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SUMMARY

The debt management policy changes of 1998-2001 and subsequent reversal of the

U.S. government�s Þscal position have prompted research on the dynamics of the U.S.

Treasury bond market. We extend the recursive break test procedure of Leybourne et

al. by using weighted-symmetric estimation to detect a single change in persistence in

U.S. Treasury on/off spreads. It is found that a signiÞcant change from I(0) to I(1)

occurred in the late 1990s, which appears to be linked to changes in the U.S. Treasury�s

debt management policy. Monte Carlo evidence shows that correcting for conditional

heteroskedasticity in the data can successfully deal with the tests being oversized, albeit

at a considerable loss in power for smaller sample sizes and large short-run variation in

volatility. It is therefore advisable mainly for large sample sizes.
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1. INTRODUCTION

Commentators have noted that U.S. budget surpluses in the late 1990s led to a

staged contraction in the supply of Treasury bonds with a series of debt management

policy changes since 1998, notably a reduction in their issuance frequencies; see Boni

and Leach (2002), Fleming (2000, 2002) and FurÞne and Remolona (2002). These were

adopted against the background of a sustained upbeat Þscal environment, leading to

the Treasury�s debt buyback program in March 2000.1

The U.S. budget position reverted sharply after 2000�the initial deterioration was

likely triggered by the mild recession of 2001 and the impact of the terrorism acts

in September of that year. Indeed, the months of September and October 2001 have

been identiÞed as a monetary policy regime switch associated with very high residual

variance in money demand; see Sims and Zha (2006). The U.S government�s tax cuts

coupled with increased defense spending and the �war on terrorism� have caused further

deterioration in the Þscal outlook; see Gale and Orszag (2004) and Auerbach, Gale and

Orszag (2006). More recently, the 30-year bond was brought back in the Þrst quarter

of 2006.

The above developments have meant a higher proÞle for policies related to managing

the U.S government�s borrowing needs over time. They also suggest that yield curve

1Changes included: January 1998, when the 3-year note was discontinued; May 1998 and February
2000, when the 5-year note and 1-year bill�s auction frequencies were reduced from monthly to quar-
terly; and February and October 2001, when the 1-year bill and 30-year bond were discontinued. The
Treasury also increased issue sizes, leading to more liquidity through lower inventory costs. The reduc-
tion in the supply of traded securities as a result of the budget surpluses is particularly noteworthy in
the case of the 5-year note. Although awarded amounts per auction increased, maturing 5-year notes
decreased from $162 billion in 2001 to $61 billion in 2005 based on U.S. General Accounting Office
Þgures. The issuance frequency of the 5-year note was restored to monthly in mid-2003.
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liquidity continues to be an important factor affecting the dynamics of the Treasury

market. In principle, Treasury bonds whose remaining time to maturity and other

characteristics are similar should trade at approximately the same price. However, less

liquid (older, or off-the-run) bond yields are often higher than their more liquid (most

recent, or on-the-run) counterparts, especially at the longer end of the term structure.

Researchers have interpreted this yield differential, typically between the Þrst off-the-

run and the on-the-run issues at each maturity, as a time-varying liquidity premium

which is expected to be mean-reverting by market efficiency. Krishnamurthy (2002)

and Longstaff (2004), among others, have documented the signiÞcance of the on/off

spread across the term structure. It is worth noting the different classes of investors

that are likely to be holders of the on versus off-the run issues; the off-the run issues

though illiquid are likely to be held by longer term investors such as central banks and

insurance companies, whereas the more recent on the run issues are likely to be traded.

While Treasury securities� on/off spreads to a large extent capture investors� time-

varying liquidity preferences, another component of the on/off spread involves interest

rate risk. This arises because the on-the-run and Þrst off-the-run securities need not

lie on the same point on the yield curve, despite being very close. As pointed out by

Goldreich, Hanke and Nath (2005), if the yield curve is sloping we would expect them

to have different yields even in the absence of any liquidity effect. Any yield curve

effects would tend to have a greater impact on shorter than longer maturities. Thus,

lowering the issuance frequency of maturities at the shorter end of the term structure

would cause greater exposure to interest rate risk, and potentially affect the time series
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properties of their on/off spreads.

The main aim of this paper is to study the persistence of the U.S. Treasury�s 1-

year bill and 5-year note weekly on/off spreads. We are interested in these particular

maturities because both were signiÞcantly affected by the debt management policy

changes of the late 1990s and the subsequent monetary policy changes. This raises

the question of whether there was a change in persistence of Treasury bond liquidity

premia from a stationary, I(0), to a nonstationary, I(1), process. Determining the

location and direction of such changes is a key issue for policy makers and market

forecasters alike; see Kim (2000) and Newbold, Leybourne, Sollis and Womar (2001).

Additionally, wrongly characterising the behaviour of economic time series has profound

implications for econometric modelling strategies and forecasting accuracy.

The null hypothesis is that the data is I(1) throughout, and the alternative is a

change from I(0) to I(1) at some point in the series. The recursive procedure of Ley-

bourne, Kim, Smith and Newbold (2003)�henceforth LKSN�is extended by adopting

weighted-symmetric (WS) estimation of the unit root coefficient. Under stationary al-

ternatives and OLS detrending, this estimation method yields a more powerful unit root

t-test than standard Dickey-Fuller and its Generalised Least Squares (GLS)-detrended

version proposed by Elliott, Rothenberg and Stock (1996).2 LKSN develop GLS-based

recursive and sequential unit root tests for detecting a single possible change in per-

sistence under the alternative. The tests allow for an unknown breakpoint and, in

their general form, unknown direction of change in persistence. Based on Monte Carlo

2On related power gains see Leybourne, Kim and Newbold (2005) and Pantula,Gonzalez-Farias and
Fuller (1994).
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evidence, they Þnd the recursive tests to be the most favourable.

Our results suggest that the single-break methodology lends itself well to time series

affected by low-frequency events. We Þnd evidence of a signiÞcant change in the persis-

tence of U.S. Treasury bond on/off spreads in the late 1990s. This is likely related to

Þnancial market uncertainty prompted by Russia�s default and LTCM�s near-collapse

in autumn 1998, as well as to the debt management policy changes implemented by the

U.S. Treasury in 1998-2001. The subsequent macroeconomic uncertainty regarding the

deterioration and likely future course of the Federal budget deÞcit may be contributing

to the higher persistence.

To assess these empirical Þndings, we evaluate the size and power properties of the

recursive WS tests and the accuracy of the break point estimator in a Monte Carlo

study. As persistent conditional heteroscedasticity and excess kurtosis are pervasive

in Þnancial time series, including those under investigation, the properties of the test

statistics need to be examined within this context. In doing so, we also shed light

on the usefulness of White-correcting in the presence of GARCH and non-normality.

The simulation evidence suggests that recursive WS tests display more size distortions

than their non-recursive counterparts. The overrejections arise mainly for GARCH

parameters involving near-integration and signiÞcant short-run variation in volatility,

as documented by Kim and Schmidt (1993) and Seo (1999). Correcting for GARCH

using White�s (1980) heteroskedasticity-consistent covariance matrix effectively deals

with the overrejections, although in certain cases power loss is considerable.

The remainder of this paper is arranged as follows. Section 2 presents the model.
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Section 3 contains an application to U.S. Treasury bond on/off spreads. In Section

4 we carry out a Monte Carlo study on the performance of the proposed WS-based

statistics. Section 5 concludes.

2. THE MODEL

Assume that the true data generating process for T observations on yt is

yt = dt + ut , dt = z
0
tβ (1)

ut = αut−1 + φ(L)∆ut−1 + /t ,

where zt = [1, t]0 and β = [β0, β1]
0. We restrict attention to β1 = 0, without loss of

generality. Lag polynomial φ(L) is of known order p−1, where the roots of 1−φ(L) = 0

lie outside the unit circle. The errors follow a martingale difference sequence and the

Þrst p− 1 values of yt are assumed to exist.

The null hypothesis H11 is that yt is I(1) throughout, or α = 1. The alternative

is that yt undergoes a change in persistence from I(0) to I(1) at observation τ∗T in

forward time,

|α| < 1 , t ≤ τ∗T (2)

α = 1 , t > τ ∗T

or from I(1) to I(0), implying the time-reversed series eyt = yT−t+1, t = 1, 2, ..., T changes
from I(0) to I(1) at observation (1 − τ∗)T , where the break fraction τ∗ is unknown.
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The respective alternative hypotheses are denoted H01 and H10.

Our test statistics are constructed as follows. After detrending the series by OLS,

ydt = yt − �β0(τ ), t = 1, 2, ..., T , an ADF regression with no deterministic trend is ran

on ∆ydt using only the Þrst [τT ] observations for varying break fraction τ ,

∆ydt = bρ(τ)ydt−1 + Σp−1j=1
�φj(τ )∆y

d
t−j +�/t , t = 1, 2, ..., [τT ] (3)

where [·] is the integer part of τT and τ belongs to a non-empty closed interval in (0, 1),

denoted Λ.

In this setting, weighted-symmetric estimation of ρ(τ )�proposed originally in Fuller

(1976)�minimises

Q(θ) =

[τT ]X
t=p+1

wt

Ã
∆ydt − ρ(τ)ydt−1 −

p−1X
j=1

φj(τ)∆y
d
t−j

!2
(4)

+

[τT ]−pX
t=1

(1− wt+1)
Ã
∆ydt − ρ(τ)ydt+1 +

p−1X
j=1

φj(τ )∆y
d
t+j+1

!2
(5)

over all τ , and θ = (ρ,φ), φ = {φ1, φ2, ..., φp−1} with wt deÞned as

wt =


0, 1 ≤ t < p+ 1

(t− p)/([τT ]− 2p+ 2), p+ 1 ≤ t < [τT ]− p+ 2

1, [τT ]− p+ 2 ≤ t ≤ [τT ] .

The t-statistic associated with bρ(τ ) under the null hypothesis isWS(τ) = bρ(τ)√dvar(bρ(τ)) ,
wheredvar(bρ(τ )) = bσ2(τ )hPP , the estimated error standard deviation is bσ(τ ) = Q(bθ)

[τT ]−p−2
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and hPP is the [1, 1] element of the
³
∂2Q(θ)
∂θ∂θ0

´−1
matrix.3

The statistic for testing the alternative H01 is given by

WSf inf (τ) = inf τ∈ Λ WS
f(τ ), (6)

where f denotes the recursive test in forward time and τ∗ is the break fraction min-

imising equation (6). When the alternative hypothesis is a switch from I(1) to I(0),

this test statistic can be applied to the Þrst-difference of the time-reversed series eydt
∆eydt = eρ(τ)eydt−1 + Σp−1j=1

eφj(τ)∆eydt−j +e/t , t = 1, 2, ..., (1− τ)T. (7)

Let the t-ratio for eρ(τ ) be WSr(τ). The statistic for testing H11 against H10 is then

given by

WSr inf(τ ) = inf τ∈ Λ WS
r(τ) , (8)

with r denoting the test on the time-reversed series.

If one is a priori uncertain about the direction of change in persistence, a �two-

sided� test can be constructed whose null is I(1) throughout against the alternative of

a change from I(0) to I(1) or vice versa at break fraction τ ∗. The statistic is then the

pairwise minimum of WSf inf and WSr inf

min(WSf inf ,WSr inf). (9)

3Note that if a trend is included in the regression the denominator for bσ(τ) becomes [τT ]− p− 3.
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Following LKSN and existing asymptotic results in Pantula,Gonzalez-Farias and

Fuller (1994) and Park and Fuller (1995), the WSf inf and WSr inf tests will be con-

sistent only under the alternative hypothesis for which they are designed. Thus, the

min(WSf inf ,WSr inf) test will also be consistent under H01 or H10. Moreover, all test

statistics can be shown to estimate the break fraction consistently against the true al-

ternative. From these results it further follows that the ADF and non-recursive WS

tests are inconsistent under a break in persistence, as the random walk component of

the series will dominate these statistics and render themOp(1). In the sequel,WS refers

to the statistic using the non-recursive weighted-symmetric estimation procedure, and

WS-based tests refer to both the recursive and the non-recursive statistics.

3. APPLICATION TO U.S. TREASURY ON/OFF SPREADS

Our sample period extends from 17.6.1991 to 31.12.2002, i.e. 504 weekly obser-

vations on the levels of the 1-year Treasury bill on/off spread�the yield differential

between the Þrst off-the-run and the on-the-run issues�and 592 for the 5-year note

on/off spread.4 Figure 1 shows the levels and Þrst-differences of the two series in basis

points and Table 1 Panel A summarises their distributional properties.

FIGURE 1 AND TABLE 1 HERE

Both spreads are tightly distributed around their mean until the late 1990s, when

they become more volatile, and there is signiÞcant excess kurtosis and GARCH effects.

4We select Wednesday observations from the daily data to address day-of-the-week effects. Inßation-
indexed and callable bond issues are excluded, as are holidays and observations more than 30 basis
points, reßecting posting errors. Data source: GovPX.
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From early 1999 the volatility of both on/off spreads increases sharply. This is reßected

both in the levels and Þrst-differences of the series and may relate as much to the

reduction in the maturities� issuance frequency, implying more interest rate risk, as to

investors� increasingly uncertain outlook. Note that in 1999 and early 2000 the 1-year

on/off spread displays a positive trend, related to the Fed�s �preemptive� tightening in

early 1999 that brought the federal funds rate to 6.5 percent byMay 2000. Subsequently,

however, and until October 2001 when it was discontinued, the 1-year spread becomes

much more volatile, reßecting Þnancial market uncertainty in the aftermath of the

dot.com bubble. This is consistent with the timing of the monetary policy regime

switch located by Sims and Zha (2006). Also note that from mid-2001 to late 2002 the

5-year note on/off spread has a negative trend, likely due to the sharp inversion in the

U.S. yield curve following the bursting of the bubble and the events of September 11,

2001. Against that background, a ßight-to-liquidity (Longstaff, 2004) likely occurred,

whereby market participants expressed a strong preference for the highly liquid (on-

the-run) Treasury securities. The federal funds rate was lowered by 4.75 percent during

2001 and another 0.75 percent by June 2003, bringing it to a 45-year low of about 1

percent; see Greenspan (2004).

Table 1 Panel B reports estimates of an AR-GARCH(1,1) process yt = c+ayt−1+/t,

where /t = h
1/2
t vt, ht = φ0 + φ1/

2
t−1 + φ2 ht−1, with Student�s-t innovations. The φ1

coefficient estimate, capturing short-run variation in volatility, is approximately 0.12

for both series, and φ1 + φ2 (persistence in volatility) is around 0.98. While one could

experiment with alternative speciÞcations, these results should be treated with caution
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as in the presence of a break the estimate of a could be biased, affecting GARCH

parameter estimates. Table 1 Panel C reports the results of ADF and WS tests for the

whole sample. Critical values for these and subsequent tests are given in Appendix A.

These are based on 20,000 replications.

The lag order p is selected using the sequential 0.10 level t-tests for the longest

lag signiÞcance, recommended by Ng and Perron (1995). We use the same p for WS-

based tests as selected from the standard ADF regressions in equations (6) and (7).5

Nonstationarity is not rejected for the 5-year on/off spread, while it is for the 1-year

spread. However, when the WS statistic is corrected for GARCH, nonstationarity is

not rejected for either series; WSw denotes the White-corrected statistic.

In general, standard unit root tests are asymptotically valid in the presence of

conditional heteroskedasticity. The robustness of unit root limit theory to conditional

heterogeneity was noted by, among others, Phillips (1987) and Phillips and Perron

(1988). However, simulations reported in Kim and Schmidt (1993) and Seo (1999)

indicate that DF statistics tend to overreject the null hypothesis when GARCH errors

are persistent, and to decrease towards nominal size at a very slow rate as T increases.

The former authors also consider DF t-ratios using White�s (1980) heteroskedasticity-

consistent covariance matrix estimator, and Þnd that the observed size distortions can

be eliminated. We quantify these Þndings forWS-based tests in the Monte Carlo study

of Section 4.

Turning to the recursive tests, the discussion in Section 1 suggested that the al-

5A trend term is not included in the regressions on market efficiency grounds.
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ternative hypothesis is a change in persistence from I(0) to I(1) at observation τ∗T .

Hence, the WSf inf test in equation (6) is applied to the series, as it is expected to be

more powerful than the two-sided min(WSf inf ,WSr inf) test.6 The results in Table 2,

Panels A and B contain both the non-White-corrected, WSf inf , and White-corrected,

WSf infw , versions. Results for the reverse and �two-sided� test statistics, respectively

WSr inf and min(WSf inf ,WSr inf), are also included.

TABLE 2 HERE

For the 1-year Treasury on/off spread, the WSf inf and min(WSf inf ,WSr inf) tests

both reject the unit root null at the 0.05 level. Supporting this outcome, the null is

not rejected using WSr inf . The White-corrected statistics, WSf infw and WSr infw , point

in the same direction. For the 5-year spread, both WSf inf and min(WSf inf ,WSr inf)

reject the null at the 0.05 level. The rejections are less signiÞcant in the White-corrected

case. TheWSf infw statistic rejects the null at the 0.10 level, marginally missing the 0.05

critical value, while min(WSf infw ,WSr infw ) is narrowly not rejecting at 0.10.7

The switch from I(0) to I(1) according to the non-White-corrected statistics is found

in July 1997 for the 5-year spread, and March 1999 for the 1-year spread. The cor-

responding dates identiÞed by the White-corrected statistics are May 1998 and March

1999. It could be argued that the earlier date, under non-White correction, for the

6We let τ vary between 0.15 and 0.85 in 0.01 increments. Note that LKSN use GLS-detrending and
trim at 0.20 employing the usual ADF statistics.

7Following a referee�s suggestion we also performed a standard Chow test for structural breaks on
the Þrst-difference of the two series. The stability of the regression coefficients was rejected for both
maturities using the break dates given in Table 2. These results, however, should be treated with
caution as such a test is conducted conditional on equal variances in the pre- and post- break samples.
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5-year spread coincides with the outbreak of the Asian Þnancial crises (Thai baht de-

valuation). The later date, under White-correction, may reßect the 5-year spread�s

issuance frequency reduction from monthly to quarterly in May 1998. The switch for

the 1-year spread in early 1999 occurs in the aftermath of the Russian/LTCM liquid-

ity crises in 1998:Q3, prior to the debt management policy change affecting the series.

Importantly, although this change was triggered against a background of sustained ex-

pectations of future Federal budget surpluses, the subsequent persistence was likely

sustained by both Þnancial (event-driven) and macroeconomic uncertainty concerning

the inversion of the yield curve and the sharp deterioration of the U.S. Þscal position,

discussed earlier.

Lastly, in Table 3 we report the results of WS tests for the pre- and post-break

subsamples. The signiÞcant break dates are those given in Table 2, as determined by

the forward-based recursive test WSf inf .

TABLE 3 HERE

The pre-break and post-break subsamples are respectively stationary and nonstationary

at the 0.01 and 0.05 levels, both with and without the White-correction, supporting

the hypothesis of a break in peristence.

Thus, our Þndings point towards a signiÞcant switch from I(0) to I(1) in U.S. Trea-

sury�s 1-year and 5-year bond on/off spreads in the late 1990s. This should caution

analysts regressing on/off yield spreads of government bonds as a stationary explana-

tory variable in structural (factor) models of credit spreads; see Boss and Scheicher
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(2002) and Collin-Dufresne, Goldstein and Martin (2001). In light of the distribu-

tional properties of the data in Table 1, in Section 4 the above empirical evidence is

assessed using Monte Carlo simulation. The performance of WS-based tests and their

White-corrected versions under conditional heteroskedasticity is investigated.

4. MONTE CARLO SIMULATIONS

Conditional heteroskedasticity is pervasive in Þnancial time series. It is now common

to conduct unit root tests when there is higher-order conditional dependence with au-

toregressive coefficients summing close to unity. For example, Bera and Higgins (1997)

using stock return data estimate φ1 + φ2 close to one (near-integration). Kim and

Schmidt (1993) are mainly interested in the size of the DF statistic under GARCH.

The potential consequences for power were not explored, particularly when White-

correcting.8 But these are clearly pertinent, as WS-based unit root tests can be more

powerful than their ADF counterparts.

In this Section we provide Monte Carlo evidence on the size and power properties

of the WS-based tests and, for the recursive statistics, the accuracy of the break point

estimator for nearly-integrated GARCH errors. In doing so, we also evaluate the use-

fulness of White-correcting in these circumstances. The issue of skewness and excess

kurtosis is also investigated as both are common features of Þnancial series.9

8Seo (1999) provides some results demonstrating that DF t-tests haver lower power under condi-
tional heteroskedasticity, but is not concerned with the issue of White-correction.

9The unconditional distribution for 't in the GARCH model with conditionally normal errors has
heavier tails than the normal, but these do not adequately capture the excess kurtosis observed in
many Þnancial time series.
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It is assumed that yt follows the AR-GARCH process speciÞed in Section 3, with

the constant c set to zero. The errors vt are either t(5) or χ2(3)-distributed, and the

standard normal is also included for comparison purposes. We consider the GARCH

parameter combinations (φ1, φ2) = {(0.05, 0.9), (0.1, 0.8), (0.3, 0.6)}. The rejection fre-

quencies at the nominal 0.05 level are given in Table 4. Size and power calculations

were based on 5,000 and 3,000 replications, respectively.

TABLE 4 HERE

We Þrst report on the WS statistic. This is found to be modestly oversized in

Þnite samples for greater short-run volatility (φ1 = 0.3), corroborating the results in

Kim and Schmidt (1993) and Seo (1999) for the DF t-statistic. When T = 500, size

distortions are apparent for χ2 errors only. The WSw statistic effectively corrects these

overrejections but can be somewhat undersized.

Regarding WS test power, as α declines this increases across GARCH parameteri-

zations for given sample size. When T increases, a similar Þnding emerges for Þxed α,

reßecting consistency of the test. The ability of the WSw test to control for size comes

at some loss in power which can be substantial, particularly for smaller sample sizes,

large α and non-normal errors. Correcting for GARCH when not required (φ1 < 0.3)

yields negligible power losses for large T with the exception of the case φ1 = 0.3,

α = 0.9 under t-distributed errors. The same applies for smaller sample sizes provided

α is not too large. Otherwise, the decline in power can be pronounced, especially for

non-normal errors and larger φ1.
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Table 5 reports on the recursive statistic WSf inf .

TABLE 5 HERE

For T = 200, the WSf inf test overrejects when φ1 = 0.3. Compared to the results

for the WS statistic and the corresponding results for the DF-t statistic in Kim and

Schmidt (1993), these size distortions are larger and appear to persist for T = 500

under all GARCH errors. Moderate overrejections are also apparent for t-GARCH

errors and smaller φ1, though mainly for T = 200, but these disortions are effectively

corrected by theWSf infw test statistic. The usual asympotic theory for White-correction

does not extend to dynamic models with a unit root, as can be derived from the

simulation results in Nichols and Pagan (1983). However, the necessary condition for

existence of the unconditional fourth moment of the errors under White-correction is

3φ21 + 2φ1φ2 + φ
2
2 < 1, see Bollerslev (1986). Note that for larger φ1 this inequality is

closer to being violated than for larger φ2.
10

Turning to the recursive test, WSf inf gains power for larger τ∗. Thus, consistency

is more apparent for τ∗ = 0.7 and smaller φ1, as size distortions are then minimal. This

implies that the probability limit function is monotonically decreasing in τ∗ under the

alternative.11 For T = 500, White-correcting across τ∗ results in minor power losses

provided α is not too large, and these are somewhat greater for τ ∗ = 0.5. In contrast,

power losses are signiÞcant across τ∗ for T = 200. As before, White-correcting when

10He and Teräsvirta (1999) show that the unconditional fourth moment of 't, where 't = h
1/2
t vt, vt

is an iid sequence and ht = φ0 + φ1'
2
t−1 + φ2ht−1, with φ1 + φ2 < 1, exists in GARCH(1,1) models iff

φ22 + 2φ1φ2m2 + φ1m4 < 1 and mi = E |vt|i .
11LKSN also found this to be the case for the GLS-detrended DF tests.
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not appropriate�for example, due to misspecifying the volatility dynamics�leads to

smaller power losses for T = 500 when τ∗ = 0.7 as long as α is not too large and

GARCH errors are not skewed. When τ∗ = 0.5 there is some further power reduction.

Table 6 reports on the accuracy of the estimated break fraction.

TABLE 6 HERE

Estimates of the true τ∗ based on the WSf inf test are consistent, and this is more

evident for τ∗ = 0.7. Convergence is rather slower for τ∗ = 0.5, particularly when

T = 200. In contrast, estimates of τ ∗ associated with the WSf infw statistic are more

accurate for τ∗ = 0.5. Convergence is then relatively slower for τ ∗ = 0.7 and large α.

The slow convergence is more pronounced for non-normal errors and greater φ1. The

effect of non-normality�skewness more than excess kurtosis�on the accuracy of τ∗ is

discernible only for estimates implied by the WSf infw test. For both tests, the estimated

break fraction is more accurate for larger φ1 across T and τ
∗.

Finally, we brießy discuss the performance of the reverse and �two-sided� tests,

WSr inf and min(WSf inf ,WSr inf). The WSr inf test as well as related estimates of

τ∗ were found to be inconsistent under the H01 alternative, as postulated in Sec-

tion 2. The same was true for the White-corrected version of this test. Results for

the min(WSf,inf ,WSr,inf) statistic were qualitatively similar to those of WSf inf , while

power was higher and τ ∗ estimates were slightly more accurate using WSf inf .12

When relating these Þndings to the empirical evidence presented in Section 3, it

appears that the less signiÞcant rejections observed for the 5-year on/off spread under
12Detailed results for these tests are available upon request.
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White-correction can be attributed to its lower test power, associated with the break

point for this series being detected earlier. This Þnding does not apply to the 1-year

spread, possibly due to its corresponding break point occurring later in the sample.

5. CONCLUDING REMARKS

This paper extended the recursive test procedure of Leybourne et al. (2003) by

adopting weighted-symmetric estimation to detect a single change in time series persis-

tence. The dynamics of the U.S. yield curve offer a good case in point. An application

to U.S. Treasury bond on/off spreads acting as a common empirical proxy of mar-

ket liquidity found a signiÞcant break from I(0) to I(1) in the late 1990s. This Þnding

suggests that the persistence properties of Þnancial time series can be affected by exoge-

nous shocks of systemic origin, as well as by unfolding uncertainty over macroeconomic

policy. Thus, although �[...] in the U.S government bond market the announced debt

repayment programme has been a major contributor to the persistence of the reduc-

tion in market liquidity� (Borio (2000)), over our whole sample period the change in

persistence is driven by the debt management policy changes and the subsequent Þscal

policy reversal�with their implications for monetary policy and the yield curve. The

main result also serves to caution analysts employing on/off spreads on government

bond yields as stationary variables in structural models of credit spreads. More gener-

ally, our contribution falls in line with the recent literature suggesting liquidity risk is

strongly time-varying even in very liquid Þnancial markets. Related theoretical mod-

els include Acharya and Pedersen (2005) and Brunnermeier and Pedersen (2005); for

17



empirical evidence see Amihud (2002), Chordia, Roll and Subrahmanyam (2001) and

Pastor and Stambaugh (2003) .

The empirical application was supported by implementing non-recursive WS tests

to the pre- and post-break subsamples, known to be more powerful than standard and

GLS-detrended ADF tests in Þnite samples. The size and power performance of the

WS-based tests, as well as the accuracy of the estimated break point for their recursive

counterparts were investigated in a Monte Carlo study under persistent GARCH errors.

Conditional heteroskedasticity in time series is known to yield modest overrejections

for standard Dickey-Fuller tests. This was also demonstrated by the non-recursive WS

tests. For the recursive tests the overrejections were more pronounced. ConÞrming

earlier studies, it was shown that White-correcting can generally eliminate these size

distortions. However, we found that this comes at some loss in power, particularly for

small sample sizes and greater short-run variation in volatity. We conclude that, when

short-run volatity is persistent, employing the White-corrected version of the recursive

unit root tests is advisable only in large samples, provided the AR(1) coefficient is not

too large. When short-run variation in volatility is smaller, White-correction does not

appear necessary. Misspecifying the underlying volatility dynamics would then lead to

signiÞcant reduction in power in small samples.
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Figure 1. U.S. Treasury Bond On/Off Spread: 1991-2002 
 
  



TABLE 1

Panel A On/Off Bond Spread Statistics: 1991-2002
Series Mean Std. Dev. Max Min Skewness Kurtosis Jarque-Bera
1Y -1.632 6.311 28.90 -26.50 1.518 8.437 820.76
5Y 0.684 4.202 12.00 -14.80 -0.771 4.947 152.18

Panel B Maximum Likelihood Parameter Estimates
AR(1)-GARCH(1,1) with Student-t Innovations

Series c a φ0 φ1 φ2
1Y -0.227 0.866 0.394 0.129 0.861

(0.096) (0.019) (0.231) (0.057) (0.046)
5Y 0.038 0.931 0.096 0.122 0.853

(0.051) (0.013) (0.051) (0.039) (0.041)

Panel C ADF and WS Tests for Whole Sample
Series ADF ADFw WS WSw

1Y -3.009b -2.102 -3.168a -1.680
5Y -1.409 -1.299 -1.711 -1.209

Note: Superscript a, b, c denotes signiÞcance at the 0.01, 0.05 and 0.10 level, respectively. Standard errors are in
parentheses. ADFw and WSw refer to White�s heteroskedastic robust version of the ADF and WS tests.

TABLE 2
Recursive WS tests for a change in persistence

Panel A
Series WSf inf Break date WSr inf Break date min(., .) Break date
1Y -3.602b 03/03/99 -2.808 n/a -3.602b 03/03/99
5Y -3.603b 30/07/97 -2.371 n/a -3.603b 30/07/97

Panel B
Series WSf infw Break date WSr infw Break date minw(., .) Break date
1Y -3.282b 24/03/99 -1.692 n/a -3.282b 24/03/99
5Y -2.927c 27/05/98 -1.555 n/a -2.927 n/a

Note: Statistics min(WSf inf ,WSr inf) and min(WSf infw ,WSr infw ) are respectively denoted min and
minw. Break dates are reported only when the null is rejected. The signiÞcant break points are 395
(03/03/99), 314 (30/07/97), 398 (24/03/99), 357 (27/05/98).

TABLE 3
WS tests for subsamples

Panel A WSf inf

Series Pre-break Post-break
1Y -3.602a -1.847
5Y -3.603a -1.736

Panel B WSf infw
Series Pre-break Post-break
1Y -3.282a -1.651
5Y -2.927b -1.261



TABLE 4
Empirical size and power of WS test at nominal 0.05-level under GARCH(1,1)

T = 100

φ1 φ2 α: 0.70 0.80 0.90 1.00
WS WSw WS WSw WS WSw WS WSw

0.05 0.9 N(0, 1) 1.000 0.992 0.968 0.927 0.531 0.483 0.055 0.056
t(5) 0.999 0.960 0.974 0.846 0.623 0.469 0.055 0.042
χ2(3) 0.996 0.909 0.958 0.746 0.546 0.368 0.050 0.046

0.1 0.8 N(0, 1) 0.999 0.986 0.964 0.898 0.536 0.465 0.058 0.053
t(5) 0.998 0.936 0.971 0.808 0.625 0.438 0.057 0.040
χ2(3) 0.994 0.885 0.956 0.706 0.564 0.351 0.059 0.045

0.3 0.6 N(0, 1) 0.995 0.922 0.944 0.764 0.553 0.387 0.072 0.050
t(5) 0.996 0.856 0.955 0.690 0.626 0.364 0.075 0.036
χ2(3) 0.989 0.811 0.948 0.628 0.613 0.312 0.079 0.046

T = 200

0.05 0.9 N(0, 1) 1.000 1.000 1.000 0.999 0.960 0.913 0.058 0.060
t(5) 1.000 0.994 1.000 0.981 0.975 0.856 0.058 0.047
χ2(3) 1.000 0.990 0.999 0.948 0.960 0.735 0.058 0.048

0.1 0.8 N(0, 1) 1.000 1.000 1.000 0.995 0.956 0.885 0.060 0.058
t(5) 1.000 0.986 0.999 0.960 0.971 0.809 0.063 0.046
χ2(3) 1.000 0.974 0.998 0.916 0.956 0.678 0.061 0.046

0.3 0.6 N(0, 1) 1.000 0.982 0.998 0.942 0.934 0.716 0.076 0.051
t(5) 0.999 0.942 0.998 0.874 0.955 0.648 0.074 0.043
χ2(3) 0.998 0.916 0.995 0.800 0.949 0.535 0.082 0.044

T = 500

0.05 0.9 N(0, 1) 1.000 1.000 1.000 1.000 1.000 1.000 0.056 0.053
t(5) 1.000 0.998 1.000 0.995 1.000 0.986 0.054 0.043
χ2(3) 1.000 0.999 1.000 0.997 0.999 0.965 0.058 0.050

0.1 0.8 N(0, 1) 1.000 1.000 1.000 1.000 1.000 1.000 0.056 0.052
t(5) 1.000 0.966 1.000 0.990 1.000 0.971 0.053 0.040
χ2(3) 1.000 0.997 1.000 0.988 0.999 0.930 0.061 0.046

0.3 0.6 N(0, 1) 1.000 0.996 1.000 0.987 0.999 0.941 0.064 0.044
t(5) 1.000 0.977 1.000 0.946 0.999 0.850 0.065 0.035
χ2(3) 1.000 0.960 1.000 0.904 0.997 0.755 0.080 0.035

Note: The DGP is yt = αyt−1 + 8t, where 8t = h
1/2
t vt, ht = φ0 + φ18

2
t−1 + φ2 ht−1 and vt is

distributed as in the Þrst column. The t and χ2 distributions are standardized as t(n)

( n
n−2 )

1/2 and
χ2(n)−n
(2n)1/2

with n degrees of freedom. The unconditional variance is 1 by setting φ0 = 1− φ1 − φ2, without loss
of generality.



TABLE 5
Empirical size and power (under H01): WSf inf at 0.05 level under GARCH(1,1) as in Table 6

τ∗ = 0.5

T = 200

φ1 φ2 α: 0.70 0.80 0.90 1.00

0.05 0.9 WSf inf WSf infw WSf inf WSf infw WSf inf WSf infw WSf inf WSf infw
N(0, 1) 0.994 0.959 0.867 0.727 0.385 0.262 0.067 0.064
t(5) 0.989 0.792 0.862 0.750 0.378 0.166 0.070 0.042
χ2(3) 0.991 0.774 0.874 0.521 0.392 0.199 0.059 0.047

0.1 0.8 N(0, 1) 0.991 0.935 0.859 0.704 0.387 0.262 0.066 0.059
t(5) 0.984 0.780 0.846 0.509 0.386 0.171 0.071 0.039
χ2(3) 0.990 0.766 0.871 0.514 0.415 0.203 0.060 0.044

0.3 0.6 N(0, 1) 0.984 0.843 0.862 0.592 0.455 0.227 0.093 0.061
t(5) 0.978 0.705 0.846 0.452 0.445 0.161 0.098 0.042
χ2(3) 0.984 0.734 0.891 0.499 0.493 0.212 0.088 0.050

T = 500

0.05 0.9 N(0, 1) 1.000 1.000 1.000 0.999 0.959 0.881 0.061 0.061
t(5) 1.000 0.981 1.000 0.946 0.957 0.700 0.068 0.049
χ2(3) 1.000 0.980 1.000 0.924 0.961 0.670 0.063 0.050

0.1 0.8 N(0, 1) 1.000 1.000 1.000 0.996 0.952 0.855 0.061 0.056
t(5) 1.000 0.975 1.000 0.928 0.950 0.664 0.070 0.042
χ2(3) 1.000 0.971 0.999 0.897 0.958 0.621 0.066 0.045

0.3 0.6 N(0, 1) 1.000 0.988 1.000 0.947 0.939 0.680 0.091 0.048
t(5) 1.000 0.936 0.999 0.831 0.936 0.508 0.103 0.036
χ2(3) 1.000 0.919 0.997 0.810 0.957 0.506 0.097 0.041

τ∗ = 0.7

T = 200

φ1 φ2 α: 0.70 0.80 0.90 1.00

0.05 0.9 WSf inf WSf infw WSf inf WSf infw WSf inf WSf infw WSf inf WSf infw
N(0, 1) 1.000 0.995 0.981 0.885 0.503 0.351 0.067 0.064
t(5) 0.998 0.905 0.971 0.691 0.492 0.224 0.070 0.042
χ2(3) 0.999 0.874 0.979 0.663 0.538 0.253 0.059 0.047

0.1 0.8 N(0, 1) 1.000 0.990 0.978 0.865 0.516 0.343 0.066 0.059
t(5) 0.998 0.892 0.967 0.668 0.508 0.225 0.071 0.039
χ2(3) 0.999 0.867 0.976 0.646 0.559 0.258 0.060 0.044

0.3 0.6 N(0, 1) 0.998 0.924 0.964 0.725 0.573 0.284 0.093 0.061
t(5) 0.996 0.806 0.955 0.567 0.551 0.205 0.098 0.042
χ2(3) 0.997 0.817 0.973 0.598 0.641 0.254 0.088 0.050

T = 500

0.05 0.9 N(0, 1) 1.000 1.000 1.000 1.000 0.999 0.981 0.061 0.061
t(5) 1.000 0.990 1.000 0.976 0.997 0.989 0.068 0.049
χ2(3) 1.000 0.993 1.000 0.968 0.997 0.794 0.063 0.050

0.1 0.8 N(0, 1) 1.000 1.000 1.000 1.000 0.999 0.962 0.061 0.056
t(5) 1.000 0.987 1.000 0.965 0.995 0.806 0.070 0.042
χ2(3) 1.000 0.984 1.000 0.943 0.996 0.746 0.066 0.045

0.3 0.6 N(0, 1) 1.000 0.994 1.000 0.973 0.993 0.813 0.091 0.048
t(5) 1.000 0.963 0.999 0.891 0.989 0.634 0.103 0.036
χ2(3) 1.000 0.950 0.999 0.868 0.990 0.606 0.097 0.041



TABLE 6
Break point estimates under H01: WSf inf at 0.05 level under GARCH(1,1) as in Table 6

τ∗ = 0.5

T = 200

φ1 φ2 α: 0.70 0.80 0.90

WSf inf WSf infw WSf inf WSf infw WSf inf WSf infw
0.05 0.9 N(0, 1) 0.583 0.552 0.599 0.562 0.611 0.566

t(5) 0.586 0.510 0.603 0.533 0.617 0.551
χ2(3) 0.586 0.492 0.604 0.510 0.615 0.524

0.1 0.8 N(0, 1) 0.566 0.535 0.582 0.549 0.598 0.553
t(5) 0.568 0.501 0.584 0.521 0.601 0.538
χ2(3) 0.569 0.481 0.587 0.497 0.599 0.512

0.3 0.6 N(0, 1) 0.564 0.519 0.580 0.525 0.590 0.529
t(5) 0.563 0.486 0.579 0.500 0.590 0.517
χ2(3) 0.565 0.469 0.580 0.480 0.594 0.486

T = 500

0.05 0.9 N(0, 1) 0.536 0.524 0.549 0.538 0.579 0.563
t(5) 0.539 0.505 0.554 0.528 0.582 0.558
χ2(3) 0.537 0.491 0.552 0.509 0.582 0.536

0.1 0.8 N(0, 1) 0.528 0.516 0.541 0.528 0.568 0.551
t(5) 0.531 0.499 0.546 0.519 0.570 0.549
χ2(3) 0.530 0.481 0.543 0.499 0.571 0.526

0.3 0.6 N(0, 1) 0.527 0.501 0.539 0.513 0.566 0.538
t(5) 0.529 0.481 0.541 0.499 0.567 0.529
χ2(3) 0.527 0.461 0.541 0.475 0.568 0.494

τ∗ = 0.7

T = 200

φ1 φ2 α: 0.70 0.80 0.90

WSf inf WSf infw WSf inf WSf infw WSf inf WSf infw
0.05 0.9 N(0, 1) 0.754 0.717 0.750 0.707 0.718 0.659

t(5) 0.755 0.668 0.751 0.662 0.720 0.637
χ2(3) 0.758 0.632 0.758 0.625 0.729 0.592

0.1 0.8 N(0, 1) 0.739 0.702 0.737 0.691 0.709 0.651
t(5) 0.741 0.655 0.738 0.649 0.709 0.622
χ2(3) 0.745 0.620 0.745 0.609 0.719 0.586

0.3 0.6 N(0, 1) 0.729 0.661 0.725 0.650 0.697 0.614
t(5) 0.727 0.618 0.723 0.612 0.693 0.590
χ2(3) 0.735 0.587 0.734 0.582 0.712 0.555

T = 500

0.05 0.9 N(0, 1) 0.733 0.721 0.742 0.726 0.751 0.726
t(5) 0.736 0.686 0.745 0.699 0.751 0.709
χ2(3) 0.734 0.675 0.743 0.681 0.753 0.679

0.1 0.8 N(0, 1) 0.726 0.710 0.733 0.715 0.741 0.713
t(5) 0.727 0.676 0.735 0.687 0.741 0.694
χ2(3) 0.726 0.661 0.735 0.665 0.742 0.661

0.3 0.6 N(0, 1) 0.720 0.675 0.726 0.677 0.730 0.675
t(5) 0.719 0.639 0.724 0.645 0.727 0.649
χ2(3) 0.720 0.617 0.727 0.616 0.733 0.604



Appendix A
Simulated critical values

Panel A
Statistic T 0.01 0.05 0.10

Panel B
Statistic T 0.01 0.05 0.10

ADF 500 -3.420 -2.875 -2.578 ADFw 500 -3.453 -2.905 -2.598
WS 100 -3.124 -2.552 -2.235 WSw 100 -2.857 -2.299 -2.007

250 -3.160 -2.554 -2.255 250 -2.796 -2.262 -1.982
350 -3.111 -2.538 -2.255 350 -2.737 -2.232 -1.971
400 -3.080 -2.543 -2.222 400 -2.733 -2.225 -1.949
500 -3.109 -2.540 -2.228 500 -2.745 -2.220 -1.942

WSf inf 500 -3.909 -3.325 -3.030 WSf infw 500 -3.529 -3.004 -2.729
WSr inf 500 -3.943 -3.323 -3.033 WSr infw 500 -3.578 -3.003 -2.721
min 500 -4.162 -3.586 -3.309 minw 500 -3.770 -3.252 -2.993

Note: Statistics min(WSf inf ,WSr inf) and min(WSf infw ,WSr infw ) are respectively denoted by min
and minw. Beyond T = 500 critical values for WS-based tests appeared to converge.


