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1 Introduction

In a recent paper, Pesaran (2006) proposed the Common Correlated Effects (CCE) approach to esti-

mation of panel data models with multi-factor error structure, which has been further developed by

Kapetanios, Pesaran, and Yagamata (2011), Pesaran and Tosetti (2011), and Chudik, Pesaran, and

Tosetti (2011). The CCE method is robust to different types of cross section dependence of errors,

possible unit roots in factors, and slope heterogeneity. However, the CCE approach as it was originally

proposed does not cover the case where the panel includes a lagged dependent variable and/or weakly

exogenous variables as regressors.1 This paper extends the CCE approach to allow for such regressors.

This extension is not straightforward because coeffi cient heterogeneity in the lags of the dependent

variable introduces infinite order lag polynomials in the large N relationships between cross-sectional

averages and the unobserved factors (Chudik and Pesaran, 2014). Our focus is on stationary heteroge-

nous panels with weakly exogenous regressors where the cross-sectional dimension (N) and the time

series dimension (T ) are suffi ciently large. We focus on estimation and inference of the mean coeffi -

cients, and consider the application of bias correction techniques to deal with the small T bias of the

estimators.

Recent literature on large dynamic panels focuses mostly on how to deal with cross-sectional (CS)

dependence assuming slope homogeneity. Estimation of panel data models with lagged dependent

variables and cross-sectionally dependent errors has been considered in Moon and Weidner (2013a and

2013b), who propose a Gaussian quasi maximum likelihood estimator (QMLE).2 Moon and Weidner’s

analysis assumes homogeneous coeffi cients, and therefore it is not applicable to dynamic panels with

heterogenous coeffi cients.3 Similarly, the interactive-effects estimator (IFE) developed by Bai (2009) also

allows for cross-sectionally dependent errors, but assumes homogeneous slopes.4 Song (2013) extends the

analysis of Bai (2009) by allowing for a lagged dependent variable as well as coeffi cient heterogeneity,

but provides results on the estimation of cross-section specific coeffi cients only. The present paper

provides an alternative CCE type estimation approach to Song’s extension of the IFE estimator. In

addition, we propose a mean group estimator of the mean coeffi cients, and show that CCE types

estimators once augmented with a suffi cient number of lags and cross-sectional averages perform well

even in the case of dynamic models with weakly exogenous regressors. We also show that the asymptotic

1See Everaert and Groote (2012) who derive asymptotic bias of CCE pooled estimators in the case of dynamic homo-
geneous panels.

2See also Lee, Moon, and Weidner (2012) for an extension of this framework to panels with measurement errors.
3Pesaran and Smith (1995) show that in the presence of coeffi cient heterogeneity pooled estimators are inconsistent in

the case of panel data models with lagged dependent variables.
4Earlier literature on large panels typically ignores cross section dependence of errors, including pooled mean group

estimation proposed by Pesaran, Shin, and Smith (1999), fully modified OLS estimation by Pedroni (2000) or the panel
dynamic OLS estimation by Mark and Sul (2003). These papers can also handle panels with nonstationary data. There is
also a large literature on dynamic panels with large N but finite T , which assumes homogeneous slopes.
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distribution of the CCE estimators developed in the literature continue to be applicable to the more

general setting considered in this paper. Our method could extend to Song’s IFE and we also investigate

the performance of the mean group estimator based on Song’s unit-specific coeffi cient estimates.

More specifically, in this paper we consider estimation of autoregressive distributed lagged (ARDL)

panel data models where the dependent variable of the ith cross section unit at time t, yit, is explained

by its lagged values, current and lagged values of k weakly exogenous regressors, xit, m unobserved

(possibly serially correlated) common factors, ft, and a serially uncorrelated idiosyncratic error. In

addition to the regressors included in the panel ARDL model, following Pesaran, Smith, and Yamagata

(2013), we also assume that there exists a set of additional covariates, git, that are affected by the

same set of unobserved common factors, ft. This assumption seems reasonable considering that agents,

when making their decisions, face a common set of factors such as technology, institutional set-ups,

and general economic conditions, which then get manifested in many variables, whether included in the

panel data model under consideration or not. It would be diffi cult to find economic time series that

do not share one or more common factors. Similar arguments also underlie forecasting using a large

number of regressors popularized recently in econometrics by Stock and Watson (2002) and Forni et al.

(2005).

A necessary condition for the CCE mean group (CCEMG) estimator to be valid in the case of

ARDL panel data models is that the number of cross-sectional averages based on xit and git must be

at least as large as the number of unobserved common factors minus one (m − 1). In practice, where

the number of unobserved factors is unknown, it is suffi cient to assume that the number of available

cross-sectional averages is at least mmax − 1, where mmax denotes the assumed maximum number of

unobserved factors. In most economic applications mmax is likely to be relatively small.5 Whether the

chosen mmax is suffi cient for a particular empirical application could be examined by testing for the

weak cross sectional dependence of residuals, as suggested by Bailey, Holly, and Pesaran (2013).

We also report on the small sample properties of CCEMG estimators for panel ARDL models, us-

ing a comprehensive set of Monte Carlo experiments. In particular, we investigate two bias correction

methods, namely the half-panel jackknife due to Dhaene and Jochmans (2012), and the recursive mean

adjustment due to So and Shin (1999). We find that the proposed estimators have satisfactory per-

formance under different dynamic parameter configurations, regardless of the number of unobserved

factors, as long as they do not exceed the number of cross-sectional averages and the time dimension

is suffi ciently large. We compare the performance of CCEMG with the mean group estimator based on

5Stock and Watson (2002), Giannone, Reichlin, and Sala (2005) conclude that only few, perhaps two, factors explain
much of the predictable variations, while Bai and Ng (2007) estimate four factors and Stock and Watson (2005) estimate
as many as seven factors.
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Song’s IFE, and also with Moon and Weidner’s QMLE, and Bai’s IFE estimators developed for slope

homogeneous ARDL panels. We find that jackknife bias correction is more effective in dealing with

the small sample bias than the recursive mean adjustment procedure. Furthermore, the bias correction

seems to be helpful only for the coeffi cients of the lagged dependent variable. The uncorrected CCEMG

estimators of the coeffi cients of the regressors, xit, seem to work well even in the case of panels with a

relatively small time dimension.

Even though we do not consider an empirical application in this paper, it should be clear that the

methods advanced here are likely to have wide applicability because many large cross country or cross

regional panels tend to be subject to error cross-sectional dependence and slope heterogeneity, and are

likely to contain weakly exogenous regressors. One such application is considered in Chudik, Mohaddes,

Pesaran, and Raissi (2013) who investigate the long run effects of inflation and public debt on economic

growth across a large group of developed and emerging economies.

The remainder of the paper is organized as follows. Section 2 extends the multifactor residual panel

data model considered in Pesaran (2006) by introducing lagged dependent variables and allowing the

regressors to be weakly exogenous. Section 3 develops a dynamic version of the CCEMG estimator

for panel ARDL models. Section 4 discusses the jackknife and recursive de-meaning bias correction

procedures. Section 5 introduces the mean group estimator based on Song’s individual estimates,

describes the Monte Carlo experiments, and reports the small sample results. Mathematical proofs are

provided in the Appendix and additional Monte Carlo findings are provided in a Supplement.6

A brief word on notations: All vectors are column vectors represented by bold lower case letters, and

matrices are represented by bold capital letters. ‖A‖ =
√
% (A′A) is the spectral norm of A, % (A) is

the spectral radius of A.7 ‖A‖1 ≡ max
1≤j≤n

∑n
i=1 |aij | , and ‖A‖∞ ≡ max

1≤i≤n

∑n
j=1 |aij | denote the maximum

absolute column and row sum matrix norms.

2 Panel ARDL Model with a Multifactor Error Structure

Suppose that the dependent variable, yit, the regressors, xit, and the covariates, git, are generated

according to the following linear covariance stationary dynamic heterogenous panel data model,

yit = cyi + φiyi,t−1 + β′0ixit + β′1ixi,t−1 + uit, (1)

uit = γ ′ift + εit, (2)

6The supplement can be downloaded at: www.pesaran.com.
7Note that if x is a vector, then ‖x‖ =

√
% (x′x) =

√
x′x corresponds to the Euclidean length of vector x.

3



and

ωit =

 xit

git

 = cωi +αiyi,t−1 + Γ′ift + vit, (3)

for i = 1, 2, ..., N and t = 1, 2, ..., T , where cyi and cωi are individual fixed effects for unit i, xit is kx× 1

vector of regressors specific to cross-sectional unit i at time t, git is kg × 1 vector of covariates specific

to unit i, kg ≥ 0, kx + kg = k, ft is an m × 1 vector of unobserved common factors, εit represents the

idiosyncratic errors, Γi is an m×k matrix of factor loadings, αi is a k×1 vector of unknown coeffi cients,

and vit is assumed to follow a general linear covariance stationary process distributed independently of

the idiosyncratic errors, εit.

The process for the exogenous variables, (3), can also be written equivalently as a panel ARDL

model in ωit. But we have chosen to work with this particular specification as it allows us to distinguish

between cases of strictly and weakly exogenous regressors in terms of the feed-back coeffi cients, αi.

The case of strictly exogenous regressors, covered in Pesaran (2006), refers to the special case when

αi = 0
k×1
. As in the earlier literature, the above specification also allows the regressors to be correlated

with the unobserved common factors. Lags of xit and git are not included in (3), but they could be

readily included. In order to keep the notations and exposition simple, we also abstract from observed

common effects, additional lags of the dependent variable, and other deterministic terms in (1) and (3).

Such additional regressors can be readily accommodated at the cost of further notational complexity.

In the above ARDL formulation, we specify the same lag orders for yit and xit because it is desirable

in empirical applications to start with a balanced lag order to avoid potential problems connected with

persistent regressors. It is also worth noting that a number of panel data models investigated in the

literature can be derived as special cases of (1)-(3). The analysis of Moon and Weidner (2013a and

2013b) assumes that βi0 = β0, βi1 = β1 and φi = φ. Bai (2009) assumes βi0 = β0, βi1 = β1 and

φi = 0. Under the restriction

β1i = −φiβ0i, (4)

we have

yit − θ′ixit = cyi + φi
(
yi,t−1 − θ′ixit−1

)
+ uit,

where θi = −βi1/φi, which in turn can be written as (assuming that |φi| < 1)

yit = c∗yi + θ′ixit + γ∗′i f∗t + ε∗it, (5)

where c∗yi = cyi/ (1− φi), ε∗it = (1− φiL)−1 εit is a serially correlated error term, and f∗t is a new set

of unobserved common factors. Estimation and inference in panel model (5) have been studied by

4



Pesaran (2006) who introduced the CCE approach. This approach has been shown to be robust to

an unknown number of unobserved common factors (Pesaran, 2006, and Chudik, Pesaran, and Tosetti,

2011), possible unit roots in factors (Kapetanios, Pesaran, and Yagamata, 2011), serial correlation of

unknown form in ε∗it (Pesaran, 2006), spatial or other forms of weak cross-sectional dependence in ε
∗
it

(Pesaran and Tosetti, 2011, and Chudik, Pesaran, and Tosetti, 2011). However, if the restrictions set out

in (4) on β0i and β1i do not hold, then the CCE approach is no longer applicable and the standard CCE

estimators could be seriously biased, even asymptotically.8 Our objective in this paper is to consider

estimation and inference in the panel ARDL model (1)-(3), where the parameter restrictions (4) do not

necessarily hold, and the slope coeffi cients πi =
(
φi,β

′
i0,β

′
i1

)′ are allowed to vary across units.
For future reference, partition matrix Γi = (Γxi,Γgi) into m× kx and m× kg matrices Γxi and Γgi,

vector αi =
(
α′xi,α

′
gi

)′
into kx× 1 and kg× 1 vectors αxi and αgi, and similarly vit =

(
v′xit,v

′
git

)′
into

kx × 1 and kg × 1 vectors vxit and vgit.

3 Estimation

Let zit = (yit,x
′
it,g

′
it)
′ and write (1)-(3) compactly as

A0izit = ci + A1izi,t−1 + Cift + eit, (6)

where ci = (cyi, c
′
ωi)
′, Ci = (γi,Γi)

′,

A0i =


1 −β′0i 0

1×kg

0
kx×1

Ikx 0
kx×kg

0
kg×1

0
kg×kx

Ikg

 , A1i =


φi β′1i 0

1×kg

αxi 0
kx×kx

0
kx×kg

αgi 0
kg×kx

0
kg×kg

 ,

and eit = (εit,v
′
it)
′ is a serially correlated error process. A0i is invertible (for any i) and multiplying

(6) by A−1
0i , we obtain the following reduced form VAR(1) representation of zit with serially correlated

errors,

zit = czi + Aizi,t−1 + A−1
0i Cift + ezit,

where czi = A−1
0i ci, ezit = A−1

0i eit, and Ai = A−1
0i A1i.

We postulate the following assumptions for the estimation of the short-run coeffi cients.

ASSUMPTION 1 (Individual Specific Errors) The individual specific errors εit are independently

8See Everaert and Groote (2012) for derivation of asymptotic bias of CCE pooled estimators in the case of dynamic
homogeneous panels.
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distributed of vjt′ for all i, j, t and t′. The vector of errors εt = (ε1t, ε2t, ..., εNt)
′ is spatially correlated

according to

εt = Rςεt, (7)

where the N × N matrix R has bounded row and column matrix norms, namely ‖R‖∞ < K and

‖R‖1 < K, respectively, for some constant K < ∞, which does not depend on N , diagonal elements

of RR′ are bounded away from zero, ςεt = (ςε1t, ςε2t, ..., ςεNt)
′, and ςεit, for i = 1, 2, ..., N and t =

1, 2, .., T , are independently and identically distributed (IID) with mean 0, unit variances, and finite

fourth-order moments. For each i = 1, 2, ..., N , vit follows a linear stationary process with absolute

summable autocovariances (uniformly in i),

vit =

∞∑
`=0

Si`ςv,i,t−`, (8)

where ςvit is a k × 1 vector of IID random variables, with mean zero, variance matrix Ik and finite

fourth-order moments. In particular,

‖V ar (vit)‖ =

∥∥∥∥∥
∞∑
`=0

Si`S
′
i`

∥∥∥∥∥ ≤ K <∞, (9)

for i = 1, 2, ..., N .

ASSUMPTION 2 (Common Effects) Them×1 vector of unobserved common factors, ft = (f1t, f2t, ..., fmt)
′,

is covariance stationary with absolute summable autocovariances, and is distributed independently of the

individual specific errors εit′ and vit′ for all i, t and t′. Fourth order moments of f`t, for ` = 1, 2, ...,m,

are bounded.

ASSUMPTION 3 (Factor Loadings) The factor loadings γi and Γi are independently and identically

distributed across i, and of the common factors ft, for all i and t, with mean γ and Γ, respectively, and

bounded second moments. In particular,

γi = γ + ηγi, ηγi ∼ IID
(

0
m×1

,Ωγ

)
, for i = 1, 2, ..., N ,

and

vec (Γi) = vec (Γ) + ηΓi, ηΓi ∼ IID
(

0
km×1

,ΩΓ

)
, for i = 1, 2, ..., N ,

where Ωγ and ΩΓ are m × m and km × km symmetric nonnegative definite matrices, ‖γ‖ < K,

‖Ωγ‖ < K, ‖Γ‖ < K, and ‖ΩΓ‖ < K.
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ASSUMPTION 4 (Heterogenous Coeffi cients) (2kx + 1) × 1 dimensional vector of coeffi cients πi =(
φi,β

′
0i,β

′
1i

)′ follows the random coeffi cient model

πi = π + υπi, υπi ∼ IID
(

0
2kx+1×1

,Ωπ

)
, for i = 1, 2, ..., N , (10)

where π =
(
φ,β′0,β

′
1

)′, ‖π‖ < K, ‖Ωπ‖ < K, Ωπ is (2kx + 1) × (2kx + 1) symmetric nonnegative

definite matrix, and the random deviations υπi are independently distributed of γj, Γj, εjt, vjt, and ft

for all i,j, and t. Furthermore, the support of φi lies strictly inside the unit circle, and E ‖ci‖ < K for

all i.

ASSUMPTION 5 (Regressors and Covariates) Regressors and covariates in ωit = (x′it,g
′
it)
′ are ei-

ther strictly exogenous and generated according to the canonical factor model (3) with αi = 0
k×1
, or

weakly exogenous and generated according to (3) with αi, for i = 1, 2, ..., N , IID across i, and indepen-

dently distributed of υπj ,γj, Γj, εjt, vjt, and ft for all i, j and t. In the case where the regressors are

weakly exogenous we also assume:

(i) the support of % (Ai) lies strictly inside the unit circle, for i = 1, 2, ..., N , where Ai = A−1
0i A1i;

and

(ii) the inverse of polynomial Λ (L) =
∑∞

`=0 Λ`L
`, where Λ` = E

(
A`
iA
−1
0i

)
, exists and has exponen-

tially decaying coeffi cients.

Let w = (w1, w2, ..., wN )′ be an N × 1 vector of non-stochastic (or pre-determined) weights that

satisfies the following ‘granularity’conditions

‖w‖ = O
(
N−

1
2

)
, (11)

wi
‖w‖ = O

(
N−

1
2

)
uniformly in i, (12)

and the normalization condition
N∑
i=1

wi = 1. (13)

The weights vector w depends on N , but we suppress the subscript N to simplify notations.

Next, we derive a large N representation for cross-sectional averages of zit following Chudik and

Pesaran (2014). Since the support of the eigenvalues of Ai is assumed to lie strictly inside the unit

circle, zit is an invertible covariance stationary process and can be written as

zit =

∞∑
`=0

A`
i

(
czi + A−1

0i Cift−` + ez,i,t−`
)
,
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for i = 1, 2, ..., N . Taking weighted cross-sectional averages of the above and making use of the fact

that under our assumptions the elements of ezit are weakly cross-sectionally dependent, together with

the random coeffi cients Assumptions 3-5, we have

N∑
i=1

∞∑
`=0

wiA
`
iez,i,t−` = Op

(
N−1/2

)
.

Since (under Assumptions 3-5) Ai and A0,i are independently distributed of Ci, and Ai, A0,i and Ci

are independently distributed across i, we have

N∑
i=1

∞∑
`=0

wiA
`
iA
−1
0,iCift−` =

∞∑
`=0

E
(
A`
iA
−1
0,iCi

)
ft−` +Op

(
N−1/2

)
,

= Λ (L) Cf t +Op

(
N−1/2

)
,

where C = E (Ci) = (γ,Γ)′. Thus, yielding the following large N representation

z̃wt = Λ (L) Cf t +Op

(
N−1/2

)
, (14)

where z̃wt = z̄wt − c̄zw is a k + 1 dimensional vector of de-trended cross section averages, z̄wt =

(ȳwt, x̄
′
wt, ḡ

′
wt)
′ =

∑N
i=1wizit is a k + 1 dimensional vector of cross section averages, and c̄zw =∑N

i=1wi (Ik+1 −Ai)
−1 czi.

Multiplying (14) by the inverse of Λ (L) now yields the following large N expression for a linear

combination of the unobserved common factors,

Cf t = Λ−1 (L) z̃wt +Op

(
N−1/2

)
. (15)

Consider now the special case where αi = 0
k×1

and the regressors are strictly exogenous. In this case

the regressors are independently distributed of the coeffi cients in πi =
(
φi,β

′
0,i,β

′
1,i

)′, which simplifies
the derivation of the large N representation for z̃wt. In particular, (1− φiL) is invertible for any

i = 1, 2, ..., N under Assumption 4, and multiplying (1) by (1− φiL)−1 we have

yit =
∞∑
`=0

φ`icyi +
∞∑
`=0

φ`iβ
′
0ixi,t−` +

∞∑
`=0

φ`iβ
′
1ixi,t−`−1 +

∞∑
`=0

φ`iγ
′
ift−` +

∞∑
`=0

φ`iεi,t−`. (16)

Taking weighted cross-sectional averages under Assumptions 1-5 and assuming αi = 0
k×1
, we obtain

ywt = c̄yw + a (L)γ ′ft + a (L)
(
β′0 + β′1L

)
xwt +Op

(
N−1/2

)
, (17)
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and

ωwt = c̄ωw + Γ′ft +Op

(
N−1/2

)
, (18)

where c̄yw =
∑N

i=1wicy,i (1− φi)−1, c̄ωw =
∑N

i=1wicωi, and a (L) =
∑∞

`=0 a`L
` with its elements given

by the moments of φi, namely a` = E
(
φ`i
)
, for ` = 0, 1, 2, .... Note that under Assumption 4, which

constraints the support of φi to lie strictly inside the unit circle, the rate of decay of the coeffi cients in

a (L) is exponential. This restriction on the support of φi also ensures the existence of all moments of

φi. The rate of decay of the coeffi cients of a (L) will not necessarily be exponential if the support of φi

covered 1. Depending on the properties of the distribution of φi in the neighborhood of 1, a (L) need

not be absolute summable, in which case ywt could converge (in a quadratic mean) to a long memory

process as N →∞. Such possibilities are ruled out by Assumption 4.

However, under Assumption 4 and by Lemma A.1 of Chudik and Pesaran (2013), the inverse of a (L)

exists and has exponentially decaying coeffi cients. Pre-multiplying both sides of (17) by b (L) = a−1 (L),

we obtain

γ ′ft = b (L) ywt − b (1) c̄yw − β′0xwt − β′1xw,t−1 +Op

(
N−1/2

)
. (19)

Stacking equations (18) and (19), we obtain (15) with Λ−1 (L) reduced (in the strictly exogenous case)

to

Λ−1 (L) =


b (L) −β′0 − β′1L 0

1×kg

0
kx×1

Ikx 0
kx×kg

0
kg×1

0
kg×kx

Ikg

 . (20)

It follows from (15) that when rank (C) = m and regardless of whether the regressors are weakly or

strictly exogenous, de-trended cross section averages z̃wt and their lags can be used as proxies for the

unobserved common factors, assuming that N is suffi ciently large, namely we have

ft = G (L) z̃wt +Op

(
N−1/2

)
, (21)

where

G (L) =
(
C′C

)−1
C′Λ−1 (L) .

Note that the coeffi cients of the distributed lag function, G (L), decay at an exponential rate. In par-

ticular, in the case of strictly exogenous regressors (where αi = 0
k×1
), the decay rate of the coeffi cients

in G (L) is given by the decay rate of the coeffi cients in b (L), see (20) and (23). As established by

Lemma A.1 of Chudik and Pesaran (2013), the decay rate of the coeffi cients in b (L) is exponential

under Assumption 4, which confines the support of φi to lie strictly within the unit circle. In the case
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of weakly exogenous regressors, an exponential rate of decay of the coeffi cients in Λ−1 (L) is ensured by

Assumption 5-ii.

The full column rank of C ensures that C′C is invertible and this rank condition is required for

the estimation of unit-specific coeffi cients. In contrast, the rank condition is not always necessary for

estimation of the cross-sectional mean of the coeffi cients, as we shall see below.

ASSUMPTION 6 (k + 1)×m dimensional matrix C = (γ,Γ)′ has full column rank.

Substituting the large N representation for the unobserved common factors (21) into (1), we obtain

yit = c∗yi + φiyi,t−1 + β′0ixit + β′1ixi,t−1 + δ′i (L) z̄wt + εit +Op

(
N−1/2

)
, (22)

where

δi (L) =
∞∑
`=0

δi`L
` = G′ (L)γi, (23)

and c∗yi = cyi − δ′i (1) c̄zw.

Consider the following cross-sectionally augmented regressions, based on (22),

yit = c∗yi + φiyi,t−1 + β′0ixit + β′1ixi,t−1 +

pT∑
`=0

δ′i`z̄w,t−` + eyit, (24)

where pT is the number of lags (assumed to be the same across units for the simplicity of exposition).

The error term, eyit, can be decomposed into three parts: an idiosyncratic term, εit, an error component

due to the truncation of infinite polynomial distributed lag function, δi (L), and an error component

due to the approximation of unobserved common factors, namely

eyit = εit +
∞∑

`=pT+1

δ′i`z̄w,t−` +Op

(
N−1/2

)
.

Note that the coeffi cients of the distributed lag function, δi (L) = γ ′iG (L) , decay at an exponential

rate.

Let π̂i =
(
φ̂i, β̂

′
0i, β̂

′
1i

)′
be the least squares estimates of πi based on the cross-sectionally augmented

regression (24). Also consider the following data matrices

Ξi =



yipT x′i,pT+1 x′ipT

yi,pT+1 x′i,pT+2 x′i,pT+1

...
...

...

yi,T−1 x′iT x′i,T−1


, Q̄w =



1 z̄′w,pT+1 z̄′w,pT · · · z̄′w,1

1 z̄′w,pT+2 z̄′w,pT+1 · · · z̄′w,2
...

...
...

...

1 z̄′w,T z̄′w,T−1 · · · z̄′w,T−pT


, (25)
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and the projection matrix

M̄q = IT−pT − Q̄w

(
Q̄′wQ̄w

)+
Q̄′w,

where IT−pT is a (T − pT )× (T − pT ) dimensional identity matrix, and A+ denotes the Moore-Penrose

generalized inverse of A. Matrices Ξi, Q̄w, and M̄q depend also on pT , N and T , but we omit these

subscripts to simplify notations. We summarize and introduce additional notations that will be useful

(for proofs) in Appendix A.1.

π̂i can now be written as

π̂i =
(
Ξ′iM̄qΞi

)−1
Ξ′iM̄qyi, (26)

where yi = (yi,pT+1, yi,pT+2, ..., yi,T )′. The mean group estimator of π = E (πi) =
(
φ,β′0,β

′
1

)′ is given
by

π̂MG =
1

N

N∑
i=1

π̂i. (27)

In addition to Assumptions 1-6 above, we shall also require the following further assumption.

ASSUMPTION 7 (a) Denote the (t− pT )-th row of matrix Ξ̃i = MhΞi by ξ̃it =
(
ξ̃i1t, ξ̃i2t, ...., ξ̃i,2kx+1,t

)′
,

where Mh is defined in the Appendix by (A.4). Individual elements of ξ̃it have uniformly bounded

fourth moments, namely there exists a positive constant K such that E
(
ξ̃

4

ist

)
< K for any

t = pT + 1, pT + 2, ..., T, i = 1, 2, ..., N and s = 1, 2, ..., 2kx + 1.

(b) There exists N0 and T0 such that for all N ≥ N0, T ≥ T0, (2kx + 1)× (2kx + 1) matrices Ψ̂−1
Ξ,iT =(

Ξ′iM̄qΞi/T
)−1 exist for all i.

(c) (2kx + 1) × (2kx + 1) dimensional matrix Σiξ defined by (A.14) in the Appendix is invertible for

all i and
∥∥∥Σ−1

iξ

∥∥∥ < K <∞ for all i.

This assumption plays a similar role as Assumption 4.6 in Chudik, Pesaran, and Tosetti (2011) and

ensures that π̂i, π̂MG and their asymptotic distributions are well defined.

First, we establish suffi cient conditions for the consistency of unit-specific estimates.

Theorem 1 (Consistency of π̂i) Suppose yit, for i = 1, 2, ..., N and t = 1, 2, ..., T are generated

by the panel ARDL model (1)-(3), and Assumptions 1-7 hold. Then, as (N,T, pT )
j→ ∞, such that

p3
T /T → κ, 0 < κ <∞, we have

π̂i − πi
p→ 0

2kx+1×1
, (28)

where π̂i =
(
φ̂i, β̂

′
0i, β̂

′
1i

)′
is given by (26).
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No restrictions on the relative expansion rates of N and T to infinity are required for the consistency

of π̂i in the theorem above, but the number of lags needs to be restricted so that there are suffi cient

degrees of freedom for consistent estimation (i.e. the number of lags is not too large, in particular it

is required that p2
T /T → 0) and the bias due to the truncation of (possibly) infinite lag polynomials is

suffi ciently small (i.e. the number of lags is not too small, in our case
√
TρpT → 0 for some positive

constant ρ < 1). Letting p3
T /T → κ, 0 < κ < ∞, as T → ∞, ensures that these conditions are met.9

The rank condition in Assumption 6 is also necessary for the consistency of π̂i. This is because the

unobserved factors are allowed to be serially correlated and correlated with the regressors.

3.1 Consistency and asymptotic distribution of π̂MG

Consistency of the unit-specific estimates π̂i is not always necessary for the consistency of the mean

group estimator of π = E(πi), which is established next.

Theorem 2 (Consistency of π̂MG) Suppose yit, for i = 1, 2, ..., N and t = 1, 2, ..., T is given by the

panel data model (1)-(3), and Assumptions 1-5 and 7 hold, and (N,T, pT )
j→∞, such that p3

T /T → κ,

0 < κ <∞. Then,

(i) if Assumption 6 also holds,

π̂MG − π
p→ 0

2kx+1×1
, (29)

where π̂MG =
(
φ̂MG, β̂

′
0MG, β̂

′
1MG

)′
is given by (27);

(ii) if Assumption 6 does not hold but ft is serially uncorrelated, π̂MG − π
p→ 0

2kx+1×1
.

Theorem 2 establishes that π̂MG is consistent (as N and T tend jointly to infinity at any rate),

regardless of the rank condition when factors are serially uncorrelated, although they can still be cor-

related with the regressors. When the factors are serially correlated, the rank condition is required for

the consistency of π̂MG. As we have seen, full column rank of C is suffi cient for approximating the

unobserved common factors arbitrarily well by cross section averages and their lags. In this case, the

serial correlation of factors and correlation of factors and regressors do not pose any problems. When

the rank condition does not hold but factors are serially uncorrelated, then π̂i could be inconsistent

due to the correlation of xit and ft. However, the asymptotic bias of π̂i −πi is cross-sectionally weakly

dependent with zero mean and consequently the mean group estimator is consistent.

The following theorem establishes the asymptotic distribution of π̂MG.

9See also a related discussion in Berk (1974), Chudik and Pesaran (2013), and Said and Dickey (1984) on the truncation
of infinite polynomials in least squares regressions.
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Theorem 3 (Asymptotic distribution of π̂MG) Suppose yit, for i = 1, 2, ..., N and t = 1, 2, ..., T

are generated by the panel ARDL model (1)-(3), Assumptions 1-5 and 7 hold, and (N,T, pT )
j→∞ such

that N/T → κ1 and p3
T /T → κ2, 0 < κ1,κ2 <∞. Then,

(i) if Assumption 6 also holds, we have

√
N (π̂MG − π)

d→ N

(
0

2kx+1×1
,Ωπ

)
, (30)

(ii) if Assumption 6 does not hold but ft is serially uncorrelated, we have

√
N (π̂MG − π)

d→ N

(
0

2kx+1×1
,ΣMG

)
, (31)

where π̂MG =
(
φ̂
′
MG, β̂

′
0MG, β̂

′
1MG

)′
is given by (27) and ΣMG is given by equation (A.84) in the

Appendix.

In both cases, the asymptotic variance of π̂MG can be consistently estimated nonparametrically by

Σ̂MG =
1

N − 1

N∑
i=1

(π̂i − π̂MG) (π̂i − π̂MG)′ . (32)

The convergence rate of π̂MG is
√
N due to the heterogeneity of the coeffi cients. Theorem 3 shows

that the asymptotic distribution of π̂MG differs depending on the rank of the matrix C in Assumption

6. If C has full column rank, then the unit specific estimates π̂i are consistent, ΣMG reduces to Ωπ, and

the asymptotic variance of the mean group estimator is given by the variance of πi alone. If, on the other

hand, C does not have the full column rank and factors are serially uncorrelated, then the unit-specific

estimates are inconsistent (since ft is correlated with xit), but π̂MG is consistent and asymptotically

normal with variance that depends not only on Ωπ but also on other parameters, including the variance

of factor loadings. Pesaran (2006) did not require any restrictions on the relative rate of convergence

of N and T for the asymptotic distribution of the common correlated mean group estimator. This

is no longer the case in our model due to O
(
T−1

)
time series bias of π̂i and π̂MG that arises from

the presence of lagged values of the dependent variable. This bias dates back to Hurwicz (1950) and

has been well documented in the literature. Theorem 3 requires N/T → κ1 for the derivation of the

asymptotic distribution of π̂MG due to the time series bias, and is therefore unsuitable for panels with

T being small relative to N .
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4 Bias-corrected CCEMG estimators

In this section we review the different procedures proposed in the literature for correcting the small

sample time series bias of estimators in dynamic panels and consider the possibility of developing bias-

corrected versions of CCEMG estimators for dynamic panels.

Existing literature focuses predominantly on homogeneous panels where several different ways to

correct for O
(
T−1

)
time series bias have been proposed. This literature can be divided into the following

broad categories: (i) analytical corrections based on an asymptotic bias formula (Bruno, 2005, Bun,

2003, Bun and Carree, 2005 and 2006, Bun and Kiviet, 2003, Hahn and Kuersteiner, 2002, Hahn and

Moon, 2006, and Kiviet, 1995 and 1999); (ii) bootstrap and simulation based bias corrections (Everaert

and Ponzi, 2007, Phillips and Sul, 2003 and 2007), and (iii) other methods, including jackknife bias

corrections (Dhaene and Jochmans, 2012) and the recursive mean adjustment correction procedures (So

and Shin, 1999).

In contrast, bias correction for dynamic panels with heterogenous coeffi cients have been considered

only in a few studies. Hsiao, Pesaran, and Tahmiscioglu (1999) investigate bias-corrected mean group

estimation where the Kiviet and Phillips (1993) bias correction is applied to individual estimates of

short-run coeffi cients. Hsiao, Pesaran, and Tahmiscioglu (1999) also propose a Hierarchical Bayesian

estimation of short-run coeffi cients, which they find to have good small sample properties in their

Monte Carlo study.10 Pesaran and Zhao (1999) investigate bias correction methods in estimating long-

run coeffi cients and consider two analytical corrections based on an approximation of the asymptotic

bias of long-run coeffi cients, a bootstrap bias-corrected estimator, and a "naive" bias-corrected panel

estimator computed from bias-corrected short-run coeffi cients (using a result derived by Kiviet and

Phillips, 1993).

4.1 Bias corrected versions of π̂MG

All the bias correction procedures reviewed above are developed for panel data models without unob-

served common factors and are not directly applicable to π̂MG. This applies to bootstrapped based

corrections, as well as the analytical corrections based on asymptotic bias formulae, such as the one

derived by Kiviet and Phillips (1993). The development of analytical or bootstrapped bias correction

procedures for dynamic panel data models with a multifactor error structure is beyond the scope of

10Zhang and Small (2006) further develops the hierarchical Bayesian approach of Hsiao, Pesaran, and Tahmiscioglu
(1999) by imposing a stationarity constraint on each of the cross section units and by considering different possibilities for
starting values. A Bayesian approach has also been developed by Canova and Marcet (1999) to study income convergence
in a dynamic heterogenous panel of countries, and by Canova and Ciccarelli (2004 and 2009) to forecast variables and
turning points in a panel VAR. Forecasting with Bayesian shrinkage estimators have also been considered by Garcia-Ferrer,
Highfield, Palm, and Zellner (1987), Zellner and Hong (1989) and Zellner, Hong, and ki Min (1991).
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this paper and deserve separate investigations of their own. Instead here we consider the application

of jackknife and recursive mean adjustment bias correction procedures to π̂MG that do not require any

knowledge of the error factor structure and are particularly simple to implement.

4.1.1 Jackknife bias correction

Jackknife bias correction is popular due to its simplicity and widespread applicability. Since the in-

troduction of jackknife by Quenouille (1949) and its later extension by Tukey (1958), there are several

forms of jackknife corrections considered in the literature, see Miller (1974) for an earlier survey. We

consider the "half-panel jackknife" method discussed by Dhaene and Jochmans (2012), which corrects

for O
(
T−1

)
bias. Jackknife bias-corrected CCEMG estimators are constructed as:

π̃MG = 2π̂MG −
1

2

(
π̂aMG + π̂bMG

)
,

where π̂aMG denotes the CCEMG estimator computed from the first half of the available time period,

namely over the period t = 1, 2, ..., [T/2], where [T/2] denotes the integer part of T/2, and π̂bMG is the

CCEMG estimators computed using the observations over the period t = [T/2] + 1, [T/2] + 2, ..., T .

4.1.2 Recursive mean adjustment

The second bias-correction is based on the recursive mean adjustment method proposed by So and Shin

(1999), who advocate demeaning variables using the partial mean, which is not influenced by future

observations. We let11

ỹit = yit −
1

t− 1

t−1∑
s=1

yis,

and

ω̃it = ωit −
1

t− 1

t−1∑
s=1

ωis,

for i = 1, 2, ..., N and t = 2, 3, ..., T , where ωit = (x′it,g
′
it)
′. We then compute the bias-adjusted CCE

mean group estimator based on the recursive de-meaned variables ỹit and ω̃it (with T −1 available time

periods, t = 2, 3, ..., T ).12

11So and Shin (1999) originally consider partial means based on observations up to the time period t. We construct the
partial means based on observations up to the time period t− 1.
12Shin and So (2001) implement recursive mean adjustment for unit root tests in a slightly different way . Recursive

mean adjustment has been used in several papers in the literature, including Shin, Kang, and Oh (2004), Sul (2009) and
Choi, Mark, and Sul (2010).
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5 Monte Carlo Experiments

Our main objective is to investigate the small sample properties of the CCEMG estimator and its bias

corrected versions in panel ARDL models under different assumptions concerning the parameter values

and the degree of cross-sectional dependence. We also examine the robustness of the quasi maximum

likelihood estimator (QMLE) developed by Moon and Weidner (2013a and 2013b) and the interactive-

effects estimator (IFE) proposed by Bai (2009) to coeffi cients heterogeneity, and include an alternative

MG estimator based on Song’s extension of Bai’s IFE approach (denoted as π̂sMG) and investigate its

performance.

We start with the description of the data generating process in subsection 5.1 followed by a summary

account of the different estimators under consideration in subsection 5.2 and then provide a summary

of our main findings in the final subsection.

5.1 Data Generating Process

We set kx = kg = 1 and write (1)-(3) as

yit = cyi + φiyi,t−1 + β0ixit + β1ixi,t−1 + uit, uit = γ ′ift + εit, (33)

and  xit

git

 =

 cxi

cgi

+

 αxi

αgi

 yi,t−1 +

 γ ′xi

γ ′gi

 ft +

 vxit

vgit

 . (34)

The unobserved common factors in ft and the unit-specific components vit = (vxit, vgit)
′ are generated

as independent stationary AR(1) processes:

ft` = ρf`ft−1,` + ςft`, ςft` ∼ IIDN
(
0, 1− ρ2

f`

)
, (35)

vxit = ρxivxi,t−1 + ςxit, ςxit ∼ IIDN
(
0, σ2

vxi

)
, (36)

vgit = ρgivgi,t−1 + ςgit, ςgit ∼ IIDN
(
0, σ2

vgi

)
(37)

for i = 1, 2, ..., N , ` = 1, 2, ..,m, and for t = −99, ..., 0, 1, 2, ..., T with the starting values f`,−100 = 0, and

vxi,−100 = vgi,−100 = 0. The first 100 time observations (t = −99,−48, ..., 0) are discarded. We generate

ρxi and ρgi, for i = 1, 2, ....N as IIDU [0.0.95], and consider two values for ρf`, representing the case of

serially uncorrelated factors, ρf` = 0, for ` = 1, 2, ...,m, and the case of the serially correlated factors

ρf` = 0.6, for ` = 1, 2, ...,m. We set σ2
vxi = σ2

vgi = σ2
vi and allow σvi to be correlated with β0i and set

σvi = βi0

√
1− [E (ρxi)]

2.
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As before, we let zit = (yit, xit, git)
′, and write the data generating process for zit more compactly

as (see (6)),

zit = czi + Aizi,t−1 + A−1
0i Cift + A−1

0i eit, (38)

where czi = (cyi + β0icxi, cxi, cgi)
′,

Ai =


φi + β0iαxi β1i 0

αxi 0 0

αgi 0 0

 , A−1
0i =


1 β0i 0

0 1 0

0 0 1

 , Ci =
(
γi,γxi,γgi

)′ ,

and eit = (εit + β0ivxit, vxit, vgit)
′ is a serially correlated error vector. We generate zit for i = 1, 2, ..., N ,

and t = −99, ..., 0, 1, 2, ..., T based on (38) with the starting values zi,−100 = 0, and the first 100 time

observations (t = −99,−48, ..., 0) are discarded as burn-in replications. The fixed effects are generated

as ciy ∼ IIDN (1, 1), cxi = cyi + ςcxi, and cgi = cyi + ςcgi, where ςcxi, ςcgi ∼ IIDN (0, 1), thus allowing

for dependence between (xit, git)
′ and cyi.

For each i, the process {zit} is stationary if ft and eit are stationary and the eigenvalues of Ai lie

inside the unit circle. More specifically, the parameter choices for % (Ai) < 1 have to be such that

1

2

∣∣∣∣φi + αxiβ0i ±
√

(φi + αxiβ0i)
2 + 4β1iαxi

∣∣∣∣ < 1.

Suppose that only the positive values of φi, αxi and β0i are considered, such that φi+αxiβ0i < 2. Then

the suffi cient stationary conditions are

(β0i + β1i)αxi < 1− φi,

(β1i − β0i)αxi < 1 + φi.

Accordingly, we set β1i = −0.5 for all i and generate β0i as IIDU(0.5, 1). When αxi > 0, αxi needs

to be generated such that 0.5αxi < 1 − φi. We consider two possibilities for φi: low values where

φi is generated as IIDU(0, 0.8) and αxi as IIDU(0, 0.35), and high values where we use the draws,

φi ∼ IIDU(0.5, 0.9) and αxi ∼ IIDU(0, 0.15). These choices ensure that the support of % (Ai) lies

strictly inside the unit circle, as required by Assumption 5. Values of αgi do not affect the eigenvalues

of Ai and are generated as αgi ∼ IIDU(0, 1).

The above DGP is more general than the other DGPs used in other MC experiments in the literature

and allows for weakly exogenous regressors. The factors and regressors are allowed to be correlated and

persistent, and correlated fixed effects are included.
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All factor loadings are generated independently as

γi` = γ` + ηi,γ`, ηi,γ` ∼ IIDN
(
0, σ2

γ`

)
,

γxi` = γx` + ηi,γx`, ηi,γx` ∼ IIDN
(
0, σ2

γx`

)
,

γgi` = γg` + ηi,γg`, ηi,γg` ∼ IIDN
(
0, σ2

γg`

)
for ` = 1, 2, ..,m, and i = 1, 2, ..., N . Also, without loss of generality, the factor loadings are calibrated

so that V ar(γ ′ift) = V ar (γ ′xift) = V ar
(
γ ′gift

)
= 1. We also set σ2

γ` = σ2
γx` = σ2

γg` = 0.22, γ` =
√
bγ`,

γx` =
√
`bx` and γg` =

√
(2`− 1) bg`, for ` = 1, 2, ...,m, where bγ = 1/m − σ2

γ`, bx = 2/ [m (m+ 1)] −

2/ (m+ 1)σ2
x` and bg = 1/m2 − σ2

g`/m for ` = 1, 2, ...,m. This ensures that the contribution of the

unobserved factors to the variance of yit does not rise with m. We consider m = 1, 2, or 3 unobserved

common factors.

Finally, the idiosyncratic errors, εit, are generated to be heteroskedastic and weakly cross-sectionally

dependent. Specifically, we adopt the following spatial autoregressive model (SAR) to generate εt =

(ε1t, ε2t, ..., εNt)
′:

εt = aεSεεt + eεt, (39)

where the elements of eεt are drawn as IIDN
(
0, 1

2σ
2
i

)
, with σ2

i obtained as independent draws from

χ2(2) distribution,

Sε =



0 1
2 0 0 · · · 0

1
2 0 1 0 0

0 1 0
. . .

...

0 0
. . . . . . 1 0

... 1 0 1
2

0 0 · · · 0 1
2 0


,

and the spatial autoregressive parameter is set to aε = 0.4. Note that {εit} is cross-sectionally weakly

dependent for |aε| < 0.5.

In addition to these experiments, we also consider pure panel autoregressive experiments where

we set β0i = β1i = 0 for all i. Table 1 summarizes the various parameter configurations of all the

different experiments. In total, we conducted 24 experiments covering the various cases: with or without

regressors in the equation for the dependent variable, low or high values of φ = E (φi), m = 1, 2, or

3 common factors, and persistent or serially uncorrelated common factors. We consider the following

combinations of sample sizes: N,T ∈ {40, 50, 100, 150, 200}, and set the number of replications to

R = 2000 in the case of all experiments.
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5.2 Estimation techniques

The focus of the MC results will be on the estimates of the average parameter values φ = E (φi) and

β0 = E (β0i) in the case of experiments with regressors, xit. Before presenting the outcomes, we briefly

describe the computation of the alternative estimators being considered.13

5.2.1 Dynamic CCE mean group estimator

We base the CCE mean group estimator on the following cross-sectionally augmented unit-specific

regressions,

yit = ciy + φiyi,t−1 + β0ixit + β1ixi,t−1 +

pT∑
`=0

δ′i`z̄t−` + eyit, (40)

for i = 1, 2, ..., N , where z̄t = N−1
∑N

i=1 zit = (ȳt, x̄t, ḡt)
′. We set pT equal to the integer part of

T 1/3, denoted as pT =
[
T 1/3

]
. This gives the values of pT = 3, 3, 4, 5, 5 for T = 40, 50, 100, 150, 200,

respectively. The CCE mean group estimator of φ and β0 is then obtained by arithmetic averages of

the least squares estimates of φi and β0i based on (40).

We also computed bias-corrected versions of the CCEMG estimator using the half-panel jackknife

and the recursive mean adjusted estimators as described in Section 4.1.

5.2.2 QMLE estimator by Moon and Weidner

We deal with fixed effects by de-meaning the variables before implementing the QMLE estimation

procedure. Denote the de-meaned variables as

ẏit = yit − T−1
T∑
t=1

yit, and ẋit = xit − T−1
T∑
t=1

xit, (41)

for s = 1, 2 and i = 1, 2, ..., N . We compute the bias-corrected QMLE estimator defined in Corollary 3.7

in Moon and Weidner (2013a) using ẏit as the dependent variable and the vector żit = (ẏi,t−1, ẋit, ẋi,t−1)′

as the vector of explanatory variables. Two options for the number of unobserved factors are considered:

the true number of factors and the maximum number, 3, of unobserved factors.

5.2.3 Interactive-effects estimator by Bai

We deal with the fixed effects in the same way as before. In particular, we use the de-meaned variables

ẏit and ẋit,s, for s = 1, 2, to compute the interactive-effects estimator as the solution to the following

13We are grateful to Jushan Bai, Hyungsik Roger Moon, and Martin Weidner for providing us with their Matlab codes.
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set of non-linear equations:

π̂b =

(
N∑
i=1

Ξ̇′iMF̂ Ξ̇i

)−1 N∑
i=1

Ξ̇′iMF̂ ẏi, (42)

1

NT

N∑
i=1

(
ẏi − Ξ̇iπ̂b

)(
ẏi − Ξ̇iπ̂b

)′
F̂ = F̂V̂, (43)

where π̂b =
(
φ̂b, β̂0b, β̂1b

)′
is the interactive-effects estimator ,MF̂ = IT−F̂

(
F̂F̂
′)−1

F̂′, V̂ is a diagonal

matrix with the m largest eigenvalues of the matrix 1
NT

∑N
i=1

(
ẏi − Ξ̇iπ̂b

)(
ẏi − Ξ̇iπ̂b

)′
arranged in

decreasing order, ẏi = (ẏi2, ẏi3, ..., ẏiT )′ and

Ξ̇i =



ẏi1 ẋi2 ẋi1

ẏi,2 ẋi3 ẋi2
...

...
...

ẏi,T−1 ẋiT ẋi,T−1


.

The system of equations (42)-(43) is solved by an iterative method.

Bai (2009) does not allow for a lagged dependent variable in the derivation of the asymptotic

results for the interactive-effects estimator. However, Bai (2009) considers this possibility in Monte

Carlo experiments and concludes that the parameters are well estimated for the DGP with a lagged

dependent variable. As in the case of the QMLE estimator, we consider Bai’s estimates based on the

true number of factors and on the maximum number of factors, namely 3.

5.2.4 Mean Group estimator based on Song’s extension of Bai’s IFE approach

Song (2013) extends Bai’s IFE approach by allowing for both coeffi cient heterogeneity and the lags

of the dependent variable. Song focuses on the estimates of individual coeffi cients obtained from the

solution to the following system of nonlinear equations, which minimizes the sum of squared errors,

π̂si =
(
Ξ̇′iMF̂ Ξ̇i

)−1
Ξ̇′iMF̂ ẏi, for i = 1, 2, ..., N , (44)

1

NT

N∑
i=1

(
ẏi − Ξ̇iπ̂i

)(
ẏi − Ξ̇iπ̂i

)′
F̂ = F̂V̂. (45)

Similarly to Bai’s IFE procedure, we use de-meaned observations to deal with the presence of fixed

effects, and the system of equations (44)-(45) is solved numerically by an iterative method. Song (2013)

establishes
√
T consistency rates of individual estimates π̂si under asymptotics N,T

j→ ∞ such that

T/N2 → 0.
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Given our random coeffi cient assumption on πi, we adopt the following mean group estimator based

on Song’s individual estimates,

π̂sMG =
1

N

N∑
i=1

π̂si ,

and investigate the performance of π̂sMG with its variance estimated nonparemetrically by

Σ̂s
MG =

1

N − 1

N∑
i=1

(π̂si − π̂sMG) (π̂si − π̂sMG)′ .

Note that since
√
T (π̂si − πi) = Op (1) (uniformly in i) as N,T

j→ ∞ such that T/N2 → 0 (see Song,

2013, Theorem 2), it readily follows that (also see Assumption 4)

π̂sMG − π =
1

N

N∑
i=1

υπi +Op

(
1√
T

)
.

However, suffi cient conditions for
√
N (π̂sMG − π)

d→ N (0,Ωπ) as N,T
j→∞ remains to be investigated

and this is outside the scope of the present paper.

5.3 Monte Carlo findings

In this section we report some of the main findings and direct the reader to an online Supplement where

the full set of results can be accessed.

Table 2 summarizes the results for the bias (×100) and root mean square error (RMSE, ×100) in

the case of the experiment with regressors, φ = E (φi) = 0.4, and one serially correlated unobserved

common factor (Experiment 14 in Table 1). The first panel of this table gives the results for the fixed

effects estimator (FE), which provides a benchmark against three sources of estimation bias: the time

series bias of order T−1, the bias from ignoring a serially correlated factor, and the bias due to coeffi cient

(slope) heterogeneity. The latter two biases are not diminishing in T and we see that their combined

effect remains substantial, even for T = 200.

Next consider the QMLE estimator, due to Moon and Weidner, which allows for unobserved factors

but fails to account for coeffi cient heterogeneity. This estimator still suffers from a substantial degree

of heterogeneity bias which does not diminish in T . This is in line with the theoretical results derived

in Pesaran and Smith (1995), where it is shown that in the presence of slope heterogeneity, pooled least

squares estimators are inconsistent in the case of panel data models with lagged dependent variables.

This would have been the case even if the unobserved factors could have been estimated without any

sampling errors. Initially for T = 40, negative time series bias helps the performance of QMLE in our

design, but as T increases, the time series bias diminishes and the positive coeffi cient heterogeneity bias
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dominates the outcomes. The bias for T = 200 ranges between 0.07 to 0.10 which amounts to 20− 25%

of the true value. Inclusion of 3 as opposed to 1 unobserved common factor improves the performance

but does not fully mitigate the consequences of coeffi cient heterogeneity. Results for Bai’s IFE approach

are similar to those of QMLE and are therefore reported only in the online Supplement to save space.

In contrast, the CCEMG estimator deals with the presence of persistent factors and coeffi cient

heterogeneity, but it fails to adequately take account of the time series bias. As can be seen from the

results, the uncorrected CCEMG estimator suffers from the time series bias when T is small, with the

bias diminishing as T in increased. The sign of the bias is negative, which is in line with the existing

literature. The bias of the CCEMG estimator is around −0.12 for T = 40, and declines to around −0.02

when T = 200.

Both bias correction methods considered are effective in reducing the time series bias of the CCEMG

estimator, but the jackknife bias correction method turns out to be more successful overall. It is also

interesting that the jackknife correction tends to slightly over-correct, whereas the RMA procedure

tends to under-correct. Both bias-correction methods also reduced the overall RMSE for all values of

N and T considered.

The mean group estimator based on Song’s individual estimates performs slightly worse than the

jackknife bias-corrected CCEMG, but its overall performance (in terms of bias and RMSE) seems to

be satisfactory. The knowledge of the true number of factors, however, plays a very important role in

improving the performance of this estimator.

Table 3 reports findings for estimation of β0 in the same experiment. As before, the FE and QMLE

estimators continue to be biased even when T is large. The selection of the number factors seems

to be quite important for the bias of QMLE estimator (and also Bai’s IFE estimator reported in the

Supplement). The bias of CCEMG estimators is, in contrast, very small, between 0.0 to 0.02 for all

values of N and T . Bias correction does not seem to matter for the CCEMG estimation of β0. The

small sample time series O
(
T−1

)
bias for the estimation of β0 is much smaller compared to the bias of

the autoregressive coeffi cient.14 Bias correction seems, therefore, not so important for the estimation of

β0. In fact, the uncorrected version of CCEMG estimator performs better in terms of RMSE compared

to its bias corrected versions. π̂sMG also performs well even though its RMSE is, in the majority of

cases, slightly worse than the RMSE of the uncorrected CCEMG estimator.

An important question is how robust are the various estimators to the number of unobserved factors.

The MC results with multiple factors are summarized in Tables 4-7. The results show that the CCEMG

14Other Mote Carlo studies in the literature (see for example simulation results reported in Hsiao, Pesaran, and Tah-
miscioglu (1999)) also find that the bias in the estimation of the coeffi cient corresponding to regressors is typically smaller
than the bias in the estimation of the coeffi cient corresponding to the lagged dependent variable. This could be due to
weaker correlation between β0i and xit compared to the correlation between yit−1 and φi.
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estimator continues to work well regardless of the number of factors and whether the factors are serially

correlated or not. For m = 2 or 3, the performance of the CCEMG estimator and its bias-corrected

versions is qualitatively similar to the case of m = 1 discussed above. Only a slight deterioration in bias

and RMSE is observed when m is increased to 3. This is most likely due to the increased complexity

encountered in approximating the space spanned by the unobserved common factors.

To check the validity of the asymptotic distribution of the CCEMG and other estimators, we now

consider the size and power performance of the different estimators under consideration. We compute

the size (×100) at 5% nominal level and the power (×100) for the estimation of φ and β0 with the

alternatives H1 : φ = 0.5 and H1 : φ = 0.8, associated with the null values of φ = 0.4 and 0.7,

respectively, and the alternative of H1 : β0 = 0.85, associated with the null value of β0 = 0.75. The

results for size and power in the case of the Experiments 14, 16 and 18 are summarized in Tables 8-13.

As can be seen the tests based on FE and QMLE estimators and Bai’s IFE (reported in the Supple-

ment) are grossly oversized irrespective of whether the parameter of interest is φ or β0. In contrast, the

CCEMG estimator and the MG estimator based on Song’s individual estimates have the correct size, if

one is interested in making an inference about β0, however both estimators tend to be over-sized if the

aim is to make an inference about φ. These results are in line with our theoretical findings and largely

reflect the time series bias of order O
(
T−1

)
, which is present in the MG type estimators of φ. The bias-

corrected versions of the CCEMG estimator perform much better, with the jackknife bias-correction

method generally outperforming the RMA procedure. The condition N/T → κ1, 0 < κ1 < ∞, in

Theorem 3 plays an important role in ensuring that the tests based on the CCEMG estimator of φ

have the correct size. In particular, the size worsens with an increase in the ratio N/T , especially when

T = 40. A relatively good size (7%-9%) is achieved only when T > 100.

As already noted, the size of the tests based on the CCEMG estimator of β0 (Tables 9, 11 and 12)

is strikingly well behaved in all experiments and is very close to 5 percent for all values of N and T ,

which is in line with low biases reported for this estimator. Similar results also hold for πsMG, although

there are some incidences of size distortions for this MG estimator when T is relatively small (40− 50).

Given the importance of the time series bias for both the estimation of and inference on φ, it is also

reasonable to check the robustness of our findings to higher values of φ. The estimation bias is likely to

increase as φ is increased towards unity. The results for the experiments with φ set to 0.7 are reported

in the online Supplement, and, as expected, are generally worse than the results reported in the tables

below for φ = 0.4. Although, once again, the choice of φ does not tend to affect the estimates of β0

much.

The results of the experiments with purely autoregressive panel data models (reported in the Supple-
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ment) are very similar to the ones discussed above, although the small sample performance of CCEMG

estimator of φ is slightly better compared to the experiments with regressors.

Our asymptotic results are such that pT is selected to satisfy p3
T /T → κ, as T → ∞, for some

0 < κ < ∞. Accordingly, we recommend setting pT =
[
T 1/3

]
, which seems to work well in our Monte

Carlo design. However, it is diffi cult to know in practice what would be the best choice for the lag

order because this depends on many unknown aspects of the true data generating process, in addition

to the sample size. Most notably, the lag orders of individual ARDL relations, distribution of the slope

coeffi cients corresponding to the lagged dependent variable, and the parameter of interest are likely to

play an important role in arriving at an optimal choice of pT in small samples. As it is typical in empirical

work, different options for the lag orders could be tried and the sensitivity of results to different lag

orders could be readily investigated, as it was done in Chudik, Mohaddes, Pesaran, and Raissi (2013).

We have also conducted additional Monte Carlo simulations for pT =
[
κT 1/3

]
, for κ = 0.75 and 1.25,

which correspond to smaller and larger lag order choices, respectively. The results for these alternative

lag order choices in the case of Experiment 20 (experiments with regressors, φ = E (φi) = 0.7, andm = 1

correlated common factor) are summarized in Tables S20e-f in the Supplement. We chose Experiment 20

since it features a high degree of persistence and the selection of lag order is likely to be more important

in this case. The bias and RMSE of the estimates are given in Table S20e, and the size and power

are in Table S20f. These results clearly show that the choice of the lag order depends on whether the

object of interest is the slope coeffi cient, β0, or the coeffi cient of lagged dependent variable, φ. In the

former case it seems that the smaller lag order with κ = 0.75 is more desirable as evident from smaller

reported RMSE in the bottom part of Table S20e. The size is exceptionally good for all three choices

of lag orders (bottom of Table S20f), whereas power is marginally better when κ = 0.75. But, as noted

above, in the case of estimating φ, the jackknife bias correction does not fully correct for the time series

bias when there is a high degree of persistence (as is the case with Experiment 20) and T needs to be

suffi ciently large to obtain satisfactory results regardless of the choice of κ. The performance of the

jackknife corrected dynamic CCE estimator of φ (top of Table S20e) is best for larger lag orders, namely

when κ = 1.25. In practice, where the underlying DGP is unknown, it is important that the sensitivity

of the results to the choice of the lag order is investigated.

In addition to the problem of consistent estimation of the mean π = E (πi), consistent estimation

of other objects of interest, such as quantiles, or other aspects of the distribution of individual slope

coeffi cients πi, could be considered. Theorem 1 establishes suffi cient conditions for the consistency of π̂i.

Under these conditions, the sample quantile based on estimates π̂i should also be consistent. To shed

light on the small sample properties of the quantile estimators, we have conducted additional Monte
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Carlo experiments where the object of the exercise are the quantiles of β. Let qβ0 (τ) for τ ∈ (0, 1)

be population quantiles of the slope coeffi cients β0i and let q̂β0 (τ) denote their estimators based on

unit-specific dynamic CCE estimates
{
β̂0i

}N
i=1
. Using the DGP for Experiment 14, we computed the

bias and RMSE of q̂β0 (τ) for τ = 0.25 and 0.75. The simulation results are summarized in Table S14e

in the Supplement. These findings show that the quantile estimates behave reasonably well, with their

bias and RMSE declining as T is increased. By comparison, the choice of N seems to be less important.

The results also suggest the estimates of qβ0 (0.25) to be biased downward and those of qβ0 (0.75) to be

biased upward. The issue of how to make inference about the quantiles is a more complicated problem

and will be the subject of future research.

Overall, our findings suggest that when β0 is the parameter of interest, the uncorrected CCEMG

estimator seems to be preferred (in terms of bias, RMSE, size, and power); whereas jackknife corrected

CCEMG estimator seems to be preferred for estimation of φ, but the time dimension T needs to be

relatively large in order to obtain a correct size for the tests of φ based on the CCEMG type estimators

of φ, although some marginal improvements can be achieved if the jackknife bias-corrected version of

the CCEMG is used.

6 Conclusion

This paper extends the Common Correlated Effects (CCE) approach to estimation and inference in panel

data models with a multi-factor error structure, originally proposed in Pesaran (2006), by allowing for

the inclusion of lagged values of the dependent variable and weakly exogenous regressors in the panel

data model. We show that the CCE mean group estimator continues to be valid asymptotically, but

the following two conditions must be satisfied in order to deal with the presence of lagged dependent

variables amongst the regressors: a suffi cient number of lags of cross-sectional averages must be included

in individual equations, and the number of cross-sectional averages must be at least as large as the

number of unobserved common factors. CCE mean group estimator and its jackknife and recursive

mean adjustment bias corrected versions are easily implemented empirically. Results from an extensive

set of Monte Carlo experiments show that the homogeneous slope estimators proposed in the literature

can be seriously biased in the presence of slope heterogeneity. In contrast, the uncorrected CCEMG

estimator proposed in the paper performs well (in terms of bias, RMSE, size and power) if the parameter

of interest is the average slope of the regressors (β0), even if N and T are relatively small. But the

situation is very different if the parameter of interest is the mean coeffi cient of the lagged dependent

variable (φ). In the case of φ the uncorrected CCEMG estimator suffers from the time series bias,

and tests based on it tend to be over-sized, unless T is suffi ciently large relative to N . The jackknife
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bias-corrected CCEMG estimator, also proposed in this paper, does help in mitigating the time series

bias, but it cannot fully deal with the size distortion unless T is suffi ciently large. Improving on the

small sample properties of the CCEMG estimators of φ in the heterogeneous panel data models still

remains a challenge to be taken on in the future.
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Table 1: Parameters of the Monte Carlo Design

Experiments without regressors Experiments with regressors
(β0i = β1i = 0) (β0i ∼ IIDU [0.5, 1], β1i = −0.5)

Exp. φ = E (φ) m ρf Exp. φ = E (φ) m ρf
1 0.4 1 0 13 0.4 1 0
2 0.4 1 0.6 14 0.4 1 0.6
3 0.4 2 0 15 0.4 2 0
4 0.4 2 0.6 16 0.4 2 0.6
5 0.4 3 0 17 0.4 3 0
6 0.4 3 0.6 18 0.4 3 0.6
7 0.7 1 0 19 0.7 1 0
8 0.7 1 0.6 20 0.7 1 0.6
9 0.7 2 0 21 0.7 2 0
10 0.7 2 0.6 22 0.7 2 0.6
11 0.7 3 0 23 0.7 3 0
12 0.7 3 0.6 24 0.7 3 0.6

Notes: The dependent variable, regressors and covariates are generated according to (33)-(34) with φi ∼ IIDU [0, 0.8] (low
value of φ = E (φi) = 0.4) or with φi ∼ IIDU [0.5, 0.9] (high value of φ = E (φi) = 0.7), with correlated fixed effects,

and with cross-sectionally weakly dependent heteroskedastic idiosyncratic innovations generated from a SAR(1) model (39)

with aε = 0.4. All experiments allow for feedback effects with αxi ∼ IIDU [0, 0.35] for high value of φ, αxi ∼ IIDU [0, 0.15]
for low value of φ, and αgi ∼ IIDU [0, 1] for both values of φ.
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Table 2. Estimation of φ in experiments with regressors, φ = E (φi) = 0.4, and m = 1 correlated

common factor. (Experiment 14)

Bias (x100) RMSE (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 13.12 14.74 17.83 18.80 19.61 15.48 16.72 19.12 19.83 20.55
50 13.08 14.79 18.07 19.25 19.60 15.13 16.50 19.14 20.12 20.41
100 13.42 15.11 18.29 19.53 20.12 15.08 16.43 19.00 20.12 20.64
150 13.95 15.05 18.47 19.67 20.23 15.47 16.20 19.09 20.09 20.61
200 13.47 15.27 18.64 19.71 20.23 14.89 16.38 19.21 20.11 20.57

Dynamic CCEMG without bias correction
40 -10.93 -8.25 -3.31 -1.98 -1.18 11.86 9.35 5.12 4.37 3.93
50 -11.12 -8.34 -3.61 -2.02 -1.30 11.88 9.23 5.02 4.05 3.74
100 -11.73 -9.04 -3.99 -2.41 -1.59 12.12 9.44 4.69 3.41 2.88
150 -12.06 -9.25 -4.22 -2.60 -1.76 12.33 9.54 4.68 3.25 2.62
200 -12.13 -9.37 -4.32 -2.68 -1.94 12.35 9.60 4.67 3.17 2.56

Dynamic CCEMG with RMA bias correction
40 -8.58 -5.82 -2.20 -0.84 -0.50 10.23 7.63 4.66 3.98 3.91
50 -8.55 -5.97 -2.14 -1.18 -0.57 9.92 7.47 4.24 3.77 3.44
100 -9.08 -6.17 -2.36 -1.25 -0.80 9.81 6.92 3.54 2.73 2.59
150 -9.29 -6.55 -2.40 -1.48 -0.89 9.80 7.06 3.24 2.49 2.22
200 -9.44 -6.75 -2.61 -1.47 -1.01 9.88 7.13 3.24 2.28 2.03

Dynamic CCEMG with jackknife bias correction
40 3.82 2.64 1.74 1.21 0.85 9.96 7.18 4.91 4.41 4.09
50 4.02 2.66 1.59 1.19 0.77 9.26 6.62 4.38 3.96 3.79
100 3.91 2.35 1.40 0.97 0.66 7.64 4.96 3.23 2.83 2.62
150 3.73 2.48 1.30 0.90 0.59 6.93 4.64 2.72 2.32 2.15
200 4.04 2.52 1.27 0.88 0.47 6.78 4.41 2.45 2.05 1.83

MG based on Song’s individual estimates with 3 factors
40 -9.15 -6.77 -2.74 -1.38 -0.90 10.91 8.58 5.11 4.12 4.03
50 -9.48 -7.03 -2.76 -1.50 -0.95 10.81 8.38 4.52 3.84 3.54
100 -10.20 -7.32 -2.85 -1.72 -1.21 10.85 7.98 3.85 3.00 2.75
150 -10.53 -7.56 -2.98 -1.79 -1.27 10.99 8.02 3.69 2.74 2.33
200 -10.85 -7.78 -3.05 -1.85 -1.36 11.21 8.13 3.58 2.55 2.21

MG based on Song with true number of factors (m = 1)
40 -5.34 -3.95 -1.46 -0.40 -0.01 7.57 6.31 4.55 3.98 3.96
50 -6.03 -4.58 -1.76 -0.79 -0.28 7.61 6.33 4.06 3.60 3.43
100 -7.09 -5.47 -2.36 -1.40 -0.99 7.76 6.17 3.49 2.83 2.65
150 -7.27 -5.70 -2.56 -1.59 -1.11 7.71 6.17 3.33 2.60 2.24
200 -7.43 -5.87 -2.67 -1.67 -1.24 7.76 6.22 3.23 2.41 2.13

Moon and Weidner’s QMLE with 3 factors
40 -2.67 0.94 5.73 7.30 7.73 8.93 7.99 8.68 9.55 9.82
50 -3.34 0.37 5.82 7.23 7.86 8.46 7.04 8.20 9.18 9.62
100 -4.66 -0.57 5.65 7.28 7.99 7.58 5.21 7.06 8.34 8.96
150 -5.74 -1.14 5.38 7.15 8.04 7.71 4.61 6.44 7.87 8.69
200 -6.05 -1.70 5.35 7.05 7.81 7.65 4.31 6.18 7.64 8.32

Moon and Weidner’s QMLE with true number of factors (m = 1)
40 1.87 3.62 6.87 8.08 8.48 8.30 8.56 9.79 10.37 10.74
50 1.83 3.89 7.20 8.23 8.76 7.58 8.08 9.60 10.38 10.77
100 1.99 3.82 7.45 8.67 9.18 5.92 6.45 8.79 9.79 10.21
150 2.24 4.00 7.47 8.66 9.31 5.12 5.88 8.46 9.42 10.02
200 2.36 4.10 7.72 8.83 9.32 5.00 5.68 8.46 9.44 9.87

Notes: See notes to Table 1. CCEMG is based on (40) which features cross-sectional averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from de-meaned variables ẏit and

ẋit defined in (41).
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Table 3. Estimation of β0 in experiments with regressors, φ = E (φi) = 0.4, and m = 1 correlated

common factor. (Experiment 14)

Bias (x100) RMSE (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 51.52 51.31 51.66 51.37 51.49 51.96 51.68 51.88 51.54 51.64
50 50.96 51.08 51.27 51.25 51.33 51.37 51.42 51.47 51.40 51.46
100 51.07 51.13 51.36 51.13 51.35 51.40 51.39 51.52 51.24 51.43
150 51.22 51.11 51.25 51.22 51.32 51.54 51.36 51.38 51.32 51.39
200 50.99 51.28 51.20 51.09 51.20 51.27 51.51 51.32 51.17 51.27

Dynamic CCEMG without bias correction
40 1.37 1.14 0.69 0.45 0.18 5.92 5.28 3.70 3.30 3.08
50 1.05 0.82 0.48 0.28 0.27 5.48 4.59 3.37 2.93 2.84
100 1.11 0.92 0.58 0.30 0.23 3.92 3.37 2.45 2.15 1.93
150 1.23 1.05 0.46 0.26 0.28 3.34 2.88 1.98 1.77 1.61
200 1.24 0.97 0.50 0.33 0.26 2.97 2.51 1.77 1.52 1.37

Dynamic CCEMG with RMA bias correction
40 1.34 0.91 0.60 0.60 0.36 6.84 5.81 4.05 3.43 3.12
50 1.31 1.11 0.55 0.39 0.49 6.06 4.99 3.56 3.02 2.79
100 1.22 0.99 0.66 0.44 0.24 4.50 3.50 2.53 2.24 1.94
150 1.13 0.96 0.56 0.41 0.37 3.59 3.12 2.14 1.81 1.69
200 1.10 0.97 0.53 0.44 0.32 3.27 2.71 1.84 1.64 1.41

Dynamic CCEMG with jackknife bias correction
40 1.60 0.98 0.36 0.20 0.03 12.04 8.25 4.42 3.69 3.29
50 0.85 0.34 0.07 0.11 0.14 11.21 7.32 4.11 3.32 3.03
100 0.58 0.70 0.22 0.00 0.01 7.71 5.42 2.98 2.36 2.07
150 0.97 0.55 0.08 -0.06 0.07 6.49 4.32 2.38 1.99 1.71
200 0.84 0.52 0.08 0.03 0.02 5.65 3.88 2.08 1.68 1.44

MG based on Song’s individual estimates with 3 factors
40 0.10 0.51 0.42 0.44 0.49 8.13 6.45 4.12 3.60 3.50
50 0.29 0.54 0.31 0.38 0.32 6.81 5.40 3.69 3.12 2.90
100 0.49 0.42 0.30 0.35 0.29 4.21 3.58 2.51 2.22 1.95
150 0.56 0.44 0.35 0.27 0.21 3.34 2.81 2.02 1.73 1.59
200 0.62 0.56 0.37 0.32 0.22 2.81 2.42 1.72 1.53 1.41

MG based on Song with true number of factors (m = 1)
40 -2.76 -2.08 -1.58 -1.51 -1.41 8.58 7.78 5.09 4.42 4.15
50 -1.67 -1.33 -1.09 -0.85 -0.95 7.50 5.61 4.09 3.36 3.25
100 0.09 0.04 -0.01 0.03 0.04 3.64 3.26 2.40 2.17 1.89
150 0.44 0.30 0.22 0.13 0.09 3.04 2.57 1.95 1.70 1.56
200 0.57 0.52 0.30 0.25 0.15 2.66 2.26 1.69 1.50 1.39

Moon and Weidner’s QMLE with 3 factors
40 8.09 7.42 6.25 5.51 5.20 10.50 9.56 7.87 6.95 6.68
50 7.40 6.63 5.23 4.87 4.75 9.46 8.46 6.68 6.14 5.92
100 6.26 5.59 4.55 4.12 4.05 7.32 6.58 5.29 4.83 4.69
150 6.02 5.47 4.34 4.08 4.04 6.82 6.12 4.87 4.56 4.49
200 5.95 5.38 4.39 4.09 3.97 6.56 5.89 4.79 4.45 4.31

Moon and Weidner’s QMLE with true number of factors (m = 1)
40 17.09 16.70 16.36 16.08 16.28 19.93 19.20 18.18 17.75 17.80
50 16.84 16.37 16.16 16.34 16.40 19.40 18.58 17.76 17.69 17.66
100 17.19 17.03 16.86 16.75 17.00 18.88 18.45 17.88 17.62 17.75
150 17.86 17.24 17.25 17.31 17.36 19.34 18.47 18.07 17.93 17.89
200 17.27 17.55 17.32 17.32 17.41 18.60 18.65 18.02 17.85 17.87

Notes: See notes to Table 1. CCEMG is based on (40) which features cross-sectional averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from de-meaned variables ẏit and

ẋit defined in (41).
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Table 4. Estimation of φ in experiments with regressors, φ = E (φi) = 0.4, and m = 2 correlated

common factors. (Experiment 16)

Bias (x100) RMSE (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 21.98 23.35 26.19 27.41 27.95 23.66 24.63 26.98 28.00 28.45
50 21.59 23.37 26.36 27.44 27.89 23.10 24.61 27.01 27.95 28.36
100 22.44 23.76 26.67 27.65 28.34 23.74 24.81 27.24 28.03 28.65
150 22.51 23.77 26.68 27.98 28.26 23.76 24.81 27.16 28.31 28.53
200 22.16 23.63 26.77 27.83 28.42 23.37 24.61 27.22 28.13 28.68

Dynamic CCEMG without bias correction
40 -10.66 -7.93 -3.13 -1.58 -0.68 11.66 9.15 5.12 4.21 3.93
50 -10.83 -8.07 -3.23 -1.66 -0.87 11.64 9.02 4.82 3.84 3.64
100 -11.18 -8.31 -3.43 -1.94 -1.20 11.61 8.79 4.28 3.14 2.66
150 -11.45 -8.67 -3.67 -2.02 -1.37 11.74 8.99 4.23 2.87 2.40
200 -11.64 -8.87 -3.78 -2.23 -1.42 11.86 9.11 4.19 2.85 2.23

Dynamic CCEMG with RMA bias correction
40 -8.72 -5.77 -1.98 -0.89 -0.14 10.40 7.66 4.65 4.08 3.89
50 -8.77 -5.88 -2.10 -0.97 -0.38 10.11 7.37 4.29 3.65 3.57
100 -9.14 -6.11 -2.30 -1.28 -0.75 9.89 6.94 3.51 2.83 2.53
150 -9.33 -6.42 -2.45 -1.33 -0.88 9.89 6.97 3.28 2.48 2.18
200 -9.49 -6.56 -2.53 -1.48 -0.87 9.92 7.00 3.17 2.33 1.95

Dynamic CCEMG with jackknife bias correction
40 3.94 2.97 1.93 1.54 1.40 10.00 7.26 5.01 4.45 4.24
50 4.11 2.86 1.79 1.50 1.14 9.39 6.51 4.50 4.02 3.82
100 3.96 2.83 1.63 1.17 0.79 7.73 5.33 3.39 2.92 2.60
150 4.10 2.59 1.45 1.11 0.63 7.18 4.69 2.80 2.46 2.17
200 4.12 2.70 1.46 0.99 0.64 6.88 4.53 2.55 2.12 1.89

MG based on Song’s individual estimates with 3 factors
40 -9.08 -6.33 -2.04 -0.82 -0.32 10.77 8.02 4.56 4.11 3.94
50 -9.02 -6.41 -1.91 -0.94 -0.36 10.26 7.80 4.12 3.61 3.54
100 -9.46 -6.79 -2.29 -1.01 -0.61 10.10 7.49 3.48 2.69 2.56
150 -9.83 -6.89 -2.39 -1.25 -0.75 10.28 7.37 3.21 2.42 2.15
200 -10.30 -7.19 -2.61 -1.37 -0.85 10.64 7.54 3.21 2.24 1.97

MG based on Song with true number of factors (m = 2)
40 -7.57 -5.41 -1.76 -0.62 -0.14 9.20 7.18 4.39 4.04 3.88
50 -7.54 -5.48 -1.62 -0.79 -0.22 8.80 6.90 3.97 3.57 3.52
100 -7.86 -5.87 -2.04 -0.85 -0.47 8.49 6.57 3.31 2.62 2.51
150 -8.13 -5.91 -2.12 -1.09 -0.61 8.55 6.41 3.00 2.35 2.09
200 -8.39 -6.08 -2.32 -1.19 -0.71 8.72 6.44 2.97 2.13 1.90

Moon and Weidner’s QMLE with 3 factors
40 -0.27 3.31 8.40 9.94 10.80 8.95 8.83 10.68 11.76 12.41
50 -1.40 2.26 7.69 9.31 9.96 8.47 7.59 9.65 10.86 11.44
100 -4.23 0.15 6.46 8.16 9.04 7.52 5.54 7.77 9.11 9.80
150 -5.76 -1.28 5.77 7.80 8.49 7.56 4.73 6.79 8.53 9.12
200 -6.44 -1.76 5.41 7.32 8.23 7.76 4.23 6.19 7.90 8.74

Moon and Weidner’s QMLE with true number of factors (m = 2)
40 2.89 5.33 9.61 10.97 11.66 8.99 9.32 11.73 12.80 13.26
50 2.09 4.49 8.85 10.26 10.79 8.15 8.42 10.77 11.77 12.27
100 0.23 3.14 7.60 8.96 9.77 5.46 5.82 8.70 9.83 10.50
150 -0.15 2.59 7.53 9.15 9.77 4.49 4.82 8.29 9.75 10.30
200 -0.37 2.64 7.56 9.13 9.85 3.91 4.39 8.14 9.59 10.28

Notes: See notes to Table 1. CCEMG is based on (40) which features cross-sectional averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from de-meaned variables ẏit and

ẋit defined in (41).
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Table 5. Estimation of β0 in experiments with regressors, φ = E (φi) = 0.4, and m = 2 correlated

common factors. (Experiment 16)

Bias (x100) RMSE (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 9.94 9.49 9.66 9.61 9.70 14.19 13.18 11.72 11.26 11.02
50 9.95 9.43 9.53 9.87 9.92 13.87 12.86 11.48 11.28 11.12
100 9.85 9.83 9.85 9.80 9.46 13.47 12.63 11.49 11.02 10.45
150 10.15 9.75 9.86 9.86 9.74 13.56 12.58 11.28 10.89 10.59
200 9.62 9.81 9.87 9.95 9.60 13.04 12.49 11.35 10.92 10.40

Dynamic CCEMG without bias correction
40 1.00 0.71 0.43 0.09 0.13 5.75 5.10 3.82 3.31 3.08
50 0.79 0.76 0.24 0.24 0.16 5.23 4.57 3.38 3.00 2.77
100 0.95 0.73 0.30 0.15 -0.01 3.78 3.32 2.40 2.10 1.93
150 1.06 0.61 0.28 0.23 0.07 3.26 2.75 1.98 1.78 1.58
200 0.98 0.75 0.29 0.17 0.08 2.80 2.34 1.71 1.48 1.37

Dynamic CCEMG with RMA bias correction
40 1.12 0.80 0.58 0.24 0.27 6.59 5.65 4.00 3.44 3.12
50 0.82 0.73 0.42 0.41 0.33 5.89 4.95 3.59 3.10 2.81
100 0.99 0.73 0.45 0.33 0.18 4.25 3.58 2.50 2.18 1.98
150 1.07 0.68 0.41 0.40 0.24 3.66 3.02 2.09 1.84 1.63
200 0.98 0.79 0.43 0.30 0.23 3.12 2.54 1.83 1.56 1.43

Dynamic CCEMG with jackknife bias correction
40 1.42 0.54 0.20 0.01 0.06 12.35 8.24 4.62 3.73 3.28
50 0.94 0.45 0.12 0.15 0.12 10.68 7.40 4.05 3.35 2.93
100 0.89 0.52 0.09 0.10 -0.03 7.61 5.17 2.89 2.40 2.09
150 1.22 0.44 0.10 0.11 0.03 6.44 4.42 2.42 1.97 1.70
200 0.95 0.67 0.08 0.01 0.03 5.72 3.73 2.10 1.68 1.49

MG based on Song’s individual estimates with 3 factors
40 0.98 0.52 0.40 0.39 0.18 7.45 5.95 3.94 3.55 3.33
50 0.77 0.59 0.38 0.38 0.32 6.31 5.35 3.65 3.15 3.00
100 0.77 0.77 0.43 0.39 0.33 4.17 3.58 2.64 2.34 2.21
150 0.91 0.70 0.40 0.41 0.39 3.41 2.93 2.22 1.97 1.88
200 0.96 0.75 0.54 0.44 0.35 2.92 2.50 1.92 1.74 1.78

MG based on Song with true number of factors (m = 2)
40 0.87 0.69 0.54 0.43 0.27 6.71 5.58 3.89 3.50 3.25
50 0.82 0.67 0.35 0.43 0.34 5.68 4.96 3.52 3.10 2.92
100 0.90 0.84 0.51 0.40 0.41 3.88 3.43 2.54 2.26 2.16
150 0.94 0.78 0.45 0.43 0.43 3.27 2.88 2.12 1.90 1.79
200 1.00 0.77 0.58 0.45 0.34 2.83 2.41 1.86 1.68 1.70

Moon and Weidner’s QMLE with 3 factors
40 5.21 4.83 4.53 4.20 4.23 7.88 7.45 6.43 5.81 5.89
50 5.06 4.95 4.47 4.57 4.49 7.55 7.08 6.04 5.94 5.78
100 5.54 5.14 4.81 4.53 4.47 6.83 6.29 5.66 5.27 5.18
150 5.62 5.15 4.66 4.57 4.43 6.54 5.95 5.25 5.11 4.91
200 5.68 5.21 4.56 4.45 4.31 6.36 5.81 5.04 4.84 4.69

Moon and Weidner’s QMLE with true number of factors (m = 2)
40 4.94 4.68 4.32 3.95 4.05 7.94 7.52 6.41 5.77 5.86
50 4.91 4.83 4.33 4.43 4.33 7.62 7.08 6.04 5.96 5.74
100 5.43 5.18 4.91 4.65 4.64 6.89 6.47 5.82 5.45 5.39
150 5.59 5.33 4.98 4.96 4.83 6.68 6.27 5.64 5.51 5.34
200 5.75 5.40 5.02 5.00 4.90 6.64 6.16 5.55 5.43 5.31

Notes: See notes to Table 1. CCEMG is based on (40) which features cross-sectional averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from de-meaned variables ẏit and

ẋit defined in (41).
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Table 6. Estimation of φ in experiments with regressors, φ = E (φi) = 0.4, and m = 3 correlated

common factors. (Experiment 18)

Bias (x100) RMSE (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 25.74 27.09 30.09 31.21 31.58 27.09 28.16 30.68 31.67 31.98
50 25.86 27.55 30.06 31.22 31.77 27.17 28.50 30.60 31.65 32.12
100 26.31 27.72 30.40 31.34 31.70 27.37 28.58 30.84 31.65 31.95
150 26.16 27.50 30.46 31.58 31.94 27.14 28.36 30.87 31.87 32.15
200 26.26 27.65 30.51 31.62 32.21 27.26 28.40 30.89 31.88 32.42

Dynamic CCEMG without bias correction
40 -11.29 -8.46 -3.08 -1.41 -0.61 12.26 9.53 5.06 4.12 4.04
50 -11.36 -8.38 -3.34 -1.61 -0.72 12.16 9.26 4.88 3.84 3.56
100 -11.59 -8.71 -3.50 -1.74 -1.09 12.00 9.14 4.32 3.02 2.66
150 -11.64 -8.76 -3.53 -1.88 -1.13 11.94 9.07 4.09 2.75 2.29
200 -11.64 -8.81 -3.62 -1.93 -1.13 11.86 9.05 4.03 2.61 2.07

Dynamic CCEMG with RMA bias correction
40 -9.99 -6.82 -2.32 -1.04 -0.42 11.45 8.41 4.78 4.04 4.04
50 -10.02 -6.86 -2.59 -1.32 -0.58 11.26 8.18 4.52 3.79 3.56
100 -10.44 -7.26 -2.84 -1.53 -1.03 11.13 7.94 3.88 2.97 2.66
150 -10.56 -7.34 -2.93 -1.72 -1.09 11.08 7.84 3.62 2.67 2.29
200 -10.56 -7.37 -3.03 -1.77 -1.15 10.95 7.77 3.56 2.51 2.09

Dynamic CCEMG with jackknife bias correction
40 4.25 2.99 2.17 1.78 1.37 10.26 7.47 5.08 4.47 4.34
50 4.49 3.12 1.90 1.56 1.21 9.65 6.91 4.52 4.05 3.79
100 3.74 2.77 1.71 1.30 0.73 7.59 5.35 3.36 2.96 2.61
150 3.99 2.78 1.58 1.10 0.67 7.19 4.92 2.83 2.41 2.15
200 4.24 2.60 1.50 1.05 0.62 6.99 4.49 2.54 2.14 1.90

MG based on Song with true number of factors (m = 3)
40 -7.94 -4.88 -0.14 0.96 1.54 9.72 6.96 4.17 3.95 4.10
50 -7.86 -5.05 -0.38 0.76 1.32 9.35 6.75 3.77 3.66 3.70
100 -8.79 -5.82 -0.95 0.28 0.73 9.58 6.65 2.83 2.51 2.67
150 -9.28 -6.28 -1.51 -0.30 0.19 9.78 6.84 2.69 2.18 2.03
200 -9.86 -6.76 -1.96 -0.70 -0.21 10.23 7.19 2.78 1.97 1.80

Moon and Weidner’s QMLE with true number of factors (m = 3)
40 2.21 5.83 11.43 12.87 13.18 9.75 10.12 13.26 14.43 14.64
50 0.88 4.70 10.13 11.66 12.49 8.75 8.96 11.79 12.99 13.71
100 -3.20 0.99 7.93 9.91 10.64 7.18 5.48 9.02 10.72 11.33
150 -5.01 -0.42 6.91 9.05 9.88 7.07 4.54 7.75 9.65 10.39
200 -5.70 -1.20 6.25 8.49 9.54 7.01 4.00 6.94 8.97 9.97

Notes: See notes to Table 1. CCEMG is based on (40) which features cross-sectional averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from de-meaned variables ẏit and

ẋit defined in (41).
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Table 7. Estimation of β0 in experiments with regressors, φ = E (φi) = 0.4, and m = 3 correlated

common factors. (Experiment 18)

Bias (x100) RMSE (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 -18.62 -18.43 -18.70 -18.50 -18.38 21.16 20.51 19.99 19.45 19.25
50 -18.31 -18.45 -18.29 -18.80 -18.64 20.83 20.42 19.47 19.70 19.41
100 -18.20 -18.56 -18.40 -18.29 -18.42 20.42 20.29 19.32 18.98 18.98
150 -18.10 -18.24 -18.43 -18.45 -18.32 20.18 19.91 19.33 19.04 18.82
200 -17.87 -18.42 -18.44 -18.73 -18.54 19.90 20.08 19.23 19.31 18.99

Dynamic CCEMG without bias correction
40 0.98 0.84 0.47 0.38 0.27 6.12 5.22 3.76 3.31 3.12
50 0.93 0.73 0.53 0.34 0.05 5.30 4.67 3.43 2.96 2.71
100 0.92 0.66 0.32 0.18 0.10 3.78 3.39 2.42 2.07 1.94
150 0.83 0.65 0.40 0.12 0.15 3.23 2.76 1.94 1.72 1.61
200 0.90 0.73 0.29 0.13 0.11 2.81 2.47 1.67 1.49 1.36

Dynamic CCEMG with RMA bias correction
40 1.01 0.86 0.52 0.46 0.35 6.91 5.63 3.92 3.42 3.18
50 0.73 0.67 0.59 0.45 0.16 6.00 5.15 3.61 3.04 2.72
100 0.93 0.62 0.41 0.28 0.20 4.30 3.63 2.53 2.13 1.99
150 0.81 0.58 0.48 0.24 0.27 3.61 3.03 2.06 1.80 1.65
200 0.87 0.67 0.38 0.25 0.22 3.17 2.67 1.75 1.56 1.40

Dynamic CCEMG with jackknife bias correction
40 1.02 0.93 0.22 0.19 0.15 12.39 8.52 4.56 3.76 3.36
50 1.05 0.68 0.29 0.19 -0.06 10.94 7.73 4.21 3.34 2.91
100 1.39 0.45 0.10 -0.01 0.02 7.99 5.34 2.91 2.33 2.10
150 1.01 0.54 0.17 -0.03 0.09 6.52 4.44 2.32 1.95 1.72
200 1.00 0.58 0.03 -0.01 0.05 5.72 3.88 2.01 1.69 1.47

MG based on Song with true number of factors (m = 3)
40 0.49 0.24 -0.21 -0.08 0.01 7.73 6.23 4.20 3.77 3.59
50 0.20 0.29 0.02 -0.08 -0.09 6.71 5.55 3.91 3.34 3.12
100 0.38 0.26 -0.02 -0.30 -0.19 4.28 3.67 2.78 2.52 2.44
150 0.27 0.28 -0.12 -0.25 -0.20 3.29 2.88 2.32 2.12 2.10
200 0.35 0.22 -0.07 -0.22 -0.22 2.84 2.47 1.95 1.82 1.80

Moon and Weidner’s QMLE with true number of factors (m = 3)
40 4.18 4.51 4.13 4.24 4.12 7.19 7.15 6.10 5.94 5.74
50 4.67 4.75 4.36 4.17 4.08 6.96 6.75 5.92 5.56 5.45
100 5.17 4.88 4.61 4.48 4.46 6.36 5.97 5.38 5.17 5.10
150 5.19 5.01 4.75 4.44 4.57 6.10 5.79 5.24 4.93 5.03
200 5.28 5.15 4.67 4.44 4.41 5.94 5.75 5.07 4.82 4.77

Notes: See notes to Table 1. CCEMG is based on (40) which features cross-sectional averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from de-meaned variables ẏit and

ẋit defined in (41).
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Table 8. Size and Power of estimating φ in Experiment 14 (with regressors, φ = 0.4, m = 1, and

ρf = 0.6).

Size (x100) Power (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 88.00 91.70 98.10 99.65 99.80 60.85 68.50 83.65 89.45 92.10
50 88.75 94.15 99.30 99.90 99.85 63.25 70.20 85.65 92.00 93.80
100 94.85 98.10 99.90 100.00 100.00 71.35 75.95 91.90 96.20 97.80
150 96.70 99.05 100.00 100.00 100.00 77.30 81.00 95.60 98.65 99.45
200 97.15 99.35 100.00 100.00 100.00 78.40 83.15 96.45 99.15 99.65

Dynamic CCEMG without bias correction
40 72.75 53.85 16.00 10.80 8.90 99.80 99.35 94.15 90.15 88.25
50 80.95 60.75 21.45 12.90 10.00 100.00 99.90 98.00 95.20 92.40
100 98.30 92.60 38.80 19.80 11.90 100.00 100.00 100.00 99.90 99.90
150 99.95 98.60 57.45 28.50 16.75 100.00 100.00 100.00 100.00 100.00
200 100.00 99.70 70.85 37.15 22.10 100.00 100.00 100.00 100.00 100.00

Dynamic CCEMG with RMA bias correction
40 42.65 27.85 10.15 6.20 6.90 94.90 92.40 86.25 80.70 78.80
50 49.65 32.65 10.55 8.25 6.35 97.65 96.65 91.90 89.25 89.05
100 79.50 57.80 17.20 8.30 7.20 100.00 100.00 99.85 99.70 99.55
150 91.80 77.40 22.70 11.75 9.20 100.00 100.00 100.00 100.00 100.00
200 95.60 88.95 32.40 14.55 10.55 100.00 100.00 100.00 100.00 100.00

Dynamic CCEMG with jackknife bias correction
40 14.15 12.20 9.85 8.65 7.90 20.65 30.10 49.60 59.90 65.00
50 15.40 12.60 9.05 8.15 8.95 21.20 33.70 59.80 69.20 75.00
100 21.70 16.05 10.80 7.80 7.65 34.05 54.95 86.80 93.80 96.25
150 26.85 20.35 10.95 8.65 7.05 42.20 66.00 96.55 99.15 99.50
200 31.90 25.85 11.95 8.60 6.95 48.15 74.15 99.00 99.85 99.95

MG based on Song’s individual estimates with 3 factors
40 51.50 36.20 13.75 7.95 7.15 95.60 94.10 88.20 84.55 81.55
50 62.00 45.45 13.15 9.05 7.05 98.45 98.50 95.65 91.90 89.50
100 90.30 75.70 23.00 11.35 8.95 100.00 100.00 99.95 99.70 99.70
150 97.35 89.50 33.45 16.70 10.60 100.00 100.00 100.00 100.00 100.00
200 99.50 96.20 42.95 20.80 13.60 100.00 100.00 100.00 100.00 100.00

MG based on Song with true number of factors (m = 1)
40 30.45 20.90 10.35 6.55 7.45 91.45 89.00 81.55 76.70 74.85
50 39.85 27.70 10.50 7.15 6.75 96.45 95.85 91.70 88.70 86.00
100 72.45 56.80 17.60 10.45 8.30 100.00 100.00 99.90 99.60 99.55
150 88.60 74.85 26.75 15.10 9.15 100.00 100.00 100.00 100.00 100.00
200 95.45 87.60 34.80 17.10 11.70 99.95 100.00 100.00 100.00 100.00

Moon and Weidner’s QMLE with 3 factors
40 51.95 52.55 71.60 80.20 84.90 81.85 74.10 66.30 67.80 70.55
50 55.15 51.30 74.35 83.35 87.85 85.05 79.20 67.45 69.60 72.35
100 63.80 50.15 81.35 91.85 94.90 96.50 91.50 73.20 70.80 73.05
150 73.00 53.45 84.25 96.10 98.55 99.10 96.55 80.40 74.40 70.95
200 79.65 57.00 89.15 97.60 99.05 99.55 98.80 84.85 77.95 75.15

Moon and Weidner’s QMLE with true number of factors (m = 1)
40 46.30 53.35 72.50 81.15 85.55 67.95 63.15 63.80 65.95 68.25
50 46.15 53.50 76.90 83.45 88.70 69.80 67.05 65.35 68.05 72.60
100 49.60 57.30 88.10 94.60 96.45 80.85 76.50 66.55 67.90 70.05
150 50.65 64.35 93.10 98.50 98.95 86.30 80.85 70.95 68.85 70.60
200 54.20 70.75 96.85 99.30 99.55 88.40 84.10 69.30 68.80 71.75

Notes: See notes to Table 1. CCEMG is based on (40) which features cross-sectional averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from de-meaned variables ẏit and

ẋit defined in (41).
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Table 9. Size and Power of estimating β0 in Experiment 14 (with regressors, φ = 0.4, m = 1, and

ρf = 0.6).

Size (x100) Power (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
150 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
200 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Dynamic CCEMG without bias correction
40 6.75 7.15 6.85 7.10 6.60 33.35 41.45 74.80 85.20 91.10
50 7.00 6.25 5.05 5.95 7.20 42.55 54.15 82.70 92.45 94.60
100 6.95 6.45 6.10 5.65 5.10 67.05 80.30 98.10 99.65 100.00
150 7.90 7.40 6.30 6.10 5.85 81.55 92.60 99.85 99.95 100.00
200 8.65 7.45 7.00 5.80 5.65 90.80 97.30 99.95 100.00 100.00

Dynamic CCEMG with RMA bias correction
40 6.35 7.65 7.25 6.70 6.45 28.05 40.55 69.55 81.90 90.00
50 6.55 6.25 6.40 6.45 6.55 33.45 44.95 78.75 90.40 94.40
100 7.40 5.80 6.80 7.15 4.70 56.40 74.60 97.45 99.65 100.00
150 7.10 7.95 6.35 6.85 6.50 74.45 88.10 99.80 100.00 100.00
200 8.05 7.25 6.30 7.20 5.50 84.15 94.70 100.00 100.00 100.00

Dynamic CCEMG with jackknife bias correction
40 5.55 6.40 5.55 6.55 6.50 62.10 87.15 99.70 99.95 100.00
50 6.40 4.85 5.65 6.45 6.90 68.45 92.00 100.00 100.00 100.00
100 5.00 6.70 6.00 5.20 5.10 90.00 99.75 100.00 100.00 100.00
150 5.85 5.45 4.95 6.45 5.60 97.60 100.00 100.00 100.00 100.00
200 6.20 5.95 5.40 5.00 4.30 99.45 100.00 100.00 100.00 100.00

MG based on Song’s individual estimates with 3 factors
40 4.30 5.15 4.20 4.60 4.20 30.15 37.45 61.55 71.90 75.50
50 5.20 4.50 4.45 4.30 3.75 36.60 48.30 75.50 84.00 87.60
100 5.45 6.00 5.80 5.85 4.85 68.15 79.75 97.05 99.50 99.75
150 6.30 5.55 5.95 5.05 5.20 85.80 93.70 99.70 99.80 100.00
200 6.50 6.80 6.00 6.00 5.85 93.15 98.30 100.00 100.00 100.00

MG based on Song with true number of factors (m = 1)
40 8.30 9.05 5.80 6.25 6.45 51.45 56.15 78.15 85.10 88.20
50 8.60 6.75 6.55 4.95 4.90 55.60 66.10 85.55 92.25 95.00
100 5.55 6.45 5.25 5.75 4.90 80.80 89.25 98.10 99.60 99.95
150 7.25 6.25 5.60 5.65 4.85 92.30 96.65 99.95 100.00 100.00
200 7.00 6.55 6.15 6.15 5.70 97.20 99.35 99.95 100.00 100.00

Moon and Weidner’s QMLE with 3 factors
40 52.70 54.60 62.20 66.15 69.35 29.50 31.20 48.30 59.40 69.50
50 54.00 54.10 57.90 64.80 68.90 30.65 35.05 58.90 70.00 74.65
100 63.15 62.25 69.60 73.15 76.80 37.90 50.40 80.10 90.55 94.10
150 69.85 73.65 76.25 83.15 86.45 48.30 62.05 91.05 97.10 98.15
200 79.70 81.05 86.30 89.55 92.15 56.20 71.60 95.30 99.15 99.60

Moon and Weidner’s QMLE with true number of factors (m = 1)
40 79.80 84.10 93.40 95.40 97.75 49.40 52.15 60.55 65.20 67.85
50 83.70 86.20 95.35 97.90 98.60 51.40 52.65 60.85 68.15 72.45
100 93.75 96.50 99.30 99.55 99.90 63.55 66.20 76.05 80.00 84.20
150 96.80 98.35 99.75 100.00 100.00 72.75 73.35 81.90 87.20 90.80
200 97.85 99.35 99.95 100.00 100.00 74.70 78.50 85.85 90.60 93.80

Notes: See notes to Table 1. CCEMG is based on (40) which features cross-sectional averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from de-meaned variables ẏit and

ẋit defined in (41).
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Table 10. Size and Power of estimating φ in Experiment 16 (with regressors, φ = 0.4, m = 2, and

ρf = 0.6).

Size (x100) Power (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 97.30 99.45 99.95 100.00 100.00 84.35 90.30 97.70 99.60 99.80
50 98.50 99.30 100.00 100.00 100.00 85.85 92.40 99.00 99.85 99.90
100 99.50 99.85 100.00 100.00 100.00 92.05 95.50 99.75 100.00 100.00
150 99.85 99.95 100.00 100.00 100.00 93.95 96.05 99.75 100.00 100.00
200 99.95 99.95 100.00 100.00 100.00 94.15 97.40 99.95 100.00 100.00

Dynamic CCEMG without bias correction
40 69.65 50.75 18.30 10.70 9.85 99.65 98.90 93.70 89.20 84.45
50 79.70 59.65 19.80 10.90 9.80 99.90 99.90 98.05 95.05 91.70
100 97.25 87.40 32.95 16.45 10.25 100.00 100.00 99.95 100.00 99.75
150 99.65 97.85 48.65 22.35 13.00 100.00 100.00 100.00 100.00 100.00
200 100.00 99.70 61.80 30.95 17.10 100.00 100.00 100.00 100.00 100.00

Dynamic CCEMG with RMA bias correction
40 44.25 26.90 10.15 7.10 6.95 95.35 92.15 84.05 79.70 76.55
50 51.00 33.25 10.80 6.80 7.20 98.25 96.60 91.85 88.55 86.10
100 78.85 57.10 16.00 8.85 6.35 99.85 99.90 99.60 99.65 99.35
150 90.40 75.45 22.85 11.45 7.45 100.00 100.00 99.95 100.00 100.00
200 96.85 86.00 30.55 14.40 8.30 100.00 100.00 100.00 100.00 100.00

Dynamic CCEMG with jackknife bias correction
40 14.30 12.35 11.20 8.60 9.15 19.55 27.65 48.30 56.45 62.45
50 15.85 11.50 10.75 8.95 8.00 21.80 32.15 56.20 65.90 72.20
100 22.15 17.95 11.90 9.25 6.45 33.70 49.60 85.30 92.65 96.35
150 29.05 21.40 12.10 10.30 8.00 39.85 64.95 96.00 98.60 99.65
200 34.00 26.40 14.25 10.40 7.30 46.35 72.00 98.85 99.80 100.00

MG based on Song’s individual estimates with 3 factors
40 53.25 34.75 9.40 8.40 6.85 95.95 95.20 86.30 80.10 78.55
50 59.95 40.95 10.05 7.75 7.40 99.00 98.25 92.10 89.50 86.20
100 88.60 70.25 17.50 9.40 6.90 99.90 99.95 99.75 99.60 99.05
150 96.60 83.85 23.60 11.15 8.05 100.00 100.00 100.00 100.00 100.00
200 99.35 94.20 32.80 14.00 8.85 100.00 100.00 100.00 100.00 100.00

MG based on Song with true number of factors (m = 2)
40 44.00 28.40 8.30 7.65 6.50 95.90 94.30 85.15 78.80 77.25
50 50.15 34.35 9.10 8.20 7.45 98.65 97.95 91.50 89.20 85.15
100 79.15 60.35 15.20 8.55 6.65 99.95 100.00 99.65 99.30 99.15
150 92.00 76.05 20.75 10.30 7.55 100.00 100.00 100.00 99.90 100.00
200 97.45 88.45 28.15 12.35 8.25 100.00 100.00 100.00 100.00 100.00

Moon and Weidner’s QMLE with 3 factors
40 53.00 56.05 79.60 89.30 92.00 74.50 68.70 61.50 65.70 71.45
50 56.40 54.65 80.35 90.55 92.65 80.40 72.25 62.35 67.15 70.50
100 64.95 55.05 84.35 94.30 97.85 94.90 89.20 69.90 69.10 68.20
150 76.20 53.65 86.15 96.70 98.40 99.25 96.65 78.60 70.70 72.00
200 82.90 56.15 89.50 98.55 99.20 99.70 98.85 85.75 76.00 73.20

Moon and Weidner’s QMLE with true number of factors (m = 2)
40 51.55 59.30 84.60 90.25 94.30 64.75 59.10 61.95 67.70 70.95
50 52.10 57.55 83.95 92.05 93.50 69.95 63.20 62.40 64.70 70.05
100 45.70 55.20 89.10 96.20 98.45 87.25 78.35 63.25 63.10 66.15
150 45.35 56.55 94.40 98.65 99.65 93.35 88.25 64.35 64.40 67.20
200 46.50 59.80 97.60 99.75 99.85 97.05 92.85 67.70 67.40 70.10

Notes: See notes to Table 1. CCEMG is based on (40) which features cross-sectional averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from de-meaned variables ẏit and

ẋit defined in (41).
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Table 11. Size and Power of estimating β0 in Experiment 16 (with regressors, φ = 0.4, m = 2, and

ρf = 0.6).

Size (x100) Power (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 67.90 68.90 81.40 85.25 90.30 48.70 49.65 48.70 54.70 55.25
50 70.35 72.50 82.70 89.40 92.85 53.45 51.55 54.60 54.95 57.30
100 79.35 82.80 90.55 94.85 95.55 62.10 60.90 64.05 66.15 66.25
150 82.45 84.30 92.80 95.75 97.95 70.70 68.80 68.30 68.80 71.50
200 85.55 87.80 94.40 96.80 97.60 71.15 73.10 69.40 73.75 73.15

Dynamic CCEMG without bias correction
40 6.00 5.85 6.50 6.65 6.25 35.55 46.10 73.80 87.35 90.75
50 5.60 5.90 5.75 6.80 6.30 43.25 54.30 83.70 92.25 95.70
100 5.40 6.85 5.45 5.50 5.70 69.00 81.85 98.65 99.85 99.95
150 7.20 5.50 5.70 6.60 4.95 85.00 95.30 99.95 100.00 100.00
200 7.30 6.35 6.30 5.20 4.95 93.25 98.05 100.00 100.00 100.00

Dynamic CCEMG with RMA bias correction
40 5.80 6.15 6.50 6.65 6.50 29.25 40.05 68.95 84.30 89.55
50 5.75 6.30 7.25 6.50 6.80 35.50 47.60 80.00 90.15 94.85
100 5.40 5.70 5.55 6.05 6.40 58.50 76.15 97.65 99.65 99.85
150 7.45 5.55 6.90 6.80 5.45 74.05 89.85 99.90 100.00 99.95
200 6.60 6.00 6.50 5.95 5.70 86.75 96.45 100.00 100.00 100.00

Dynamic CCEMG with jackknife bias correction
40 5.80 5.45 5.70 6.00 7.00 61.70 86.45 99.85 100.00 100.00
50 5.30 5.65 6.40 6.05 5.40 68.20 92.55 100.00 100.00 100.00
100 4.25 5.60 5.35 5.30 5.45 91.70 99.70 100.00 100.00 100.00
150 5.65 5.20 5.60 5.85 5.30 98.25 99.95 100.00 100.00 100.00
200 6.75 5.40 5.60 4.90 5.60 99.50 100.00 100.00 100.00 100.00

MG based on Song’s individual estimates with 3 factors
40 9.75 9.10 6.50 5.70 4.80 43.95 51.75 71.55 78.75 83.50
50 9.95 8.65 7.15 5.50 3.75 50.50 60.25 80.45 86.30 90.30
100 9.35 9.40 5.65 5.50 4.65 75.75 85.30 96.20 98.30 98.25
150 11.25 9.35 7.50 5.60 3.75 88.15 94.10 98.95 98.55 98.15
200 11.75 10.15 7.80 5.15 4.60 94.40 97.15 99.35 98.85 98.45

MG based on Song with true number of factors (m = 2)
40 11.05 9.95 6.55 5.90 5.40 48.50 55.85 72.15 80.45 84.00
50 11.40 10.70 7.20 6.10 4.75 56.15 64.75 82.85 88.10 91.20
100 11.70 11.00 6.70 5.80 5.30 80.65 87.85 96.90 99.20 98.85
150 13.15 10.80 7.95 5.85 4.10 91.00 95.35 99.15 99.20 98.85
200 13.00 10.35 7.90 5.40 5.15 95.85 98.25 99.40 99.35 98.70

Moon and Weidner’s QMLE with 3 factors
40 39.00 41.70 51.75 57.60 61.90 37.10 41.60 58.60 70.20 75.20
50 40.95 44.35 53.40 62.00 67.10 41.20 45.70 64.80 70.50 77.15
100 56.90 58.40 71.95 76.85 80.30 46.80 56.70 76.40 86.80 90.15
150 67.05 70.40 80.15 86.05 89.30 54.20 66.55 87.60 93.10 95.80
200 77.05 78.50 86.30 91.25 93.00 59.70 73.85 93.25 97.80 98.40

Moon and Weidner’s QMLE with true number of factors (m = 2)
40 36.25 39.50 47.90 52.55 59.75 36.95 39.80 57.90 69.95 74.85
50 38.35 42.80 50.10 60.15 64.30 39.40 43.70 63.75 69.75 77.00
100 53.20 56.70 70.45 76.20 80.95 47.65 55.20 73.65 84.40 87.40
150 65.85 69.30 81.55 87.65 90.85 53.85 62.65 81.70 88.60 92.80
200 73.55 75.55 88.00 92.80 94.85 59.10 68.30 87.70 93.00 95.90

Notes: See notes to Table 1. CCEMG is based on (40) which features cross-sectional averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from de-meaned variables ẏit and

ẋit defined in (41).
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Table 12. Size and Power of estimating φ in Experiment 18 (with regressors, φ = 0.4, m = 3, and

ρf = 0.6).

Size (x100) Power (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 99.40 99.85 100.00 100.00 100.00 91.55 95.75 99.70 99.95 99.90
50 99.60 100.00 100.00 100.00 100.00 93.80 97.35 99.85 100.00 100.00
100 100.00 100.00 100.00 100.00 100.00 97.25 98.40 100.00 100.00 100.00
150 99.90 100.00 100.00 100.00 100.00 98.05 99.25 100.00 100.00 100.00
200 100.00 100.00 100.00 100.00 100.00 97.75 99.35 100.00 100.00 100.00

Dynamic CCEMG without bias correction
40 73.90 56.55 17.20 10.80 10.25 99.75 99.45 94.00 88.60 82.80
50 82.90 64.40 20.45 11.65 9.45 100.00 99.85 97.80 94.35 91.70
100 98.35 91.30 35.00 14.40 11.10 100.00 100.00 100.00 99.90 99.90
150 99.90 97.75 47.65 20.30 13.05 100.00 100.00 100.00 100.00 100.00
200 100.00 99.75 59.45 26.15 14.70 100.00 100.00 100.00 100.00 100.00

Dynamic CCEMG with RMA bias correction
40 52.75 34.05 11.00 6.95 7.60 96.45 95.40 86.00 81.85 76.65
50 61.30 40.35 12.55 8.05 6.85 99.00 97.95 93.35 89.80 87.20
100 86.60 69.35 21.35 10.00 8.55 100.00 100.00 99.95 99.75 99.85
150 95.00 83.40 29.15 13.70 9.45 100.00 100.00 100.00 100.00 100.00
200 98.05 91.25 40.15 17.70 10.70 100.00 100.00 100.00 100.00 100.00

Dynamic CCEMG with jackknife bias correction
40 15.45 13.15 11.15 9.05 9.35 18.70 27.20 45.70 55.00 60.05
50 17.65 14.55 10.30 9.45 8.30 20.05 31.05 56.05 66.20 71.30
100 21.45 17.30 12.00 10.50 6.70 32.40 49.35 84.20 91.75 96.55
150 28.00 21.90 11.40 8.85 6.85 41.35 61.00 95.90 98.80 99.50
200 34.60 25.30 13.85 10.20 7.80 45.50 71.90 98.65 99.70 99.95

MG based on Song with true number of factors (m = 3)
40 44.45 24.95 7.50 6.40 7.90 94.50 90.75 73.55 65.95 62.80
50 50.00 32.45 7.90 7.80 8.50 97.50 95.85 83.20 77.70 73.90
100 82.40 58.70 9.55 6.45 8.65 99.95 99.85 98.95 97.80 96.60
150 94.10 77.90 15.10 8.55 6.60 100.00 100.00 99.90 99.85 99.85
200 98.65 90.05 24.25 9.50 7.20 100.00 100.00 100.00 100.00 100.00

Moon and Weidner’s QMLE with true number of factors (m = 3)
40 57.25 63.35 90.10 95.00 96.05 68.15 61.75 63.30 70.90 74.35
50 58.10 62.10 88.65 94.90 96.60 73.00 67.20 62.75 69.60 73.35
100 61.80 51.50 91.30 98.00 98.90 93.30 86.70 63.20 62.75 68.15
150 74.65 53.20 92.35 98.40 99.70 98.35 95.60 71.35 66.20 66.05
200 79.80 54.85 93.85 99.60 99.90 99.60 98.30 79.85 68.90 68.60

Notes: See notes to Table 1. CCEMG is based on (40) which features cross-sectional averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from de-meaned variables ẏit and

ẋit defined in (41).
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Table 13. Size and Power of estimating β0 in Experiment 18 (with regressors, φ = 0.4, m = 3, and

ρf = 0.6).

Size (x100) Power (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 88.05 91.30 97.50 99.45 99.50 98.35 99.15 100.00 100.00 100.00
50 89.30 92.90 98.55 99.50 99.95 98.55 99.65 100.00 100.00 100.00
100 93.90 96.20 99.65 100.00 100.00 99.35 99.75 100.00 100.00 100.00
150 94.65 96.65 99.65 100.00 100.00 99.80 99.95 100.00 100.00 100.00
200 95.85 98.10 99.95 100.00 100.00 99.75 100.00 100.00 100.00 100.00

Dynamic CCEMG without bias correction
40 7.20 6.75 6.25 6.00 7.20 36.15 45.80 73.95 84.75 90.35
50 6.50 5.35 7.25 7.10 5.15 42.45 55.15 82.40 91.75 96.10
100 5.75 6.60 6.65 5.80 5.40 68.75 82.30 98.45 99.90 99.95
150 7.05 6.15 5.15 5.75 6.00 85.45 94.85 99.90 100.00 100.00
200 6.35 7.35 5.45 5.20 5.40 93.70 97.80 100.00 100.00 100.00

Dynamic CCEMG with RMA bias correction
40 7.15 6.80 6.10 6.50 6.85 28.90 38.55 69.70 81.05 89.05
50 6.05 7.15 6.40 7.05 5.15 35.55 48.80 77.60 90.25 95.65
100 6.50 6.50 6.70 6.05 5.60 58.10 76.55 97.75 99.70 99.80
150 6.55 6.15 5.55 5.75 5.90 76.20 90.00 99.70 100.00 100.00
200 6.75 7.15 5.35 5.50 5.30 86.30 95.65 99.95 100.00 100.00

Dynamic CCEMG with jackknife bias correction
40 5.90 6.20 5.55 6.50 6.90 59.95 85.85 99.85 100.00 100.00
50 5.10 6.85 5.70 6.85 5.50 66.95 90.30 100.00 100.00 100.00
100 5.75 5.40 5.45 5.30 5.75 91.30 99.30 100.00 100.00 100.00
150 5.05 5.30 5.00 5.35 5.85 97.50 99.95 100.00 100.00 100.00
200 5.55 5.90 4.95 5.30 5.45 99.45 100.00 100.00 100.00 100.00

MG based on Song with true number of factors (m = 3)
40 8.45 8.55 5.15 4.90 5.05 41.95 50.75 72.65 79.20 80.80
50 8.20 9.10 6.85 5.00 4.50 52.00 59.00 79.50 86.95 89.75
100 9.35 8.55 7.10 5.55 4.85 76.70 84.20 95.65 97.85 97.25
150 8.70 8.25 6.05 5.40 4.75 90.15 94.65 98.30 98.45 97.90
200 9.45 8.30 6.65 4.55 4.05 95.20 97.60 98.60 98.90 98.05

Moon and Weidner’s QMLE with true number of factors (m = 3)
40 33.45 39.20 48.30 58.05 63.25 41.35 44.25 61.60 68.50 75.90
50 37.15 43.05 53.85 60.50 65.60 40.65 44.90 64.75 75.35 80.60
100 54.05 56.30 70.35 77.85 83.05 49.60 59.00 80.15 88.40 90.95
150 63.35 68.80 83.45 85.70 90.35 59.10 68.40 88.90 94.95 95.45
200 73.65 78.75 88.80 91.30 93.75 67.30 74.70 94.05 97.55 98.70

Notes: See notes to Table 1. CCEMG is based on (40) which features cross-sectional averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from de-meaned variables ẏit and

ẋit defined in (41).
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A Mathematical Appendix

A.1 Notations and Definitions

We begin by briefly summarizing the notations used in this paper, and introduce new notations which will prove

useful in the proofs provided below. All vectors are represented by bold lower case letters and matrices are

represented by bold upper case letters. We use 〈a,b〉 = a′b to denote the inner product (corresponding to

the Euclidean norm) of vectors a and b. ‖A‖1 ≡ max
1≤j≤n

∑n
i=1 |aij | , and ‖A‖∞ ≡ max

1≤i≤n

∑n
j=1 |aij | denote the

maximum absolute column and row sum norms ofA ∈Mn×n, respectively, whereMn×n is the space of real-valued

n × n matrices. ‖A‖ =
√
% (A′A) is the spectral norm of A, % (A) ≡ max

1≤i≤n
{|λi (A)|} is the spectral radius of

A, and |λ1(A)| ≥ |λ2(A)| ≥ ... ≥ |λn(A)| are the eigenvalues of A. Col (A) denotes the space spanned by the

column vectors of A. Note that ‖a‖ =
√
% (a′a) =

√
a′a corresponds to the Euclidean length of vector a.

Let

yi
T−pT×1

=


yi,pT+1

yi,pT+2

...

yiT

 , yi,−1
T−pT×1

=


yipT
yi,pT+1

...

yi,T−1

 , Xi
T−pT×kx

=


x′i,pT+1

x′i,pT+2

...

x′iT

 , Xi,−1
T−pT×kx

=


x′ipT

x′i,pT+1

...

x′i,T−1

 ,

τT−pT = (1, 1, ..., 1)
′ is T − pT × 1 vector of ones, ξit =

(
yi,t−1,x

′
it,x

′
i,t−1

)′
,

Ξi
T−pT×2kx+1

=


ξ′i,pT+1

ξ′i,pT+2

...

ξ′iT

 = (yi,−1,Xi,Xi,−1) , F
T−pT×m

=


f ′pT+1

f ′pT+2

...

f ′T

 , and εi =


εi,pT+1

εi,pT+2

...

εiT

 .

Using the above notations, model (1) can be written as

yi = cyiτT−pT +φiyi,−1 + Xiβ0i + Xi,−1β1i + Fγi + εi,

or more compactly as

yi = cyiτT−pT +Ξiπi + Fγi + εi, (A.1)

for i = 1, 2, ..., N , where πi =
(
φi,β

′
0i,β

′
1i

)′
. Let zit = (yit,ω

′
it)
′, z̄wt = (ȳwt, ω̄

′
wt)
′

=
∑N
i=1 wizit,

Q̄w
T−pT×(k+1)pT+1

=


1 z̄′w,pT+1 z̄′w,pT · · · z̄′w,1
1 z̄′w,pT+2 z̄′w,pT+1 · · · z̄′w,2
...

...
...

...

1 z̄′w,T z̄′w,T−1 · · · z̄′w,T−pT

 , and ηi
T−pT×1

=


∑∞
`=pT+1 δ

′
i`z̄w,pT+1−`∑∞

`=pT+1 δ
′
i`z̄w,pT+2−`
...∑∞

`=pT+1 δ
′
i`z̄w,T−`

 .

Model (A.1) can be equivalently written as (see also (22)),

yi = Ξiπi + Q̄wdi + εi + ηi + ϑi, (A.2)

where di =
(
c∗yi, δ

′
i0, δ

′
i1, ..., δ

′
ipT

)′
, δi (L) is given by δi (L) = G′ (L)γi =

[
γ′i (C′C)

−1
C′Λ−1 (L)

]′
, see (23),

c∗yi = cyi − δ′i (1) c̄zw, and

ϑi = cyiτ + Fγi − Q̄wdi − ηi
= Fγi − Z̃wδi (L) , (A.3)
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in which

Z̃w = Z̄w − τT−pT c′zw, Z̄w =


z̄′w,pT+1

z̄′w,pT+2

...

z̄′w,T

 , and czw =

N∑
i=1

wi (Ik+1 −Ai)
−1

czi.

Note that the individual elements of ϑi = (ϑi,pT+1, ϑi,pT+2, ..., ϑi,T )
′ areOp

(
N−1/2

)
uniformly across all i and t.

Define the following projection matrices

Ph
T−pT×T−pT

= Hw (H′wHw)
+

H′w, and Mh
T−pT×T−pT

= IT−pT −Hw (H′wHw)
+

H′w, (A.4)

in which

Hw
T−pT×(k+1)pT+1

=


1 h′w,pT+1 h′wpT · · · h′w1

1 h′w,pT+2 h′w,pT+1 · · · h′w2

...
...

...
...

1 h′w,T h′w,T−1 · · · h′w,T−pT

 ,
and hwt = Ψw (L) ft + czw, where

Ψw (L) =

N∑
i=1

wi (Ik+1 −AiL)
−1

A−1
0,iCi.

Furthermore, let V̄w = Q̄w −Hw, and note that

V̄w =


0 ν̄′w,pT+1 ν̄′wpT · · · ν̄′w1

0 ν̄′w,pT+2 ν̄′w,pT+1 · · · ν̄′w2

...
...

...
...

0 ν̄′wT ν̄′w,T−1 · · · ν̄′w,T−pT

 , ν̄wt =

N∑
i=1

wi (Ik+1 −AiL)
−1

A−1
0,ieit,

and Hw= F̌Λ̌w, where

F̌
T−pT×1+mpT

=


1 f ′pT+1 f ′pT · · · f ′1
1 f ′pT+2 f ′pT+1 · · · f ′2
...

...
...

...

1 f ′T f ′T−1 · · · f ′T−pT

 ,

Λ̌w
(pTm+1)×[pT (k+1)+1]

=



1 c′zw c′zw · · · c′zw
0

m×1
Λ′w (L) 0

m×k+1
· · · 0

m×k+1

0
m×1

0
m×k+1

Λ′w (L) 0
m×k+1

...
...

. . .
...

0
m×1

0
m×k+1

0
m×k+1

Λ′w (L)


, and Λw (L) =

N∑
i=1

wi (Ik+1 −AiL)
−1

A−1
0,iCi.

We also define

S
(1+2kx)×(1+2kx)

=


1 0

1×kx
0

1×kx
0

kx×1
0

kx×kx
Ikx

0
kx×1

Ikx 0
kx×kx

 , (A.5)

ξ∗it =
(
yi,t−1,x

′
i,t−1,x

′
it

)′
, and note that ξit = S′ξ∗it, and Ξi = Ξ∗iS, where Ξ∗i =

(
ξ∗i,pT+1, ξ

∗
i,pT+2, ..., ξ

∗
iT

)′
.
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Individual elements of ξit are also denoted as ξist for s = 1, 2, ..., 2k+ 1, and the vector of observations on ξist is

ξis·
T−pT×1

=


ξi,s,pT+1

...

ξisT

 .
Recall that the panel data model (1)-(3) can be written as the VAR model (6) in zit = (yit,x

′
it,g

′
it)
′. Hence

we have

zit =

∞∑
`=0

A`
i

(
czi + A−1

0i Cift−` + A−1
0i ei,t−`

)
,

and

ξ∗it =

 yi,t−1

xi,t−1

xit

 =

(
S′yxzi,t−1

S′xzit

)
= cξ∗i + Ψξi (L) (Cift + eit) ,

where

S′yx
kx+1×k+1

=

 1 0
1×kx

0
1×kg

0
kx×1

Ikx 0
kx×kg

 , S′x
kx×k+1

=
(

0
kx×1

Ikx 0
kx×kg

)
,

cξ∗i = Ψξi (L) (Syx,Sx)
′
czi, and

Ψξi (L)
(1+2kx)×(k+1)

=

(
0

kx+1×k+1

S′x

)
A−1

0i +

(
S′yx (Ik+1 −AiL)

−1
L

S′x

[
(Ik+1 −AiL)

−1 − Ik+1

] )A−1
0i . (A.6)

A.2 Statement of Lemmas

Lemma A.1 Let A = (a1,a2, ...,asN ) and B = (b1,b2, ...bsN )be rN × sN random matrices, and rN and sN are

deterministic sequences nondecreasing in N . Suppose also that ‖a`‖ = Op

(
r

1/2
N

)
and ‖b`‖ = Op

(
r

1/2
N N−1/2

)
,

uniformly in `, for ` = 1, 2, ..., sN . Then for any αA,1,αA,2 ∈ Col (A) for which there exist vectors c1 and c2

such that αA,1 = Ac1, αA,2 = Ac2, ‖c1‖∞ < K and ‖c2‖∞ < K, where the constant K < ∞ does not depend

on N , we have

‖MA+BαA,1‖ = Op

(
sN
√
rN√
N

)
, (A.7)

and

〈MA+BαA,1,MA+BαA,2〉 = α′A,1MA+BαA,2 = Op

(
s2
NrN
N

)
(A.8)

where MA+B is the orthogonal projection matrix that projects onto the orthogonal complement of Col (A + B).

Lemma A.2 Suppose Assumptions 1-5 and 7 hold and (N,T, pT )
j→∞. Then

1

T

T∑
t=1

yi,t−1εit
p→ 0, uniformly in i (A.9)

1

T

T∑
t=1

ωi,t−sεit
p→ 0
k×1
,uniformly in i, (A.10)

and, if also p3
T /T → κ for some constant 0 < κ <∞,

1

T

T∑
t=1

hw,t−qεit = Op

(
T−1/2

)
, uniformly in i and q, (A.11)

for i = 1, 2, ..., N , q = 1, 2, ..., pT , and s = 0, 1. The same results hold when εit is replaced by ηit and ϑit.
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Lemma A.3 Suppose Assumptions 1-5 and 7 hold and (N,T, pT )
j→∞ such that p3

T /T → κ, 0 < κ <∞. Then

Ξ′iMhΞi

T

p→ Σiξ uniformly in i, (A.12)

and
Ξ′iMhF

T

p→ Qif uniformly in i, (A.13)

where Σiξ is positive definite and given by

Σiξ = ΩΨξi + Ωfi, (A.14)

and

Qif = cov [S′Ψξi (L) C∗i ft,C
∗
i ft] , (A.15)

in which

ΩΨξi = V ar [S′Ψξi (L) eit] , Ωfi = V ar [S′Ψξi (L) C∗i ft] , (A.16)

C∗i = McCi, Mc = Ik+1−CC+ is the orthogonal projector onto the orthogonal complement of Col (C), Ψξi (L) =∑∞
`=0 Ψξi`L

` is defined in (A.6), the selection matrix S is defined in (A.5) and eit = (εit,v
′
it)
′. When factors

are serially uncorrelated, then Ωfi =
∑∞
`=0 S′Ψξi` (C∗iΩfC

∗′
i ) Ψ′ξi`S and Qif = S′Ψξi0 (C∗iΩfC

∗′
i ), where Ωf =

V ar (ft).

Lemma A.4 Suppose Assumptions 1-5 and 7 hold and (N,T, pT )
j→∞ such that p3

T /T → κ for some constant
0 < κ <∞. Then,

Ξ′iMhεi
T

p→ 0
2kx+1×1

, uniformly in i, (A.17)

Ξ′iMhηi
T

p→ 0
2kx+1×1

, uniformly in i, (A.18)

and
Ξ′iMhϑi

T

p→ 0
2kx+1×1

, uniformly in i. (A.19)

Lemma A.5 Suppose Assumptions 1-5 hold and unobserved common factors are serially uncorrelated. Then, as
(N,T, pT )

j→∞, we have
1

N

N∑
i=1

Σ−1
iξ

Ξ′iMhF

T
ηγi

p→ 0
2kx+1×1

. (A.20)

Lemma A.6 Suppose Assumptions 1-5 hold and (N,T, pT )
j→∞ such that and p2

T /T → 0. Then,

√
N

Ξ′iM̄qΞi

T
−
√
N

Ξ′iMhΞi

T

p→ 0
2kx+1×2kx+1

uniformly in i, (A.21)

√
N

Ξ′iM̄qεi
T

−
√
N

Ξ′iMhεi
T

p→ 0
2kx+1×1

uniformly in i, (A.22)

√
N

Ξ′iM̄qF

T
−
√
N

Ξ′iMhF

T

p→ 0
2kx+1×m

uniformly in i. (A.23)

Ξ′iM̄qηi
T

− Ξ′iMhηi
T

p→ 0
2kx+1×1

, uniformly in i, (A.24)

and
Ξ′iM̄qϑi

T
− Ξ′iMhϑi

T

p→ 0
2kx+1×1

, uniformly in i. (A.25)

Lemma A.7 Suppose Assumptions 1-5 hold and (N,T, pT )
j→ ∞ such that N/T → κ, for some 0 < κ < ∞,

and p2
T /T → 0. Then,

1√
N

N∑
i=1

Ξ′iMhεi
T

p→ 0
2kx+1×1

. (A.26)
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A.3 Proofs of Lemmas

Proof of Lemma A.1. Hilbert projection theorem (see Rudin, 1987) implies

‖MA+BαA,1‖ ≤
∥∥αA,1 − βA+B

∥∥ , (A.27)

for any vector βA+B ∈ Col (A + B). Consider the following choice of βA+B ,

βA+B =

sN∑
`=1

Pa`+b`a`c1`, (A.28)

where Pa`+b` is the orthogonal projector onto Col (a` + b`), and c1`, for ` = 1, 2, ..., sN are elements of vector c1.

Using αA,1 = Ac1=
∑sN
`=1a`c1`, (A.27) with βA+B given by (A.28) can be written as

‖MA+BαA,1‖ ≤
∥∥∥∥∥
sN∑
`=1

a`c1` −
sN∑
`=1

Pa`+b`a`c1`

∥∥∥∥∥ .
Using now the triangle inequality, we obtain

‖MA+BαA,1‖ ≤
sN∑
`=1

‖a`c1` −Pa`+b`a`c1`‖

≤
sN∑
`=1

|c1`| ‖a` −Pa`+b`a`‖ (A.29)

Next, we establish an upper bound to ‖a` −Pa`+b`a`‖. Consider the triangle given by a`, Pa`+b`a` and a` + b`.

Hilbert projection theorem (see Rudin, 1987) implies

‖a` −Pa`+b`a`‖ ≤ ‖a` − (a` + b`) γ‖ ,

for any scalar γ and setting γ = 1 we have

‖a` −Pa`+b`a`‖ ≤ ‖a` − a` + b`‖ ,
≤ ‖b`‖ ,
= Op

(
r

1/2
N N−1/2

)
.

Using this result in (A.29) and noting that |c1`| < K by assumption, it follows that

‖MA+BαA,1‖ = Op

(
sNr

1/2
N

N1/2

)
,

as desired.

Consider now the inner product of vectors MA+BαA,1 and MA+BαA,2. Using Cauchy-Schwarz inequality,

we obtain ∣∣α′A,1MA+BαA,2
∣∣ =

∣∣(MA+BαA,1)
′
(MA+BαA,2)

∣∣ ≤ ‖MA+BαA,1‖ ‖MA+BαA,2‖ .

But (A.7) implies that both ‖MA+BαA,1‖ and ‖MA+BαA,2‖ are Op
(
sN
√
rN/
√
N
)
. These results establish

(A.8), as desired.

Proof of Lemma A.2. Note that all processes, εit, ηit, ϑit, yit, ωit and hwt, are stationary with absolutely

summable autocovariances and their cross products are ergodic in mean. Lemma A.2 can be established in the

same way as Lemma 1 in Chudik and Pesaran (2011) by applying a mixingale weak law.

Proof of Lemma A.3. Lemma (A.3) can be established in a similar way as Lemma A.5 in Chudik, Pesaran,

and Tosetti (2011) and by observing that Mh is asymptotically the orthogonal complement of the space spanned

by Cf t.
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Proof of Lemma A.4. Let us denote the individual columns of Ξi as ξis·, for s = 1, 2, ..., 2k + 1, and define

the scaled vectors ξ�is· = T−1/2ξis· and ε
�
i = T−1/2εi. Since the individual elements of ξis· and εi are uniformly

Op (1), we have ‖ξis·‖ = Op
(
T 1/2

)
, ‖εi‖ = Op

(
T 1/2

)
and therefore ‖ξ�is·‖ = Op (1) and ‖ε�i ‖ = Op (1). Now

consider the inner product

〈Mhξ
�
is·,Mhε

�
i 〉 = 〈ξ�is·, ε�i 〉+ 〈Phξ

�
is·,Phε

�
i 〉 , (A.30)

where 〈a,b〉 = a′b denotes the inner product of vectors a and b, and Ph = Hw (H′wHw)
+

H′w is the orthogonal

projection matrix that projects onto the column space of Hw. Consider the probability limits of the elements in

(A.30) as (N,T, pT )
j→ ∞ such that p3

T /T → κ for some constant 0 < κ < ∞. (A.9) and (A.10) of Lemma A.2
establish that

〈ξ�is·, ε�i 〉
p→ 0, for s = 1, 2, ..., 2k + 1. (A.31)

Consider the Euclidean norm of the second term of (A.30). Using Cauchy-Schwarz inequality we obtain the

following upper bound,

‖〈Phξ
�
is·,Phε

�
i 〉‖ 5 ‖Phξ

�
is·‖ ‖Phε

�
i ‖ , (A.32)

where (by Pythagoras’theorem)15

‖Phξ
�
is·‖ ≤ ‖ξ�is·‖ = Op (1) . (A.33)

Now we will establish convergence of ‖Phε
�
i ‖ in probability. By spectral theorem there exists a unitary matrix

V such that

V′
H′wHw

T
V =

 D 0
rcpT+1×(k+1−rc)pT

0
(k+1−rc)pT×rcpT+1

0
(k+1−rc)pT×(k+1−rc)pT

 , (A.34)

whereD is a rcpT+1 dimensional diagonal matrix with strictly positive diagonal elements and rc = rank (C). Also

by assumption ft is a stationary process with absolute summable autocovariances, and so is hwt. Furthermore,

H′wHw/T = Op (1) as well as the diagonal elements of D have nonzero (and finite) probability limits. Partition

unitary matrix V = (V1,V2) so that T−1V′1H
′
wHwV1 = D and define U1 = T−1/2HwV1D

−1/2. Note that U1

is the orthonormal basis of the space spanned by the column vectors of Hw, namely

U′1U1 = D−1/2V
′

1

H′wHw

T
V1D

−1/2

= D−1/2DD−1/2

= IrcpT+1.

Scaled matrix T−1/2Hw can now be written as T−1/2Hw = U1D
1/2V′1. Consider

D−1/2V
′

1

H′wεi
T

= D−1/2V
′

1V1D
1/2U′1ε

�
i = U′1ε

�
i ,

where we have used thatV
′

1V1 is an identity matrix sinceV1 is unitary. Using now the submultiplicative property

of matrix norms and (A.11) of Lemma A.2, we obtain

‖U′1ε�i ‖∞ =

∥∥∥∥D−1/2V
′

1

H′wεi
T

∥∥∥∥
∞

≤
∥∥∥D−1/2

∥∥∥
∞
‖V′1‖∞

∥∥∥∥H′wεi
T

∥∥∥∥
∞

= Op

(
T−1/2

)
,

where
∥∥D−1/2

∥∥
∞ = Op (1) since the diagonal elements of the diagonal matrix D have positive probability limits,

and ‖V′1‖∞ = Op (1) since V1 is unitary. This establishes that the individual elements of the vector U′1ε
�
i are

15Let Mh = (IT−pT −Ph) and note that ξ�is· = Mhξ
�
is· + Phξ

�
is·. Vectors Mhξ

�
is· and Phξ

�
is· are orthogonal and

therefore ‖Mhξ
�
is· +Phξ

�
is·‖

2 = ‖Mhξ
�
is·‖

2 + ‖Phξ�is·‖
2. It now follows that ‖ξ�is·‖

2 = ‖Mhξ
�
is·‖

2 + ‖Phξ�is·‖
2, but since

‖Mhξ
�
is·‖

2 ≥ 0, we obtain ‖ξ�is·‖
2 ≥ ‖Phξ�is·‖

2.
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(uniformly) Op
(
T−1/2

)
. Consider next Phε

�
i , which is an orthogonal projection of ε

�
i on the space spanned by

the column vectors of Hw. Since U1 is an orthonormal basis of this space, we can write Phε
�
i as the following

linear combination of basis vectors,16

Phε
�
i =

(rc+1)pT+1∑
j=1

〈ε�i ,u1j〉u1j , (A.35)

where u1j , for j = 1, 2, ..., rcpT + 1, denotes the individual columns of U1. But we have shown that |〈ε�i ,u1j〉| =
Op
(
T−1/2

)
and ‖u1j‖ = 1 (orthonormality), and therefore

‖Phε
�
i ‖ = Op

(
pT√
T

)
. (A.36)

Using (A.33) and (A.36) in (A.32) yields

‖〈Phξ
�
is·,Phε

�
i 〉‖ = Op

(
pT√
T

)
,

for s = 1, 2, ..., 2k + 1, and using this result together with (A.31) in (A.30) we obtain

‖〈Mhξ
�
is·,Mhε

�
i 〉‖∞

p→ 0,

as desired. This completes the proof of (A.17)

(A.18) and (A.19) can be established in a similar way by noting that Lemma A.2 implies
∥∥T−1Ξ′iηi

∥∥
∞

p→ 0 and∥∥〈η�i , T−1/2Hw

〉∥∥
∞ = Op

(
T−1/2

)
(required to establish (A.18)) and also

∥∥T−1Ξ′iϑi
∥∥
∞

p→ 0,
∥∥〈ϑ�i , T−1/2Hw

〉∥∥
∞ =

Op
(
T−1/2

)
(required for (A.19)).

Proof of Lemma A.5. Define

ϕiT = Σ−1
iξ

Ξ′iMhF

T
ηγi,

and consider the cross-sectional average ϕ̄T = N−1
∑N
i=1ϕiT . Note that

E (ϕiT ) = 0
2kx+1×1

, (A.37)

and

E
(
ϕiTϕ

′
jT

)
= 0

2kx+1×2kx+1
for i 6= j, i, j = 1, 2, ..., N , (A.38)

since the unobserved common factors are serially uncorrelated and independently distributed of ηγi, and ηγi is

independently distributed across i. Next, we show that the individual elements of E (ϕiTϕ
′
iT ) are bounded in

N . Σiξ, defined in Lemma A.3, is invertible under Assumption 7 and in particular,
∥∥∥Σ−1

iξ

∥∥∥ < K < ∞. Using
Cauchy-Schwarz inequality, we obtain

E

[(
ξ̃istf`tηγi`

)2
]
≤
√
E
(
ξ̃

4

ist

)
E
(
f4
`tη

4
γi`

)
= O (1) ,

for s = 1, 2, ..., 2k + 1, and ` = 1, 2, ...,m, where ξ̃ist are the individual elements of Ξ′iMh, ξ̃isthas uniformly

bounded 4-th moments under Assumption 7, and E
(
f4
`tη

4
γi`

)
= E

(
f4
`t

)
E
(
η4
γi`

)
is also uniformly bounded under

Assumptions 2 and 3. It follows that there exists a constant K <∞, which does not depend on N and such that

‖E (ϕiTϕ
′
iT )‖ < K. (A.39)

16The column vectors in U are orthogonal and therefore for any vector a ∈ Col (U) we have a =
∑rcpT+1

j=1

〈a,u1j〉
〈u1j ,u1j〉u1j .

But 〈u1j ,u1j〉 = 1 since each of the column vectors contained in U have unit length (orthonormality) and we obtain a =∑rcpT+1
j=1 〈a,u1j〉u1j . (A.35) now follows by letting a = Phε�i and noting that 〈Phε�i ,u1j〉 = 〈ε�i ,u1j〉 since Phu1j = u1j .
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Using now (A.38)-(A.39), we obtain

‖V ar (ϕ̄T )‖ = O
(
N−1

)
. (A.40)

(A.37) and (A.40) imply ϕ̄T
p→ 0, as desired.

Proof of Lemma A.6. Denote the individual columns of Ξi by ξis·, s = 1, 2, ..., 2k + 1 and consider

ξ′is·M̄qξis· − ξ′is·Mhξis· =
∥∥M̄qξis·

∥∥2 − ‖Mhξis·‖
2 , (A.41)

for s = 1, 2, ..., 2k + 1. The Hilbert projection theorem (see Rudin, 1987) implies∥∥M̄qξis·
∥∥2 ≤ ‖ξis· −αq‖

2 ,

for any vector αq ∈ Col
(
Q̄w

)
. Choose αq = Phξis· − M̄qPhξis·, where Ph is orthogonal projector matrix onto

Col
(
Q̄w

)
, and note that αq =

(
IT−pT − M̄q

)
Phξis· ∈ Col

(
Q̄w

)
. Hence,∥∥M̄qξis·

∥∥2 ≤
∥∥ξis· −Phξis· + M̄qPhξis·

∥∥2

≤
∥∥Mhξis· + M̄qPhξis·

∥∥2

≤ ‖Mhξis·‖
2

+
∥∥M̄qPhξis·

∥∥2
+ 2

〈
Mhξis·, M̄qPhξis·

〉
, (A.42)

where we usedMh = IT−pT−Ph to obtain the second inequality and we used ‖a + b‖2 = ‖a‖2+‖b‖2+2 〈a,b〉, for
any vectors a and b, to obtain the third inequality. Similarly, we obtain the following upper bound on ‖Mhξis·‖

2,

‖Mhξis·‖
2 ≤

∥∥ξis· − P̄qξis· + MhP̄qξis·
∥∥2

≤
∥∥M̄qξis· + MhP̄qξis·

∥∥2

≤
∥∥M̄qξis·

∥∥2
+
∥∥MhP̄qξis·

∥∥2
+ 2

〈
M̄qξis·,MhP̄qξis·

〉
(A.43)

Using (A.42) and (A.43) in (A.41) yields the following lower and upper bounds,

ε1,NT ≤
∥∥M̄qξis·

∥∥2 − ‖Mhξis·‖
2 ≤ ε2,NT , (A.44)

where

ε1,NT =
∥∥MhP̄qξis·

∥∥2
+ 2

〈
M̄qξis·,MhP̄qξis·

〉
, (A.45)

and

ε2,NT =
∥∥M̄qPhξis·

∥∥2
+ 2

〈
Mhξis·, M̄qPhξis·

〉
. (A.46)

Note that P̄qξis· belongs to Col
(
Q̄w

)
and

∥∥P̄qξis·
∥∥ ≤ ‖ξis·‖ = Op

(√
T − pT

)
since the individual elements of

ξis·. are uniformly Op (1). Also, Q̄w = Hw + V̄w, where elements of V̄w are uniformly Op
(
N−1/2

)
, whereas the

elements of Hw are Op (1). Using Lemma A.1 (by setting A = Hw + V̄w, B = −V̄w and αA,1 = P̄qξis·), we

obtain ∥∥MhP̄qξis·
∥∥ = Op

(
pT
√
T − pT√
N

)
. (A.47)

Similarly, Lemma A.1 can be used again (by setting A = Hw, B = V̄w and αA,1 = Phξis·) to show that

∥∥M̄qPhξis·
∥∥ = Op

(
pT
√
T − pT√
N

)
. (A.48)

Now consider the inner product on the right side of (A.45). Using Cauchy-Schwarz inequality, we have∣∣〈M̄qξis·,MhP̄qξis·
〉∣∣ ≤ ∥∥M̄qξis·

∥∥ ∥∥MhP̄qξis·
∥∥ ,

= Op

(
pT (T − pT )√

N

)
(A.49)

where
∥∥M̄qξis·

∥∥ ≤ ‖ξis·‖ = Op
(√
T − pT

)
, and

∥∥MhP̄qξis·
∥∥ = Op

(
pTN

−1/2
√
T − pT

)
by (A.47). Similarly,
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using ‖Mhξis·‖ ≤ ‖ξis·‖ = Op
(√
T − pT

)
, (A.48) and the Cauchy-Schwarz inequality, we obtain∣∣〈Mhξis·, M̄qPhξis·

〉∣∣ ≤ ‖Mhξis·‖
∥∥M̄qPhξis·

∥∥
= Op

(
pT (T − pT )√

N

)
(A.50)

Using (A.47)-(A.50) in (A.45) and (A.46) we obtain

ε`,NT = Op

(
p2
T (T − pT )

2

N

)
+Op

(
pT (T − pT )√

N

)
, for ` = 1, 2;

and using this result in (A.44) yields

√
N

(∥∥∥∥M̄qξis·
T

∥∥∥∥2

−
∥∥∥∥Mhξis·

T

∥∥∥∥2
)

= Op

(
p2
T

(T − pT )

T 2
√
N

)
+Op

(
pT (T − pT )

T 2

)
,

p→ 0,

for s = 1, 2, ..., 2k + 1, as (N,T, pT )→∞ such that p2
T /T → 0. This establishes that the diagonal elements of

√
N

Ξ′iM̄qΞi

T
−
√
N

Ξ′iMhΞi

T

tend to 0 in probability, uniformly in i.

Now consider the off-diagonal elements. Convergence of individual terms

√
N
ξ′is·M̄qξi`·

T
−
√
N
ξ′is·Mhξi`·

T
, for s 6= `, s, ` = 1, 2, ..., k + 1,

can be established following the same arguments as above but using (A.8) instead of (A.7) of Lemma A.1. This

completes the proof of (A.21). (A.22)-(A.25) can be established in the same way.

Proof of Lemma A.7. Using the identity Mh = IT−pT −Ph, where Ph is orthogonal projection matrix that

projects onto Col (Hw), we write the expression on the left side of (A.26) as:

1√
N

N∑
i=1

Ξ′iMhεi
T

=
1√
N

N∑
i=1

Ξ′iεi
T
− 1√

N

N∑
i=1

Ξ′iPhεi
T

. (A.51)

First we establish convergence of the first term on the right side of (A.51). Let TN = T (N) and pN = pT [T (N)]

be any non-decreasing integer-valued functions of N such that limN→∞ TN = ∞ and limN→∞ p2
T /T = 0. The

first term on the right side of (A.51) can be written as

1√
N

N∑
i=1

Ξ′iεi
TN

=

TN∑
t=pT+1

κNt,

where

κNt =
1

TN
√
N

N∑
i=1

ξitεit.

Let
{
{cNt}∞t=−∞

}∞
N=1

be two-dimensional array of constants and set cNt = 1
TN

for all t ∈ Z and N ∈ N. ξit and
εjt are independently distributed for any i, j and t, and we have: E (κNt) = 0, and the elements of covariance
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matrix of κNt/cNt are bounded, in particular∥∥∥∥V ar(κNtcNt

)∥∥∥∥ =

∥∥∥∥E (κNtκ′Ntc2Nt

)∥∥∥∥ ,
=

∥∥∥∥∥∥ 1

N

N∑
i=1

N∑
j=1

E
(
ξitξ

′
jtεitεjt

)∥∥∥∥∥∥ ,
=

∥∥∥∥∥∥ 1

N

N∑
i=1

N∑
j=1

[
E
(
ξitξ

′
jt

)
E (εitεjt)

]∥∥∥∥∥∥ .
Noting that E

(
ξitξ

′
jt

)
is bounded in i, j and t, and E (εtε

′
t) = RR′ under Assumption 1, we obtain

∥∥∥∥V ar(κNtcNt

)∥∥∥∥ ≤ K

N

∥∥∥∥∥∥
N∑
i=1

N∑
j=1

E (εitεjt)

∥∥∥∥∥∥ ,
≤ K

N
‖τ ′E (εtε

′
t) τ‖ ,

≤ K

N
‖τ ′N‖ ‖R‖ ‖R′‖ ‖τN‖ .

But ‖τ ′N‖ = ‖τN‖ =
√
N and ‖R‖ ≤

√
‖R‖1 ‖R‖∞ < K, where ‖R‖1 and ‖R‖∞ are postulated to be bounded

by Assumption 1, and therefore ∥∥∥∥V ar(κNtcNt

)∥∥∥∥ = O (1) . (A.52)

(A.52) implies uniform integrability of {κNt/cNt} and the array κNt is uniformly integrable L1-mixingale array

with respect to the constant array cNt. Using a mixingale weak law yields (Davidson, 1994, Theorem 19.11)

TN∑
t=pT+1

κNt =
1

TN
√
N

TN∑
t=pT+1

N∑
i=1

ξitεit
L1→ 0

2kx+1×1
.

Convergence in L1 norm implies convergence in probability. This establishes

1√
N

N∑
i=1

Ξ′iεi
T

p→ 0
2kx+1×1

, (A.53)

as (N,T, pT )
j→∞ and p2

T /T → 0.

Next consider the second term on the right hand side of (A.51), and note that

Ξ′iPhεi
T

=
1√
T

Ξ′iHw

T

(
H′wHw

T

)+
H′wεi√
T
,

=
1√
T

G′iTϑεi,

where

G′iT =
Ξ′iHw

T

(
H′wHw

T

)+

,

and

ϑεi =
H′wεi√
T
.

Define also

G′i = ΘξiΘ
+
hh,

in which Θξi = E
(
ξith̃

′
wt

)
, h̃′wt =

(
1,h′wt,h

′
w,t−1, ...,h

′
w,t−pT

)
denotes the individual rows of Hw, is 2kx + 1 ×

(k + 1) pT + 1 dimensional matrix, and Θhh = E
(
h̃wth̃

′
wt

)
is (k + 1) pT + 1 × (k + 1) pT + 1 matrix. Elements
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of Θξi and Θhh are uniformly bounded and in particular∥∥Θ+
hh

∥∥
∞ = O (1) ,

∥∥Θ+
hh

∥∥
1

= O (1) , ‖Θξi‖∞ = O (1) and ‖Θξi‖1 = O (1) , (A.54)

because
∑∞
`=0 |E (ξisthw,r2t−`)| < K and

∑∞
`=0 |E (hw,r1thw,r2t−`)| < K for any r1, r2 = 1, 2, ..., k + 1 and s =

1, 2, ...k+ 1, where hw,r1t for r1 = 1, 2, ..., k+ 1 denotes individual elements of hwt = Ψw (L) ft + czw and ξist for

s = 1, 2, ...k + 1 denotes individual elements of ξit. Using these notations, we can now write the second term on

the right side of (A.51) as

1√
N

N∑
i=1

Ξ′iPhεi
T

=

√
N

T
· 1

N

N∑
i=1

G′iTϑεi

=

√
N

T

(
1

N

N∑
i=1

G′iϑεi +
1

N

N∑
i=1

(G′iT −G′i)ϑεi

)
(A.55)

Consider the first term inside the brackets on the right side of (A.55) and note that

E

(
1

N

N∑
i=1

G′iϑεi

)(
1

N

N∑
i=1

G′iϑεi

)′
=

1

N2

N∑
i=1

N∑
j=1

G′iE
(
ϑεiϑ

′
εj

)
Gj . (A.56)

Since εi is independently distributed of h̃′wt and the stochastic processes in h̃′wt are covariance stationary, we also

have

E
(
ϑεiϑ

′
εj

)
=

1

T
E
(
H′wεiε

′
jHw

)
= σijΘhh, (A.57)

where σij = E (εitεjt). Using (A.57) in (A.56) and applying the submultiplicative property of matrix norm yields∥∥∥∥∥∥E
(

1

N

N∑
i=1

G′iϑεi

)(
1

N

N∑
i=1

G′iϑεi

)′∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥ 1

N2

N∑
i=1

N∑
j=1

σijG
′
iΘhhGj

∥∥∥∥∥∥
∞

≤ 1

N2

N∑
i=1

N∑
j=1

|σij | ‖G′i‖∞ ‖Θhh‖∞ ‖Gj‖∞ ,

where ‖Θhh‖∞ = O (1), ‖G′i‖∞ = ‖ΘξiΘhh‖∞ ≤ ‖Θξi‖∞ ‖Θhh‖∞ = O (1) and ‖Gj‖∞ =
∥∥(ΘξjΘhh)

′∥∥
∞ =

‖ΘξjΘhh‖1 ≤ ‖Θξj‖1 ‖Θhh‖1 = O (1), see (A.54). Using these results and noting that N−1
∑N
i=1

∑N
j=1 |σij | =

O (1) under Assumption 1, we obtain∥∥∥∥∥∥E
(

1

N

N∑
i=1

G′iϑεi

)(
1

N

N∑
i=1

G′iϑεi

)′∥∥∥∥∥∥
∞

≤ K

N2

N∑
i=1

N∑
j=1

|σij |

≤ K

N
, (A.58)

which in turn implies that √
N

T
· 1

N

N∑
i=1

G′iϑεi
p→ 0

2kx+1×1
, (A.59)

as (N,T, pT )
j→∞ such that N/T → κ1, for some 0 < κ1 <∞.

Now consider the second term inside the brackets on the right side of (A.55). Using submultiplicative property

of matrix norms, we have ∥∥∥∥∥ 1

N

N∑
i=1

(G′iT −G′i)ϑεi

∥∥∥∥∥
∞

≤ 1

N

N∑
i=1

‖G′iT −G′i‖∞ ‖ϑεi‖∞ . (A.60)

Note that ϑεi has zero mean and V ar (ϑεi) = E
(
ϑεiϑ

′
εj

)
= σijΘhh, see (A.57), where σij and the elements of
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Θhh are uniformly bounded. It therefore follows that

‖ϑεi‖∞ = Op (1) uniformly in i and pT . (A.61)

Consider now the term
√
T ‖G′iT −G′i‖∞, and first note that

G′iT −G′i =
Ξ′iHw

T

(
H′wHw

T

)+

−ΘξiΘ
+
hh

=

[
Ξ′iHw

T
−Θξi

][(
H′wHw

T

)+

−Θ+
hh

]
+

[
Ξ′iHw

T
−Θξi

]
Θ+
hh

+Θξi

[(
H′wHw

T

)+

−Θ+
hh

]
.

Hence

‖G′iT −G′i‖∞ ≤
∥∥∥∥(Ξ′iHw

T
−Θξi

)∥∥∥∥
∞

∥∥∥∥∥
(

H′wHw

T

)+

−Θ+
hh

∥∥∥∥∥
∞

+

∥∥∥∥Ξ′iHw

T
−Θξi

∥∥∥∥
∞

∥∥Θ+
hh

∥∥
∞

+ ‖Θξi‖∞

∥∥∥∥∥
[(

H′wHw

T

)+

−Θ+
hh

]∥∥∥∥∥
∞

(A.62)

Individual elements of Ξ′iHw/T −Θξi can be written as
∑T
t=pT+1

ξi,r,th̃
′
w,s,t−E

(
ξi,r,th̃

′
w,s,t

)
, for r = 1, 2, ..., k+1

and s = 1, 2, ..., (k + 1) pT +1, where ξi,r,t and h̃
′
w,s,t are the elements of ξit and h̃wt. The stochastic processes ξi,r,t

and h̃′w,s,t are covariance stationary with absolute summable autocovariances and we have
∑T
t=pT+1

ξi,r,th̃
′
w,s,t −

E
(
ξi,r,th̃

′
w,s,t

)
= Op

(
T−1/2

)
uniformly in i and pT . This implies∥∥∥∥(Ξ′iHw

T
−Θξi

)∥∥∥∥
∞

= Op

(
pT√
T

)
uniformly in i. (A.63)

Lemmas A.7 and A.8 of Chudik and Pesaran (2013) establish that in the full column rank case where rank (C) = m

and k + 1 = m, we have ∥∥∥∥∥
(

H′wHw

T

)−1

−Θ−1
hh

∥∥∥∥∥
∞

= Op

(
pT√
T

)
,

where Θhh = E
(
h̃wth̃

′
wt

)
is (k + 1) pT + 1× (k + 1) pT + 1 nonsingular matrix (in the full column rank case with

k + 1 = m). Using generalized inverse instead of inverse, the diagonalization of H′wHw/T in (A.34) and similar

arguments as in Lemmas A.7 and A.8 of Chudik and Pesaran (2013), the same result can be established for the

more general case when C does not necessarily have full column rank or when rank (C) = m but k + 1 ≥ m,

namely: ∥∥∥∥∥
(

H′wHw

T

)+

−Θ+
hh

∥∥∥∥∥
∞

= Op

(
pT√
T

)
(A.64)

Using (A.54) and (A.63)-(A.64) in (A.62), we obtain

‖G′iT −G′i‖∞ = Op

(
pT√
T

)
, uniformly in i. (A.65)

Using now (A.61) together with (A.65) in (A.60) yield

1

N

N∑
i=1

(G′iT −G′i)ϑεi
p→ 0

2kx+1×1
, (A.66)
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as (N,T, pT )
j→∞, and p2

T /T → 0. Finally, using (A.59) and (A.66) in (A.55), we obtain

1√
N

N∑
i=1

Ξ′iPhεi
T

p→ 0
2kx+1×1

, (A.67)

when (N,T, pT )
j→∞ such that N/T → κ, for some 0 < κ <∞, and p2

T /T → 0. This completes the proof.

A.4 Proofs of Theorems and Propositions

Proof of Theorem 1. Equation (24), for t = pT + 1, pT + 2, ..., T , can be written as (see (A.2))

yi = Ξiπi + Q̄wdi + εi + ηi + ϑi, (A.68)

where di =
(
c∗yi, δ

′
i0, δ

′
i1, ..., δ

′
ipT

)′
, εi = (εi,pT+1, εi,pT+2, ..., εiT )

′, ηi is T − pT × 1 vector with its elements

given by
∑∞
`=pT+1 δ

′
i`z̄w,t−`, for t = pT + 1, pT + 2, ..., T , and ϑi is T − pT × 1 vector defined in (A.3) with its

elements uniformly bounded by Op
(
N−1/2

)
. Substituting (A.68) into the definition of π̂i in (26) and noting that(

Ξ′iM̄qΞ
′
i

)−1
Ξ′iM̄qΞiπi = πi, we obtain

π̂i − πi =
(
Ξ′iM̄qΞ

′
i

)−1
Ξ′iM̄q

(
Q̄wdi + εi + ηi + ϑi

)
. (A.69)

Note that M̄qQ̄w = Q̄w − Q̄w

(
Q̄′wQ̄w

)+
Q̄′wQ̄w = Q̄w − Q̄w = 0

T−pT×(k+1)pT+1
and (A.69) reduces to

π̂i − πi =

(
Ξ′iM̄qΞ

′
i

T

)−1
Ξ′iM̄q

T
(εi + ηi + ϑi) (A.70)

Consider the asymptotics (N,T, pT )
j→∞ such that p3

T /T → κ for some constant 0 < κ <∞. (A.12) of Lemma
A.3 and (A.21) of Lemma A.6 show that T−1Ξ′iM̄qΞ

′
i converges in probability to a full rank matrix. Therefore(

Ξ′iM̄qΞ
′
i

T

)−1

= Op (1) . (A.71)

Moreover, Lemmas A.4 and A.6 establish

Ξ′iM̄qεi
T

p→ 0
2kx+1×1

,
Ξ′iM̄qηi

T

p→ 0
2kx+1×1

, and
Ξ′iM̄qϑi

T

p→ 0
2kx+1×1

. (A.72)

Using (A.71)-(A.72) in (A.70) establish (28) as desired.

Proof of Theorem 2. First, suppose that the rank condition stated in Assumption 6 holds and consider the

asymptotics (N,T, pT )
j→ ∞, such that p3

T /T → κ, for some constant 0 < κ < ∞. Using Theorem 1 and the

definition of the mean group estimator π̂MG in (27), we have

π̂MG −
1

N

N∑
i=1

πi
p→ 0

2kx+1×1
. (A.73)

Assumption 4 postulates that πi = π + υπi, where υπi ∼ IID

(
0

2kx+1×1
,Ωπ

)
and the norms of π and Ωπ are

bounded. It follows that
∥∥∥V ar (N−1

∑N
i=1 υπi

)∥∥∥ = ‖Ωπ/N‖ → 0 as N →∞ and

1

N

N∑
i=1

πi − π =
1

N

N∑
i=1

υπi
p→ 0

2kx+1×1
, as N →∞. (A.74)

(A.73) and (A.74) establish (29), as desired.

Now suppose that the rank condition does not hold. Using model (1)-(2), the vector of observations on the
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dependent variable, yi = (yi,pT+1, yi,pT+2, ..., yi,T )
′, can be written as (see (A.1))

yi = cyi + Ξiπi + Fγi + εi, (A.75)

where cyi = cyiτT−pT and F = (f1, f2, ..., fm) with f` = (f`,pT+1, f`,pT+2, ..., f`,T )
′ for ` = 1, 2, ...,m. Substituting

(A.75) into the definition of π̂i in (26) and noting that M̄qcyi = 0
T−pT×1

and
(
Ξ′iM̄qΞ

′
i

)−1
Ξ′iM̄qΞiπi = πi, we

obtain the following expression for the mean group estimator,

π̂MG =
1

N

N∑
i=1

πi +
1

N

N∑
i=1

Ψ̂−1
Ξ,iT

Ξ′iM̄qεi
T

+
1

N

N∑
i=1

Ψ̂−1
Ξ,iT

Ξ′iM̄qFγi
T

, (A.76)

where Ψ̂Ξ,iT is defined in Assumption 7. Consider the asymptotics (N,T, pT )
j→ ∞, such that p3

T /T → κ, for
some constant 0 < κ < ∞. The probability limit of the first term in (A.76) is established in (A.74). As before

(see (A.71)), Ψ̂−1
Ξ,iT = Op (1) uniformly in i and using also (A.17) and (A.22) of Lemmas A.4 and A.6, respectively,

we obtain
1

N

N∑
i=1

Ψ̂−1
Ξ,iT

(
Ξ′iM̄qεi

T

)
p→ 0

2kx+1×1
. (A.77)

Finally, consider the last term on the right side of (A.76). Since Σiξ is nonsingular, (A.12) of Lemma A.3 and

(A.21) of Lemma A.6 establish that Ψ̂−1
Ξ,iT

p→ Σ−1
iξ , and together with (A.23) of Lemma A.6 we have

1

N

N∑
i=1

Ψ̂−1
Ξ,iT

Ξ′iM̄qF

T
γi −

1

N

N∑
i=1

Σ−1
iξ

Ξ′iMhF

T
γi

p→ 0
2kx+1×1

.

Note that γi = ηγi +
(
γw − ηγw

)
. F

(
γw − ηγw

)
does not necessarily belong to the linear space spanned by

the column vectors of Q due to the truncation lag pT and, in particular, we have T−1MhFγw = Op (ρpT ),

T−1MhFηγw = Op
(
N−1/2ρpT

)
, and T−1Ξ′iMhFγi = T−1Ξ′iMhFηγi+Op

(
N−1/2ρpT

)
+Op (ρpT ), where ηγw =

Op
(
N−1/2

)
, |ρ| < 1 and function ρ`, for ` = 1, 2, ..., is an upper bound on the exponential decay of coeffi cients

in the polynomial Λw (L) =
∑N
i=1 wi (Ik+1 −AiL)

−1
A−1

0,iCi in the definition of Q̄w. Now, when unobserved

common factors are serially uncorrelated, we can use Lemma A.5 to obtain

1

N

N∑
i=1

Ψ̂−1
Ξ,iT

(
Ξ′iM̄qF

T

)
γi

p→ 0
2kx+1×1

. (A.78)

Note that when factors are serially correlated and the rank condition does not hold, then T−1Ξ′iMqFηγi does not

converge to 0
2kx+1×1

and as a result, equation (A.78) would not hold. Using (A.74), (A.77) and (A.78) in (A.76)

establish π̂MG → π, when (N,T, pT )
j→∞ such that p3

T /T → κ for some constant 0 < κ <∞, as desired.
Proof of Theorem 3. Multiplying (A.76) by

√
N and substituting πi = π + υπi we obtain

√
N (π̂MG − π) =

1√
N

N∑
i=1

υπi +
1√
N

N∑
i=1

Ψ̂−1
Ξ,iT

Ξ′iM̄qεi
T

+
1√
N

N∑
i=1

Ψ̂−1
Ξ,iT

Ξ′iM̄qFγi
T

(A.79)

where Ψ̂Ξ,iT is defined in Assumption 7. Consider the asymptotics (N,T, pT )
j→ ∞ such that N/T → κ1 and

p3
T /T → κ2, for some constants 0 < κ1,κ2 < ∞. We establish convergence of the individual elements on the
right side of (A.79) below.

It follows from (A.21) of Lemma A.6 and (A.12) of Lemma A.3 that

Ψ̂Ξ,iT −Σiξ = op

(
N−1/2

)
uniformly in i. (A.80)
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(A.80), (A.22) of Lemma A.6, and (A.26) of Lemma A.7 imply

1√
N

N∑
i=1

Ψ̂−1
Ξ,iT

Ξ′iM̄qεi
T

p→ 0
2kx+1×1

. (A.81)

As in the proof of Theorem 2, γi = ηγi+
(
γw − ηγw

)
, F
(
γw − ηγw

)
does not necessarily belong to the linear space

spanned by the column vectors of Q due to the truncation lag pT and, in particular, we have T−1Ξ′iMhFγi =

T−1Ξ′iMhFηγi+Op
(
N−1/2ρpT

)
+Op (ρpT ), where ηγw = Op

(
N−1/2

)
, |ρ| < 1 and function ρ`, for ` = 1, 2, ..., is an

upper bound on the exponential decay of coeffi cients in the polynomial Λw (L) =
∑N
i=1 wi (Ik+1 −AiL)

−1
A−1

0,iCi

in the definition of Q̄w. Using now (A.21) and (A.23) of Lemma A.6 and noting that
√
NρpT → 0 yields

1√
N

N∑
i=1

Ψ̂−1
Ξ,iT

Ξ′iM̄qF

T
γi −

1√
N

N∑
i=1

(
Ξ′iMhΞi

T

)−1
Ξ′iMhF

T
ηγi

p→ 0
2kx+1×1

. (A.82)

Using (A.81)-(A.82) in (A.79), we obtain

√
N (π̂MG − π)

d∼ ϑπi, ,

where

ϑπi =
1√
N

N∑
i=1

υi +
1√
N

N∑
i=1

(
Ξ′iMhΞi

T

)−1
Ξ′iMhF

T
ηγi, (A.83)

and recall that υi and ηγi are independently distributed across i. It now follows that
√
N (π̂MG − π) →

N

(
0

2kx+1×1
,ΣMG

)
, where

ΣMG = Ωπ + lim
N→∞

[
1

N

N∑
i=1

Σ−1
iξ QifΩγQ

′
ifΣ

−1
iξ

]
, (A.84)

in which Ωπ = V ar (πi) = V ar (υπi), Ωγ = V ar (γi) = V ar
(
ηγi
)
, and Σiξ = p limT−1Ξ′iMhΞi and Qif =

p limT−1Ξ′iMhF are defined by (A.12) and (A.13) of Lemma A.3, respectively. When the rank condition stated

in Assumption 6 holds then Qif = 0
2kx+1×m

, and ΣMG reduces to ΣMG = Ωπ.

Consider now the non-parametric variance estimator (32) and the same assumptions on the divergence of

(N,T, pT ). We have

π̂i − π̂MG = (π̂i − π) + (π − π̂MG) ,

where
√
N (π − π̂MG)

d→ N

(
0

2kx+1×1
,ΣMG

)
with ‖ΣMG‖ < K. It therefore follows that

1

N − 1

N∑
i=1

(π̂i − π̂MG) (π̂i − π̂MG)
′

=
1

N − 1

N∑
i=1

(π̂i − π) (π̂i − π)
′
+Op

(
N−1/2

)
.

Consider now π̂i − π. As before, using the definition of πi in (26) and substituting πi = π + υπi we obtain

π̂i − π = υπi + Ψ̂−1
Ξ,iT

Ξ′iM̄qεi
T

+ Ψ̂−1
Ξ,iT

Ξ′iM̄qFγi
T

.
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Using (A.81)-(A.82), we have

1

N − 1

N∑
i=1

(π̂i − π)
′
(π̂i − π) =

1

N − 1

N∑
i=1

υπiυ
′
πi

+
1

N − 1

N∑
i=1

(
Ξ′iMhΞi

T

)−1
Ξ′iMhF

T
ηγiη

′
γi

(
Ξ′iMhF

T

)′(
Ξ′iMhΞi

T

)−1

+op (1)

=
1

N − 1

N∑
i=1

υπiυ
′
πi +

1

N − 1

N∑
i=1

Σ−1
iξ Qifηγiη

′
γiQ

′
ifΣ

−1
iξ + op (1) ,

where Σiξ = p limT−1Ξ′iMhΞi and Qif = p limT−1Ξ′iMhF are defined by (A.12) and (A.13) of Lemma A.3, re-

spectively. Note that υπi and ηγi are independently distributed across i. Therefore
1

N−1

∑N
i=1 (π̂i − π)

′
(π̂i − π)−

ΣMG
p→ 0 and Σ̂MG

p→ ΣMG, as required.
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