
Aggregation in Large Dynamic Panels�

M. Hashem Pesarany

Cambridge University and University of Southern California

Alexander Chudikz

Federal Reserve Bank of Dallas and CIMF

March 1, 2012

Abstract

This paper investigates the problem of aggregation in the case of large linear dynamic panels,

where each micro unit is potentially related to all other micro units, and where micro innovations

are allowed to be cross sectionally dependent. Following Pesaran (2003), an optimal aggregate

function is derived and used (i) to establish conditions under which Granger�s (1980) conjecture

regarding the long memory properties of aggregate variables from �a very large scale dynamic,

econometric model�holds, and (ii) to show which distributional features of micro parameters

can be identi�ed from the aggregate model. The paper also derives impulse response functions

for the aggregate variables, distinguishing between the e¤ects of composite macro and aggre-

gated idiosyncratic shocks. Some of the �ndings of the paper are illustrated by Monte Carlo

experiments. The paper also contains an empirical application to consumer price in�ation in

Germany, France and Italy, and re-examines the extent to which �observed� in�ation persis-

tence at the aggregate level is due to aggregation and/or common unobserved factors. Our

�ndings suggest that dynamic heterogeneity as well as persistent common factors are needed for

explaining the observed persistence of the aggregate in�ation.
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1 Introduction

Nearly every study in economics must implicitly or explicitly aggregate: over time, individuals

(consumers, �rms, or agents), products, or space, and usually over most of these dimensions. It is

therefore important that the consequences of aggregation for the analysis of economic problems of

interest are adequately understood. It is widely acknowledged that aggregation can be problematic,

but its implications for empirical research are often ignored either by adopting the concept of a

�representative agent�, or by arguing that �aggregation errors� are of second order importance.

However, there are empirical studies where aggregation errors are shown to be quite important,

including the contributions by Hsiao et al. (2005), Altissimo et al. (2009), and Imbs et al. (2005).1

There are several di¤erent aspects to the aggregation problem. One important issue is the

conditions under which micro parameters or some of their distributional features can be identi�ed

and estimated from aggregate relations. Theil (1954) was the �rst to consider this problem in the

context of static micro relations. Robinson (1978) considers the problem of estimating moments of

the distribution of AR(1) micro coe¢ cients, but excludes the possibility of a long memory when

deriving the asymptotic distribution of his proposed estimator. Pesaran (2003) discusses estimating

the average long-run micro e¤ects and mean lags of the autoregressive distributed lag (ARDL) micro

models from aggregate data.

A second closely related problem is derivation of an optimal aggregate function which could be

used to compare persistence of shocks when aggregate and disaggregated models are considered.

Theil (1954), Lewbel (1994), and Pesaran (2003) consider the problem of deriving an optimal

aggregate function. The problem of aggregation of a �nite number of independent autoregressive

moving average (ARMA) processes is considered, for example, by Granger and Morris (1976), Rose

(1977), and Lütkepohl (1984). The problem of aggregating a large number of independent time

series processes was �rst addressed by Robinson (1978) and Granger (1980). Granger showed that

aggregate variables can have fundamentally di¤erent time series properties as compared to those

of the underlying micro units. Focusing on autoregressive models (AR) of order 1, he showed that

aggregation can generate long memory even if the micro units follow stochastic processes with

1 In addition to the empirical studies, Geweke (1985) develops a theoretical example, where he argues that ignoring
the sensitivity of the aggregates to policy changes seems no more compelling than the Lucas critique of ignoring the
dependence of expectations on the policy regime.
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exponentially decaying autocovariances.

The aggregation problem has also been studied from the perspective of forecasting: is it better to

forecast using aggregate or disaggregate data, if the primary objective is to forecast the aggregates?

Pesaran, Pierse, and Kumar (1989) and Pesaran, Pierse, and Lee (1994), building on Grunfeld

and Griliches (1960), develop selection criteria for a choice between aggregate and disaggregate

speci�cations. Giacomini and Granger (2004) discuss forecasting of aggregates in the context of

space-time autoregressive models. Cross-sectional aggregation of vector ARMA processes and a

comprehensive bibliography is provided in Lütkepohl (1987).

A third issue of importance concerns the role of common factors and cross-sectional dependence

in aggregation, which was �rst highlighted by Granger (1987), and further developed and discussed

in Forni and Lippi (1997) and Za¤aroni (2004). Granger showed that the strength and pattern

of cross-sectional dependence plays a central role in aggregation. Using a simple factor model, he

argued that the factor dominates the aggregate relationship; and consequently, variables that may

have very good explanatory power at the micro level might be unimportant at the macro level, and

vice versa. Implications of Granger�s �nding that common factors dominate aggregate relationships

have been explored in various papers in the literature.2

In this paper we investigate the problem of aggregation in the context of large linear dynamic

panels, or high-dimensional VARs, where each micro unit is potentially related to all other micro

units, and where micro innovations are allowed to be cross-sectionally dependent. In this way the

earlier literature on aggregation of independent dynamic regressions is extended to aggregation

of dynamic models with interactions and cross-sectional dependence. In particular, we allow for

di¤erent degrees of interconnections across the individual units, relax the assumption that micro

coe¢ cients are independently distributed, and allow for a general pattern of cross-sectional depen-

dence of micro innovations, which can be either strong or weak.3 Using this generalized framework

we re-visit two of the issues in the aggregation literature mentioned above. First, following Pesaran

2Granger also contributed to the discussion of temporal aggregation, aggregation of non-linear models, and small
scale aggregation of space-time processes. See Granger (1993), Granger and Siklos (1995), Granger and Lee (1999)
and Giacomini and Granger (2004). Other contributions to the theory of aggregation include the contributions
of Kelejian (1980), Stoker (1984), Stoker (1986), and Garderen et al. (2000), on aggregation of static non-linear
micro models, Pesaran and Smith (1995), Phillips and Moon (1999), and Trapani and Urga (2010) on the e¤ects of
aggregation on cointegration. Granger (1990) and Stoker (1993) provide early surveys.

3Concepts of strong and weak cross-sectional dependence are discussed and analysed in Chudik, Pesaran, and
Tosetti (2011) and Bailey, Kapetanios, and Pesaran (2012).
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(2003), we derive an optimal aggregate function and use it to establish links between parameters

of the aggregate function (macro parameters) and the distributional moments of the underlying

micro parameters. We examine the conditions under which the distributional features of micro

parameters can be identi�ed from aggregate relations. We also use the optimal aggregate func-

tion to establish the conditions under which Granger�s (1980) conjecture about the long memory

properties of aggregate variables from �a very large scale dynamic, econometric model�is valid.4

Understanding the persistence of aggregate variables is the second main objective of this paper,

where we compare impulse response functions of the aggregate variables derived using the optimal

aggregate function with the impulse responses obtained using the disaggregated model. The com-

bined aggregate shock in our set-up is de�ned as the sum of the composite macro and aggregated

idiosyncratic shocks. The issue of persistence and the relative importance of the two components of

the combined aggregate shock for the aggregate variable is also investigated by Monte Carlo exper-

iments. The paper concludes with an empirical application to consumer price in�ation in Germany,

France and Italy, and re-examines the extent to which in�ation persistence at the aggregate level is

due to aggregation and/or common unobserved factors. We �nd that dynamic heterogeneity alone

cannot explain the persistence of aggregate in�ation, rather it is the combination of factor persis-

tence and cross-sectional heterogeneity that seems to be responsible for the observed persistence of

the aggregate in�ation.

The remainder of the paper is organized as follows. We begin with the derivation of the optimal

aggregate function in Section 2 for a factor augmented VAR model in N cross-sectional units. The

optimal aggregate function is used in Section 3 to examine the relationship between micro and

macro parameters. The impulse responses of the e¤ects of aggregated idiosyncratic and composite

macro shocks on the aggregate variable are derived and contrasted in Section 4. Monte Carlo

experiments are presented in Section 5, and Section 6 reports on the empirical application. Section

7 concludes the paper. Some of the mathematical proofs are provided in an appendix.

A brief word on notations: kAk1 � max
1�j�n

Pn
i=1 jaij j ; and kAk1 � max

1�i�n

Pn
j=1 jaij j denote the

maximum absolute column and row sum norms ofA 2Mn�n, respectively, whereMn�n is the space

4Granger uses di¤erent arguments to support his conjecture as compared to the formal analysis undertaken in this
paper.
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of real-valued n�n matrices. kAk =
p
% (A0A) is the spectral norm ofA,5 % (A) � max

1�i�n
fj�i (A)jg

is the spectral radius of A, and j�1(A)j � j�2(A)j � ::: � j�n(A)j are the eigenvalues of A. All

vectors are column vectors.

2 Aggregation of Factor Augmented VAR Models

Consider the following high-dimensional factor augmented VAR model in N cross-sectional units

yt = �yt�1 +Bxt + �f t + "t, for t = 1; 2; :::; T; (1)

where xt = (x1t; x2t; :::; xNt)0 is N � 1 vector of cross-section speci�c regressors, ft is m� 1 vector

of common factors, � and B are N � N matrices of randomly distributed coe¢ cients, and � is

an N � m matrix of randomly distributed factor loadings with elements 
ij , for i = 1; 2; :::; N ,

and j = 1; 2; :::;m. We denote the elements of � by �ij , for i; j = 1; 2; :::; N , and assume that

B is a diagonal matrix with elements �i, also collected in the N � 1 vector � = (�1; �2; :::; �N )0.6

The objective is to derive an optimal aggregate function for �ywt = w0yt in terms of its lagged

values, and current and lagged values of �xwt = w0xt and ft, where w = (w1; w2; :::; wN )0 is a set

of predetermined aggregation weights such that �Ni=1wi = 1. Throughout, it is assumed that w is

known and the weights are granular, in the sense that

jwij
kwk = O

�
N�1=2

�
, for any i, and kwk = O

�
N�1=2

�
. (2)

Denote the aggregate information set by 
t = (�yw;t�1; �yw;t�2; :::; �xwt; �xw;t�1; :::; ft; ft�1; :::):

When ft is not observed the current and lagged values of ft in 
t must be replaced by their �tted or

forecast values obtained from an auxiliary model for ft, and possibly other variables, not included in

(1). Consider the augmented information set, �t = (yt�M ;w;xt;xt�1; ::::; ft; ft�1; :::; �yw;t�1; �yw;t�2; :::),

that includes the weights, w, and the disaggregate observations on the regressors, xit. Note that


t is contained in �t.

Now introduce the following assumptions on the eigenvalues of � and the idiosyncratic errors,

5Note that if x is a vector, then kxk =
p
% (x0x) =

p
x0x corresponds to the Euclidean length of vector x.

6This speci�cation can be readily generalized to allow for more than one cross-section speci�c regressor, by replacing
Bxt with B1x1t +B2x2t + :::+Bkxkt.
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"t = ("1t; "2t; :::; "Nt)
0.

ASSUMPTION 1 The coe¢ cient matrix, �, of the V AR model in (1) has distinct eigenvalues

�i (�) ; for i = 1; 2; :::; N , and satisfy the following cross-sectionally invariant conditional moments

E
�
�si (�)

���t;P; "t�s � = as;

E (�si (�) j�t;P;� ) = bs(�);

E (�si (�) j�t;P;�) = cs(�);

9>>>>=>>>>; (3)

for all s = 1; 2; :::; and i = 1; 2; :::; N , where �t = (yt�M ;w;xt;xt�1; ::::; ft; ft�1; :::; �yw;t�1; �yw;t�2; :::),

and P is N �N matrix containing the eigenvectors of � as column vectors.

ASSUMPTION 2 The idiosyncratic shocks, "t = ("1t; "2t; :::; "Nt)
0, in (1) are serially uncorre-

lated with zero means and �nite variances.

Remark 1 Assumption 1 is analytically convenient and can be viewed as a natural generalization of

the simple AR(1) speci�cations considered by Robinson (1978), Granger (1980) and others. Using

the spectral decomposition of � = P�P�1, where � =diag [�1 (�) ; �2 (�) ; :::; �N (�)] is a diagonal

matrix with eigenvalues of � on its diagonal, the factor augmented VAR model can be written as

y�it = �i (�) y
�
i;t�1 + z

�
it; i = 1; 2; :::; N; and t = 1; 2; :::; T ; (4)

where y�it is the i
th element of y�t = P

�1yt, and z�it is the i
th element of z�t = P

�1 (Bxt + �f t + "t).

Consider now the conditions under which an optimal aggregate function exists for �y�wt = w0y�t =

w0P�1yt. We know from the existing literature that such an aggregate function exists if E (�si (�) jz�it ) =

a�s, for all i. Seen from this perspective, our assumption that conditional on P the eigenvalues have

moments that do not depend on i seems sensible, and is likely to be essential for the validity of

Granger�s conjecture.

Remark 2 It is also worth noting that Assumption 1 does allow for possible dependence of �i (�)

on the coe¢ cients �i and 
ij.

As shown in Pesaran (2003), the optimal aggregate function (in the mean squared error sense)
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is given by

�ywt = E
�
w0yt j
t

�
+ vwt; (5)

where by construction E (vwt j
t ) = 0, and vwt, t = 1; 2; ::: are serially uncorrelated, although

they could be conditionally heteroskedastic.7 Solving (1) recursively forward from the initial state,

y�M ; we have

yt = �
t+My�M +

t+M�1X
s=0

�s (Bxt�s + �f t�s + "t�s) : (6)

Hence, using the spectral decomposition of � = P�P�1, we obtain

�ywt = w
0P�t+MP�1y�M +

t+M�1X
s=0

w0P�sP�1 (Bxt�s + �f t�s + "t�s) : (7)

Let zPB = (P;B) and zP� = (P;�). By the chain rule of expectations we obtain

E
�
P�sP�1B jP;�t

�
= E

�
E
�
P�sP�1B jzPB;�t

�
jP;�t

�
= E

�
PE (�s jzPB;�t )P�1B jP;�t

�
:

Similarly,

E
�
P�sP�1� jP;�t

�
= E

�
E
�
P�sP�1� jzP�;�t

�
jP;�t

�
= E

�
PE (�s jzP�;�t )P�1� jP;�t

�
:

But under (3) we have, E (�s jzPB;�t ) = bs(�)IN ; and E (�
s jzP�;�t ) = cs(�)IN . Hence

E
�
P�sP�1B jP;�t

�
= E

h
Pbs(�)P

�1B jP;�t
i

= E [bs(�)B jP;�t ] :

Similarly,

E
�
P�sP�1� jP;�t

�
= E

�
E
�
P�sP�1� jzP�;�t

�
jP;�t

�
= E

h
Pcs(�)P

�1� jP;�t
i

= E [cs(�)� jP;�t ] :
7Recall that under Assumption 2, we have E(w0"t j�;B;�;�t ) = 0; and hence E(w0"t jP;�t ) = 0:
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Finally,

E
�
P�sP�1"t�s jP;�t

�
= E

�
E
�
P�sP�1"t�s

��P; "t�s;�t � jP;�t � = E
�
PasINP

�1"t�s jP;�t
�

= asE ("t�s jP;�t ) :

Taking expectations of both sides of (7) conditional on (P;�t), we now have

E (�ywt jP;�t ) = w0E
�
P�t+MP�1 jP;�t

�
y�M +

t+M�1X
s=0

w0E
�
P�sP�1B jP;�t

�
xt�s +

t+M�1X
s=0

w0E
�
P�sP�1� jP;�t

�
ft�s +

t+M�1X
s=1

w0E
�
P�sP�1"t�s jP;�t

�
:

Using the results derived above we obtain

E (�ywt jP;�t ) =
�
w0y�M

�
at+M +

t+M�1X
s=0

w0E [bs(�)B jP;�t ]xt�s +

t+M�1X
s=0

w0E [cs(�)� jP;�t ] ft�s +
t+M�1X
s=1

asE
�
w0"t�s jP;�t

�
;

and �nally taking expectations conditional on the available aggregate information set (and noting

that 
t � (P;�t))

E (�ywt j
t ) =
�
w0y�M

�
E (at+M j
t ) +

t+M�1X
s=0

w0E
�
bs(�)Bxt�s j
t

�
(8)

+

t+M�1X
s=0

w0E [cs(�)� j
t ] ft�s +
t+M�1X
s=1

asE (�"w;t�s j
t ) :

where �"wt = w0"t.

2.1 Aggregation of stationary micro relations with random coe¢ cients

The optimal aggregate function derived in (8) is quite general and holds for any N , and does

not require the underlying micro processes to be stationary. But its use in empirical applications
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is limited as it depends on unobserved initial state, w0y�M , and the micro variables, xt. To

derive empirically manageable aggregate functions in what follows we assume that the underlying

processes are stationary and the micro parameters, �i and 
ij , are random draws from a common

distribution. More speci�cally, we make the following assumptions:

ASSUMPTION 3 The micro coe¢ cients, �i and 
ij, are random draws from common distribu-

tions with �nite moments such that

E [bs(�)B j
t ] = bsIN , (9)

E [cs(�)� j
t ] = �Nc0s, (10)

where bs(�) and cs(�) are de�ned in Assumption 1, bs = E [bs(�)�i], cs = E [cs(�)
i], and �N is

an N � 1 vector of ones.

ASSUMPTION 4 The eigenvalues of �, �i (�), are draws from a common distribution with

support over the range (�1; 1).

Under Assumption 3, (8) simpli�es to

E (�ywt j
t ) =
�
w0y�M

�
E (at+M j
t ) +

t+M�1X
s=0

bs�xw;t�s

+
t+M�1X
s=0

c0sft�s +
t+M�1X
s=1

asE (�"w;t�s j
t ) ;

where �xwt = w0xt, and E (�ywt j
t ) no longer depends on the individual speci�c regressors. Under

the additional Assumption 4, and for M su¢ ciently large the initial states are also eliminated and

we have

E (�ywt j
t ) =
1X
s=0

bs�xw;t�s +
1X
s=0

c0sft�s +
1X
s=1

as�t�s:

where �t�s = E (�"w;t�s j
t ). Note that
P1
s=1 as�t�s = E [

P1
s=1 as�"w;t�s j
t ]. Using this result in

(5) we obtain the optimal aggregate function

�ywt =
1X
s=0

bs�xw;t�s +
1X
s=0

c0sft�s +
1X
s=1

as�t�s + vwt; (11)
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which holds for any �nite N .

The dynamic properties of �ywt and its persistence to shocks depend on the decay rates of the

distributed lag coe¢ cients, fasg; fbsg and fcsg. If j�i (�)j < 1 � �; for some strictly positive

constant � > 0, then the distributed lagged coe¢ cients, fasg; fbsg and fcsg decay exponentially

fast and the aggregate function will not exhibit long memory features. However, in the case where

�i (�)
0 s are draws from distributions with supports covering -1 and/or 1, the rate of decay of the

distributed lagged coe¢ cients will be slower than exponential, typically the decay rate is given

by 1=(1 + s), and the resultant aggregate function will be subject to long memory e¤ects. This

result con�rms Granger�s conjecture in the case of large dimensional VAR models, and establishes

su¢ cient conditions for its validity. Just to summarize, the conditions are as set out in Assumptions

1, 2, 3, and 4.

It is also worth noting that in general �ywt has an in�nite order distributed lag representation

even if the underlying micro relations have �nite lag orders. This is an important consideration

in empirical macro economic analysis where the macro variables under consideration are often

constructed as aggregates of observations on a large number of micro units.

2.2 Limiting behavior of the optimal aggregate function

The aggregate function in (11) continues to hold even if N ! 1, so long as the degree of cross-

sectional dependence in the idiosyncratic errors, "it; i = 1; 2; :::; N , is su¢ ciently weak; otherwise

there is no guarantee for the aggregation error,
P1
s=1 as�t�s+vwt, to vanish as N !1. To this end

we introduce the following assumption that governs the degree of error cross-sectional dependence.

ASSUMPTION 5 The idiosyncratic errors, "t = ("1t; "2t; :::; "Nt)
0 in (1) are cross-sectionally

weakly dependent in the sense that

k�"k1 = k�"k1 = O (N�") ;

where �" = E("t"
0
t), for some constant 0 � �" < 1.

Remark 3 Condition 0 � �" < 1 in Assumption 5 is su¢ cient and necessary for weak cross-

sectional dependence of micro innovations. See Chudik, Pesaran, and Tosetti (2011). Following
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Bailey, Kapetanios, and Pesaran (2012), we shall refer to the constant �" as the exponent of cross-

sectional dependence of the idiosyncratic shocks.

Since under Assumption 2 the errors, "t for all t are serially uncorrelated, we have

V ar

 1X
s=1

as�"w;t�s

!
=

1X
s=1

a2sV ar (�"w;t�s) �
 1X
s=1

a2s

!
sup
t
[V ar(�"wt)] :

Furthermore

V ar(�"wt) = w
0�"w � kwk2 % (�") ;

and by Assumption 5, and the granularity conditions (2), we have8

sup
t
[V ar(�"wt)] = O

�
N�"�1� ;

and
P1
s=1 as�"w;t�s

q:m! 0, so long as
P1
s=1 a

2
s < K, for some positive constant K.9 Recall that

under Assumption 5, �" < 1, and supt [V ar(�"wt)] ! 0, as N ! 1. Also since
P1
s=1 as�t�s =

E (
P1
s=1 as�"w;t�s j
t ), it follows that

1X
s=1

as�t�s
q:m! 0; (12)

and hence for each t we have

�ywt �
1X
s=0

bs�xw;t�s �
1X
s=0

c0sft�s � vwt
q:m! 0, as N !1:

The limiting behavior of vwt; as N ! 1; depends on the nature of the processes generating

xit, ft, and "it, as well as the degree of cross-sectional dependence that arise from the non-zero

o¤-diagonal elements of �. Su¢ cient conditions for vwt
q:m! 0 are not presented here due to space

constraints, but can be found in Pesaran and Chudik (2011, Proposition 1). The key conditions for

vwt
q:m! 0 are weak error cross-sectional dependence and su¢ ciently bounded dynamic interactions

across the units. These conditions are satis�ed, for example, if k�"k = kE ("t"0t)k < K, andP1
s=1E k�sk �

P1
s=1E k�k

s < K, for some �nite positive constant, K: If on the other hand

8Note that % (�") � k�"k1 = O (N�").
9A su¢ cient condition for

P1
s=1 a

2
s to be bounded is j�ij < 1� �, where � is a small strictly positive number.
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P1
s=1E k�k

s is not bounded as N ! 1, or "t is strongly cross-sectionally dependent, then the

aggregation error vwt does not necessarily converge to zero and could be sizeable.

3 Relationship between Micro and Macro Parameters

In this section we discuss the problem of identi�cation of micro parameters, or some of their

distributional features, from the aggregate function given by (11). Although it is not possible to

recover all of the parameters of micro relations, there are a number of notable exceptions. An

important example is the average long-run impact de�ned by,

�� =
1

N

NX
i=1

�i =
1

N
� 0N� =

1

N
� 0N (IN ��)

�1 �, (13)

where � = (IN ��)�1 � =
�
� +�� +�2� + :::

�
is the N � 1 vector of individual long-run coe¢ -

cients, and as before �N is an N �1 vector of ones. Suppose that Assumptions 3 and 4 are satis�ed

and denote the common mean of �i by �. Using (9), we have E (�
s�) = E fE [bs(�)B j
t ]g = bsIN

for s = 0; 1; :::. Hence, the elements of � have a common mean, E (�i) = � =
P1
`=0 bs, which does

not depend on the elements of P. If, in addition, the sequence of random variables �i is ergodic

in mean, then for su¢ ciently large N , �� is well approximated by its mean,
P1
`=0 bs, and the cross-

sectional mean of the micro long-run e¤ects can be estimated by the long-run coe¢ cient of the

associated optimal aggregate model. This result holds even if �i and �i (�) are not independently

distributed, and irrespective of whether micro shocks contain a common factor.

Whether ��
p! � deserves a comment. A su¢ cient condition for �� to converge to its mean (in

probability) is given by

kV ar (�)k = O
�
N1��� , for some � > 0, (14)

in which case


V ar ����

 � N�1 kV ar (�)k = O (N��)! 0 as N !1 and ��

q:m:! �. Condition (14)

need not always hold. This condition can be violated if there is a high degree of dependence of

micro coe¢ cients �i across i, or if there is a dominant unit in the underlying model in which case

the column norm of � becomes unbounded in N .

The mean of �i is straightforward to identify from the aggregate relation since E (�i) = b0. But
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further restrictions are needed for identi�cation of E [�i (�)] from the aggregate model. Similarly

to Pesaran (2003) and Lewbel (1994), independence of �i and �i (�) would be su¢ cient for the

identi�cation of the moments of �i (�). Under the assumption that �i and �i (�) are independently

distributed, all moments of �i (�) can be identi�ed by

E [�si (�)] =
bs
b0
. (15)

Another possibility is to adopt a parametric speci�cation for the distribution of the micro

coe¢ cients and then identify the unknown parameters of the cross-sectional distribution of micro

coe¢ cients from the aggregate speci�cation. For example, suppose �i is independently distributed

of �i (�), and �i (�) has a beta distribution over (0; 1),

f (�) =
�p�1

�
1� �q�1

�
B (p; q)

, p > 0; q > 0, 0 < � < 1.

Then as discussed in Robinson (1978) and Pesaran (2003), we have

p =
b1 (b1 � b2)
b2b0 � b21

, q =
(b0 � b1) (b1 � b2)

b2b0 � b21
,

and � = b0 (p+ q � 1) = (q � 1). Another example is uniform distribution for �i (�) on interval

[�min; �max], �min > �1, �max < 1. Equation (15) can be solved to obtain (see Robinson, 1978),

�min =
b1 �

q
3
�
b0b2 � b21

�
b0

, and �max =
b1 +

q
3
�
b0b2 � b21

�
b0

.

4 Impulse Responses of Macro and Aggregated Idiosyncratic Shocks

For the analysis of impulse responses we assume that the common factors in (1) follow the VAR(1)

model

ft = 	f t�1 + vt, (16)
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where 	 is an m�m matrix of coe¢ cients, and vt = (v1t; v2t; :::; vmt)
0 is the m� 1 vector of macro

shocks. To simplify the analysis we also set � = 0, and write the micro relations as

yt = �yt�1 + ut, ut = �f t + "t: (17)

Including the exogenous variables, xt, in the model is relatively straightforward and does not a¤ect

the impulse responses of the shocks to macro factors, vt, or the idiosyncratic errors. The lag orders

of the VAR models in (16) and (17) are set to unity only for expositional convenience.

We make the following additional assumption.

ASSUMPTION 6 The m � 1 macro shocks, vt, are distributed independently of "t0, for all t

and t0. They are also serially uncorrelated, with zero means, and a diagonal variance matrix,

�v = Diag(�2v1 ; �
2
v2 ; :::; �

2
vm), where 0 < �2vj <1, for all j.

We are interested in e¤ects of two types of shocks on the aggregate variable �ywt = w0yt, namely

the composite macro shock, de�ned by �v�
t = w0�vt = �
 0wvt, and the aggregated idiosyncratic

shock de�ned by �"wt = w0"t. We shall also consider the combined aggregate shock de�ned by

��wt = w
0�vt +w

0"t = �

0
wvt + �"wt = �v�
t + �"wt;

and investigate the time pro�les of the e¤ects of these shocks on �yw;t+s, for s = 0; 1; ::::. The

combined aggregate shock, ��wt, can be identi�ed from the aggregate equation in �ywt, so long as an

AR(1) approximation for �ywt exists. Since by assumption "t and vt are distributed independently

then

V ar
�
��wt
�
= �
 0w�v�
w+w

0�"w = �2�v + �
2
�" = �2�� ;

where �2�v = �

0
w�v�
w is the variance of the composite macro shock, and �

2
�" = w

0�"w is the variance

of the aggregated idiosyncratic shock. Note that when ft is unobserved, the separate e¤ects of

composite macro shock, �v�
t, and aggregated idiosyncratic shock, �"wt, can only be identi�ed under

the disaggregated model, (17). Only the e¤ects of ��wt on �yw;t+h can be identi�ed if the aggregate

speci�cation is used.

Using the disaggregate model we obtain the following generalized impulse response functions
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(GIRFs)

g�" (s) = E (�yw;t+s j�"wt = ��"; It�1 )� E (�yw;t+s jIt�1 ) =
w0�s�"wp
w0�"w

; (18)

gvj (s) = E
�
�yw;t+s

��vjt = �vj ; It�1
�
� E (�yw;t+s jIt�1 ) =

w0Cs�vej;vq
e0j;v�vej;v

; (19)

for j = 1; 2; :::;m, where It is an information set consisting of all current and past available

information at time t,

Cs =

sX
j=0

�s�j�	j ; (20)

and ej;v is an m� 1 selection vector that selects the j-th element of vt. Hence

g�v (s) = E (�yw;t+s j�v�
t = ��v; It�1 )� E (�yw;t+s jIt�1 ) =
w0Cs�v�
wp
�
 0w�v�
w

: (21)

Finally,

g�� (s) = E
�
�yw;t+s

����wt = ���; It�1
�
� E (�yw;t+s jIt�1 )

=
w0Cs�v�
w+w

0�s�"wp
�
 0w�v�
w+w

0�"w
: (22)

Note that C0 = �, and we have g�� (0) =
p
�
 0w�v�
w+w

0�"w = ���, as to be expected.

When N is �nite, both, the combined aggregated idiosyncratic shock (�"wt) and the composite

macro shock (�v�
t) are important; and the impulse response of the combined aggregate shock on the

aggregate variable, given by (22), is a linear combination of g�" (s) and g�v (s), namely

g�� (s) = !�vg�v (s) + !�"g�" (s) , (23)

where !�" = ��"=���, !�v = ��v=���, and !
2
�" + !

2
�v = 1.

When N ! 1, it is not necessarily true that both shocks are important, and limN!1 �2�v=�
2
��
,

if it exists, could be any value on the unit interval, including one or zero. We investigate the case

when N !1 below. First, we consider the impulse responses of the aggregated idiosyncratic shock

on the aggregate variable in the next proposition.
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Proposition 1 Suppose that k�"k1 = O (N�"), for some constant 0 � �" < 1, E k�k is bounded

in N , where k�k = % (��0), and the aggregation weights satisfy kwk = O
�
N�1=2�. Then, for any

given s = 0; 1; 2; :::, we have

E jg�" (s)j = O
�
N (�"�1)=2

�
. (24)

For a proof see the Appendix.

The aggregated idiosyncratic shock and its corresponding impulse response function vanishes

as N !1 at the rate which depends on the degree of cross-sectional dependence of idiosyncratic

shocks. This rate could be very slow; and if the condition kwk = O
�
N�1=2� is not satis�ed, then

the rate of convergence would depend also on the degree of granularity of the weights, wi. The

composite macro shock and its corresponding impulse-response function, on the other hand, does

not necessarily vanish as N !1, depending on the factor loadings. For the ease of exposition, we

focus on the following model for factor loadings:


i = {i, for i = 1; 2; :::; [N�
 ] ,


i = 0, for i = [N�
 ] + 1; :::; N ,

where {i � IID (�{;�{), [N
�
 ] denotes the integer part of N�
 , constant �
 is the exponent of

cross-sectional dependence of yit due to factors, see Bailey, Kapetanios, and Pesaran (2012), and

0 < �
 � 1. Note that the aggregated factor loadings satisfy plimN!1N1��
�
w= �{, and the

variance of the composite macro shock, �2�v = �

0
w�v�
w, satis�es

plim
N!1

N2(1��
)�2�v = �
0
{�v�{. (25)

The variance of the aggregated idiosyncratic shock, on the other hand, is bounded by

�2�" = w
0�"w � O

�
N�"�1� . (26)

It follows from (25)-(26) that only when �
 > (�" + 1) =2 and �{ 6= 0, the variance of the composite

macro shock dominates, in which case plimN!1 �2�v=�
2
��
= 1, and the combined aggregate shock,

��wt = �v�
t + �"wt converges in quadratic mean to the composite macro shock as N ! 1. It is then
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possible to scale g�� (s) by �
�1
�v , and for any given s = 0; 1; 2; :::, we can obtain

plim
N!1

�
��1�v g�� (s)

�
= plim
N!1

�
��1�v g�v (s)

�
.

When �
 � (�" + 1) =2 and/or �{ = 0, the macro shocks do not necessarily dominate the aggre-

gated idiosyncratic shock (as N !1), and the latter shock can be as important as macro shocks,

or even dominate the macro shocks as N !1.

5 A Monte Carlo Investigation

We consider a �rst-order VAR model with a single unobserved factor to examine the response of

�yt = N�1PN
i=1 yit, to the combined aggregate shock, ��t = �
vt + �"t, where �
 = N�1PN

i=1 
i and

�"t = N�1PN
i=1 "it. As before, we decompose the e¤ects into the contribution due to a macro shock,

vt, and the aggregated idiosyncratic shock, �"t. Using (23), we have

gd�� (s) = md
v (s) +m

d
�" (s) , (27)

where md
v (s) = !vg

d
v (s) ; and m

d
�" (s) = !�"g

d
�" (s) are the respective contributions of the macro and

aggregated idiosyncratic shocks, and the weights !v and !�" are de�ned below (23).

Aggregation weights are set equal to N�1 in all simulations. The subscript d is introduced to

highlight the fact that these impulse responses are based on the disaggregate model. We know from

the theoretical results that in cases where the optimal aggregate function exists, the common factor

is strong (i.e. �
 = 1), and the idiosyncratic shocks are weakly correlated (i.e. �" = 0), then gd�� (s)

converges to gdv (s) as N !1, for all s. But it would be of interest to investigate the contributions

of macro and aggregated idiosyncratic shocks to the aggregate impulse response functions, when

N is �nite, as well as when �
 takes intermediate values between 0 and 1.

We also use the Monte Carlo experiments to investigate persistence properties of the aggregate

variable. The degree and sources of persistence in macro variables, such as consumer price in�ation,

output and real exchange rates, have been of considerable interest in economics. We know from

the theoretical results that there are two key components a¤ecting the persistence of the aggregate
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variables: distribution of the eigenvalues of lagged micro coe¢ cients matrix, �, which we refer to

as dynamic heterogeneity, and the persistence of common factor itself, which we refer to as the

factor persistence. Our aim is to investigate how these two sources of persistence combine and get

ampli�ed in the process of aggregation.

Finally, a related issue of practical signi�cance is the e¤ects of estimation uncertainty on the

above comparisons. To this end, we estimate disaggregated models using observations on individual

micro units, yit, as well as an aggregate model that only make use of the aggregate observations,

�yt. We denote the estimated impulse responses of the combined aggregate shock on the aggregate

variable by ĝd�� (s) when based on the disaggregate model, and by ĝ
a
��
(s) when based on an aggregate

autoregressive model �tted to �yt. It is important to recall that the e¤ects of macro and aggregated

idiosyncratic shocks cannot be identi�ed from the aggregate model.

The remainder of this section is organized as follows. The next subsection outlines the Monte

Carlo design. Subsection 5.2 describes the estimation of gd�� (s) using aggregate and disaggregate

data, and the last subsection discusses the main �ndings.

5.1 Monte Carlo design

To allow for neighborhood e¤ects as well as an unobserved common factor we used the following

data generating process (DGP)

yit = �iyi;t�1 + 
ift + "it, for i = 1, (28)

and

yit = diyi�1;t�1 + �iyi;t�1 + 
ift + "it, for i = 2; 3; :::; N , (29)

where each unit, except the �rst, has one left neighbor (yi�1;t�1). The micro model given by

(28)-(29) can be written conveniently in vector notations as

yt = �yt�1 + 
ft + "t, (30)
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where yt = (y1t; y2t; :::; yNt)
0, 
 = (
1; 
2; :::; 
N )

0, "t = ("1t; "2t; :::; "Nt)
0, and

� =

0BBBBBBBBBB@

�1 0 0 � � � 0

d2 �2 0 � � � 0

0 d3 �3 0

...
. . . . . .

0 0 dN �N

1CCCCCCCCCCA
.

The autoregressive micro coe¢ cients, �i, are generated as �i � IIDU (0; �max), for i = 1; 2; :::; N ,

with �max = 0:9 or 1. Recall �yt will exhibit long memory features when �max = 1, but not when

�max = 0:9. The neighborhood coe¢ cients, di, are generated as IIDU (0; 1� �i), for i = 2; 3; :::; N ,

to ensure bounded variances as N ! 1. Speci�cally, k�k1 � maxi fj�ij+ jdijg < 1, see Chudik

and Pesaran (2011).

The idiosyncratic errors, "t, are generated according to the following spatial autoregressive

process,

"t = �S"t + &t, 0 < � < 1,

where &t = (&1t; &2t; :::; &Nt)
0, &t � IIDN

�
0; �2& IN

�
, and the N � N dimensional spatial weights

matrix S is given by

S =

0BBBBBBBBBBBBBB@

0 1 0 0 � � � 0

1
2 0 1

2 0 � � � 0

0 1
2 0 1

2 0

...
. . . . . . . . .

0 1
2 0 1

2

0 0 � � � 0 1 0

1CCCCCCCCCCCCCCA
.

To ensure that the idiosyncratic errors are weakly correlated, the spatial autoregressive parameter,

�, must lie in the range [0; 1). We set � = 0:4. The variance �2& is set equal to N=(�
0
NRR

0�N ),

where �N = (1; 1; :::; 1)
0 and R = (IN � �S)�1, so that V ar (�"t) = N�1.
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The common factor, ft, is generated as

ft =  ft�1 + vt, vt � IIDN
�
0; 1�  2

�
, j j < 1,

for t = �49;�48; :::; 1; 2; :::; T , with f�50 = 0. We consider three values for  = 0; 0:5 and 0:8. By

construction, V ar (ft) = 1.

Finally, the factor loadings are generated as


i = {i, for i = 1; 2; :::; [N�
 ] ,


i = 0, for i = [N�
 ] + 1; [N�
 ] + 2; :::; N ,

where [N�
 ] denotes the integer part of N�
 , 0 < �
 � 1 is the exponent of cross-sectional

dependence of yit due to the common factor, see Bailey, Kapetanios, and Pesaran (2012), and

{i � IIDN
�
1; 0:52

�
. The unobserved common factor therefore a¤ects a fraction [N�
 ] =N of the

units, with this fraction tending to zero if �
 < 1. It is easily seen that �
 = N�1PN
i=1 
i = O (N�
 ).

We consider four values for �
 2 f0:25; 0:5; 0:75; 1g, representing di¤erent degrees of cross-sectional

dependence due to the common factor. Note that for �
 = 1, we have p limN!1 �
 = 1, whereas

p limN!1 �
 = 0 for �
 < 1. Note also that limN!1NV ar (�
ft) = 1 for �
 = 0:5, in which case we

would expect the macro shock and the aggregated idiosyncratic shock to be of equal importance

for gd�� (s).

5.2 Estimation of g�� (s) using aggregate and disaggregate data

The estimate of g�� (s) based on the aggregate data, which we denote by ĝ
a
��
(s), is straightforward to

compute and can be based on the following autoregression, (intercepts are included in all regressions

below but not shown)

�yt =

paX
`=1

�`�yt�` + �at.

To estimate g�� (s) using disaggregated data is much more complicated and requires estimates
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of the micro coe¢ cients. In terms of the micro parameters, using ( 22), we have

gd�� (s) = E
�
�yw;t+s

����wt = ���; It�1
�
� E (�yw;t+s jIt�1 )

=

sX
`=0

�`
�
E
�
ut+s�`

����wt = ���; It�1
�
� E (ut+s�` jIt�1 )

�
. (31)

Following Chudik and Pesaran (2011), we �rst estimate the nonzero elements of �, namely �i and

di, using the cross-sectional augmented least squares regressions,

yit = �iyi;t�1 + diyi�1;t�1 + hi (L; phi) �yt + �it, for i = 2; 3; :::; N , (32)

where hi (L; pi) =
Pphi
`=0 hi`L

`, and phi is the lag order. The equation for the �rst micro unit is the

same except that it does not feature any neighborhood e¤ects.10 These estimates are denoted by

�̂i and d̂i, and an estimate of uit is computed as

ûit = yit � �̂iyi;t�1, for i = 1, and (33)

ûit = yit � �̂iyi;t�1 � d̂iyi�1;t�1, for i = 2; 3; :::; N . (34)

To obtain an estimate of �it = 
ivt + "it, we �t the following conditional models

buit = rib�ut + �it, for i = 1; 2; :::; N , (35)

where b�ut = N�1PN
i=1 ûit; and the following marginal model,

b�ut =  �ub�ut�1 + #t. (36)

An estimate of �it is computed as �̂it = buit � r̂i ̂�ub�ut�1, for i = 1; 2; :::; N , where r̂i and  ̂�u are the
estimates of ri and  �u, respectively. When �
 = 1,  ̂�u is a consistent estimator (as N;T

j!1) of

the autoregressive parameter  that characterizes the persistence of the factor, r̂i is a consistent

estimator of the scaled factor loading, 
i=�
, and the regression residuals from (36), denoted by #̂t,

10Chudik and Pesaran (2011) show that if k�k1 < 1, these augmented least squares estimates of the micro lagged

coe¢ cients are consistent and asymptotically normal when �
 = 1 (as N;T
j!1), and also when there is no factor,

i.e. 
 = 0.
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are consistent estimates of the macro shock, vt. But, when 
 = 0, �ut = N�1PN
i=1 uit is serially

uncorrelated and  ̂�u
p! 0 as N;T

j!1.

To compute the remaining terms in (31), we note that for s = ` = 0, E
�
ut
����wt = �̂��; It�1

�
�

E (ut jIt�1 ) = E
�
�t
����wt = �̂��; It�1

�
can be consistently estimated by �̂�w=�̂��, where �̂�� =

�
w0�̂�w

�1=2
;

�̂� = T�1
PT
t=ph+1

�̂t�̂
0
t, �̂t =

�
�̂1t; �̂2t; :::; �̂Nt

�0
, and ph = maxi phi. Similarly, for s � ` > 0,

E
�
ut+s�`

����wt = �̂��; It�1
�
�E (ut+s�` jIt�1 ) can be consistently estimated by  ̂

s�`
u �̂2#r̂=

�
w0�̂�w

�1=2
,

where r̂ = (r̂1; r̂2; :::; r̂N )
0, and �̂2# = T�1

PT
t=ph+1

#̂
2

t . All lag orders are selected by AIC with the

maximum lag order set to [T 1=2].

5.3 Monte Carlo Results

Figure 1 plots the relative contributions of macro and aggregated idiosyncratic shocks to the GIRF

of the aggregate variable for the sample of N = 200 micro units. See (27). There are four panels,

corresponding to di¤erent choices of cross-sectional exponents, �
 ; with the plots on the left of each

panel relating to �max = 0:9 and the ones on the right to �max = 1. As expected, when �
 = 0:25

the macro shock is not �strong enough�and the aggregated idiosyncratic shock dominates. When

�
 = 0:5 (Panel B), the macro shock is equally important as the aggregated idiosyncratic shock.

As �
 is increased to 0:75 (Panel C), the aggregated idiosyncratic shock starts to play only a

minor role; and when �
 = 1 (Panel D), the macro shock completely dominates the aggregate

relationship. Similar results are obtained for N as small as 25 (not reported). Whether the support

of the distribution of the eigenvalues �i covers unity or not does not seem to make any di¤erence

to the relative importance of the macro shock. Table 1 reports the weights !v and !�" for di¤erent

values of N , and complements what can be seen from the plots in Figure 1. Note that these weights

do not depend on the choice of �max and by constructions !2v + !
2
�" = 1. We see in Table 1 that for

�
 = 1, !v is very close to unity for all values of N considered, and gd�� (s) is mainly explained by

the macro shock, regardless of the shape of the impulse response functions.

Next we examine how dynamic heterogeneity and factor persistence a¤ect the persistence of

the aggregate variable. Figure 2 plots the GIRF of the combined aggregate shock on the aggregate

variable, gd�" (s), for N = 200 and di¤erent values of �max and  , that control the dynamic hetero-

geneity and the persistence of the factor, respectively. Similarly to Figure 1, the plot on the left
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relates to �max = 0:9 and the one on the right to �max = 1. It is interesting that gd�� (s) looks very

di¤erent when we allow for serial correlation in the common factor. Even for a moderate value of  ,

say 0:5, the factor contributes signi�cantly to the overall persistence of the aggregate. In contrast,

the e¤ects of long memory on persistence (comparing the plots on the left and the right of the

panels in Figure 2), are rather modest. Common factor persistence tends to become accentuated

by the individual-speci�c dynamics.

Finally, we consider the estimates of g�� (s) based on the disaggregate and the aggregate models,

namely ĝd�� (s) and ĝ
a
��
(s). Table 2 reports the root mean square error (RMSE�100) of these estimates

averaged over horizons s = 0 to 12 and s = 13 to 24, for the parameter values �
 = 0:5, 1, and

 = 0:5, using 2000 Monte Carlo replications.11 The estimator based on the disaggregate model,

ĝd�� (s), performs about 50 � 200% better than its counterpart based on the aggregate model. The

di¤erence between the two estimators is slightly smaller when �
 = 0:5. As to be expected, an

increase in the time dimension improves the precision of the estimates considerably. Also, ĝd�� (s)

improves with an increase in N , whereas the RMSE of ĝa�� (s) is little a¤ected by increasing N when

�
 = 1, but improves with N when �
 = 0:5.

11The bias statistics are not reported due to space constraint.
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Figure 1: Contribution of the macro and aggregated idiosyncratic shocks to GIRF of
one unit (1 s.e.) combined aggregate shock on the aggregate variable; N = 200.
Panel A. Experiments with �
 = 0:25.
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Panel B. Experiments with �
 = 0:5.
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Panel C. Experiments with �
 = 0:75.
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Panel D. Experiments with �
 = 1.
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Table 1: Weights !v and !�" in experiments with  = 0:5

�
 = 0:25 �
 = 0:5 �
 = 0:75 �
 = 1

N !v !�" !v !�" !v !�" !v !�"

25 0.33 0.93 0.63 0.76 0.88 0.47 0.97 0.23

50 0.24 0.96 0.63 0.76 0.90 0.42 0.99 0.16

100 0.25 0.96 0.64 0.76 0.93 0.35 0.99 0.12

200 0.18 0.98 0.64 0.76 0.95 0.30 1.00 0.08

Notes: Weights !v = �v=��� and !�" = ��"=��� do not depend on the parameter �max.

Figure 2: GIRFs of one unit combined aggregate shock on the aggregate variable,
g�� (s), for di¤erent persistence of common factor,  = 0; 0:5 and 0:8.
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Notes: The vertical axis shows units of the shock. N = 200 and �
 = 1.

Table 2: RMSE (�100) of estimating GIRF of one unit (1 s.e.) combined aggregate
shock on the aggregate variable, averaged over horizons s = 0 to 12 and s = 13 to 24.

Estimates averaged over Estimates averaged over
horizons from s = 0 to 12 horizons from s = 13 to 24

NnT 100 200 100 200
ĝa�� ĝd�� ĝa�� ĝd�� ĝa�� ĝd�� ĝa�� ĝd��

Experiments with �
 = 1

(a) �max = 0:9
50 20.18 12.81 13.50 8.70 10.39 4.38 8.22 3.20

100 20.00 12.41 13.49 8.32 10.76 3.89 8.39 2.76

200 20.45 12.39 13.61 8.30 10.27 3.61 8.17 2.62

(b) �max = 1
50 24.13 15.23 15.95 10.41 21.15 12.55 16.34 8.66

100 23.92 14.76 16.44 9.96 20.36 11.37 16.96 7.34

200 24.34 14.65 15.99 9.70 20.75 10.58 16.36 6.56

Experiments with �
 = 0:5

(c) �max = 0:9
50 3.24 2.21 2.31 1.57 1.87 0.96 1.48 0.72

100 2.24 1.50 1.62 1.06 1.24 0.59 1.02 0.45

200 1.55 0.99 1.11 0.72 0.88 0.36 0.69 0.28

(d) �max = 1
50 3.66 2.86 2.84 1.99 3.38 2.86 2.64 2.04

100 2.71 1.96 1.96 1.30 2.54 1.77 1.90 1.25

200 1.78 1.27 1.36 0.88 1.56 1.09 1.29 0.78

Notes: Experiments with  = 0:5.
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6 In�ation Persistence: Aggregation or Common Factor Persis-

tence

Persistence of aggregate in�ation and its sources have attracted a great deal of attention in the

literature. Prices at the micro level are known to be relatively �exible, whereas at the aggregate

level the overall rate of in�ation seems to be quite persistent. In a recent paper, using individual

category price series, Altissimo et al. (2009) conclude that "...the aggregation mechanism explains

a signi�cant amount of aggregate in�ation persistence." (p.231). In this section, we investigate the

robustness of this conclusion by estimating a factor augmented high dimensional VAR model in

disaggregate in�ation series, where the relative contributions of aggregation and common factor

persistence can be evaluated. We also consider the way the two sources of persistence interact and

get ampli�ed in the process. We use the same data set as the one used by Altissimo et al. (2009),

so that our respective conclusions can be compared more readily.12 We �nd that persistence due

to dynamic heterogeneity alone does not explain the persistence of the aggregate in�ation, rather

it is the combination of factor persistence and dynamic heterogeneity that is responsible for the

high persistence of aggregate in�ation as compared to the persistence of the underlying individual

in�ation series.

6.1 Data

The in�ation series for the i-th price category is computed as yit = 400 � [ln (qit)� ln (qi;t�1)], where

qit is the seasonally adjusted consumer price index of unit i at time t.13 Units are individual cate-

gories of the consumer price index (e.g. bread, wine, medical services,...) and the time dimension

is quarterly covering the period 1985Q1 to 2004Q2, altogether 78 observations per price category.

We have data on 85 categories in Germany, 145 in France and 168 in Italy. The aggregate in�ation

measure is computed as ywt =
PN
i=1wiyit, where N is the number of price categories and wi is

the weight of the ith category in the consumer price index. The empirical analysis is conducted

for each of the three countries separately. Country subscripts are, however, omitted to simplify

the notations. No micro regressors are included in the analysis, and all measures of persistence

12We are grateful to Altissimo et al. for providing us with their data set.
13Descriptive statistics of the individual price categories are provided in Altissimo et al. (2009, Table 2).
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reported below are therefore unconditional.

6.2 Micro model of consumer prices

Following Chudik and Pesaran (2011), we investigate the possibility that there are unobserved

factors or neighborhood e¤ects in the micro relations. Selecting neighboring units tends to be

subjective. Here we categorize individual units into a small sets of products that are close substitutes

and are generally close in terms of their characteristics. For example, spirits, wine and beer are

assumed to be �neighbors�. A complete list of �neighbors�for Germany is provided in Pesaran and

Chudik (2011). An alternative possibility would be to de�ne neighbors in terms of their proximity

as measured by �ows of transactions between di¤erent commodity categories using input-output

tables. But the misspeci�cations of neighboring units might not be that serious if the object of

the exercise is to estimate the persistence of shocks on the aggregates. With this in mind we

shall not pursue the input-output metric, although we acknowledge that it might be worth further

investigation.

Let Ci be the index set de�ning the neighbors of unit i, and consider the following local averages

y�it =
1

jCij
X
j2Ci

yjt = s
0
iyt; i = 1; 2; :::; N; (37)

where jCij is the number of neighbors of unit i, assumed to be small and �xed as N ! 1, si is

the corresponding N � 1 sparse weights vector with jCij nonzero elements. y�it represents the local

average of unit i. No unit is assumed to be dominant in the sense discussed by Chudik and Pesaran

(2012).14

We follow Pesaran (2006) and its extension to dynamic panels in Chudik and Pesaran (2011),

and model the e¤ects of unobserved common factors by means of cross-sectional averages, at the

national and sectoral levels. Accordingly, we use the economy wide average, �yt = N�1PN
j=1 yjt,

and the three sectoral averages

�ykt =
1

jQkj
X
j2Qk

yjt = w
0
kyt; for k 2 ff; g; sg; (38)

14We have also estimated high dimensional VAR models of consumer price categories with the consumer energy
category treated as a dominant unit, but found little empirical support for the dominance of consumer energy prices.
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where Qk for k = ff; g; sg de�nes the set of units belonging food and beverages sector (f), goods

sector (g), and services sector (s). jQkj is the number of units in sector k, and wk is the corre-

sponding vector of sectoral weights. This set up allows us to accommodate up to four common

factors.

The following regressions are estimated by least squares for the price category i belonging to

sector k, (intercepts are included but not shown)

yit =

pi�X
`=1

�ii`yi;t�`+

pidX
`=1

di`y
�
i;t�`+

pihX
`=0

hi`�yt�`+

pikX
`=0

hki`�yk;t�`+�it; for i 2 Qk and k 2 ff; g; sg. (39)

The same equations are also estimated for the energy price category, but without sectoral averages.

Impulse response function of the combined aggregate shock on the aggregate variable in a disaggre-

gate model is computed in the same way as in Section 5, with the exception that higher lag orders

for the lagged micro coe¢ cients are considered in (39) and we allow also for sectoral cross-sectional

averages in addition to the country cross-sectional averages. The lag orders for the individual price

equations are chosen by AIC with the maximum lag order set to 2 (to keep the number of unknown

parameters to be estimated at a reasonable level). In line with the theoretical derivations, a higher

maximum lag order is selected when estimating the aggregate in�ation equations. See Footnote 15

below.

6.2.1 Estimation results

Table 3 summarizes the statistical signi�cance of the various coe¢ cients in the price equations, (39),

for Germany, France and Italy. The parameters are grouped into own lagged e¤ects (�ii`), lagged

neighborhood e¤ects (di`), country e¤ects (hi`), and sectoral e¤ects (hki`, for k = f; g; s). All four

types of e¤ects are statistically important, although own lagged e¤ects, perhaps not surprisingly,

are more important statistically as compared to the other e¤ects. At the 5% signi�cance level, own

lagged e¤ects are signi�cant in 90 cases out of 112 in Germany, 111 cases out of 169 in France, and

158 out of 209 cases in Italy, representing 65%-80% share of all estimated own lagged e¤ects. Local

and cross-sectional averages are statistically signi�cant in about 12-25% of cases, which is above

the 5% nominal size of the tests. These results suggest that the micro relations that ignore common

factors and the neighborhood e¤ects are most likely misspeci�ed. Idiosyncratic shocks are likely to
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dominate the micro relations, which could explain the lower rejection rate for the cross-sectional

averages, compared to the own lagged coe¢ cients. The �t is relatively high in most cases. The

average R
2
is 56% in Germany, 48% in France, and 51% in Italy (median values are 61%, 52%, and

54%, respectively).

Table 3: Summary statistics for individual price relations for Germany, France and
Italy (equation (39))

No. of No. of signi�cant

estimated coef. coef. (at the 5% nominal level) Share

Results for Germany

Own lagged e¤ects 112 90 80.4%

Lagged neighborhood e¤ects 66 16 24.2%

Sectoral e¤ects 182 34 18.7%

Country e¤ects 190 33 17.4%

Results for France

Own lagged e¤ects 169 111 65.7%

Lagged neighborhood e¤ects 166 23 13.9%

Sectoral e¤ects 302 57 18.9%

Country e¤ects 314 38 12.1%

Results for Italy

Own lagged e¤ects 209 158 75.6%

Lagged neighborhood e¤ects 173 38 22.0%

Sectoral e¤ects 335 54 16.1%

Country e¤ects 345 73 21.2%

6.3 Sources of aggregate in�ation persistence

For each of the three countries, we compute and report in Figure 3 the GIRF of a unit combined

aggregate shock on the aggregate variable, using aggregate and disaggregate models, as explained in

Section 4. We also provide 90% bootstrap con�dence bounds together with the bootstrap means.15

These impulse responses are quite persistent. The estimates based on the disaggregate model show

a higher degree of persistence in the case of France and Italy.

15The aggregate model is assumed to follow the AR(p) process estimated using �yt. The lag order is chosen by AIC

in the case of Italy and France with the maximum lag order set to
h
T 1=2

i
: In the case of Germany, both AIC and

SBC chose p = 3, but the corresponding GIRFs were erratic and volatile. Therefore, we set the lag order to 2, to
generate a less erratic GIRF for Germany.
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Figure 3: GIRFs of one unit combined aggregate shock on the aggregate variable
Panel A. Point estimates, y-axis shows units of the shock.

Germany France Italy

Panel B. Bootstrap means and 90% con�dence bounds based on aggregate model; y-axis shows the estimated
size of the shock.

Germany France Italy

Panel C. Bootstrap means and 90% con�dence bounds based on disaggregate model; y-axis shows the

estimated size of the shock.

Germany France Italy

Using the estimates of micro lagged coe¢ cients in (39), for i = 1; 2; :::; N , we compute eigen-

values of the companion matrix corresponding to the VAR polynomial matrix �̂(L),

�̂(L) =

0BBBB@
�̂11(L) � � � 0

. . .

0 � � � �̂NN (L)

1CCCCA+
0BBBB@

d̂1(L)s
0
1

...

dN (L)s
0
N

1CCCCA ;
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where �̂ii(L) =
Ppi�
`=1 �ii`L

`�1, d̂i(L) =
Ppid
`=1 di`L

`�1, and �̂ii` and d̂i` denote estimates of �ii` and

di`, respectively. The modulus of the largest eigenvalue is 0.94 in Germany and Italy, and 0.89

in France, and do no cover unity. Hence, given the theory advanced in the paper, it is unlikely

that the dynamic heterogeneity alone could generate the degree of persistence observed in Figure

3. This conclusion is further investigated in Figure 4, which compares the estimates of GIRFs for

the combined aggregate shock on the aggregate variable with âs = w0Ĝs�N at horizons s = 6; 12

and 24, where the matrix Ĝsis de�ned by �̂�1(L) = Ĝ (L) =
P1
s=0 ĜsL

`. âs shows the e¤ects

of dynamic heterogeneity on the persistence of the aggregate variable, whereas the GIRFs of the

combined aggregate shock on the aggregate variable is determined by factor persistence as well

as dynamic heterogeneity. âs is found to die out much faster as compared to the e¤ects of the

combined aggregate shock in the case of all the three countries. Thus, dynamic heterogeneity alone

does not seem su¢ cient for explaining the observed persistence of the aggregate in�ation. In the

case of France and Italy, âs is close to zero for s � 6 months horizon.

Figure 4: GIRFs of one unit combined aggregate shocks on the aggregate variable
(light/blue color) and estimates of as (dark/red color); bootstrap means and 90%
con�dence bounds, s = 6; 12 and 24.
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Notes: The vertical axis shows units of the shock.

Altissimo et al. (2009) reach a similar conclusion in terms of the importance of common factor

for the behavior of the aggregate in�ation, albeit using a di¤erent set of techniques. They �nd one

unobserved common factor and estimate the following model in order to study the implications

of aggregation for the persistence of aggregate in�ation, yit =  i (L) vt + 'i (L) "it, where  i (L)

and 'i (L) are unit-speci�c polynomials, vt is a serially uncorrelated unobserved common factor
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innovation orthogonal to "it, and "it is IID
�
0; �2i

�
. Altissimo et al. (2009) �nd that the persistence

of aggregate in�ation originates from the unobserved common component,  i (L) vt; and that the

persistence of the aggregate idiosyncratic component,
PN
i=1wi'i (L) "it, is relatively small. The

latter �nding is in line with our results, which shows that âs = w0Ĝs�N seems to decline at a

geometric rate. Their analysis focuses on the roots of  i (L), but does not study whether one

could decompose  i (L) into the products 
i (L)� (L), in which case one could write  i (L) vt =


i (L)� (L) vt = 
i (L) ft where ft = � (L) vt could be viewed as a serially correlated unobserved

common factor. Thus, by assuming that the common factor is serially uncorrelated, they end

up attributing the observed persistence of in�ation to the aggregation process. Accordingly, they

�nd that the empirical distribution of the maximal autoregressive roots (the modulus of the roots

of  i (L)) peaks at one, which leads them to argue that the aggregate in�ation presents a long

memory behavior and that the aggregation mechanism explains a signi�cant part of aggregate

in�ation persistence.

Our exercise allows us to evaluate how the two sources of persistence - dynamic heterogeneity

and the unobserved common factor persistence - combine and get ampli�ed in the process. Figure

4 shows that the interaction of the persistence in common factors and dynamic heterogeneity of the

underlying processes is likely the key to understanding the slow response of the aggregate in�ation

to macro shocks. As pointed out by Granger (1987), a relatively benign common factor at the micro

level becomes pertinent by aggregation at the macro level, and therefore understanding where this

common factor comes from and why it is (or is not) persistent would be important for a proper

understanding of consumer price in�ation behavior.

7 Conclusion

In this paper we extend the literature on aggregation of linear dynamic models in a number of

directions. We derive conditions under which an optimal aggregate equation exists in the case

of large dynamic panels with individual speci�c regressors and common factors. We also derive

conditions under which aggregation errors are of second order importance in empirical analysis, and

show how these conditions are related to the long memory property of aggregate time series models

highlighted by Granger. We also consider the problem of identi�cation of some of the distributional
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features of micro parameters from aggregate relations, and derive impulse response functions for the

analysis of the e¤ects of the composite macro and aggregated idiosyncratic shocks on the aggregate

variable, allowing for weak cross-sectional dependence in the errors of the underlying dynamic panel

data model. Some of the theoretical �ndings are illustrated by a series of Monte Carlo simulations.

An empirical application investigating the sources of the persistence of aggregate in�ation is also

presented. It is shown that the observed persistence of aggregate in�ation could be due to a

combination of factor persistence and dynamic heterogeneity in the underlying micro model of

in�ation. It is hoped that the present paper initiates further research in the area of aggregation in

economics. There are clearly important links between aggregation and pooling of information in

dynamic heterogenous panels which are worthy of further investigations. The present paper should

be seen as a small step in this direction.
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A Mathematical Appendix

Proof of Proposition 1. Taking the absolute values of (18) and applying the matrix norm

inequality yields

jg�" (s)j � kwk k�sk




 �"wp
w0�"w





 , for s = 1; 2; :::,
and for every possible realization of the random elements in �. The matrix �" = V ar ("t) is

symmetric and positive de�nite and therefore there exists a matrix Z" such that �" = Z"Z
0
".

Therefore,16 



 �"wp
w0�"w





 =





Z" Z0"wp

w0Z"Z0"w






 � kZ"k kZ0"wkkZ0"wk
� kZ"k ,

and hence

jg�" (s)j � kwk k�sk kZ"k . (A.1)

Taking expectations of the both sides of (A.1), and noting that kwk and kZ"k are non-stochastic

we have

E jg�" (s)j � kwk kZ"kE k�sk :

But E k�sk � [E k�k]s, and since by assumption E k�k < K, then E k�sk is also bounded in N

and since by assumption kwk = O
�
N�1=2�, and kZ"k = k�"k1=2 � (k�"k1 k�"k1)1=4 = k�"k1=21 =

O
�
N�"=2

�
; then it follows that

E jg�" (s)j = O
�
N�"=2�1=2

�
;

as required.

16Note that
p
w0Z"Z0"w = kZ0"wk.

33



References

Altissimo, F., B. Mojon, and P. Za¤aroni (2009). Can aggregation explain the persistence of

in�ation? Journal of Monetary Economics 56, 231�241.

Bailey, N., G. Kapetanios, and M. H. Pesaran (2012). Exponents of cross-sectional dependence:

Estimation and inference. CESifo Working Paper No. 3722.

Chudik, A. and M. H. Pesaran (2011). In�nite dimensional VARs and factor models. Journal of

Econometrics 163, 4�22.

Chudik, A. and M. H. Pesaran (2012). Econometric analysis of high dimensional VARs featuring

a dominant unit. Forthcomming in Econometric Reviews.

Chudik, A., M. H. Pesaran, and E. Tosetti (2011). Weak and strong cross section dependence

and estimation of large panels. Econometrics Journal 14, C45�C90.

Forni, M. and M. Lippi (1997). Aggregation and the Microfoundations of Dynamic Macroeco-

nomics. Oxford University Press, Oxford.

Garderen, K. J., K. Lee, and M. H. Pesaran (2000). Cross-sectional aggregation of non-linear

models. Journal of Econometrics 95, 285�331.

Geweke, J. (1985). Macroeconometric modeling and the theory of the representative agent. The

American Economic Review 75, 206�210.

Giacomini, R. and C. W. J. Granger (2004). Aggregation of space-time processes. Journal of

Econometrics 118, 7�26.

Granger, C. W. J. (1980). Long memory relationships and the aggregation of dynamic models.

Journal of Econometrics 14, 227�238.

Granger, C. W. J. (1987). Implications of aggregation with common factors. Econometric The-

ory 3, 208�222.

Granger, C. W. J. (1990). Aggregation of time-series variables: A survey. In T. Barker and M. H.

Pesaran (Eds.), Disaggregation in Econometric Modelling, Chapter 2, pp. 17�34. Routlege,

London and New York.

34



Granger, C. W. J. (1993). Implications of seeing economic variables through an aggregation

window. Ricerche Economiche 47, 269�279.

Granger, C. W. J. and T.-H. Lee (1999). The e¤ect of aggregation on nonlinearity. Econometric

Reviews 18 (3), 259�269.

Granger, C. W. J. and M. J. Morris (1976). Time series modelling and interpretation. Journal

of the Royal Statistical Society A 139, 246�257.

Granger, C. W. J. and P. L. Siklos (1995). Systematic sampling, temporal aggregation, seasonal

adjustment, and cointegration: Theory and evidence. Journal of Econometrics 66, 357�369.

Grunfeld, Y. and Z. Griliches (1960). Is aggregation necessarily bad? Review of Economics and

Statistics 42, 1�13.

Hsiao, C., Y. Shen, and H. Fujiki (2005). Aggregate vs disaggregate data analysis - A paradox

in the estimation of a money demand function of Japan under the low interest rate policy.

Journal of Applied Econometrics 20, 579�601.

Imbs, J., H. Mumtaz, M. O. Ravn, and H. Rey (2005). PPP strikes back: Aggregation and the

real exchange rate. Quarterly Journal of Economics 120, 1�43.

Kelejian, H. H. (1980). Aggregation and disaggregation of non-linear equations. In J. Kmenta

and J. B. Ramsay (Eds.), Evaluation of econometric models. Academic Press, New York.

Lewbel, A. (1994). Aggregation and simple dynamics. American Economic Review 84, 905�918.

Lütkepohl, H. (1984). Linear transformation of vector ARMA processes. Journal of Economet-

rics 26, 283�293.

Lütkepohl, H. (1987). Forecasting aggregated vector ARMA processes. Springer, Berlin, Heidel-

berg.

Pesaran, M. H. (2003). Aggregation of linear dynamic models: An application to life-cycle con-

sumption models under habit formation. Economic Modelling 20, 383�415.

Pesaran, M. H. (2006). Estimation and inference in large heterogenous panels with multifactor

error structure. Econometrica 74, 967�1012.

35



Pesaran, M. H. and A. Chudik (2011). Aggregation in large dynamic panels. IZA Discussion

Paper No. 5478.

Pesaran, M. H., R. Pierse, and K. Lee (1994). Choice between disaggregate and aggregate speci-

�cations estimated by IV method. Journal of Business and Economic Statistics 12, 111�121.

Pesaran, M. H., R. G. Pierse, and M. S. Kumar (1989). Econometric analysis of aggregation in

the context of linear prediction models. Econometrica 57, 861�888.

Pesaran, M. H. and R. Smith (1995). Estimating long-run relationships from dynamic heteroge-

neous panels. Journal of Econometrics 68, 79�113.

Phillips, P. C. B. and H. R. Moon (1999). Linear regression limit theory for nonstationary panel

data. Econometrica 67, 1057�1112.

Robinson, P. M. (1978). Statistical inference for a random coe¢ cient autoregressive model. Scan-

dinavian Journal of Statistics 5, 163�168.

Rose, D. E. (1977). Forecasting aggregates of independent ARIMA processes. Journal of Econo-

metrics 5, 323�345.

Stoker, T. (1984). Completeness, distribution restrictions, and the form of aggregate functions.

Econometrica 52, 887�907.

Stoker, T. (1986). Simple tests of distributional e¤ects on macroeconomic equations. Journal of

Political Economy 94, 763�795.

Stoker, T. (1993). Empirical approaches to the problem of aggregation over individuals. Journal

of Economic Literature 31, 1827�1874.

Theil, H. (1954). Linear Aggregation of Economic Relations. North-Holland, Amsterdam.

Trapani, L. and G. Urga (2010). Micro versus macro cointegration in heterogeneous panels.

Journal of Econometrics 155, 1�18.

Za¤aroni, P. (2004). Contemporaneous aggregation of linear dynamic models in large economies.

Journal of Econometrics 120, 75�102.

36


