Mediating Market Power in Electricity Networks

Richard J. Gilbert (UC Berkeley)

Karsten Neuhoff, David Newbery,

DAE Cambridge

TMR workshop, Lisbon 6 Oct 2001

www.econ.cam.ac.uk/dae/research/regulate.htm

Feasible Supply Functions Duopoly and Quintopoly

Scarcity or Market Power?

* Source: Report on California Energy Market Issues and Performance: May-June, 2000, Prepared by the Department of Market Analysis, August 10, 2000

Market power in networks

- peak price increases as $1/\{(n+1)\epsilon\}$
- demand elasticity & very low
- transmission constraints fragment market
- reduce effective number of generators, *n*
- generators can exploit constraints

Dealing with market power

- desirable to reduce concentration
 - trend is in other direction
- desirable to increase spare generation
 - hard to sustain in liberalised market
- desirable to maximise extent of market
 - regulate for "excess" transmission but how?
- Should TO's take account of market power?

Theory and evidence

- constraints increase after liberalisation
 - PJM, California Borenstein
 - England and Wales
- Theory: Borenstein, Joskow-Tirole
 - Gencos bid to exploit constraints
 - increasing capacity reduces market power
 - withholding transport abusive

Uplift Payments (at 1995/96 prices)

Uplift Payments (at 1995/96 prices)

Examples to model

- Scotland-England interconnector
 - Scotland exports are constrained
 - England more competitive than Scotland
- England-France interconnector
 - France is cheap monopolist, IC auctioned
- Netherlands-interconnectors
 - Netherlands imports, IC auctioned
 - NL less competitive than Germany

Transmission constraints in Europe

Generation in England and Wales

Electricity prices by town 3,300 kWh at 2000 prices excl VAT

Weekday baseload prices (weekly moving average)

Two-node model - auctions

- 2 nodes simplest configuration
- Interconnectors often single links
 - France-England
 - Germany-Netherlands (actually 2)
- increasingly auctioned
- policy issues auction design

Two-node model - 1

- oligopoly exporters, competitive importers
- should exporters be disbarred from auction?
- If they can pre-empt auction this lowers exporter price
- pre-commitment of export capacity is procompetitive (like a forward contract)

Two-node model - 2

- oligopoly importers, competitive exporters
- should importers be disbarred from auction?
- They can only benefit by making a profit on the interconnector
- But competitive traders can always arbitrage this profit away
- no need to restrict importing Gencos?

Conclusion on simple links

- if arbitrage is effective, then no need for restrictions on auctions
- However, arbitrage may not be effective
- Is arbitrage improved by restricting importers?
- If so then restrictions are justified

Issues in meshed networks

- How should capacity be determined?
- How should it be allocated?
- What are the trade-offs?
 - simplicity and liquidity vs efficiency and market power
 - variants of postage stamp pricing vs marketbased solutions

Market power in meshed networks

- Kirchoff's Laws imply loop flows
- ⇒transmission constraints impact on all flows
- ⇒constraint management complicated
- market-based solutions:
 - nodal prices
 - property rights to entry or exit

Flow-gate rights

- determine fraction of flow from *i* to *j*
- Physically defined by network
 - independent of (DC) flows
 - change if links changed
- equivalent to exit rights
- Should the SO trade these rights?
- If so, on what terms?

System Operator models

- SO can issue non-tradable exit rights
 - current procedure
- or SO can actively trade exit rights
- Tradable rights give more price elasticity
 - mitigates market power
 - requires careful design of terms of trade

Three zone model to model exit rights

O ligopoly with n generators Dem and = A_1 - b_1p_1 Marginalcost= βq_i

Com petitive m arket $N = A - bp_2$

Competitive market Netdem and $=A-bp_3$

Results for importing monopoly assuming low demand elasticity

Change in Welfare relative to competitive scenario in the case of an importing monopolistat node one $(b_1=1.5, A_1=23, b=1, A=0, b=1)$

Results for importing monopoly assuming high demand elasticity

Result for exporting duopoly

Transmission investment

- Should the the TO "over-invest"?
 - relative to a competitive analysis
- Exporter market power: $\Delta q > 0$
 - increased value of $(p\text{-MC}).\Delta q$
- Importer market power
 - $-is \Delta q < 0?$
- Whose welfare should count?

Conclusions

- market power requires new approach
- competitive paradigm may mislead
 - auction design for interconnectors
 - exit rights for transmission
 - investment in transmission expansion
- Guidance for multi-systems dispatch needed
- Goal is a workable and robust solution

Mediating Market Power in Electricity Networks

Richard J. Gilbert (UC Berkeley)

Karsten Neuhoff, David Newbery,

DAE Cambridge

TMR workshop, Lisbon 6 Oct 2001

www.econ.cam.ac.uk/dae/research/regulate.htm