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ABSTRACT
At what forecast horizon is one time series more predictable than another?
This paper applies the Diebold–Kilian conditional predictability measure to
assess the out-of-sample performance of three alternative models of daily
GBP/USD and DEM/USD exchange rate returns. Predictability is defined as
a non-linear statistic of a model’s relative expected losses at short and long
forecast horizons, allowing flexible choice of both the estimation procedure
and loss function. The long horizon is set to 2 weeks and one month ahead
and forecasts evaluated according to MSE loss. Bootstrap methodology is
used to estimate the data’s conditional predictability using GARCH models.
This is then compared to predictability under a random walk and a model
using the prediction bias in uncovered interest parity (UIP). We find that both
exchange rates are less predictable using GARCH than using a random walk,
but they are more predictable using UIP than a random walk. Predictability
using GARCH is relatively higher for the 2-weeks-than for the 1-month long
forecast horizon. Comparing the results using a random walk to that using
UIP reveals ‘pockets’ of predictability, that is, particular short horizons for
which predictability using the random walk exceeds that using UIP, or vice
versa. Overall, GBP/USD returns appear more predictable than DEM/USD
returns at short horizons. Copyright  2002 John Wiley & Sons, Ltd.
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INTRODUCTION

At what forecast horizon is one time series more predictable than another? Recently, researchers
have recognized that predictability is a conditional notion, concerning variances conditional on
varying information sets. Given a particular information set, predictability is also a function of
the model used to generate forecasts, and of the loss function employed for forecast evaluation.1

Conditional upon the data set and loss function, predictability can then be used to assess the

* Correspondence to: Demosthenes N. Tambakis, Pembroke College, Cambridge, CB2 1RF, UK. E-mail: dnt22@cam.ac.uk
1 See Diebold (1998), Diebold and Kilian (2001), Granger and Pesaran (1999), Hong and Billings (1999) and Rothemberg
and Woodford (1996).
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performance of competing models at different forecast horizons through the properties of their
predictions.

Granger and Newbold (1986) and Beran (1994) define the predictability of covariance stationary
series as the proportion of the unobservable unconditional variance explained by the mean squared
error (MSE) of a conditional forecast at a given horizon. Diebold and Kilian (2001)—henceforth
DK—generalize this notion and define predictability as inversely related to the ratio of the expected
losses of conditionally optimal linear forecasts at ‘short’ and ‘long’ forecast horizons. Thus pre-
dictability is a relative statistic comparing the evolution of forecasting models’ out-of-sample
expected losses at two different horizons specified by the modeller. The DK measure has the
advantage that the degree of ‘long’ forecast accuracy is directly observable. ‘Short’ horizon pre-
dictability can then be measured against this benchmark under a particular loss function. DK
estimate confidence intervals for the predictability of US quarterly macro series over the post-war
period.

This paper applies the DK predictability measure to assess multi-step-ahead dynamic forecasts
generated by three different models of daily dollar exchange rate returns of the deutschemark and
pound sterling over the period 1988–1998. All models are evaluated under the MSE criterion. The
long forecast horizon is set to 2 weeks or one month ahead and the short horizon takes all inter-
mediate values. First, GARCH models are used to compute bias-corrected predictability confidence
intervals.2 As the predictability statistic is non-linear and possibly non-normally distributed, we
use the parametric bootstrap to construct confidence intervals for the forecasts generated by the
GARCH models. These are then compared to predictability using a random walk and an uncovered
interest parity model.

Our motivation is the apparent failure of most parametric and non-parametric exchange rate
models to outperform a random walk process at various frequencies.3 The random walk is a conse-
quence of efficient markets arbitraging away profitable trades; as such it constitutes the appropriate
benchmark to use. Conveniently for our purposes, the predictability of a random walk according to
MSE is linearly decreasing in the forecast horizon, reflecting the linearly increasing forecast vari-
ance. Thus random walk processes are a natural benchmark against which to evaluate predictability
using other models.

The main motivation for using uncovered interest parity (UIP) to predict exchange rate returns
is our interest in exploiting the stylized empirical violation of UIP, reflecting the presence of
risk premia and resulting ‘peso problems’. Under the assumption of risk neutrality, or certainty
equivalence, UIP reduces to a no-arbitrage relationship. It is often interpreted jointly with the
random walk, in the form of rational expectations, as an expression of the weak-form efficient
market hypothesis.4

The main findings are as follows. First, both DEM/USD and GBP/USD exchange rates returns
are less predictable using GARCH than a random walk, but they are more predictable using the
violation of UIP than a random walk. This conclusion applies to both the 2-weeks-and 1-month long
forecast horizons. Second, the distribution of the bootstrap predictability statistic using GARCH is

2 Using GARCH to forecast the conditional mean is appropriate if the conditional variance is time-varying. See Bera and
Higgins (1995).
3 On structural models’ out-of-sample performance against a random walk see Meese and Rogoff (1983) and Meese (1990).
For time series models see Brooks (1997) and Diebold and Nason (1990).
4 Indeed, Fama (1984) showed that predictable excess returns should then be zero, as the foreign exchange forward premium
for a given maturity is an unbiased predictor of the future realized exchange rate return over the same maturity. See also
Begg (1984) and Lewis (1995).
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negatively skewed, and its median is higher for the 2-weeks-than for the 1-month long horizon for
both exchange rates. This suggests that GARCH models for modelling the conditional mean are
better suited to shorter forecast horizons. Finally, comparing the evolution of predictability using
a random walk to that using the UIP model reveals ‘pockets’ of predictability, that is, specific
short horizons for which predictability using the random walk outperforms predictability using
UIP, or vice versa. These appear more prominent for DEM/USD than GBP/USD returns. The latter
are relatively more predictable using UIP than a random walk, confirming the findings by Fisher
et al. (1990) for earlier data. Overall, our results are in line with past research, surveyed in Brooks
(1997), indicating that sterling–dollar exchange rate returns are relatively more predictable than
deutschemark–dollar returns for short forecast horizons.

The remainder of the paper is arranged as follows. The next section defines the predictability
measure and outlining its theoretical properties. The third section summarizes the data and the
estimated GARCH models and develops the bootstrap methodology for constructing predictability
confidence intervals. The fourth section applies this procedure to the 2-week and one-month-ahead
predictability of daily exchange rate returns using GARCH models. Predictability is also computed
using a random walk and a UIP model, and implications for exchange rate forecasting are drawn
by comparisons across the three models. The final section presents a conclusion.

A REVIEW OF PREDICTABILITY MEASURES

Granger and Newbold (1986) define the predictability of univariate covariance-stationary processes
according to MSE loss by analogy to the familiar formula for R2:

G�s, l� D var�ŷtCs,t�

var�ytCl�
D 1 � var�etCs,t�

var�ytCl�
�1�

where ŷtCs,t is the optimal linear s-step-ahead forecast of random variable yt and etCs,t D ytCs �
ŷtCs,t is the associated forecast error. To the extent that the unconditional variance of yt appears in
the denominator, G�s, l� may be thought of as an absolute predictability measure.5

DK extend this definition to non-stationary processes evaluated under general loss functions.
Following the intuition of the G�s, l� measure, but taking into account that the unconditional
variance is unobservable, the predictability of yt is defined as being the ratio of the conditionally
expected loss of an optimal ‘short-run’ forecast, E�L�etCs,t��, to that of an optimal ‘long-run’
forecast, E�L�etCl,t��, where s < l. Intuitively, if E�L�etCs,t�� < E�L�etCl,t�� then the process is
more predictable at horizon s relative to horizon l. In contrast, if E�L�etCs,t�� ' E�L�etCl,t�� the
process is almost equally predictable at horizon s relative to l. DK thus define the predictability
Pt�s, l, L, �� (s < l) of yt to be:

Pt�L, �t, s, l� D 1 � E�L�etCs,t� j �t�

E�L�etCl,t� j �t�
�2�

where the information set �t can be either univariate or multivariate and yt can be either stationary
or non-stationary. The choice of short and long horizons s and l is flexible provided l is finite.

5 The Granger–Newbold measure has been employed in macroeconomics to relate one-step-ahead inflation forecast errors
to long-run inflation variability, as in Barsky (1987).
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Equivalently, we can assess expected forecast losses for period t made in periods t � s and t � l
by comparing the relative accuracy of s and l–step–ahead forecasts of yt, where l > s:

Pt�L, �t, s, l� D 1 � Et�s�L�et��

Et�l�L�et��
�3�

For univariate AR(1) processes, yt D �yt�1 C ut, the s-step-ahead predictability of white noise (� D
0) is zero for all s, as short- and long-run forecasts are equal. In contrast, DK show that a dataset’s
predictability using a univariate random walk according to MSE is just Pt�MSE, �, s, l� D 1 � s/l.6

In general, comparing the predictability of covariance-stationary data at two short term horizons
s1 and s2 with s1 < s2, the information set used for s2-steps–ahead forecasts is likely to be poorer
than that for s1 steps ahead, so we expect predictability to decline as we compare forecasts further
into the future.

For covariance-stationary data one can show that 0 < Pt�L, �, s, l� < 1. However, the predictabil-
ity of non-stationary data can also be negative, reflecting the fact that short-term expected losses
may exceed long-term ones. In general, increasing the short horizon need not imply a lower P�s, l�.
As our focus is on univariate information sets and MSE loss, we shall simplify notation and write
just Pt�L, �t, s, l� D Pt�s, l�. In the remainder of this paper, ‘predictability’ always refers to pre-
dictability of a certain dataset using a particular forecasting model evaluated according to MSE
loss.7

Let N is the total number of observations, N � l of which are reserved for estimation and l for
out-of-sample forecast evaluation. The expected MSE of s-steps-ahead forecasts then is:

Et�L�etCs,t�� D MSEs D 1

s

N�lCs∑
iDN�lC1

�ytCi � ŷtCi,t�
2 �4�

where the realized value of the variable at time t is yt, and the conditionally optimal s-steps-ahead
forecast made in period t is ŷtCs,t D E�ytCs j �t�. Thus, if the predictability of a dataset at short
horizon s relative to long horizon l is higher using forecasting model A than alternative model B
we may write:

PA
�s,l� > PB

�s,l� , 1 � MSEA
s

MSEA
l

> 1 � MSEB
s

MSEB
l

implying:

MSEA
s

MSEA
l

<
MSEB

s

MSEB
l

�5�

It is possible that a dataset’s predictability at horizons �s, l� is greater using model A even though
its respective MSEs exceed those of model B at both ‘short’ and ‘long’ horizons. Therefore,
predictability is a relative concept: in order to conclude that the data is absolutely more predictable
at horizon s, the MSEs at the long horizon also have to be of similar magnitude. We return to this

6 A random walk without drift is defined as yt D yt�1 C ut , where ut is serially uncorrelated with constant variance. It
satisfies the weak martingale property that expected changes in yt are zero.
7 The loss function need not be restricted to the quadratic specification. For the theory and applications of non-quadratic
and/or asymmetric loss functions see Diebold and Mariano (1995) and Christoffersen and Diebold (1996).
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issue below when assessing the predictability of exchange rate returns using a random walk and
uncovered interest parity.

THE DATA AND BOOTSTRAP METHODOLOGY

The data
The information set consists of mid-day spot exchange rates of pound sterling and the deutschemark
against the dollar, respectively denoted GBP and DEM, over the period from 1/1/1988 to 7/4/1998.
There are N D 2, 678 log return observations for each exchange rate. Tables I and II (Panel (a))
summarize the data’s distributional properties. Augmented Dickey–Fuller (ADF) unit root tests
indicate that both return series are covariance-stationary. The in-sample returns variance is much
larger than the mean, and skewness is close to zero. Returns are strongly leptokurtic and normality is
rejected. Also, the Ljung–Box Qx statistic is insignificant at 20 lags for DEM returns, but significant
at the 1% level for GBP, indicating the presence of linear autocorrelation.

Panels (b) of Tables I and II present the selected GARCH models for the conditional mean
of returns. The AR order is determined using the Schwartz Information Criterion (SIC). As this
penalizes an overspecified structure more than Akaike’s Information Criterion, it is less likely to

Table I. DEM/USD daily returns

(a) Summary statisticsa

Mean 0.0000577
Standard deviation 0.0066
Skewness 0.0328
Excess kurtosis 5.0023
Normality 447.83ŁŁ
ADF(5) �21.84ŁŁ
Qx(20) 22.21

(b) Model specificationb

AR 11
MA 0
GARCH(p,q) (1,1)
ARMA errors No
SIC �7.2408
R2 0.004852
Qx(20) 8.65
ARCH LM (20) 1.46Ł

Notes:
a N D 2678 observations: 1/1/1988-7/4/1998. ADF(5) is a unit root test
with 5 lags. Normality is the Bera–Jarque test, asymptotically dis-
tributed �2(2). Qx(20) is the Ljung–Box statistic of order 20. ARCH(5)
is Engle’s LM test for ARCH. Ł and ŁŁ denote 10% and 1% significance
levels.
b The AR order was obtained using SIC. R2 is adjusted R2. Qx and
ARCH report the Ljung–Box and ARCH LM statistics for the nulls of
no linear dependence in the error levels and squares, respectively. Ł
and ŁŁ denote 10% and 1% significance levels.
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Table II. GBP/USD daily returns

(a) Summary statisticsa

Mean 0.0000446
Standard deviation 0.0062
Skewness 0.02780
Excess kurtosis 5.6367
Normality 810.24ŁŁ
ADF(20) �20.76ŁŁ
Qx(20) 46.23ŁŁ

(b) Model specificationb

AR 7
MA 0
GARCH(p,q) (1,1)
ARMA errors No
SIC �7.4370
R2 0.005073
Qx�20� 13.58
ARCH LM �20� 1.21Ł

Notes: See Table I.

overestimate the required number of lags. The lag orders are AR(7) for GBP and AR(8) for DEM.
Because of the penalty associated with an overspecified lag order, a GARCH(1,1) specification is
always preferred with no MA structure in the errors for both time series. Not surprisingly, the
explanatory power is very low. The standard diagnostics indicate linear dependence in both the
levels and squares of the errors from the GARCH models.

Bootstrap predictability for GARCH models
Estimation is carried out in two stages. First, baseline predictability is computed as follows. After
fitting the selected GARCH model to the first N � l return observations, the estimated coeffi-
cients are used to generate forecasts for the out-of-sample range: 1 � s � l, l D 10, 22. These are
compared with the respective two–week and one-month out-of-sample observations—10 and 22
days ahead, respectively—and the baseline value of the predictability statistic is computed for all
out-of-sample short horizons. In the second stage, the baseline is used to construct bias-corrected
confidence intervals for predictability following the five-step parametric bootstrap of Freedman and
Peters (1985):8

(1) AR(p)-GARCH models are fitted to all N observations using constrained maximum likelihood.
Each chosen model is then used to compute the corresponding fitted values of yt for all t D
p C 1, . . . , N given by ŷt D � C ∑p

iD1 ̨̂iyt�i C et. Subsequently, the set of all observations
is used to construct N � p pseudo-data vectors. Each model’s true in-sample error vector ê
(�N � p� ð 1) is the difference between the true vector y and the conditional fitted values:
ê D y � ŷ.

8 This procedure, which has also been applied by Masarotto (1990), is reviewed by Berkowitz and Kilian (2000) and
Davison and Hinkley (1997), who refer to it as ‘post–blackening’ of the data.
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(2) Resampling with replacement from the empirical distribution of ê yields B bootstrap error
vectors eb (b D 1, . . . , B). We use B D 500 replications throughout.9 As discussed above, the
levels and squares of GARCH estimated errors are correlated. Moreover, there is a large body
of evidence of non-linear dependence in daily exchange rate returns working through the condi-
tional mean and higher moments.10 Therefore, the i.i.d. requirement is rejected, suggesting that
estimation procedures yield inconsistent parameter estimates. Therefore, the issue of bootstrap
resampling from a block index becomes important.
We apply the non-overlapping block resampling method of Künsch (1989) so that the bootstrap
replicate blocks are asymptotically i.i.d. This is done by partitioning each true error vector into
blocks of fixed size and resampling with replacement from the block index. Intuitively, a very
large number of blocks would destroy any error autocorrelation in the true data; a moderate
number is better suited. We choose a block size of 25 days throughout.11

(3) Each bootstrap error vector is then used to construct a pseudo-data vector yb of dimension
N � p using the true coefficients (â) for each model. In this way we construct B pseudo-data
vectors are constructed, the components of which are given by yb

t D � C ∑p
iD1 ̨̂iyb

t�i C eb
t ,

t D p C 1, . . . , N, b D 1, . . . , B. Each pseudo-data vector is evaluated recursively, with the
first p observations corresponding to the true returns data. These initial values should not
affect the pseudo-data distribution for large sample sizes.

(4) N � l � p of the N � p pseudo-sample returns observations are reserved for in-sample esti-
mation and the last l for out-of-sample forecast evaluation. Step (1) is then repeated for each
pseudo-data vector using the first �N � l � p� observations. The AR coefficient vector ab is
estimated from yb

t D �b C ∑p
iD1 ˛b

i yb
t�i C eŁb

t , while the out-of-sample values are the ‘true’
pseudo-data for each bootstrap replication.12

(5) Finally, for each pseudo-data vector we generate a dynamic pseudo-forecast for each short
forecast horizon (s D 1, . . . , l). These are given by yŁb

tCs D �b C ∑p
iD1 ˛b

i yŁb
tCs�i C eŁb

tCs, with
eŁb

tCs D 0 for all s, and all unknown future errors set to their conditional expectation of zero.
The expected MSE loss at short horizon s then is:

MSEb
s D 1

s

N�p∑
tDN�p�lCs

�yb
tCs � yŁb

tCs,t�
2 �6�

Conditional predictability P̂�s, l� is obtained by computing 1 minus the ratio of expected losses at
the short and long forecast horizons s and l for each pseudo-data vector and averaging the outcome
over all B bootstrap replications:

P̂�s, l� D 1 � E�L�eb
tCs��

E�L�eb
tCs��

D 1 � MSEb
s

MSEb
l

�7�

9 Bootstrap statistics can be estimated consistently using least squares provided the model residuals used for resampling
are i.i.d. For a detailed treatment see Efron and Tibshirani (1993) and Davison and Hinkley (1997).
10 Brock, Hsieh and LeBaron (1993) and Mills (1996) document non-linear dependence in various daily exchange rates.
11 The results can be sensitive to changes in the block size: see Aczel and Josephy (1992). However, the non-linearity
of the predictability statistic precludes using the block size rule of Hall, Horowitz and Jing (1995). An extension would
involve the stationary bootstrap of Politis and Romano (1994) which uses a random block size.
12 Due to computational constraints, the AR order p for each pseudo-data estimation is assumed to be the same as that
used for the true data.
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Confidence intervals (CIs) for conditional predictability can be simply constructed from the empir-
ical percentiles of the bootstrap distribution. However, they are not reported here as they are very
wide for both exchange rates.13 A generic problem with the percentile CIs is their failure to account
for the possibility of bias in the bootstrap distribution, thus resulting in worse coverage accuracy.
This shortcoming can be addressed by using Efron and Tibshirani’s (1993) bias-corrected confi-
dence intervals (BCCIs), which adjust the endpoints of the bootstrap percentile confidence intervals
to correct for possible bias. In contrast to t-percentile confidence intervals, BCCIs correct for the
fact that the empirical distribution of the predictability statistic is not symmetric around baseline
predictability—in this way, they have improved effective coverage.14

This is done by comparing the predictability of each bootstrap replication to the baseline pre-
dictability statistic from the first stage. The bias of the standard bootstrap CIs is then defined as the
proportion of bootstrap replications which are less than the value of baseline predictability. In this
way, the latter serves as a benchmark for bias evaluation: if a large number of bootstrap statistics
is less (greater) than the baseline, the CI bounds are shifted to the right (left) by an appropriate
amount to account for the bias. The correct sign of adjustment can also be inferred by the sample
skewness of the bootstrap distribution, as discussed below.

RESULTS AND DISCUSSION

Predictability using GARCH versus a random walk
The pure random walk process (without drift) is arguably the most popular benchmark for assessing
the out-of-sample performance of exchange rate return forecasting models. Figures 1 and 2 present
the 2.5% and 97.5% bias-corrected confidence bounds of DEM and GBP predictability using the
GARCH models, along with the sample mean and median of the bootstrap predictability statistic’s
distribution. These are shown together with exchange rate returns predictability using a random
walk process, which is declining linearly in the short-run horizon from equation (3). Predictability
is evaluated according to MSE, and Panels A and B set the long forecast horizon to 2 weeks ahead
(l D 10 days) and one month ahead (l D 22 days), respectively. Note that P̂�s, l� is bounded in
[0,1], so changes in magnitude can be interpreted in percentage terms.

Figure 1 considers DEM returns. On the one hand, the sample mean of the bootstrap predictability
distribution is well below predictability under a random walk. On the other hand, the sample
median lies well above the mean, implying that the bootstrap predictability distribution is negatively
skewed. This suggests that the predictability of a proportion of bootstrap replications lies below the
baseline predictability statistic. As discussed earlier, such negative bias in the bootstrap predictability
distribution implies that the BC confidence intervals have to shift to the right compared to the
standard bootstrap percentiles. However, the BCCIs of GARCH predictability are very wide despite
the adjustment: the 2.5% lower bound is negative throughout and the 97.5% upper bound exceeds
random walk predictability.

At the 2-week-long horizon (Panel A), median GARCH predictability also exceeds random walk
predictability, by an amount of nearly 0.25 for 4-days-ahead and 8-days-ahead forecasts. At the
one-month long horizon (Panel B), the median of GARCH predictability is declining almost linearly

13 Normal and Student-t confidence intervals are also not reported pending results on the asymptotic normality of P̂.
14 Endogenous AR order selection for each bootstrap, as described in Kilian (1998) and/or the jacknife-accelerated confi-
dence intervals of Efron and Tibshirani (1993), would further improve CI coverage.
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A. DEM/USD predictability (2 weeks)
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B. DEM/USD predictability (1 month)

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1 3 5 7 9 11 13 15 17 19 21

2.5%

mean

median

97.5%

RW

Figure 1. Conditional predictability: GARCH versus random walk. MSE predictability of daily DEM/USD
spot returns using GARCH (N D 2,678) is based on 500 bootstrap replications. Mean and median refer to the
bootstrap predictability distribution, and 2.5% and 97.5% are the bounds of the 95% BC confidence intervals.
RW is MSE predictability using a random walk. The long forecast horizon is l D 10 (Panel A) and l D 22
(Panel B) days-ahead. The short forecast horizon varies from 1 to l

A. GBP/USD predictability (2 weeks)
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B. GBP/USD predictability (1 month)
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Figure 2. Conditional predictability: GARCH Versus random walk. MSE predictability of daily GBP/USD
spot returns using GARCH (N D 2,678) is based on 500 bootstrap replications. Mean and median refer to the
bootstrap predictability distribution, and 2.5% and 97.5% are the bounds of the 95% BC confidence intervals.
RW is MSE predictability using a random walk. The long forecast horizon is l D 10 (Panel A) and l D 22
(Panel B) days-ahead. The short forecast horizon varies from 1 to l
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alongside predictability using a random walk. It is only for 13-up to 16-days-ahead forecasts that
median GARCH predictability exceeds random walk predictability by an average 0.16. Note also
that mean GARCH predictability is less than random walk predictability for both long horizons.

Turning to Figure 2, the median GARCH predictability of GBP returns is similar to that of DEM
returns in that it lies above the mean, reflecting the negative skewness of the bootstrap predictability
distribution. Mean GARCH predictability is again lower than random walk predictability, especially
at the 1-month long horizon (Panel B). In that case, median GARCH predictability is closely
tracking predictability using a random walk. At the 2-week long horizon (Panel A), median GARCH
predictability is above random walk predictability by almost 0.4 for 6-days-ahead forecasts.

Overall, the results on predictability according to MSE using the GARCH models indicate that
GBP returns are more predictable than DEM returns. This is especially clear looking at the evolution
of the median rather than the mean of the bootstrap predictability distribution. Figures 1 and 2 also
suggest that the width of the 95% BCCIs for DEM returns is somewhat narrower than those for the
GBP returns. We now turn to assess the data’s predictability using GARCH to that using a model
based on the stylized violation of the uncovered interest parity condition.

Predictability using UIP versus a random walk
A parametric alternative for forecasting exchange rate returns is based on the uncovered interest
parity relationship (UIP):15

EtstC1 � st D ˛0 C ˛1�rt � rŁ
t � C εt �8�

rt and rŁ
t are the respective home (UK, Germany) and foreign (USA) overnight eurodeposit rates.

Because the interest differential time series may be non-stationary for time periods as long as
10 years, we extend the sample period for rt and rŁ

t to 18 years (1/1/80–7/4/98, or 4763 return
observations). Over the extended historical period the overnight interest differentials are station-
ary, so OLS estimation is appropriate.16 Substituting stC1 D EtstC1 for all in-sample DEM/USD
observations and regressing the 1-day-ahead spot returns upon the current overnight interest rate
differentials yields:

sDEM
tC1 � sDEM

t D �0.0000458
��0.42�

� 0.0000384
��1.32�

Ð �rDEM
t � rUSD

t � �9�

R
2 D 0.0002, DW D 1.97

while for GBP/USD returns we have:

sGBP
tC1 � sGBP

t D 0.000272
�2.25�

� 0.0000874
��2.79�

Ð �rGBP
t � rUSD

t � �10�

R
2 D 0.014, DW D 1.86

15 This definition uses a logarithmic approximation. Without approximation in terms of the levels of the actual and expected
future spot rates, UIP says that

St/EtStC1 D 1 C rt � rŁ
t

100

The approximation is adequate for small rates of change such as those observed at daily frequency.
16 The results of the ADF tests are available from the authors upon request.
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The t-statistics are in parentheses. If UIP held, we should expect to find ˛0 D 0 and ˛1 D 1. The
actual negative sign of the slope coefficients in both regressions reflects the stylized violation of
uncovered interest parity: a positive interest differential in favour of the home currency induces it
to appreciate against the dollar. Various explanations have been proposed for this finding, including
time-varying risk premia, habit persistence, ‘peso problems’ and irrational expectations.17 Impor-
tantly, the sign of the violation in equations (9) and (10) is robust to the sample size and the location
of the cut–off point. However, whereas the magnitude of the GBP/USD coefficients is significant
regardless of sample size, the significance of the DEM/USD coefficients increases gradually from
about 10 years of data onwards until it peaks at the reported t-statistic of �1.32 for the chosen
sample size of 18 years. This can be viewed as another example of the greater difficulty involved
in forecasting the DEM/USD spot exchange rate.

The empirical violation of UIP can be exploited for predicting the future spot exchange rate. The
estimated regression coefficients are used to obtain forecasts of exchange rate returns by repeatedly
computing 1-day-ahead forecasts. In order to compare UIP predictability to that using the other
two models the forecasts have to be dynamic: we therefore specify that the overnight interest rate
differential follows a random walk out-of-sample. This is a reasonable assumption based on the
underlying weak-form efficiency of interest rate markets at short horizons. By the law of iterated
expectations, the interest differential’s s-days-ahead conditional expectation is fixed at its last in-
sample value:

Et�itCs � iŁtCs j �t� D it � iŁt �11�

Substituting the first expected future spot rate into (8) and applying (11) to obtain the 1-day-ahead
interest differential yields the 2-days-ahead expected spot rate. Substituting the last 1-day-ahead
spot rate forecast for the actual future spot rate yields the next forecast. Iteration continues until
all out-of-sample spot rates (1 � s � l) have been forecast. These are evaluated against the true
out-of-sample observations and baseline UIP predictability calculated for each short horizon.

Figures 3 and 4 compare the predictability of the exchange rate returns using a random walk to
that using UIP. Note that, in contrast to the random walk, the evolution of UIP predictability is
declining non-monotonically from 1 to 0. Its evolution compared to random walk predictability is
similar for the two long forecast horizons. The predictability of DEM returns using UIP declines
at first and then stabilizes at about 0.4 for the 2-weeks and 0.2 for the one-month forecast horizon.
These minimum predictability levels occur at 4- and 9-day-ahead forecasts, respectively. In contrast,
the predictability of GBP returns using UIP is almost always higher than predictability using a
random walk.

Comparing the results with those in Figures 1 and 2 suggests that, in most cases, UIP predictabil-
ity fluctuates between the mean and the median of GARCH predictability. UIP predictability of
GBP returns is closer to the higher GARCH median than GARCH mean predictability level, and
vice versa for DEM. In fact, UIP predictability of GBP for the one-month long horizon exceeds
the GARCH median and follows the upper (97.5) confidence bound of the GARCH predictability
distribution through to 10-days-ahead. Thus, it appears that forecasting using the UIP model yields
higher overall predictability for GBP than for DEM returns.

We also note that DEM returns appear to display specific short forecast horizons at which each
model yields relatively higher predictability. In particular, returns for the 2-weeks long horizon are

17 Lewis (1995) presents a comprehensive survey of the empirical evidence on this and other puzzles in international
finance.
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B. DEM/USD predictability (1 month)
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Figure 3. Conditional predictability: UIP versus random walk. MSE predictability of daily DEM/USD spot
returns using uncovered interest rate parity (UIP, N D 4,763) and a random walk (RW). The long forecast
horizon is l D 10 (Panel A) and l D 22 (Panel B) days-ahead and the short forecast horizon varies from 1
to l

B. GBP/USD predictability (1 month)
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Figure 4. Conditional predictability: UIP versus random walk. MSE predictability of daily GBD/USD spot
returns using uncovered interest rate parity (UIP, N D 4,763) and a random walk (RW). The long forecast
horizon is l D 10 (Panel A) and l D 22 (Panel B) days-ahead and the short forecast horizon varies from 1
to l

more predictable using a random walk for up to 6 days ahead, and then using UIP from 7 to 9 days
ahead. For returns at the one-month long horizon, the random walk yields higher predictability for
all short horizons except the first 4 and the last 2 days ahead. In contrast, GBP returns for the
2-weeks long horizon are more predictable using UIP up to 8 days ahead, while for the one-month
long horizon UIP always yields higher predictability than the random walk.
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Identifying these ‘pockets’ of predictability for a given forecasting model could be a salient
feature of its relative predictive performance against a random walk. Clearly, the significance of
such pockets is sensitive to the forecaster’s choices of loss function and length of the short and
long forecast horizons. It should, however, be emphasized that the predictability statistic is only
a relative indication of a model’s out-of-sample properties. A necessary condition for an absolute
comparison of predictability using two different models is that their expected losses at the long
horizon are of similar magnitudes.

CONCLUSION

This paper applied the Diebold and Kilian (2001) conditional measure of time series predictability
to DEM and GBP daily dollar exchange rate returns over a 10-year period. The predictability statis-
tic enables a concrete evaluation of competing forecasting models’ out-of-sample performance at
different horizons. The forecasts generated by simple random walk, GARCH(1,1) and interest parity
models were evaluated according to MSE loss. Because of the statistic’s non-linearity bootstrap con-
fidence intervals were used. It was found, first, that both exchange rate returns are less predictable
using GARCH than using a random walk, but they are more predictable using the UIP model.
Second, predictability using GARCH is higher for the 2-weeks-than for the one–month–ahead
long horizon. This finding could be interpreted as prima facie evidence that GARCH models for
modeling the conditional mean are better suited to a 2-week horizon. Third, comparing the evo-
lution of the data’s predictability using a random walk to that using UIP revealed ‘pockets’ of
predictability, that is, specific short horizons for which the random walk outperforms the UIP
model and vice versa. These were particularly prominent for DEM returns. Our results also con-
firmed earlier findings that GBP exchange rate returns are more predictable than DEM returns at
short horizons.

The present framework can be extended to encompass a wider range of forecasting models
and estimation procedures—our choice of simple GARCH, UIP and benchmark random walk was
driven by the need for parsimony and to illustrate the underlying methodology. In particular, sensi-
tivity analyses can be carried out by varying the in- and out-of-sample periods and/or by changing
the length of the dataset. Confidence intervals for predictability under the UIP model could also be
constructed along the same principles as those used for the GARCH model.
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