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Executive Summary

Transport cost benefit analysis, when properly done, takes account of the benefits arising
from increased transport demand induced by lower transport costs, and these benefits are
typically evaluated by the rule-of-one-half or the trapezium rule. This states that the
transport gain is the average level of transport services times the fall in transport costs,
Σ–12 (qi′ + qi).(-∆ti), where qi is the number of trips on route i, -∆ti is the fall in transport
costs per trip on that route, and a dash indicates the post-improvement situation. One
very important set of issues in undertaking such transport evaluations is to pick up the
total impact of any scheme, which in a network may affect traffic flows and congestion
delays on a whole range of routes apart from the one subject to investment.

Transport cost reductions may also yield indirect benefits that are not captured by
simple cost-benefit analysis, and that is the subject of current SACTRA interest in the
links between transport investment and economic growth. One part of that is the
implications of imperfect competition for transport appraisal. These indirect benefits
arise from two sources - if prices fall and as a result output increases, then there will be
an increase in profits if firms are pricing above (long-run) cost because of imperfect
competition. If firms are located at different distances from a given market, then
lowering the transport cost will lower the effective delivered price, and increase the
intensity of competition between firms, particularly as more firms may find it worthwhile
competing for access to a given market.

The paper constructs a model of imperfect competition between suppliers of a
homogenous good (which could either be an input or a final consumption good) from
geographically dispersed firms who compete imperfectly in a central market place. The
impact of improvements which lower the costs of transporting the good to market are
examine for the case in which firms price to market and compete in that market, taking
the supplies of their rivals as given (though the paper discusses different formulations of
competitive behaviour, which may be either more or less intense). Different firms face
different delivery costs, and these affect their market share and their impact on prices.
The first model examines the effect of a general reduction in transport costs facing all
firms, of the kind associated with a fall in fuel excise duty, so the percentage change in
transport costs is the same for all, but the relative impact on total costs is larger for more
distant firms. The second model examines the effect of a change in the transport cost of

MEP\EffBen 18 December 2002i



just one firm, of the kind that may arise if just one route is improved.
The question asked is how much larger the total social benefits are compared with

the apparent transport benefits, or, more specifically, what is the ratio of the non-transport
to the transport benefits, r. In that respect it follows Venables and Gasiorek (1997) in
their report for SACTRA. They estimate a multiplier by which direct transport benefits
should be multiplied to give the total benefits (equivalent to 1+r). This paper finds rather
lower values for the ratio than they suggest. If ε is the elasticity of demand for the
product at the central market place and µ is the ratio of the super-normal profit (arising
from imperfect competition) to the price, then a simple analysis which does not model the
heterogeneity of transport costs suggests that r = εµ, so if ε = 2 and µ = 0.1, then r = 20%
and the multiplier is 1.2, which is quite large.

The first model shows that for the same parameters, but in addition if transport
costs are on average 10% of total costs (including transport costs), and if there are 5
competing firms at different distances, with a coefficient of variation of transport costs
of 25%, then r is only 3% for the case of linear demand, and 9% if demand has constant
elasticity, in both cases considerably below the simple estimate of 20%. The reason is
that a generalised fall in transport costs increases the market share of more distant firms,
but these firms have higher total costs (production plus delivery) and so the gains from
increased output are reduced by the increase in these costs. The lesson of the model is
that it is important to model the nature of imperfect competition carefully, because it does
not necessarily follow that reducing some firms’ costs will be welfare improving -
although prices may fall and benefit consumers, total costs may rise, and the fall in profits
can outweigh the gain in consumer benefits.

The second model looks at the effect of a localised transport improvement that
lowers delivery costs for just firm i. In the linear case, if si is the market share of firm i,
the indirect benefit ratio r = 1 - 1/[si(n+1)]. This equation has a quite remarkable
simplicity and surprising implication. If transport costs are lowered for firms whose
market share is less than 1/(n+1), r is negative and production efficiency decrease. These
are precisely the more distant firms that benefit more from transport cost reductions. The
reason is that the least socially costly way of producing goods in this simple model is to
use inputs from the closest suppliers. If the transport costs of more distant firms fall, then
their market share rises, but this increases total production costs.

The steady decrease in transport costs has had a dramatic effect on the average
distance over which firms source their requirements, and the resulting increase in market
area can be expected to generate additional benefits of increased choice and competition.
The simple models considered here allow the effect of lower transport costs to affect the
efficiency of the economy, but the resulting impacts appear small, and can be
counterintuitive, with lowered transport costs reducing production efficiency. The moral
of this paper is that careful modelling of the impact of transport improvements on
production costs will be required to capture the indirect efficiency benefits, as these can
go either way.
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Transport cost reductions are typically evaluated by the rule-of-one-half or the usual
trapezium rule that the transport gain is the average level of transport services times the
fall in transport costs, Σ–12 (qi′ + qi).(-∆ti), where qi is the number of trips on route i, -∆ti

is the fall in transport costs per trip on that route, and a dash indicates the post-
improvement situation.

Transport cost reductions yield indirect benefits from two sources - if prices fall
and as a result output increases, then there will be an increase in profits if firms are
pricing above (long-run) cost because of imperfect competition, and there may be further
effects on the intensity of competition between firms. If firms are located at different
distances from a given market, then lowering the transport cost will lower the effective
delivered price, and increase the intensity of competition between firms, particularly as
more firms may find it worthwhile competing for access to a given market. This paper
attempts to model these indirect benefits in a simple framework, which can readily be
elaborated.

1. Nash-Cournot competition at a central market place
Suppose n firms compete to deliver a homogenous good to a central market. If all firms
have the same unit production costs c, and the transport cost from firm i located at
distance di is tdi (where t is the transport cost per unit per km), then the cost of delivering
one unit to the market place will be ci ≡ c + tdi, and the delivered price will be p.
Suppose that each firm chooses its output, qi, taking the output of other firms as given
(that is firms compete in quantities - the Nash-Cournot assumption). Total demand, Q(p),
will depend on the market price, p, which will be set by total supply (and firms will
accept the same delivered price by bearing the transport costs themselves). Profit of firm
i is (p(Q)-ci)qi - F, where F is fixed cost. The first order condition for maximum profit
is

The Nash-Cournot assumption that other firms are assumed not to vary their output in

(1)p ci p
qi

Q








Q
p

dp
dQ

. ∂Q
∂qi

0.

response to changes in qi implies that ∂Q/∂qi = 1. If the market demand schedule has
constant elasticity ε ≡ - d lnQ/d lnp (defined to be a positive number) then (1) can be
rewritten in terms of the market share of firm i, si = qi/Q, and the demand elasticity ε:
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Summing over the n firms gives an equation for the equilibrium price, p, which depends

(2)
si


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

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1
ci

p
ε , i 1,2,..,n .

on the unweighted average cost, c, the number of firms supplying the market, n, and the
elasticity of demand, ε. From the price, the levels of firm output can be recovered:

Output of firm i, qi is made up of the average output per firm and the effect of differential

(3)
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p
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transport access (measured by δi),showing that more distant firms have smaller market
shares. Competitive pressure increases with n and ε, and helps drive the price down
closer to cost, c. Note that the number of firms may be endogenous if p falls below the
unit cost of the most expensive firm(s), for then both c and n will fall.

If market demand is linear, p = a - bQ, the elasticity at price p is ε = p/bQ, and the
first order conditions and market aggregation give

exactly as in the constant elastic case.

(4)p nc a
n 1

, qi

a c dt
b (n 1)

δi t

b
Q ( 1

n

εδit

p
) ,

The inefficiency of the market arises from two sources - the price is above the
competitive level, which would be the lowest cost, c0 (with all output supplied from the
least cost firm), and the output is supplied not from the least cost firm, but from a range
of firms with average cost c higher than the least cost. The natural way to investigate the
impact of a change in transport costs on value added is to start from a measure of total
value added, made up of the sum of consumer benefits (measured in money terms as a
consumer surplus), V(p), plus industry profits, Π = pQ - C - T, where C is total production
cost, cQ, and T is total transport cost, Σdiqit. Total value added is then W = V(p) + Π, and
the impact of changes in transport costs, t, on value added is given by

where a dash indicates the value after the change, and ∆x ≡ x′ - x is the difference between

(5)

∆W V(p ) V(p)
i

(p c t di) (qi ∆qi)
i

(p c tdi)qi ,

∆p (Q 1
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∆Q) ∆p.Q ∆t

i

di qi
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(p c t di)∆qi ,

1

2
∆p.∆Q ∆t

i

diqi
i

(p c t di)∆qi ,
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the after-change value and the pre-change value. Note that ∆V(p) = -∆p(Q + –12∆Q) is the
gain in consumer surplus from the fall in prices, and that the first and third term in the
second line of (5) cancel as income is transferred from one side of the market to the other
through the change in price. In the competitive case, where di = 1, p′ = c+t′, and ∆p =
∆t, there is no gain in productive efficiency, and ∆W = - –12∆p.∆Q - Q∆t = (Q+–12∆Q).(-∆t),
the usual transport benefit.

These terms can be interpreted
Transport benefits

price

quantity, Qquantity, Q

A

B

C
c+t

p

p’
demand

Q(p)

c+t’

Q Q’

Fig. 1

using a standard surplus analysis
suggested by Venables and Gasiorek
(1997) and set out in fig.1 for a
commodity produced in a single location
at a unit cost c where the transport cost to
deliver it to market is initially t and price
is p. Area A measures the value of fall in
transport cost at the initial output, -∆t.Q,
corresponding to the middle term in (5), to
which should be added the gain in
consumer surplus resulting from the fall in
price, -–12∆p.∆Q, shown as area B, and
given by the first term in (5). These two
benefits make up the transport benefits
measured by a standard transport cost-
benefit analysis (CBA) and captured in the
rule of one-half if ∆t = ∆p. To this should
be added the margin between the price
and the sum of production and delivery
cost, times the increase in output,
(p′-c-t′)∆Q, the middle term in (5) and area C in fig. 1. This is the gain arising from
taking account of the distortion between the imperfectly competitive price, p′, and the
competitive price, c+t′, which is ignored in standard transport cost-benefit analysis
(though it is taken into account in normal CBA whenever such distortions, usually arising
from taxes, can be identified).

Geometrically, if ∆W is total change in value added (A+B+C in fig. 1) while ∆T
is the direct transport cost reduction benefit (A+B in fig. 1), then

where Q = Q+–12∆Q is the average level of output pre- and post-improvement. The main

(6)∆W
∆T

1 (p c t)∆Q

Q∆t
1











p

Q

∆Q
∆p

p c t
p

1 ε(p c t)
p

≡1 r ,

simplifying assumptions in (6) are that unit transport cost reductions translate one-for-one
into price decreases, so ∆p = ∆t, and all firms are located at a constant distance taken as
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1 unit (unlike the more complex model). Venables and Gasiorek (1997) suggest numbers
for ε of about 2 and for the profit markup, (p-c-t)/p of about 0.2, giving a multiplier of
1.4, or a value for r of 0.4, which is large. Later we suggest rather smaller values for the
markup of 0.1, which, on this formula would give a value for r of 0.2. We shall see that
taking account of the heterogeneity of transport costs considerably reduces this value.

The result of an infinitesimal change in transport costs can be found by
differentiating W = V(p) + (p-c)Q-tΣdiqi:

(Note that in this case from Roy’s identity, dV/dp = -Q, so again the first two terms on

(7)

dW
dt
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

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(p c dt) dQ
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




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(p c dt)Q 







p
Q

dQ
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







1
p

dp
dt i

(tδi

dqi

dt
di qi ) .

the first line cancel.)
The object of this paper is to estimate the relationship between the indirect

efficiency benefits of reducing transport costs, and the direct benefits, but this will depend
on how the benefits are classified. The guiding principle in classifying benefits is that in
the competitive case there should be no induced production efficiency gains, which
suggests that the induced gains should be defined as dW/dt+Σdiqi, which is equivalent to
taking the transport benefits as Σdiqi.(-∆t), where -∆t is the fall in unit transport costs.
This is equivalent to assuming no change in average trip length induced by changes in
firm behaviour, which means that such changes are counted as part of the improvement
in production efficiency (better sourcing of inputs), and not of transport efficiency (ie unit
transport costs). The efficiency ratio is r = (dW/dt+Σdiqi)/Σdiqi. It is therefore not the
same as subtracting the change in transport costs, dT/dt = d/dt[tΣdiqi].1

The value of the transport cost saving term, Σdiqi, is, for both the linear and
constant elastic case (discussed in the appendix)

Note that actual transport costs are less than might be predicted from Qd∆t as closer firms

(8)
i

di qi Q 







d ntε
p

Vardi Qd (1 nεtd
p

σ2
d) , Vardi

1
n i

δ2
i , σ2

d≡
Vardi

d
2

.

have a larger market share than more distant firms. The efficiency ratio, r, can be found
from (7) as

1 ∆T = Q∆t + t∆Q ≠ (Q+–12∆Q)∆t, the proper measure of transport benefits.
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This reduces to (6) if di = d = 1 (i.e. δi = di - d = 0). The indirect benefits can most

(9)r

(p c dt) 







dQ
dt

t
i

δi(
dqi

dt
)

dQ
i

δi qi

.

readily be computed for the case of linear demand (and the constant elastic case is
examined in the appendix). First, note from (4) that -dqi/dt = d/b(n+1)+δi/b, so -dQ/dt
= nd/b(n+1), and the first efficiency ratio, r, is

The elasticity of the linear demand schedule at price p is ε = p/bQ (where -b is the slope

(10)r

(p c dt )









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b(n 1)

t
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δ2
i

Qd(1
nεtdσ2

d

p
)

.

of the demand schedule), so the efficiency ratio can be written in dimensionless units as

The size of this ratios can be estimated given observations on market shares, prices

(11)
r

ε( p c
p

) (1 1
n 1

) θ

1 θ
, θ≡

nεdtσ2
d

p
.

and costs. For example, if ε = 2, n = 5, a = 1.5, b = 0.5, then c/p = 0.9 from (4) for the
constant elastic case, and if dt/c, the share of average transport costs in total average
delivered unit cost is 0.05, dt/p= 0.056 and c/p = 0.855. If the coefficient of variation of
transport costs is 0.25, then θ = 0.14, and the ratio r = 0.03, which is remarkably small.
If the CV of transport costs were much larger, then with these parameters, r would be
negative, which might appear paradoxical. The reason why the apparent production
efficiency gains are so low (or even negative) is that the transport benefits estimated by
Σqidi(-∆t) overstates the fall in transport cost, for a proportionate fall in transport costs
leads to longer average trip lengths.2

2 If the full fall in transport costs, -dT/dt is subtracted from the total gains to give the production
efficiency gains, the ratio of these gains to the fall in transport costs is r* = (dW/dt+dT/dt)/dT/dt, or

(1)
r

ε( p c
p

)

(1 1/n)(1 2θ) εdt /p
.

This does not reduce to (6) even if di = d = 1, but to ε(p-c)/(p-εt). With the same parameters as before
i t s
numerical value would be 0.38, or ten times the other value.
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The ratio of the actual fall in transport cost to the apparent fall can be measured
by dlogT/dlogt. In the linear case is given by

which, with these parameters, is 0.73. The share of firm i in the output expansion can be

(12)t
T

dT
dt

1
θ εdt/p

1 1/n
1 θ

,

found from

which increases with distance, di. In this case the increased average trip length offsets

(13)
∆qi

∆Q

dqi/dt

dQ/dt
1
n

δi (1 1/n)

d
,

27% of the fall in unit transport costs.

2. General conjectural oligopoly model
The Nash-Cournot assumption can be viewed as an assumption about the variation in
output of other firms that any firm conjectures will occur in response to its own output
variation, ∂(Q-qi )/∂qi. Define this conjectural variation to be λ i, then the Nash-Cournot
assumption amounts to λ i = 0, perfect competition to λ i = -1, and perfect collusion to
λ i = 1/si - 1 > 0. To solve for the price-cost ratio, put ∂Q/∂qi = 1 + λ i in (1) and rearrange
to give

Provided λ i = λ all i, so that p does not depend on si, the effect is to modify the effective

(14)si











1
ci

p
ε

1 λi

, whence p c

1
1 siλi

nε

.

number of firms from n to n/(1+λ). Thus in λ = -0.5 (more competitive), the effective
number of firms is doubled.

3. The effect of a localised transport improvement
The analysis so far has explored the impacts of general changes in transport costs,
proportional to distance, such as those arising from a change in fuel tax, or general
technical improvements in vehicles which lower unit transport costs. Most road
improvements only change costs on a single route, and may have a more muted impact
on overall efficiency gains. They can be explored by replacing dit by ti, the transport cost
paid by firm i in delivering goods to the central market. The average cost is now less
sensitive to any individual transport cost change, for c = c + t, where t = Σti/n. Consider
the linear case, where (3) can be rewritten as
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The social benefit of changing tj is

(15)
bqi p c ti

a c
k

tk

(n 1)
ti .

where the second equality comes from the first order condition for maximising the profit

dW
dtj i

(p c ti)
dqi

dtj

qj
i

qi











b
dqi

dtj

qj ,

of firm i (the first equality in (15).)

(here δij is the Kronecker delta.) The efficiency ratio is

b
dqi

dtj

δij

1
n 1

, δij 0, i≠j ; δij 1, i j .

This equation has a quite remarkable simplicity and surprising implication. If transport

(18)
r

i

qi ( b
dqi

dtj

)

qj

1 Q
(n 1)qj

.

costs are lowered for firms whose market share is less than 1/(n+1), r is negative and
production efficiency decrease. These are precisely the more distant firms that benefit
more from transport cost reductions. The reason is that the least socially costly way of
producing goods in this simple model is to use inputs from the closest suppliers. If the
transport costs of more distant firms fall, then their market share rises, but this increases
total production costs. Of course, the total social benefit will still be positive provided
r > -1, ie qj > –12 Q/n+1), and will equal (1+r)qj.(-∆tj), but the transport benefits alone will
overstate the social benefits.

If transport costs are negatively correlated with production costs (as they might
well be, for an increase in distance and transport cost increases the area that can be
searched for cheaper suppliers as the square of the distance), this result may be reversed.
Equation (18) still holds, but if ci is now interpreted as unit production costs, then

Provided transport improvements favour firms whose production and transport costs

(19)(n 1)qj

Q
1 1

n
(n 1)(

ci c ti t

p
) .

together are less than the average, there will be positive productive efficiency gains.
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4. Conclusions
The steady decrease in transport costs has had a dramatic effect on the average distance
over which firms source their requirements, and the resulting increase in market area can
be expected to generate additional benefits of increased choice and competition. The
simple models considered here allow the effect of lower transport costs to affect the
efficiency of the economy, but the resulting impacts appear small, and can be
counterintuitive, with lowered transport costs reducing production efficiency. The moral
of this paper is that careful modelling of the impact of transport improvements on
production costs will be required to capture the indirect efficiency benefits, as these can
go either way.
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Appendix The case of constant demand elasticity

For the constant elastic case, -dQ/dt = εQ(1/p)dp/dt, where dp/dt can be found by
differentiating (3):

and so can (-dqi/dt):

(20)1
p

dp
dt

1
c

dc
dt

d
c

,

while from (8), Σδiqi = θdQ, (where θ ≡ nεdtσ2
d/p), so
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The ratio of the efficiency gain to the transport benefit is, from (9)
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i ) dQθ
c

εdt c .

The formula is fairly similar to the linear case in (11), and with the same numerical values

(23)
r

εdQ (p c)
c

dQθ( εtd c
c

)

dQ(1 θ)
,

ε( p c
c

) θ(1 dt
c

(ε 1))

1 θ
.

as before, r = 0.09, somewhat larger than for the linear case, and again, readily made
negative if the CV of transport costs, σd is higher (and with it, θ). The ratio of the actual
fall in transport cost to the apparent fall, dlogT/dlogt, becomes

which, with the same parameters as before, is 0.71, compared to 0.73 in the linear case.

(24)t
T

dT
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1
θ(1 dt
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