

# Avoiding collusion and market power

**David Newbery** 

Auctioning carbon allowances in the ETS DG Environment Brussels

22 February 2008

http://www.electricitypolicy.org.uk



# The argument

- Markets to examine for market power
  - EUA market
  - electricity markets
  - gas markets
- EUA price affects electricity & gas prices
  - who has incentive to influence EUA price?
  - Who has ability to do so?
- Effect of quantity limit on gas market power
  - => Stabilising EUA price desirable

#### EUA price 25 October 2004-9 Jan 2008



# Emission projections – large utilities is there a risk of price collapse?



Source: Emissions Projections 2008-2012 versus NAP2 (2006) by Karsten Neuhoff, Federico Ferrario and Michael Grubb. Published in Climate Policy 6(5), pp 395-410.

#### Electricity price rise higher than gas cost increase

Clean spark spread UK (50% efficient) monthly averages (profitable hours only)



#### Forward base year contracts - France and Germany Aug 2005-May 2006



#### Relevant markets and actors

- EUA: traders, speculators too small
- Electricity wholesale market: generators
- Gas wholesale market: those controlling access to markets, gas suppliers, integrated gas+electricity companies

Only relevant if actors have ability to influence relevant price





8

Source: Energy Sector Inquiry 2005/2006

D Newbery Brussels 22/2/08

#### Most congested pipelines: largely sold out until 2015



ource: Energy Sector Inquiry 2005/2006

### Transit pipelines deny access



Source: Energy Sector Inquiry 2005/2006 fig 27

D Newbery Brussels 22/2/08

#### Price formation in 6 EU countries 2003-5



D Newbery

# Incentives in electricity market

- Allocation of amount (large) *E*:
  - generators benefit from raising EUA price  $p_C$ :
  - $-p_C \cap \text{price of elec } p_e \cap => E p_C \cap$
  - Buy EUAs, burn coal, raise price of gas
- No allocation to ESI, full auctioning:
  - $-p_C \cap$  benefits gencos with more infra-marginal fuel
    - Hydro, nuclear, gas if coal at margin, coal if gas at margin
  - $-p_C \downarrow$  benefits gencos with less infra-marginal fuel

Evidence of more market power one way or other?

### Impact on fuel choice

- CO<sub>2</sub> content of coal twice CCGT
- coal generation costs rise more than CCGT

Does it matter?

#### Fuel choices in UK electricity generation



# Impact of ETS on gas pricing

- Suppose gas price increases
  - initially: demand falls (fuel switch gas => coal)
  - => demand for EUAs rises => EUA price ↑
  - => partially offsets advantage of coal
  - => offsets some demand reduction for gas
  - => reduces elasticity of demand for gas
  - => increases market power of gas suppliers
    - EU Sector Inquiry finds gas market power

### Demand for gas



Demand for gas in ESI

# Impact of ETS on gas elasticity

- reduces absolute value of price elasticity of demand for gas
- => increases market power
- Lerner Index  $(p-c)/p = \alpha_i/\epsilon$  where  $\alpha_i$  is market share of firm,  $\epsilon$  is market demand elasticity (or  $(p-c)/p = 1/\epsilon_{rd}$  where  $\epsilon_{rd}$  is elasticity of residual demand)

# Policy implications

Fixing EUA quantity amplifies gas market power

=> delink EUA and gas prices

Stabilise  $CO_2$  price Can this be done by managing auctions? Any other reasons for stabilising price?

# Fixing prices or quantities?

- Aim is to mitigate climate change
- =>improve efficiency & investment in low-C
- helped by stable CO<sub>2</sub> prices
- fixing quantities destabilises price
- => cost of errors higher if marginal cost of abatement steeper than marginal benefit

Stabilise CO<sub>2</sub> price

#### Costs of errors setting prices or quantities



### The case for price stabilisation

- CO<sub>2</sub> is a stock pollutant
  - CO<sub>2</sub> damage today effectively same as tomorrow
  - => marginal benefit of abatement essentially flat
  - marginal cost of abatement rises rapidly
  - CCS, other renewables expensive now
  - support RD&D first, commercial deployment later

# Auctions to stabilise price

- Decide on EUA price ceiling and floor
  - depends on cost of reducing CO<sub>2</sub>
  - €15-20/t CO<sub>2</sub> for nuclear, wind?
- Set number EUAs to auction to achieve this
  - combined with banking and trading
  - allows ceilings and floors to be adjusted

Requires single centralised auction

### Summary of interactions with gas

- present ETS imposes a quantity constraint
  - Destabilises CO<sub>2</sub> price
  - Makes gas demand less price sensitive
  - => enhances market power of gas producers
- stabilising price better than fixing quantity
  - stock pollutant damage insensitive to date
- => auction EUAs to stay within ceiling & floor
  - Stable predictable price good for investment
  - Delinks gas and CO<sub>2</sub> prices, reduces market power

#### Conclusion

- EUA market large, liquid, durable
  - Traders and speculators unlikely to be problem
- Some elec and gas co.s have market power
  - EUA price affects electricity price and gas WTP
- Some co.s may have incentive & ability to influence EUA price
  - Reduced by auctions for electricity
  - Reduced if EUA price delinked from gas price or gas market made more competitive



# Avoiding collusion and market power

**David Newbery** 

Auctioning carbon allowances in the ETS DG Environment Brussels

22 February 2008

http://www.electricitypolicy.org.uk



#### Interactions between markets for electricity and CO<sub>2</sub>

```
Let \beta_i = \text{CO}_2/\text{MWh} of firm i,
    \beta = that of marginal price-setting firm
   \beta_a = \text{CO}_2/\text{MWh of ESI}
   s = \text{EUA} price, p be electricity price
   q_i = output of firm i, Q = total elec output
   \alpha_i = q_i/Q; \varepsilon = elasticity of electricity demand
   S(s) = \text{supply of EUAs to electricity from other}
   sectors = \beta_a Q,
   \varepsilon_{\rm s} = (s/S)dS/ds, elasticity of supply of EUAs to ESI
```

D Newbery Brussels 22/2/08 26

#### Interactions between markets for electricity and CO<sub>2</sub>

#### Extreme case: Cournot assumptions

Max 
$$\Pi_{j} = p(Q,s)q_{j} - C_{j}(q_{j}) - \beta_{j}q_{j}s$$
,  
 $\partial \Pi_{j}/\partial q_{j} = 0 = p - MC_{j} - \beta_{j}s + q_{j}\partial p/\partial Q + q_{j}(\partial p/\partial s)ds/dQ - \beta_{j}q_{j}ds/dQ$   
 $p(1-\alpha_{j}/\epsilon) = \{MC_{j} + \beta_{j}s\} - \alpha_{j}Q(\beta - \beta_{j})ds/dQ$   
 $MR = MC - \alpha_{j}s(\beta - \beta_{j})/(Q\epsilon_{s})$   
 $p=MC/(1-\alpha_{j}/\epsilon) + \alpha_{j}s(\beta_{j}-\beta_{j})/\{Q\epsilon_{s}(1-\alpha_{j}/\epsilon)\}$ 

D Newbery Brussels 22/2/08 27

### Interactions between markets for electricity and CO<sub>2</sub>

Max 
$$\Pi_j = p(Q,s)q_j - C_j(q_j) - \beta_j q_j s$$
,  

$$\partial \Pi_j / \partial s = q_j (\partial p / \partial s) - \beta_j q_j$$

$$= q_j (\beta - \beta_j)$$

D Newbery Brussels 22/2/08 28