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Abstract

This paper provides a review of linear panel data models with slope

heterogeneity, introduces various types of random coe¢ cients models

and suggests a common framework for dealing with them. It considers

the fundamental issues of statistical inference of a random coe¢ cients

formulation using both the sampling and Bayesian approaches. The

paper also provides a review of heterogeneous dynamic panels, testing

for homogeneity under weak exogeneity, simultaneous equation ran-

dom coe¢ cient models, and the more recent developments in the area

of cross-sectional dependence in panel data models.
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1 Introduction

Consider a linear regression model of the form

y = �0x+ u; (1)

where y is the dependent variable and x is a K � 1 vector of explanatory
variables. The variable u denotes the e¤ects of all other variables that a¤ect

the outcome of y but are not explicitly included as independent variables.

The standard assumption is that u behaves like a random variable and is

uncorrelated with x: However, the emphasis of panel data is often on the

individual outcomes. In explaining human behavior, the list of relevant fac-

tors may be extended ad in�nitum. The e¤ect of these factors that have not

been explicitly allowed for may be individual speci�c and time varying. In

fact, one of the crucial issues in panel data analysis is how the di¤erences in

behavior across individuals and/or through time that are not captured by x

should be modeled.

The variable intercept and/or error components models attribute the het-

erogeneity across individuals and/or through time to the e¤ects of omitted

variables that are individual time-invariant, like sex, ability and social eco-

nomic background variables that stay constant for a given individual but

vary across individuals, and/or period individual-invariant, like prices, in-

terest rates and widespread optimism or pessimism that are the same for

all cross-sectional units at a given point in time but vary through time. It

does not allow the interaction of the individual speci�c and/or time vary-

ing di¤erences with the included explanatory variables, x. A more general

formulation would be to let the variable y of the individual i at time t be

denoted as

yit = �0itxit + uit; (2)

= �1itx1it + :::+ �kitxkit + uit;

i = 1; :::; N; and t = 1; :::; T: Expression (2) corresponds to the most general

speci�cation of the panel linear data regression problem. It simply states
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that each individual has their own coe¢ cients that are speci�c to each time

period. However, as pointed out by Balestra (1996) this general formulation

is, at most, descriptive. It lacks any explanatory power and it is useless for

prediction. Furthermore, it is not estimable, the number of parameters to

be estimated exceeds the number of observations. For a model to become

interesting and to acquire explanatory and predictive power, it is essential

that some structure is imposed on its parameters.

One way to reduce the number of parameters in (2) is to adopt an analysis

of variance framework by letting

�kit = �k + �ki + �kt;
NX
i=1

�ki = 0; and
TX
t=1

�kt = 0; k = 1; : : : ; K: (3)

This speci�cation treats individual di¤erences as �xed and is computationally

simple. The drawback is that it is not parsimonious, and hence reliable

estimates of �ki and �kt are di¢ cult to obtain. Moreover, it is di¢ cult to

draw inference about the population if di¤erences across individuals and/or

over time are �xed and di¤erent.

An alternative to the �xed coe¢ cient (or e¤ects) speci�cation of (3) is

to let �ki and �kt be random variables and introduce proper stochastic spec-

i�cations. This is commonly called the �random coe¢ cients�model. The

random coe¢ cient speci�cation reduces the number of parameters to be es-

timated substantially, while still allowing the coe¢ cients to di¤er from unit

to unit and/or from time to time.

In section 2 we introduce various types of random coe¢ cients models and

suggest a common framework for them. In sections 3 and 4 we consider

the fundamental issues of statistical inference of a random coe¢ cients for-

mulation using the sampling approach. In section 5 we consider a Bayesian

approach. Section 6 considers the generalization to a dynamic framework.

Issues of testing for homogeneity under weak exogeneity are discussed in sec-

tion 7. Discussions on random coe¢ cients, simultaneous equation systems

and cross-sectional dependence are provided in sections 8 and 9. Conclusions

are in section 10.
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2 The Models

Let there be observations for N cross-sectional units over T time periods.

Suppose the variable y for the ith unit at time t is speci�ed as a linear

function of K strictly exogenous variables, xkit;k = 1; 2; :::; K, in the form1

yit =
KX
k=1

�kitxkit + uit; (4)

= �0itxit + uit; i = 1 : : : ; N; t = 1; : : : ; T;

where uit denotes the random error term, xit is a K � 1 vector of exogenous
variables and �it is the K � 1 vector of coe¢ cients. The random coe¢ cients
approach assumes that the coe¢ cients �it are draws from probability distri-

butions with a �xed number of parameters that do not vary with N and/or

T: Depending on the type of assumption about the parameter variation, we

can further classify the models into one of two categories: stationary and

non-stationary random-coe¢ cients models.

The stationary random-coe¢ cients models regard the coe¢ cients as hav-

ing constant means and variance-covariances. Namely, the K � 1 vector �it
is speci�ed as

�it = � + �it; i = 1; :::; N; t = 1; :::; T; (5)

where � is a K�1 vector of constants, and �it is a K�1 vector of stationary
random variables with zero means and constant variance-covariances. For

instance, in the Swamy (1970) type random coe¢ cient models,

�it = � +�i; i = 1; :::; N; t = 1; :::; T; (6)

and

E(�i) = 0; E(�ix
0
it) = 0; (7)

E(�i�
0
j) =

(
�; if i = j;

0; if i 6= j;
1The case where one or more of the regressors are weakly exogenous is considered in

Section 6.

4



Hsiao (1974, 1975) considers the following type of model

�it = � + �it (8)

= � +�i + �t; i = 1; :::; N; t = 1; :::; T;

and assumes

E(�i) = E(�t) = 0; E (�i�
0
t) = 0; (9)

E (�ix
0
it) = 0; E (�tx

0
it) = 0;

E
�
�i�

0
j

�
=

(
�; if i = j;

0; if i 6= j;

E(�i�
0
j) =

(
�; if i = j;

0; if i 6= j;

Alternatively, a time varying parameter model may be treated as realizations

of a stationary stochastic process, thus �it can be written in the form,

�it = �t = H�t�1 + �t; (10)

where all eigenvalues of H lie inside the unit circle, and �t is a stationary

random variable with mean �: Then the Hildreth-Houck (1968) type model

is obtained by letting H = 0 and �t be i.i.d.; for the Pagan (1980) model,

H = 0 and

�t � � = �t � � = a(L)�t; (11)

where � is the mean of �t and a(L) is the ratio of polynomials of orders

p and q in the lag operator L(L�t = �t�1) and �t is independent normal.

The Rosenberg (1972, 1973) return-to-normality model assumes the absolute

value of the characteristic roots of H be less than 1 with �t independently

normally distributed with mean � = (IK �H)�:
The nonstationary random coe¢ cients models do not regard the coe¢ -

cient vector as having constant mean or variances. Changes in coe¢ cients

from one observation to the next can be the result of the realization of a

nonstationary stochastic process or can be a function of exogenous variables.
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When the coe¢ cients are realizations of a nonstationary stochastic process,

we may again use (10) to represent such a process. For instance, the Cooley

and Prescott (1976) model can be obtained by letting H = IK and � = 0.

When the coe¢ cients �it are functions of individual characteristics or time

variables (e.g. Amemiya (1978), Boskin and Lau (1990), Hendricks, Koenker,

and Poirier (1979), Singh et al. (1976), Swamy and Tinsley (1977), Wachter

(1976), we can let

�it = �qit + �it: (12)

While the detailed formulation and estimation of the random coe¢ cients

model depends on the speci�c assumptions about the parameter variation,

many types of the random coe¢ cients models can be conveniently represented

using a mixed �xed and random coe¢ cients framework of the form (e.g. Hsiao

(1990), Hsiao, Appelbe and Dineen (1992))

yit = z
0
it
 +w

0
it�it + uit; i = 1; :::; N; t = 1; :::; T; (13)

where zit and wit are vectors of exogenous variables with dimensions ` and p

respectively, 
 is an `� 1 vector of constants, �it is a p� 1 vector of random
variables, and uit is the error term. For instance, the Swamy type model

((6) and (7)) can be obtained from (13) by letting zit = wit = xit;
 = �;

and �it = �i; the Hsiao type model (8) and (9) is obtained by letting zit =

wit = xit;
 = �; and �it = �i + �t; the stochastic time varying parameter

model (10) is obtained by letting zit = xit; w
0
it = x0it[H; IK ]; 
 = �; and

�0it = �
0
t = [�

0
t�1; (�t � �)0]; and the model where �it is a function of other

variables (12) is obtained by letting z0it = x
0
it 
 q0it; 
 0 = vec(�); wit = xit;

�it = �it; etc.

For ease of illustrating the fundamental issues involved in estimating a

random coe¢ cients model we shall make the simplifying assumption that

�it = �i and �i are independently normally distributed over i with mean

0 and covariance �, denoted by �i � N(0;�).2 In other words, there are
2A model allowing the coe¢ cients to vary across individuals and over time is very

di¢ cult to estimate. So far, most random coe¢ cients models either assume �it = �i or
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only individual-speci�c e¤ects, �i, and these individual - speci�c e¤ects stay

constant over time. Under this simpli�ed assumption, model (13) can be

written in the stacked form

y = Z
 +W�+ u; (14)

where

y
NT�1

=

0BB@
y1
...

yN

1CCA ; yi
T�1

=

0BB@
yi1
...

yiT

1CCA ; u
NT�1

=

0BB@
u1
...

uN

1CCA ; ui
T�1

=

0BB@
ui1
...

uiT

1CCA ;

Z
NT�`

=

0BB@
Z1
...

ZN

1CCA ; Zi
T�`

=

0BB@
z0i1
...

z0iT

1CCA ;

W
NT�Np

=

0BBBBB@
W1 0 � � � 0

0 W2 � � � 0
...

. . .

0 WN

1CCCCCA ; Wi
T�p

=

0BB@
w0
i1
...

w0
iT

1CCA ; and �
Np�1

=

0BB@
�1
...

�N

1CCA :
(15)

We further assume that � and u are mutually independent with

E (u) = 0, and E (uu0) = C: (16)

3 Sampling Approach

Let

v =W�+ u; (17)

then E (v) = 0 and

E (vv0) =W(IN 
�)W0 +C = 
: (18)

�it = �t. Here we shall only focus on the former. For the case of �it = �t, as in ( 10),

one can employ Kalman �lter type procedures to obtain MLE and carry out predictions.

For details see Hsiao (2003).
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Model (14) can be viewed as a linear regression model of the form

y = Z
 + v; (19)

where the composite error term, v, has a nonspherical covariance matrix.

From a sampling point of view, the interest for model (19) will lie in (a)

estimating the mean coe¢ cient vector 
; (b) estimating the covariance matrix

of v, 
, and (c) predicting yit.

If � and C are known, the best linear unbiased estimator of 
 is the

generalized least squares (GLS) estimator

b�
 = (Z0
�1Z)�1(Z0
�1y); (20)

with covariance matrix

D = Cov (b�
) = (Z0
�1Z)�1: (21)

If � and C are unknown, we can apply a two step GLS estimator. In

the �rst step we estimate � and C. In the second step we estimate 
 by

substituting the estimated � and C into (20) and treating them as if they

were known. Provided � and C can be consistently estimated, the two step

GLS will have the same asymptotic e¢ ciency as the GLS estimator.

Similarly, we can obtain the best linear unbiased predictor of yif using

the formula

byif = z0if
 + E(vif j v);

= z0if
 + Cov (vif ;v)
0 V ar (v)�1v: (22)

Because 
 and v are unknown, their estimated values, b�
 and v̂ = y � Zb�

are substituted into (22) in practice.

Equations (20) - (22) provide a general principle for e¢ cient inference

of a random coe¢ cients model. To illustrate relations to a speci�c type of

random coe¢ cients model, we consider a Swamy type model (4), (6) and (7),

assuming that the regressors zit, are strictly exogenous.3

3For estimation of correlated random coe¤cient model using the instrumental varaibles

approach, see Murtazashvili and Wooldridge (2007).
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Under the assumptions of Swamy (1970), we have

Z = XA;W = X; 
 = �; �i = � +�i; (23)

where

A
NT�K

= (IK ; IK ; ::; IK)
0 (24)

X
NT�K

=

0BB@
X1 0

. . .

0 XN

1CCA ; Xi
T�K

=

0BB@
x0i1
...

x0iT

1CCA :
For simplicity, we also assume that uit is independently distributed across i

and over t with

E
�
u2it
�
= �2i : (25)

Then 
 is block diagonal, with the ith diagonal block equal to


i = Xi�X
0
i + �

2
i IT : (26)

Substituting (23) - (26) into (20), the best linear unbiased estimator of

the mean coe¢ cient vector � isb��GLS =
�
A0X0
�1XA

��1
A0X
�1y; (27)

=

 
NX
i=1

X0
i


�1
i Xi

!�1 NX
i=1

X0
i


�1
i yi

!
;

=

NX
i=1

Ri�̂i;

where

Ri =

"
NX
i=1

�
�+��̂i

��1#�1 �
�+��̂i

��1
; (28)

and

�̂i = (X
0
iXi)

�1X0
iyi; ��̂i = V

�
�̂i

�
= �2i (X

0
iXi)

�1: (29)

The last expression of (27) is obtained by repeatedly utilizing the identity

relation,

(E+BFB0)�1 = E�1 � E�1B(B0E�1B+ F�1)�1B0E�1: (30)
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It shows that the GLS estimator is a matrix weighted average of the least

squares estimator for each cross-sectional unit (29), with the weights inversely

proportional to their covariance matrices. It also shows that the GLS estima-

tor requires only a matrix inversion of order K, and so it is not much more

complicated to compute than the sample least squares estimator.

The covariance matrix of the GLS estimator is

Cov
�b��GLS� =

�
A0X0
�1XA

��1
=

"
NX
i=1

X0
i


�1
i Xi

#�1
=

"
NX
i=1

�
�+��̂i

��1#�1
:

(31)

If both errors and �i are normally distributed, the GLS estimator of � is

the maximum likelihood estimator (MLE) of � conditional on � and �2i :

Without knowledge of � and �2i , we can estimate �; � and �2i ; i = 1; :::; N

simultaneously by the maximum likelihood method. However, computation-

ally it can be tedious. A natural alternative is to �rst estimate 
i then

substitute the estimated 
i into (27).

Swamy proposes using the least squares estimator of �i; �̂i = (X
0
iXi)

�1X0
iyi

and residuals bui = yi�Xi�̂i to obtain unbiased estimators of �
2
i ; i = 1; :::; N;

and �: Noting that

bui = [IT �Xi(X
0
iXi)

�1X0
i]ui; (32)

and

�̂i = �i + (X
0
iXi)

�1X0
iui; (33)

we obtain the unbiased estimators of �2i and � as:

b�2i =
bu0ibui
T �K ; (34)

=
1

T �Ky
0
i[IT �Xi(X

0
iXi)

�1X0
i]yi;

b� =
1

N � 1

NX
i=1

 
�̂i �N�1

NX
j=1

�̂j

!
 
�̂i �N�1

NX
j=1

�̂j

!0
� 1

N

NX
i=1

b�2i (X0
iXi)

�1: (35)
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Just as in the error-components model, the estimator (35) is not necessarily

nonnegative de�nite. In this situation, Swamy [also see Judge et al. (1985)]

has suggested replacing (35) by

b�� =
1

N � 1

NX
i=1

 
�̂i �N�1

NX
j=1

�̂j

! 
�̂i �N�1

NX
j=1

�̂j

!0
: (36)

This estimator, although biased, is nonnegative de�nite and consistent when

T tends to in�nity.

4 Mean Group Estimation

A consistent estimator of � can also be obtained under more general as-

sumptions concerning �i and the regressors. One such possible estimator

is the Mean Group (MG) estimator proposed by Pesaran and Smith (1995)

for estimation of dynamic random coe¢ cient models. The MG estimator is

de�ned as the simple average of the OLS estimators, �̂i:

b��MG = N
�1

NX
i=1

�̂i: (37)

When the regressors are strictly exogenous and the errors, uit are indepen-

dently distributed, an unbiased estimator of the covariance matrix of b��MG

can be computed as dCov �b��MG

�
= N�1 b��;

where b�� is given by (36). For a proof �rst note that under the random

coe¢ cient model we have

�̂i = � +�i + �i;

where

�i = (X
0
iXi)

�1X0
iui;

and b��MG = � + ��+ ��;
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where � = 1
N

PN
i=1�i and � =

1
N

PN
i=1 �i. Therefore

b�i � b��MG = (�i ��) +
�
�i � �

�
;

�b�i � b��MG

��b�i � b��MG

�0
= (�i ��) (�i ��)0 +

�
�i��

� �
�i��

�0
+(�i ��)

�
�i � �

�0
+
�
�i � �

�
(�i ��)0 ;

and

NX
i=1

E

��b�i � b��MG

��b�i � b��MG

�0�
= (N � 1)�+ (1� 1

N
)
NX
i=1

�2i (X
0
iXi)

�1
:

But

Cov
�b��MG

�
= Cov (�) + Cov

�
�
�
;

=
1

N
�+

1

N2

NX
i=1

�2iE
h
(X0

iXi)
�1
i
:

Using the above results it is now easily seen that

E
hdCov �b��MG

�i
= Cov

�b��MG

�
;

as required.

Finally, it is worth noting that the MG and the Swamy estimators are in

fact algebraically equivalent for T su¢ ciently large.

5 Bayesian Approach

One can also derive the solutions for the model (14) from a Bayesian point of

view. The Bayes approach assumes that all quantities, including the parame-

ters, are random variables. Therefore, as part of the model, prior probability

distributions are introduced for the parameters. The prior distribution is

supposed to express a state of knowledge or ignorance about the parameters

before the data are obtained. The model (14) with the assumption that 
 is

�xed and �i is random, can be viewed as the state of knowledge about the
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parameters 
 and � before the data are obtained: The prior distributions

of 
 and � are independent. There is no information on 
 but there is in-

formation on �i, which is normally distributed with mean 0 and covariance

matrix�. This prior information is combined with the model (14) and data,

y and z, to revise the probability distribution of 
 and � , which is called

the posterior distribution. From this distribution inferences are made.

Formally, we assume that

A1. The prior distributions of 
 and � are independent, that is,

p(
;�) = p(
) � p(�): (38)

A2. There is no information about 
;

p(
) _ constant. (39)

A3. There is prior information about �;

� � N(0; IN 
�): (40)

Theorem 1. Suppose that, given 
 and �;

y � N(Z
 +W�;C): (41)

Under A1-A3,

(a) the marginal distribution of y given 
 is

y � N(Z
; C+W(IN 
�)W0); (42)

(b) the distribution of 
 given y is N(b�
;D); where b�
 and D are given by

(20) and (21), respectively.

(c) the distribution of � given y is N(b�; eD); where
b� = fW0[C�1 �C�1Z(Z0C�1Z)�1Z0C�1]W + (IN 
��1)g�1 (43)

�fW0[C�1 �C�1Z(Z
0
C�1Z)�1Z

0
C�1]yg;
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and

eD = fW0[C�1 �C�1Z(Z
0
C�1Z)�1Z

0
C�1]W + (IN 
��1)g�1: (44)

See Appendix A for a proof.

Recall that

� = A� +�; (45)

and therefore the Bayes estimator of � can be obtained by substituting the

Bayes estimators of � and � (27) and (43) into (45), namely:

b�� = Ab��GLS + b� (46)

=
�
X0C�1X+ e��1

��1 �
X0C�1y + e��1Ab��GLS� ;

where e� = IN 
�:

When E
�
uiu

0
j

�
= �2i IT if i = j; and 0 otherwise, as assumed by Swamy

(1970), we have

b��i = h��1�̂i +��1
i�1 h

��1
�̂i
�̂i +�

�1b��GLSi ; i = 1; 2; :::; N (47)

where

�̂i = (X
0
iXi)

�1X0
iyi; and ��̂i = V (�̂i) = �

2
i (X

0
iXi)

�1: (48)

The Bayes estimator (47), is identical to the Lindley and Smith (1972) es-

timator for a linear hierarchical model. This is to be expected since the

Swamy type assumptions and the Lindley-Smith linear hierarchical model

are formally equivalent.

The above estimator can also be written as

b��i = Hi�̂i + (IK �Hi)
b��GLS;

where

Hi =
h
��1
�̂i
+��1

i�1
��1
�̂i
=�

�
�+��̂i

��1
:
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which shows that b��i is a weighted average of the OLS estimator, �̂i, and
the Swamy estimator of ��. Also, Ri de�ned by (28) can be written as

Ri =

 
NX
j=1

Hj

!�1
Hi;

and hence

N�1
NX
i=1

b��i = NX
i=1

Ri�̂i =
b��GLS;

namely the simple mean of the Bayes estimators (which could be viewed as

the Bayes Mean Group estimator) is equal to the Swamy estimator of ��.

Remark 1 It is useful to put the random coe¢ cients model in a Bayesian

framework because many of the estimators based on the sampling approach

can also be derived from the Bayes approach. For instance, as one can see

from theorem 1(b) conditional on � and C, the Bayes estimator of 
 for

the model (14) is identical to the GLS estimator of 
 (20). Furthermore, a

Bayesian framework makes it clear the role of prior knowledge or ignorance

about the parameter � = (
;�) given y. The parameters � are treated as

random variables and all probability statements are conditional. Ignorance

about � would necessitate a speci�cation of a di¤use prior to �; which is

typically speci�ed as

p(�) _ constant.

On the other hand, information about � would necessitate a speci�cation of

an informative prior. The Swamy type random coe¢ cients formulation of �i
having mean � and covariance � is equivalent to specifying an informative

prior for the parameters �i:

Remark 2 Typically, we use the expected value of an i.i.d. random variable

as a predictor of the random variable. In panel data, we have two dimensions,

a cross-sectional dimension and a time series dimension. Even though �i is

assumed independently distributed across i, once a particular �i is drawn, it

stays constant over time for the ith cross-sectional unit. Therefore, it makes
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sense to predict �i, (for an example, see Hsiao, Mountain, Tsui and Chan

(1989)). The Bayes predictor of �i is di¤erent from the classical sampling

approach predictor. For instance, for the Swamy type model the sampling

approach predictor of �i = � + �i de�ned by (23) is the least squares esti-

mator (48). The Bayes predictor of �i, given by (46) or (47), is a weighted

average between the least squares estimator of �i and the overall mean �. In

other words, the Bayes estimator of the individual coe¢ cients �i �shrinks�

the estimate of �i based on the information of the ith individual (48) towards

the grand mean �: An intuitive reason for doing so is because if the actual

di¤erences in �i can be attributable to the work of chance mechanisms as pos-

tulated by de Finetti�s (1964) exchangeability assumption, information about

�i can be obtained by examining the behaviour of others in addition to those

of the ith cross-sectional unit because the expected value of �i is the same

as �j. When there are not many observations (i.e. T is small) with regard

to the ith individual, information about �i can be expanded by considering

the responses of others. When T becomes large, more information about �i
becomes available and the weight gradually shifts towards the estimate based

on the ith unit. As T !1, the Bayes estimator approaches the least squares
estimator �̂i:

Remark 3 The derivation of the posterior distribution and the Bayes esti-

mators 
 and � of model (14) is based on known C and �. When C and

� are unknown, in principle, we can �rst assign a joint prior of �;�;C and

�, and combine this with the likelihood function to obtain the joint poste-

rior distribution. This distribution then has to be integrated with respect of

C and �. In practice, this is most complex to execute. Lindley and Smith

(1972), therefore, suggest to approximate the posterior distribution of 
 and

� conditional on the modal value of � and C: The modal estimates of �

and C may be found by supposing 
 and � known, and then replacing 
 and

� in the results by their modes. The sequence of iterations typically starts

with assumed values of � and C to calculate the mode of 
 and �, say b�
(1)
and b�(1): Treating b�
(1) and b�(1) as known, we can �nd the mode for � and
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C; say b�(1) and C(1): The b�(1) and C(1) are then used to �nd 
(2) and b�(2);
and so on.

For the Swamy type model (6) and (7) under the assumption that ��1

has a Wishart distribution with p degrees of freedom and matrix R�; it is

shown by Lindley and Smith (1972) that the mode estimator of � is

b� =

(
R� +

NX
i=1

(b��i � b��)(b��i � b��)0
)
=(N + p�K � 2): (49)

6 Dynamic Random Coe¢ cients Models

Because of the inertia in human behaviour or institutional or technological

rigidity, often a behavioural equation is speci�ed with lagged dependent vari-

able(s) appearing as regressor(s). We will consider a dynamic model of the

form

yit = �iyi;t�1 + x
0
it�i + uit; i = 1; 2; :::; N ; t = 1; 2; :::; T; (50)

where xit is a K � 1 vector of exogenous variables, and the error term uit is

assumed to be independently, identically distributed over t with mean zero

and variance �2i ; and is independent across i. Let �i = (�i;�
0
i)
0: We assume

that �i is independently distributed across i with

E (�i) = � =
�
�;�

0
�0
; (51)

E
�
(�i � �)(�i � �)0

�
=�: (52)

Rewrite �i = � +�i; (51) and (52) are equivalent to

E (�i) = 0; E
�
�i�

0
j

�
=

(
� if i = j;

0 if i 6= j:
(53)

Although we may maintain the assumption (9) that E (�ix0it) = 0; we can

no longer assume that E (�iyi;t�1) = 0: Through continuous substitutions,
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we have

yi;t�1 =

1X
j=o

(�+ �i1)
jx0i;t�j�1(� +�i2) (54)

+
1X
j=o

(�+ �i1)
jui;t�j�1:

It follows that E(�iyi;t�1) 6= 0:
The violation of the independence between the regressors and the indi-

vidual e¤ects �i implies that the pooled least squares regression of yit on

yi;t�1; and xit will yield inconsistent estimates of �, even for T and N suf-

�ciently large. Pesaran and Smith (1995) have noted that as T ! 1; the
least squares regression of yit on yi;t�1 and xit yields a consistent estimator

of �i; b�i: They suggest a mean group estimator of � by taking the average ofb�i across i; b��MG =
1

N

NX
i=1

b�i: (55)

The mean group estimator is consistent when both N and T !1. In �nite
T; b�i for �i is biased to the order of 1=T . (Hurwicz (1950), Kiviet and Phillips
(1993)) and the limited Monte Carlo appears to show that the mean group

estimator can be severely biased when T is very small (Hsiao, Pesaran and

Tahmiscioglu (1999)). However, under the assumption that yi0 are �xed and

known and �i and uit are independently normally distributed, as discussed

in Section 5 we can implement the Bayes estimator of b�i conditional on �2i
and �;

l
�B =

(
NX
i=1

�
�2i (W

0
iWi)

�1 +�
��1)�1 NX

i=1

�
�2i (W

0
iWi)

�1 +�
� b�i; (56)

where hereWi = (yi;�1;Xi) with yi;�1 = (yi0; yi1; :::; yiT�1)0: This Bayes es-

timator is a weighted average of the least squares estimator of individual

units with the weights being inversely proportional to individual variances.

When T ! 1; N ! 1; and N=T 3=2 ! 0; the Bayes estimator is asymp-

totically equivalent to the mean group estimator (55). (Hsiao, Pesaran and

Tahmiscioglu (1999)).
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In practice, the variance components, �2i and � are rarely known. The

Monte Carlo studies conducted by Hsiao, Pesaran and Tahmiscioglu (1999)

show that by following the approach of Lindley and Smith (1972) in assuming

that the prior-distributions of �2i and� are independent and are distributed

as

P (��1; �21; :::; �
2
n) =W (�

�1j(rR)�1; r)
NY
i=1

��2i ; (57)

yields a Bayes estimator almost as good as the Bayes estimator with known

� and �2i ; whereW (:) represents the Wishart distribution with scale matrix,

rR; and degrees of freedom r (e.g. Anderson (1984)).

The Hsiao, Pesaran and Tahmiscioglu (1999) Bayes estimator is derived

under the assumption that the initial observation yi0 are �xed constants.

As discussed in Anderson and Hsiao (1981, 1982), this assumption is clearly

unjusti�able for a panel with �nite T . However, contrary to the sampling ap-

proach where the correct modelling of initial observations is quite important,

the Hsiao, Pesaran and Tahmiscioglu (1999) Bayesian approach appears to

perform fairly well in the estimation of the mean coe¢ cients for dynamic

random coe¢ cient models as demonstrated in their Monte Carlo studies.

Remark 4 Model (50) has not imposed any constraint on the coe¢ cient of

the lag dependent variable, �i. Often an investigator would like to impose

the stability condition j�ij < 1. One way to impose the stability condition

on individual units would be to assume that �i follows a Beta distribution on

(0,1). For a Bayes estimator under this assumption see Liu and Tiao (1980).

7 Testing for Heterogeneity Under Weak Ex-

ogeneity

Given the importance of heterogeneity, it is very important to test for it.

There are at least three di¤erent categories of tests available: (i) direct tests

of parameter equality of the type used by Zellner (1962) in a SURE frame-

work; (ii) Hausman (1978) type tests of the di¤erence between two estimators
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of � (or its subset); or (iii) Swamy (1970) type tests based on the dispersion

of individual slope estimates from a suitable pooled estimator. The �rst type

of tests is generally applicable when N is relatively small and T su¢ ciently

large. Here we shall examine types (ii) and (iii), and assume that N and T

are su¢ ciently large.

The Hausman method can be used in cases where the two estimators

are consistent under the null of homogeneity, whilst only one of them is

e¢ cient. Also, under the alternative hypothesis the two estimators converge

to di¤erent values.

Denote the e¢ cient estimator by subscript �e� and the ine¢ cient but

consistent estimator (under the alternative hypothesis) by the subscript �c�.

Then we have

V (b�c � b�e) = V (b�c)� V (b�e): (58)

This is the result used by Hausman (1978) where is assumed that b�e is asymp-
totically the most e¢ cient estimator. However, it is easily shown that (58)

hold under a weaker requirement, namely when the (asymptotic) e¢ ciency

of b�e cannot be enhanced by the information contained in b�c. Consider a
third estimator b��, de�ned as a convex combination of b�c and b�e

q0b�� = (1� �)q0b�e + �q0b�c; (59)

where q is a vector of constants, and � is a scalar in the range 0 � � � 1:

Since, by assumption, the asymptotic e¢ ciency of b�e cannot be enhanced by
the knowledge of b�c; then it must be that V (q0b��) � V (q0b�e); and hence the
value of � that minimises V (q0b��); say ��, should be zero. However, using
(59) directly, we have

�� =
q0[V (b�e)� Cov(b�e; b�c)]q

q0V (b�c � b�e)q = 0; (60)

and hence q0[V (b�e) � Cov(b�e; b�c)]q = 0: But, if this result is to hold for an
arbitrary vector q; we must have

V (b�e) = Cov(b�e; b�c): (61)
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Using this in

V (b�c � b�e) = V (b�c) + V (b�e)� 2 Cov(b�e; b�c);
yields (58) as desired.

In the context of testing for slope heterogeneity a number of di¤erent

Hausman type tests can be used.

One possibility would be to compare the pooled estimator of �, de�ned

by4 b��OLS =  NX
i=1

W0
iWi

!�1 NX
i=1

W0
iyi

with the mean group estimator b��MG, de�ned by (55). When the focus of

attention is on the mean long run coe¢ cients �� = E(�i=(1 � �i)); as in
Pesaran, Shin and Smith (1999) the heterogeneity test could be based directly

on b��OLS = b�OLS=(1��̂OLS) and b��MG = N
�1PN

i=1
b��i , where b��i = �̂i=(1��̂i).

Under the null of homogeneity the pooled and the mean group estimators are

both consistent, although only the mean group estimator is consistent under

the alternative hypothesis when lagged values of the dependent variables are

included in the model.

Under the full homogeneity assumption (�i = �, �2i = �
2), the asymptotic

variance matrices of the pooled and the mean group estimators (for a �xed

N and a large T ) are given by

Cov(
p
Tb��OLS) =�2

N

 
N�1

NX
i=1

	i

!�1
; (62)

and

Cov(
p
Tb��MG) =

�2

N

 
N�1

NX
i=1

	�1
i

!
; (63)

where 	i = p limT!1(W
0
iWi=T ): Also we have

Cov(
p
Tb��OLS;pTb��MG) =Cov(

p
Tb��OLS)

4Similar exercises can also be carried out using �xed or random e¤ects estimators. But

to keep the exposition simple here we focus on pooled estimators.
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thus directly establishing that

Cov
hp
T
�b��MG � b��OLS�i=�2

N

8<:
 
N�1

NX
i=1

	�1
i

!
�
 
N�1

NX
i=1

	i

!�19=; ;
which is a positive de�nite matrix, assuming that 	i 6= 	j; for some i and

j.5This condition is generally satis�ed when the model contains regressors

with heterogeneous variances. The above results suggest the following sta-

tistic for testing the homogeneity hypothesis:

h = N T
�b��MG � b��OLS�0 bV�1

�b��MG � b��OLS� ;
where

bV = b�2MG

8<:N�1
NX
i=1

�
W0

iWi

T

��1
�
 
N�1

NX
i=1

W0
iWi

T

!�19=; : (64)

and b�2MG =
1
N

PN
i=1 b�2i . In computing h, one could also equally use b�2OLS

instead of b�2MG. Under the null hypothesis

H0 : �i = �; �i = �, and �
2
i = �

2; for all i,

and for N and T su¢ ciently large we have

h
as �2K+1:

When the focus of the analysis is on the long run coe¢ cients we �rst note

that6 b��OLS � �� = (b�OLS � �)�� + (b�OLS � �)
(1� b�OLS) :

Therefore, under the homogeneity hypothesis, we have, for a large T

Cov
�p
Tb��OLS� = �2

N(1� �)2D
 
N�1

NX
i=1

	i

!�1
D0, (65)

5For a proof see the Appendix in Pesaran, Smith and Im (1996).
6Recall that under homogeneity hypothesis �� = �=(1 � �) and b��OLS = b�OLS=(1 �

�̂OLS).
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where D = (��; IK) is a K � (K + 1): Similarly,

Cov
�p
Tb��MG

�
=

�2

N(1� �)2D
 
N�1

NX
i=1

	�1
i

!
D0: (66)

To estimate (65), and (66), the unknown parameters �2; �; and � could be

estimated either from pooled or mean group estimators. Using the mean

group estimators, the test of the homogeneity or the long run coe¢ cients can

then be based on the following Hausman-type statistic:

h�� = NT (1� b�MG)
2
�b��MG � b��OLS�0 �bDMG

bV bD0
MG

��1 �b��MG � b��OLS� ;
where bDMG = (b��MG; IK), and bV is given by (64). In general bDMG

bV bD0
MG is

of full rank. Under the null hypothesis, for large N and T; h�� s �2K :
There are two major concerns with the routine use of the Hausman proce-

dure as a test of slope homogeneity. It could lack power for certain parameter

values, as its implicit null does not necessarily coincide with the null hypoth-

esis of interest. Second, and more importantly, the Hausman test will not be

applicable in the case of panel data models containing only strictly exoge-

nous regressors (�i = 0 in (50) for all i) or in the case of pure autoregressive

models (�i = 0 in (50) for all i) . In the former case, both estimators,
b��OLS

and b��MG; are unbiased under the null and the alternative hypotheses and

test will have no power. Whilst, in the case of pure autoregressive panel

data models
p
NT

�b��OLS � ��� and pNT �b��MG � ��
�
will be asymptotically

equivalent and the asymptotic variance of
�b��MG � b��OLS� is zero under H0.

Phillips and Sul (2003) propose a di¤erent type of Hausman test where

instead of comparing two di¤erent pooled estimators of the regression coef-

�cients (as discussed above), they propose basing the test of homogeneity

on the di¤erence between the individual estimates and a suitably de�ned

pooled estimator. In the context of the panel regression model (50), their

test statistic can be written as

G =
�
�̂N � �N 
 b��OLS�0 �̂�1g ��̂N � �N 
 b��OLS� ;
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where �̂N = (�̂
0
1; �̂

0
2; :::; �̂

0
N)

0 is an N (K + 1)� 1 stacked vector of all the N
individual estimates, �N is a (N � 1) vector of unity, and �̂g is a consistent

estimator of �g, the asymptotic variance matrix of �̂N � �N 
 b��OLS, under
H0. Assuming H0 holds and N is �xed, then G !d �

2
N(K+1) as T ! 1, so

long as the �g is a non-stochastic positive de�nite matrix.

As compared to the Hausman test based on b��MG � b��OLS, the G test is

likely to be more powerful; but its use will be limited to panel data models

where N is small relative to T . Also, the G test will not be valid in the

case of pure dynamic models, very much for the same kind of reasons noted

above in relation to the Hausman test based on b��MG � b��OLS. It can be
shown in the case of pure autoregressive models (�i = 0 in (50) for all i),

Rank(�g) = N � 1 and �g is non-invertible.

Swamy (1970) bases his test of slope homogeneity on the dispersion of

individual estimates from a suitable pooled estimator. Swamy�s test is devel-

oped for panels where N is small relative to T , but allows for cross section

heteroscedasticity. Based on the Swamy�s (1970) work, Pesaran and Yam-

agata (2007) propose standardized dispersion statistics that are asymptoti-

cally normally distributed for large N and T . Consider a modi�ed version of

Swamy�s (1970) test statistic7

~S =
NX
i=1

�b�i � e��WOLS

�0W0
iWi

~�2i

�b�i � e��WOLS

�
(67)

7Swamy�s (1970) statistic is de�ned by

Ŝ =
NX
i=1

�b�i � b��WOLS

�0 W0
iWi

�̂2i

�b�i � b��WOLS

�
;

where b��WOLS =

 
NX
i=1

�̂�2i W0
iWi

!�1 NX
i=1

�̂�2i W0
iyi;

with �̂2i = T�1
�
yi �Wi

b�i�0 �yi �Wi
b�i�. Swamy shows that under H0, Ŝ !d

�2(N�1)(K+1) as T !1 for a �xed N , and nonstochastic regressors.
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where ~�2i is an estimator of �
2
i based on

b��OLS, namely
~�2i = T

�1
�
yi �Wi

b��OLS�0 �yi �Wi
b��OLS� , (68)

and e��WOLS is the weighted pooled estimator also computed using ~�2i , namely

e��WOLS =

 
NX
i=1

W0
iWi

~�2i

!�1 NX
i=1

W0
iyi
~�2i

: (69)

Suppose for the model de�ned by (50), the following relation holds:

N�1=2 ~S = N�1=2
NX
i=1

zi +Op
�
T�1

�
+Op

�
N�1=2� ; (70)

where

zi =

�
T�1=2u0iWi

�
(T�1W0

iWi)
�1 �

T�1=2W0
iui
�

u0iui=T
.

Since, under H0, zi !d �
2
K+1 as T ! 1, it is reasonable to conjecture that

up to order T�1, E (zi) and v2z = V ar (zi) are given by (K + 1) and 2 (K + 1),

respectively. Then, supposing

E (zi) = (K + 1) +O
�
T�1

�
,

we can write

N�1=2

 
~S � (K + 1)

vz

!
= N�1=2

NX
i=1

 
~S � E(zi)
vz

!
+Op

 p
N

T

!
+Op

�
T�1

�
;

therefore

~� = N�1=2

 
~S � (K + 1)p
2(K + 1)

!
!d N (0; 1)

as N and T !1 in no particular order, such that
p
N=T ! 0.

Importantly, this test is valid when the Hausman type test or G test

procedure might fail to be applicable, as stated above. Moreover, this test

procedure is expected to have higher power than the Hausman type test,

where the latter is applicable.
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8 A Random Coe¢ cient Simultaneous Equa-

tion System

The generalisation of a single equation random coe¢ cients model to a si-

multaneous equation system raises complicated issues of identi�cation and

estimation. To show this let us consider a system of G equations

YiBi +Xi�i = Ui; i = 1; :::; N; (71)

where Yi and Xi are the T � G and T � K matrices of endogenous and

exogenous variables, respectively, Ui is the T �G matrices of errors, Bi and
�i are the G � G and K � G matrix of the coe¢ cients of the endogenous

variables and exogenous variables, respectively. The reduced form, then, is

of the form

Yi = �Xi�iB
�1
i +UiB

�1
i ; (72)

= Xi�i +Vi;

where

�i = ��iB�1i ; (73)

Vi = UiB
�1
i : (74)

Suppose that

Bi = B+ �i; (75)

�i = �+�i; (76)

where �i and �i are G � G and G �K matrices of random variables inde-

pendently distributed over i with means 0 and covariances � and�; de�ned

by � = E[(vec �i) (vec �i)
0] and � = E[(vec �i)(vec �i)0]: Then

E (�i) = �E[(�+�i)(B+ �i)�1]; (77)

6= � B
�1
:
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In other words, identi�cation conditions of structural parameters cannot be

derived by assuming that when sample size approaches in�nity, �̂ will con-

verge to � B
�1
: In fact the assumption of (75) raises intractable di¢ culties

at the levels of identi�cation and estimation.

Kelejian (1974) has studied the problem of identi�cation under (75) and

(76). His results imply that any feedback between the endogenous variables

must be avoided and that identi�ability and interdependence exclude each

other (also see Raj and Ullah (1981)). In other words, for any one equation

we may treat all the other variables as predetermined. Therefore, for ease of

analysis, instead of assuming (75), we shall assume that

Bi = B; 8 i; (78)

where B is a non-singular matrix with �xed elements.

The combination of (76) and (78) amounts to assuming a random coe¢ -

cients reduced form of (51), where �i = ��iB
�1
= �(�+�i)B

�1
, and

E (�i) = �� B
�1
; (79)

Cov(�i) = [B
�10 
 Ik]�[B

�1 
 Ik] =��: (80)

Assume that Ui are independently distributed over time but are contempo-

raneously correlated, then

Cov(Ui) = E[vec(Ui)vec(Ui)
0] = Ci 
 IT : (81)

Furthermore, we assume that Ui and �i are mutually independent and are

independent of Xi: Then the reduced form (72) can be written as

Yi = Xi�+V
�
i ; (82)

where V�
i = �Xi�i�B

�1 +Ui
�B�1 and E (V�

i ) = 0;

Cov(V�
i ) = �B�1

0
Ci
�B�1 
 IT + (IG 
Xi)�

�(IG 
X0
t) (83)

= Qi; i = 1; :::; N:
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The GLS estimator of �� is then equal to (Balestra and Negassi (1992))

vec(b�GLS) =

"
NX
i=1

~R�1
i

#�1 " NX
i=1

~R�1
i vec �̂i

#
; (84)

where

~Ri = Qi 
 (X0
iXi)

�1 +��; (85)

�̂i = (X0
iXi)

�1X0
iYi: (86)

If B
�10
CiB

�1
and �� are unknown, a two-step GLS procedure can be ap-

plied. In the �rst step, we estimate B
�10
CiB

�1
and �� by

B
�10cCiB�1 =

1

T �K
~V�0
i
~V�
i ; ~V

�
i = Yi �Xi

b�i;

vec (��) =
1

N � 1

NX
i=1

[vec (b�i �
Z
�)][vec(b�i �

Z
�)]0;

Z
� =

1

N

NX
i=1

b�i: (87)

In the second step, we estimate
Z
� using (84) by substituting b~Ri for ~Ri:

If our interest is in the structural form parameters B and �; we can either

solve forB and � from the reduced form estimate b��; or we can estimate them
directly using instrumental variables method. Rewrite the �rst equation of

the structural form in the following way,

yi1 = Yi1
��
�
1 +Xi1


�
i1 + ui1; (88)

= Zi1�1 + �
�
i1; i = 1; :::; N;

where yi1 is the T�1 vector of the �rst endogenous variables and Yi1 is the T�
g matrix of the other endogenous variables appearing in the �rst equation g �
G� 1;Xi1 is the T � k� matrix of included exogenous variables k� � K; and
��
�
1 and 


�
i1 are g�1 and k��1 vectors of coe¢ cients, respectively with 
�i1 =

[
�i1 + �
�
i1]; and Zi1 = [Yi1;Xi1]; �

0
1 = [��

�0
1 ; �


�0
1 ];v

�
i1 = ui1 +Xi1�

�
i1: Balestra

and Negassi (1992) suggest the following instrumental variables estimator

b�1 = " NX
i=1

Z0i1FiZi1

#�1 " NX
i=1

Z0i1Fi
b�i1# ; (89)
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where b�i1 = [Z0i1Xi(X
0
iXi)

�1X0
iZi1]

�1Z0i1Xi(X
0
iXi)

�1X0
iyi1; (90)

and

Fi = Xi(X
0
i1�1X

0
i1 + �

2
1Ik�)

�1X0
i; (91)

�1 = E (�i1�
0
i1) :

One can also derive the Bayes solutions for a simultaneous equations system

of the form (71), (76) and (78) using a method analogous to that of section

4. Considering one equation of (72) at a time, the results of section 4 can

be applied straightforwardly. Similar results for the system of (72) can also

be derived if the prior restrictions on � are ignored. Of course, restricted

reduced form estimators can also be derived. The computation, though, can

be laborious.

The results of section 4 can also be used to derive a Bayes estimator for

the structural form (88) based on a limited information approach. Let

Yi1 = bYi1 + bVi1; (92)

where bYi1 = Xi
b�i1; and b�i1 = (X

0
iXi)

�1X0
iYi1: Substituting bYi1 for Yi1 in

(88), we have

yi1 = bYi1�
�
1 +Xi1


�
i1 + �i1; (93)

where �i1 = ui1 + bVi1�
�
1: Conditioning on b�i1; we can treat bYi1 and Xi1 as

the set of exogenous variables. Equation (93) is of the form of the mixed �xed

and random coe¢ cients model (14) and the Bayes estimators of �
�
1;


�
1 and


�i1 are given in section 4 (for detail see Hsiao, Appelbe and Dineen (1992)).

Of course, one should keep in mind that now the Bayes estimator is the

conditional posterior mean given the estimated �i1.
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9 RandomCoe¢ cient Models with Cross-Section

Dependence

In principle, the random coe¢ cient model (14) can be easily adapted to allow

for dependence across the error terms, uit, i = 1; 2; :::; N . But, without plau-

sible restrictions on the error covariances the number of unknown parameters

of the model increases at the rate of N2, which would be manageable only

when N is relatively small (typically 10 or less). To deal with the problem of

cross section dependence when N is large a number of di¤erent approaches

have been advanced in the literature.8 In the case of spatial panels where a

natural distance measure (or an immutable ordering of cross section units)

is available the dependence is tested and modelled with �spatial lags�, using

techniques familiar from the time series literature. Anselin (2001) provides a

recent survey of the literature on spatial econometrics. A number of studies

have also used measures such as trade or capital �ows to capture economic

distance, as in Lee and Pesaran (1993), Conley and Topa (2002) and Pesaran,

Schuermann and Weiner (2004).

But, in the absence of suitable distance measures or natural orderings of

the cross section units a number of investigators have attempted to model

the cross section dependence using single or multiple factor residual models

where uit is speci�ed in terms of a �nite number of common factors. A

convenient parameterization is given by

uit =
�ip

1 + �0i�i
(�0ift + "it) ; (94)

where �i is a s� 1 vector of individual-speci�c factor loadings, ft is an s� 1
vector of unobserved (latent) factors, and "it is an idiosyncratic error assumed

to be distributed independently across i, the unobserved factors, ft, and the

observed regressors, xit, with mean zero and a unit variance. Since the

common factors are unobserved, without loss of generality we also assume

8Tests of error cross section dependence in the case of large panels are proposed by

Pesaran (2004).
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that ft s (0; Is).
Under the above set up, and conditional on a given set of factor loadings,

the cross-correlations of the errors are given by

�ij = �ji =
�0i�j

(1 + �0i�i)
1=2 �

1 + �0j�j
�1=2 : (95)

Complicated covariance structures can be accommodated by the residual

factor formulation through di¤erences across factor loadings and by using a

su¢ ciently large number of factors. A random coe¢ cient speci�cation can

also be assumed for the factor loadings:

�i = �� + �i; (96)

where �� is a vector of �xed constants

E(�i) = 0; E (�if
0
t) = 0; (97)

E (�ix
0
it) = 0; E (�i�

0
i) = 0;

E (�i�i
0) =

(
�� ; if i = j;

0; if i 6= j;
:

and �� is a non-negative de�nite matrix. The average degree of cross de-

pendence, de�ned by E
�
�ij
�
for i 6= j is governed by �� and the distribution

of �i. The average cross section dependence will be zero if �� = 0, and �i is

symmetrically distributed. Typically one would expect �� 6= 0.
Examples of studies that have used the residual factor structure to model

cross section dependence include Holtz-Eakin, Newey, and Rosen (1988),

Ahn, Lee and Schmidt (2001), Coakley, Fuertes and Smith (2005), Bai and

Ng (2004), Kapetanios and Pesaran (2007), Phillips and Sul (2003), Moon

and Perron (2004), and Moon, Perron and Phillips (2007) and Pesaran (2006,

2007). The studies by Holtz-Eakin et al. and Ahn et al. focus on single fac-

tor residual models and allow for time-varying individual e¤ects in the case

of panels with homogeneous slopes where T is �xed and N ! 1. Phillips
and Sul (2003) suggest using SURE-GLS techniques combined with median

unbiased estimation in the case of �rst order autoregressive panels. Coakley,
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Fuertes and Smith (2002) propose a principal components approach which

is shown by Pesaran (2006) to be consistent only when the factors and the

included regressors are either asymptotically uncorrelated or are perfectly

correlated. In the more general case Pesaran (2006) shows that consistent

estimation of the random coe¢ cient models with a multi-factor residual struc-

ture can be achieved (under certain regularity conditions) by augmenting the

observed regressors with the cross section averages of the dependent variable

and individual-speci�c regressors, namely

�yt =

NX
j=1

wjyjt, and �xit =
NX
j=1

wjxjt; (98)

for any set of weights such that

wi = O

�
1

N

�
;

NX
i=1

jwij < K <1:

An obvious example of such a weighting scheme is wi = 1=N .9

10 Concluding Remarks

When the included conditional variables together with the conventional vari-

able intercept or error components (e.g. Hsiao (2003, ch.3)) cannot com-

pletely capture systematic di¤erences across cross-sectional units and/or over

time, and the possibility of adding additional conditional variables is not an

option, either due to data unavailability or the desire to keep the model sim-

ple, there is very little alternative but to allow the slope coe¢ cients to vary

across cross-section units or over time. If we treat all these coe¢ cients as �xed

and di¤erent, there is no particular reason to pool the data, except for some

e¢ ciency gain in a Zellner�s (1962) seemingly unrelated regression frame-

work. Random coe¢ cients models appear to be an attractive middle ground

9Note that the non-parametric variance-covariance matrix estimator proposed in Pe-

saran (2006) is robust to heteroscedastic and/or serially correlated idiosyncratic errors,

"it.
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between the implausible assumption of homogeneity across cross-sectional

units or over time and the infeasibility of treating them all di¤erently, in the

sense of being draws from di¤erent probability distributions. Other inter-

mediate formulations could also be considered. For example, as argued by

Pesaran, Shin and Smith (1999), in the context of dynamic models it would be

plausible to impose the homogeneity hypothesis on the long-run coe¢ cients

but let the short-run dynamics to vary freely across the cross-section units.

In this Chapter various formulations are surveyed and their implications dis-

cussed. Our review has been largely con�ned to linear panel data models

with stationary regressors. The analysis of random coe¢ cient models with

unit roots and cointegration is reviewed in Breitung and Pesaran (2007) in

this volume. Parameter heterogeneity in non-linear panel data models poses

fundamentally new problems and needs to be considered on a case-by-case

basis.
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Appendix A: Proof of Theorem 1
To prove part (a) of the theorem, we write (41) in the form of (19) and

(17). Putting u � N(0;C) and � � N(0; IN 
�) together with (17), the
result follows.

To prove (b), we use Bayes�s theorem, that is

p(
jy) _ p(yj
)p(
); (99)

where p(yj
) follows from (42) and p(
) is given by (39). The product on

the right hand side of (99) is proportional to expf�1
2
Qg; where Q is given

by

Q = (y � Z
)0[C+W(IN 
�)W0]�1(y � Z
) (100)

= (
 � b�
)0D�1(
 � b�
) + y0f
�1 �
�1Z[Z
0
DZ]�1Z

0

�1gy:

The second term on the right hand side of (100) is a constant as far as the

distribution of 
 is concerned, and the remainder of the expression demon-

strates the truth of (b).

To prove (c), we use the relations

p(�jy) =

Z
p(�;
jy)d
 (101)

=

Z
[p(
jy;�)d
]p(�jy)

and

p(�;
jy) _ p(yj�;
)p(�;
) (102)

= p(yj�;
)p(�)�p(
):

Under (38) - (40), the right hand side of (102) is proportional to expf�1
2
Q�g;

where Q� is given by

Q� = (y � Z
 �W�)0C�1(y�Z
 �W�) +�0(IN 
��1)�

= y0C�1y + 
 0Z
0
C�1Z
 +�0W0C�1W�

�2
 0Z0C�1y � 2�0W0C�1y + 2
 0Z
0
C�1W�+�0(IN 
��1)�

= Q�1 +Q
�
2 +Q

�
3; (103)
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with

Q�1 = f
 � (Z0C�1Z)�1[Z
0
C�1(y �W�)g0(Z0C�1Z)

�f
 � (Z0C�1Z)�1[Z
0
C�1(y �W�)]g; (104)

Q�2 = f�� eDW0[C�1 �C�1Z(Z
0
C�1Z)�1Z

0
C�1]yg0 eD�1

�f��eDW0[C�1 �C�1Z(Z0C�1Z)�1Z0C�1]yg (105)

and

Q�3 = y0fC�1 �C�1Z(Z0C�1Z)�1Z0C�1 � [C�1 �C�1Z(Z
0
C�1Z)�1Z

0
C�1]

�W eD�1W0[C�1 �C�1Z(Z
0
C�1Z)�1Z

0
C�1]gy: (106)

As far as the distribution of p(�;
jy) is concerned, Q�3 is a constant. The
conditional distribution of 
 given y and � is proportional to expf�1

2
Q�1g;

which integrates to 1. Therefore, the marginal distribution of � given y is

proportional to expf�1
2
Q�2g, which demonstrates (c).

Substituting (23) - (26) into (42) we obtain the Bayes solutions for the

Swamy type random coe¢ cients model: (i) the distribution of � given y is

N( b��;D); and (ii) the distribution of � given y is normal with mean
b� = fX0[C�1 �C�1XA(A0X0C�1XA)�1A0X0C�1]X+ (IN 
��1)g�1

�fX0[C�1 �C�1XA(A0X0C�1XA)�1A0X0C�1]yg

= eDfX0[C�1 �C�1XA(A0X0C�1XA)�1A0X0C�1]yg; (107)

and covariance

eD = fX0[C�1 �C�1XA(A0X0C�1XA)�1A0X0C�1]X+ (IN 
��1)g�1:
(108)

Letting e� = IN 
� and repeatedly using the identity (30) we can write
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(108) in the form

eD = [X0C�1X+ e��1]�1fI�X0C�1XA[A0X0C�1X(X0C�1X+ e��1)�1X0C�1XA

�A0X0C�1XA]�1A0X0C�1X[X0C�1X+ e��1]�1g

= [X0C�1X+ e��1]�1fI+X0C�1XA[A0X0(X e�X0 +C)XA]�1A0(X0C�1X e��1 � e��1)

�[X0C�1X+ e��1]�1g

= [X0C�1X+ e��1]�1 + e�X0(X e�X0 +C)�1XA[A0X0(X e�X0 +C)�1XA]�1

�A0X0(X e�X0 +C)�1X e�: (109)

Substituting (109) into (107) we have

e� = [X0C�1X+ e��1]�1X0C�1y

�(X0C�1X+ e��1)�1(X0C�1X+ e��1 � e��1)A(A0X0C�1XA)�1A0X0C�1y

+ e�X0(X e�X0 +C)�1XA[A0X0(X e�X0 +C)�1XA]�1A0X0[C�1 � (X e�X0 +C)�1y

� e�X0(X e�X0 +C)�1XA[A0X0(X e�X0 +C)�1XA]�1

�[I�A0X(X e�X0 +C)�1XA](A0X0C�1XA)�1A0X0C�1y

= (X0C�1X+ e��1)�1X0C�1y �A(A0X0C�1XA)�1A0X0C�1y

+(X0C�1 + e��1)�1 e��1A(A0X0C�1XA)�1A0X0C�1y

� e�X0(X e�X0 +C)�1XA[A0X0(X e�X0 +C)�1XA]�1A0X0(X e�X0 +C)�1y

+ e�X0(X e�X0 +C)�1XA(A0X0C�1XA)�1A0X0C�1y

= (X0C�1X+ e��1)�1X0C�1y � e�X0(X e�X0 +C)�1XAb�: (110)
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