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Abstract

This paper considers the problem of forecasting under continuous and discrete
structural breaks and proposes weighting observations to obtain optimal forecasts
in the MSFE sense. We derive optimal weights for one step ahead forecasts. Under
continuous breaks, our approach largely recovers exponential smoothing weights.
Under discrete breaks, we provide analytical expressions for optimal weights in
models with a single regressor, and asymptotically valid weights for models with
more than one regressor. It is shown that in these cases the optimal weight is the
same across observations within a given regime and differs only across regimes. In
practice, where information on structural breaks is uncertain, a forecasting pro-
cedure based on robust optimal weights is proposed. The relative performance
of our proposed approach is investigated using Monte Carlo experiments and an
empirical application to forecasting real GDP using the yield curve across nine
industrial economies.
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1 Introduction

It is now widely recognized that parameter instability is an important source of forecast
failure in macroeconomics and finance as documented by Pesaran and Timmermann
(2002), Pesaran, Pettenuzzo, Timmermann (2006), Koop and Potter (2007), Giacomini
and Rossi (2009), Inoue and Rossi (2011), among others. Clements and Hendry (1999,
2006) and Rossi (2011) provide reviews. Broadly speaking, there are two basic ap-
proaches to modeling parameter instability: parameters are assumed to change either
at discrete time intervals or continuously. Under the former, break dates are estimated
and forecasts are typically constructed using the post-break observations.1 Assuming
that the break dates are accurately estimated, the forecasts based on observations after
the last break are likely to be unbiased. However, as pointed out by Pesaran and Tim-
mermann (2007), forecasts from the post-break window may not minimize the mean
square forecast error (MSFE) as the estimation uncertainty may be large due to the
relatively short post-break window. For this reason Pesaran and Timmermann (2007)
suggest an optimal estimation window that may include pre-break observations. When
the time and size of the break is uncertain, Pesaran and Timmermann (2007) consider
averaging forecasts across estimation windows (AveW), which, as Pesaran and Pick
(2011) show, improves forecasts without relying on estimates of break dates and sizes.

Under the continuously changing parameter model, the breaks are assumed to
occur every period, and observations are down-weighted to take account of the slowly
changing nature of the parameters. Within this framework, a prominent approach is
exponential smoothing (ExpS), first proposed by Holt (1957) and Brown (1959). Other
approaches using Kalman filters have also been proposed as generalizations of ExpS.
Hyndman, Koehler, Ord, and Snyder (2008) provide a comprehensive survey.

In this paper, we develop a unified approach to obtaining optimal forecasts under
both types of structural breaks, focusing on one-step-ahead forecasts. We consider
forecasts based on weighted observations as in the ExpS approach but derive weights
that are optimal in the sense that the resulting forecasts minimize the MSFE. In the
case of continuous breaks, the optimal weights approximate ExpS weights if T is large
and the downweighting parameter of ExpS not too close to unity. In contrast, when
the breaks are assumed to occur at discrete time intervals the optimal weights can
differ markedly from the ExpS weights. We show that, conditional on the break size
and date, the optimal weights follow a step function that allocates constant weights
within regimes but different weights between regimes. A striking result emerges under
multiple breaks: observations of the last regime that continues into the forecast period
may not receive the highest weight. The intuition for this result is that the bias
component of the MSFE can be reduced by giving the largest weights to observations
in an earlier regime to counterbalance biases of the opposite sign in another regime.

In practice, dates and sizes of the breaks are unknown and must be estimated.
As such estimates tend to be quite imprecise and their use in practice leads to a
deterioration of forecasts, which can be quite substantial. In order to address this
problem, we develop weights that are robust to the uncertainty that surrounds the
dates and the sizes of the breaks. Robust optimal weights are derived by integrating
the optimal weights with respect to uniformly distributed break dates. An interesting
insight from these derivations is that the effect of uncertainty of the break size on the

1There are many statistical procedures that can be used for detection of break dates, such as Brown
et al. (1975), Andrews (1993), Andrews et al. (1996), Bai and Perron (1997, 2003), and Altissimo and
Corradi (2003).
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weights is of order T−2 if the break is in the slope coefficient, and of order T−3 if
the break is in the error variances, where T is the full sample size that include the
pre-break observations. In contrast, the uncertainty around the break date is of order
T−1, which suggests that dating a break correctly is generally more important than
knowing the precise size of the break.

We conduct Monte Carlo experiments that compare the forecasts from optimal and
robust optimal weights to a range of alternative forecasting methods. It emerges that
the key factor for the relative performance of different forecasting methods under a
discrete break is the size of the break. A larger break leads to more precise estimates
of the break date and improves forecasts that are conditional on these estimates, which
include the optimal weights forecast, post-break forecasts, and optimal window fore-
casts. In contrast, when the break is small relative to the noise in the DGP, the
robust optimal weights produce the best forecasts as they do not make use of the often
imprecisely estimated break dates and sizes. When the break process is continuous,
ExpS forecasts that estimate the down-weighting parameter perform well. However,
even under the continuous break process the forecasts from the robust optimal weights
perform well and in some settings provide the best forecasts.

We use the different methods considered in this paper to forecast real GDP using
the slope of the yield curve across nine industrial economies over the period 1994Q1–
2009Q4. The general finding is that breaks are difficult to estimate with sufficient
accuracy and, similar to the Monte Carlo results, forecasts based on estimates of break
dates perform poorly. Forecasts based on robust optimal weights deliver the largest
improvements over forecasts based on equal weights, and these improvements are sta-
tistically significant.

The rest of the paper is set out as follows. Using a linear regression model, deriva-
tions of optimal weights under different break processes are set out in Section 2, and the
MSFE outcomes are compared across different forecasting methods. Optimal weights
that are robust to the uncertainty of the break process are motivated and derived in
Section 3. Monte Carlo evidence on the comparative performance of the different fore-
casting methods is discussed in Section 4. Empirical results are presented in Section 5.
The paper ends with some concluding remarks in Section 6. A few of the less essen-
tial derivations are collected in a mathematical appendix. Additional material can be
found in a web supplement.

2 Optimal weights under different break processes

Consider the linear regression model

yt = β′
txt + σtεt, εt ∼ iid(0, 1), t = 1, 2, . . . , T, T + 1 (1)

where xt is a k× 1 vector of stationary regressors, and the k× 1 coefficient vector, βt,
and the scalar error variance, σ2t , are subject to breaks. We consider two possible types
of break processes. A continuous break process whereby βt changes in every period by
a relatively small amount. A prominent example is the random walk model

βt = βt−1 + Sβvt, where vt ∼ iid(0, Ik),

where Ik is the identity matrix of order k, and the break variance, Σβ = SβS
′
β, is

assumed to be small relative to σ2t .
2 Additionally, σt may be subject to a similar break

2The covariance matrix Σβ is said to be small relative to σt if ∥Σβ∥ /σt is small, where ∥A∥2 =
tr(AA′) denotes the Euclidean norm of matrix A.
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process. Alternatively, the breaks could be discrete where the parameters change at a
small number of distinct points in time, Tb,i, i = 1, 2, . . . , n,3

βt =


β(1) for 1 < t ≤ Tb,1

β(2) for Tb,1 < t ≤ Tb,2
...

β(n+1) for Tb,n < t ≤ T

In contrast to the continuously changing parameter model, the number of discrete

breaks, n, is assumed to be small, although the break sizes, measured by
∥∥∥β(i) − β(i−1)

∥∥∥
could be large relative to σt. There are merits in both specifications, and a choice
between them would depend on the particular data at hand.

We propose a general approach to achieve a minimum mean square forecast error
(MSFE) under both break processes. We weight past observations by weights wt in
the estimation

β̂T (w) =

(
T∑
t=1

wtxtx
′
t

)−1 T∑
t=1

wtxtyt,

subject to the restriction
∑T

t=1wt = 1. The weights w = (w1, w2, . . . , wT )
′ are chosen

such that the resulting MSFE of the one-step ahead forecast, ŷT+1 = β̂
′
TxT+1, is

minimized.
Closed form solutions under the continuous break process are only available when

we simplify the model to one without time-varying regressors. In this setting the
optimal weights recover the exponential smoothing forecast. For the discrete break
process we derive new results for the same simple model but also for models with one
or more regressors.

2.1 Optimal weights in a model with continuous breaks

Consider the following model
yt = βt + σεεt, (2)

where βt = βt−1+σvvt, and εt and vt are iid(0, 1). The optimal weights for a one-step
ahead forecast can be found by minimizing E(yT+1 − ΣTt=1wtyt)

2 with respect to wt,
t = 1, 2, . . . , T, subject to

∑T
t=1wt = 1. For a solution to this problem we first note

that the forecast error is given by

eT+1 = yT+1 − β̂T+1(w) = βT+1 −w′β + σε(εT+1 −w′ε),

where β = (β1, β2, . . . , βT )
′. But using the random walk formulation of β we have

β = β0ιT + σvHv, where v = (v1, v2, . . . , vT )
′,

H =


1 0 0 0 0
1 1 0 0 0
...

...
. . .

...
...

1 1 · · · 1 0
1 1 · · · 1 1

 , and ιT =


1
1
...
1
1

 .

3Note that parentheses around subscripts denote subsamples between breaks, such that βt is the
parameter at period t but β(i+1) the parameter after break i.
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Also, βT+1 = β0 + σvι
′
Tv + σvvT+1. Hence, σ−1

ε eT+1 = (ι′Tv −w′Hv) δ + (εT+1 −
w′ε) + δvT+1, where δ

2 = σ2v/σ
2
ε . Therefore, (noting that by assumption v and ε are

independently distributed)

E(σ−2
ε e2T+1 |w ) ∝ δ2w′HH′w − 2δ2w′HιT +w′w.

The first order condition for minimization of E(σ−2
ε e2T+1 |w ) subject to the constraint,

w′ιT = 1, is given by δ2HH′w − δ2HιT + w − θιT = 0, where θ is the Lagrangian
multiplier associated with w′ιT = 1. Solving for the optimal weights, w∗(δ), in terms
of θ we have

w∗(δ) = (δ2HH′ + IT )
−1(δ2H+θIT )ιT , (3)

Also, since ι′Tw = 1,

θ =
1− ι′T (δ

2HH′ + IT )
−1δ2HιT

ι′T (δ
2HH′ + IT )−1ιT

. (4)

For the extreme values of δ2 = ∞ and 0 we obtain the random walk and equal weighted
solutions: w∗(∞) = (1, 0, . . . , 0)′ and w∗(0) = T−1(1, 1, . . . , 1)′, respectively.4

The literature on exponential smoothing has traditionally used a different solution
to address the time varying βt. Write the model in terms of the observables

yt − yt−1 = σvvt + σε(εt − εt−1), (5)

which represents an MA(1) process in ∆yt with the MA parameter given by γ. More
specifically

∆yt = ξt − γξt−1, (6)

where ξt is a serially uncorrelated process with mean zero and a constant variance, and

γ

1 + γ2
=

σ2ε
2σ2ε + σ2v

=
1

2 + δ2
.

Hence,
γ2 − (2 + δ2)γ + 1 = 0. (7)

or
δ = (1− γ)/

√
γ. (8)

To solve for γ, note that (7) has two real roots given by

γ =
(2 + δ2)± δ(4 + δ2)1/2

2
. (9)

Since δ > 0, then γ = 1 + δ2/2 − δ(1 + δ2/4)1/2 is the root that lies within the unit
circle and should be used.5 The optimal forecast of yT+1 is now given by

E(yT+1 |yT , yT−1, . . .) = yT − γξT ,

but since 0 < γ < 1 we can invert the MA process to obtain ξT = (1−γL)−1(yT−yT−1),
and

E(yT+1 |yT , yT−1, . . .) = yT − γ(1− γL)−1(yT − yT−1),

= (1− γ)
(
yT + γyT−1 + γ2yT−2 + . . .

)
.

4Derivations of these results are available in web supplement B.1.
5Since δ > 0 then it is easily seen that 0 < γ = 1 + δ2/2− δ(1 + δ2/4)1/2 < 1.
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In practice, the infinite series must be truncated to yield the ExpS forecast

ŷT+1 =
1− γ

1− γT

T∑
j=1

γT−jyj =
T∑
j=1

w
(e)
j (γ)yj (10)

and the quality of the approximation will depend on T and γ, and could be poor when
T is relatively small and γ close to unity. For large T and γ not too close to unity, the

elements of w
(e)
t will be very close to (1−γ)γT−t for t = T, T −1, . . . It is worth noting

that the weights w
(e)
t add up to unity and adapt to the sample size T , whilst the MA

weights (γT−j) may not when γ is not too close to unity.
The MA weights can be viewed as an approximation to the optimal weights, w∗(δ)

given by (3), when T is sufficiently large.

2.2 Optimal weights in a model with a single, discrete break

Again consider model (2) but now assume that βt is subject to a single, discrete break
at Tb, 1 < Tb < T ,

βt =

{
β(1) for t ≤ Tb

β(2) for Tb < t ≤ T + 1

In this case the forecast is ŷT+1 = β̂T (w) where β̂T (w) =
∑T

t=1wtyt and

β̂T (w)− βT = (β(1) − β(2))

Tb∑
t=1

wt + σε

T∑
t=1

wtεt.

Therefore, the forecast error is given by

eT+1(w) = yT+1 − β̂T (w) = σεεT+1 − (β(1) − β(2))

Tb∑
t=1

wt − σε

T∑
t=1

wtεt,

and the MSFE scaled by the error variance is

E[σ−2
ε e2T+1(w)] = 1 + λ2

(
Tb∑
t=1

wt

)2

+

T∑
t=1

w2
t , (11)

where λ = (β(1) − β(2))/σε.

We can now obtain the optimal weights by minimizing (11) subject to
∑T

t=1wt = 1.

The first order conditions are: 2λ2
∑Tb

t=1wt + 2wt + θ = 0 for t ≤ Tb, and 2wt + θ = 0

for Tb < t ≤ T , where θ is the Lagrange multiplier associated with
∑T

t=1wt = 1. Note
that wt for t ≤ Tb does not depend on t. The same is also true of wt for t > Tb.
Hence, defining the weights for each pre-break observation as w(1) and those for each
post-break observation as w(2), we obtain

wt =

{
w(1) = −λ2

∑Tb
t=1wt − θ/2 for 1 < t ≤ Tb

w(2) = −θ/2 for Tb < t ≤ T

and w(2) − w(1) = λ2
∑Tb

t=1wt = λ2Tbw(1). Solving for w(2) and substituting into∑T
t=1wt = Tbw(1) + (T − Tb)w(2) = 1 now yields the optimal weights

w(1) =
1

T

1

1 + Tb(1− b)λ2
, (12)

w(2) =
1

T

1 + Tbλ2

1 + Tb(1− b)λ2
. (13)
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where b = Tb/T .
We can use the fact that the weights are constant in the sub-samples in (11) to

obtain the scaled MSFE: E(σ−2
ε e2T+1

∣∣w(1), w(2) ) = 1+(Tbλw(1))
2+Tbw

2
(1)+(T−Tb)w2

(2)

and using (12) and (13) it is straightforward to show that the above result reduces to

E(σ−2
ε e2T+1

∣∣w(1), w(2) ) = 1 +
1

T

1 + Tbλ2

1 + Tb(1− b)λ2
= 1 + w(2). (14)

Namely, the MSFE varies with λ through the post-beak weight, w(2).
We can now compare the forecasts based on optimal weights to those from a range

of alternative forecasting methods: post-break window observations, the optimal esti-
mation window, averaging across estimation windows, and exponential smoothing.

2.2.1 Optimal window and post-break window forecasts

The optimal window choice proposed in Pesaran and Timmermann (2007), gives equal
weights to observations within the window and zero weights to preceding observations.
Suppose that the optimal window size contains observations Tv to T (inclusive), where
v = (T − Tv + 1) /T so that Tv = T (1− v) + 1. Then, the optimal window size is6

vo =


1−b

1− 1
2λ2(1−b)T

if λ2 ≥ T
2(T−Tb)Tb

1 if λ2 < T
2(T−Tb)Tb .

The scaled MSFE for the optimal window is (for λ2 ≥ T
2(T−Tb)Tb )

E
(
σ−2
ε e2T+1|vov>(1−b)

)
= 1 +

1

T (1− b)
− 1

T 2

1

4λ2(1− b)2
. (15)

Furthermore, the scaled MSFE of the post-break window is

E
[
σ−2
ε e2T+1|v = (1− b)

]
= 1 +

1

T (1− b)
, (16)

and it can be seen that the MSFE in (15) cannot be greater than that in (16) as the
last term of (15) is non-negative.

In order to compare the MSFEs of the forecasts from the optimal window to that
of the optimal weights forecast, we can use (15) and (14), which yields

E
(
σ−2
ε e2T+1|vov>(1−b)

)
− E(σ−2

ε e2T+1

∣∣w(1), w(2) )

=

[
1

T (1− b)
− 1

T 2

1

4λ2(1− b)2

]
− 1

T

1 + Tbλ2

1 + Tb(1− b)λ2
,

=
1

T

Tλ2b(1− b) + 2Tλ2b(1− b)− 1

4T (1− b)2λ2[1 + Tb(1− b)λ2]
> 0, (17)

where the last inequality follows since vo ≤ 1, implies that Tλ2b(1− b) ≥ 1/2. There-
fore, forecasts obtained from optimal weights will have a smaller MSFE than forecasts
giving equal weight to observations in an optimally chosen window size. In the case
where Tλ2 < 1/2, the optimal window contains all observations, so that the comparison

6Derivations can be found in a web supplement B.2.
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Table 1: Relative MSFE for a single break in drift for known b and λ
b 0.95 0.9
λ 0.5 1 2 0.5 1 2

opt. weights 0.901 0.610 0.258 0.884 0.600 0.258
post-break obs. 0.971 0.628 0.260 0.907 0.604 0.259
opt. window 0.939 0.622 0.259 0.899 0.603 0.259
AveW(vmin = 0.05) 0.966 0.900 0.829 0.941 0.830 0.704
ExpS(γ = 0.95) 0.973 0.924 0.872 0.958 0.883 0.799

Note: The table reports the MSFE relative to that of the equal weights forecasts,

MSFEi/MSFEequal, where MSFEi is the MSFE of the respective forecasting

method in the first column. These are (i) using the optimal weights, (ii) using

the post-break observations, (iii) forecasts based on the optimal window, (iv)

AveW forecasts with vmin = 0.05 and m = T (1 − vmin) + 1 windows, and (v)

ExpS forecasts with γ = 0.95. Finally, T = 100.

is between the optimal weights and equal weights. Clearly, by merit of the optimality
of the weights the forecast based on optimal weights will have a lower MSFE.

While it is clear from the above that using optimal weights decreases the MSFE, it is
interesting to get a quantitative sense of the difference in MSFEs. For a range of values
for λ and b, Table 1 shows the relative performance of different forecasting methods.
That is, for forecasting method i we report MSFEi/MSFEequal , where subscript equal
denotes equal weights forecasts. The first line gives the relative performance for optimal
weights, the second line for the forecasts based on post-break window, and the third
line gives the results for the optimal window.

It can be seen that the forecasts based on optimal weights has the lowest MSFE
across all parameter combinations. The MSFE of the forecasts based on the post-
break window is similar to that using optimal weights when either the break or the
post-break window is large (b = 0.9). For breaks of smaller magnitude, however,
post-break window forecasts have substantially larger MSFEs. Forecasts based on the
optimal windows perform better than those based on post-break windows but for small
breaks have substantially larger MSFEs than the optimal weights forecasts.

2.2.2 Averaging across estimation windows

Pesaran and Pick (2011) discuss theoretical properties of averaging forecasts across
estimation windows (AveW). For the random walk (2), the AveW forecast is

ŷT+1 = m−1
m∑
i=1

ŷT+1(v(i)), where ŷT+1(v(i)) =
1

T − Tv(i) + 1

T∑
s=Tv(i)

ys,

v(i) is the minimum (shortest) window, and m is the number of estimation windows.
The AveW forecast has the MSFE

E(σ−2
ε e2T+1|v(i)) = 1 +

[
λ

m

m∑
i=1

v(i) − (1− b)

v(i)
I[v(i) − (1− b)]

]2
+

1

m2

m∑
i=1

1 + 2(i− 1)

Tv(i)
.

Pesaran and Pick (2011) show that for the case of the random walk it will improve
over equal weights forecasts using all observations unless the break is very small. This
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is reflected in the results for vmin = 0.05 in the fourth line of Table 1. The AveW
forecasts have smaller MSFEs than the single window forecasts using equal weights but
they have substantially larger MSFEs than the forecasts obtained using the optimal
weights. The intuition for this result is that averaging over estimation windows can
be seen as weighting observations with decaying weights. The optimal weights (12)
and (13), however, have a discrete change and will only be approximated poorly by
the weights implied by the AveW forecast. Given the optimality of w(1) and w(2), the
AveW MSFEs will necessarily be larger than those of the optimal weights forecasts.
However, these results are not surprising as averaging forecasts is based on the idea
that it will be beneficial when the break date and size are uncertain. We will explore
such settings in the Monte Carlo experiments in Section 4.

2.2.3 Exponential smoothing

In Section 2.1 we have shown that under continuous breaks optimal weights recover
ExpS weights for large T or a downweighting parameter not too close to unity. While
the application of ExpS weights is not optimal under discrete breaks, it is neverthe-
less interesting to get a quantitative measure of the loss implied in using weights for
continuous breaks when there is a single discrete break.

The MSFE of the exponential smoothing forecast is (Pesaran and Pick 2011)

E(σ−2
ε e2T+1|γ) = 1 + λ2

(
γ1+Tb − γT

1− γT

)2

+

(
1− γ

1− γT

)(
1− γ2T

1− γ2

)
.

The last line in Table 1 reports results for γ = 0.95. Similar to the AveW forecasts,
the ExpS forecasts improve on the results from the forecasts using equal weights but
have a larger MSFE than the forecasts based on the optimal weights. The reason is
that, just as the AveW forecasts, the ExpS forecasts use smoothly decaying weights
for the observations, whilst it has been shown that in the presence of discrete breaks,
discretely changing weights are optimal.

2.3 A single, discrete break in a multiple regression model

We now turn to the multiple regression model where the slope parameters and the
error variance are subject to a single break at time t = Tb

yt =

{
β′
(1)xt + σ(1)εt for 1 ≤ t ≤ Tb,

β′
(2)xt + σ(2)εt for Tb + 1 ≤ t ≤ T

, (18)

where xt is a k × 1 vector of exogenous regressors and εt ∼ iid(0, 1). Again, suppose
that the slope parameter is estimated by weighting observations over the whole sample

β̂T (w) =

(
T∑
t=1

wtxtx
′
t

)−1 T∑
t=1

wtxtyt. (19)

The scaled MSFE is

E
[
σ−2
(2)e

2
T+1(w) |xt, t = 1, 2, . . . , T + 1

]
(20)

= 1 +
[
x′
T+1S

−1(w)S1(w(1))λ
]2

+x′
T+1S

−1(w)

 Tb∑
t=1

q2w2
txtx

′
t +

T∑
t=Tb+1

w2
txtx

′
t

S−1(w)xT+1,

8



where λ = (β(1) − β(2))/σ(2), q = σ(1)/σ(2), S(w) = S1(w(1)) + S2(w(2)), S1(w(1)) =∑Tb
t=1wtxtx

′
t, and S2(w(2)) =

∑T
t=Tb+1wtxtx

′
t. See Appendix A.1 for details.

Similar to the derivations in Section 2.2, minimizing (20) yields the optimal weights.
For t ≤ Tb we have

[
x′
T+1S

−1(w)xt
]
q2wt = x′

T+1S
−1(w)

 Tb∑
t=1

q2w2
txtx

′
t +

T∑
t=Tb+1

w2
txtx

′
t

S−1(w)xt[
x′
T+1S

−1(w)S1(w(1))λ
] [

x′
tS

−1(w)S2(w(2))λ
]
, (21)

and for t ≥ Tb + 1

[
x′
T+1S

−1(w)xt
]
wt = x′

T+1S
−1(w)

 Tb∑
t=1

q2w2
txtx

′
t +

T∑
t=Tb+1

w2
txtx

′
t

S−1(w)xt

+
[
x′
T+1S

−1(w)S1(w(1))λ
] [

x′
tS

−1(w)S1(w(1))λ
]
, (22)

with the details provided in Appendix A.1.
These optimal weights have a number of interesting properties. First, in the absence

of a break, that is when λ = 0 and q = 1, then wt = w for all t, as to be expected. To
see this, note that when λ = 0 and q = 1, then for all t we have

wt =
x′
T+1S

−1(w)
(∑T

t=1w
2
txtx

′
t

)
S−1(w)xt

x′
T+1S

−1(w)xt
.

It is now easily seen that wt = w (fixed) is a solution to the above. Note that for
wt = w, we have S(w) = wS(1) and therefore

wt =
x′
T+1S

−1(1)
(∑T

t=1 xtx
′
t

)
S−1(1)xt

w−1x′
T+1S

−1(1)xt
=

x′
T+1S

−1(1)S(1)S−1(1)xt

w−1x′
T+1S

−1(1)xt
= w.

Consider now the case where λ ̸= 0 and q ̸= 1, but suppose that x1 = x2. Then,
using (21) and (22), we have that for the optimal weights for t = 1 and t = 2

q2
[
x′
T+1S

−1(w)x1

]
(w2 − w1) = 0.

Hence, the weights within a given regime will be the same if the regressor values
are identical. But the same is not true of the weights for time points in different
regimes. For example, for the first regime select t = 1 and for the second regime
select t = T , and suppose that x1 = xT . Then from (21) and (22), and recalling that
S1(w(1)) + S2(w(2)) = S(w), we have[

x′
T+1S

−1(w)xT
]
(wT − q2w1) =

[
x′
T+1S

−1(w)S1(w(1))λ
] (

x′
Tλ
)
,

which suggests that when λ ̸= 0 and q ̸= 1, the weights across the two regimes differ
even if the regressor values are the same. Therefore, in general, the optimal weights
will differ both within and across regimes.

An exact analytical solution does not seem to be available. However, analytic
solutions can be derived if k = 1 or asymptotically when T is sufficiently large. In
general, the unknown weights in (21) and (22) must be solved numerically. Some
notes on the implementation of a suitable numerical procedure are provided in web
supplement B.3.

9



2.3.1 A single, discrete break in a model with one regressor

In the case where k = 1, the scaled MSFE (20) simplifies to

E[σ−2
(2)e

2
T+1(w)] = 1 +

[
xT+1S(w(1))λ

S(w)

]2
+
x2T+1

(∑Tb
t=1 q

2w2
t x

2
t +

∑T
t=Tb+1w

2
t x

2
t

)
[S(w)]2

,

(23)
and the first order conditions (21) and (22) reduce to

wt =


∑T

t=1 w
2
t x

2
t

q2S(w)
− λ2

S1(w(1))S2(w(2))

q2S(w)
for t ≤ Tb,∑T

t=1 w
2
t x

2
t

S(w) + λ2
S2
1(w(1))

S(w) for t ≥ Tb + 1.

Similar to the case of model (2), wt for t ≤ Tb does not depend on t and the same is
true for wt for t > Tb. We can therefore again denote the pre-break weights by w(1)

and the post-break weights by w(2). Using the above results it now readily follows

that w(2) − q2w(1) = w(1)S1(1)λ
2, where S1(1) =

∑Tb
t=1 x

2
t . Also using the constraint∑T

t=1wt = 1 we have w(1)Tb+ (T − Tb)w(2) = 1. Hence, for Tb reasonably large, which
is not a restrictive assumption for the problem under consideration, and solving for
w(1) and w(2) we obtain

w(1) =
1

T

1

b+ (1− b)(q2 + Tbλ2ω2
x)
, (24)

w(2) =
1

T

q2 + Tbλ2ω2
x

b+ (1− b)(q2 + Tbλ2ω2
x)
, (25)

where ω2
x = plimTb→∞( 1

Tb

∑Tb
t=1 x

2
t ).

Given that for the optimal weights w
(opt.)
t = w(1) for t ≤ Tb and w

(opt.)
t = w(2) for

t > Tb, (23) can be rewritten as

E
(
σ−2
(2)e

2
T+1|w

(opt.)
t

)
≈ 1 +

x2T+1

Tω2
x

w2
(1)b(Tbϕ

2 + q2) + w2
(2)(1− b)[

w(1)b+ (1− b)w(2)

]2 . (26)

From (24) and (25) it can be seen that w(2) = (Tbϕ2 + q2)w(1) and (26) simplifies to

E
(
σ−2
(2)e

2
T+1|w

(opt.)
t

)
≈ 1 +

x2T+1

ω2
x

w(2).

Namely, the MSFE varies with λ and q through the post-break weight, w(2).

In the standard case where all observations are given equal weights, namely w
(equal)
t =

1/T , we have

E
(
σ−2
(2)e

2
T+1|w

(equal)
t

)
= 1 + b2ϕ2

x2T+1

ω2
x


T−1
b

Tb∑
t=1

x2t

T−1
∑T

t=1 x
2
t


2

+
1

T

b
(
q2 − 1

)
x2T+1

(
T−1
b

Tb∑
t=1

x2t

)
(
T−1

∑T
t=1 x

2
t

)2 +
1

T

(
x2T+1

T−1
∑T

t=1 x
2
t

)
.
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The parameters ϕ and q measure the sizes of the breaks in β and σ, and b = Tb/T
gives the proportion of pre-break observations.

For Tb sufficiently large and T − Tb small, we have the approximation

E
(
σ−2
(2)e

2
T+1|w

(equal)
t

)
≈ 1 +

x2T+1

ω2
x

[
b2ϕ2 +

bq2 + (1− b)

T

]
.

Comparing the MSFE of optimal weights with the one based on equal weights we have

ω2
x

x2T+1

(MSFEequal −MSFEopt.) =
b
(
Tbϕ2 + q2

)
+ (1− b)

T
− Tbϕ2 + q2

T [b+ (1− b)(Tbϕ2 + q2)]

=
b(1− b)[1− Tbϕ2 − q2]2

T [b+ (1− b)(Tbϕ2 + q2)]
> 0.

Similarly, when wt are set independently of xt (as in the case of exponential down-
weighting) we have

E
(
σ−2
(2)e

2
T+1

)
≈ 1 +

x2T+1

ω2
x

ϕ2( Tb∑
t=1

wt

)2

+
(
q2 − 1

) Tb∑
t=1

w2
t +

T∑
t=1

w2
t

 .
When only post-break observations are used, the implicit weights are w

(post)
t = 0 for

t ≤ Tb and w
(post)
t = (T − Tb) /T for t > Tb. We therefore have

E
(
σ−2
(2)e

2
T+1|w

(post)
t

)
≈ 1 +

x2T+1

ω2
x

1

T (1− b)
.

Comparing this to the MSFE based on optimal weights we have

ω2
x

x2T+1

(MSFEpost −MSFEopt.) =
b

T (1− b) [b+ (1− b)(Tbϕ2 + q2)]
> 0,

namely, optimal weights forecasts dominate post-break forecasts for all values of 0 <
b < 1, but, as to be expected, the superiority of the optimal weights forecasts diminishes
as T (1− b) → ∞.

2.3.2 Asymptotic results with k ≥ 1 stationary regressors

The general solution in (21) and (22) can be simplified if we assume that T and Tb are
sufficiently large with T −Tb fixed, and xt is a stationary process with E(xtx

′
t) = Ωxx a

positive definite matrix. That is we assume that T → ∞ and b→ 1 but T (1− b) → τ ,
where τ is a relatively small, constant number of post-break observations. Under these
assumptions (and conditional on the weights, wt)

S(w) →

(
T∑
t=1

wt

)
E(xtx

′
t) = Ωxx, (27)

S1(w(1)) →

(
Tb∑
t=1

wt

)
E(xtx

′
t) =

(
Tb∑
t=1

wt

)
Ωxx, (28)

and
T∑
t=1

w2
txtx

′
t →

(
T∑
t=1

w2
t

)
Ωxx, (29)
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and the MSFE simplifies to

E(σ−2
(2)e

2
T+1) = 1 + (x′

T+1λ)
2

(
Tb∑
t=1

wt

)2

+ x′
T+1Ω

−1
xxxT+1

 Tb∑
t=1

q2w2
t +

T∑
t=Tb+1

w2
t

. (30)

The solution is similar to the case for k = 1 and is given by

w(1) =
1

T

1

b+ (1− b)(q2 + Tbϕ2)
, (31)

w(2) =
1

T

q2 + Tbϕ2

b+ (1− b)(q2 + Tbϕ2)
, (32)

where

ϕ =
x′
T+1λ(

x′
T+1Ω

−1
xxxT+1

)1/2 .
The above result is also in line with the result obtained for the simple case of k = 1.
In that case Ωxx = ω2

x and ϕ = λωx.
The above analysis assumes that the regressors are exogenous and, therefore, ex-

cludes dynamic models. The derivation of optimal weights for dynamic models is
complicated by the fact that forecast errors are non-linear functions of past errors and,
in general, it is difficult to obtain an analytic expression for the MSFE (Pesaran and
Timmermann 2005). In order to see how the weights derived here perform in dynamic
models, we have conducted Monte Carlo experiments, which show that using either
optimal weights or the robust optimal weights developed in Section 3 leads to a sub-
stantial improvement in the forecast performance as compared to equal weights, post
break sample, and AveW forecasts. To save space, MC results for dynamic models are
provided in web supplement B.9.7

2.4 Multiple discrete breaks in a multiple regression model

Consider now the case of multiple breaks in the slope coefficients of a linear regression
model

yt = β′
txt + σεt,

where the parameter vector βt is subject to n breaks at points bi = Tb,i/T , such that
b1 < b2 < · · · < bn. For simplicity of exposition, we assume that the error variance is
not subject to breaks. Initially, assume that n = 2, such that

βt =


β(1) for 1 < t ≤ Tb,1

β(2) for Tb,1 < t ≤ Tb,2

β(3) for Tb,2 < t ≤ T

.

Using the weighted least squares estimator (19), we have that

β̂T (w)−β(3) = S−1(w)
[
S1(w(1))(β(1) − β(3)) + S2(w(2))(β(2) − β(3))

]
+σS−1(w)

T∑
t=1

wtxtεt,

7These MC results are also relevant to forecasts from regression models with serially correlated
errors. This is because optimal forecasts from such models can be based on mathematically equivalent
dynamic specifications with serially uncorrelated errors.

12



where S1(w(1)) =
∑Tb,1

t=1 wtxtx
′
t, S2(w(2)) =

∑Tb,2
t=Tb,1+1wtxtx

′
t, and S(w) =

∑T
t=1wtxtx

′
t.

Consequently,

eT+1(w) = yT+1 − xT+1β̂T (w)

= σεT+1 − x′
T+1S

−1(w)
[
S1(w1)(β(1) − β(3)) + S2(w(2))(β(2) − β(3))

]
+σx′

T+1S
−1(w)

T∑
t=1

wtxtεt,

and

E
[
σ−2e2T+1(w)

]
= 1 +

{
x′
T+1S

−1(w)
[
S1(w(1))λ(1) + S2(w(2))λ(2)

]}2
+x′

T+1S
−1(w)

(
T∑
t=1

w2xtx
′
t

)
S−1(w)xT+1,

where λ(1) =
(
β(1) − β(3)

)
/σ and λ(2) =

(
β(2) − β(3)

)
/σ.

In this case, the optimal weights can be obtained by solving the optimization prob-
lem

w∗ = argmin
w

f(w),

subject to ι′Tw = 1, where

f(w) =
{
x′
T+1S

−1(w)
[
S1(w(1))λ(1) + S2(w(2))λ(2)

]}2
+x′

T+1S
−1(w)

(
T∑
t=1

w2
txtx

′
t

)
S−1(w)xT+1. (33)

The first order conditions are

wt
[
x′
T+1S

−1(w)AtS
−1(w)xT+1

]
= x′

T+1S
−1(w)

[
S1(w(1))λ(1) + S2(w(2))λ(2)

]
×
{
x′
T+1S

−1(w)AtS
−1(w)

[
S1(w(1))λ(1) + S2(w(2))λ(2)

]
− x′

T+1S
−1(w)Atλ(i)

}
+x′

T+1S
−1(w)AtS

−1(w)

(
T∑
t=1

w2
txtx

′
t

)
S−1(w)xT+1 + θ/2,

where again θ is the Lagrange multiplier associated with ι′Tw = 1 and

λ(i) =


λ(1) if t ≤ Tb,1

λ(2) if Tb,1 < t ≤ Tb,2

0 if Tb,2 < t ≤ T

.

Again, by multiplying both sides by wt and summing over t = 1, 2, . . . , T it can be
easily verified that θ = 0. Hence, for xt ̸= 0 the optimal weights are

wt =
x′
T+1S

−1(w)
[
S1(w(1))λ(1) + S2(w(2))λ(2)

]
x′
T+1S

−1(w)xt
×

×
{
x′
tS

−1(w)
[
S1(w(1))λ(1) + S2(w(2))λ(2)

]}
+
x′
tS

−1(w)
(∑T

t=1w
2
txtx

′
t

)
S−1(w)xt+1

x′
T+1S

−1(w)xt
(34)

−
x′
T+1S

−1(w)
[
S1(w(1))λ(1) + S2(w(2))λ(2)

]
(x′
tλ(i))

x′
T+1S

−1(w)xt
.
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For n breaks we obtain

wt =
x′
T+1S

−1(w)
[∑n−1

j=1 Sj(w(j))λ(j)

]{
x′
tS

−1(w)
[∑n−1

j=1 Sj(w(j))λ(j)

]}
x′
T+1S

−1(w)xt

+
x′
tS

−1(w)
(∑T

t=1w
2
txtx

′
t

)
S−1(w)xt+1

x′
T+1S

−1(w)xt
−

x′
T+1S

−1(w)
[∑n−1

j=1 Sj(w(j))λ(j)

]
(x′
tλ(i))

x′
T+1S

−1(w)xt
,

where λ(i) =
(
β(i) − β(n+1)

)
/σ if Tb,i−1 < t ≤ Tb,i, with Tb,0 = 1, and λ(n+1) = 0. As

in the case of a single break, numerical methods are necessary to obtain the weights
but, again, in the case of a single regressor or asymptotically we can derive analytical
results.

2.4.1 Optimal weights for multiple breaks in a simple regression model

In the case of a single regressor, (34) simplifies to

wt =
[S1(w(1))λ(1) + S2(w(2))λ(2)]

2

S(w)
+

∑T
t=1w

2
t x

2
t

S(w)
− [S1(w(1))λ(1) + S2(w(2))λ(2)]λ(i),

where λ(i) is as defined above but it is now a scalar. Therefore, defining S1(1) =∑Tb,1
t=1 x

2
t and S2(1) =

∑Tb,2
t=Tb,1+1 x

2
t , solving for the optimal weights yields

w(1) =
1

T

1 + λ2(2)S2(1)− λ(1)λ(2)S2(1)

as,2
,

w(2) =
1

T

1 + λ2(1)S1(1)− λ(1)λ(2)S1(1)

as,2
,

w(3) =
1

T

1 + λ2(1)S1(1) + λ2(2)S2(1)

as,2
,

where as,2 = 1+(1−b2)
[
S1(1)λ

2
(1) + S2(1)λ

2
(2)

]
+
[
λ(1) − λ(2)

] [
(b2 − b1)S1(1)λ(1) − b1S2(1)λ(2)

]
.

This result generalizes to n breaks where

w(i)|i ≤ n =
1

T

1 +
∑n

j=1,j ̸=i λ
2
(j)Sj(1)− λ(i)

∑n
j=1,j ̸=i λ(j)Sj(1)

as,n
,

w(n+1) =
1

T

1 +
∑n

j=1 λ
2
(j)Sj(1)

as,n
,

and as,n = 1+
∑n+1

l=1 (bl−bl−1)
∑n

j=1,j ̸=l λ
2
(j)Sj(1)−

∑n
l=1 λ(l)(bl−bl−1)

∑n
j=1,j ̸=l λ(j)Sj(1).

2.4.2 Asymptotic results in the multi-break case with k ≥ 1 stationary
regressors

Similar to the case with one break, we can simplify the solution when there are two
or more regressors if we assume that many observations are available between breaks,
and xt is a stationary process with E(xtx

′
t) = Ωxx. Note, however, that we make no
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assumption about the number of observations since the last break. Initially consider
the case of two breaks. In addition to (27) and (29) we have

S1(w(1)) →

Tb,1∑
t=1

wt

E(xtx
′
t) =

Tb,1∑
t=1

wt

Ωxx,

S2(w(2)) →

 Tb,2∑
t=Tb,1+1

wt

E(xtx
′
t) =

 Tb,2∑
t=Tb,1+1

wt

Ωxx.

Then (33) simplifies to

f(w) =

x′
T+1

λ(1)

Tb,1∑
t=1

wt + λ(2)

Tb,2∑
t=Tb,1+1

wt

2

+ x′
T+1

T∑
t=1

w2
tΩ

−1
xxxT+1.

The optimal weights are therefore

w(1) =
1

T

1 + T (b2 − b1)ϕ
2
(2) − T (b2 − b1)ϕ(1)ϕ(2)

aa,2
, (35)

w(2) =
1

T

1 + Tb1ϕ
2
(1) − Tb1ϕ(1)ϕ(2)

aa,2
, (36)

w(3) =
1

T

1 + Tb1ϕ
2
(1) + T (b2 − b1)ϕ

2
(2)

aa,2
, (37)

where aa,2 = 1 + T (1 − b2)b1ϕ
2
(1) + T (b2 − b1)(1 − b2)ϕ

2
(2) + Tb1(b2 − b1)(ϕ(1) − ϕ(2))

2

and

ϕ(i) =
x′
T+1λ(i)(

x′
T+1Ω

−1
xxxT+1

)1/2 , for i = 1, 2.

An interesting result is that the weights for two breaks are not necessarily decreasing
in the distance from the end point, T . In particular,

• w(1) > w(3) > w(2) if ϕ(1) < 0, ϕ(2) > 0 and b1ϕ(1) > −(b2 − b1)ϕ(2),

• w(1) > w(3) > w(2) if ϕ(1) > 0, ϕ(2) < 0 and b1ϕ(1) < −(b2 − b1)ϕ(2),

• w(2) > w(3) > w(1) if ϕ(1) < 0, ϕ(2) > 0 and b1ϕ(1) < −(b2 − b1)ϕ(2),

• w(2) > w(3) > w(1) if ϕ(1) > 0, ϕ(2) < 0 and b1ϕ(1) > −(b2 − b1)ϕ(2).

Figure 1 plots the weights for T = 100, b1 = 0.3, b2 = 0.6, ϕ(1) = −0.5 and
ϕ(2) = 1.5. Under this parameter constellation it is easily seen that w(1) > w(3) > w(2).
This result may be surprising at first sight. The intuition is that the observations after
the last break deliver an unbiased forecast. In contrast, the observations before the
last break will generally introduce a bias into the forecast. Biases of opposite sign
can offset each other but if one bias is larger in absolute terms the observations in
the remaining sub-sample must receive a larger weight to offset this bias such that the
MSFE is minimized.

Note that the weights w(1) and w(2) can be negative. We do not restrict the weights
to be positive as the weights in (35), (36), and (37) give a unique minimum of the
MSFE.
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Figure 1: Optimal weights for T = 100, b1 = 0.3, b2 = 0.6, ϕ(1) = −0.5 and ϕ(2) = 1.5
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In the case of n breaks, the weights for the n+ 1 segments are given by

w(i)|i≤n =
1

T

1 + T
∑n

j=1,j ̸=i(bj − bj−1)ϕ
2
(j) − Tϕ(i)

∑n
j=1,j ̸=i(bj − bj−1)

aa,n
, (38)

w(n+1) =
1

T

1 + T
∑n

j=1(bj − bj−1)ϕ
2
(j)

aa,n
, (39)

where aa,n = 1+T
∑n+1

l=1 (bl−bl−1)
∑n

j=1,j ̸=l ϕ
2
(j)(bj−bj−1)−T

∑n
l=1 ϕ(l)(bl−bl−1)

∑n
j=1,j ̸=l ϕ

2
(j)(bj−

bj−1) and b0 = 0. Expressions of the weights in matrix notation that are convenient
when programming the weights can be found in the web supplement B.4.

3 Optimal weights when the time and size of the break
are uncertain

So far we have assumed that the time and the size of the break are known. However,
this may not be the case in many situations of practical interest. In particular, the
size of the break is difficult to estimate unless a relatively large number of post-break
observations is available.8 It is, therefore, worthwhile to develop weights that are
reasonably robust to the point and the size of the break(s). As a simple example,
consider the model with a single break at time Tb both in the slopes and the error
variances. Using (24) and (25) we first note that

Tw(1) =
1

b+ (1− b)q2 + Tb(1− b)ϕ2
, and Tw(2) =

q2 + Tbϕ2

b+ (1− b)q2 + Tb(1− b)ϕ2
,

where ϕ2 = λ2ω̂2
x, with ω̂

2
x = T−1

∑T
t=1 x

2
t , λ = (β(1)−β(2))/σ(2) and q = σ(1)/σ(2). The

time profile of the weights can be written as Twt(b, q
2, ϕ2) = w(2)+

[
w(1) − w(2)

]
I(Tb−

t), for t = 1, 2, . . . , T . Hence

Tw(a, b, q2, ϕ2) =
q2

T + bϕ2

b+(1−b)q2
T + b(1− b)ϕ2

+

[
1−q2
T − bϕ2

b+(1−b)q2
T + b(1− b)ϕ2

]
I(b− a), (40)

8Also in finite samples the distribution of the estimated break point does not have a closed form
expression and depends on the distribution of xt and εt. (See Hinkley, 1970). Asymptotic results can
be obtained that do not depend on the distribution of the regressors or the error term (e.g. Bai 1997),
but such results might not be reliable in small samples.
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where a = t/T ∈ [0, 1], and as before b = Tb/T ∈ [0, b̄], where b̄ < 1.
Initially, consider the case where the break is in the error variances only, namely

ϕ = 0 and q2 ̸= 1. Then

Tw(a, b, q2) =
q2

b+ (1− b)q2
+

[
1− q2

b+ (1− b)q2

]
I(b− a),

or

Tw(a, b, q2) =
1

1 + bψ
+

(
ψ

1 + bψ

)
I(b− a).

where ψ = (1 − q2)/q2 = (σ2(2) − σ2(1))/σ
2
(1). It is also worth noting that w(1)/w(2) =

1+ψ = σ2(2)/σ
2
(1), and more weight will be given to pre break observations if σ2(2) > σ2(1),

and vice versa. This is in line with the result obtained by Pesaran and Timmermann
(2007) using the concept of the optimal window.

In situations where b and q2 are uncertain their effects on the optimal weights can
be integrated out with respect to a given distribution of b and q2. Here, we assume
that b and q2 are independently distributed and focus on the uncertainty of b for a
given value of q2, or ψ. For b we assume that it is uniformly distributed over the range
b and b̄, namely the probability density of b is given by

f(b) =


0 if b < b
(b̄− b)−1 if b ≤ b < b̄
0 if b ≥ b̄.

.

The expression for w(a, q2) depends on whether a falls within the range [b, b̄] or not.
Specifically, we have

Tw(a, q2) =


(b̄− b)−1

∫ b̄
b

1+ψ
1+bψdb if a < b

(b̄− b)−1
∫ b̄
b

1
1+bψdb+

ψ
b̄−b
∫ b̄
a

1
1+bψdb if b ≤ a ≤ b̄

(b̄− b)−1
∫ b̄
b

1
1+bψdb if a > b̄

.

Also, it is easily seen that∫ b̄

b

1

1 + bψ
db = ψ−1 log

(
1 + b̄ψ

1 + bψ

)
,

and, hence,

Tw(a, q2) = (b̄− b)−1

[
ψ−1 log

(
1 + b̄ψ

1 + bψ

)
+ log

(
1 + b̄ψ

1 + aψ

)]
, if b ≤ a ≤ b̄.

Since ψ = (1− q2)/q2, we can also write

Tw(a, q2) =


(b̄− b)−1 1

1−q2 log
(
b̄+(1−b̄)q2
b+(1−b)q2

)
if a < b

(b̄− b)−1
[

q2

1−q2 log
(
b̄+(1−b̄)q2
b+(1−b)q2

)
+ log

(
b̄+(1−b̄)q2
a+(1−a)q2

)]
if b ≤ a ≤ b̄

(b̄− b)−1 q2

1−q2 log
(
b̄+(1−b̄)q2
b+(1−b)q2

)
if a > b̄

(41)
Over the range b ≤ a ≤ b̄

T∂w(a, q2)

∂a
= (b̄− b)−1 −(1− q2)

a+ (1− a)q2
=

1

b̄− b

σ2(1) − σ2(2)

σ2(2) [a+ (1− a)q2]
.
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and the weights w(a, q2) monotonically rise (fall) with a if σ2(1) > σ2(2) (σ
2
(1) < σ2(2)). In

other words, more weight will be placed on more recent observations only if post-break
error variance is smaller than pre-break error variance. This result holds for all values
of T .

Consider now the more general case where ϕ2 > 0. Using (40) we have for b < a < b̄

Tw(a, b, q2, ϕ2) =

q2

ϕ2T
+ b

b+(1−b)q2
Tϕ2

+ b(1− b)
+

1−q2
ϕ2T

− b

b+(1−b)q2
Tϕ2

+ b(1− b)
I(b− a),

For given values of q2 and ϕ2 and assuming that b lies in the range [b, b̄] with 0 < b <
b̄ < 1, we have for b < a < b̄

Tw(a
∣∣q2, ϕ2 ) = ∫ b̄

b

q2

ϕ2T
+ b

[q2+(1−q2)b]
Tϕ2

+ b(1− b)
db+

∫ b̄

a

1−q2
ϕ2T

− b

[b+(1−b)q2]
Tϕ2

+ b(1− b)
db, (42)

It is now easily seen that

T
∂w(a

∣∣ϕ2, q2 )
∂a

=
−(1−q

2

ϕ2T
− a)

[a+(1−a)q2]
Tϕ2

+ a(1− a)
.

that is, the weights increase monotonically in a if a > 1−q2
ϕ2T

, which is clearly satisfied

if q2 ≥ 1. In this case, the observations farthest from the end of the sample get the
smallest weights. The decay rate of the weights depends on T .

3.1 Large T approximation

Consider now a large T approximation of the optimal weights and note that

Tw(a, b, q2, ϕ2) =

q2

ϕ2T
+ b

b(1− b)
(
1 + θ

T

) +
(
1−q2
ϕ2T

− b
)
I(b− a)

b(1− b)
(
1 + θ

T

) ,

where θ =
[
q2 + (1− q2)b

]
/ϕ2b(1 − b) > 0. Using

(
1 + θ

T

)−1
= 1 − θ

T + O(T−2), and
replacing θ in terms of b, q, and ϕ, we have

Tw(a, b, q2, ϕ2) =
1

1− b
− 1

1− b
I(b− a) +

1

T

[
q2

ϕ2b(1− b)
− q2 + (1− q2)b

ϕ2b(1− b)2

]
+
1

T

[
1− q2

ϕ2b(1− b)
+
q2 + (1− q2)b

ϕ2b(1− b)2

]
I(b− a) +O(T−2).

But since

q2

ϕ2b(1− b)
− q2 + (1− q2)b

ϕ2b(1− b)2
=
q2(1− b)− q2 − (1− q2)b

ϕ2b(1− b)2
=

−1

ϕ2(1− b)2
,

1− q2

ϕ2b(1− b)
+
q2 + (1− q2)b

ϕ2b(1− b)2
=

(
1− q2

)
(1− b) + q2 + (1− q2)b

ϕ2b(1− b)2
=

1

ϕ2b(1− b)2
,

the weights profile simplifies to

Tw(a, b, q2, ϕ2) =
1

1− b
− 1

1− b
I(b− a) (43)

− 1

T

[
1

ϕ2(1− b)2

]
+

1

T

[
1

ϕ2b(1− b)2

]
I(b− a) +O(T−2).
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Figure 2: Robust optimal weights (44), T = 100, b = 0.3, b̄ = 0.9
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It is interesting that the first order term in this expansion does not depend on the sizes
of the breaks, and depends only on the break point, b. Also, the terms up to order
T−1 are independent of q2 as long as ϕ2 > 0, that is, a break in the error variance is
dominated by a break in the mean of the process.

Therefore, for large T , robust optimal weights are determined by the distribution
of b. For the uniform distribution, b ∼ Uniform(b, b̄) with 0 < b < b̄ < 1, we have

Tw(a) =


0 +O(T−1), for a < b

(b̄− b)−1
∫ b̄
b

1
1−bdb− (b̄− b)−1

∫ b̄
a

1
1−bdb+O(T−1), for b ≤ a ≤ b̄

(b̄− b)−1
∫ b̄
b

1
1−bdb+O(T−1), for a > b̄

,

and the robust optimal weights are

w(a) ≈


0, if a < b

−1
T(b̄−b)

log
(
1−a
1−b

)
, if b ≤ a ≤ b̄

−1
T(b̄−b)

log
(
1−b̄
1−b

)
, if a > b̄

. (44)

Figure 2 shows the robust optimal weights for T = 100, b = 0.3 and b̄ = 0.9, assuming
that ϕ2 > 0, and it can be seen that the weights increase monotonically from b to b̄.

In the case where b and b̄ are close to the end points of 0 and 1, we have

w(a) ≈ − log(1− a)

T
, a ∈

[
0, b̄
]
. (45)

A discrete time version can be obtained by setting T b̄ = T − 1, or b̄ = 1− 1/T .9 This
gives robust optimal weights that integrate the break date over the entire estimation
sample

w∗
t =

− log(1− t/T )

T − 1
, for t = 1, 2, . . . , T − 1, (46)

w∗
T =

−1

T − 1
log

(
1− T − 1

T

)
=

log(T )

T − 1
. (47)

9Clearly, one could set b̄ to other values close to 1, say 1 − 0.5/T . But for relatively large T , the
choice of w∗

T for the forecasts is unlikely to be of great importance.
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Due to the approximation/discretization these weights do not sum to unity, and can
be scaled as

wt =
w∗
t∑T

s=1w
∗
s

, for t = 1, 2, . . . , T. (48)

For b and b̄ close to the end points of 0 and 1, we can also obtain the MSFE implied
by the robust optimal weights (44) as10

ω2
x

x2T+1

[
E
(
σ−2
(2)e

2
T+1

)
− 1
]
≈ ϕ2 [b+ (1− b) log(1− b)]2 (49)

+

(
q2 − 1

)
T

[
−(1− b) [log(1− b)]2 + 2(1− b) log(1− b) + 2b

]
+

2

T
.

Comparing this result to the equal weight MSFE we have

ω2
x

x2T+1

(MSFEequal −MSFErobust) = ϕ2ψϕ(b) +

(
q2 − 1

)
T

ψq(b)−
1

T
,

where

ψϕ(b) =
[
b2 − [b+ (1− b) log(1− b)]2

]
= [2b+ (1− b) log(1− b)] [−(1− b) log(1− b)] ,

and ψq(b) = (1 − b) [log(1− b)]2 − 2(1 − b) log(1 − b) − b. The relative performance
of the two sets of weights depend on the sign of

(
q2 − 1

)
ψq(b). It can be shown that

ψq(b) > 0 if b ≤ 0.91, and negative otherwise. However, for reasonable values of q2

(say 1/2 or 2), the term
(q2−1)
T ψq(b) is relatively unimportant when T is 100 or more.

Note that max0≤b≤0.95 |ψq(b)| = 0.202 and for T = 100 the contribution of
(q2−1)
T ψq(b)

to the relative performance of the two weights can be ignored, unless ϕ is very small
and b very close to 0 or 1.

It is also interesting to compare the fit of the robust optimal weights and the ExpS
weights to the optimal weights for a range of T , q2 and ϕ2. Figure 3 contains plots of
the optimal weights w(a|q2, ϕ2) in (42), the robust optimal weights, w∗

t , in (48) and the
ExpS weights (10), where γ is chosen such that the distance between w(a|q2, ϕ2) and
wet (γ) is minimized. The plots show that the accuracy of the robust optimal weights
depends largely on ϕ2: for larger ϕ2 the robust optimal weights are very close to the
optimal weights, for the smaller ϕ2 a good approximation requires large T . The plots
also show that, as predicted by our theory, q2 has a relatively minor influence on the
weights that is only visible when T and ϕ2 are both small, which is visible in the top left
plot, where initially the weights fall slightly. Finally, the down-weighting parameter γ
in the exponential smoothing weight that best approximates the exact optimal weight
varies between 0.944 and 0.994, and the ExpS weights generally give too low a weight
to the most recent observations as compared to the optimal weights.11

3.1.1 Robust optimal weights for regression models with two breaks

Consider the case of two breaks, where the weights conditional on b and λ are given
in (35) to (37). Clearly, b < b1 < b2 < b̄ and Pr(b1, b2) = Pr(b1)Pr(b2|b1), furthermore

10Derivations for the MSFE can be found in web supplement B.5.
11It is possible to derive robust optimal weights that allow for high order terms in the expansion

(43), and some results are provided in web supplement B.7. However, we will not pursue them further
in this paper.
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Figure 3: Comparison of optimal weights, robust optimal weights, and fitted exponen-
tial smoothing weights
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Note: T = 50 in the plots in the left column, T = 500 in the plots in the right column, ϕ2 = 0.1

in the plots in the top row, ϕ2 = 1 in the plots in the bottom row, and q2 = 0.5 throughout. The

dash-dotted line represents the optimal weights w(a|q2, ϕ2) in (42), the solid line the robust optimal

weights in (48), and the dashed line the ExpS weights in (10).

b1 < b1 < b̄1 and b2 < b2 < b̄2 where b1 < b2 and b̄1 < b̄2, then

Pr(b1) =


0 if b1 < b1

1
b̄1−b1

if b1 < b1 ≤ b̄1

0 if b1 > b̄1

, and Pr(b2|b1) =


0 if b2 < b2

1
b̄2−b1

if b2 < b2 ≤ b̄2

0 if b2 > b̄2

.

Analytic solutions for the robust optimal weights under two breaks are not easy
to obtain. However, the weights can be calculated numerically using (35) to (37) and
integrating over a grid for b1 and b2 taking into account that b1 < b2 and setting
b1 = 1/T , b2 = 2/T , b̄1 = (T − 2)/T and, finally, b̄2 = (T − 1)/T .

Figure 4 plots the robust optimal weights for two breaks and T = 100, where the
first graph reports the weights for ϕ(1) = −0.5 and ϕ(2) = 1.5, the second for ϕ(1) = 0
and ϕ(2) = 1, the third for ϕ(1) = 2 and ϕ(2) = 1. It can be seen that the shape of
the weights depends on the parameters chosen. In the first graph, the parameters ϕ(1)
and ϕ(2) are those that under known break dates resulted in the example in Figure 1
where the first sub-sample receives the largest weights. The pattern is the same with
the very early observation receiving higher weights than the last observations. The
second graph is for parameters that would lead to equal weights in the first and last
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Figure 4: Robust optimal weights for two breaks, T = 100, and different values of ϕ(1)
and ϕ(2)
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Note: The first graph plots the weights for ϕ(1) = −0.5 and ϕ(2) = 1.5, the second for ϕ(1) = 0 and

ϕ(2) = 1, and the third for ϕ(1) = 2 and ϕ(2) = 1. The weights are given in (35) to (37) and integrating

uniformly over b1 and b2 over the range 1/T to (T − 1)/T.

Figure 5: Robust optimal weights for two breaks and ϕ(1) and ϕ(2) integrated out,
T = 50, 200

0 5 10 15 20 25 30 35 40 45 50
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

t

w
t

0 20 40 60 80 100 120 140 160 180 200
2

4

6

8

10

12

14

16
x 10

−3

w
t

t

Note: The first graph plots the weights for T = 50 and the second for T = 200. The weights are given

in (35) to (37) and integrating uniformly over b1 and b2 over the range 1/T to (T − 1)/T and ϕ(1) and

ϕ(2) over the range −2 to 2.

sub-sample if the break dates were known. The final graph uses breaks that decrease
in size, which results in continuously increasing weights.

In practice, given that the break date is uncertain, the size of break is also likely
to be unknown. In addition to the break date, we therefore also integrate over the
break sizes. Figure 5 plots the weights when ϕ(1) and ϕ(2) are integrated with respect
to a uniform distribution in the range −2 to 2. The first graph shows the weights
for T = 50 and the second for T = 200. It can be seen that the shape of the weight
function is largely independent of the sample size. Most weight is given to the most
recent observations. Interestingly, the first observations receive larger weights than
the observations in the middle of the sample, which reflects the possibility that early
observations can have a bias that counterbalances that of later observations.
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4 Monte Carlo evidence on forecasting performance

4.1 Data generating process

We now provide a range of Monte Carlo experiments, comparing the forecast perfor-
mance of the optimal weights and robust optimal weights proposed in this paper as
compared to other alternatives available in the literature. The first set of experiments
considers the continuous break model (2) in Section 2.1. A second set of experiments
concentrates on the random walk model (2) with a single discrete break as discussed in
Section 2.2. In this model, the MSFEs of the different forecasting methods are known
conditional on Tb and λ and have been reported in Table 1. In the case of these ex-
periments we aim to find out how far the uncertainty around the break date and size
affects the different forecasts. In a final set of experiments we add a regressor using
the simple linear regression model discussed in Section 2.3.1.

The model for the first two experiments is

yt = µt + σεεt, εt ∼ N(0, 1). (50)

In the first set of experiments, the mean follows the random walk specification

µt = µt−1 + σvvt, vt ∼ N(0, 1),

for t = 1, 2, . . . , T, T + 1 with T = 50, 100, 200, and γ = {0.8, 0.9, 0.95, 0.98}, which
corresponds to δ = σε/σv ≈ {4.472, 9.487, 19.494, 49.497}. For the second set of exper-
iments, the mean in (50) has a discrete break

µt =

{
µ(1) t ≤ Tb
µ(2) t > Tb

,

and t = 1, 2, . . . , T, T + 1 with T = 50, 100, 200. We set b = {0.95, 0.9}, λ = (µ(1) −
µ(2))/σε = {0.5, 1, 2}.12 We assume that Tb, λ and q, the ratio of the pre- and post-beak
error variances, are unknown and have to be estimated.

The third model adds a regressor, such that

yt = βtxt + σtεt, εt ∼ N(0, 1),

where

βt =

{
β(1) t ≤ Tb
β(2) t > Tb

,

we set b and λ as in the second experiment. Regressors are generated as xt ∼ iidN(0, 1),
and forecasts are conditional on xT+1.

Forecasts based on the full estimation window with equal weights will serve as the
base line to which all other forecasting methods are compared. We also include the
infeasible optimal forecasts based on the optimal weights that use the true parameter
values of the break process for comparison. For model (50) with continuous breaks the
weights are given in (3), for the model with discrete breaks the weights are given in
(12) and (13), and for the simple regression model they are given in (24) and (25).

12We also conducted experiments with a break in the error variance. As predicted by our theory,
the results are qualitatively the same. For this reason they are omitted here, but can be found in the
web supplement B.8.
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For the first two models, we estimate γ from an MA(1) in first differences for the
methods that assume a continuous break. We forecast the model with weights (3)
using the estimated δ̂ and by ExpS with weights (9) using γ̂.

For the linear regression model we replace ExpS with Constant Gain Least Squares
(CGLS), which is a multivariate generalization of ExpS that has recently received in-
creasing attention in the macroeconomic learning literature, see Evans and Honkapohja
(2001) for a review and Markiewicz (2012) for a recent application. Under the CGLS
approach the parameter vector, βt, is estimated by the following recursion

βt = βt−1 + αR−1
t−1xt(yt − x′

tβt−1) and Rt = Rt−1 + α(xtx
′
t −Rt−1), (51)

where α is the downweighting parameter (also known as the forgetting factor) . Branch
and Evans (2006) compare the forecasts of CGLS to other methods and find that it
generally performs well. Similar to Branch and Evans (2006), we determine α using
cross-validation. We calculate pseudo out-of-sample forecasts for the last 25 observa-
tions in the sample under consideration and choose the α that minimizes the MSFE
over the values 0.01, 0.02, . . . , 0.99. Note that in the case where xt = 1 the above
recursion reduces to the ExpS defined in (10) with α = 1− γ.13

For the methods that assume a discrete break process we use the Bai and Perron
(1998, 2003) procedure to estimate the break dates, b = (b1, b2)

′, and, conditional
on these estimates, the break sizes, λ = (λ(1), λ(2))

′. We then use these estimates to
compute feasible forecasts based on the optimal weights (12) and (13) in the random
walk model or (24) and (25) in the simple linear regression model with b̂ and λ̂ in
place of b and λ. For the DGP with continuous breaks we allow for two breaks, for
the DGP with a discrete break we restrict attention to testing for one break.

We also compute forecasts using the robust optimal weights developed in section
3. First, we assume that the forecaster uses the information that the break is in the
last quarter but not in the last 2% of the sample. The corresponding weights are given
by (44). Second, we assume that break dates in the full sample are equally likely with
the weights given in (48). Finally, in the experiments with continuous break process
we use robust optimal weights assuming two breaks, where the weights are calculated
numerically integrating over b1 and b2 and ϕ(1) and ϕ(2) over the range −2 to 2.

For comparison, we construct forecasts based on the observations after the esti-
mated break dates and forecasts based on the optimal estimation windows using the
estimated break dates and sizes. Given the uncertainty over the break dates, we also
average over different estimation windows, starting with the minimum window given
by 5% of the available sample, namely we set vmin = 0.05.

We construct one-period ahead forecasts for each method and base comparisons
on the MSFE. We report ratios of MSFEs relative to that of the forecasts using equal
weights, MSFEequal , so that for method i we have

rMSFEi =
MSFEi

MSFEequal
. (52)

The results are based on 10,000 replications.

4.2 Monte Carlo Results

Continuous breaks DGP Table 2 reports the results for the DGP with continuous
breaks. The first line contains the results for the infeasible optimal weights forecasts

13Further details of CGLS are provided in the web supplement B.10.
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based on the true δ. Not surprisingly, these forecasts represent large improvements in
MSFE relative to the equal weights forecasts.

The second and third lines contain the results for the optimal and ExpS weights
forecasts using the estimates, δ̂ and γ̂. As suggested in Section 2.1, these two forecasts
are numerically identical for the parameters considered here. The forecast performance
increases in T as γ is estimated more precisely for larger T .14

Amongst the methods that assume a discrete break, the robust optimal weights
generally perform best. Notably, for a range of values of γ and sample sizes, they deliver
the best forecasts of all feasible forecasts, including those based on the assumption of
continuous breaks. In fact, only for γ = 0.8 and T = 100 and 200 do the optimal
weights based on continuous breaks have the most precise forecasts.

Forecasts based on optimal weights under the assumption of discrete breaks perform
well when γ = 0.8, that is when βt has a large variation. For larger γ, the performance
deteriorates and often does not improve on the equal weights forecasts. The results for
the forecast from the optimal window are similar to the optimal weights forecast. The
post-break window forecast is the least favorable forecasting method in this setting
and often leads to the highest MSFEs.

Finally, the AveW forecasts performs well for a range of γ and sample sizes. Only
when the true value of γ is small, does the AveW procedure perform less well since it
does not discount past observations heavily enough.

Discrete breaks DGP Table 3 contains the results when the break in the drift
of the underlying random walk process is discrete. The relative performance of the
feasible forecasts primarily depends on the size of the break, and the sample size. The
second line reports the results for the estimated optimal weights. When the break
size, λ, is small, the detection of the break is difficult. As a consequence, the forecasts
that use estimated optimal weights lead to higher MSFEs than most other forecasting
methods. However, when λ = 2 the estimated optimal weights produce MSFEs that
are among the smallest across all feasible methods. The benefit of applying optimal
weights therefore depends on the ability to detect the break accurately.

The next two lines report the results for the robust optimal weights. For λ = 0.5
and 1, the forecasts that use the information that the break is in the last quarter of
the sample provide the best forecasts across all feasible methods. The robust optimal
weights that integrate b over the last quarter of the sample always perform better -
and for larger breaks substantially so - than the robust optimal weights obtained by
integrating over the entire sample, which shows how powerful this additional informa-
tion is for the resulting forecasts. For large values of λ the robust optimal weights
still improve vastly over the equal weights forecast but not as much as the estimated
optimal weights.

Forecasts based on post-break observations (with estimated break dates) have the
highest MSFE when the break size, λ, is small. Their performance improves dramat-
ically when λ is large: the post-break forecasts have MSFEs very similar to the ones
obtained for the estimated optimal weights. The optimal window forecasts perform
quite similarly to the ones based on estimated optimal weights, and their performance
depends largely on the size of the break.

AveW forecasts perform well when T = 50 and the break is small but less well for
larger breaks. Still, in all examples, AveW offers substantial improvements over the

14MSE results for γ are available in web supplement B.8.
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Table 2: Monte Carlo results for the random walk model with continuous breaks

γ 0.8 0.9 0.95 0.98
δ 0.224 0.105 0.051 0.020

T = 50

opt.weight(cont.break; δ) 0.643 0.914 0.990 1.000

estim.opt.weight(cont.break; δ̂) 0.702 0.970 1.037 1.016
ExpS(γ̂) 0.702 0.970 1.037 1.016

estim.opt.weight(disc.break; b̂, λ̂) 0.723 1.031 1.106 1.112
rob.opt.weights(b = 0.75, b̄ = 0.98) 0.645 0.967 1.093 1.119
rob.opt.weights(b = 0, b̄ = 1) 0.738 0.921 0.996 1.019
rob.opt.weights(two breaks) 0.836 0.945 0.991 1.004

post-break obs.(b̂) 0.729 1.049 1.130 1.137

opt.window(b̂, λ̂) 0.705 0.990 1.064 1.073
AveW(wmin = 0.05) 0.756 0.924 0.993 1.015

T = 100

opt.weight(cont.break; δ) 0.458 0.777 0.949 0.996

estim.opt.weight(cont.break; δ̂) 0.469 0.804 0.974 1.014
ExpS(γ̂) 0.469 0.804 0.974 1.014

estim.opt.weight(disc.break; b̂, λ̂) 0.526 0.854 1.058 1.107
rob.opt.weights(b = 0.75, b̄ = 0.98) 0.471 0.781 0.988 1.052
rob.opt.weights(b = 0, b̄ = 1) 0.626 0.829 0.953 0.999
rob.opt.weights(two breaks) 0.764 0.889 0.966 0.996

post-break obs.(b̂) 0.528 0.862 1.076 1.128

opt.window(b̂, λ̂) 0.520 0.828 1.018 1.066
AveW(wmin = 0.05) 0.649 0.840 0.955 0.998

T = 200

opt.weight(cont.break; δ) 0.286 0.618 0.878 0.984

estim.opt.weight(cont.break; δ̂) 0.290 0.627 0.890 1.002
ExpS(γ̂) 0.290 0.627 0.890 1.002

estim.opt.weight(disc.break; b̂, λ̂) 0.363 0.682 0.959 1.077
rob.opt.weights(b = 0.75, b̄ = 0.98) 0.326 0.625 0.881 1.010
rob.opt.weights(b = 0, b̄ = 1) 0.530 0.739 0.907 0.985
rob.opt.weights(two breaks) 0.698 0.830 0.937 0.988

post-break obs.(b̂) 0.363 0.684 0.969 1.094

opt.window(b̂, λ̂) 0.364 0.671 0.932 1.047
AveW(wmin = 0.05) 0.560 0.755 0.913 0.985
Note: The table reports the ratio of MSFE of forecasting method i relative to

that using equal weights, MSFEi/MSFEequal . The DGP is yt = βt+σεεt where

βt = βt−1 + σvvt, δ = σε/σv, and δ = (1 − γ)/
√
γ. Forecasting methods: (i)

infeasible optimal weights as function of δ, (ii) optimal weights for continuous

breaks where δ is estimated from an MA(1) in the first difference of the data,

(iii) ExpS with γ estimated from an MA(1) in the first difference of the data,

(iv) optimal weights based on point estimates of b and λ for up to two breaks,

(v) robust optimal weights (44) with b = 0.75 and b̄ = 0.98, (vi) robust optimal

weights (48), (vii) robust optimal weights for two breaks with ϕ(1), ϕ(2) ∈
(−2, 2), (viii) post-break window based on b̂, (ix) optimal window based on

point estimates of b and λ for the last break, (x) AveW forecasts with m =

T (1−vmin)+1 windows and vmin = 0.05. The results are based on R = 10, 000

repetitions.
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Table 3: Monte Carlo results for random walk model with a discrete break in drift,
q = 1

b 0.95 0.9
λ 0.5 1 2 0.5 1 2

T = 50

opt.weight(disc.break; b, λ) 0.923 0.653 0.284 0.910 0.634 0.276

estim.opt.weight(disc.break; b̂, λ̂) 1.040 0.873 0.428 1.040 0.842 0.342
rob.opt.weights(b = 0.75, b̄ = 0.98) 0.955 0.708 0.443 0.940 0.656 0.334
rob.opt.weights(b = 0, b̄ = 1) 0.956 0.857 0.751 0.940 0.810 0.662

post-break obs.(b̂) 1.060 0.885 0.427 1.060 0.856 0.343

opt.window(b̂, λ̂) 1.004 0.847 0.451 1.003 0.813 0.349
AveW(wmin = 0.05) 0.966 0.888 0.805 0.948 0.836 0.709

estim.opt.weight(cont.break; δ̂) 0.994 0.961 0.798 0.992 0.930 0.577
ExpS(γ̂) 0.994 0.961 0.798 0.992 0.930 0.577

T = 100

opt.weight(disc.break; b, λ) 0.893 0.603 0.256 0.875 0.592 0.257

estim.opt.weight(disc.break; b̂, λ̂) 1.022 0.826 0.320 1.014 0.737 0.263
rob.opt.weights(b = 0.75, b̄ = 0.98) 0.912 0.701 0.473 0.884 0.619 0.316
rob.opt.weights(b = 0, b̄ = 1) 0.953 0.867 0.775 0.931 0.805 0.662

post-break obs.(b̂) 1.039 0.839 0.319 1.030 0.747 0.262

opt.window(b̂, λ̂) 0.991 0.800 0.329 0.986 0.722 0.268
AveW(wmin = 0.05) 0.965 0.900 0.830 0.940 0.831 0.706

estim.opt.weight(cont.break; δ̂) 0.992 0.944 0.666 0.984 0.847 0.337
ExpS(γ̂) 0.992 0.944 0.666 0.984 0.847 0.337

T = 200

opt.weight(disc.break; b, λ) 0.869 0.571 0.238 0.862 0.577 0.248

estim.opt.weight(disc.break; b̂, λ̂) 1.010 0.711 0.245 0.984 0.618 0.249
rob.opt.weights(b = 0.75, b̄ = 0.98) 0.894 0.685 0.461 0.867 0.605 0.306
rob.opt.weights(b = 0, b̄ = 1) 0.949 0.863 0.771 0.928 0.802 0.658

post-break obs.(b̂) 1.027 0.720 0.244 0.998 0.621 0.249

opt.window(b̂, λ̂) 0.984 0.695 0.249 0.966 0.613 0.251
AveW(wmin = 0.05) 0.962 0.899 0.831 0.937 0.828 0.704

estim.opt.weight(cont.break; δ̂) 0.989 0.898 0.391 0.973 0.727 0.265
ExpS(γ̂) 0.989 0.898 0.391 0.973 0.727 0.265

Note: The table reports the relative MSFEs for the DGP yt = βt + σtεt with a break in βt

and σt at Tb. Here, q = σ(1)/σ(2) = 1. The first forecasting method uses optimal weights for a

discrete break with known b and λ. For the remaining forecasting methods see Table 2.

full sample equal weights forecasts.
Forecasts that incorrectly assume the break process is continuous also reduce the

MSFE relative to the full sample based forecasts but, as to be expected, are generally
less efficient than those based on weights derived assuming a discrete break DGP.
However, as T increases the forecasts of these methods improve considerably.

Table 4 reports the results for the simple linear regression model. While the mag-
nitude of the relative MSFEs are affected by the additional variation introduced by
the regressor, the relative ranking of the various forecasting methods is very similar
to that for the random walk model. A notable difference is that the robust optimal
weights now also deliver the best forecasts for the largest breaks when T = 50. CGLS
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Table 4: Monte Carlo results for a single regressor and a discrete break, q = 1
b 0.95 0.9
λ 0.5 1 2 0.5 1 2

T = 50

opt.weight(disc.break; b, λ) 0.979 0.853 0.542 0.971 0.832 0.520

estim.opt.weight(disc.break; b̂, λ̂) 1.005 0.978 0.851 1.009 0.952 0.631
rob.opt.weights(b = 0.75, b̄ = 0.98) 0.995 0.876 0.660 0.990 0.846 0.576
rob.opt.weights(b = 0, b̄ = 1) 0.980 0.925 0.836 0.975 0.907 0.783

post-break obs.(b̂) 1.007 0.980 0.849 1.012 0.957 0.633

opt.window(b̂, λ̂) 1.007 0.980 0.850 1.012 0.957 0.634
AveW(wmin = 0.05) 0.982 0.933 0.854 0.977 0.911 0.794
CGLS(α̂) 1.306 1.144 0.985 1.295 1.087 0.818

T = 100

opt.weight(disc.break; b, λ) 0.961 0.800 0.499 0.952 0.796 0.502

estim.opt.weight(disc.break; b̂, λ̂) 1.003 0.913 0.607 1.003 0.877 0.520
rob.opt.weights(b = 0.75, b̄ = 0.98) 0.970 0.853 0.668 0.957 0.813 0.557
rob.opt.weights(b = 0, b̄ = 1) 0.979 0.929 0.854 0.972 0.903 0.783

post-break obs.(b̂) 1.006 0.916 0.608 1.006 0.881 0.520

opt.window(b̂, λ̂) 1.006 0.916 0.608 1.006 0.881 0.520
AveW(wmin = 0.05) 0.983 0.941 0.880 0.974 0.911 0.800
CGLS(α̂) 1.118 0.999 0.774 1.094 0.911 0.590

T = 200

opt.weight(disc.break; b, λ) 0.955 0.786 0.473 0.945 0.793 0.485

estim.opt.weight(disc.break; b̂, λ̂) 1.013 0.874 0.491 1.001 0.822 0.487
rob.opt.weights(b = 0.75, b̄ = 0.98) 0.963 0.846 0.637 0.949 0.809 0.533
rob.opt.weights(b = 0, b̄ = 1) 0.980 0.930 0.842 0.970 0.903 0.771

post-break obs.(b̂) 1.018 0.878 0.491 1.006 0.823 0.486

opt.window(b̂, λ̂) 1.018 0.878 0.491 1.006 0.823 0.486
AveW(wmin = 0.05) 0.984 0.945 0.878 0.973 0.913 0.796
CGLS(α̂) 1.017 0.892 0.559 1.001 0.854 0.560

Note: The results are for the simple linear regression model, yt = βtxt+σtεt with a single break

in βt at Tb. For definitions and forecasting procedures see the footnotes of Tables 2 and 3.

does relatively well for large breaks but is dominated by the optimal weights, which is
not surprising, given that CGLS incorrectly assumes a continuous break process.

Overall, the Monte Carlo results suggest that when the break size is small and/or
the sample is too small for an accurate estimation of the break process, the robust
optimal weights developed in this paper deliver the most precise forecasts. This is
true for discrete as well as continuous break processes. When the break process is
continuous, the sample is sufficiently large, and γ not too close to unity, estimated
optimal weights and ExpS forecasts with estimated down-weighting parameter will
result in the most precise forecasts. If the true γ is large, robust optimal weights
forecasts dominate even in large samples. Under discrete breaks that are large and
easily identified, the optimal weight forecasts provide the best forecasts, otherwise
robust optimal weights forecasts dominate.
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5 Application to the yield curve as a predictor of real
economic activity

5.1 The empirical model

The slope of the yield curve has emerged as a valuable leading indicator of GDP
growth; see Stock and Watson (2003) for a survey of the literature. However, recent
evidence suggests that the relationship between GDP growth and the yield curve may
be subject to structural breaks (Estrella, Rodrigues and Schich 2003, Giacomini and
Rossi 2006, Schrimpf and Wang 2010). We will use the forecasting methods discussed
in the previous sections to investigate whether they can improve the forecasts of GDP
growth with the slope of the yield curve as the predictor.

The forecasts are based on the regression model

yt,t+h = β0 + β1st + εt, (53)

where yt,t+h = 100 ln(Yt+h/Yt), Yt is the level of real GDP at time t, and st = iLt − iSt
is the slope of the yield curve defined as the difference between the long term interest
rate, iLt , and the short term interest rate, iSt . This specification is the most common
in the literature (e.g., Estrella and Hardouvelis 1991, Estrella and Mishkin 1997, and
the literature cited above).

We evaluate the forecasts for horizons h = 1, 2, 3, 4 quarters. An issue involving
direct forecasts with horizons greater than one is the overlap implicit in the regres-
sions. Pesaran, Pick and Timmermann (2011) show that accounting for the overlap of
observations can lead to gains in forecast accuracy but that these gains materialize at
forecast horizons that are larger than those considered here. In order not to complicate
the forecast exercise further, we restrict attention to estimations that do not account
for overlap.

The source of quarterly observations on GDP, long and short term interest rates is
the data set (2009 vintage) available with the GVAR toolbox (Smith and Galesi 2012).
The data set contains quarterly observations for 33 countries. As not all countries
have long term bond markets, we focus on the following nine industrialized economies:
Australia, Canada, France, Germany, Italy, Japan, Spain, UK, and USA. The data set
start in 1979Q1 and ends in 2009Q4. Recursive out-of-sample forecasts are constructed,
with the first forecast using the observations up to 1993Q4 for estimation.

We report results for the entire forecast period and for the sub-periods 1994Q1–
2000Q4, 2001Q1–2006Q4, and 2007Q1-2009Q4. The first period includes the build-up
of the dot-com bubble, the second contains the time after the dot-com bubble burst and
the build-up of the sub-prime mortgage market, the third contains the observations
following the collapse of the sub-prime mortgage market.

We will use the forecasting methods outlined in Section 4. However, we do not
impose knowledge of the timing of the structural break on the optimal weights as such
knowledge may not be available to the researcher at the time. Given that we have
more than one regressor, we use the optimal weights (38) and (39), where we estimate
Ωxx over the estimation sample available for the forecast. For the CGLS forecasts,
we estimate α in (51) via cross-validation for each forecast horizon separately. We use
the last 40 observations of the presample up to 1993Q4 to obtain quasi-out-of-sample
forecasts and choose the α that minimizes the MSFE over the values 0.01, 0.02, . . . , 0.99
(the estimates for α are available in the web supplement B.10). Cross-validation relies
on the assumption that the underlying model does not change in the forecast period.
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Given the uncertainty that surrounds the estimates of the downweighting parameter,
we also generate forecasts using a cross-country average of the downweighting estimates
¯̂α(h) = 1

m

∑m
i=1 α̂i(h), where α̂i(h) is the estimate of the downweighting parameter for

the ith country when the forecast horizon is h.15

Forecasts are compared using the relative MSFE measure defined in (52). Further-
more, we test for equal forecast performance using a generalization of the panel ver-
sion of the Diebold-Mariano test proposed by Pesaran, Schuermann and Smith (2009),
where we allow for h > 1 and general cross-country aggregation weights. Details of the
test are provided in Appendix A.2.

5.2 Results for GDP growth forecasts

Table 5 give cross-country averages of MSFEs over the full sample, and over the three
sub-samples. In the aggregation of individual country MSFEs we use both GDP-PPP
based weights as well as equal weights. The table also shows if a forecasting method
outperforms the equal weights forecast significantly using the panel version of the
Diebold and Mariano test statistic. An asterisk denotes forecasts that are significantly
better than the equal weights forecast at the 5% significance level.

The first line of the table shows average MSFEs for the equal weights forecasts. The
second line gives the relative MSFE of the forecasts using optimal weights based on the
estimated break date and size. For both country aggregation schemes, the estimated
optimal weights forecasts improve on equal weights forecasts for h = 1 but not for
larger horizons. In general, while the optimal weights forecasts have a lower MSFE
than the post-break and CGLS forecasts, they are less precise than the remaining
forecasting methods.

Forecasts using robust optimal weights, in contrast, deliver vastly improved fore-
casts compared to equal weights. They provide the best forecasts for all horizons,
except for h = 1 and when relative GDP weights are used to aggregate the MSFEs
across countries. Only in this case the CGLS forecast has a lower MSFE than the
robust optimal weight forecast. Also, the improvements over equal weights are statis-
tically significant for all horizons. While the MSFEs of the robust optimal weights for
one break are generally smaller than that for robust optimal weights for two breaks, the
latter’s improvements are significant over all horizons, whereas over the entire forecast
period the formers are only significant for h = 1 and 2.

Post-break window forecasts are substantially worse than equal weights forecasts.
AveW forecasts, in contrast, improve over the equal weights forecasts and the improve-
ment is statistically significant for h = 1, no matter which cross country aggregation
scheme is used, and for h = 2 if the countries are weighted equally in the averaging
process. Finally, CGLS with country specific estimates of α delivers the least precise
forecasts. Pooling the estimates of α across countries leads to results that are sig-
nificantly better than the equal weighted forecasts for h = 1. For larger h, however,
pooled α CGLS forecasts fail to improve on equal weights forecasts.

When considering the sub-samples separately some interesting additional patterns
emerge. We note that in the first sub-sample (covering forecasts for the period 1994Q1–
2000Q4) robust optimal weights for one and two breaks deliver the best forecasts for
all forecast horizons irrespective of how the country results are aggregated, and these
forecast improvements are statistically significant at all horizons. The second sub-

15In practice, prior knowledge of α may be available but, following the suggestion of an anonymous
referee, we make no such assumption in this forecasting exercise.
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Table 5: Predictive power of the yield curve: Relative forecast accuracy averaged
across countries

GDP weighted ave. Equally weighted ave.

h 1 2 3 4 1 2 3 4

All forecasts: 1994Q1–2009Q4

equal weight(MSFE) 0.557 1.726 3.339 5.215 0.521 1.585 3.046 4.736

est.asy.opt.weight 0.947 1.026 1.052 1.048 0.974 1.082 1.087 1.069
rob.weight(1 break) 0.895∗ 0.900∗ 0.932 0.970 0.915∗ 0.946∗ 0.973 0.993
rob.weight(2 breaks) 0.942∗ 0.942∗ 0.954∗ 0.973∗ 0.953∗ 0.963∗ 0.974∗ 0.980∗

post-break 1.111 1.131 1.118 1.076 1.191 1.154 1.133 1.074
AveW 0.994∗ 0.999 0.998 1.008 0.991∗ 0.996∗ 0.997 1.000
CGLS(α̂) 2.612 1.192 1.305 1.298 4.389 1.456 1.336 1.507
CGLS(¯̂α) 0.878∗ 1.154 1.161 1.454 0.924∗ 1.392 1.365 2.024

Subsample 1: 1994Q1–2000Q4

equal weight(MSFE) 0.374 1.034 2.066 3.612 0.352 0.908 1.753 2.970

est.asy.opt.weight 1.009 0.972 1.139 1.062 1.018 1.080 1.344 1.070
rob.weight(1 break) 0.855∗ 0.786∗ 0.774∗ 0.797∗ 0.911∗ 0.925∗ 0.943∗ 0.965∗

rob.weight(2 breaks) 0.928∗ 0.894∗ 0.891∗ 0.905∗ 0.956∗ 0.956∗ 0.960∗ 0.970∗

post-break 1.025 1.047 1.045 1.192 1.060 1.185 1.228 1.183
AveW 0.994∗ 1.013 1.011 1.004∗ 0.993∗ 1.009 1.023 1.028
CGLS(α̂) 0.976∗ 0.909∗ 0.954 1.488 1.266 1.332 1.446 2.671
CGLS(¯̂α) 0.832∗ 0.776∗ 1.141 2.538 0.893∗ 1.039 1.953 5.282

Subsample 2: 2001Q1–2006Q4

equal weight(MSFE) 0.230 0.633 1.115 1.576 0.198 0.547 0.971 1.374

est.asy.opt.weight 1.009 1.072 1.046 1.229 1.000 1.145 1.080 1.356
rob.weight(1 break) 0.989 1.066 1.231 1.322 0.962∗ 0.996 1.058 1.101
rob.weight(2 breaks) 0.984∗ 0.996 1.042 1.053 0.974∗ 0.975 0.990 0.994
post-break 1.026 1.113 1.074 1.189 1.021 1.241 1.129 1.329
AveW 0.988∗ 0.983∗ 0.982∗ 0.986 0.980∗ 0.973∗ 0.969∗ 0.972∗

CGLS(α̂) 1.283 1.631 3.471 3.401 2.129 1.624 2.403 2.874
CGLS(¯̂α) 1.064 1.410 2.247 3.084 1.051 1.451 2.002 2.750

Subsample 3: 2007Q1–2009Q4

equal weight(MSFE) 1.636 5.471 10.542 15.832 1.559 5.185 9.998 15.137

est.asy.opt.weight 0.895 1.042 1.061 1.001 0.949 1.068 1.030 1.003
rob.weight(1 break) 0.889∗ 0.915∗ 0.948 0.978 0.911∗ 0.954∗ 0.983 1.007
rob.weight(2 breaks) 0.938∗ 0.953∗ 0.968∗ 0.978∗ 0.949∗ 0.969∗ 0.983∗ 0.994∗

post-break 1.166 1.196 1.196 1.000 1.281 1.148 1.127 0.999
AveW 0.996∗ 0.997 0.998 1.002 0.995∗ 0.998 0.998 1.000
CGLS(α̂) 3.163 1.166 1.034 0.961 5.649 1.400 1.206 1.058
CGLS(¯̂α) 0.848 1.213 1.017 0.912 0.932 1.488 1.159 1.032

Note: The table reports MSFEs of the forecasts with equal weights and for all other forecasting methods the ra-

tio of MSFEs, that is, the MSFE of forecasting method i relative to that using equal weights, MSFEi/MSFEequal,

for different forecast horizons, h. Forecasting methods: (i) equal weights, (ii) optimal weights (38) and (39) for

discrete breaks based on point estimates of b and λ for up to five breaks, and Ωxx is estimated over the sample

available for each forecast, (iii) robust optimal weights (48) that integrate the break date over the entire sample,

(iv) robust optimal weights for two breaks with ϕ(1), ϕ(2) ∈ (−2, 2), (v) post-break window, (vi) AveW forecasts

of Section 2.2.2 with m = T (1− vmin) + 1 windows and vmin = 0.05, (vii) constant gain least squares estimates

with the gain parameter α estimated using a cross-validation procedure (see web supplement B.10 for details).

The dates given above denote the periods for which one-period ahead forecasts are made. The h = 2 forecast

makes the first forecast for the observation one quarter later, the h = 3 forecast for that two periods later, and

the h = 4 forecast for that three quarters later. The GDP weighted average uses weights wi = Yi/(
∑m

j=1 Yj),

where Yi is the 2008 GDP in purchasing power terms for country i available from the GVAR data base and

m = 9 is the number of countries. The equal weights average uses wi = 1/m. An asterisk denotes forecast

that is significantly better than that obtained from equal weights according to the panel Diebold-Mariano test

statistic at a 5% significance level. 31



sample (2001Q1–2006Q4) offers a different picture. Most forecasting methods cannot
improve on the equal weights forecasts. The exceptions are the AveW forecasts and, for
h = 1, the robust optimal weights forecasts. AveW is the only forecasting method that
delivers significant improvements irrespective of horizon and country weights. Robust
optimal weights improve on equal weights, too, but the difference is not statistically
significant for h > 1. In the third sub-sample (2007Q1–2009Q4) GDP growth is much
harder to forecast as indicated by the MSFE of the equal weights forecasts. Forecasts
based on robust optimal weights can improve the forecast by over 10%, and those for
two breaks deliver significant improvements for all horizons. The relative performance
is similar to that of the first sub-period: the robust optimal weights provide the best
results, whereas forecasts that require estimates of break dates perform poorly. AveW
forecasts deliver modest improvements. CGLS, in contrast, generally leads to worse
forecasts.

Overall, forecasting methods that rely on estimates of break dates perform poorly
in this application. AveW leads to modest but consistent improvements over equal
weights forecasts. Robust optimal weights forecasts lead to large and, in the majority
of cases, statistically significant improvements over equal weights forecasts.

6 Conclusion

This paper presents a new approach to forecasting in the presence of structural breaks.
Under continuous break processes our approach approximates the exponential smooth-
ing weights that have long been considered in the literature. Under discrete breaks,
our approach delivers new forecasts based on optimal weights. In practice, dates and
sizes of breaks are unknown and their estimates can be unreliable. For such cases we
derive robust optimal weights, (46) and (47), that do not require a priori knowledge
of the break dates or their sizes. Should information about the range of a break point
be available, for example, from the confidence interval of a break point test, this can
be incorporated in the robust optimal weights (44).

We evaluate the forecasting performance of the different weighting schemes in
Monte Carlo experiments and in an application to forecasts of GDP growth across
nine industrialized economies using the slope of the yield curve as a predictor. Fore-
casts based on robust optimal weights, which require neither knowledge of the break
dates nor a downweighting parameter, lead to forecasts that perform better than other
feasible alternatives in a wide range of settings.
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A Appendix: Mathematical details

A.1 Derivation of optimal weights for multiple regression model with
a single break

Using β̂T (w) in (19) we have

β̂T (w)− β(2) = S−1(w)S1(w(1))(β(1) − β(2)) + S−1(w)

T∑
t=1

wtxtσtεt.

Hence,

eT+1(w) = yT+1 − x′
T+1β̂T (w) = −x′

T+1

[
β̂T (w)− β(2)

]
+ σεT+1,

= σT+1εT+1 − x′
T+1S

−1(w)S1(w(1))(β(1) − β(2))− x′
T+1S

−1(w)

T∑
t=1

wtxtσtεt.

Dividing by σ2
(2) and taking expectations of the squared forecast error yields (20).

In order to obtain the optimal weights we minimize (20) with respect to w subject to
ι′Tw = 1. Defining θ as the Lagrange multiplier associated with ι′Tw = 1, the first order
conditions for the above optimization problem are given by the following. For t ≤ Tb[

q2x′
T+1S

−1(w)AtS
−1(w)xT+1

]
wt

= θ/2 +
[
x′
T+1S

−1(w)S1(w(1))λ
] [
x′
T+1S

−1(w)AtS
−1(w)S1(w(1))λ

]
+x′

T+1S
−1(w)AtS

−1(w)

(
Tb∑
t=1

q2w2
txtx

′
t +

T∑
t=Tb+1

w2
txtx

′
t

)
S−1(w)xT+1

−
[
x′
T+1S

−1(w)S1(w(1))λ
] [
x′
T+1S

−1(w)Atλ
]
,

where At = xtx
′
t and for t ≥ Tb + 1[

x′
T+1S

−1(w)AtS
−1(w)xT+1

]
wt

= θ/2 +
[
x′
T+1S

−1(w)S1(w(1))λ
] [
x′
T+1S

−1(w)AtS
−1(w)S1(w(1))λ

]
+x′

T+1S
−1(w)AtS

−1(w)

(
Tb∑
t=1

q2w2
txtx

′
t +

T∑
t=Tb+1

w2
txtx

′
t

)
S−1(w)xT+1.

Multiplying both sides of the above two expressions by wt and aggregating across t = 1, 2, . . . , T
it is again easily seen that θ = 0.

If At = 0 the solution for wt is indeterminate and without loss of generality can be set to
0. So we consider solutions where At ̸= 0, which yields for t ≤ Tb

wt =

[
x′
T+1S

−1(w)S1(w(1))λ
] [
x′
tS

−1(w)S1(w(1))λ
]

q2x′
T+1S

−1(w)xt
−
[
x′
T+1S

−1(w)S1(w(1))λ
]
[x′

tλ]

q2x′
T+1S

−1(w)xt

+
x′
tS

−1(w)
(∑Tb

t=1 q
2w2

txtx
′
t +
∑T

t=Tb+1 w
2
txtx

′
t

)
S−1(w)xT+1

q2x′
T+1S

−1(w)xt
(54)

and for t ≥ Tb + 1

wt =

[
x′
T+1S

−1(w)S1(w(1))λ
] [

x′
tS

−1(w)S1(w(1))λ
]

x′
T+1S

−1(w)xt
(55)

+
x′
tS

−1(w)
(∑Tb

t=1 q
2w2

txtx
′
t +
∑T

t=Tb+1 w
2
txtx

′
t

)
S−1(w)xT+1

x′
T+1S

−1(w)xt
.

The last result follows since
[
x′
tS

−1(w)S1(w(1))λ
]
− [x′

tλ] can be written as

−x′
t

[
Ik − S−1(w)S1(w(1))

]
λ = −x′

tS
−1(w)

[
S(w)− S1(w(1))

]
λ = −

[
x′
tS

−1(w)S2(w(2))λ
]
.

Rearranging (54) and (55) yields the results in (21) and (22).
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A.2 Panel test of forecast performance

We evaluate the performance of different forecasting methods against the equal weights forecast
using a generalization of the test proposed by Pesaran, Schuermann and Smith (2009). Our test
allows for h > 1 and general aggregation weights across countries. Consider the quadratic loss
differential zit(h) = [eit,A(h)]

2 − [eit,B(h)]
2, where eit,A is the forecast error of method A and

eit,B that of the benchmark forecast, i = 1, 2, . . . ,m denotes different countries, t = 1, 2, . . . , n
different forecasts, and h is the forecast horizon.

For each horizon h, the pooled DM statistic tests the null hypothesis H0 : αi(h) = 0
against the alternative H1 : αi(h) < 0, for some i, where αi(h) is defined by zit(h) = αi(h) +
uit(h), uit(h) ∼

[
0, σ2

i (h)
]
, and uit(h) are independently distributed across i, but can be serially

correlated over t if h > 1. For a given h and a set of country weights, ω = (ω1, ω2, . . . , ωm)′,
the pooled DM test statistic is

PDM (h) =
z̄(h)√
V (z̄(h))

,

where z̄(h) = w′z̄(h), z̄(h) = (z̄1(h), z̄2(h), . . . , z̄m(h))′, z̄i(h) = 1
n

∑n
t=1 zit(h), and V (z̄) =

1
nω

′S(h)ω, where S(h) is a diagonal matrix with σ2
i (h), the variance of z̄i(h), as the (i, i)

element on its diagonal. For h = 1, the variance, σ2
i (1), is estimated as

σ̂2
i (1) =

1

n− 1

n∑
t=1

[zit(1)− z̄i(1)]
2
.

For h > 1, we estimate σ2
i (h) nonparametrically to allow for the autocorrelation of zit(h) due

to the overlap of the underlying forecast errors. Using a Bartlett window, we have

σ̂2
i (h) =

1

n− 1

n∑
t=1

[zit(h)− z̄i(h)]
2
+

2

n

s∑
j=1

(1− j

s+ 1
)

n∑
t=j+1

[zit(h)− z̄i(h)] [zi,t−j(h)− z̄i(h)] .

Under the null hypothesis where the serial correlation in zit(h) for h > 1 is solely due to
overlap in the forecast errors s = h − 1, and this is our choice in the application. Under the
null hypothesis of no relative forecasting skill, the PDM statistic is asymptotically distributed
as N(0, 1). Note that the test is set up as a one-sided test. Thus, the 5% critical value is 1.64.
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B Web supplement to Pesaran, Pick, Pranovich (2012)

This web supplement provides details that were omitted from the paper for brevity.

B.1 Weights for continuous break for extreme values of δ

Here, we derive the weights in (3) for δ = 0 and δ → ∞. First, for δ = 0 we have that
δ2HH′ + IT = IT and therefore

θ =
1

ι′T ιT
=

1

T
.

The weights are therefore

w =
1

T
ιT .

Second, for δ → ∞, first rewrite the weights as

w =(HH′ + δ−2I)−1
(
H+ δ−2θI

)
ιT ,

and note that

δ−2θ =

[
1− ι′T (HH′ + δ−2I)−1HιT

]
ι′T (HH′ + δ−2I)−1ιT

.

In the case where δ is sufficiently large we can expand (HH′ + δ−2I)−1 as

(HH′ + δ−2I)−1 = H′−1
[
I+δ−2

(
H′H

)−1
]−1

H−1

= H′−1
[
I−δ−2

(
H′H

)−1
+ δ−4

(
H′H

)−2 − δ−6
(
H′H

)−3
+ . . .

]
H−1

=
(
HH′)−1 − δ−2H′−1

(
H′H

)−1
H−1 + δ−4H′−1

(
H′H

)−2
H−1 + . . .

Hence

1−ι′T (HH′+δ−2I)−1HιT = 1−ι′T
(
HH′)−1

HιT +δ
−2ι′TH

′−1
(
H′H

)−1
H−1HιT − . . .

and

δ−2θ =
1− ι′T (HH′)

−1
HιT + o(δ−2)

ι′T (HH′ + δ−2I)−1ιT
.

Therefore, as δ2 → ∞

δ−2θ →
1− ι′T (HH′)

−1
HιT

ι′T (HH′)−1ιT
,

lim
δ2→∞

w(δ) = (HH′)−1

[
H+

(
1− ι′T (HH′)

−1
HιT

ι′T(HH′)−1ιT

)
I

]
ιT .

But, using the fact that the triangular structure of H implies that

HH′ =


1 1 1 · · · 1
1 2 2 2
1 2 3 3
...

. . .
...

1 2 3 · · · T

 , and
(
HH′)−1

=


2 −1 0 · · · 0
−1 2 −1 0

0 −1 2
...

...
. . . −1

0 0 · · · 1

 ,

1



(see Neudecker, Trenkler and Liu, 2009, and Chu, Puntanem and Styan, 2011). There-
fore,

(
HH′)−1

H =



1 −1 0 · · · 0

0 1 −1
...

0 0 1
. . . 0

...
. . . −1

0 0 · · · 0 1


,

(HH′)
−1

HιT = (0, . . . , 0, 1)′ and ι′T (HH′)−1HιT = 1. Also, ι′T (HH′)−1ιT = 1.

lim
δ2→∞

w(δ)=(HH′)−1HιT = (0, . . . , 0, 1)′.

B.2 MSFE of post-break and optimal window

For the window that contains Tv of T observations the one-step ahead forecast is

ŷT+1 =
1

T − Tv + 1

T∑
s=Tv

ys =
1

T − Tv + 1

Tb∑
s=Tv

ys +
1

T − Tv + 1

T∑
s=Tb+1

ys

=
(Tb − Tv + 1)µ(1) + µ(2)(T − Tb)

T − Tv + 1
+

1

T − Tv + 1

T∑
s=Tv

σεεs.

Set v = T−Tv+1
T so that Tv = T (1− v) + 1, and re-write the above as

ŷT+1 = µ(2){1− I[v − (1− b)]}

+ I[v − (1− b)]

{
(1− b)µ(2) + [v − (1− b)]µ(1)

v

}
+

1

Tv

T∑
s=Tv

σεεs,

where I(c) is an indicator function equal to 1 if c > 0 and equal to 0 otherwise. The
one-step ahead forecast error is

êT+1 = (µ(2) − µ(1))

[
1− (1− b)

v

]
I[v − (1− b)] + σεεT+1 −

1

Tv

T∑
s=Tv

σεεs.

The expected squared forecast error normalized by σ2ε is

E
(
σ−2
ε ê2T+1

)
= 1 +

(µ(2) − µ(1))
2

σ2

[
1− (1− b)

v

]2
I[v − (1− b)] +

1

Tv
,

= 1 + λ2
[
1− (1− b)

v

]2
I[v − (1− b)] +

1

Tv
. (56)

Initially consider windows that do not contain the break. The window with all obser-
vations after the break will minimize the MSFE, so vov≤(1−b) = (1− b) and

E
[
σ−2
ε ê2T+1|v = (1− b)

]
= 1 +

1

T (1− b)
(57)

This is also the MSFE of the forecast using the post-break window observations.
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Now consider windows that include the break so that I[v− (1− b)] = 1 in (56). The
first order condition is

λ2
[
2(1− b)

v2
− 2(1− b)2

v3

]
− 1

Tv2
= 0, (58)

Then from (58), the expression for the optimal window (among those containing a
break) is

vo =
2(1− b)2λ2

2(1− b)λ2 − 1
T

= (1− b)
1

1− 1
2λ2(1−b)T

(59)

It can be seen that the optimal window is the distance to the break scaled by an expres-
sion that is larger the smaller the break and the smaller the distance to break. A condi-

tion of the optimal window is that it cannot exceed 1. Therefore vo = 2(1−b)2λ2
2(1−b)λ2− 1

T

⩽ 1,

if λ2 < T
2(T−Tb)Tb the optimal window contains all observations.

Using (59) in the MSFE (56) yields the results in (15).

B.3 Notes on the numerical solution of optimal weights in a multiple
regression model

To this end let

d(w) = S−1(w)

 Tb∑
t=1

q2w2
txtx

′
t +

T∑
t=Tb+1

w2
txtx

′
t

S−1(w)xT+1,

p1(w) = S−1(w)S1(w(1))λ, and p2(w) = S−1(w)S2(w(2))λ,

γ(w) = x′
T+1S

−1(w)S1(w(1))λ,

θt(w) =

{
q2x′

T+1S
−1(w)xt if t ≤ Tb

x′
T+1S

−1(w)xt if t > Tb,
,

where d(w), p1(w) and p2(w) are k×1 vectors, and γ(w) and θt(w) are scalar functions
of w. Then, the T equations in (21) and (22) can be written as

θ(w)⊙w = Xd(w) + γ(w)

(
−X(1)p2(w)

X(2)p1(w)

)
= Xd(w) + γ(w)Z(w),

where X is the T × k matrix of regressors, X =
(
X′

(1),X
′
(2)

)′
, X(1) and X(2) are

Tb× k and (T −Tb)× k matrices of pre-break and post-break regressors. Also, θ(w) =
(θ1(w), θ2(w), . . . , θT (w))′ and ⊙ denotes element by element vector multiplication.
We now need to minimize the function

min
w

f ′(w)f(w),

subject to ι′Tw = 1 and wt ≥ 0, where

f(w) = θ(w)⊙w −Xd(w)− γ(w)Z(w).

The asymptotic weights given in Section 2.3.2 below can be used as starting values for
the numerical optimization.
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B.4 Simple computation of weights for multiple breaks

Here we derive a simple representation of the optimal weights in matrix notation that
is easy to implement in matrix oriented programming languages for any number of
breaks in the mean and the variance.

Using the case discussed in Section 2.4.2, we have the first order conditions

t ≤ T1 : ϕ(1)[ϕ(1)

T1∑
t=1

wt + ϕ(2)

T2∑
t=T1+1

wt + · · ·+ ϕ(n)

Tn∑
t=Tn−1+1

wt] + wtq
2
t + θ/2 = 0,

T1 < t ≤ T2 : ϕ(2)[ϕ(1)

T1∑
t=1

wt + ϕ(2)

T2∑
t=T1+1

wt + · · ·+ ϕ(n)

Tn∑
t=Tn−1+1

wt] + wtq
2
t + θ/2 = 0,

...

Tn−1 < t ≤ Tn : ϕ(n)[ϕ(1)

T1∑
t=1

wt + ϕ(2)

T2∑
t=T1+1

wt + · · ·+ ϕ(n)

Tn∑
t=Tn−1+1

wt] + wtq
2
t + θ/2 = 0.

We can write this in matrix notation as

(Q+ ϕϕ′)w = −θ
2
ι,

where Q is a diagonal matrix with q2t as the t, t-element, ϕ = (ϕ1, ϕ2, . . . , ϕT )
′, and

ϕt =



ϕ(1) =
xT+1λ1

xT+1Ω
−1
xx xT+1

for 1 ≤ t ≤ T1

ϕ(2) =
xT+1λ2

xT+1Ω
−1
xx xT+1

for T1 < t ≤ T2
...

ϕ(n) =
xT+1λn

xT+1Ω
−1
xx xT+1

for Tn−1 < t ≤ Tn

0 Tn < t ≤ T + 1

Setting M = Q+ ϕϕ′ we have

Mw = −θ
2
ι,

and therefore

w = −θ
2
M−1ι. (60)

Summing the weights over t yields

ι′w = 1 = −θ
2
ι′M−1ι.

Hence,

−θ
2
=

1

ι′M−1ι
, (61)

Using (61) in (60) yields the optimal weights

w =
1

ι′TM
−1ιT

M−1ιT . (62)
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B.5 MSFE for robust optimal weights

Consider the MSFE associated with the robust optimal weights defined in (44). For
these weights we need to compute

∑Tb
t=1wt,

∑Tb
t=1w

2
t , and

∑T
t=1w

2
t . Note that when

T and Tb are relatively large we can use the following approximations (noting that by
assumption b ≤ b ≤ b̄)

Tb∑
t=1

wt ≈
−1(
b̄− b

) ∫ b

b
log

(
1− a

1− b

)
da,

Tb∑
t=1

w2
t ≈

1

T
(
b̄− b

)2 ∫ b

b

[
log

(
1− a

1− b

)]2
da,

T∑
t=1

w2
t ≈

1

T
(
b̄− b

)2 ∫ b̄

b

[
log

(
1− a

1− b

)]2
da+

(1− b̄)

T
(
b̄− b

)2 [log(1− b̄

1− b

)]2
.

First, note that

Tb∑
t=1

wt ≈
−1(
b̄− b

) ∫ b

b
log(1− a)da+

(b− b)(
b̄− b

) log(1− b) =
b− b

b̄− b
+

1− b

b̄− b
log

(
1− b

b̄− b

)
.

Also,

Tb∑
t=1

w2
t ≈ 1

T
(
b̄− b

)2 ∫ b

b

[
log

(
1− a

1− b

)]2
da

=
1

T
(
b̄− b

)2 ∫ b

b
[log (1− a)]2 da− 2 log(1− b)

T
(
b̄− b

)2 ∫ b

b
log (1− a) da

+
[log(1− b)]2 (b− b)

T
(
b̄− b

)2 ,

and ∫ b

b
log (1− a) da = −(1− b) log(1− b) + (1− b) log(1− b) + b− b,

∫ b

b
[log (1− a)]2 da = −(1− b) [log(1− b)]2 + 2(1− b) log(1− b) + 2b

+(1− b) [log(1− b)]2 − 2(1− b) log(1− b)− 2b.

Similarly,

T∑
t=1

w2
t ≈ 1

T
(
b̄− b

)2 ∫ b̄

b

[
log

(
1− a

1− b

)]2
da+

(1− b̄)

T
(
b̄− b

)2 [log(1− b̄

1− b

)]2
=

1

T
(
b̄− b

)2 ∫ b̄

b
[log (1− a)]2 da− 2 log(1− b)

T
(
b̄− b

)2 ∫ b̄

b
[log (1− a)] da

+
[log(1− b)]2 (b̄− b)

T
(
b̄− b

)2 +
(1− b̄)

T
(
b̄− b

)2 [log(1− b̄

1− b

)]2
.
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The above expressions simplify considerably if we set b = 0. We have

Tb∑
t=1

wt ≈
b

b̄
+

(1− b) log(1− b)

b̄
,

Tb∑
t=1

w2
t ≈

−(1− b) [log(1− b)]2 + 2(1− b) log(1− b) + 2b

T b̄2
,

and
T∑
t=1

w2
t ≈

2b̄+ 2(1− b̄) log(1− b̄)

T b̄2
.

Using these results in (30), we have

ω2
x

x2T+1

[
E
(
e2T+1/σ

2
(2)

)
− 1
]
≈ ϕ2

(
Tb∑
t=1

wt

)2

+
(
q2 − 1

) Tb∑
t=1

w2
t +

T∑
t=1

w2
t

= ϕ2
[
b

b̄
+

(1− b) log(1− b)

b̄

]2
+
(
q2 − 1

) [−(1− b) [log(1− b)]2 + 2(1− b) log(1− b) + 2b

T
(
b̄
)2

]

+
2b̄+ 2(1− b̄) log(1− b̄)

T b̄2
.

In practice if we choose b̄ to be very close to unity but not unity then (1−b̄) log(1−b̄) ≈ 0
and (1− b̄)[log(1− b̄)]2 ≈ 0 and the result in (49) follows.

B.6 MSFE of weights in Figure 4

Figure 6 shows the MSFE corresponding to the weights plotted in Figure 3. The
horizontal axis gives the break point and the vertical axis the corresponding MSFE. It
can be seen from Figure 3 that the robust optimal weights discount past observations
more quickly than the optimal weights and the fitted ExpS weights. As a result, the
MSFE of the robust optimal weights is lower if the break is more recent and is higher
if the break is earlier in the sample. This difference is substantial for T = 50 and
ϕ2 = 0.1 for larger ϕ or T the MSFE is very similar for the three weights.

B.7 Robust optimal weights with higher order terms

Consider now the second order term in (43) and let

Tϕ2H(b, a) = − 1

(1− b)2
+

1

b(1− b)2
I(b− a),

and note that for a < b

Tϕ2
∫ b

0
H(b, a) = 0 when a < b,
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Figure 6: MSFE of optimal weights, robust optimal weights, and fitted exponential
smoothing weights in Figure 4
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Note: The plots report the MSFE associated with the weights in Figure 4 for breaks at each point in

the sample, t = 1, 2, . . . , T . T = 50 in the plots in the left column, T = 500 in the plots in the right

column, ϕ2 = 0.1 in the plots in the top row, ϕ2 = 1 in the plots in the bottom row, and q2 = 0.5

throughout. The dash-dotted line represents the optimal weights w(a|q2, ϕ2) in (42), the solid line the

robust optimal weights in (48), and the dashed line the ExpS weights in (10).

since by assumption the probability of drawing b less than b is zero. Consider now the
value of the integral when b ≤ a ≤ b̄, and note that

Tϕ2
∫ b̄

b
H(b, a) = −

∫ b̄

b

1

(1− b)2
db+

∫ b̄

b

1

b(1− b)2
I(b− a)db

= −
∫ a

b

1

(1− b)2
db−

∫ b̄

a

1

(1− b)2
db+

∫ b̄

a

1

b(1− b)2
db

= −
∫ a

b

1

(1− b)2
db+

∫ b̄

a

1

b(1− b)
db

= − a− b

(1− a)(1− b)
+ log

(
b̄

b

)
+ log

(
1− b̄

1− a

)
.

Finally, for a > b̄ we have

Tϕ2H(b, a) = −
∫ b̄

b

1

(1− b)2
db+

∫ b̄

b

1

b(1− b)2
I(b− a)db = − b̄− b

(1− b̄)(1− b)
.
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Table 6: MSE of γ̂ in Monte Carlo experiments with continuous breaks
T\γ 0.8 0.9 0.95 0.98

50 0.013 0.012 0.009 0.004
100 0.005 0.004 0.004 0.002
200 0.003 0.002 0.001 0.001

Note: The table reports the MSE of the

estimation of the MA parameter γ in an

MA(1) model in the Monte Carlo experi-

ments reported in Table 2.

Combining these results, we obtain

w(a) ≈



0 for a < b
−1

T(b̄−b)
log
(
1−a
1−b

)
+ 1

T 2ϕ2(b̄−b)
×

×
[

−(a−b)
(1−a)(1−b) + log

(
b̄
a

)
+ log

(
1−b̄
1−a

)]
for b ≤ a ≤ b̄

−1
T(b̄−b)

log
(
1−b̄
1−b

)
− 1

T 2ϕ2(b̄−b)
b̄−b

(1−b̄)(1−b) for a > b̄

and the discrete time version is

wt ≈



0 for t < Tb
−1

T(b̄−b)
log
(
1−t/T
1−b

)
+ 1

T 2ϕ2(b̄−b)
×

×
[

−[(t/T )−b]
(1−t/T )(1−b) + log

(
b̄(1−b̄)

(t/T )(1−t/T )

)]
for Tb ≤ t ≤ T b̄

−1
T(b̄−b)

log
(
1−b̄
1−b

)
− 1

T 2ϕ2
1

(1−b̄)(1−b) for t > T b̄

(63)

In the case where b = 0, and b̄T = T − 1, or b̄ = 1− 1/T we have for 1 ≤ t ≤ T − 1

w∗
t =

−1

T − 1
log (1− t/T )− 1

T (T − 1)ϕ2

[
t

T − t
− log

(
(T − 1)

t(T − t)

)]
, (64)

and for the final date using the last part of (63) we obtain

w∗
T =

log(T )

T − 1
− 1

Tϕ2
. (65)

The scaled version of these weights (that sum up to unity) are given by

wt =
w∗
t∑T

s=1w
∗
s

, for t = 1, 2, . . . , T.

In practice, one could set ϕ2 = 1/2 or 1.

B.8 Additional results for the Monte Carlo experiments in the paper

The results in Table 7 show that the influence of a break in the error variance is of
negligible importance for the forecasts, which confirms our theoretical results.
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Table 7: Monte Carlo results for random walk model with a discrete break, q = 0.5
b 0.95 0.9
λ 0.5 1 2 0.5 1 2

T = 50

opt.weight(disc.break; b, λ) 0.927 0.656 0.284 0.915 0.637 0.277

estim.opt.weight(disc.break; b̂, λ̂) 1.042 0.853 0.411 1.048 0.835 0.333
rob.opt.weights(b = 0.75, b̄ = 0.98) 0.947 0.702 0.440 0.940 0.655 0.332
rob.opt.weights(b = 0, b̄ = 1) 0.955 0.856 0.750 0.940 0.810 0.662

post-break obs.(b̂) 1.065 0.864 0.410 1.073 0.850 0.334

opt.window(b̂, λ̂) 1.002 0.824 0.426 1.006 0.803 0.335
AveW(wmin = 0.05) 0.964 0.887 0.804 0.947 0.835 0.709

estim.opt.weight(cont.break; δ̂) 0.997 0.939 0.648 0.999 0.895 0.424
ExpS(γ̂) 0.997 0.939 0.648 0.999 0.895 0.424

T = 100

opt.weight(disc.break; b, λ) 0.896 0.605 0.257 0.878 0.593 0.257

estim.opt.weight(disc.break; b̂, λ̂) 1.031 0.807 0.311 1.021 0.731 0.262
rob.opt.weights(b = 0.75, b̄ = 0.98) 0.908 0.697 0.471 0.884 0.619 0.316
rob.opt.weights(b = 0, b̄ = 1) 0.952 0.866 0.774 0.931 0.805 0.662

post-break obs.(b̂) 1.054 0.821 0.311 1.042 0.742 0.261

opt.window(b̂, λ̂) 0.994 0.780 0.316 0.990 0.714 0.265
AveW(wmin = 0.05) 0.964 0.899 0.830 0.939 0.830 0.706

estim.opt.weight(cont.break; δ̂) 0.990 0.910 0.469 0.978 0.769 0.289
ExpS(γ̂) 0.990 0.910 0.469 0.978 0.769 0.289

T = 200

opt.weight(disc.break; b, λ) 0.871 0.572 0.238 0.863 0.578 0.248

estim.opt.weight(disc.break; b̂, λ̂) 1.024 0.704 0.243 0.992 0.613 0.249
rob.opt.weights(b = 0.75, b̄ = 0.98) 0.891 0.683 0.461 0.868 0.605 0.306
rob.opt.weights(b = 0, b̄ = 1) 0.949 0.863 0.771 0.928 0.802 0.658

post-break obs.(b̂) 1.047 0.714 0.243 1.010 0.616 0.248

opt.window(b̂, λ̂) 0.991 0.686 0.245 0.971 0.607 0.249
AveW(wmin = 0.05) 0.962 0.898 0.831 0.937 0.828 0.704

estim.opt.weight(cont.break; δ̂) 0.979 0.800 0.288 0.952 0.648 0.263
ExpS(γ̂) 0.979 0.800 0.288 0.952 0.648 0.263

Note: Here, q = σ(1)/σ(2) = 0.5. Otherwise see footnote of Tables 2 and 3.

B.9 Monte Carlo results for an AR(1) DGP

Table 8 reports the results of a Monte Carlo experiment where we use the different
forecasting methods outlined in the paper for an AR(1) model. While we cannot claim
that the weights that we have derived are optimal in the context of this model, it is
nonetheless interesting to assess their performance in a dynamic setting. Here, we use
an AR(1)

y
(r)
t = µt + ρty

(r)
t−1 + ε

(r)
t , ε

(r)
t ∼ N(0, 1)

and set µt = 0 and ρt = 0.1. If there is a break in µt we set µ(1) = 0 and µ(2) = 1
and if there is a break in ρt we wet ρ(1) = 0.1 and ρ(2) = 0.6. We generate data for
t = −99, . . . , 0, 1, . . . , T and discard the first 100 observations. The results are based
on r = 1, 2, . . . , 10000 repetitions.

Table 8 reports the MSFE relative to that of the equal weights forecast. We compare
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the optimal and robust optimal weights to those of the forecast based on the post break
sample and the AveW sample. We omit the constant gain least square and the optimal
window for computational simplicity and as these experiments only intend to give a
first impression of the performance of the weights derived in this paper.

The results suggest that, if there is a break in ρ only and the unconditional mean
remains zero, the “optimal” weights increase the MSFE above that of the equal weights
forecast. The robust optimal weights, in contrast, lead to substantial improvements in
the MSFE, also exceeding that of the AveW procedure.

If the intercept changes but the persistence of the process remains unchanged,
the optimal weights generally perform better than the equal weights forecast. The
robust optimal weights that use the last quarter of the observations perform best when
T = 100 and 200; for T = 50 integrating the break date over the entire sample yields
the most precise forecasts. The post break forecast and the AveW forecast improve
over the full sample forecasts but not as much as the robust optimal weights.

Finally, when both the intercept and the AR(1) parameter change, the optimal
weights lead to large improvements in MSFE and have the smallest MSFE for T = 200.
When T = 50 and 100, the robust optimal weights offer the most precise forecasts, and
using the information that the break is in the last quarter of the sample improves the
forecasts. Overall, the results suggest that the optimal and the robust optimal weights
do lead to large improvements in forecast performance also in dynamic models.

Table 8: Monte Carlo results for an AR(1) and a discrete break, q = 1
b 0.95 0.9
λµ 0 1 1 0 1 1
λρ 0.5 0 0.5 0.5 0 0.5

T = 50

estim.opt.weight(b̂, λ̂µ, λ̂ρ) 1.043 1.044 0.885 1.094 0.979 0.675
rob.opt.weights(b = 0.75, b̄ = 0.98) 1.026 0.945 0.530 1.052 0.872 0.501
rob.opt.weights(b = 0, b̄ = 1) 0.895 0.873 0.599 0.898 0.855 0.547

post-break obs.(b̂) 1.097 1.089 0.918 1.173 1.029 0.744
AveW(wmin = 0.05) 0.937 0.908 0.721 0.936 0.875 0.656

T = 100

estim.opt.weight(b̂, λ̂µ, λ̂ρ) 1.070 0.946 0.528 1.104 0.866 0.445
rob.opt.weights(b = 0.75, b̄ = 0.98) 0.917 0.764 0.386 0.922 0.719 0.416
rob.opt.weights(b = 0, b̄ = 1) 0.887 0.836 0.522 0.882 0.809 0.504

post-break obs.(b̂) 1.140 0.994 0.553 1.190 0.902 0.494
AveW(wmin = 0.05) 0.936 0.888 0.691 0.920 0.836 0.629

T = 200

estim.opt.weight(b̂, λ̂µ, λ̂ρ) 1.055 0.817 0.333 1.025 0.734 0.398
rob.opt.weights(b = 0.75, b̄ = 0.98) 0.856 0.717 0.335 0.849 0.689 0.412
rob.opt.weights(b = 0, b̄ = 1) 0.881 0.827 0.473 0.867 0.804 0.503

post-break obs.(b̂) 1.127 0.854 0.362 1.078 0.751 0.421
AveW(wmin = 0.05) 0.933 0.882 0.659 0.909 0.834 0.624

Note: The results are for an AR(1) model, y
(r)
t = µt + ρty

(r)
t−1 + ε

(r)
t , ε

(r)
t ∼ N(0, 1) with a

single break in µt and/or in ρt at Tb. Furthermore, λµ = (µ(1) − µ(0))/σ, λρ = (ρ(2) − ρ(1))/σ,

and here σ = 1. The results are based on 10,000 repetitions. For definitions and forecasting

procedures see the footnotes of Tables 2 and 3.
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B.10 Constant gain least squares

As stated in (51) and reproduced here for the convenience of the reader, in the lin-
ear regression model (1) the parameter is estimated using the recursion (Evans and
Honkapohja, 2001)

βt = βt−1 + αR−1
t−1xt(yt − x′

tβt−1)

and
Rt = Rt−1 + α(xtx

′
t −Rt−1).

We set β0 to the OLS estimate based on the first 2k observations and R0 = Ik. In the
empirical application we estimate α by minimizing the MSFE of pseudo-out-of-sample
forecasts of the last 40 pre-sample observations, that is, for the period 1984Q1–1994Q4.
The respective estimates of α are reported in Table 9.

Table 9: Estimates of the constant gain least squares updating parameter, α̂

Country h = 1 h = 2 h = 3 h = 4

USA 0.03 0.21 0.26 0.20
Japan 0.09 0.20 0.22 0.34
Germany 0.04 0.17 0.19 0.29
UK 0.20 0.17 0.17 0.20
F 0.04 0.05 0.10 0.10
It. 0.07 0.10 0.11 0.32
Spain 0.22 0.24 0.27 0.27
Can. 0.11 0.26 0.23 0.23
Aus. 0.01 0.21 0.22 0.17

The table reports the estimated α for the CGLS

estimation in the application. The estimates were

obtained by minimizing the MSFE of pseudo-out-

of-sample forecasts of the last 40 pre-sample ob-

servations.

C Country specific results from the application to the
yield curve as predictor of real economic activity

Tables 11 reports the results for the first sub-sample of forecasts, 1994Q1–2000Q4.
The forecasts for the second sub-sample, 2001Q1–2006Q4 are in Table 12.
The results for the last sub-sample, 2007Q1–2009Q4, are in Table 13.
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Table 10: Predictive power of the yield curve: Relative forecast accuracy per country (all
forecasts: 1994Q1–2009Q4)

USA Japan Ger. UK F It. Spain Can. Aus.

h = 1
prop. breaks 0.063 1.000 0.250 1.000 0.266 1.000 0.094 0.266 1.000

equal weight(MSFE) 0.463 1.097 0.682 0.469 0.293 0.542 0.343 0.444 0.350

est.asy.opt.weight 0.918 0.934 0.969 0.836 0.966 1.249 0.928 0.977 0.986
rob.opt.weight(1 break) 0.877 0.874 0.941 0.853 0.957 0.914 0.915 0.905 0.999
rob.opt.weight(2 breaks) 0.934 0.922 0.964 0.930 0.979 0.952 0.954 0.938 1.002
post-break 1.046 0.888 1.289 0.962 1.484 1.014 1.794 1.278 0.969
AveW 1.001 0.982 0.980 0.985 0.996 0.986 0.998 1.003 0.985
CGLS(α̂) 0.904 0.764 0.952 16.502 0.967 0.820 11.488 0.837 6.269
CGLS(¯̂α) 0.854 0.765 0.919 1.075 0.908 0.800 1.003 0.858 1.137

h = 2
prop. breaks 0.095 0.984 0.524 1.000 0.286 1.000 0.000 0.175 0.000

equal weight(MSFE) 1.533 3.139 1.871 1.635 0.874 1.627 1.248 1.615 0.724

est.asy.opt.weight 0.947 1.014 1.116 0.973 1.131 1.360 1.000 1.195 1.000
rob.opt.weight(1 break) 0.852 0.849 0.997 0.947 1.000 0.913 0.988 0.906 1.058
rob.opt.weight(2 breaks) 0.923 0.904 0.977 0.977 0.995 0.947 0.988 0.932 1.025
post-break 1.137 0.965 1.247 1.012 1.238 1.023 1.000 1.767 1.000
AveW 1.007 0.981 0.995 1.003 0.999 0.983 0.999 1.003 0.993
CGLS(α̂) 1.005 0.714 1.182 2.614 1.004 0.809 2.494 1.463 1.822
CGLS(¯̂α) 0.927 0.710 1.189 3.184 1.201 0.905 1.466 1.158 1.790

h = 3
prop. breaks 0.177 0.710 0.516 0.758 0.113 1.000 0.000 0.258 0.000

equal weight(MSFE) 3.059 5.751 3.473 3.240 1.722 3.146 2.598 3.284 1.144

est.asy.opt.weight 0.975 1.026 1.415 1.023 1.081 1.132 1.000 1.126 1.000
rob.opt.weight(1 break) 0.896 0.844 1.041 1.003 1.035 0.938 1.009 0.921 1.066
rob.opt.weight(2 breaks) 0.942 0.894 0.987 1.002 1.009 0.958 1.007 0.933 1.030
post-break 1.094 0.981 1.250 1.018 1.647 1.035 1.000 1.171 1.000
AveW 1.001 0.979 1.000 1.004 1.001 0.993 1.000 1.003 0.996
CGLS(α̂) 1.443 0.860 1.232 1.276 1.091 0.742 2.379 1.107 1.891
CGLS(¯̂α) 1.031 0.850 1.237 1.376 1.300 0.818 2.958 1.026 1.684

h = 4
prop. breaks 0.049 0.361 0.508 0.754 0.311 0.016 0.000 0.033 0.754

equal weight(MSFE) 4.780 9.121 5.232 4.913 2.738 5.029 4.200 5.095 1.513

est.asy.opt.weight 1.012 1.033 1.180 1.054 1.215 0.948 1.000 1.062 1.115
rob.opt.weight(1 break) 0.931 0.834 1.074 1.029 1.063 0.980 1.019 0.951 1.058
rob.opt.weight(2 breaks) 0.953 0.883 0.990 1.011 1.021 0.977 1.019 0.943 1.025
post-break 1.027 1.049 1.262 1.039 1.281 0.953 1.000 1.065 0.989
AveW 0.996 0.978 1.007 1.010 1.004 1.010 1.001 1.002 0.990
CGLS(α̂) 1.025 1.647 1.324 1.377 1.138 0.817 3.587 1.215 1.429
CGLS(¯̂α) 1.022 0.994 1.280 1.560 1.370 0.759 8.399 1.207 1.627

Note: The line denoted “prop. break” reports the proportion of forecasts where a break was detected by the Bai

and Perron (1997,2003) test. The countries are: USA, Japan, Germany, UK, France, Italy, Spain, Canada, and

Australia. For the forecasting methods see footnote of Table 5.
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Table 11: Predictive power of the yield curve: Relative forecast accuracy per country
(subsample 1: 1994Q1–2000Q4)

USA Japan Ger. UK F It. Spain Can. Aus.

h = 1
prop. breaks 0.000 1.000 0.143 1.000 0.393 1.000 0.107 0.500 1.000

equal weight(MSFE) 0.317 0.834 0.404 0.156 0.187 0.300 0.199 0.292 0.482

est.asy.opt.weight 1.000 1.009 1.028 0.934 1.030 1.036 0.985 1.162 0.983
rob.opt.weight(1 break) 0.794 0.800 0.955 0.773 1.020 1.116 0.787 0.978 0.979
rob.opt.weight(2 breaks) 0.904 0.861 0.985 0.935 1.011 1.024 0.915 0.974 0.996
post-break 1.000 0.938 0.997 0.729 1.444 1.216 1.021 1.246 0.949
AveW 1.003 0.970 0.950 1.003 1.000 1.041 0.977 1.016 0.978
CGLS(α̂) 0.874 0.738 0.990 0.711 1.057 1.098 1.307 0.810 3.806
CGLS(¯̂α) 0.768 0.738 0.984 0.738 0.994 1.108 0.830 0.871 1.009

h = 2
prop. breaks 0.111 0.963 0.333 1.000 0.333 1.000 0.000 0.185 0.000

equal weight(MSFE) 0.962 2.280 0.813 0.561 0.534 0.504 0.635 1.088 0.792

est.asy.opt.weight 0.789 0.972 1.461 0.719 1.280 1.470 1.000 1.031 1.000
rob.opt.weight(1 break) 0.611 0.721 1.022 0.777 1.121 1.292 0.788 0.981 1.010
rob.opt.weight(2 breaks) 0.827 0.806 0.993 0.976 1.057 1.046 0.940 0.951 1.006
post-break 0.772 1.009 2.138 0.734 1.353 1.512 1.000 1.151 1.000
AveW 1.028 0.968 0.983 0.980 1.002 1.136 0.978 1.020 0.987
CGLS(α̂) 0.499 0.686 1.153 0.731 1.133 1.259 4.542 0.753 1.230
CGLS(¯̂α) 0.469 0.633 1.156 0.731 1.218 1.541 1.655 0.739 1.208

h = 3
prop. breaks 0.385 0.423 0.385 0.500 0.115 1.000 0.000 0.538 0.000

equal weight(MSFE) 2.090 4.085 1.566 1.133 1.150 0.779 1.239 2.546 1.193

est.asy.opt.weight 0.701 0.976 3.300 0.846 1.042 2.064 1.000 1.170 1.000
rob.opt.weight(1 break) 0.552 0.690 1.084 0.790 1.158 1.444 0.792 0.990 0.982
rob.opt.weight(2 breaks) 0.819 0.768 1.010 1.001 1.070 1.070 0.967 0.937 0.993
post-break 0.692 1.014 2.362 0.937 1.101 1.713 1.000 1.236 1.000
AveW 1.003 0.963 0.997 0.972 1.004 1.283 0.980 1.019 0.990
CGLS(α̂) 0.436 0.758 1.490 0.701 1.106 1.407 5.065 0.829 1.224
CGLS(¯̂α) 0.345 0.725 1.505 0.687 1.262 2.121 8.930 0.825 1.180

h = 4
prop. breaks 0.120 0.560 0.320 0.440 0.560 0.000 0.000 0.040 0.400

equal weight(MSFE) 3.744 7.274 2.453 1.839 1.976 1.284 2.023 4.490 1.650

est.asy.opt.weight 1.036 1.062 1.369 0.926 1.025 1.000 1.000 1.008 1.204
rob.opt.weight(1 break) 0.570 0.697 1.147 0.820 1.184 1.506 0.819 1.019 0.922
rob.opt.weight(2 breaks) 0.836 0.767 1.021 1.025 1.085 1.087 0.998 0.943 0.965
post-break 1.085 1.155 2.360 0.995 1.078 1.000 1.000 1.000 0.971
AveW 0.974 0.969 1.018 0.978 1.006 1.331 0.981 1.017 0.979
CGLS(α̂) 0.285 1.184 1.740 0.668 1.132 3.435 13.700 0.886 1.012
CGLS(¯̂α) 0.281 0.991 1.507 0.774 1.334 2.376 38.320 0.883 1.073

Note: See footnote of Table 5. The dates given above denote the periods for which one-period ahead

forecasts are made. The h = 2 forecast makes the first forecast for the observation one quarter later, the

h = 3 forecast for that two periods later, and the h = 4 forecast for that three quarters later.

13



Table 12: Predictive power of the yield curve: Relative forecast accuracy per country
(subsample 2: 2001Q1–2006Q4)

USA Japan Ger. UK F It. Spain Can. Aus.

h = 1
prop. breaks 0.000 1.000 0.333 1.000 0.083 1.000 0.000 0.000 1.000

equal weight(MSFE) 0.227 0.430 0.265 0.072 0.139 0.181 0.070 0.197 0.199

est.asy.opt.weight 1.000 1.075 1.010 1.003 1.119 0.851 1.000 1.000 0.946
rob.opt.weight(1 break) 1.041 0.955 0.823 1.053 1.040 0.886 0.913 0.938 1.005
rob.opt.weight(2 breaks) 1.010 0.950 0.903 1.014 1.020 0.978 0.925 0.961 1.002
post-break 1.000 1.121 1.029 1.009 1.276 0.811 1.000 1.000 0.941
AveW 1.001 0.984 0.959 1.002 0.993 0.921 0.986 0.992 0.981
CGLS(α̂) 1.019 0.982 0.852 1.314 1.054 0.950 0.955 1.138 10.894
CGLS(¯̂α) 1.133 0.982 0.754 1.191 1.113 0.941 1.072 1.102 1.168

h = 2
prop. breaks 0.000 1.000 0.542 1.000 0.250 1.000 0.000 0.167 0.000

equal weight(MSFE) 0.614 1.181 0.849 0.145 0.281 0.497 0.185 0.681 0.495

est.asy.opt.weight 1.000 1.015 0.978 1.049 1.724 0.804 1.000 1.735 1.000
rob.opt.weight(1 break) 1.184 0.980 0.885 1.087 1.070 0.831 0.942 0.892 1.090
rob.opt.weight(2 breaks) 1.039 0.950 0.915 0.989 1.025 0.970 0.922 0.924 1.036
post-break 1.000 0.957 0.985 1.072 2.159 0.724 1.000 2.274 1.000
AveW 0.999 0.982 0.987 0.980 0.996 0.847 0.979 0.993 0.996
CGLS(α̂) 1.952 1.289 0.732 1.717 1.106 0.911 1.279 2.495 3.139
CGLS(¯̂α) 1.516 1.291 0.727 1.723 1.594 0.832 1.397 1.574 2.400

h = 3
prop. breaks 0.000 0.875 0.625 1.000 0.125 1.000 0.000 0.083 0.000

equal weight(MSFE) 1.096 1.905 1.711 0.253 0.460 0.831 0.355 1.290 0.843

est.asy.opt.weight 1.000 1.150 0.865 0.907 1.544 0.787 1.000 1.466 1.000
rob.opt.weight(1 break) 1.523 0.977 0.922 1.035 1.129 0.871 1.077 0.854 1.134
rob.opt.weight(2 breaks) 1.140 0.930 0.919 0.947 1.046 1.008 0.974 0.893 1.052
post-break 1.000 1.175 0.845 0.892 1.913 0.718 1.000 1.617 1.000
AveW 1.002 0.975 0.992 0.960 1.001 0.815 0.978 0.995 1.000
CGLS(α̂) 5.363 2.096 1.014 1.963 1.707 1.010 3.825 2.403 2.244
CGLS(¯̂α) 2.713 1.961 1.013 2.054 2.937 0.922 2.272 2.185 1.958

h = 4
prop. breaks 0.000 0.333 0.875 1.000 0.208 0.000 0.000 0.042 1.000

equal weight(MSFE) 1.569 2.457 2.645 0.373 0.660 1.084 0.568 1.989 1.020

est.asy.opt.weight 1.000 1.118 1.596 0.856 3.184 1.000 1.000 1.384 1.064
rob.opt.weight(1 break) 1.703 0.963 0.939 0.922 1.200 1.023 1.141 0.848 1.172
rob.opt.weight(2 breaks) 1.176 0.889 0.906 0.871 1.071 1.084 1.004 0.885 1.057
post-break 1.000 0.985 0.998 0.824 3.723 1.000 1.000 1.422 1.011
AveW 1.010 0.964 1.001 0.933 1.006 0.853 0.983 0.998 1.002
CGLS(α̂) 3.704 5.951 1.459 2.371 1.990 1.313 4.366 2.908 1.804
CGLS(¯̂α) 3.749 2.405 1.447 2.530 4.473 1.553 3.289 2.868 2.437

Note: See footnote of Table 5. The dates given above denote the periods for which forecasts are made at

all horizons.
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Table 13: Predictive power of the yield curve: Relative forecast accuracy per country
(subsample 3: 2007Q1-2009Q4)

USA Japan Ger. UK F It. Spain Can. Aus.

h = 1
prop. breaks 0.333 1.000 0.333 1.000 0.333 1.000 0.250 0.250 1.000

equal weight(MSFE) 1.277 3.046 2.168 1.997 0.850 1.831 1.227 1.294 0.346

est.asy.opt.weight 0.842 0.847 0.934 0.806 0.882 1.409 0.898 0.873 1.046
rob.opt.weight(1 break) 0.866 0.899 0.964 0.854 0.898 0.843 0.964 0.856 1.059
rob.opt.weight(2 breaks) 0.924 0.953 0.970 0.924 0.948 0.920 0.971 0.912 1.022
post-break 1.089 0.790 1.480 1.001 1.573 0.977 2.176 1.381 1.066
AveW 1.000 0.990 0.998 0.980 0.995 0.977 1.007 1.000 1.009
CGLS(α̂) 0.881 0.719 0.960 20.462 0.893 0.689 16.537 0.760 8.942
CGLS(¯̂α) 0.804 0.721 0.932 1.128 0.796 0.655 1.061 0.777 1.517

h = 2
prop. breaks 0.250 1.000 0.917 1.000 0.250 1.000 0.000 0.167 0.000

equal weight(MSFE) 4.656 8.984 6.297 7.033 2.825 6.414 4.752 4.669 1.031

est.asy.opt.weight 1.006 1.038 1.054 1.015 0.950 1.427 1.000 1.123 1.000
rob.opt.weight(1 break) 0.877 0.888 1.020 0.972 0.934 0.858 1.052 0.872 1.110
rob.opt.weight(2 breaks) 0.936 0.948 0.989 0.976 0.963 0.926 1.008 0.925 1.049
post-break 1.343 0.942 1.059 1.060 1.006 0.983 1.000 1.942 1.000
AveW 0.999 0.988 1.001 1.008 0.998 0.977 1.007 0.998 1.003
CGLS(α̂) 0.991 0.579 1.312 2.990 0.929 0.714 1.973 1.534 1.580
CGLS(¯̂α) 0.984 0.601 1.322 3.685 1.116 0.804 1.415 1.256 2.210

h = 3
prop. breaks 0.083 1.000 0.583 0.833 0.083 1.000 0.000 0.000 0.000

equal weight(MSFE) 9.086 17.054 11.129 13.781 5.487 12.903 10.032 8.870 1.640

est.asy.opt.weight 1.106 1.024 1.009 1.059 1.020 1.055 1.000 1.000 1.000
rob.opt.weight(1 break) 0.916 0.895 1.064 1.039 0.963 0.881 1.062 0.898 1.129
rob.opt.weight(2 breaks) 0.955 0.951 1.001 1.004 0.974 0.937 1.020 0.942 1.066
post-break 1.317 0.921 1.035 1.037 1.850 0.987 1.000 1.000 1.000
AveW 1.000 0.987 1.004 1.011 1.001 0.978 1.007 0.995 1.000
CGLS(α̂) 0.999 0.636 1.221 1.354 0.982 0.620 1.559 0.903 2.580
CGLS(¯̂α) 0.968 0.667 1.225 1.474 1.042 0.634 1.409 0.815 2.197

h = 4
prop. breaks 0.000 0.000 0.167 0.917 0.000 0.083 0.000 0.000 1.000

equal weight(MSFE) 13.360 26.297 16.192 20.399 8.480 20.720 15.997 12.569 2.214

est.asy.opt.weight 1.000 1.000 0.984 1.085 1.000 0.936 1.000 1.000 1.023
rob.opt.weight(1 break) 0.961 0.889 1.095 1.072 0.983 0.908 1.063 0.932 1.163
rob.opt.weight(2 breaks) 0.969 0.948 1.008 1.013 0.982 0.951 1.025 0.960 1.087
post-break 1.000 1.000 1.002 1.056 1.000 0.942 1.000 1.000 0.995
AveW 1.005 0.987 1.005 1.019 1.002 0.984 1.007 0.992 0.998
CGLS(α̂) 0.828 1.109 1.149 1.473 1.009 0.428 0.867 0.925 1.731
CGLS(¯̂α) 0.815 0.733 1.155 1.672 0.904 0.467 0.879 0.922 1.741

Note: See footnote of Table 5. The dates given above denote the periods for which forecasts are made at all

horizons.
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