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This supplement provides proofs of the main theoretical results in Pesaran, Smith and Yagamata
(2012, PSY) for the case of models with linear trends, and models with intercepts and serially
correlated idiosyncratic errors. It also provides theoretical results for the cross sectionally
augmented Sargan-Bhargava statistics, gives the details of a number of different panel unit
root tests used in the empirical application, and provides comparative Monte Carlo results of
the proposed tests and other panel unit root tests. This supplement should be consulted in
conjunction with the paper.

S1 Proof of Theorem 2.1 in PSY in the Case of Models with
Linear Trends

Under the unit root null hypothesis we have
Zit = Zi0 + Aide + Tisype + sit, (1)

where sit = (Siyt,Sizt) s Siygt = Zi:l Eiysy Sizt = Zi:l €izs and spp = Zizl fs. For d; = (1,t), (recall that we
define dgp = 0 and Ad; = (0,1)’) and partitioning the (k + 1) x 2 matrix A; = (oo, ;1) conformably with d
from we have that

Zit = Zio + oo + ot +Tispe +s4, t = 1,2, .., T (82)

Averaging across i we obtain
Zy =70 + o + @it +Tspy +5,t=1,2,...,T. (S3)
Under the null hypothesis writing in matrix notation, we have
AZ; = Tral, + FT; + E;, (S4)
where E; = (i1, €42, ..., €ir), and €1 = (€iys, €lze )’ Similarly, we can write as
AZ = Tr&, + FTI' + E, (S5)

where Z = N1 Z}il Z, E=N"! ZvN:I E;, and etc. as in PSY. From and it follows, respectively,
that
Zi_1=TrZy +tr_1ai + Sy 1T +8; 1,
Zfl ITTZG—‘rtTflC_X,l +Sf’71f‘/+gfl, (SG)
where tr—1 = (0,1,...,7 — 1)". Recall thnder the null we have
Ay, = Trdi1 + AZ(SZ' + oivs, (87)
where
~ =/
Qi1 = Oyl — a1d;.
From it follows that ~
Yi,—1 = T1¥i0 + tr—1&i1 + Z_16; + 08,1, (S8)
where _
Bi0 = Yio — Zodi, Si—1 = (Siy,—1 — S—18i) /0.
Now consider the augmented regression for testing the panel unit root hypothesis, which in the linear trend case
is given by
Ayir = gio + gintT—1 + biyie—1 + CjZi—1 + hiAZy + €y (S9)



From and |i we have MAy, = Muv; and My, , = M$; 1, where M =1Ir — W (V_V'V_V)_1 W', with
A (AZ T, L1, tT— 1) Note that t7_1 in could be replaced by tr = tr—1 + 77 = (1,2, .,.,T) without
loss of generality, since Mty = 0 because W contalnb both 77 and tr_1. However, to be consistent with .
we use t7—1. Then the t-ratio of b; is given by

uil\_/l§i,,1

ti(N,T) = T . S10
( ) viM;v; 1/2 é"i,—ll\_/léi:—l 2 ( )
(T;2k75) T2

Theorem S1.1 Suppose the series z;t, fori=1,2,..,N,t=1,2,....,T, is generated under (5) according to (11)
and d; = (1,t). Then under Assumptions 1-5 in PSY and as N and T — oo, such that \/T/N — 0, t;(N,T)
given by (S10) has the same sequential (N — oo, T — 00) and joint [(N,T); — oo limit distribution, is free of
nuisance parameters, and is given by

1
[ W) - whay G mn,
CADF, = O1 1/27 (S11)
/ W ( )d'f’ - Gv21ﬂ7,2v)
0

where
) Wi (1) /W
s — /O[WV(r)]dWim P / W |

Wi(1) — /1 Wi(r)dr !

o rWi(r)dr

1 [/(1) W, (r)dr]’ 1/2
Gyo = /; W (r)dr /: [W;,(r)] Wy (r)] dr /(1) rWy (r)dr

rWy(r)'dr 1/3
0

Wi(r) is a scalar standard Brownian motion, and Wy(r) is m°-dimensional standard Brownian motion defined
on [0,1] corresponding to eiys and vy, respectively. Wi(r) and Wy (r) are mutually independent.

Proof. Let Wyy = (F,77,Sy¢,—1,t7—1) and =, = (E, 0r,S_1, OT), and note that W = (AZ,TT, Zfl,th)
can be written as

' aa 0 o
= = 0o 1 0 O
W' = Qan' W/, + 5, where Qaon = I, (S12)
Iz ? (2k+4) x (2m0+2) 0 2z I &
0O 0 o0 1
Expanding v;M§; _1/T gives
viM$§;, 1 vi§ 1 = — = ~1 (BaW'S; 4
T == - (v;WBz) (BgW’WBz) ) (S13)
where L
Ll 0 0
B = 0 o PR
(2k+4) X (2k+4) 0 0 T31/2
Using Lemma A.1 together with the results in Proposition 17.1 of Hamilton (1994; p.486) we have
é;,—1“1' zy,—lszy 1
T3/2 o2T3/? +0p VNT (514)

LG / Wi (r)dWi(r),
0



where W;(r) is a standard Brownian motion defined on [0,1], associated with €;,;. From (S12)) it follows that
BzW”Ui = BQQNQW}'Q'U + BQEIQUi, (815)

B2W’§L71 B2QN2W}2§L—1 + Bzélgéi,71

T B T T ’

B, W' WB,= B, QN2W}2Wf2 QB2
+B2QN2W}2§2 B2 +B2E,2Wf2 Q/1V2B2 +B2§,2§2B2 :

Using Lemma A.1, it is easily seen that, as (T, N) 2, 00 with VT/N — 0,

(N,T);

N,T); B._,sz, N, T T): _
¢ —>)J M ( )J 0 B2—42|—2B2 H)J 0, and BQQNQW}'QEQBz — 0. (816)

Bgélgvi 07 T

Under Assumptions 1-5 in PSY, following a similar derivation of Lemma A.1 in PSY, we have

trE 1 thS_4 1
T3/2 — Op (ﬁ)a 572 =0y ﬁ : (S17)

Define 1
ﬁlmo-‘—l 0 0
Cy = 0 7L, 0 ,
0 0 =7z
so that, using Lemma A.1 and the results in Proposition 17.1 and 18.1 of Hamilton (1994; p.486, p.547-8) such
as
1
?;ﬁ L As W { / W ( dr],T;gT A % J;;;}:T r Af/OTW (r)dr, % A %

as (T, N) 2, 00 with VT/N — 0 we have

/ / (N’T)J

BoQanWiovi = QenCoWivy =7 Qadiay, (518)

B Wl él _ CW/, SZ _
2Qv WS QUEWIS 1 (D) e, (S19)

T T
B2Qna W, W2QonyBo= QQNCQWfZWf2CZQ2N QszzQz, (520)
where
AW, (1) 0 I 0 1
= i P — f Vi . = m0 = mO e

Q2 = Elinolo Qa2n, Dizy ( A;2wi2v ) , Kiaf ( A,}Qﬂ_mv ) , Yo ( 0 A’}QszA}’Q ) s Ao 8

X Wi (1) /: Wi (r)dr
Wi = /[ (JAWr) g = /;[wvwwi(r)dr ,

/W /:rWi(r)dr
1 [/W r)dr] 1/2

1

Go = | [ Wi [ worwera [waar |,

1
rWy(r)'dr 1/3
0

A is defined by (3), Wy i(1) is defined such that 7-/2 Zthl Vi€iyt /0 SEiN Wy,i(1), with v; defined as in
Assumption 2, Wy (r) is an m°-dimensional standard Brownian motion associated with v; defined on [0,1], and



Wi(r) is defined as above. These two groups of Brownian motions (W (r), W;(r)) are independent of each other.
Collecting the results from (S15) to (S20)), as well as using Lemma A.2 (since Q2 has full column rank) we have

(N

1)
’ 1912sz (Q2Tf2Q2) QZ”wzf (521)
= 19;2f‘r;21’@i2f = w(inA;IZ (A;2Gv2A}§)_1 Af27ri2v = wiZVGv217ri2V'

(ViWB2) (B:W'WB,) ' (T7'B.W's; 1) =

Therefore, together with , and , as (T, N) L 00 with vT/N — 0 we have

&. . 1
% [ W)W ) - wia G, (522)
0

In a similar manner, noting that as (T, N) ER o0, with VT /N — 0

al & i
Si,—1Si,—-1  Siy,—1Siy,—1 L0 (
2 - 272 p
T o:T

s
(]L—Tg]/ Wf(r)dr,
0

V%) (S23)

and so we have that

8 M8, _1 (v, (1 _
%’1 ( :>)J / Wf (T)d'l" - W;QVGV;WiQV. (824)
0

Next, consider Ugl\_/Iiui/(T — Qk — 5). Note that M;wv; are the residuals from the regression of v; on W, =
(W7y171) but from equation vi,—1 has components (Z_1,7r,t7—-1,8,-1). As (Z_1,77,t7-1) C W,
but & _; is not contained in W, by regression theory M;v; = M}v,, where M} = I — H;, (I?I;ITIZ)71 H,, with
H, = (W §;,—1). Thus,

vMjv; Vi B (viH,B.) (B*I:IQP_L'B*)_I (B.Hjv;) ($25)
T-2k—5 T-2k—5 T-2k—5 '

where

B* = ( B2 (31 ) .

(2k+5) X (2k+5) o T
First note that using Lemma A.1 we have
viv; (N
T—-2k—5 (526)

We also have that

= S =
B.Hwi = ( sBiYZQ/)T )’B HHB. = ( stYz-vVBVﬁ} ?zfvlssj/l:/rz )

so then using , , and following the same line of analysis as for the results in , it can be seen
that (véIinB*) (B*IjI;I?IiB*)_1 (B*Ijlgui) in will tend to a function of standard Brownian motions as
(T,N) 2, oo with \/T/N — 0. Thus, dividing by T'— 2k — 5 makes the second term of asymptotically
negligible, and together with the results in and we have ;I\;Ik i iy therefore, as (T, N) % oo
with VT /N — 0,

UMU/(T ok —5) M (527)

Finally, from the results in , , and -, we have, as \f/N — 0,

/ -1
(N, T)J / W dW ( ) LQVGVZ Ti2v

1/2°
([ ey mtpy&iimay )
0

as required. Condition \/T/N — 0 is satisfied so long as T/N — ¢, where ¢ is a fixed finite non-zero positive
constant. For sequential asymptotics, with N — oo, first, we note that for a fixed T and as N — oo, Q =

plimy_, . Qn and by Lemma A.1, 1) continues to hold (replacing * SRGUE by ‘N’). Then, letting T' — oo

yields (528). =

(N, T) = (S28)



S2 Proof of Theorem 2.2 in PSY: The Case of Serially Corre-
lated Errors

The t-ratio for this case is given by (42) in PSY which can be written as

I e
vi;Mi18;¢ 1

t:(N,T) = T , (S29)
(“;Mz,l,pvi ) 1/2 (sw;:c,—lmilswicy—l ) 2
T—3k—6 T2

Where_’ui = [niy — (E —_9]::‘4:1)51‘]/0'1‘2, §¢<7_1 = (S¢§7_1 — 5715»;)/0'1‘", and 1\_/[1'1 = IT — Wil (V_VhV_V“)_
Wlth Wﬂ = (AYi,—l, AZ, AZ_l7 TT, Z_1). Deﬁne the matrices Wﬂf = (F-l”}’iy +C
= = (OT,E, E,l,OT,gfl), so that

1 xx7/
il

F,F_1,77,Ss_1) and

iy,—1s

1 0 0
Wél = QlNW(ilf + Ell, with Qiny = oT 0 s (830)
0 0 Qn

where Qu is defined by (A.2) in PSY. Expanding viM;18;c,—1/T gives

,-1\_/11‘ éz _ ,éz _ — — — — B V_V,- éz _
Ui } oot Y T< L (vjWiuBi) (BiIW},; Wi B1) ™' <%) 7 (S31)
where
B, :( ﬁ12k+4 0 )
(3k45) X (3k+5) 0 Ty )
Using Lemma A.1 together with the results in Proposition 17.1 of Hamilton (1994; p.486) we have
viSic, 1 (NT); 1 /1
. = Wi(r)dW;(r). (S32)
T 1-0/, "' !
From (S30) it follows that
B1Wiv; = BiQinWijv; + Bi1Ej v, (833)
BiW/ 8,1 BiQuivnWi,Sei 1 N B1E18:,-1
T o T T ’
BiW;W;1B: =B1QinW;;W,;;Q1yB:
+B1QlNW;fE1B1+B1E;WUQ&NB1+B1E/1E1B1.
Using Lemma A.1, as (T, N) 2, 00 with VT/N — 0,
_ NTY;  B1E.&: _1 (NT); _ N,T); _ N,T);
B, Ew; L g, D121t Wi g g omE g, 0 0 and B,Quy W BB, L 0. (534)

T
Define

Cl = ( ﬁ12m0+2 0 )
(3m0+2)x (3m0+2) 0 21,0 )’

so that, using Lemma A.1 in PSY and the results in Proposition 17.1 and 18.1 of Hamilton (1994; p.486, p.547-8),
as (T, N) % oo with VT /N — oo we have

B ! C_ C{ W/ RCIENE "y S35
1QiNWi ;v = QinCiWi v =" Qudiy, (S35)
B W/ éi, CW; éi, N,T);
QWi S QO Wit i g (30
T T
B / ) i _ ! ) r (N ) ’
1QinWi s Wi rQinBi= QnCiW3 ;Wi Ci1Qiy = QuYi1,Qa, (837)
where
o2
VigA Wi (1) +1/ == Wi(1) 0
Qi = plim Qun, ¥if1= AWy (1) s Kilp = ( jx‘l: ) :
N—oo Ava,i(l) 1—g > fitiv
A}wq;v

5



o2,
) y Milf = Efl’)’ly Im() Efl )
/Yiy }1 I'rn0
Ay and A% are defined by (3) and (A.12), respectively, Wy ;(1) is defined such that Tyt Vit /Tin S

Wy,i(1), with v, defined as in Assumption 2, W;(r) is a standard Brownian motion and Wy(r) is an m°-
dimensional standard Brownian motion defined on [0,1], wiv, ;v and Gy are defined by (A.12), and Xf, =

E(fif]_,). Collecting the results from (S33)) to (S37), as well as using Lemma A.2, (S32)) and (S31)) we have

Hif1 0210 41xm0+1

Tilf = ( O/ A;GVA?/

2mO+4+1xm041

viMi8ic,—1 1 ! o 1
In a similar manner, noting that as (T, N) 2, 00 with VT/N =0
' 1
Si¢,—18i¢,—1 (N,T); 1 / 9
—_r - W2(r\d
cffnT2 = 1—02/),"" (r)dr, (S39)
we have that
égg,_11\_/[¢1§¢g,_1 (N’T)j 1 ! 2 1 ’ */ * *7\ —1 1 *
T2 a0y /O Wi(r)dr — +— g TivA (AFGVAY) T A (S40)

For the term Ugl\_/Iﬂvi/(T — 3k — 6), following a similar reasoning as in the uncorrelated case we can write

Milvi = 1\_/1:1'07;, where 1\7[:1 = ITfﬁil (ﬁ;lﬁ“)_l 1?121 with ﬂil = (Wil,éig,—l)- Thus

viMjv, v _ (viH;1B.,) (Bis _§1ﬁilB/1*)71 (B1.Hj v) (S41)
T-3k-6 T-3k-—6 T—-3k—6 '
where
B1 0
By, = "),
(3k+6)><1(3k+6) ( o 7! )
Using Lemma A.1 in PSY, first note that
N,T),;
Vlw /(T — 3k — 6) 2 1. (S42)

Also, since

X7/
Blwil'Ui

B..Hv; = .
1« X11U4 ( s;g’_l'Ui/T

) ) BI*I?I;JII?I'LIBI* = ( BIW{“W“Bl Blw'/iléiC,—l/T ) )

§ic A WauBy/T 8 8¢, 1/T?

using , , and following a similar reasoning as for the results in , it can be seen that
(v;IinlB'l*) (Bl*ItIthI“B'l*)fl (Bl*ﬁglvi) in will tend to a function of standard Brownian motions as
(T, N) 7, 0 with VT/N — oco. Thus, dividing by 7' — 3k — 6 makes the second term of asymptotically
negligible, and together with the results in and we have % (N%T)j 1. Therefore, as (T, N) ENIN
with VT /N — oo,

VML /(T — 3k — 6) T2 1, (543)

Finally, from the results in l) l) l) and l) we have, as VT /N — 0,
1
e / Wilr)dwi(r) — i AY (A5G AY) ! Ay

t(N, T) R

1 — 73 (S44)
<7(1_1€)2 /O W2 (r)dr — ;15w Ay (A;GVA;/) ﬁA;ﬂ'iv)

1
/ Wl(T)sz (’l“) — w;VG;lﬂ'iv
_ 0

1 1/2
(/ W2(r)dr — ﬂva\Tlﬂiv)
0

as required, which is identical to the limit distribution obtained for # = 0. Condition \/T/N — 0 is satisfied so
long as T/N — 4, where 0 is a fixed finite non-zero positive constant. For sequential asymptotics, with N — oo
first, we note that for a fixed T" and as N — oo, Q = plimy_, . Qx and by Lemma A.1 in PSY, (534) continues

N, .
to hold (replacing (D by ‘ﬁﬂ). Then, letting 7' — oo yields l)




S3 The Limiting Distribution of the C'SB; Statistics
S3.1 The Case of Serially Uncorrelated Errors

Consider
Ayir = B;(Yit—1 — a;ydt—l) + aéyAdt + ’)’,/L-yft + €iyt, (S45)
where d; = (1, t)' and recall the expression for z;;,
zit = Zio + L'isgt + Aidt + siz. (S46)
In matrix notation, under the null hypothesis

Hyo : 3, =0 for all 4, (47)

we have
Ay = aj17T + F’}’iy + Eiy, (848)
where Ay1 = (Ay“, Ayig, ceey AyiT)/ , F = (f1, fg, ceny fT) /, Eiy = (5iy1, Eiy2y ony Ein)/, and
AZ = tr&) + FT' + E, (S49)

where AZ = (AZ1, AZo, ..., AET)' with Az; = N7! ZN Aziy, Az = (Ayit,Ax;t)'and E=N1 Zf\;l E;,
= 6717612, . EIT)/ with €;+ = (€iyt, Ei:)’- Substituting F = (AZ —Tra — }_']) T (f"f‘)71
Ay; = antr + AZS; + ov;,

by in (S48) yields
1

where &;1 = Qiy1 — 5(’161'7 4, = T (I_‘lf‘)_ Yiy> Vi = (Eiy — Eél)/az
The test of the panel unit root hypothesis using the Sargan-Bhargava statistic is based on the cross section
augmented regression

, which is obtained

Ayt = gio + C;AZ: + €5,

where the cross section augmented Sargan-Bhargava statistic is given by

CSBi(N,T)=T" = 1u”, (S50)

i

with @y = >3 &is, and 67 = 31 &4/ (T —k —2).

Theorem S3.1 Suppose the series zi, fori=1,2,...,N, t = 1,2,...,T, is generated under according to

546) and d; = (1,tr)’. Then under Assumptions 1-5 and as N and T — oo, such that VT /N — 0, the joint

[(N,T); — o0] limit distribution of CSB;(N,T) given by @, is free of nuisance parameters and is given by
1 1

1

CSB; :/ WZ(r)dr + g[Wi(l)]Q - 2Wi(1)/ rWi(r)dr (S51)

0

0

where Wi(r) is a scalar standard Brownian motion defined on [0,1], associated with &;y;.

Proof. In matrix notation

ﬁi = (ﬂ“,ﬁiz,...,ﬂiT),,
éi = (@il,éiz,...,éiT)l,
uzzHéi,
where
1 0 O 0
1 1 0 0
H: 1 1 )
.10
11 --- 1 1
AQ_A}’;MA;Yz
T T —k—-2



with M =1Ir — W (V_V'V_V) W, (AZ TT) Tt follows that

_2u ul _, &H'Hg;
CSB;(N,T)=T P =T Ay NAy, L
¢ (F==)

We also have that
€ = MAyi = O'iM’Ui,

so then e )
! .
CSBy(N, T) = MILHMU /T (S52)
viMuv;/ (T — k — 2)
Consider first the denominator of (S52)
v;Mwv; v B 1 viW WWN\' /W, ($53)
T—-k—2 T-k—-2 T—-k—-2\ T T VT )
Noting that v; = (g4 — Eéi)/ai and using Lemma A.1 of PSY we have that
viv; EiyEiy 1 1Y (V1)
Let Wy = (F,77) and & = (E,07) so that
X7/ ! =/ f al
(k2)x(mO41)
Using (S55), by Lemma A.1 and noting that Qx = O,(1) we have
- o (75) ror (%)
= +O0p | —= | +0p | =
v W ot A N
T - QN QN + O ﬁ + OP N
Thus, as (T, N) 2, 0o with VT /N — 0 we have
W', (N,T);
YN I qq, (857)
where W
o (AW
Q= pm @ o= (MY ).
since
Fle; ’ =
Wiew _ [ o | 2 ( AsW.i(l) ) AFALTR s S S ( Lo 0 ) ($58)
oiVT % Wi(1) T AL R 0 1)’

where A is defined by (3), Wy i(1) is defined such that 77/2 Zthl Vi€iyt/ 0 SEAN Wy (1), with v; defined as
in Assumption 2, Wy (r) is an m°-dimensional standard Brownian motion associated with v; defined on [0,1],
and W;(r) is defined as above. These two groups of Brownian motions (W (r), W;(r)) are independent of each
other. Collecting the above results, as well as using Lemma A.2 in PSY we have

viW\ (WW\" (W', W.1); N+ )
(\/T)( T ) (\/T) 9i;Q (QQ) " QYyy = Vi Vi

Dividing by T — k — 2 will make the second term of (S53)) asymptotically negligible and so it follows that

v;Mv; (N,T);
—

T—%_3 (S59)



Consider next the numerator of ((S52)). Noting that

HMu; _ Huy HW (V_V’W)+ W',
T T T
. H’Ui . HV_V W,V_V + V_V/’Ui
T T3/2 T VT '
we have
vgl\_/IH/Hl\_/IUi  viH'Huv; - viH HW (W'W T W,
T2 - T2 T T3/2 T VT
_v;V_V wWWwW\" WH Ho,;
JT T T3/2 T
+v§V_V WW\T WHHW (WW)\ " W,
VT T T3 T VT
= [ -—-2II+1I1I.

We look at terms I, II and I in turn.

! .
where siy = (Siy1, .-y Siy,7) With Siye
A.1 we have

H’Ui
T =

Consider I. Noting that we can write

Siy —S(SZ _ i

To; T

(S60)

(S61)

= 22:1 Eiys and S=N"! > oie1 S with S; = (s, y8;,1), using Lemma

;= viH'Hv; (s, — 8;8")(siy — S6)
N T2 o2T?
S.,Si 1 1
= UgT;J +OP(\/N)+OP(N)7 (862)
and as (T, N) 2, 00 it immediately follows that
S
JRRIEAS / W2 (r)dr,
0
sl s; T !
since ~4—3 = W2 (r)dr as T — oo.
@ 0
Now consider II. Firstly, using (S55) we can write
HW = Wy ;Qy +En, (S63)

where HW = (Z —TTZB,tT), Wy = (Sf,tT) with Sy = (Sfl,...,SfT)/, By = (g,OT). Together with
we have

WH Hv,  QnWy ;8  EyS

T3/2 T T5/2 T5/2 "
Using the expression for §; given by 1] and Lemma A.1 together with the result that 1:'TS/T5/2 = Op(Nfl/z)
which follows from a similar derivation of Lemma A.1, we have that

S’s
Wl §7, fSiy + O 1 El &
=\ G o | B ot ) o ) 5ot
i+ 00 () NT T
Noting that
Stsw 1, 4 / W] WG , S L / W) (S65)
O'iT2 f o v @ ) UiTE’/Q o @ )
. . . J
as T — oo, using Lemma A.1 together with the results in 1} we have, as (T, N) = oo
W'H' Hu; (N,7); 1 0
L= ¢, With kp =
T = Qk,p, with Ky / Wi (r)dr (S66)
0

9



Now, using (S56)), (S57) and (S66) and Lemma A.2 it follows that

VW (WW\" WH Hv, wD), ., N+
II = \/T( T ) T3/2 T =" 9;Q (QQ’) QK¢
1
— ﬁ;f,.w:Wi(l)/ rWi(r)dr. (567)
0

Finally consider ITI. Using (S63) we have

WHHW _ QvWy ;Wr s Qly N QvWY4 jEx N EyWu i Qy | EnEn

T3 T3 T3 T3 T
and by Lemma A.1
Wy En  S}S 1 EuEn 1
v - O R T Ol ) (568)

1 1
Noting that §,S;/T° = A, < / (W (r)] [Wv(r)}'dr> Ay, St /T L A, / P [Wo ()] dr and
0 0

trtr/T® — 1/3 as T — oo, we have

W,H fWH f Slfif Sjtr T 0 0
5 ) — E T3 —
T3 tgﬁf trtr - ( 0 1/3 ) (869)
T T

Using (S68) together with the results in (S69)) it follows that

XY TTVR )
WHHW I;SHW T qrq. (S70)

From (S56)), (S57) and (S70), together with Lemma A.2 we have

W (WW\ T WHEW (W) W,
= () TR () Y
T 9,Q (QQ)TQTQ (QQ) T QY,;
= B0, = () (571)

Substituting (S62)),(S67) and (S71) into (S60), together with (S59), we obtain

CSBy(N, T) L2 / W2y + LW - 2wi) / W)

as required. m
In the intercept only case, using a similar derivation as above it follows that

. 1
CSBi(N,T) 2L / W2(r)dr.
0

S3.2 The Case of Serially Correlated Errors

Consider
Ayit = B;(yit—1 — aiydi—1) + @iy Ady + i, £ + (0 (02), (S72)

with Oy = (Oéiyo,aiyl),7 d; = (Lt)/ and
Ciyt = 6i<iy,t-1+niyt7 |91| < 17 fOI" 1= 17 27 7N7 t= 1727 "'7T7 (873)

where n,,, is independently distributed across time, with zero mean and a finite positive variance, cr?n.
Under the null that 8, = 0, with 6; = 6 (S72]) reduces to

Using the lag operator we can write ¢;,,(0) = (1 — 6L)_177iyt so that

Ayir = (1= 0) ciys + 00y 1 + 75, (£ — 0F—1) + 1y (S75)
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In matrix notation
Ayi = (1 - 0) aipnTr + 0Ayi -1 + (F—0F _1)7v,, +n,,, (S76)

where Ay’i,*l = (Ayio’ Ayih "'7AyiT*1)l7 F*1: (foafla ""fol) ,7 nzy = (niy17niy27 "'777in)/ and

AZ = 1r&) + FI' + E, AZ_, = 77&) + F I + E_y, (877)
where E = N_l fo\il Ei, W_lth Ez = (C;y(0)7 E:ﬁz)/a Ezz = (silly Eix2y .-y €iz€)l7 and Czy (9) =
(Ciy1(9)7 Cip2(0), ey Cin(g))” AZ_y = (AZo,AZi,..,AZr_1), and similarly for E_;. Substituting

F = (AZ —Trd] — E) T (I_"f‘)_1 and F_;= (AZ% —Trd] — E71) T (f"f‘)_17 which are obtained by 1|
in (S76) yields _ B
Ayi = &TT + G’Ayi,_l -+ (AZ*@AZ_l)(sZ + oinvi, (378)

where & = (1 — 6) (qviy1 — &, 8;), 6; =T (f"f‘)flfyiy, and
Ui = [nzy - (E - 9]?4,1)62-}/0'“).

The test of the panel unit root hypothesis using the Sargan-Bhargava statistic is based on the cross section
augmented regression
Ayir = gio + biAyi—1 + c;AZ + hiAZ 1 + €,
where the cross section augmented Sargan-Bhargava statistic is given by
T .2
Uy
CSB;(N,T)=T"" 2 L (S79)

~2
@

with @y = 32 &is, and 67 = 31 &4/ (T —2(k+1) — 2).

Theorem S3.2 Suppose the series zi, fori=1,2,..., N, t = 1,2,...,T, is generated under according to
and dy = (1,t7)'. Then under Assumptions 1-5, as N and T — oo such that VT /N — 0, CSB;(N,T) in
has the same joint [(N,T); — oo] limit distribution given by obtained for 6 = 0.

Proof. We have that _
2 AyiMi Ay;

T okt 1) 2
with 1\_/,[“: Ir — V_Vil ( A ;1W¢1)+ A ;17 V_Vil = (Ayi,thZ,AthTT). Noting that
& =M Ay, = 0:M1v;,

we have _ _

o U;M“H’HMMUZ'/T2

 UMav/ (T —2(k+1)—-2)
F,F_i,77) and E; = (OT,]:],E,NOT)7 so that

CSB;i(N,T)

Define the matrices W15 = (¢

iy,—1»
10 7, i
~ = . oTr o O
Wi = Quv Wiy s + B}, with Qv = 00 T gi (S80)
0 0 O 1

Also,

viMav,  viv, 1 (’UQV_VH) <W§1Wi1>+ (ngvi)
VT T VT )
By Lemma A.1

|
o
s
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= (QinWiiy +E1) (WirQin +E1)

T
Wi Wi By
= Quv— Qv Qv ==
=W, E5
1Wiiy cn
W;1sz'1f , 1 1
= o. (L 0
Q: T Qin + p(m>+ p(N)
As
Czy 71Czy —1 Czy _F Czy JF_y C’H/ T
W;lfwilf T F'¢iy, 1 F'F F/l;_l F/,;:T
T - Fo1Ciy,m1 FL,F F_,F_; F_7p
T T T
TrCiy.o1 rF TrF_1 ThT
T T T ;
0'2v
e 0 0 0
= 0 Imo /fl 0 )
0 p Lo O
0 0 0o 1
Uinﬁ 0211'
Wiim iy ez Wi(1)
i1/ o T
# = F'T;:{i — Ava’i(l) ,
Oin oin VT AW, (1)
wi(1)
oinVT
we have &12 = T_2(kT+1)_2 vél\;{iw — 1as T and N — oo. Next, since
M H'U, _ HWLI (W;IWL1)+W;1U1
T B T T
= Hvi _ HW. (Wi Wi\ Who,
T T3/2 T \/T )
we have
UM HHEM v, oHHu,  olH HW. (WaWa ) Wi,
T2 T2 T T3/2 T T
_viWa (Wi Wi * W/, H Hu,
VT T T3/2 T

viWi (WL Wi W LWHHW,: (W)W, + Wiv;
VT T T3 T VT
= IT-2IT+1II.

We look at terms I, I] and I in turn. Consider I. Noting that we can write

Huv; _ Sip — (S - 0371) o; o éLl

T Tou, T’

(S81)

where S = N 7! Zf\;l S; with S; = (si1, ..., si,T)'7 using Lemma A.1 we have

viHHv;  [sig — (S—065_1)8:)'[sin — (S —05-1) 8]
T2 - o2 T2

in

I =

’
o Sinsi"l 1 1
- U?nTz +OP(\/N)+OP(T\/N)
T

/. 1
As T — oo, Zp%in / W2(r)dr and it follows that

o2 T2
in 0

. 1
JRRIEAS / W2 (r)dr.
0

12



Now consider II. Firstly, we can write
HW;1 = Wi1n QN + B,

where HWi1 = (yi,—1 —vi,-171,Z — 7120, Z-1—712"1,t7), Wiy = (sic,-1,S5,Ss,1,tr) and Eig =
(07,8,5-1,07). So then using (S81) we have

X7/ ! ! & =Y o
“H Huv; QNWilHJSil =1 S

T3/2 T T5/2 T5/2

Using the expression for §;1 given by (S81) and Lemma A.1 together with the results that t7-E/T3/% = 0,(N~1/?)
and t4-S/T°/? = O,(N~/?) which follovv from a similar derivation of Lemma A.1, we have that

S Ol )
N S'fs“ 1 = o
Wiissn _ | oomr PO Gmr) | Biaba 1y 1
5/2 - S _1s; 5/2 TP\ /e PN N2t
r c,f.'nTls/;7 + Op( /7]1\IT) T NT N2T
tls;
Fomsr + On(77)
Noting that (using proposition 17.3 of Hamilton (1994))
/ 1 ! 1
Si¢,—1 S'L'r] T Uzn stir] T tTSi’r] T
A W, i(r)dr i(r)d
omT? 9/ " owT? f/o[ (r)] Wi(r)dr PP —>/O7’W (r)dr

as T — oo, using Lemma A.1 together with the results in |b we have, as (T, N) ER oo, that

11H Huv; (v, T)J
T3/2 T

=" QK;y, with kiy =

Now, using (S56)), (S57) and (S66) and Lemma A.2 it follows that
viWi (Wi Wi W/ H Huv; (v, ) N+
VT ( T T3/2 T LfQ (QQ ) QK¢

1

= ﬁ;fﬂif :W¢(1)/ rWi(r)dr

0

1l =

Finally consider I1I. Using (S63) we have

Wi HHW,;,  QyWiig ;WinQy QvWig 1Ein  EgWanQyx  EinZin
T3 - T3 + T3 + T3 Tt o

and by Lemma A.1

W;1H’fé1H 1 EllHélH 1
—5—— = O ) 5 = On(7)-
T VT2N T NT

Noting that as T" — oo

s;%?g T (10_779)2/1 (Wi (r)]2dr, STSf = Af (/1 (W (r)] [Wv(r)]/dT) Aj,

0 0

Shsic v o ! Sstr T !

L T [ Wemwiean o B A [ e W)
ot

szl“gs/g =1 —9/ rWi(r)dr, tTtT S 1/3,
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we have

524,—15114,—1 541(,—151" 524,—1Sf,—1 s;ﬁ(,—ltT
: 3

s s s 8 she
A ) Si¢,—1 f f,—1 T
Wiin, ;Win,s _ L T3 £~3 L T3 93
T3 Sh_1sic,—1 8§ 1Sy S} _1Sp-1 Sp_gtr
T3 3 T3 T3
trsic, 1 Sy 7S¢, 1 trtr
T3 T3 T3 T3

0 0 O 0

T 0 0 O 0

=Y =
0 0 O 0
00 0 1/3

Using (S68) together with the results in (S69)) it follows that

W, HHW,; (N.1);
e =

From , and , together with Lemma A.2 we have
viWai <W§1Wi1)+ W, HHW (W§1W¢1)+ Wi
VT T T3 T JT
T 9,Q (QQ) T QTQ (QQ) T QY,;
= 9Ty = LW

Substituting (S62),(S67) and (S71)) into (S60)), together with (S59)), we obtain

QYQ"

111 =

CSBi(N,T) ‘2L /1 W2(r)dr + %[Wi(l)f —awi(1) /1 P Wi(r)dr
0 0

as required. m
In the intercept only case, using a similar derivation as above it follows that

S
CSBi(N,T) L / W2(r)dr.
0

S4 Panel Unit Root Test Statistics Considered in the Empirical
Application

S4.1 The P; Tests of Bai and Ng (2004)

The pooled test statistics proposed by Bai and Ng (2004) are based on PANIC residuals computed using the
following transformations of v,

y = { Ayit, for the case with an intercept
1t

o . . . 2
Ay — Ay,, for the case with an intercept and a linear trend (582)

where Ay, = 71 Zthl Avy;t. The principal components of %it are used to estimate F', denoted as F, which
is v/T times the m® (assumed number of factors) eigenvectors corresponding to the m® largest eigenvalues of
the T x T matrix AY AY’, where AY = (Ay,,Ay,, ..., Ay, ), with Ay, = (%“7%12,.,.,%”)’, Under the
normalisation ];"’];"/T = 1,0, the estimates of the factor loadings are given by ¥,, = f"ﬂi/T, which yield the
residuals &;y¢ = %it - '”y;yft. The PANIC residuals are then computed as

t
s=1

Theses PANIC residuals are then used to compute the ADF statistic based on the ADF(p) regressions in §iy¢
without deterministics for each cross section unit, 3.
The expressions for the P; test statistics depending on the panel’s deterministics is given by:

14



With an Intercept:

(—2 Zf\;l In(pv§) — 2N)
e = Jin ;

where pv§ is the p-values of the ADF statistic for the ADF(p) regressions in §;y: without deterministics
for each cross section unit. The p-values are obtained using the tables ‘adfnc.asc’ provided by Serena Ng.

With an Intercept and a Linear Trend:

(—22 X, m(pv7) - 2N)
e — /74N )
where pvj is the p-values of the ADF statistic for the ADF(p) regressions in 8;y; without deterministics
for each cross section unit. The p-values are obtained using the tables ‘lm1.asc’ provided by Serena Ng.

These statistics are asymptotically distributed as standard normal so that the null hypothesis is rejected at
the 5% level, for example, if P is larger than 1.645E|

The variants of P: that we consider make use of all the available variables, y;: and x;¢, when computing the
principal components. This version is more directly comparable to the test proposed in PSY which makes use
of the additional variables, x;;. The procedure is similar to that described above with the principal component
estimator of F now computcd usmg Az, = (Ay, ,Ax},), where Ax,, is constructed from Ax;; in a manner
similar to that specified by ) for Ay These Variants are denoted by Ps ..

S4.2 The PMSB and P, Tests of Bai and Ng (2010)

Bai and Ng (2010) propose the PMSB and P, tests, both of which are briefly described below. The former is
the panel version of the modified Sargan-Bhargava test, while the latter is the analog of the ¢; statistic of Moon
and Perron (2004) except that it is based on a different set of residuals and the method of ‘defactoring’ of the
data is different . The PMSB and P, tests are based on the so called PANIC residuals, which in the context of
the notation as set out in Section 2 of PSY, are obtained as follows.

As in Section transform Ay;; then obtain the PANIC residuals defined by . Following Moon and
Perron (2004), the long-run variances are estimated by means of the Andrews-Monahan (Andrews and Monahan,
1992) estimator using the quadratic spectral kernel and pre-whitening.

S4.2.1 P, Test

The P, test is then based on a pooled estimate of the autoregressive coefficient p in the following regression
Siyt = PSiy,t—1 + Eiyt- (S84)

where §y: is the PANIC residual defined by (S83). Let

N

N
o 120617 we = 1Zwe1a )‘ = Z =N"" wgz (885)
i=1 1

i=

where 6%, &2, and Xei = (&sz — &fi) /2, are the estimators of the variance, the long-run variance, and the
one-sided long-run variance of €;y¢, respectively.
The expression for the test statistic depending on the panel’s deterministics is given as follows:

With an Intercept:

INEN)

P, = \/NT(i)+ -1) N;ﬂg (ZZ = 1) a:J

o

where

ﬁ+ Zz 121& 251yt 157,yt_NT)\
Zz lzt 287021
'Bai and Ng (2010; p.1093) indicate that a two-tailed test is employed for the P§ and P tests. However,

right-tailed tests are appropriate for such pooled tests which are based on the p-values; see Choi (2001), for
example.
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With an Intercept and a Linear Trend:

a o

4 )

Py = VNT(* — 1) N1T< e

N T
> ) g
— y,t—1 6

1t=2

7

Q>

. ~213

where 0% = (wfl) , and
N T A N ~2

b Dim1 Dop—n Siyt—18iye Oc

3
- N T A2 a2t
Doim1 2i—a Siy,t—1 T e

Under the null hypothesis these statistics tend to a standard normal distribution as N, T — oo with N/T" — 0.
The null hypothesis is rejected if P, is smaller than -1.645 (at the 5% level).

S4.2.2 PMSB Test
The expressions for the PM SB statistic depending on the deterministics are as follows:

With an Intercept:

VN (N;"2 Zivzl Zthz §12yt - @?/2)
~d )

/3

PMSB =

With an Intercept and a Linear Trend:

\/N (N;Q Ziil Z?:z ‘§?’yt - @3/6)

NET ’

where 8;y is the PANIC residuals defined by (S83), &2 and &, are defined by (S85).

PMSB =

Under the null hypothesis the above statistics tend to a standard normal distribution as N,T" — co with
N/T — 0. The null hypothesis is rejected if PMSB is less than -1.645 (at the 5% level).

S4.3 The t; Test of Moon and Perron (2004) for the Case of an Intercept
Only
The t; test is defined similar to the P, statistic of Bai and Ng though it is based on defactored panel data,

obtained by projecting the panel data onto the space orthogonal to the (estimated) factor loadings.
Keeping in line with the notation in PSY consider the model

0
Yit = Qi + Yig,
0 0
Yit = PiYi,t—1 T Uit
/
it = Vi ft + iyt

Consider the residuals from a pooled regression of y;; on yit—1,

N T N T
€it = Yit — PYit—1 with p = Z Zyityit—l/ Z nytfl- (886)

=1 t=1 =1 t=1

Assuming that the second moment of a; is bounded, since the stochastic trend term 2 dominates a;, for the
purpose of estimating p the presence of a; can be ignored (see p.86 of Moon and Perron, 2004). Moon and
Perron propose to apply principal components to é;:, in order to extract the factors and their loadings, ,,. The
residuals é;; are then defactored by projecting them onto the space orthogonal to the estimated factor loadings.

Define a N x 1 residual vector & = (€1, éat, ..., ént)" and a N x N projection matrix Q5 = Iy —f?/(f?/'f'?)flf"y'
where 4 is a N x m® factor loading matrix 4 = (F1y> Vays - Tvy)'s 50 that

& = Qsé:. (S87)
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The t; test statistic is defined by

T

* ~% 1
tb = \/NT(ppool - 1) NT?2 Zet let

EES
oo

&)

where R
P Zt 1 €i_18 — NTA.
pool — thl etilet_l 5
N ~92 ~4 . .
and A, wg and ¢, are the estimators of the long-run variances defined by , but they are based on the
residuals &; defined by rather than the PANIC residuals. The null hypothesis is rejected if ¢3 is less than
-1.645 (at the 5% level).

S4.4 Constant Point Optimal (CPO) and Ploberger-Phillips (PP) Tests of
Moon, Perron and Phillips (2007; MPP)

Initially, in Sections and we introduce the CPO and PP tests in the simple case where the errors
are cross sectionally independent and serially uncorrelated. These tests are then extended to the case where the
errors follow a factor structure and are serially correlated in Sections [54:4.3] and [S4:4:4]

S4.4.1 CPO Test of MPP

Following the notations in PSY, the model considered is given by
ye=ad; +v%, t=0,1,...,7,i=1,2,.... N
where d; = (1,t)" and a; = (ao;, a1;)’
Yit = pilou—1 + Uit (S88)

Define a homogeneous local alternative p, = p,., which depends on the specification of the deterministics (as
defined below), such that p, =1 when ¢ =0 and p, — 1 as N or T tends to infinity, so that

yi = (Wio, yi1, - yir)’, TH1x1 (589)
! 0 0 0]
—pe 1
A= o . . 0 0
: —p, 1 0
0 0 —p. 1 ]

and Ao = Ac(p. =1). Ac and Ag are (T'+ 1) x (T + 1) matrices. Similarly define

c

a; = a; when p, = p, and a; = ag; when p, = 1.

The Case With an Intercept only Consider the homogeneous local alternative

=1 ¢
Pe = N1/2T'
Define
1

2 [Ac ()’i - TT+1aci)}l [Ac (Yi - TT+1aci)} 5

Mz

L (acia Cf?) =

SI\J

1

.
Il

Lo (GOi»U?) = p [Ao ( P — TT+1¢101:)]/ [Ao ('.Yz' - TT+1(10i)] 5
1

[\
W\H

3

where 7741 is a (T'+ 1) x 1 vector of ones. The derivative of L. (am, Z) with respect to ac; is given by

OL. aa,al N 1
Zre\Fen Ti) Zi

3 cTT+1 [Acyi - Ac’TT+1aci] )
Oaci o;

-

1=
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so that the first order condition for the i*" unit solves

1 R
= (AcTr11) [Acyi — AcTr4180] =0

1 ’ / N
= [(ACTTJrl) (Acyi) — (AcTr41) ACTT+1aci] =0.

It follows that )
Gei = [(ACTTH)/ AcTT+1] (A1) (Ay).

Noting that

Yio 1
Yi1 — PYio 1-p,
Ay = Yiz — PcYi1 AT = 1—-p, ’
YiT — PYi, T—1 1—-p,.
we have
T
(Ac"'TH)I (ACYz) = Yio + 1- PC Z yzt — Pcyitfl)
t=1
and
(AcTri1) AeTrpr =14+ T (1 — pc)2 .
Therefore
Qci = [(ACTT+1)/ ACTT+1] -t (ACTTJrl)/ (Acyi)
_ o+ (L= p) Xy (Wi = peyin-1).
1+ T (1-p,.)
Note that
Qoi = Yio, (S90a)
since under the null p, = 1. Therefore it is easily seen that
&gi = CATz =[Ao (yi — TT+1a01)} [Ao (yi — Tr+1604)] (S91)
thl(yit —Yi 15—1)2
= — : . S92
T (592)

The scaled feasible likelihood ratio test statistic is given by (c.f. the bottom of p.424 of MPP 2007)

1 L . 1
CPOy = Tz {72 [Le (aci,agi) — Lo (am,ag,-)] - 502} . (S93)

Note that ming L. (am 01) and ming Lo (a()z, al) at the bottom of p.424 of MPP 2007 are replaced by L. (am-7 &gi)
and Lo (aoz-,&gi), respectively.
It is shown that, under the null hypothesis, as N,T — oo with N/T — 0,

CPOy — N (0,1).

The null hypothesis is rejected if CPOs is smaller than -1.645 (at the 5% level). In the experiment in PSY, the
value of c is set to 1.

The Case With an Intercept and Trend Consider the homogeneous local alternative

pom1 O
¢ NY/AT

Define
D =(Tr11tr+1), try1 = (0,1,2, ..., T), (S94)
so that
N
(aci,0?) => - 0_2 —Dai)]' [Ac (yi — Dag)].
i=1 ?
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Lo (a0i7o—12) = Z

1

=1

[AO (vi DaOz)] [Ac (y: — Dagi)] .

Following the same line of derivation as in the intercept only case it follows that

and so the first order condition for the 7

and thus

But

SO

and

Therefore

with

(A.D) A.D = [ (

acz —

|

(A
[
yio
i
1
T

OL. acz, al
Oa;

i=1

1=

th

a;

Q=

unit solves

L (aDY (A (yi -

> [(AcD) (Acyi) —

1
72 (yl - DaCi)] )

Da.;)] =0,

(A.D) A.Da.| =0,

4. = [(A.D) A.D] " (A.D) (A.yi).

1 0 0 0
1 0
—p, 1 11
— 1 2
AD=1 ¢ 0 0
L 0 0 —p. 1]
1 0
1—p, 1
= 1- Pe 2- Pe
LETO-p)  (A-p) Sl p - 1)
L) S p -] S (- 1)

(ADY Acy; = |: yio + (1 — p,) Zle (yit — poYit—1) :| .

St = po(t —1)] (it — peyir—1)
D] (AD) (Acyi)
Zt L[t = Pc(t -1 —(L=p) Yty [t —p(t—1)]
(1=p) iy [t = p(t—1)] 1+T(1-p,)?

+(1-p.) Zt 1 Yit —
[t =pe(t = D] (yir —

clz
c2'L

i 1
pcylt 1 :| X —
peYit—1)

qdc

go = {Z[t—pca— 1)12} [1+T-p)]

t=1

(lpc)z{

T
t=1

[t—p.(t— 1)]} ;
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and

T
yio + (1 —p.) Z Yis — ngisl):|
s=1

heis = {Z [t —p.(t— 1)]2}

{1—pc > [t = po(t —1)] }{Z [s = pe(s = 1)] (yis — peyis— 1)}

T

heai = [L+T (1= p,)?] {Z [t = pc(t = 1)] (yie — pcyn—l)}

t=1

T
t:l
When p, = 1, noting that q.; =T

Bor = ( T_IZZzly(Z;it — Yir-1) ) - ( T (yzj;?—yio) ) (895)

which coincides with the first equation of Section 5.2 in MPP. To compute the feasible statistics, firstly o? is
replaced by

T
Yi0 + 1 — Pe Z Yis — pcyisl):| .
s=1

60i =T [Ao (yi — Dao;)]' [Ao (yi — Daoi)] - (596)
The scaled feasible likelihood ratio test statistic (c.f. p.427 of MPP 2007) is given by

1
CPOs = = {—2[Lc (&ci,65:) — Lo (80, 60:)] +w} (S97)
Nc N¢? N¢t
W= +w Wp2T 37775 +Wp4TT

with

t=1 t=1
T
1 t—1s—1 t—1 s—1
wpT = X D (T’ T)
t=1 s=1
T
21 t— 1
"7 (% ) 5
Note that mina L. (aci, Uq-,) and mina Lo (am7 (71) at the bottom of p.427 of MPP 2007 are replaced by L (éci, &37;)

and Lo (501,&31), respectively.
It is shown that, under the null hypothesis, as N,T — oo with N/T — 0,

CPOs — N (0,1).
The null hypothesis is rejected if CPOs is smaller than -1.645 (at the 5% level). In the experiment in PSY, the

value of ¢ is set to 1.

S4.4.2 Ploberger Phillips (PP) Test

This test is used in the case of a linear trend:

PP =+v45N

NT2

T
_ t t
wir T < T)’

t=1

where D, &¢; and 63; are defined as in equations (S94)), (S95) and (S96). It is shown that PP — N(0,1).
The null hypothesis is rejected if PP is smaller than -1.645 (at the 5% level).

— Daoy;) (y: — Dao;) /&(2” — UJlT:|
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S4.4.3 CPO and PP Tests Under an Error Factor Structure
When u; in (S88)) contains a factor structure, namely

m0

!
Uit = E Yeiyfer + €t = Vi bt + iye,
—1

we follow the procedure set out in Section 6.3 of MPP:

1. Compute §? = y; — TT+1(107 w1th an mtercept = y; — Dag; (with a trend), where y;, aos,
D and ao; are defined by , (IS 90a, and l . Define y; = (Q?I,Q?Q,.,.,@?T)/ and §7 1 =

(y107y117 7sz 1)
2. Following MPP, p is estimated by the pooled OLS estimator (see Moon et al., 2007; p.422-3):

(a) For the case of an intercept (p.425)

ok aok! o

—1
~ %/ N

L Yi,—-1¥i—1 Yi,—1Yi 3

Ppool = (Z 52 ) Z &2 7

i=1 v i=1 B

(b) For the case of a trend (p.432)

Yoy sy 75
~t _ T i,— i, — % .
Ppool = Z &2 Z 52 + T

i=1 @ i=1 ?

with 62 = 771 (Aoy?), (Aoy?)7 following the definitions of &gyiT and 6%7”« in Moon et al. (2007,
p.422 & 428), assuming no error serial correlation

3. Given the number of factors, m®, m® principal components and associated factor loadings are extracted

from d; = Q?t - p;rgozgzo,tfl; see "
4. Use the CPO tests (as well as the PP testb) on orthgonalised yl namely, on Y’'Qs, where

Y'=(y,,y2,-yn) and Qs = Iy — 3(7'7)"'4" where 7 is a N x m° factor loading matrix 5 =
(;?ly3;?2y7' 7rYNy) .

S4.4.4 CPO and PP Test Under Error Serial Correlation

In the case of error serial correlation, following Section 6.4 of MPP, the estimators of o2 above are replaced by
their long-run variance counterparts. Following Moon and Perron (2004), the long-run variances are estimated
based on the Andrews and Monahan (1992) method using the quadratic spectral kernel and pre-whitening. For
further details, see Moon and Perron (2004).

S5 Point Optimal Panel Unit Root Test with Serially Corre-
lated Errors of Moon, Perron and Phillips (2011)

For the generalised point optimal panel unit root test of Moon et al. (2011), denoted by 6—15_6 in PSY, first the
y;+ series of interest is defactored as described in , and the 6135 test is then applied to the defactored
data. The 5}\55 test is computed in the same way as the CPO test described in (S4.4.1) where the estimators
of o7 are replaced by their long-run variance counterparts, and in addition the centering of and (S97) is
adjusted to accommodate the second-order bias induced by the correlation between the error and lagged values
of the dependent variable as suggested by Moon et al. (2011).

2When there is error serial correlation, these variances are to be replaced by the long-run variance estimators;

see Section @

21



S6 Small Sample Performance: Monte Carlo Evidence

In what follows we investigate by means of Monte Carlo simulations the small sample properties of the CIPS
and C'SB tests defined in PSY, and compare their performance to the tests proposed in the literature described
above. Specifically, we consider the pooled test statistic P; of Bai and Ng (2004) based on the PANIC residuals,
a panel version of the modified Sargan-Bhargava test (denoted by PMSB) and a PANIC residual-based Moon
and Perron (2004) type test (denoted by Py), both of which are proposed by Bai and Ng (2010), the ¢; statistic
of Moon and Perron (2004) for the case of an intercept only the PP statistic which is a defactored version of
the optimal invariant test of Ploberger and Phillips (2002) for the case of an intercept and a linear trend, and the
CPO test, that is the defactored version of the common point optimal test of Moon, Perron and Phillips (2007).
The theory of the C'PO test is developed by Moon et al. for the serially uncorrleated case, but it is claimed (see
Section 6.4 in Moon et al. (2007, p. 436)), that replacing variances in their C PO statistic with long-run variances
should result in a test with a correct size under quite general short memory error autocorrelations. However, our
preliminary experiments suggested that this claim might not be valid. Upon communicating these results to the
authors, Moon, Perron and Phillips provided us with another modification of the C PO test that appropriately
allows for residual serial correlation (see Moon, Perron and Phillips, 2011). In addition to replacing the variance
of the errors by the long run variance, in this recent paper Moon et al. also adjust the centering of the statistic
to accommodate for the second-order bias induced by the correlation between the error and lagged values of the
dependent \E_r\ia/ble. In the Monte Carlo simulations reported below we only include the modified C PO test,
denoted by C'PO.

The P: test is defined in Section 2.4 of Bai and Ng (2004, p.1140), the t; test in Section 2.2.2 of Moon
and Perron (2004, p.91), the P, and PMSB tests in Section 3, p.1094, eq. (9) and Section 3.1, p.1095, eq.(11),
respectively of Bai and Ng (2010), the CPO and PP tests in Section 4.1, p.424; Section 5.1, p.427; and Section

5.3.1, p.429, eq. (20), respectively, in Moon et al. (2007), and the CPO test in Section 2.2, p.4; Section 2.3, p.5,

—

of Moon et al. (2011). In computing the CPO and C'PO test statistics we set the constant term (the ‘¢’ term in
Moon et al.) to unity. Also, following Moon and Perron (2004), the long-run variances for the PMSB, P, t;,

PP, CPO and CPO test statistics are estimated by means of the Andrews and Monahan (1992) method using
the quadratic spectral kernel and prewhitening. See Moon and Perron (2004) for further details.

The details of the computation of the critical values for the CIPS and CSB tests are set out in Section 4.2.
Both the CIPS and CSB tests reject the null when the value of the statistic is smaller than the relevant critical
value, at the chosen level of significance. We do not report size adjusted results, since such results are likely to
have limited value in empirical applications. See, for example, Horowitz and Savin (2000).

S6.1 Monte Carlo Design

In their Monte Carlo experiments Bai and Ng (2010, Section 5) set m® = 1 and do not allow for serial correlation
in the idiosyncratic errors. Here we consider a more general set up and allow for two factors (m® = 2), and
also consider experiments where the idiosyncratic errors are serially correlated. Following Bailey, Kapetanios and
Pesaran (2012) we generate one of the factors in the y;; equations as strong and the second factor as semi-strong.
Accordingly, the data generating process (DGP) for the {yi:} is given by

Yit = diyt + p;Yi—1 + 'Vq',y1f1t + 'Yz‘yzf% +eiyt, i =1,2,., N;t = —49,..,T, (S98)

with y;,—s0 = 0, where v,,, ~ iidU[0,2], for i = 1,2, ..., N;j ;5 ~ #dU[0,1] for i = 1,...,[N?], and ~,,, = 0 for
i=[N®]+1,[N®] +2,..., N (where [] denotes the integer part); fe; ~ i4dN(0,1) for £ = 1,2, giys ~ #idN(0,03)
with o7 ~ iidU[0.5,1.5]. The exponent of cross-sectional dependence of the first (strong) factor is 1, and for the
second (semi-strong) factor, it is set to 0.75, guided by the empirical results reported in Bailey et al. (2012). See,
also Chudik et al. (2011).

At the stage of implementing the tests, we assume that mmax = 2, and hence set kK = Mmax — 1 = 1. The
additional regressor, x;., is generated as

Axit = dwc + ’Yimlflt + Eixt, (899)

where
Ciwt = PizCict—1 + Wiat,, Wizt ~ AN (0,1 — P?z), (S100)

3The ¢ test of Moon and Perron (2004) is not included since they summarise the experimental results saying
“in almost all cases, the test based on the ¢; statistic has better size properties.” Similarly, the P, test of Bai
and Ng (2010) is not included.
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1=1,2,..., N;t = —49, ..., T, with €;5,—50 = 0, and p,, ~ 1dU[0.2,0.4]. The factor loadings in (S99) are generated

as v, ~ 1@dU[0,2], so that 1 .
BT = ( 1 5No ) ’ (S101)

and hence the rank condition is satisfied when N is finite, but fails when N — oco. In this way we also check the
robustness of the CIPS and C'SB tests to failure of the rank condition for sufficiently large .

We considered two specifications for the deterministics in y;+ and ;. For the case of an intercept only,
diyt = (1 — p;)auy with ayy ~ 9dN(1,1) and d;z = 0; for the case of an intercept and a linear trend, diy: =
Piy + (1 — p;)dit with p,, ~ 4dU[0.0,0.02] and §; ~ #idU[0.0,0.02], and dix = i with i ~ #4dU10.0,0.02].

To examine the impact of the residual serial correlation on the proposed tests we consider the DGP in which
the idiosyncratic errors €;,; are generated as

Eiyt = PiyeCivt—1 + (1 — pi,)"/*n,,, for t = —49,-48,..,0,1,..., T, (S102)

with €iy,—50 = 0, where n,,, ~ #idN (0, 02), and o7 ~ #dU[0.5,1.5]. We considered a positively serially correlated
case, p;,. ~ #dU[0.2,0.4], as well as a negatively serially correlated case, p;,. ~ iidU[-0.4,—0.2]. The first 50
observations are discarded.

The parameters ctiy,0ist;,, Oizy Piyes Vigi:Yiyz> Pi» Yiels Pigs a0d o are redrawn over each replication. The
DGP is given by with p; = p = 1 for size, and p; ~ :dU[0.90,0.99] for power. All tests are conducted at
the 5% significance level. All combinations of N,T = 20, 30, 50, 70, 100, 200 are considered, and all experiments
are based on 2,000 replications each.

In the case where the errors of y;: are serially correlated, lag augmentation is required for the asymptotic
validity of the CIPS and C'SB tests as well as the pooled tests of Bai and Ng (2004). For these tests, in the

Monte Carlo results that follow, lag augmentation is selected according to p = [4(T/100)1/4 ] (where [-] denotes

the integer part). For the other tests, the statistics are adjusted using a non-parametric estimator of the long run
variance. In our Monte Carlo results we use the long run variance of Andrews and Monahan (1992). Also note

that the asymptotic normality of the PMSB, P:, Py, t;, PP, CPO and 6—]\36 test statistics require N/T — 0 as
N and T go to infinity, while the asymptotic validity of the CIPS and C'SB tests only requires that \/T/N — 0,
which allows N and T to expand at the same rate.

S6.2 Results

Size and power of the tests are summarised in Tables S1 to S6. We do not report size adjusted results, since such
results are likely to have limited value in empirical applications. See, for example, Horowitz and Savin (2000).
Table S1 provides the results for the panel with an intercept only, and with serially uncorrelated idiosyncratic
errors. The size properties of the Pz, t7, and P, tests are very similar: they tend to over-reject the null moderately
across combinations of N and 7', with the extent of over-rejection rising as N increases. These 1Eil_ﬂ/ts are
consistent with those reported in Gengenbach, Palm and Urbain (2009) and Bai and Ng (2010). The CPO test,
has good size properties when T is larger than N, but these tests begin to show serious size distortions as N
increases relative to 7', which is in line with the condition N/T — 0 that underlies the theory of these tests. The
PMSB test of Bai and Ng (2010) tends to under-reject the null when 7" and N are small, which is in accordance
with the results reported in Bai and Ng (2010, Table 1). For example, when T' = N = 20, the estimated size is
0.65% at the 5% nominal level. In contrast, the CIPS and CSB tests have the correct size for all combinations
of sample sizes, even when T is small relative to V. In terms of power, the C'SB test has satisfactory power
which is almost consistently higher than that of CIPS, though most of the other tests do tend to display higher
power (which could partly be due to the over-sized nature of the other tests). An exception is the PMSB test
for small values of T and N, which exhibits lower power than the C'SB test.

The results for the case with a linear trend are summarised in Table S2. The tendency of the over-rejection
of P; for small T is more serious than for the case with an intercept only. For example, even when 7' = 200 and
N = 100, the size of P; is 8.4%. The size of the defactored version of the Ploberger and Phillips test, the PP test,
which is only considered for the case with an intercept and a linear trend, is close to the nominal level only when
T is much larger than N. The size distortion of the P, test is similar to tlﬁ/for the case of an intercept only case,
though somewhat less pronounced. The over-rejection tendency of the C'PO test is now even more pronounced
as compared to the intercept only case. The PMSB test is now even more under-sized. When T' = N = 20,
the size of the PMSB test is 0.20%, and even when N = T = 100, the size of the PMSB is 1.85% at the 5%
nominal level. Again, the CIPS and CSB tests have the correct size for all combinations of sample sizes and
their power rises in N and T, as to be expected. Power discrepancies between the CSB and CIPS tests are
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less pronounced in this case, with the former still showing higher power than the latter. The other tests have
higher power than these two tests, but given their size distortions a straightforward power comparison would be
problematic. The PMSB test continues to be an exception for smaller values of T', where now the power of this
test is almost negligible for T' = 20, and for 7" = 30 the power ranges from 0.85 to 2.75 across different values of
N. Even when T = 70, the C'SB test has greater power than the PMSB test, for small V.

Tables S3 and S4 present the results for the case where €;; are positively serially correlated for the intercept
only and linear trend cases, respectively. The results for the case where €;,: are negatively serially correlated
gg_iummarised in Tables S5 and S6. The effect of allowing for residual serial correlation on the P:, P,, PP and

CPO tests is to accentuate the tendency of these tests to over-reject the null. Positive serial correlation in ey

seems to be more problematic for the size of these tests as compared to negative serial correlation. The C PO
test has good size properties for values of T' > N, although it continues to show significant size distortions when
N > T. The PMSB test, in the case of positive serial correlation, shows some tendency to over-reject for small
T and large N. By contrast, the effect of negative serial correlation on the PMSB test is relatively minor, but
as in the serially uncorrelated case reported in Tables S1 and S2, the PM S B test tends to under-reject. The size
and power of the CIPS and CSB tests are not much affected by residual serial correlation once the underlying
regressions are augmented with lagged changes. As the results in Tables S1-S6 show, the CIPS and CSB tests
do not display any size distortions for all values of N and T, irrespective of whether the idiosyncratic errors are
serially correlated or not.

Overall, the CIPS and CSB tests perform well in most cases, always having the correct size. The evidence
on power is mixed, with no one test dominating, and the outcomes difficult to compare due to the size distortion
of some of the tests, and the fact that the power of the tests are differently affected by the number of factors and
the choice of factor loadings.
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Table S1: Size and Power of Alternative Panel Unit Root Tests with Two Factors,
Factors and Idiosyncratic Errors are Serially Uncorrelated, m® = 2 Known, With an Intercept Only

Size: p,=p=1 Power: p, ~ #1dU[0.90,0.99]
(T,N) 20 30 50 70 100 200 20 30 50 70 100 200
CIPS(p,k=1)
20 575 640 5.10 5.50 5.50 6.10 | 7.80 10.70 10.85 13.15 11.95 14.85
30 540 6.60 5.35 5.70 5.85 6.15 | 11.40 13.65 17.10 17.10 18.55 21.85
50 5.00 5.60 590 6.10 4.80 5.90 | 17.35 22.10 27.10 27.50 32.05 38.40
70 545 4.85 4.60 5.70 5.35 5.25 | 27.95 33.40 40.75 47.45 50.00 56.35
100 5.656 7.056 6.10 4.95 575 545 | 44.65 54.45 67.10 68.20 78.60 82.15
200 495 455 5.60 5.65 4.85 4.80 | 97.40 99.50 99.95 99.95 100.00 100.00
CSB(p,k=1)
20 6.35 6.10 5.60 4.95 580 6.10 | 14.25 15.80 18.50 2345 24.80 31.20
30 570 5.85 5.20 5.60 5.55 4.10 | 20.50 24.80 31.70 36.80 40.50 46.95
50 6.35 6.00 5.80 5.85 5.55 5.55 | 39.20 47.75 62.20 70.30 77.25 87.70
70 570 580 6.35 6.15 575 5.60 | 61.40 7540 89.55 94.30 98.00 99.50
100 455 520 595 6.10 540 6.60 | 79.05 89.65 97.95 98.70 99.60 99.95
200 6.50 4.75 6.15 5.15 6.20 5.85 | 94.85 97.80 99.45 99.90 99.95 100.00
P (p)
20 10.50 10.15 13.40 13.05 14.15 19.65| 23.45 28.05 35.60 42.30 53.40 74.60
30 940 840 9.05 835 7.45 11.00| 30.45 39.30 52.10 64.75 76.90 93.85
50 8.65 845 9.25 9.25 10.40 10.35| 59.10 70.60 88.30 94.35 97.50 99.50
70 6.65 7.55 7.85 7.90 8.05 865 | 77.00 89.60 97.50 98.70 99.75 100.00
100 720 7.10 6.95 6.20 6.10 6.70 | 90.80 97.70 99.65 99.90 99.95 100.00
200 7.25 6.60 6.75 5.85 5.75 6.50 | 99.80 100.00 100.00 100.00 100.00 100.00
PMSB
20 0.65 1.10 1.35 1.10 2.00 3.55 3.95 6.25 11.25 16.20 23.25 46.25
30 1.15 1.25 145 1.60 1.60 2.00 | 10.50 20.20 35.55 50.95 68.05 89.60
50 145 1.85 1.90 235 205 235 | 41.25 61.30 84.95 9230 96.60 98.90
70 1.85 240 2.55 240 225 1.85 | 68.05 85.25 96.25 98.00 99.25 99.75
100 2.10 3.10 3.50 2.60 3.10 2.65 | 88.20 97.40 99.25 99.85 99.90 100.00
200 3.06 290 3.15 3.80 3.60 2.85 | 99.50 99.95 100.00 100.00 100.00 100.00
Py
20 8.65 8.65 9.50 9.40 11.65 19.35| 28.95 35.45 51.60 63.00 76.30 93.20
30 735 770 7.55 8.10 8.60 12.70| 47.80 60.95 78.55 86.65 94.30 98.70
50 7.55 6.95 7.60 6.056 7.80 895 | 77.90 88.55 96.05 98.00 98.85 99.60
70 7.05 7.50 6.95 7.00 7.25 5.95 | 90.45 95.75 99.20 99.20 99.85 100.00
100 7.25 6.60 7.15 6.70 6.00 7.20 | 96.80 99.45 99.80 99.95 100.00 100.00
200 8.30 6.75 6.45 6.15 5.55 5.65 | 99.95 100.00 100.00 100.00 100.00 100.00
t*
2% 10.45 10.05 13.10 13.75 18.00 20.50 | 82.75 91.30 97.00 97.80 98.45 99.55
30 10.35 9.65 10.80 10.50 13.55 16.65| 93.25 96.55 99.05 99.05 99.80 99.75
50 7.65 9.05 795 795 9.95 11.35| 98.05 99.40 99.70 99.95 100.00 100.00
70 8.10 7.85 7.80 8.20 9.10 10.05| 99.30 99.80 99.90 99.90 100.00 100.00
100 795 750 7.0 7.35 7.85 7.70 | 99.90 100.00 100.00 100.00 100.00 100.00
200 8.20 6.65 6.55 7.05 6.25 6.85 |100.00 100.00 100.00 100.00 100.00 100.00
CPO
20 7.80 10.15 14.45 18.60 23.50 39.80| 32.50 46.45 65.00 75.30 83.95 94.35
30 7.85 810 11.65 13.60 16.65 26.95| 48.20 64.20 82.00 88.70 94.75 97.30
50 6.45 5.35 8.25 9.45 11.85 16.45| 74.65 87.30 95.75 97.65 99.05 99.15
70 6.10 6.20 7.85 855 10.35 13.05| 87.80 95.45 98.65 98.95 99.60 99.95
100 545 6.10 7.50 7.80 9.15 12.90| 95.95 99.15 99.75 99.90 99.85 100.00
200 590 5.25 6.70 6.40 7.20 10.75| 99.85 99.95 100.00 100.00 100.00 100.00

Notes: y;¢ is generated as vy = diyt + p;¥i,e—1 + ’Yiylflt + ’yiyzfgt + €iyt,t = 1,2,...,N;t = —49,48,...0,1, ..., T, with
Yi,—50 = 0, where v;,; ~ #dU[0,2], for i = 1,2,..,N; 7,9 ~ #dU[0,1] for ¢ = 1,...,[N®] and 7,0 = 0 for i =
[N®] + 1,[N®] 4+ 2,...,N (where [] denotes the integer part); fpz ~ #%dN(0,1) for £ = 1,2, g;ys ~ dN(0,02) with
0'12 ~ 1dU[0.5,1.5]; Azip = dig + Vi1 S1t + Eixt, where, dig = 0, €igt = pipEict—1 + Tizts, Wigt ~ 1WdN(0,1 — p?z),
i =1,2,..,N;t = —49,48,...0,1,...,T, with ;5,50 = 0, and p;, ~ dU[0.2,0.4]. The factor loadings in are
generated as 7v;,1 ~ @dU[0,2]; diyt = (1 — p;)ovy with iy ~ dN(1,1). The parameters iy, Piyes Yig1:Vig2r Pis Vil
Pix» and o; are redrawn over each replication. The first 50 observations are discarded. The CIPS(p) and CSB(p) tests
are the proposed panel unit root tests, defined by (28) and (34), respectively, based on cross section augmentation using
y;t and x;; with lag-augmentation order selected according to p = [4(T/100)1/4]. P;:(p) is the test of Bai and Ng (2004)
with lag-augmentation order p = [4(T/100)1/4] , and PMSB and P, are the pooled tests of Bai and Ng (2010), all of

which are based on two extracted factors from y;¢,. The t} test is the Moon and Perron (2004) test, and the 6’}6 is the
defactored point optimal test with serially correlated errors of Moon, Perron and Phillips (2011), based on two extracted

factors from y;:. The PMSB, Py, ty, CPO tests use the automatic lag-order selection for the estimation of the long-run
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variances following Andrews and Monahan (1992). All tests are conducted at the 5% significance level, and the CIPS(p)
and CSB(p) tests are based on the critical values for the corresponding p = [4(T/100)1/4] and the number of additional
regressors, k. All experiments are based on 2000 replications.
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Table S2: Size and Power of Alternative Panel Unit Root Tests with Two Factors,

Factors and Idiosyncratic Errors are Serially Uncorrelated, m® = 2 Known,
With an Intercept and a Linear Trend

Size: p, =p=1 Power: p, ~ i1dU[0.90,0.99]
(T,N) 20 30 50 70 100 200 20 30 50 70 100 200
CTPS(p,k =1)
20 6.45 520 6.30 6.30 545 550 | 7.25 6.55 7.85 7.85 5.80 8.05
30 530 540 590 6.80 5.85 545 | 6.85 815 9.00 1045 11.95 11.75
50 6.35 5.45 5.65 6.10 5.85 5.35 [10.00 10.40 13.00 14.00 17.90 20.75
70 5.55 550 5.60 5.20 4.65 4.65 |14.70 17.40 22.15 25.75 26.65 31.35
100 5.20 590 6.30 5.25 5.00 5.10 |23.45 29.60 37.85 39.40 46.45 52.10
200 5.60 5.70 5.65 5.30 6.15 3.75 [83.80 91.25 97.85 99.25 99.80 99.95
CSBG,F=1)
20 6.35 5.40 5.80 5.15 5.20 5.65 | 8.60 &8.85 11.55 12.10 13.35 19.25
30 6.80 6.15 5.80 5.95 585 5.70 [10.65 12.10 14.45 18.45 20.65 25.80
50 595 580 5.20 5.60 4.50 5.80 |15.50 19.15 23.50 29.65 33.55 41.75
70 6.05 4.95 5.90 5.70 5.85 5.25 [25.50 33.60 46.45 54.70 65.75 80.40
100 4.65 5.55 5.80 6.35 5.45 5.00 [44.15 58.25 75.85 84.95 91.95 97.90
200 5.40 5.10 5.10 6.20 6.15 5.75 |87.20 94.85 98.75 99.60 99.85 100.00
P& (p)
20 15.25 18.00 21.45 21.65 29.05 36.30 [17.40 19.25 25.10 26.35 32.30 43.50
30 12.25 11.95 12.65 14.75 14.80 19.90 |15.75 17.25 19.50 24.00 25.85 40.25
50 10.80 10.95 12.75 10.95 13.40 17.70]20.95 25.50 34.55 39.05 47.80 71.90
70 8.85 9.20 10.35 11.40 12.70 12.95|30.00 39.35 52.50 64.80 75.65 92.85
100 7.60 7.45 800 7.75 7.35 6.50 |45.75 58.55 76.50 85.70 91.40 98.70
200 840 7.45 7.25 820 840 7.75 |94.20 98.45 99.80 99.90 100.00 100.00
PMSB
20 0.20 0.25 0.25 0.45 030 0.75 [ 040 0.20 0.15 0.55 0.35 0.75
30 0.35 050 0.35 0.75 0.95 0.55 | 0.85 1.40 1.70 2.10 2.80 2.75
50 1.45 130 1.35 1.00 0.85 0.90 | 7.05 9.10 14.65 19.20 26.20 48.00
70 1.55 1.55 1.25 140 1.65 0.90 |16.20 24.85 42.00 54.10 68.70 88.20
100 2.30 2.60 255 230 1.85 1.65 [41.20 58.55 80.10 89.30 92.10 97.95
200 3.45 290 235 3.10 3.20 2.60 [90.50 96.60 98.90 99.45 99.80 99.90
Py
20 580 5.65 6.20 6.25 835 9.55 | 7.80 7.35 9