
altitude. The fuel use data we have do not allow us to identify both the slope and the intercept,

so we use an average value for their ratio taken from EEA (2016): we set the ratio b0ilt
b1ilt

= 131

for all ilt, meaning take off and landing uses the same fuel as cruising 131 miles. Next we
use the T-100 Domestic Segment to assign aircraft to routes. We construct the share αijt(l)
of carrier i’s passengers on route j at time t that travelled on aircraft type l (aircraft_type).
We use total ‘effective distance’flown by each aircraft type l on each route j, d̃iljt = ( b

0

b1
+

distancej)× dep_perfomedijlt, so that αijt(l) =
d̃iljt∑
l
d̃iljt

. Using these shares we construct the

weighted average fuel cost kijt =
∑

l αijt(l)kilt.
Non-fuel cost index is constructed from Form 41 (Schedule P-5.2). We take, for each ilt,

total flying operating costs (tot_fly_ops) plus total maintenance costs (tot_dir_maint) minus
fuel costs (fuel_fly_ops). We then construct a weighted average value for each ijt using the
weights αijt(l) described above. Finally, we transform the carrier-route-time specific costs into
a carrier-time index of costs. This is done by dividing total costs by total passengers, for each
carrier-time. We normalise to the 2004Q1 value for American Airlines.

GDP growth is constructed with data from the Federal Reserve Bank of St. Louis. Using
state-level GDP data, for each route j we take the average of the states in which each of
the origin and destination airports are located. For 2004 we interpolated the annual data as
quarterly data are not available.

Competitors and low cost competitors (LCC) are constructed using the full DB1A
data. We define competitors to include all routes that serve the same city-city market as route j.
For example LAX-SLC is a competitor product to SNA-SLC because LAX and SNA both serve
the city of Los Angeles. Using the Bureau of Transportation Statistics’definition of a market
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(origin_city_market_id and dest_city_market_id), we count all carriers serving that market
with at least 1,000 passengers in a quarter. LLC competitors is the number of competitors from
the set of low-cost carriers, as defined by ICAO.

Carrier size is constructed using the full DB1A. It is the sum of all passengers on all routes
in a given quarter for a give airline.

B.2. Results for individual legacy carriers. Table B1 gives descriptive statistics for the
individual carriers in our sample. These confirm that the legacy carriers form a group distinct
from Southwest, for example on the basis of price, fuel cost or distance.

Table B2 contains the results of estimating a variant of Equation (4) with an interaction
term for each individual legacy carrier, rather than a single dummy for all legacy carriers (Table
B3 provides the results from the first stage estimates). It therefore provides the pass-through
rate for each airline. Column 1 is the baseline result in the main text, and column 2 gives the
pass-through results by airline. Southwest’s pass-through remains unchanged. The average of
the individual legacy carriers’pass-through rates is in line with the overall legacy carrier result
in the baseline. There is, however, considerable heterogeneity among the legacy carriers. Delta
has a particularly large pass-through rate. Despite this range, the results do support our prior
(following the airlines literature) to consider Southwest as distinct from the legacy carriers: it
is the only airline with a pass-through rate statistically significantly greater than 1.

B.3. Robustness. Table B4 contains the results with additional control variables that plau-
sibly could impact airlines’pricing decisions. Columns 1-5 show the impact of using alternative
measures of demand. All but two of the demand controls are self-explanatory. Gravity demand
(analogous to the concept as used in the trade literature) is a measure of demand on a route
constructed as the product of (per capita GDP times population) in origin and destination
cities, divided by distance. Network density is the number of actual connections (i.e. routes)
between airports in a carrier’s network, divided by the total number of possible connections (the
standard definition in the networks literature). Column 1 is the same baseline as in the main
text, and contains the only measure of demand that is statistically significant. In whichever
measure is used, the pass-through rates are very stable around the baseline result.

Column 6 includes a dummy for potential entry by Southwest, using the definition in Gools-
bee and Syverson (2008). We don’t find a significant effect, and the pass-through rates are
unchanged from the baseline. Column 7 reports the effect of bankruptcy (all carriers except
for Southwest were bankrupt at some point in this period). This is significant, but does not
statistically affect pass-through.

In addition to investigating the effect of controls on prices, we also interacted these variables
with fuel costs, to see if they had an effect directly on pass-through rates. We found almost no
results of statistical significance. We also experimented with varying the start and end dates of
our time period, which again had little impact on our estimates. These results are omitted in
the interests of space, but available on request.

B.4. Mean Group regressions. As a final robustness exercise, we allow for full hetero-
geneity across routes within a given carrier’s portfolio. The relationship of interest is a variant
of equation (4) given by:

pijt = ρijkijt +X ′ijtβij + λijt + ηij + εijt. (9)

Carrier-specific pass-through rates ρi are obtained from equation (9) by running a separate
regression for each carrier-route, and then taking a weighted average of the carrier-route ρij to
obtain a pass-through rate at the carrier level, ρi. The weights are emissions on the carrier-
route. This approach imposes no homogeneity restrictions on the parameters across carrier-
routes within an airline, which could be important given heterogeneities across routes in the
airline industry. In running a separate regression for each product, we take a similar approach to
Atkin and Donaldson (2015). The procedure could also be considered a special (non-dynamic)
case of the "Mean Group" estimator in Pesaran and Smith (1995). Note that allowing pass-
through rates and other parameters to vary across carrier-routes does not mean the routes are
independent in an economic sense, rather that their interdependencies are one of the many
characteristics captured by the pass-through rate that we seek to estimate.
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A drawback of using this approach is that, unlike in the standard fixed-effects baseline,
year-and-quarter time effects are not identified. Equation (9) is therefore estimated only with
quarterly time effects. Instruments and first stage use the analogue of Equation (8). The results
are given in Table B5. Southwest’s pass-through rate is 1.24, significantly above 1, and the legacy
carriers’pass-through rate is 0.75, significantly below 1, qualitatively and quantitatively very
similar to the baseline estimates.

B.5. Results in support of GLC’s A4M. We conduct two empirical tests to provide
evidence that demand does not seem to exhibit significant non-linearities. First, we estimate
the pass-through in monopoly routes using our baseline model (7). Results are reported in
Table B6. The estimated pass-through coeffi cient is 0.6 and not statistically different from
0.5 (Pr > χ2 = 0.66), which is the pass-through predicted by a monopoly model with linear
demand. This is very much in line with the results from Genakos and Pagliero (2019), who
find a similar result for monopolists in retail petroleum markets. This result provides evidence
that demand convexity does not seem to be significant in monopoly markets. The rest of the
coeffi cients are in line with the results in the baseline model, which is reassuring.

Second, we directly test for the existence of non-linear demand terms in own price (GLC
allows for non-linearities in rivals’prices) in duopoly and triopoly markets.50 We estimate a
simple semi-linear demand model of the number of passengers on carrier-route ij in quarter t
on own and rival prices, including squared terms, time effects and ij fixed effects. All prices
are instrumented using the same instruments as in equation (8). Table B7 reports the results
for the duopoly markets, whereas Table B8 for the triopoly. In duopoly markets (Table B7,
column 1) we can see that the OLS own and cross price coeffi cients are significantly negative
and positive, respectively, in line with expectations. Instrumenting both prices in column 2
moves the own price coeffi cient further away from zero. However, adding a squared term for
own price in column 3 is not significant (and similarly when moving from column 5 to column 6).
Remember, that GLC allows for non-linearities in rivals’prices, so we just want to test whether
a non-linear term on own price is improving the model fit. Likewise, in Table B8, column 1,
own and cross price coeffi cients are significant and have the expected sign for a triopoly market.
However, adding again a squared term for own price does not improve the fit of the model, as
it is not statistically significant. Although the data for tripoly markets is considerably smaller
and hence more noisy, none of the non-linear coeffi cients seem to be significant. Therefore,
results seems to suggest that there are no significant demand non-linearities in this case, which
together with assumptions A1M-A3M provide empirical support to also maintain assumption
A4M.

B.6. Results for auxiliary assumptions of Proposition 2(c). We here discuss the
evidence related to the two auxiliary assumptions for Proposition 2(c): (i) the cost shock due
to regulation is "small" relative to product price and (ii) there is limited scope for factor
substitution.

From Table 2, we can see that the emissions costs at a $30/tCO2 are about 3% of the average
ticket price for both Southwest (emissions cost/price = (4÷ 154.73)× 100 = 2.59%) and legacy
((emissions cost/price =(6.02÷227.75)×100 = 2.64%) carriers. We interpret this cost shock as
being “small”relative to the average ticket price (also remember that the sample only includes
domestic economy class tickets).

Regarding factor substitution, clearly both Southwest and legacy carriers have limited scope
for large-scale jet fuel substitution. However, in practice, airlines can increase fuel effi ciency
by adjusting various aspects of a flight (e.g., route and altitude to minimize the impact of
wind, holding patterns and taxiing between runway and terminal, etc.). We transformed fuel
prices to carbon prices (pcarbon = 0.00957× 30× pfuel) using the known constant technological
relationship (also given in the main text) and the $30/tCO2 SCC estimate from IAWG (2016).
We then estimated a log-log specification of carbon price on emissions, while using the same
controls (GDP growth, carrier size, number of competitors) and fixed effects (time and carrier-
route) as in our baseline specification. We estimate empirically that a 1% increase in carbon
prices decreases the emissions’intensity by −0.03% for legacy carriers to −0.01% for Southwest

50We have an insuffi cient number of observations to run any regression for markets with four players or more.
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(results not reported here, available on request). We again interpret these results as providing
evidence for limited factor substitutability.

B.7. Implementation of Proposition 3. We implement our theoretical results from Propo-
sition 3(a) for consumer welfare and 3(b) for social welfare using the following steps. First, we
utilize the appropriate level of regulation (τ): In Table 4, column 3 we use an exogenous
$30/tCO2, whereas in column 6 we use the endogenous $17.68/tCO2 (explained in the follow-
ing subsection). Second, we use our estimates of airline firm-level pass-through to obtain an
industry-average multidimensional pass-through rate of ρ̃M = 0.853 (see Table 4) together with
industry emissions in the last year of our sample (E(τ) = 15, 420, 727). Third, for the social
cost of carbon (SCC) we set D′ = $30/tCO2. Fourth, we derive dE(τ)/dτ by estimating the
tax elasticity of industry emissions η(τ) ≡ d lnE(τ)

d ln τ . We calculated total carrier emissions at the
route level and then estimated a log-log specification of carbon price on total emissions, while
controlling for GDP growth, carrier size, number of competitors, quarter and route fixed effects
(results not reported here, available on request). We obtain a statistically significant coeffi cient
of η = −0.253 (s.e. = 0.017), in line with the prior literature (for example, the midpoint of the
range of estimates in Fukui and Miyoshi (2017) is η = −0.256). As expected, airline emissions
respond negatively to carbon pricing– but the elasticity is not large. The implied dE(τ)

dτ can
then be backed out using the elasticity formula.

B.8. Implementation of Proposition 4. As noted in the main text, the question of
whether regulation can be treated as a “manna from heaven”arises naturally for an influential
industry like US airlines. We therefore apply Proposition 4 using our firm-level pass-through
estimates for airlines to obtain the political equilibrium carbon price for US airlines. More
precisely, we consider a domestic US policymaker who chooses her utility-maximizing level of
“complete regulation” for all airlines, cognizant of market power in airline markets and under
influence of political lobbying by the airline industry.

We make our theoretical result from Proposition 4 operational in four steps. First, for the
social cost of carbon (SCC) we again set D′ = $30/tCO2. Second, for the lobbying parameter
λ, we turn to the literature. Goldberg and Maggi (1999) were the first to empirically estimate
this parameter, finding λ = 0.02 for the US. McCalman (2004) and Mitra and Ulubasoglu
(2002) obtain similar results for Australia and Turkey respectively while Gawande and Bandy-
opadhyay (2000) find a much higher λ = 0.5. Based on these findings, we take λ = 0.1 as
our baseline. Third, we use our estimates of firm-level pass-through for airlines to obtain an
industry-average multidimensional pass-through rate of ρ̃M = 0.853 (see Table 4). As industry-
average pass-through lies below 100%, the industry collectively opposes a carbon tax and lobbies
the government to water it down. Fourth, we use our estimate of η = −0.253.

Using these parameters in the formula from Proposition 4 yields an endogenous carbon price
τ∗ equal to $17.68/tCO2, which is 41% lower than the exogenous carbon price set equal to the
SCC following the Pigouvian rule. This means that the profit impacts of regulation are less
pronounced for an endogenous carbon price: this mitigates the losses experienced by the legacy
carriers but conversely also limits the gains accruing to Southwest (see Table 4). This translates
into a welfare gain of around $77.3 million which, as expected, exceeds that under the exogenous
carbon price (at $30/tCO2).

We can decompose the “shortfall” in carbon pricing relative to the Pigouvian benchmark
into the two underlying distortions: market power and political lobbying.51 Observe that the
Buchanan market-power effect is logically prior in that it can exist in principle without any
Grossman-Helpman political lobbying (i.e., where λ = 0) but the reverse is not true.52 We
therefore re-run the calculation with λ = 0, i.e. with the lobbying channel switched off, and
find an endogenous carbon price of $18.98. We conclude that the Buchanan effect is empirically
much stronger than the Grossman-Helpman effect as it explains around 90% of the disparity
between the endogenous and exogenous carbon prices.

51 It is worth stressing that the shortfall in carbon pricing here is not driven by the "incompleteness" regulation
where a carbon price applies only to a subset of firms competing in an industry (Fowlie et al. 2016).
52 In our setting, without any market power, there are no profits and hence nothing to lobby over and so the

Grossman-Helpman effect is zero.
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In sum, we can draw two main conclusions for US airlines. First, the political-equilibrium
carbon price lies significantly below the SCC and, second, the shortfall in carbon pricing is
primarily driven by market power with a small additional role played by lobbying. Hence this
analysis may help explain why aviation has, so far, been a climate laggard. Looking ahead,
it also suggests that policies to address market power may be able to complement policies to
address environmental externalities.

We have re-run the numbers with different assumptions for the key parameters on political
lobbying (λ) and the emissions elasticity (η). In particular, we consider a range of values
λ ∈ [0, 1

2 ] based on the literature discussed above combined with a range η ∈ [−.287,−.220]
based on the 95% confidence intervals of our estimates and in accordance with prior literature.
The resulting estimates for the endogenous carbon price τ∗ vary within a range of $13 − $20,
suggesting that our baseline estimate is quite robust.

The conclusions are relatively more sensitive to pass-through. As discussed in the theory, a
lower industry-average pass-through exacerbates the market-power distortions and pushes the
endogenous carbon price downwards; varying pass-through down to ρ̃M = 0.635 (see Table 4),
we find that the carbon price falls to around $10 (depending on the precise values of λ, η). By
contrast, at its upper estimate ρ̃M = 1.072 (see Table 4), the qualitative nature of the results
flips: because pass-though now exceeds 100%, the industry welcomes a carbon tax and so the
endogenous carbon price τ∗ exceeds $30 (Proposition 4). Given our estimates, this case seems
relatively unlikely but we also cannot rule it out.

C. Welfare analysis and endogenous regulation
So far we have focused on the question of how a regulation affects firms’ profits. We here
extend this analysis in two directions. First, we show how the GLC structure– combined with
some additional assumptions– yields results on social welfare. Second, we use these results to
endogenize the government’s choice on the extent of regulation.

C.1. Welfare analysis. We begin with notation as we now need to be explicit about all
firms operating in the industry. Let the setMi denote the scope of offering of firm i ∈ N in multi-
dimensional GLC (for example, its number of products or markets) so that xi = (xim)m∈Mi , ei =
(eim)m∈Mi are the vectors of its output and factor use. For simplicity, we assume that regulation
τ is “complete”, i.e., it applies to the whole offering of all firms (in previous notation, Φ ≡ 1).
Unless stated otherwise, we now assume that multidimensional GLC’s A1M—A4M apply to all
n firms in the industry.

To be able to make statements about welfare, we introduce two additional assumptions:

A5M. Aggregate consumer surplus can be written as S = V (x1, ...,xn)−
∑n

i=1

∑
m∈Mi

pimxim,
where V (·) is gross consumer utility and consumers are utility-maximizers.

By consumer utility maximization, A5M yields an inverse demand curve for component m
of firm i’s offering as pim(x1, ...,xn) = ∂V/∂xim. This formulation continues to allow for a wide
range of demand-side properties such as substitutes and complements, differentiated products,
and so on. It is met, for example, by widely-used linear Bertrand and Cournot models of
multiproduct competition (see Section 3.3). As will become clear, we do not require specific
functional-form assumptions on gross consumer utility V (·).
A6M. Environmental damages D(E) ≥ 0 depend on aggregate industry-wide emissions E =∑n

i=1

∑
m∈Mi

eim and obey the standard properties D′(·), D′′(·) ≥ 0.

A6M takes the social cost of externality to be global: which firms produce emissions does
not matter; only the aggregate is relevant. This is the appropriate setup for climate change
and our interest in carbon pricing, and for other global public goods. The setup also allows for
there to be no externality, D(E) ≡ 0.

Social welfare can then be written in terms of regulation τ as W (τ) = S(τ) + Π(τ) +
τE(τ) −D(E(τ)), where Π(τ) ≡

∑n
i=1 Πi(τ) is industry profits and the third term represents

government revenue from regulation. Consumer expenditure (
∑n

i=1

∑
m∈Mi

pimxim) is a transfer
from consumers to producers while government revenue (τE) is a transfer from producers to
government.
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Recall that i’s multidimensional rate of cost pass-through is ρMi (τ) ≡
∑

m∈Mi
ωim(τ)ρim(τ),

with weights ωim(τ) ≡ eim(τ)/ei(τ), and define an industry-average multidimensional pass-
through as ρ̃M (τ) ≡

∑n
i=1

ei(τ)
E(τ)ρ

M
i (τ).

Our next result characterizes the impact of tighter regulation on consumer surplus and social
welfare:

Proposition 3. (a) Suppose that multidimensional GLC’s A1M—A3M (not necessarily A4M)
hold for each firm i ∈ N and A5M holds for consumer surplus. Then the first-order change in
consumer welfare is given by:

∆S(τ , τ) ≡ [S(τ)− S(τ)] ' −(τ − τ)E(τ)ρ̃M (τ).

(b) Suppose that multidimensional GLC’s A1M—A4M hold for each firm i ∈ N and A5M—A6M
hold for consumer surplus and the social cost of the externality. Then the first-order change in
social welfare is given by:

∆W (τ , τ) ≡ [W (τ)−W (τ)] ' −(τ − τ)

{
[1− ρ̃M (τ)]E(τ) + [D′(E(τ))− τ ]

dE(τ)

dτ

∣∣∣∣ τ=τ

}
.

Proof of Proposition 3. For part (a), by A5M, the envelope theorem implies that aggregate
consumer surplus satisfies:

dS(τ)

dτ
= −

n∑
i=1

∑
m∈Mi

xim(τ)
dpim(τ)

dτ
.

Using the definition of i’s firm-level cost pass-through for component m of its offering, ρim =
[dpim(τ)/dτ ]/[dkim(τ)/dτ ], and invoking multidimensional GLC’s A1M—A3M (but not requiring
A4M), we have dkim(τ)/dτ = zim(τ) = eim(τ)/xim(τ), again by the envelope theorem, and so
this can be rewritten as:

dS(τ)

dτ
= −

n∑
i=1

∑
m∈Mi

eim(τ)ρim(τ).

Finally, we can express this in terms of industry-average pass-through as follows:

dS(τ)

dτ
= −

n∑
i=1

ei(τ)
∑
m∈Mi

eim(τ)

ei(τ)
ρim(τ) = −

n∑
i=1

ei(τ)ρMi (τ) = −E(τ)

n∑
i=1

ei(τ)

E(τ)
ρMi (τ) = −ρ̃M (τ)E(τ).

where the second equality uses the definition of i’s multidimensional rate of cost pass-through
ρMi (τ) ≡

∑
m∈Mi

ωim(τ)ρim(τ), with weights ωim(τ) ≡ eim(τ)/ei(τ), and the fourth equality

uses the definition of industry-average multidimensional pass-through ρ̃M (τ) ≡
∑n

i=1
ei(τ)
E(τ)ρ

M
i (τ).

For part (b), given A5M—A6M, social welfare is W (τ) = S(τ) + Π(τ) + τE(τ) −D(E(τ)) and
differentiation gives:

dW (τ)

dτ
=
dS(τ)

dτ
+
dΠ(τ)

dτ
+ E(τ)− [D′(E(τ))− τ ]

dE(τ)

dτ
.

From Proposition 2(a) for multidimensional GLC, we already know that, given A1M—A4M, i’s
firm-level profit impact satisfies dΠi(τ)/dτ = −2[1 − ρMi (τ)]ei(τ).Aggregating this across all n
firms in the industry then gives:

dΠ(τ)

dτ
= −2[1− ρ̃M (τ)]E(τ),

again using the definition of industry-average multidimensional pass-through. Putting together
these results yields:
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dW (τ)

dτ
= −[1− ρ̃M (τ)]E(τ)− [D′(E(τ))− τ ]

dE(τ)

dτ
.

This establishes the claims using standard first-order approximations.

Proposition 3 establishes first-order welfare impacts based on an industry-average of multi-
dimensional pass-through in the spirit of the suffi cient-statistics approach (Chetty, 2009; Weyl
and Fabinger, 2013). Part (a) is particularly simple: the “static”incidence of tighter regulation
is (τ−τ)E(τ) and the “dynamic”version of consumer welfare declines by the overall proportion
that is passed through, ∆S ' −ρ̃M (τ)[(τ − τ)E(τ)]. This result does not require supply-side
linearity (A4M) nor any assumptions about the social cost of the externality (A6M); it relies
solely on envelope properties for producers (A1M—A3M) and consumers (A5M).

Part (b) gives an expression that consists of two terms for the impact of tighter regulation
on social welfare. The first term captures the combined marginal impact on consumer surplus,
industry profits and government revenue. To understand it, consider the case with full pass-
through, ρ̃M = 1: our firm-level Proposition 2(a) implies that industry profits then remain
constant while the reduction in consumer welfare is exactly offset by higher government revenue.
By contrast, in the case with pass-through below 100%, this term turns negative due to lower
industry profits. The second term captures the social value of a reduction in the externality
that arises if regulation decreases industry emissions, dE(τ)/dτ < 0, and the externality is
underpriced at the margin, τ < D′.

C.2. Endogenous regulation. Our main GLC analysis assumes that the regulation τ is
exogenous. We here extend the analysis to show how regulation– for the case of an emissions
tax with “complete regulation” (Φ ≡ 1)– can be endogenized using the GLC structure. This
analysis brings together two strands of prior research: (1) an influential literature following
Grossman and Helpman (1994) in which firms lobby a government “for sale”; (2) a classic
literature following Buchanan (1969) on the optimal design of emissions taxes under imperfect
competition in the product market. Taken together, the distortions due to market power and
political lobbying mean that this analysis yields a third-best “political equilibrium”emissions
tax.53

The basic model setup is as follows. As in Grossman and Helpman (1994), the government
cares about social welfareW but also about political contributions by regulated firms. LetKi(τ)
denote firm i’s political contribution as a function of the emissions price τ . The government’s
payoff is Ugov(τ) = W (τ) + λ

∑n
i=1Ki(τ), where the parameter λ ≥ 0 measures its openness

to lobbying, and larger values of λ mean policy is increasingly “for sale”. Following Bernheim
and Whinston (1986) and Grossman and Helpman (1994), the equilibrium of the lobbying game
is for each firm i to offer a contribution function Ki(τ) = Πi(τ) + ui, where ui is a constant.
Substituting into the government’s payoff function, the first-order condition for the “political
equilibrium”emissions tax τ∗(λ) is given by:

dUgov(τ)

dτ
=
dW (τ)

dτ
+ λ

n∑
i=1

dΠi(τ)

dτ
= 0. (10)

We assume that this problem is well-behaved, and focus on the interesting case of an interior
solution with τ∗(λ) > 0.

The timing of the game is as follows. First, firms choose their contributions Ki. Second, the
government sets the emissions price τ . Third, all n firms compete according to multidimensional
GLC’s A1M—A4M– now taking τ as given, as per A1M. We assume A5M—A6M are met and
define η(τ) ≡ d lnE(τ)

d ln τ < 0 as the tax elasticity of industry emissions.
As a benchmark, recall that the standard welfare-maximizing Pigouvian tax under perfect

competition– i.e., marginal utility equals price, and price equals marginal cost– is to set the
emissions price at the social marginal damage, τ∗ = D′(E(τ∗)); note that this result, like our

53By assumption, the government does not have access to another policy instrument (such as a price control)
to directly address market power.
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setup, is based on the assumption that consumers are utility-maximizers (Baumol and Oates,
1988).

Proposition 4. Suppose that multidimensional GLC’s A1M—A4M hold for each firm i ∈
N and A5M—A6M hold for consumer surplus and the social cost of the externality. At an
interior solution, the “political equilibrium” emissions tax that maximizes government utility
Ugov satisfies:

τ∗(λ) =

 D′(E(τ))

1 +
(1 + 2λ)

−η(τ)
[1− ρ̃M (τ)]


τ=τ∗(λ)

.

Proof of Proposition 4. We pin down the political-equilibrium tax rate using the govern-
ment’s first-order condition to maximize Ugov(τ). Given A1M—A4M, it follows from Proposition
2(a) that the impact on industry profits across all n firms satisfies:

dΠ(τ)

dτ
≡

n∑
i=1

dΠi(τ)

dτ
= −2[1− ρ̃M (τ)]E(τ),

using the definition of industry-average multidimensional pass-through ρ̃M (τ) ≡
∑n

i=1
ei(τ)
E(τ)ρ

M
i (τ).

Given A1M—A6M, we know from Proposition 3(b) that the welfare impact satisfies:

dW (τ)

dτ
= −[1− ρ̃M (τ)]E(τ)− [D′(E(τ))− τ ]

dE(τ)

dτ
.

Putting these parts together in the government’s first-order condition from (10) shows that the
political-equilibrium tax rate τ∗(λ) > 0 is determined by:

dUgov(τ)

dτ

∣∣∣∣
τ=τ∗(λ)

= −
[
(1 + 2λ)[1− ρ̃M (τ)]E(τ) + [D′(E(τ))− τ ]

dE(τ)

dτ

]
τ=τ∗(λ)

= 0.

Using the definition of the emissions elasticity η(τ) ≡ d lnE(τ)
d ln τ < 0 now gives the expression for

τ∗(λ) > 0 as claimed.

Proposition 4 shows that, for all models belonging to the multidimensional GLC family,
the wedge between the equilibrium tax τ∗ and the Pigouvian rule is driven by the industry-
average multidimensional pass-through rate ρ̃M . Once again, pass-through signs the result:
sign(D′ − τ∗)=sign(1 − ρ̃M ). This generalizes existing literature on the design of second-best
emissions taxes under imperfect competition to richer modes of competition and provides a
unifying result in terms of pass-through (see Requate, 2006, for an excellent survey of this
large literature and its diverse results). It also extends this literature to incorporate Grossman-
Helpman political lobbying by regulated firms and thus to third-best emissions pricing.

To understand the result, observe that in the Buchanan problem, industry profits reflect the
extent of the market-power distortion while in the Grossman-Helpman problem, profits drive
the incentive to make political contributions. We already know from Proposition 2(a) that
(first-order) firm-level profit impacts are driven by firm-level multidimensional pass-through–
and so the industry-level analog is driven by a weighted average of pass-through across firms.54

Intuitively, lower firm-level pass-through ρMi means that firm i contracts output more strongly
in response to tighter regulation, creating greater deadweight losses and suffering larger profit
losses, thus pushing τ∗ downwards– more strongly for large, high-emissions firms (i.e., larger
ei/E). Relatedly, where the government is more open to lobbying (higher λ), and the industry
is collectively opposed to the regulation, with ρ̃M < 1, this pushes the political-equilibrium tax
downwards.

54Under perfect competition, each firm’s pass-through is 100% so the Pigouvian rule τ = D′ applies– and there
is no political lobbying (even if λ > 0) since no firm is making any profit.
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In sum, we can therefore also apply Propositions 1 and 2 to calculate the profit impacts of
an endogenous regulation, simply by letting τ = 0 and τ = τ∗(λ). In the spirit of suffi cient
statistics, Proposition 4 shows how it is possible to derive an expression for τ∗(λ) that does not
directly hinge on knowledge of consumers’utility function V (·) (which, of course, may indirectly
matter both for pass-through rates ρ̃M and for the emissions elasticity η).
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FIGURE 1: DENSITY PLOT OF TRUE AND GLC PROFIT IMPACT FACTOR (PIF) 

Notes: Vertical lines in grey indicate the means of the distributions. Kernel densities plotted over all 10,000 draws.
Source: Authors’ calculations based on Monte Carlo data described in the main text.
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(a) Southwest

(c) Legacy (d) Legacy

(b) Southwest
FIGURE 2: AGGREGATE TRENDS IN PRICES AND COSTS

Notes:Panels (a) and (c) show jet fuel spot prices and per-passenger fuel costs; panels (b) and (d) show ticket prices and per-passenger fuel costs. Variables are quarterly averages (unweighted) over all carrier-routes in our sample.
Source: Authors’ calculations based on data from the US Bureau of Transportation Statistics over the period 2004Q1-2013Q4.

68



(1) (2) (3)
Mean Min Max

Parameters drawn
Number of firms n 4.998 2 8
Demand curvature 0.004 -1 1

Cost convexity 0.500 0 1
Market share 0.247 0 0.998

Competitiveness 0.502 0 1
Relative emissions intensity 1.001 0.5 1.5

Results
True pass-through 0.897 0.316 1.959

GLC profit impact factor 0.205 -1.918 1.367
True profit impact factor 0.156 -1.843 1.123

GLC error 0.049 -0.860 0.523
Number of firm draws 10,000
Herfindahl Index H 0.317 0.128 0.998

TABLE 1 - PARAMETERS AND RESULTS FROM MONTE CARLO 
SIMULATIONS

Notes: The table reports parameters and results from Monte Carlo simulations reported in the main text.
Source: Authors’ calculations based on Monte Carlo data described in the main text.

69



Mean
Standard 
Deviation

Min Max Mean
Standard 
Deviation

Min Max

Quarterly av. statistics
Price ($) 154.73 40.76 63.07 298.91 227.75 70.89 72.80 599.11
Fuel cost ($) 32.95 17.86 5.61 129.81 52.98 28.74 2.05 366.63
Distance (miles) 717      466         133     2,298   1,044  629         130      2,724    
Emissions (tCO2) 0.13 0.06 0.03 0.41 0.20 0.10 0.01 0.71
Emissions cost ($/tCO2) 4.00 1.84 1.03 12.44 6.02 2.89 0.18 21.22
Passengers (000s) 42 39 1 289 30.19 29.21 1.00 244.66
Competitors 2.24 2.40 0 16 2.82 2.29 0.00 16.00
LCC competitors 0.40 0.73 0 4 0.67 0.97 0.00 5.00
Revenue ($ million) 5.46 4.37 0.12 32.123 5.85 5.84 0.11 53.87

Whole sample statistics
Revenue in sample (%) 56 43
Observations 13,199 22,451
Carrier-routes 416 918

TABLE 2 - SUMMARY STATISTICS

LegacySouthwest

Notes: Price, fuel cost, emissions and emissions cost are per passenger. Emissions costs are calculated at a carbon price of $30/tCO2. Whole sample
statistics are aggregated over all N and T. Revenue is sample is the proportion of all US aviation revenue (i.e. all flights on all airlines) in the
sample over this period. The legacy carriers are American, Delta, United and US Airways. All averages are unweighted.
Source: Authors’ calculations based on quarterly data from the US Bureau of Transportation Statistics for the period 2004Q1-2013Q4.
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(1) (2) (3) (4)
Estimation method OLS 2SLS 2SLS 2SLS

Dependent variable Priceijt Priceijt Priceijt Priceijt

Sample Baseline Balanced panel Common routes

Fuel cost × Southwest 1.145*** 1.418*** 1.485*** 0.983***
(0.119) (0.121) (0.129) (0.152)

Fuel cost × Legacy 0.560*** 0.661*** 0.688*** 0.518***
(0.082) (0.104) (0.109) (0.140)

Competitors -2.372*** -2.171*** -2.255*** 0.590
(0.721) (0.717) (0.781) (0.996)

LCC competitors -7.834*** -7.808*** -8.137*** -9.890***
(1.412) (1.361) (1.454) (2.226)

Non-fuel cost index 7.248*** 6.895*** 7.400*** 7.093**
(2.684) (2.580) (2.809) (2.993)

GDP growth -1.374*** -1.341*** -1.620*** 0.362
(0.398) (0.388) (0.436) (0.302)

Carrier size -15.094*** -15.119*** -16.203*** -2.247
(4.474) (5.218) (5.793) (4.502)

Time FE yes yes yes yes
Carrier-routes FE yes yes yes yes
Observations 35,650 35,650 24,600 6,138
Clusters 1,334 1,334 615 183

First stage regressions

Spot × Southwest 17.258*** 17.290*** 22.390***
(1.065) (1.199) (2.789)

Spot × Distance × Southwest 10.307*** 10.486*** 9.956***
(0.209) (0.219) (0.253)

F-test excluded instruments 1843.69 1545.97 734.71
p-value (0.000) (0.000) (0.000)

Spot × Legacy 25.772*** 25.693*** 8.412***
(3.058) (3.500) (3.058)

Spot × Distance × Legacy 12.090*** 12.281*** 11.341***
(0.820) (0.849) (1.359)

F-test excluded instruments 371.19 374.80 138.67
p-value (0.000) (0.000) (0.000)

TABLE 3 - PASS-THROUGH ESTIMATES

Dependent variable: Fuel cost × Southwest

Dependent variable: Fuel cost × Legacy

Notes: The dependent variable is the price of carrier i, in route j, and quarter 𝑡. Standard errors clustered at the carrier-route level are reported in
parentheses below coefficients: *significant at 10%; **significant at 5%; ***significant at 1%.
Source: Authors’ calculations based on quarterly data from the US Bureau of Transportation Statistics for the period 2004Q1-2013Q4.
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(1) (2) (3) (4) (5) (6)

Southwest Legacy All Southwest Legacy All

Pass-through, ρ 1.418 0.661 0.853 1.418 0.661 0.853
(0.121) (0.104) (0.109) (0.121) (0.104) (0.109)

Profit impact (in millions $), ΔΠ 98.3 -233.9 -135.6 58.0 -154.3 -79.9
[41.4, 155.3] [-377.4, -90.4] [-337.6, 66.4] [24.4, 91.5] [-249.0, -59.6] [-198.9, 39.1] 

Profit impact (in %), ΔΠ 1.55% -1.60% -0.65% 0.91% -0.94% -0.38%

[0.65, 2.45] [-2.59, -0.62] [-1.61, 0.32] [0.38, 1.44] [-1.52, -0.36] [-0.95, 0.19] 
Consumer surplus (in millions $), ΔS -394.8 -232.7

[-495.8, -293.8] [-292.2, -173.2]
Total welfare (in millions $), ΔW 49.4 77.3

[-51.6, 150.4] [17.8, 136.8]

TABLE 4 - PROFIT, CONSUMER SURPLUS AND WELFARE IMPACTS

Exogenous τ = $30 Endogenous τ = $17.68

Notes: The first three columns show the profit impact (in absolute terms and as a percentage of revenue) and welfare impacts resulting from an exogenous carbon price of $30/tCO2 , as implied by the pass-through
estimates and Propositions 2(c) and 3. The next three columns give the endogenous carbon price using Proposition 4 and other outcomes using our pass-through estimates. Columns 3 and 6 pass-through rates are an
emissions-weighted average of Southwest and legacy results. Standard errors are reported in parentheses below coefficients and 95% confidence intervals in squared brackets.
Source: Authors’ calculations based on quarterly data from the US Bureau of Transportation Statistics for the period 2004Q1-2013Q4.
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Southwest American Delta United US Airlines
Quarterly av. statistics
Price ($) 154.73 212.54 236.54 231.41 230.85
Fuel cost ($) 32.95 57.12 50.73 56.31 45.14
Distance (miles) 717            1,102         992          1,128     915           
Emissions (tCO2) 0.13 0.23 0.18 0.21 0.18
Emissions cost ($/tCO2) 4.00 6.91 5.44 6.23 5.30
Passengers (000s) 42 36 30 28 25.00
Competitors 2.24 2.84 2.4 3.7 2.20
LCC competitors 0.40 0.40 0.73 0.94 0.60
Revenue ($ million) 5.46 6.76 5.76 5.76 4.66

Whole sample statistics
Revenue in sample (%) 56% 47% 40% 52% 35%
Observations 13,199 6,110         6,879       5,759     3,703        
Carrier-routes 416 198 323 239 158

TABLE B1 - DESCRIPTIVE STATISTICS FOR INDIVIDUAL CARRIERS

Notes: Price, fuel cost, emissions and emissions cost are per passenger. Emissions cost are calculated at a carbon
price of $30/tCO2. Whole sample statistics are aggregated over all N and T. Revenue is sample is the proposrtion of
all US aviation revenue (i.e. all flights on all airlines) in the sample over this period. The legacy carriers are
American, Delta, United and US Airways. All averages are unweighted.
Source: Authors’ calculations based on quarterly data from the US Bureau of Transportation Statistics for the period
2004Q1-2013Q4.
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(1) (2)
Estimation method 2SLS 2SLS

Dependent variable Priceijt Priceijt

Sample Baseline Individual airlines

Fuel cost × Southwest 1.418*** 1.421***
(0.121) (0.119)

Fuel cost × Legacy 0.661***
(0.104)

Fuel cost × American 0.668***
(0.121)

Fuel cost × Delta 1.158***
(0.171)

Fuel cost × United 0.445***
(0.077)

Fuel cost × US 0.767***
(0.094)

Competitors -2.171*** -2.153***
(0.717) (0.710)

LCC competitors -7.808*** -7.678***
(1.361) (1.312)

Non-fuel cost index 6.895*** 10.523***
(2.580) (2.560)

GDP growth -1.341*** -1.368***
(0.388) (0.401)

Carrier size -15.119*** -14.681***
(5.218) (5.047)

Time FE yes yes
Carrier-routes FE yes yes
Observations 35,650 35,650
Clusters 1,334 1,334

TABLE B2 - PASS-THROUGH ESTIMATES FOR INDIVIDUAL CARRIERS

Notes: Standard errors clustered at the carrier-route level level are reported in parentheses below coefficients:
*significant at 10%; **significant at 5%; ***significant at 1%.
Source: Authors’ calculations based on quarterly data from the US Bureau of Transportation Statistics for the period
2004Q1-2013Q4.
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(1) (2)
Sample Baseline Individual airlines

Spot × Southwest 17.258*** 17.187***
(1.065) (1.065)

Spot × Distance × Southwest 10.307*** 10.304***
(0.209) (0.209)

F-test excluded instruments 1843.69 635.20
p-value (0.000) (0.000)

Spot × Legacy 25.772***
(3.058)

Spot × Distance × Legacy 12.090***
(0.820)

F-test excluded instruments 371.19
p-value (0.000)

Spot × American 8.004***
(1.882)

Spot × Distance × American 11.778***
(1.525)

F-test excluded instruments 106.70
p-value (0.000)

Spot × Delta 6.529***
(1.557)

Spot × Distance × Delta 9.578***
(0.452)

F-test excluded instruments 130.98
p-value (0.000)

Spot × United 10.438***
(2.088)

Spot × Distance × United 14.557***
(1.836)

F-test excluded instruments 138.50
p-value (0.000)

Spot × US 5.309***
(0.773)

Spot × Distance × US 9.907***
(0.469)

F-test excluded instruments 374.86
p-value (0.000)

TABLE B3 - PASS-THROUGH ESTIMATES FOR INDIVIDUAL CARRIERS (FIRST 
STAGE RESULTS)

First stage regressions

Notes: Standard errors clustered at the carrier-route level level are reported in parentheses below coefficients:
*significant at 10%; **significant at 5%; ***significant at 1%.
Source: Authors’ calculations based on quarterly data from the US Bureau of Transportation Statistics for the period
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(1) (2) (3) (4) (5) (6) (7)
Estimation method OLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

Dependent variable Priceijt Priceijt Priceijt Priceijt Priceijt Priceijt Priceijt

Sample Baseline Balanced panel Common routes Baseline Balanced panel Common routes

Fuel cost × Southwest 1.418*** 1.450*** 1.429*** 1.468*** 1.364*** 1.407*** 1.368***
(0.121) (0.124) (0.129) (0.124) (0.125) (0.120) (0.124)

Fuel cost × Legacy 0.661*** 0.670*** 0.664*** 0.679*** 0.671*** 0.658*** 0.665***
(0.104) (0.106) (0.106) (0.105) (0.104) (0.104) (0.102)

Competitors -2.171*** -2.195*** -2.177*** -2.283*** -2.104*** -2.171*** -2.311***
(0.717) (0.701) (0.716) (0.684) (0.717) (0.717) (0.698)

LCC competitors -7.808*** -7.819*** -7.841*** -7.757*** -7.770*** -7.693*** -7.564***
(1.361) (1.357) (1.378) (1.348) (1.354) (1.384) (1.345)

Non-fuel cost index 6.895*** 6.774*** 6.847*** 6.902*** 7.301*** 6.991*** 8.081***
(2.580) (2.577) (2.586) (2.555) (2.668) (2.584) (2.447)

Carrier size -15.119*** -14.884*** -15.226*** -15.115*** -9.270*** -15.120*** -12.697**
(5.218) (5.244) (5.166) (5.190) (4.977) (5.211) (5.426)

GDP growth -1.341*** -1.342*** -1.310***
(0.388) (0.388) (0.392)

GDP per capita 1.811
(2.477)

Population (million) -0.235
(4.469)

Gravity demand 12.206
(9.951)

Network density -8.398***
(5.063)

Southwest potential entry 1.861***
(1.515)

Bankrupt 6.414***
(1.908)

Time FE yes yes yes yes yes yes yes
Carrier-routes FE yes yes yes yes yes yes yes
Observations 35,650 35,650 35,584 35,584 35,650 35,650 35,650
Clusters 1,334 1,334 1,326 1,326 1,334 1,334 1,334

TABLE B4 - ROBUSTNESS OF PASS-THROUGH ESTIMATES

Notes: Standard errors clustered at the carrier-route level. Regressions are weighted by total emissions of the carrier-route over the period. Significant levels are denoted: *significant at 10%; **significant at 5%;
***significant at 1%.
Source: Authors’ calculations based on quarterly data from the US Bureau of Transportation Statistics for the period 2004Q1-2013Q4.
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(1) (2)
Estimation method 2SLS 2SLS

Dependent variable Priceijt Priceijt

Sample Southwest Legacy

Fuel cost 1.267*** 0.762***
(0.046) (0.034)

Competitors -0.903*** -3.733***
(0.239) (0.563)

LCC competitors -0.937*** -3.603***
(0.239) (0.580)

Non-fuel cost index 42.990*** 15.948***
(2.387) (1.992)

GDP growth 1.349*** 2.276***
(0.099) (0.258)

Carrier size 0.336 -32.321***
(0.965) (3.191)

Quarterly FE yes yes
Observations 9,920 14,680
Carrier-routes 248 367

TABLE B5 - PASS-THROUGH ESTIMATES FROM
A ROUTE-BY-ROUTE ESTIMATION

Notes: Newey-West standard errors that are heteroskedasticity and autocorrelation consistent
are reported in parentheses below coefficients: *significant at 10%; **significant at 5%;
***significant at 1%.
Source: Authors’ calculations based on quarterly data from the US Bureau of Transportation
Statistics for the period 2004Q1-2013Q4.
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Estimation method 2SLS

Dependent variable Priceijt

Sample Monopoly

Fuel cost 0.600***
(0.228)

Non-fuel cost index 7.463**
(3.820)

GDP growth -0.435
(0.569)

Carrier size -38.937***
(11.960)

Time FE yes
Carrier-routes FE yes
Observations 6,714
Clusters 361

Spot 44.758***
(3.987)

Spot × Distance 8.441***
(0.522)

F-test excluded instruments 95.05
p-value (0.000)

TABLE B6 - PASS-THROUGH ESTIMATES FOR 
MONOPOLY MARKETS

First stage regressions

Notes: The dependent variable is the price of carrier i, in route j, and
quarter 𝑡. Standard errors clustered at the carrier-route level are
reported in parentheses below coefficients: *significant at 10%;
**significant at 5%; ***significant at 1%.
Source: Authors’ calculations based on quarterly data from the US
Bureau of Transportation Statistics for the period 2004Q1-2013Q4.
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(1) (2) (3) (4) (5) (6)
Estimation method OLS 2SLS 2SLS OLS 2SLS 2SLS

Dependent variable passengersijt passengersijt passengersijt passengerskjt passengerskjt passengerskjt

Priceijt (x 10-3) -1.687*** -3.948*** 17.414 0.748*** 2.506 1.189
(0.220) (1.120) (33.283) (0.218) (2.391) (1.921)

Pricekjt (x 10-3) 0.382** 0.777 1.291 -1.541*** -2.049 -7.125*
(0.162) (1.280) (1.511) (0.274) (1.638) (4.249)

Price2
ijt (x 10-3) -0.046

(0.071)

Price2
kjt (x 10-3) 0.011*

(0.006)

Spot fuel price Spot fuel price Spot fuel price Spot fuel price
Spot × Distance Spot × Distance Spot × Distance Spot × Distance 

Time FE yes yes yes yes yes yes
Carrier-routes FE yes yes yes yes yes yes
Observations 3,091 3,091 3,091 3,091 3,091 3,091
Clusters 167 167 167 167 167 167

TABLE B7- DEMAND ESTIMATION FOR DUOPOLY MARKETS

Instruments

Notes: Newey-West standard errors that are heteroskedasticity and autocorrelation consistent are reported in parentheses below coefficients: *significant at 10%;
**significant at 5%; ***significant at 1%.
Source: Authors’ calculations based on quarterly data from the US Bureau of Transportation Statistics for the period 2004Q1-2013Q4.
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(1) (2) (3) (4) (5) (6)
Estimation method 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

Dependent variable passengersijt passengersijt passengerskjt passengerskjt passengersljt passengersljt

Priceijt (x 10-3) -7.457*** -9.636** 1.950 -4.518 -3.567 -3.734
(2.303) (4.608) (13.174) (3.360) (3.496) (3.463)

Pricekjt (x 10-3) 3.777*** 1.527 2.977 -13.433 2.558* 2.933*
(1.429) (3.819) (9.219) (25.399) (1.438) (1.713)

Priceljt (x 10-3) 0.118 0.359 -1.725 -1.739 -1.320** -0.738
(0.558) (0.680) (1.063) (1.171) (0.661) (2.184)

Price2
ijt (x 10-3) 0.008

(0.013)

Price2
kjt (x 10-3) 0.033

(0.037)

Price2
ljt (x 10-3) -0.001

(0.003)

Time FE yes yes yes yes yes yes
Carrier-routes FE yes yes yes yes yes yes
Observations 275 275 275 275 275 275

TABLE B8 - DEMAND ESTIMATION FOR TRIOPOLY MARKETS

Notes: Newey-West standard errors that are heteroskedasticity and autocorrelation consistent are reported in parentheses below coefficients: *significant at 10%; **significant at 5%;
***significant at 1%.
Source: Authors’ calculations based on quarterly data from the US Bureau of Transportation Statistics for the period 2004Q1-2013Q4.
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