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Abstract

This paper extends the transformed maximum likelihood approach for estimation of dynamic
panel data models by Hsiao, Pesaran, and Tahmiscioglu (2002) to the case where the errors are
cross-sectionally heteroskedastic. This extension is not trivial due to the incidental parameters
problem and its implications for estimation and inference. We approach the problem by working
with a mis-specified homoskedastic model, and then show that the transformed maximum likelihood
estimator continues to be consistent even in the presence of cross-sectional heteroskedasticity. We
also obtain standard errors that are robust to cross-sectional heteroskedasticity of unknown form.
By means of Monte Carlo simulations, we investigate the finite sample behavior of the transformed
maximum likelihood estimator and compare it with various GMM estimators proposed in the liter-
ature. Simulation results reveal that, in terms of median absolute errors and accuracy of inference,

the transformed likelihood estimator outperforms the GMM estimators in almost all cases.
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1 Introduction

In dynamic panel data models where the time dimension (7') is short, the presence of lagged dependent
variables among the regressors makes standard panel estimators inconsistent, and complicates statisti-
cal inference on the model parameters considerably. To deal with these difficulties a sizable literature
has emerged, starting with the seminal papers of Anderson and Hsiao (1981, 1982) who proposed the
application of the instrumental variable (IV) approach to the first-differenced form of the model. More
recently, a large number of studies have been focusing on the generalized method of moments (GMM),
see, among others, Holtz-Eakin, Newey, and Rosen (1988), Arellano and Bond (1991), Arellano and
Bover (1995), Ahn and Schmidt (1995) and Blundell and Bond (1998). One important reason for the
popularity of GMM in applied economic research is that it provides asymptotically valid inference
under a minimal set of statistical assumptions. Arellano and Bond (1991) proposed GMM estimators
based on moment conditions where lagged variables in levels are used as instruments. Blundell and
Bond (1998) showed that the performance of this estimator deteriorates when the parameter associ-
ated with the lagged dependent variable is close to unity and/or the wvariance ratio of the individual
effects to the idiosyncratic errors is large, since in such cases the instruments are only weakly related
to the lagged dependent variables.! The poor finite sample properties of GMM estimators has been
documented using Monte Carlo studies by Kiviet (2007), for example. To deal with the weak instru-
ment problem, Arellano and Bover (1995) and Blundell and Bond (1998) proposed the use of extra
moment conditions arising from the model in levels, which become available when the initial obser-
vations satisfy certain conditions. The resulting GMM estimator, known as system GMM, combines
moment conditions for the model in first differences with moment conditions for the model in levels.
We refer to Blundell, Bond, and Windmeijer (2000) for an extension to the multivariate case, and for a
Monte Carlo study of the properties of GMM estimators using moment conditions from either the first
differenced and/or levels models. More recently, Bun and Windmeijer (2010) show that the model in
levels suffers from the weak instrument problem when the variance ratio is large, and Hayakawa (2007)
provides finite sample evidence on the bias of the system GMM estimator for different values of the
variance ratio and show that the bias rises with the variance ratio. To overcome these shortcomings,
Han and Phillips (2010) and Han, Phillips, and Sul (2014) propose alternative GMM estimators.
The GMM estimators have been used in a large number of empirical studies to investigate problems
in areas such as labour, development, health, macroeconomics and finance. Theoretical and applied
research on dynamic panels have mostly focused on the GMM, and has by and large neglected the
maximum likelihood (ML) approach though there are several theoretical advances such as Hsiao, Pe-
saran, and Tahmiscioglu (2002), Binder, Hsiao, and Pesaran (2005), Alvarez and Arellano (2004), and
Kruiniger (2008). Hsiao, Pesaran, and Tahmiscioglu (2002) propose the transformed likelihood ap-
proach while Binder, Hsiao, and Pesaran (2005) have extended the approach to estimating panel VAR
(PVAR) models. Alvarez and Arellano (2004) have studied ML estimation of autoregressive panels

!See also the discussion in Binder, Hsiao, and Pesaran (2005), who proved that the asymptotic variance of the Arellano
and Bond (1991) GMM estimator depends on the variance of the individual effects.



in the presence of time-specific heteroskedasticity (see also Bhargava and Sargan (1983)). Kruiniger
(2008) considers ML estimation of a stationary/unit root AR(1) panel data models. More recently,
several papers including Han and Phillips (2013), Moral-Benito (2013), Kruiniger (2013), and Juodis
(2013) also consider the ML approach to estimating dynamic panel data models. There are several
reasons why the GMM approach is preferred to the ML approach. First, the regularity conditions
required to prove consistency and asymptotic normality of the GMM type estimators are relatively
mild and allow for the presence of cross-sectional heteroskedasiticity of the errors. In particular, see
Arellano and Bond (1991), Arellano and Bover (1995) and Blundell and Bond (1998). Second, for the
ML approach, the incidental parameters problem and the initial conditions problem lead to a violation
of the standard regularity conditions, which causes inconsistency. Although Hsiao, Pesaran, and Tah-
miscioglu (2002) developed a transformed likelihood approach to overcome some of the weaknesses of
the GMM approach (particularly the weak IV problem), their analysis still requires the idiosyncratic
errors to be homoskedastic, which is likely to be restrictive in many empirical applications.?

It is therefore desirable to extend the transformed ML approach of Hsiao, Pesaran and Tahmiscioglu
(HPT) so that it allows for heteroskedastic errors.® This is accomplished in this paper. The extension
is not trivial due to the incidental parameters problem that arises, in particular its implications for
inference. We follow the time series literature, and initially ignore the error variance heterogeneity and
work with a mis-specified homoskedastic model, but show that the transformed maximum likelihood
estimator by Hsiao, Pesaran, and Tahmiscioglu (2002) continues to be consistent. We then derive,
under fairly general conditions, a covariance matrix estimator for the quasi-ML (QML) estimator
which is robust to cross-sectional heteroskedasticity. Using Monte Carlo simulations, we investigate
the finite sample performance of the transformed QML estimator and compare it with a range of
GMM estimators. Simulation results reveal that, in terms of median absolute errors and accuracy of
inference, the transformed likelihood estimator outperforms the GMM estimators in almost all cases
when the model contains an exogenous regressor, and in many cases if we consider pure autoregressive
panels.

The rest of the paper is organized as follows. Section 2 describes the model and its underlying
assumptions. Section 3 proposes the transformed QML estimator for cross-sectionally heteroskedastic
errors. Section 4 provides an overview of the GMM estimators used in the simulation exercise. Section
5 describes the Monte Carlo design and comments on the small sample properties of the transformed

likelihood and GMM estimators. Finally, Section 6 ends with some concluding remarks.

2In the application of the GMM approach to dynamic panels, it is generally difficult to avoid the so-called many /weak
instruments problem, which is shown to result in biased estimates and substantially distorted test outcomes. See Section
5 for further evidence.

$Note, however, that since the transformed ML approach does not impose any restrictions on the individual effects,
the errors of the original panel (before differencing) can have any arbitrary degree of cross-sectional heteroskedasticity.



2 The dynamic panel data model

Consider the following dynamic panel data model
Yit = @ + VYit—1 + BTit + Ui, i=1,2,..,N, (1)

where oy, (i = 1,2,...,N) are the unobserved individual effects, u;; is an idiosyncratic error term,
x; is observed regressor assumed to vary over time (¢) and across the individuals (7). It is further
assumed that x; is a scalar variable to simplify the notations.* We refer to this model as ARX, to
distinguish it from the pure autoregressive specification (AR) that does not include the exogenous
regressor, x;. The coefficients of interest are v and 3, which are assumed to be fixed finite constants.
No restrictions are placed on the individual effects, ;. They can be heteroskedastic, correlated with
xjt and uj, for all ¢ and j, and can be cross-sectionally dependent. In contrast, the idiosyncratic
errors, u;, are assumed to be uncorrelated with x; for all 7, ¢t and ¢’. However, we allow the variance
of u; to vary across i, and let the variance ratio, 72 = [N'SN, Var (oy)] / [N 'S, Var (uy)] to
take any positive value. We shall investigate the robustness of the QML and GMM estimators to the
choices of 72 and 7.

Following the literature we take first differences of (1) to eliminate the individual effects’
Ayit = YAY; -1 + BAZy + Augy, (2)

and make the following assumptions:

Assumption 1 (initialization) The dynamic processes (1) have started at time t = —m, (m being a

positive constant) but only the time series data, {yi,vi}, (i =1,2,..,N;t=0,1,...,T), are observed.

Assumption 2 (Exogenous variable) It is assumed that x;; is generated either by

o0 o0
T =+ O+ Y agE g, Y lajl < oo 3)
i=0 i=0
or 00 o
Azig = ¢+ djgizj, D ldj| < oo (4)
i=0 =0

where u; can either be fized or random. €; are independently distributed over i and t, with E(e;) =0,

2

and var(ey) = oZ;, where 0 < Jgi < K < 0. Also uis and €; are independently distributed for all s

and t.

Assumption 3 (Initialization) We suppose that either

(i) | v |< 1, and the process has been going on for a long time, namely m — oo;

1 Extension to the case of multiple regressors is straightforward at the expense of notational complexity.
® As shown in Appendix A of Hsiao, Pesaran, and Tahmiscioglu (2002), other transformations can be used to eliminate
the individual effects and the QML estimator proposed in this paper is invariant to the choice of such transformations.



or (ii) The process has started from a finite period in the past not too far back from the Oth period,

namely for given values of y; —m with m finite, such that
E(AYi —mt1]|Axit, Ao, ooy Axir) = by + 70, AX4, for all i,
where by, is a finite constant, T, is a T-dimensional vector of constants, and Ax; = (Ax, Axsa, ..., Axyr)'.

Assumption 4 (idiosyncratic shocks) Disturbances w; are serially and cross-sectionally indepen-
dently distributed, with E (uy) = 0, and E (uZ,) = 07, such that 0 < 0 < K < oo, fori=1,2,..,N
andt=1,2,...,T.

Remark 1 Assumption 3(ii) constrains the expected changes in the initial values to be the same linear
functions of the observed values of the exogenous variables across all individuals. It does not require
the initial values, y; —m, to have the same mean across i, and allows y; —m, to vary both with o; and ;.
It is only required that y; —m+1— Yi,—m 15 free of the incidental parameter problem. For the relationship

between Assumption 3(ii) and the initial conditions, y; —m+1. See Appendiz A.

Remark 2 Assumptions 2, and 4 allow for heteroskedastic disturbances in the equations for y;; and

Tt

Remark 3 Assumption 2 requires x; to be strictly exogenous. But this restriction can be relaxed by
considering a panel vector autoregressive specification of the type considered in Binder, Hsiao, and
Pesaran (2005). However, these further developments are beyond the scope of the present paper. See

also the remarks in Section 6 .

3 Transformed likelihood estimation

The first-differenced model (2) is well defined for t = 2,3,...,T, and can be used to derive the joint
distribution of (Ayia, Ay;s, ..., Ay;r) conditional on Ay;1. To obtain the (unconditional) distribution

of Ay;1, starting from Ay; _m41, and by continuous substitution, we note that
m—1 m—1
Ay =" Ayi,—m41 + 0 Z vV Ari1—j + Z v Auga—j. (5)
=0 J=0
Note that the mean of Ay;; conditional on Ay; — i1, Axi1, Az, ..., is given by

m—1

i1 = B (Ayit|AYi —m i1, Azit, Azio, ) = Y Ayi —mir + B8 ¥ Aziy, (6)
=0

which depends on the unknown values Ay; _y,41, and Ax;1—j, for j =1,2,...m—1,7=1,2,...,N.

To solve this problem, we need to express the expected value of 7,;, conditional on the observables,



in a way that it only depends on a finite number of parameters. The following theorem provides the
conditions under which the marginal model for Ay;; is a linear function of a finite number of unknown

parameters.

Theorem 1 Consider model (2), where x4 follows either (3) or (4). Suppose that Assumptions 1-4
hold. Then Ay;1 can be expressed as:

Ayil =b+ TFIAXZ' + Vi1, (7)

where b is a constant, 7 is a T-dimensional vector of constants, Ax; = (Ax;1, Az, ..., AxiT)l, and vi1
is independently distributed across i, such that E(v;1) = 0, and E(v) = w;02, with 0 < w; < K < oo,
for all 1.

Remark 4 Under Assumption 3(i) it is easily seen that w; = 2/(1+4+y). But in general w; need not be
the same across i and imposing the restrictions w; = 2/(1++y) might result in inconsistent estimators.
On the other hand treating w; as a free parameter when it is in fact restricted to be the same across i

might lead to inefficient estimators but not inconsistent parameters, as it is shown below.

It is now possible to derive the likelihood function of the transformed model given by equations
(2) for t =2,3,...,T and (7). Let Ay; = (Ayi1, Ayia, ..., Ayir)’,
1 AX] 0 0
0 0 Ay~1 ASC'Q
AW, = g -
Tx (T+3) : :
0 0 Ayir1 Az
and note that the transformed model can be rewritten as

Ayi = AWiQO + r;, (9)

with ¢ = (b, 7,7, 3)". The covariance matrix of r; = (v;1, Augo, ..., Auyr)’ has the form:

E(r;r}) = o? =07 (wi), (10)
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where w; > 0 is a free parameter defined in Theorem 1. The log-likelihood function of the transformed

model (9) is given by

C(Yyy) = —gln 27) ——Zlna —fZln + T (w; — 1)]

l\:)\v—l

o

1 _
5> = (Ayi — AWip) Q () 7! (Ay; — AWg)
=1 7

where 1 = ((p’,wl,wg...,wN,J%,o*%, ...O’%V),.

Unfortunately, the maximum likelihood estimation based on ¢(%,) encounters the incidental pa-
rameters problem of Neyman and Scott (1948) since the number of parameters grows linearly with
the sample size, N. As a way of dealing with this problem we follow the mis-specification literature
in econometrics (White, 1982; Kent, 1982), and base the estimation of ¢, which is finite dimensional,
on a mis-specified model where the error variances are assumed (incorrectly) to be the same across i.
We show that such quasi (pseudo) ML estimators of ¢ are consistent even under the mis-specification.
We then derive robust standard errors for the QMLE for use in inference. The quasi or pseudo

log-likelihood function of the transformed model, (9), is given by

lp(0) = _El (2 )—gln( )—gln[l—i-T(w—l)]
—ﬁ Z (Ay; — AW,i0) Q (w) ' (Ay; — AW;0), (11)
=1

where 6 = (go’ ,w,az)/ is the vector of unknown parameters. Let 0 be the estimator obtained by

maximizing the quasi log-likelihood function in (11), and consider the quasi-score vector

%ZLAW’Q( )L (Ays — AW,e)
agp (0) _ ___NT Z ‘I’I‘
00 29(w) T 202 202g(w)? 2ei=1Ti=Ti ,

1
J;ZE =+ 204 Zz 1 z (w) r;

where g (w) = |Q (w)] =1+ T(w — 1), and

T2 (T —1) T(T —2) T
& T(T:— 1) (T — 1?2 (T - 1):(T -2) ... (T — 1) | 12)
T (T —1) (T —2) . 1



Under heteroskedastic errors, the pseudo-true value of @ denoted by 0. = (¢, ws,0?)’, is the solution
of imy_. E [0l (0+) /00] = 0, namely

lim —ZE[AWQ(W*) 1(Ayi—Aw,~go*)} _—

N—ooco N

=2

T

1
— + lim —
29 (OJ*) 20’%9 (w ) N—oo N

T
—T‘z—{——hm NZE r;Q (ws) r@-> = 0,

N—oo

> E(rj®r;) = 0,
i=1

where expectations are taken with respect to the true probability measure.
. . . /
To characterize the relationship between the true parameter values ¥ g = (gog, W10, ---s WNO, 0%0, ...0%,0)

and the pseudo true values 8, = ((p;, Wiy Jz)/, we introduce the following average parameter measures.

Assumption 5 The average true parameter values

-1 N 2

-1 4G N D im1 WinT g

O'No— O' an wN}O— N_lzN 2 )
i=1 750

have finite limits (as N — o0o) given by

. _ N 2
lim N=IYY  wigo?
_2 _2 - N—oo —1 %090
oy = lim oy, and wo= —, - =y AT (13)
N—oo Imy oo N7 0 0

The above assumption is clearly satisfied if |oj0| and |wjo| are finite and bounded away from zero.

The following theorem establishes the relationship between the true value and the pseudo true value.

Theorem 2 Suppose that Assumptions 1-5 hold, and let 0, = ((,o*,w*, ) be the solution of
limpy o0 E [0 (04) /O8] = 0, where expectations are taken with respect to the true probability measure.
Then,

0. = (), @0,57) .

The proof is provided in the appendix. This theorem summarizes one of the key results of the paper,
and holds under fairly general conditions. Assumptions 1, 2, 3 are identical to those used in Hsiao et. al.
(2002). Assumption 4 allows the variances of the error terms to be heteroskedastic in an unrestricted
manner. Assumption 5 only requires the individual error variances and their ratios to be finite. The
possible non-uniqueness of the pseudo true values in the case of heterogenous w;, is analogous to
the non-uniqueness of the ML estimators encountered in the case of the random effect models as
demonstrated initially by Maddala (1971) and further discussed by Breusch (1987) who proposes a

practical approach to detecting the presence of local maxima.b Theoretically, it is quite complicated

5This result follows since, as established by Grassetti (2011), the transformed likelihood function can be written
equivalently in the form of a random effects model with endogenous regressors. For further details see Section B.3.



to demonstrate which solution leads to the global maximum of the quasi log-likelihood function.
However, the Monte Carlo simulation results in Section 5 suggest that the solution 8, = (cp{), o, 53)/
is associated with the global maximum. In what follows we assume that the global maximum of the

probability limit of the quasi log-likelihood function is attained at 8, = (cp{), @, 53)/ =6,.

The following theorem establishes the asymptotic distribution of the ML estimator of the trans-

formed model.

Theorem 3 Suppose that Assumptions 1-5 hold and let 0 = (@',@,32)1 be the QML estimator ob-
tained by mazimizing the quasi (pseudo) log-likelihood function in (11). Then as N tends to infinity,

~

0 is asymptotically normal with
VN (8-6.) SN (0, A B A (14)

_ _ /
where 0, = (cp{),wg,ag) ,

A= lim F

N—oo

[_132%9*)

N 0606’ ] and B = lim | L2 0:)066.)

N—co |N 00 00" |’

where &g and &3 are defined by (13).

A consistent estimator of A*, denoted by A* which is robust to unknown error heteroskedasticity

(02, and wjg over i), is given by

ez i AWIQ@) AW, W SN AWSE, 0

N 1 N = ) T2 T
AT = Ng(@)25* i TiBAW; 29(®)? 24@352 |

0 T T

29(@)5” 254

where ¥; = Ay; — AW,;3, g(©) = 1+ T(© — 1), ® is defined by (12), and % = N~ Zf\il Q@) ;.

Partitioning B*, and its estimator ﬁ*, accordingly to the above partitioned form of K*, we have

Bi : iAWlQ(A)lAA’Q(A)IAW B s 1 iv: <ﬂ'@?i>2 ©)%5*
- A ; w Ir;r,; w " g — R vt 7 _ w o ,
11 Na_\4 P i 1ty 7 22 4g(w)404 N s T g
a T 1 ?fﬂ(arla)? D\ 4 oY
B* - _ TN T _a\ , B* - - = i:IQ @ flAW‘ i‘\"I)i‘\ ’
33 408{]\7;( T 21 29(&})234]\7;(1 ( ) z)(z z)
11X
By, = —— > @00 AW, (Te0) '),
20° N P
B 2 |1 i (?Q@?l) (f;n(a)m-) @)
= ~ —qglw)o™| .
72 4g@2e° [N\ T T 9




See also Lemma A2 and section B.4.

4 GMM Estimators: an overview

In this section, we review, and for completeness, define the GMM type estimators which are included
in our simulation exercise.

The GMM approach assumes that «; and u; have an error components structure,
E(a;) =0, FE(uy)=0, E(aquy) =0, (i=1,.,N; t=1,2,..,7), (15)
and the errors are uncorrelated with the initial values
E (yiouit) = 0, (i=1,.,N; t=1,2..T). (16)

As with the transformed likelihood approach, it is also assumed that the errors, u;, are serially and

cross-sectionally independent:
E (ujpuis) = 0, (i=1,.,N; t=1,2,...,T). (17)

However, note that under the transformed QML no restrictions are placed on E(ajui), and E(cjui)

are allowed to be non-zero and heterogenous across .

4.1 Estimation
4.1.1 The first-difference GMM estimator

Under (15)-(17), and focusing on the equation in first differences, (2), Arellano and Bond (1991)
suggest the following 7'(7" — 1)/2 moment conditions:

E (yisAug) = 0, (s=0,1,...t —2,t=2,3,..T). (18)

If regressors, x;, are strictly exogenous, i.e., if E (z;su;) = 0, for all ¢ and s, then the following

additional moments can also be used

E (zisAuy) = 0, (s,t=2,..,T). (19)

10



The moment conditions (18) and (19) can be written compactly as E (Z;ul> = 0, where 0; = ¢;— W4,
8 = (7,8) = (61,62)" and

Z;, = diag [(Yio, i1y - TiT) 5 (Yi05 Yi1s Tids ooy TiT) 5 oy (Yi05 o5 Yi T—25 Tily -0, TiT)]
Ayio Ayn Ao

q = : ; W, = :
Ayt Ayir—1 Axir

The one and two-step first-difference GMM estimators based on the above moment conditions are

given by
~dif .\ ) 1. -1 .\ ) 1.
domm = Szw (Dlstep) Szw Szw (Dlstep) Szq; (20)
~dif . ) 1. -1 .\ ) 1.
5GMM2 - SZW (DQStep) SZW SZW (DQStep) SZq:

where Szw = & >l ZEW,, Szg = % > i ZiGi, Distep = & Y ioq ZiHZ;, Dogiep = + > 1o L0, Z;,
—~ . ~di
u =q; — WiEGZ]]\}Ml, and H is a matrix with 2’s on the main diagonal, -1’s on the first upper and

lower sub-diagonals and 0’s elsewhere.

4.1.2 System GMM estimator

Although consistency of the first-difference GMM estimator is obtained under the no serial correlation
assumption, Blundell and Bond (1998) demonstrated that it suffers from the so called weak instruments
problem when « is close to unity, and/or the variance ratio 72 = X var(a;)/SN var(ui) is large.
As a solution, these authors propose the system GMM estimator due to Arellano and Bover (1995)
and show that it works well even if «y is close to unity. But as shown recently by Bun and Windmeijer
(2010), the system GMM estimator continues to suffer from the weak instruments problem when the
variance ratio, 72 is large. See also Appendix of Binder, Hsiao, and Pesaran (2005) where it is shown
that the asymptotic variance of the GMM estimator is an increasing function of 72.

To introduce the moment conditions for the system GMM estimator, we need to assume E(y;s;) =
E(yirci;) and E(x;s0;) = E(zi04), for all s and ¢. Under these assumptions, we have the following

moment conditions:
E[Ayzs (Oéz—‘ruzt)] :07 (8: 17"'7t_17t:2737"'7T)a (21)

E [szs (ai + uzt)] =0, (8, t=2,3,.., T) (22)

In setting up the moment conditions for the system GMM estimator, given the moment conditions for
the first-difference GMM estimator, some of the moment conditions in (21) and (22) are redundant.

Hence, to implement the system GMM estimation, in addition to (18) and (19), we use the following

11



moment conditions:

F [Ayi,tfl (ai + ’I,th)] = 0, (t =23,.., T), (23)
) [Al‘lt (Ozi + Uzt)] = 0, (t =23, .., T). (24)

The moment conditions (18), (19), (23) and (24) can be written compactly as F (Z;ul) = 0, where
i = G — W6,

Z; = diag <Zz‘, Zz) . Zi = diag [(Ayir, Azin) , (Ayin, Azz) s ooy (Ayir—1, Azir)]

. Yi2 W Yi1
. q; o . % i % .
; = 5 A — . 5 W P— o 5 W' pr— .
q; ( (jl ) q; : i ( W, ) i :
Y

iT YiT-1 XiT

X452

The one and two-step system GMM estimators based on the above moment conditions are given
by

32}?41\41 = <,ZW (ﬁlstep> - SZW) B Syw (]jlstep> - Szq, (25)
3Sc:yzfmvfz = (S'zw (]jQStep) B SZW) B Shw (]jQStep> - Szq, (26)

where S,y = % Zf\;l Z;W@, qu = % Zfil Z;q@ and ﬁlstep = diag (% le\il Z;HZ@, % Zf;l Z;Z)
The two-step system GMM estimator is obtained by replacing ]jlstep with ]jgstep = % Zf\i 1 z;ﬁzﬁ;zz,

= . C RSYS
where 1; = q; — Widcprar-

4.1.3 Continuous-updating GMM estimator

Since the two-step GMM estimators tend to perform poorly in small samples, (Newey and Smith, 2004),
alternative estimation methods have been proposed in the literature. These include the empirical
likelihood estimator, (Qin and Lawless, 1994), the exponential tilting estimator (Kitamura and Stutzer,
1997; Imbens, Spady, and Johnson, 1998) and the continuous updating (CU-) GMM estimator (Hansen,
Heaton, and Yaron, 1996), where these are members of the generalized empirical likelihood estimator
(Newey and Smith, 2004). Amongst these estimators, we focus on the CU-GMM estimator as an
alternative to the two-step GMM estimator.

To define the CU-GMM estimator, we need some additional notation. Let Z; denote Zi or Zi, and

1; denote u; or 1;, and set

N
gi(0) = Z;w;, gn(9) = %Zgi(d)a (27)
i=1

" Although additional moment conditions proposed by Ahn and Schmidt (1995) could be used, we mainly focus on
the above two set of moment conditions since they are often used in applied research.

12



and

N
[2i(6) —En(0)][gi(8) —8n ()] . (28)

=1

~ 1
Qn(d) = N

Then, the CU-GMM estimator is defined as
Scan-cu = argmin gy (6) 2y (8) g (6). (29)

Newey and Smith (2004) demonstrate that the CU-GMM estimator has a smaller finite sample bias
than the two-step GMM estimator.

4.2 Inference using GMM estimators
4.2.1 Alternative standard errors

In the case of GMM estimators the choice of the covariance matrix is often as important as the choice of
the estimator itself for inference. Although, it is clearly important that the estimator of the covariance
matrix should be consistent, in practice it might not have favorable finite sample properties and could
result in inaccurate inference. To address this problem a number of modified standard errors have
been proposed. For the two-step GMM estimators, Windmeijer (2005) proposes corrected standard
errors for linear static panel data models which are applied to dynamic panel models by Bond and
Windmeijer (2005). For the CU-GMM, while it is asymptotically equivalent to the two-step GMM
estimator, it is more dispersed than the two-step GMM estimator in finite samples and inference based
on conventional standard errors formula results in large size distortions. To overcome this problem,
Newey and Windmeijer (2009) propose an alternative estimator for the covariance matrix of CU-GMM
estimator under many-weak moments asymptotics and demonstrate by simulation that the use of the

modified standard errors improve the size property of the tests based on the CU-GMM estimators.

4.2.2 Weak instruments robust inference

As noted above, the first-difference and system GMM estimators could be subject to the weak in-
struments problem, which in turn could lead to biased estimates and invalid inferences, To overcome
the weak instrument problem a number of tests have been proposed in the literature that have the
correct size asymptotically regardless of the strength of instruments. These include Stock and Wright
(2000) and Kleibergen (2005). Stock and Wright (2000) propose a GMM version of the Anderson
and Rubin(AR) test (Anderson and Rubin, 1949). Kleibergen (2005) proposes a Lagrange Multiplier
(LM) test. This author also extends the conditional likelihood ratio (CLR) test of Moreira (2003) to
the GMM case since the CLR test performs better than other tests in linear homoskedastic regression
models.

We now introduce tests of this type which we include in the Monte Carlo (MC) experiments to be
reported next. The GMM version of the AR statistic proposed by Stock and Wright (2000) is given
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by
AR(d) = 2NQn(9), (30)

where Qy (8) = gn(8)Q(6) 'gn(6)/2, and gx(8) is defined by (27). Under the null hypothesis
Hy : 6 = &g, AR(dp) is asymptotically distributed as x2, as N — oo, regardless of the strength of
the instruments, where n is the dimension of gy (o).

The LM statistic proposed by Kleibergen (2005) is

LM(8) = Na%]\(;,((s) D(8)2(8)7'D(9)] B aQég(‘s), (31)
where D(8) = (81(5), 32(5)) with
N . N , ~
4,8) = 5 > e - (}V > 6%(5(?&(6)') 0(0)'8(0).  forj=1.2
i=1 =

Under the null hypothesis Hy : § = dp, LM (dp) is asymptotically distributed as X’2€’ where k is the
dimension of &, which is equal to 2 in our application.
The GMM version of the CLR statistic proposed by Kleibergen (2005) is given by

CLR(8) = % AR(8) — R(8) + \/ (AR(&) - ﬁ(a))2 + 4LM(8)R(5) (32)

where ]TE((S) is a statistic which is large when instruments are strong and small when the instruments
are weak, and is random only through f)(é) asymptotically. In the MC simulations, following Newey
and Windmeijer (2009), we use R(6) = N - Apin (]5(6)’@(5)_1]5(6)) where Apmin(A) denotes the
smallest eigenvalue of A. Under the null hypothesis Hy : § = &g, this statistic has a nonstandard

distribution whose critical values can be obtained by simulation.®

5 Monte Carlo simulations

In this section, we conduct Monte Carlo simulations to investigate the finite sample properties of the
transformed QML approach and compare them to those of the various GMM estimators proposed in

the literature and reviewed in the previous section.

5.1 Panel ARX(1) model

We first consider a panel distributed lag model with one exogenous regressor, panel ARX(1), which is

likely to be more relevant in practice than the pure panel AR(1) model which will be considered later.

8For further details see Kleibergen (2005) and Newey and Windmeijer (2009).
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5.1.1 Monte Carlo design

For each i, the time series processes {y;;} are generated as
Yit = 0 +YYit—1+ Oxit +ug, fort=-m+1,-m+2,.,0,1,....T,

where u;; ~ N(0,02), with 02 ~ U[0.5,1.5], so that E(c?) = 1. For the initial values, we set y; —m = 0

and note that for m sufficiently large,

1— 7m m—1 ‘ m—1 )
Yio = < . )OéiJrﬂZ’iji,—jJrZ’Y]ui,—j-
7 i=0 i=0

We discard the first m = 50 observations, and use the observations ¢ = 0 through 7' for estimation

and inference.? The regressor, x;;, is generated as
Tit = p; + Gt fort=-m,-m+1,..,0,1,....T,
where p; ~ idN(0,1)

Cit = ¢Ci—1+cit, for t = —49 —m, —48 —m,...,0,1,..., T,
eir ~ N(0,0%), §i—m—50 = 0.

with |¢| < 1. We also generate a set of heteroskedastic errors for the x; process and generate o2
~ U[0.5,1.5], independently of O'ZZ, which ensures that the variance ratio 0? / agi is also heterogenous
across ¢. We discard the first 50 observations of (;; and use the remaining 7"+ 1 + m observations for
generating x;; and y;;.

In the simulations, we try the values v = 0.0,0.4,0.9, and ¢ = 0.5. The slope coefficient, (3, is
chosen to ensure a reasonable degree of fit. But to deal with the error variance heterogeneity across

the different equations in the panel we use the following average measure of fit

R2—1_ NYE Var(ui)
Y NN Var(yulc:)

where Var(yit|c;) is the time-series variation of it" unit. Since y;t is stable and it is assumed to have

started some time in the past we have

o0 oo oo
it =ci+ B> Y+ Y Yuij=ci+Bwi+ Y Yuisj,

j=0 j=0 j=0

¢i = (o + Bu;) /(1 —7y), and w; is an AR(2) process, wir = @1w; ¢—1 + PoW;it—2 + €i¢, With parameters

9Hence, T + 1 is the actual length of the estimation sample.
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01 =7+ ¢, 3 = —¢y, and having the variance (Hamilton, 1994, p. 58)

Var (w't) _ (1 +¢'7) U?i . (1 +¢’7) Ugi
k2 - —_— 2 .
(1—¢7) [(1+67)2 = (v+9¢?] 1=7)(1-9¢") (A=)
Hence o
PU+oy)ocy 2-2
R2—1_ NN of (@) ey T VON
A 2 1N o _ N - 201 52 - )
B+ (N1 it 0 N 127): o} PAt+énocy 2
(1—72)((1—&)(1—;7) ) =5 (1-¢?)(1—¢) TN

5% = N1V 62, and o2y = N1 SN 0%, For N sufficiently large we now have (note that &3
and 2y — 1 with N — o0)
_B4¢y) 4 2
g2 G)ie) 1
Y ﬁ2(1+¢’7) + 1 ’
(1-¢%)(1—¢v)

52 = R32/_72 (1_¢2)(1—¢7)
“\1-Rr2 (I+¢y)

We set G such that RZ =~2+0.1. For v = 0.0, v = 0.4 and v = 0.9, we have Ri = 0.1, RZQJ = 0.26
and RZ = 0.91, respectively.

and

For the individual effects, we set
a; =0 (p; + 4 +v;),
where @; = T~1 Zle wit, and v; ~ idN(0,1). To set n we consider the variance ratio,

2 N1 Zf\il Var(a;) B 772(T716?V +2)

- N1 Zl]\il Var(ug) 6?\,

)

and use two values for 72, namely a low value of 72 = 1 often set in the Monte Carlo experiments
conducted in the literature, and the high value of 72 = 5. The sample sizes considered are N =
50,150,500 and T = 5, 10, 15.

For the computation of the transformed QML estimators, we try two procedures. One is to
maximize the log likelihood function directly, while the other is to use an iterative procedure suggested
by Grassetti (2011). For the starting value of the nonlinear optimization, we use the minimum distance

estimator of Hsiao, Pesaran, and Tahmiscioglu (2002) where w is estimated by the one-step first-
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difference GMM estimator (20) in which Z; is replaced with

YiT—2 TiT-1 YiT-3 TiT-2

This GMM estimator is also used as the starting value for the iterative procedure.

For the GMM estimators, although there are many moment conditions for the first-difference GMM
estimator as in (18) and (19), we consider three sets of moment conditions which only exploit a sub-
set of the available instruments. The first set of moment conditions, denoted as “DIF1", consists
of B(y;sAuy) = 0 for s = 0,....,t — 2;t = 2,...,T and E(x;sAuy) = 0 for s = 1,...,t;t = 2,...,T.
In this case, the number of moment conditions are 24, 99, 224 for T' = 5,10, 15, respectively. The
second set of moment conditions, denoted as “DIF2", consists of E(y;;—a—jAuy) = 0 with [ = 0
fort =2,1=0,1fort =3,...,7T and E(z;+—1Auy) = 0 with [ = 0,1 for t = 2, [ = 0,1,2 for
t = 3,...,T. In this case, the number of moment conditions are 18, 43, 68 for T = 5, 10, 15, respec-
tively. The third set of moment conditions, denoted as “DIF3", consists of Zfﬁ E(yit—2Aui) = 0,

?1_21 E(yit—2Aui) = 0, 23;2 E(zi4Auy) = 0, and Z?Z_QI E(xi4Auy) = 0. The number of moment
conditions for this case, often called the stacked instruments, are 4 for all 7. Similarly, for the system
GMM estimator, we add moment conditions (23) and (24) in addition to “DIF1" and “DIF2", which
are denoted as “SYS1" and “SYS2", respectively. For “SYS1" we have 32, 117 and 252 moment condi-
tions for T' = 5,10, and 15, respectively, while for “SYS2" we have 26, 61, and 96 moment conditions
for T'= 5,10, and 15, respectively. Also, we add moment conditions Z;‘FZQ E[Ay;—1(a; +ui)] = 0,
ST E[Ayie 1 (i 4+ ui)) =0, S8 B [Azi (i + uig)] = 0 and 310" B [Azg (i + uig)] = 0 in addi-
tion to “DIF3", which is denoted as “SYS3". In this case, the number of moment conditions is 8 for
any T.

In a number of cases where N is not sufficiently large relative to the number of moment conditions
(for example, when T' = 15 and N = 50) the inverse of the weighting matrix can not be computed.

Such cases are denoted by “—"

in the summary result tables.

For inference, we use the robust standard errors formula given in Theorem 2 for the transformed
QML estimator. For the GMM estimators, in addition to the conventional standard errors, we also
compute Windmeijer (2005)’s standard errors with finite sample correction for the two-step GMM
estimators and Newey and Windmeijer (2009)’s alternative standard errors formula for the CU-GMM
estimators. For the computation of optimal weighting matrix, a centered version is used except for
the CU-GMM.1?

In addition to the Monte Carlo results for v and 3, we also report simulation results for the long-

run coefficient defined by ¥ = /(1 — ). We report median bias, median absolute errors (MAE), size

071 the earlier version, we used centered weighting matirx. However, in this version, uncentered weighting matrix is
used for the CU-GMM since it gave better performance than using centered weighting matrix.
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and power for 7, 3 and 1. The power is computed at v — 0.1, 5 — 0.1 and (5 —0.1)/(1 — (y — 0.1)),
for selected null values of v and 3. All tests are carried out at the 5% significance level, and all

experiments are replicated 1,000 times.

5.1.2 MC results for panel ARX(1) model

To save space, we report the results of the transformed QMLE and GMM estimators which exploit
moment conditions “DIF2" and “SYS2" with one-step estimation procedure for v = 0.4,0.9 only. The
reason for selecting these moment conditions is that, in practice, these moment conditions are often
used to mitigate the finite sample bias caused by using too many instruments. A complete set of
results giving the remaining GMM estimators that make use of additional instruments are provided
in a supplement available from the authors on request.

The small sample results for v and 3 are summarized in Tables 1 to 4.'7 We first focus on the
results of v and then discuss the results for (. Since the results for v = 0.0 and v = 0.4 are very
similar, we focus on the case of 7 = 0.4. Table 1 (and A.12 in the supplement) provide the results of
bias and MAE for the case of v = 0.4, and shows that the transformed QMLE has a smaller bias than
the GMM estimators in all cases with the exception of the CU-GMM estimator (see Table A.12). In
terms of MAE the transformed QMLE outperforms the GMM estimators in all cases.

2

As for the effect of increasing the variance ratio, 74, on the various estimators, we first recall that

the transformed QMLE is invariant to the choice of 72. In contrast, as to be expected the performance

2

of the GMM estimators deteriorates (in some case substantially) as 77 is increased from 1 to 5. This

tendency is especially evident in the case of the system GMM estimators, and is in sharp contrast

2 These observations

to the performance of the transformed QMLE which is robust to changes in 7
also hold if we consider the experiments with v = 0.9 (Table 2). Although the GMM estimators
have smaller biases than the transformed likelihood estimator in a few cases, in terms of MAE, the
transformed QMLE performs best in all cases (see also Table A.22 in the supplement).

We next consider size and power of the various tests, summarized in Tables 3 and 4 (A.3, A.13 and
A.23 in the supplement). The results in these tables show that the empirical size of the transformed
QMLE is close to the nominal size of 5% for all values of v, T, N and 72. In contrast, for the GMM
estimators, we find that the test sizes vary considerably depending on 7, T, N, 72, the estimation
method (1step, 2step, CU), and whether corrections are applied to the standard errors. In the case
of the GMM results without standard error corrections, most of the GMM methods are subject to
substantial size distortions when N is small. For instance, when v = 0.4, N =50, T =5, and 72 = 1,
the size of the test based on the two-step procedure using moment conditions “DIF2" estimator is
34.2%. But the size distortion gets smaller as N increases. Increasing N to 500, reduces the size
of this test to 7.7%. However, even with N = 500, the size distortion gets larger for two-step and
CU-GMM estimators as T increases.

2

As to the effects of changes in 72 on the estimators, we find that the system GMM estimators are

"'The corresponding tables in the supplement are labelled as Tables A.1 to A.30.
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significantly affected when 72 is increased. When 72 = 5, all the system GMM estimators have large
size distortions even when T'= 5 and N = 500, where conventional asymptotics are expected to work
well. This may be due to large finite sample biases caused by a large 72.

For the tests based on corrected GMM standard errors, Windmeijer (2005)’s correction seems to
be quite useful, and in many cases it leads to accurate inference, although the corrections do not seem
able to mitigate the size problem of the system GMM estimator when 72 is large. The standard errors
of Newey and Windmeijer (2009) are also helpful: they improve the size property in many cases.

Comparing power of the tests, we observe that the transformed likelihood estimator is in gen-
eral more powerful than the GMM estimators. Specifically, the transformed likelihood estimators
have higher power than the most efficient two-step system GMM estimator based on “SYS1" with
Windmeijer’s correction.

The above conclusions for size and power hold generally when we consider experiments with v = 0.9
(Table 4 and A.23), except that the system GMM estimators now perform rather poorly even for a
relatively large N. For example, when v = 0.9, T = 5, N = 500 and 72 = 1, size distortions of the
system GMM estimators are substantial, as compared to the case where v = 0.4. Although it is known
that the system GMDM estimators break down when 72 is large'?, the simulation results in Table 4 and

2 is not so large (72 = 1).

A .23 reveal that they perform poorly even when 7

We next consider the small sample results for 5 (Tables 1 to 4, A.14 to A.16, and A.24 to A.26).
The outcomes are similar to the results reported for v. The transformed likelihood estimator tends
to have smaller biases and MAEs than the GMM estimators in many cases, and there are almost
no size distortions for all values of T, N and 72. The performance of the GMM estimators crucially
depends on the values of T, N and 72. Unless N is large, the GMM estimators perform poorly and the
system GMM estimators are subject to substantial size distortions when 72 is large even for N = 500,
although the magnitude of size distortions are somewhat smaller than those reported for ~.

The results for the long-run coefficient, v = $/(1 — ), which are reported in the supplement
(Tables A.7 to A.9, A.17 to A.19 and A.27 to A.29), are very similar to those of v and . Although
the GMM estimators outperform the transformed likelihood estimator in some cases, in terms of
MAE, the transformed likelihood estimator performs best in almost all cases. As for inference, the
transformed likelihood estimator has correct sizes for all values of T, N and 72 when v = 0.4. However,
it shows some size distortions when v = 0.9 and the sample size is small, say, when T' = 5 and N = 50.
However, size improves as 1" and/or N increase(s). When 7" = 15 and N = 500, there is essentially no
size distortions. For the GMM estimators, it is observed that although the sizes are correct in some
cases, say, the case with T'=5 and N = 500 when v = 0.4, it is not the case when v = 0.9; even for
the case of T = 5 and N = 500, there are size distortions and a large 72 aggravates the size distortions.

Finally, we consider weak instruments robust tests, which are reported in Table 5, and Tables A.10,
A.20 and A.30 of the supplement. We find that test sizes are close to the nominal value only when

T =5 and N = 500. In other cases, especially when N is small and/or T is large, there are substantial

12See Hayakawa (2007) and Bun and Windmeijer (2010).
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size distortions. Although Newey and Windmeijer (2009) prove the validity of these tests under
many weak moments asymptotics, they are essentially imposing n2/N — 0 where n is the number of
moment conditions, which is unlikely to hold when N is small and/or T is large. Therefore, the weak
instruments robust tests are less appealing, considering the very satisfactory size properties of the
transformed likelihood estimator, the difficulty of carrying out inference on subset of the parameters
using the weak instruments robust tests, and large size distortions observed for these tests when NV is
small.

In summary, for estimation of ARX panel data models the transformed likelihood estimator has
several favorable properties over the GMM estimators in that the transformed likelihood estimator
generally performs better than the GMM estimators in terms of biases, MAEs, size and power, and

unlike GMM estimators, it is not affected by the variance ratio, 72.

5.2 Panel AR(1) model
5.2.1 Monte Carlo design

The data generating process is the same as that in the previous section with 8 = 0. More specifically,

y;¢ are generated as
Yit = 0 + YYit—1 + Ust, (t=-m+1,..,1,.,T;i=1,...,N),

with y; _m = 0, where u ~ N(0,02), 02 ~U[0.5,1.5], and

1_’Ym m—1 .
Yio = < 11— )ai+273ui,_j.
Y =0

Individual effects are generated as

a; = n(a; + v;),

where v; ~ itdN (0, 1), and 7 is set so that to control the variance ratio

9 N1 Zfil Var(a;) nQ(T*16% +1)

T =
N-1 Zi\il Var(uit) 5?\/

Note that for N sufficiently large 72 ~ n2(1 + 1/T). For parameters and sample sizes, we consider
v =0.0,0.4,0.9, T = 5,10,15,20 N = 50,150,500, and 72 = 1, 5.
Some comments on the computations are in order. In the nonlinear optimization routine for the

computation of the QMLE we use (’bvﬁ,@, 52) as starting values, where b=N-1 Zf\;l Ayi1, 7 is the
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one-step first-difference GMM estimator (20) where W; and Z; are replaced with!3

Yio 0 0
Ayin Vi1 Yio 0

Ayi,T—l

Yir—2 Yi17-3 YiT—4

5= [N - DR SN, (g —5) and 32 = RN - 2] S, (Mg — w01,

For the first-difference GMM estimators, we consider three sets of moment conditions. The first set
of moment conditions, denoted as “DIF1", consists of E(y;sAu;) =0 for s =0,...,t —2;t =2,....T.
In this case, the number of moment conditions are 10, 45, 105, and 190 for T = 5, 10, 15, and 20,
respectively. The second set of moment conditions, denoted by “DIF2", consist of E(y;—2—1Aui) =0
with l =0 fort =2,and [ = 0,1 for t = 3,...,T. In this case, the number of moment conditions are
7,17, 27, and 37 for T = 5,10, 15, and 20, respectively. The third set of moment conditions, denoted
as “DIF3", consists of Zthg E(yit—2Aui) = 0, ZtT:_Ql E(yit—2Aui) =0 and EtT:_22 E(yit—2Aui) = 0.
In this case, the number of moment conditions are 3 for all T.

Similarly, for the system GMM estimator, we add moment conditions E[Ay; ¢—1(a; + ui)] = 0 for
t = 2,...,T in addition to “DIF1" and “DIF2", which are denoted as “SYS1" and “SYS2", respec-
tively. We also add moment conditions 25:2 E[Ayit—1(a; +ui)) =0, 23;21 E[Ayit—1(a; +ui)) =0,
Zthz E [Azj(a; + ui)] = 0 and Zf:_; E [Azi(o; 4+ uit)] = 0 in addition to “DIF3". For the moment
conditions “SYS1", we have 14, 54, 119, and 209 moment conditions for 7' = 5, 10, 15, and 20, respec-
tively, while for the moment conditions “SYS2", we have 11, 26, 41, and 56 moment conditions for
T =5, 10, 15, and 20, respectively. The number of moment conditions for “SYS3" are 6 for all T.
With regard to the inference, we use the robust standard errors formula given in Theorem 2 for the
transformed log-likelihood estimator. For the GMM estimators, in addition to the conventional stan-
dard errors, we also compute Windmeijer (2005)’s standard errors for the two-step GMM estimators
and Newey and Windmeijer (2009)’s standard errors for the CU-GMM estimators.

We report the median bias, median absolute errors (MAE), sizes (7 = 0.0, 0.4 and 0.9) and powers
(resp. v = —0.1, 0.3 and 0.8) with the nominal size set to 5%. As before, the number of replications
is set to 1, 000.

5.2.2 MC results for panel AR(1) model

As with the ARX(1) experiments, to save space, we report the results of the transformed likelihood
estimator and the GMM estimators exploiting moment conditions “DIF2" and “SYS2" with one-step

estimation procedure for v = 0.4, and 0.9. A complete set of results are provided in a supplement,

"3 This type of estimator is considered in Bun and Kiviet (2006). Since the number of moment conditions are three,
this estimator is always computable for any values of N and T considered in this paper. Also, since there are two more
moments, we can expect that the first and second moments of the estimator to exist.
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which is available upon request. In the following, Tables 6 to 8 are given in the paper and Tables A.31
to A.42 are given in the supplement.

The bias and MAEs of the various estimators for the case of v = 0.4 are summarized in Table 6,
and Tables A.32, A.36 and A.40 of the supplement. As can be seen from these tables, the transformed
likelihood estimator performs best (in terms of MAE) in almost all cases, the exceptions being the
CU-GMM estimators that show smaller biases in some experiments. As to be expected, the one- and

2 is increased from 1 to 5, and this

two-step GMM estimators deteriorate as the variance ratio, 7
tendency is especially evident for the system GMM estimator. For the case of v = 0.9, we find that
the system GMM estimators have smaller biases and MAEs than the transformed likelihood estimator
in some cases. However, when 7 = 5, the transformed likelihood estimator outperforms the GMM
estimators in all cases, both in terms of bias and MAE.

Consider now the size and power properties of the alternative procedures. The results for v = 0.4
are summarized in Table 7 and Table A.37 of the supplement. We first note that the transformed
likelihood procedure has the correct size for all experiments. For the GMM estimators, although there
are substantial size distortions when N = 50, the empirical sizes become close to the nominal value
as N is increased. When 7' = 5 or 10 and N = 500 and 72 = 1, the size distortion of the GMM
estimators are small. However, when 72 = 5, there are severe size distortions for the system GMM
estimator even when N = 500. Also similar results to the ARX(1) case are obtained when the tests are
based on modified standard errors. For example, Windmeijer (2005)’s correction is quite useful, and
in many cases it leads to accurate inference although the corrections do result in severely under-sized
tests in some cases. Also, this correction does not seem that helpful in mitigating the size problem of
the system GMM estimator when 72 is large. The standard errors of Newey and Windmeijer (2009)
used for the CU-GMM estimators are also helpful - they tend to improve the size property in many
cases.

Size and power of the tests in the case of experiments with v = 0.9 are summarized in Table 7 and
Table A.41 of the supplement, and show significant size distortions in many cases.'* The size distortion
of the transformed likelihood gets reduced for relatively large sample sizes and its size declines to 8.0%
when 72 = 1, N = 500 and T = 20. As to be expected, increasing the variance ratio, 72, to 5,
does not change this result. A similar pattern can also be seen in the case of first-difference GMM
estimators if we consider 72 = 1. But the size results are much less encouraging if we consider the
system GMM estimators. Also, as to be expected, size distortion of GMM type estimators become
much more pronounced when the variance ratio is increased to 72 = 5.

Finally, we consider the small sample performance of the weak instruments robust tests which are
provided in Table 8, and Tables A.34, A.38 and A.42 of the supplement. These results show that size

distortions are reduced only when N is large (N = 500). In general, size distortions of these tests

Y11 the case of QMLE procedure, one reason for the size distortion is the closeness of 4 to the boundary value of 1. In
the computation of /W\QML, the parameter space for + is restricted to |y| < 0.999. However, when the sample sizes N and
T are small, there are cases where 7, exceeds unity, but in that case, 7, , is set to the boundary value of 0.999.
This could also introduce some bias in the standard errors. The case where v = 1 requires a different MC design and its
investigation is beyond the scope of the present paper.

22



get worse as T, or the number of moment conditions, increases. In terms of power, the Lagrange
multiplier test and conditional likelihood ratio test based on “SYS2" have almost the same power as
the transformed likelihood estimator when v = 0.4, T = 5, N = 500 and 72 = 1. For the case of
~v = 0.9, the results are very similar to the case of v = 0.4. Size distortions are small only when N is

large. When N is small, there are substantial size distortions.

6 Concluding remarks

In this paper we consider the transformed likelihood approach to estimation and inference in dynamic
panel data models with cross-sectionally heteroskedastic errors, and shown that the transformed like-
lihood estimator due to Hsiao, Pesaran, and Tahmiscioglu (2002) continues to be consistent and
asymptotically normally distributed, but the covariance matrix of the transformed likelihood estima-
tors must be adjusted to allow for the cross-sectional heteroskedasticity. By means of Monte Carlo
simulations, we investigated the finite sample performance of the transformed likelihood estimator
and compared it with a range of GMM estimators. Simulation results revealed that the transformed
likelihood estimator for an ARX(1) model with a single exogenous regressor has very small biases and
yields test sizes that are close to nominal values, and in most cases outperform the GMM estimators,
whose small sample properties vary considerably across parameter values (v and [3), the choice of the
moment conditions, and the value of the variance ratio, 72.

In this paper, x; is assumed to be strictly exogenous. However, in practice, the regressors may be
endogenous or weakly exogenous(c.f. Keane and Runkle, 1992). To allow for endogenous and weakly
exogenous variables, one could consider extending the panel VAR approach advanced in Binder, Hsiao,
and Pesaran (2005) to allow for cross-sectional heteroskedasticity. More specifically, consider the

following bivariate model:

Yit = Qi +VYit-1+ BT + Uit
Tig = Oz + PYi—1 + pTip—1 + Vit

where cov(u;,vir) = 6. In this model, x;; is strictly exogenous if ¢ = 0 and 6 = 0, weakly exogenous
if 6 = 0, and endogenous if # # 0. This model can be written as a PVAR(1) model as follows

Yir | _ [ it B n v+ B¢ Bp Vi1 wit + Bt
Tit Qg ¢ p Tit-1 Vit ’

fori =1,2,...,N. Let A = {a;;}(i,7 = 1,2) be the coefficient matrix of (y;+—1,2;¢—1)" in the above
VAR model. Then, we have § = aja/az, v = a11 — a12a21/a22, p = azz and ¢ = ag;. Thus, if we
estimate a PVAR model in (y;, x4 ), allowing for fixed effects and cross-sectional heteroskedasticity, we
can recover the parameters of interest, v and (3, from the estimated coefficients of the PVAR model.

However, detailed analysis of such a model is beyond the scope of the present paper and is left to
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future research.

A Remark 1: Interpretation of initial conditions

In Remark 1, we noted that y; _,, can vary freely across i so long as the means and variances of
Ay; _m+1 are free from the incidental parameter problem, and hence y;9 does not need to follow a

stationary distribution. As an illustration consider the following data generating process:

Yit = Oéi‘f"Yyi,t—l‘f‘ﬂl“it‘f‘Uit, (t: _m+17"'70717'”7T)
b1 b1 N
Yi,—m = 1 ﬁ ’yOti + ((SyQ + 1 z 76) i + Ui —m,
Tig = N+ PpTit—1 + Eit, (t=-m+1,..,0,1,....,7)
) 1) -
Ti-m = 7 o+ <5x2 + 5) i+ Ei—m,
- I—v

where p; = n;/ (1 — p) and |p| < 1. For simplicity, we do not include a time trend in the z;; process.
However, the results do not change as long as the coefficient of time trend is homogenous across i.

The above system can be written as a VAR(1) model:

Wt = )\i+AWi,t—1+Vit; (tz—m—i—l,—m—f—Z,...,T),
Wi m = DI-A)"N+¥i m

where Iy is a 2 x 2 identity matrix, wi = (i, zs) , A = (o + B0y, m;) s vie = (wie + Beit, €it)’

Vim = (Ui —m,Ei—m)

ai+Bp;
A — Y ﬁp ’ D _ 61/1 61/2 , (I - A)fl Az — (1—7) .
0 p Oz1  Oz2 M

Note that w;; can be written as

t+m—1
wit = A"wi 4+ (L - AT (L - A) TN+ [ YD Alvi
j=0

a;+0u; t+m—1 .
= LA @ -D) | O 4 [ D Advi | + AT
M §=0
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After some algebra, we have the following explicit expressions for y;; and x:

o + P
i = [L=9"" (1= 8y) + AT 801] (1_% + [y — AT (1 — 802)] by
t+m—1 . )
+ Z [’YJ (uit—j + Beit—5) + Ajlgei,tfj} + Yy + AT E —m,
§=0
and
o t+m 6 t+m71 ) ~
T = pt™E i [1 + ,075931 _pt+m(1 _ 5m2)] 1 + Z Peiss +pt+m5'i,fm
- =y 2

= hapogq + hyep; + Gy

where &; _p, = Z;io pei—j, and A{z is the (1,2) element of AJ. Note that when 8,1 = 0, 6,2 = 1 then
x4 satisfies Assumption 2. However, the specification of &; _,, is not essential for the following results
to hold. &; _,, can be any arbitrary random variable as long as it is independently distributed of
and has a finite second order moment. The conditional expectations of y;; and z; given individual

effects can be written as

E(yilan ) \ [ 1= (1= 60) + A7 60 ] G+ [0 8 — AT (1 802)]
- . t+m » m
E (xit‘aia ,ui) pt+m611 (1_17) + {1 + % - IOt+ (1 - 612)} 122

From this expression, we find that E (y;|o, p;) does not depend on t only when 6,1 = 6,2 = 1 and
8y2 = 651 = 0, and that E (x|, p1;) does not depend on ¢ when 6,2 = 1 and 6,1 = 0 for any 6,1 and

8y2. With these restrictions we now investigate the validity of Assumption 3.(ii). Using
Ayi—mr1 = ai+ (Y= 1) ¥i—m + BTi—mi1 + Ui —mi1
= [(1 - 6y1) + ﬂ_pfy)é:cl:| o+ I:(l - (Syl) ﬁ - (1 - ’Y) 6y2 +

(1
+0(gi—mt1 + PEi—m) + Wi—mt1 — (1 — ) Ui,

2

st = (=60

we have
E(Ay; —m+1]A%x;) = [(1 — Oy1) + uﬁ_lowéxl] E (o] Ax;)
2
#= 808 - =8+ {2 051 - )] E(ula)

+BE <5i,—m+1 + Pgi,—m’AXi) .

This expression suggests that the validity of Assumption 3.(ii) depends on the stochastic properties

of a; and p;, and the initial conditions. To investigate the situations under which Assumption 3.(ii)

25



holds, we provide some preliminary results. First, note that
Ax; = Ahgo; + Ahyp; + AG;,

where hy = (ha,1, ha2, -, ha,r)'s Dy = (hpi, hu2, o hpr) and G = (Ciy Cios oo C;r)'. Also under the
assumption that E(a;) = o and E(u;) = u, we have

E (i, —my1 + pEi-mlAX;) = w_ ;Ax;, T = var (Ax;)” " cov (AX;, € —m+1 + PEi—m) ,

E(ailAx;) = a+m, ;Ax;, Ta,i = var (Ax;)” " cov (Ax;, q;) ,

E(plAxi) = pA+m, A%, T, = var (Ax;) ™ cov (Ax, ;)
where (note that Ah, and Ah, are non-stochastic constants)

var(Ax;) = wvar (o o +var (;
(Ax;) () Ahg Al (1) Aby Aby,
+cov (o, ;) [AhaAh;L + Ah,LAhfl] + cf,?z-Q,

cov (AXi, € ms1 + pEim) = E[AG; (immi1 + pEi-m)] = 024,
cov (Ax;,05) = Ahgvar (a;) + Ahycov (o, ;) 5
cov (Ax;, ;) = Ahgeov (o, p;) + Ahyvar (1),

and F (ACiACQ) = agiQ. Consider now Case I when 6,1 = 62 = 1 and 6y2 = 0,1 = 0 ie., D = Is.
We do not need to impose any assumptions on «; and p;, and hence, a; and p,; can be either fixed
or random. (Case II) When 6,1 = 0, 652 = 1, and «; and p; are random with homogenous means,
Assumption 3.(ii) is valid for any 6,1 and 6,2 since Ax; = A, e, Ta,; and 7, ; are all homogenous

over i. (Case III) When 6,1 # 0 and/or 6,2 # 1, and «; and p; are random with homogenous means,
2

then Assumption 3.(ii) is valid when the ratios cov (u;, ;) /o2, var (a;) /o2, and var (u;) /o2, are

homogenous over i. Thus, there is a trade-off between the assumptions made on the fixed effects and

the initial conditions.

B Mathematical proofs

B.1 Preliminary results

In this appendix we provide some definitions and results useful for the derivations in the paper. First,
from (B.2) of Hsiao, Pesaran, and Tahmiscioglu (2002), the inverse of € (w) defined in (10) is given
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T T —1 2 1
T-1|(T-1w .. 2w w
QW l=gw | 777
2 % 2T —2)w—(T—3)] (T—2)w—(T—3)
W v (T-2w—(T-3) (T-Dw—(T—2)

where g (w) is defined above (12). The generic (t, s)th element of the (T"— 1) x (T'— 1) lower block of
Q (w)~!, denoted by Q (w), can be calculated using the following formulae, for ¢,s = 1,2,...,7 — 1:

~ ) s(T-tHw—(s=1)(T—1t), (s<t)
{Q(”)}ts_{t(T—s)w—(t—n(T—s), (s>¢) (33)

Next, using the fact that ®, defined in (12), can be written as ® = 99, where 9 = (T, T —
1,...,2,1), (Hsiao, Pesaran, and Tahmiscioglu, 2002, p.144), we have

tr (PN (w)) =tr (VYR (w)) =¥ Q(w)F=Tg((w)=T1+T (w—1)].

Lemma A1l Consider the transformed model (9). Under Assumptions 1-5, we have

lim —ZE [Aw'n( )*1ri] ~0, (34)

N—oo N

where Q (w) is given in (10), &g is defined in (13). Further,

N
b S (0 oy o)

where ®, and 6 are given by (12) and (39), respectively.

Proof. Let p; = Q (@0)_1 r; = (pi1,...,pir) and recall that r; = (v;1, Awya, ..., Au;r)'. Hence, using
(33) we have

pi1 = Tvzl""Z —s+1 Auzsa

T
pir = (T—t+1vy +ths (@0) Auis + > ks (@) Augs,  (t=2,..,T—1)
s=2 s=t+1
T

pr = vii+ Y hrs(@0) Aui
5=2
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and

his(@o) = (T'—t+1)[(s — Do — (s — 2)], (36)
kes(@o) = (T—s+1)[(t—1L)wo— (t —2)].
Also using (8) and Assumption 2, it readily follows that
E[AWQ (@0) " 1i] = E (AW(p;) = [0,07,1,F (AF _1ps) ,0]'

)

where Ay; —1 = (0, Ay, ..., AyZ',T_l)'. Hence to establish (34) we need to prove that

N
lim N~'Y " E(Ay;_,pi) =0.

N—o0 ‘
=1

But, noting that F(Au;sAy;:) =0 for t < s — 1, we have

T -1

E(Ay;_1pi) = Z E(pitAyir-1) = )  E(palyir—1) + E (pirAyir—1)
t=2 t=2
T-1

¢ T
E (T —t+ DvnAyiz—1 + Z his(@0o) Awis Ay p—1 + Z Ets(wo) Auis Ay;1—1
s=2 s=t+1

I
N

&=

+E (pirAyir—1)

Tt
(T —t+1)E (0nAyiz-1) + > Y hue(@0) B (AuisAyiy 1)

I
N

=2 =2 s—2
= Ay + Ay (wo) .
Also, we have'®
E(vir Ayir) 7iwio =1 (37)
Vit Avss)  —
it O',L?’yt_Q(’}/wio — 1) t=2,..T
—012 t=s—1
E(AuisAy) = 02(2—7) s=t . (38)

—0} (1 —y)2 4t s<t

5 These results are obtained by noting that Ay;; can be written as follows

Ayin = b+ 7 Ax; + Vi1,
t—2 ) t—2 )

Ay = 7' 'Aya + 5 <Z Vjivi,tj) + 37 Auigj
j=0 j=0

t—2 t—2
At (b+ 7' Axi) + v + 8 <Z 'ijl'/'i’tj> + Z’yjAui,t,j, (t=2,..,T).
3=0

j=0



Using these results we now have

2
A = oy

2
= 04

and (recalling that hys depends on @)

Agi = haa (o) E(AuipAyi)
+hs2 (©o) E(AuinAyio
+hag (o) E
+hsa (wo) E

(T— l)wio +

T
(T — 1)wi0 + (’}/wio — 1) Z(T —t4+ 1),}/153]

(Ywio = 1) (T +~v =Ty —2) +~771)

( ) + h33 (wo) E(AuizAy;2)
(AuipAy;z) + has (wo) E(AuizAy;s) + haa (wo) E(AuisAy;s)
(AuioAyia) + hss (0o) E(AuigAyia) + hsa (00) E(AuiaAyia) + hss (00) E(Auis Ayia)

(1-7)? ]

+hro (@0) E(AupAy;m—1) + hrs (Wo) E(AuizAy;r—1) + -+ + hrr—2 (0o) E(Au; r—oAy; m—1) +
+hrr-1(00) E(Au; 7—1Ay;7—1) + hrr (wo) E(Auir Ay 7—1)

T T-1
= J220 (_1) Z hss (@0) + (2 - 7) Z hs+1,s ((DO) B
5=2 5=2

= AL @0) + AD (o) + A (@0) -

Then, by using (36), we have

T t-2

(L=)>D "D hus (@) 72

t=4 s=2

T
AD (@) = o (—1)Z(T—s+1)((s—1)w0—(s—2))]

s=2

[ary

- T

[ 1
= o} 3T — o — Two + o (T+ 1) (T +2) (T + 3w — Ty — 6) +2

AD (@) = o (2—7)Z(T—s)((s—1)@0—(5—2))]

s=2

2
950

= % 0 =2T-DT=2)(-T+Tho+3)
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T t—
AD (@) = o [—(1—v)222v”2 (T—t+1)((s—1)wo—(s—2))]

2
t=4 s=2
= —02) (=10T + 27y + 2o + 6Ty + 6Twg — 4y — 2T y@o)

1
_0'120 <_6 (T+ 1) (T+ 2) (T+9’Y ~+ 99 — Ty — Ty — 6y + Tyiog — 12))

2 <’7T+1 (wo—1)  7(@o =) (T+2y =Ty - 3)>
AN (v=1)°

Using these, we obtain limy_,oo N 7! Zfil E (A%’flpl)

= limy oo N7V 2N (Ari+ AG (@0) + A5 (@0) + AT (@0)) = 0.
To prove (35), first note that E (AW/®r;) is a (T'+ 3) dimensional vector having all zeros, except
for the (T + 2)th entry, given by E (A%ﬁl@ri). We have

T T T—1
’19/1‘2' = Z(T —t+ 1)Uit =Tvy + Z(T —t+ 1)Auit, ﬁ’Aii,,l = Z(T — S)yis-
t=1 t=2 s=1

Hence, using results (37)-(38), we have

T-1 T-1 T
8 = EW'mAy; 9)=T> (T —s)E(Ayisvin) + » > (T —t+1)(T — 5)E (AyisAuir)
s=1 s=1 t=2
T-1 T—1s+1
=T (T — s)E(Ayisvﬂ) + (T —t4+ 1)<T - S)E (AyisAUit)
s=1 s=1 t=1
which can be written as
T-1 T-1s—1
6 = T(T-1)E(Ayava)+T Y (T — s)E(Ayisvi) + (T —t+ 1)(T — 8)E (Ayss Augyy)
s=2 s=1 t=1
T—-1 T—-1
+ ) (T = s+ 1)(T = $)E (AyisAuis) + > (T — 5)*E (Ayis At s11)

s=1 s=1

Finally, we have
N T-1
= . _1 o 1V~ - . 5—2
6 = lim N Z; 8; = T(T — 1)@o + (y@o — 1) 2 (T — s)y
T—-1s-1 T-1 T-1
—53(1 — )2 (T—t+ )T —s)v" 1 4622-9)) (T—s+1)(T—-s)—a2) (T-s)?
s=1 t=1 s=1 s=1
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Second derivatives

Let us define the second derivatives of the pseudo log likelihood function (11) as follows:

An11(0) Ani12(0) Ani3(0)

An0) =200 | 6) Ava(6) Avas(® (10)
A3 (0) Ao (0) Angs(6)
where'6
Anii(0) = ]b%‘i g = ZAW’ AW,
Az (6) = —]382;1; 0 T(i) Zr or,
Ans3(0) = ]1]({;2(6 ()) = —2(;) Zr Q(w i)
An12(0) = ]1788598(5) 2 1(0))2;;ZAW§‘I’I%
Ana(8) = Jbagiafﬂ) 2 (0—2 o2 N Zr i

We now derive plimy_,., Ay (60,) = A*. First, note that Q (w;) can be written as € (w;) = Q (w«) +
A (w; — wy) where A (w; — wy) is a matrix whose (1,1) element is w; — w, and zeros otherwise. Then,
since r®r; and r/Q (w;) "' r; are independent across 7, with mean To?g (w;) and T'o?, respectively, we

have (recall from Assumption 5 that lim y oo N~ SN | 02w, = 52w0)

N
.1 .1 _ _
lim g (rj®r;) =T lim N E 2N+ T(wi—1)] =T [1+T(@o —1)] =T 029 (ws), (41)

N—oo

- Tag<1_T( *_1)+(“’0_”*)> — To?. (42)

8See also Hsiao, Pesaran, and Tahmiscioglu (2002).
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Then, using these and Lemma A1, the matrix A* is given by

N N
1 1
limy o g > AWIR (W) PAW, plimy o ————— > AW/®r; 0
p N—oo NO'% P % ( ) i P N—o0 Ng (W*) O'z gt i 7
N

A* = . 1 / T2 T
plimy oo Ng (w,)? 02 Z; nRAW, 29(w.)? 29(w.)o?

0 ' T T

2g(wx)o3 2(02)?

Lemma A2 Letby (0.) = (1/\/>> 0Ly, (0+) /00, where £, (0) is given by (11), and 0, = (tp*,w*,oz)/ =

((,00,@0, 50)/ is the vector of pseudo-true values. Then as N tends to infinity and for fivred T', we have
by (6.) % N (0,B%). (43)

Proof. Note that b}, can be written as

Uizzjlew'n( Ot Zf.leW’Q(w*)_lri
1 0, (6) R Z vor, | = L1 Vg
T]V 90 |o_. = TN 29(W*) 202 )2 £vi=1 : L o2 VN 2gw )2 Li=150 )
+ 04 Zz 115 ( ) r; 20-3 Zz:l (2

where
§; = r;®r; — Totg (w.), (i =i (W*)_l r; — Ta?.

By Lemma Al, limy oo N"' N B (AW;Q (wa) ri) has zero mean. Also, from (41) and (42),
we have limy_.o0 & SSNLE(&) = 0 and limy o + SN E(¢;) = 0. For the variance, since cross-

sectional units are mutually independent, we have
N
* - / -1_. / -1 .
1= A}gnoo 04 (Z AW;Q (wi) 1 Z; r; 2 (wy) AWZ)
1=

N
11
Jim S E (AWIR () il (w.) T AW). S

N Z (r§<I>rz~ —Tg(wy) 03)2]

i=1

N N
) 1 1 2 2
= lim —F E r'®r;)" — 2T g (w, az g v, ®r;) + NT? Wi O'fkl
N—oo 4g (wy) UiLN i=1 ( ' Z) g< ) i=1 ( ' Z) g< )
T 1 & (r’-(ﬁrl)z )
= lim F |— | —g(ws) oy 45
o | 2 (5F) ot (45




Similarly

N N
1 1 2
B, = lim 7E 22 = lim E rQ (w, 711'1- NT?5%
33 N—oo 4N (02)* ;C NHOO4N(UZ)4{ ;( (w) ) ]
2
T2 1 & Q2 (we) 4
—ﬁﬁﬂEzmﬂ<T —ol (46)

The off-diagonal elements of B* are (noting that limy e Zf\ilE (AW;Q (wy) 7t ri) = 0 and

N
. 1 1 .
B = Jim 208g (w.)? | N Zi:l Erif2 (wn) T AW,
1 1 &
B 1 1 2
= ]\}1_120 oty |y ;:1 (rzﬂ (wy) AWZ) (rj®r; — Tg (w.) )]
1 1 &
_ il ! -1 A (¢ Pr,
B e Z“ (t0ie aw) i) &
* 1 E -1
B31 = ]\}LI};O ﬁE N 2 (I‘ Q AW ) (I‘;Q (CU*) I'Z)] . (48)

Similarly, using (41) and (42), we have

1 1 Y
by o= lim —— B —
32 N—oo 40-69 (w* (N Zl'f >

N=c0 4089 (w)?

T2 1 &/ Pr; v/ (w,) '
- I — § _ 2 i Akl SVl A
Nl—lgo 408g [N < ( g (ws) ) ( T T
. T2 1 & r/®r; i (W) T ry o (wi) ST Pr; 4
- lim 7E N § ( T T ) (w*) O« T — 0y T +g (w*) O

=1

T2
- lim —F
N0 108 (w2)

=2~

r,®r; r/Q (w, Ly
( = (T) —g(w*)aif)] :

For fixed T, the elements inside the sum operator in expressions (44)-(49) are finite for all 7. Hence,

=1

(43) is established by applying the central limit theorem for independent and heterogeneous random
variables (White, 2001). m
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B.2 Proof of Theorem 1

First note that equation (6) can be rewritten as
N = EMa|A%xi) + [ng — EMa|Axi)] = E(ng|Axi) + <1, (50)

where ¢;1 = n; — E (n;1|Ax;). Also, we have

m—1
E(ny|A%;) = y"E(Ay; —mi1|A%;) + BAz1 + 5 Y E(Aziy—j|Ax;). (51)
j=1
Using either (3) or (4) we have
A:L‘it == (b + Z ij&',tfj, (52)

J=0

with Jj = d; under (4), dj = aj —a;j—; under (3), and do = ao. Hence, it is easily seen that under (52)
E(A$i71,j|AXi) :bj +7T;~AXZ', (j =1,...m— 1) (53)

where b; and 7; do not depend on i. Using Assumption 3 and (53) in (51), we have

m—1
EnlAx;) = 4™ (bm + 7r;nAxi) + BAx;1 + 3 Z 'yj (bj + ﬂ';-AXi)
j=1
!
m—1 ) m—1 ‘
= vmbm+ﬁ273bj + 7rm+,8e1+527]7rj Ax;
j=1 Jj=1
= b+ 7'Ax; (54)

where e; = (1,0, ...,0), b is a constant, and 7 is a T-dimensional vector of parameters. Then, using
(5), (50) and (54), Ay;1 can be written as

m—1 m—1
Ay = ma+ D Y Auinj = E(n]Ax;) +sa + Y 7/ Auia
=0 =0

= b+ 7TIAXZ' + Vi1,

where v;1 = ¢;1 + Z;n:_ol I Awu;1—j, In the above equation, v;; has zero mean and variance E (fu?l) =

wm?. |
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B.3 Proof of Theorem 2

To simplify the derivation and better understand the model, we consider an alternative expression of

the model proposed by Grassetti (2011). By pre-multiplying (9) by the 7" x T" accumulation matrix,

10 0
1 0
Lr=| . ;
: 0
11 1
to obtain
Yi1 — Yio 1 Ax] 0 0 &+ ui
Yi2 — Yio 1 AXQ Yi1 — Yio Ti2 — Til §; + U2
. = . . . . @+ . )
YT — Yio 1 AX] yir—1—Yio Tir — Ti & + wir
which can be written more compactly as
vi= Wiso + 1, (55)

where

vl = U1 + (Vi1 — win) = win + &, and ©; = ep; + u;.

Since Ly does not depend on any parameters, then the likelihood functions for (9) and (55) are
identical, also noting that the Jacobian of the transformation , given by |Lp| = 1. Hence, the ML
estimators based on the transformed ML estimator for (9) and (55) will be identical.

The tth row of (55) can be written as

(Yir — Yio) = b+ AXimw+(yit—1 — vio)y + (Tt — 1) B+E; + wi, (56)

Also, from the definition of &,

m—1 m—2
j 1
& =vin —ui = | s+ E VAU 15 | —win =61 — (1 —y)uipo — (1 — g ’Y]uz B A T
j=0 7=1

where Sil = M1 — E(U11|AXZ'), N1 = FE (Ayi1|Ayi,fm+1a A.’L‘il,Axio, ) . Note that var(gi) = O'gi =
02 (w; — 1) . Using Assumption 5, we have 520 = limy_so % Zf\il Uéo = limy_ o0 % Zf\il (wi—1)o? =
53(wo — 1). Although (55) looks like the standard random effect model, it is not the case since the

regressor (y; +—1 — ¥0) and new individual effects §; are correlated.
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For some o2 and ag =02 (w—1), define

. . _ 1 1
VT = F (I‘ﬂ';) = O'2IT + O'%LTL,T7 VTI = ﬁ IT — (1 — u})T’ITL,T s
1 o? 1 T(w—1)
= I —_—— / = = 1 — = —
Qr T iy ¢ o2+ To? 1+T(w—1) VT T oD

Then, by using |[Vy| = 02T (62 + Tog) = 02T [1 + T (w—1)], the alternative expression for the

pseudo log-likelihood function under homoskedasticity can be written as

N
ERE(O) = —EIH(QW)—fln‘VQﬂ ZréV;lrz
N
X —glna —Eln[l—l—T(w—l 21§::< igo)/QT<yi—Wi<p>
20271 —I—T w—1)] Z( lcp) briy (yi_W“'o)

z:l
where 0 = (cp’ ,w,a2)/. Under heteroskedastic errors, the pseudo-true value of @ denoted by 8, =

(ph,wx, 02), is the solution of limy oo N~ 1E [0¢rE (0.) /00] = 0, and can be written as

-1
o, = []\}ii}looN_liE(W’V 1W) ]\}ExlmN—lzN:E(ngT,}yi), (57)
i=1 =1
1 1 N . / .
4T (= 1) = o Jim o Z;E {(y - Wip,) ref (3i - Wi‘P*)] ,
1 al .
03 = A}gnoom ZE |:<y’b z‘P*> Qr < Wz‘P*>] ) (58)

where Vr, = 0217 + 02 (w. — 1) vrtl. Substituting o2 into the expression of ag .» we have

. / .
lmy o0 77 Zij\; E [(yz - Wz"P*> LTt (}"i - Wz¢*):|

14+ T (we —1) = (59)

iy ety S5 B | (3~ Wi ) Qu (5~ Wi, )|

The expectations in the above first order conditions are taken with respect to the true heteroskedas-

tic model. To derive these expectations we first note that

Vi— Wip,=1; — W, (¢, — @),
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and obtain
%E [<Yz - Wz‘<P*)/ Ly (S’z‘ - WzCP*)] = o;[1+T(wi—1)]—2(p, — ) E (T_1W§LTL'TI"1'>
+ (s — o) E (T_lwng”/TWi) IR
and

Tl_lE[(yi Wie,) Qr (3 Wiso*)} = o?—2<<p*—<po>’E<Tl_1W;QTfi)

. 1 v,
+(pe — o) B <T_1W¢QTWz‘> (s — ¥0) -

Using the above results in (59) we obtain

Wy —Wo = —W (. — A}gnooN ! ZE [ Wi (Ir — ha vrer) Wz:| (s — o)
214 T (ws — 1)
a3 (T —1)

(. — o)/ Jim N7! Zl E {T—lv'vg (Ir — ha trty) r} (60)
where hq = wy/[1 + T (ws — 1)]. Similarly, using the first order condition (57) we also have

[ lim — ZE( IW;V;iWZ)

N—oo N

(¢n— o) = lim fZE( AT (61)

N—ooco N

— — lim ZE[ TIW (I — By erty) i

O'2 N—oco N

where hy = (wyx — 1)/ [1 + T (w« — 1)]. Since the regressors are assumed to be exogenous then (recall
also that ¥; = ¢p&; + w;)

N
. wye — 1 . . 1 .
o9 (- )] o S ) ] 0

where }"@_1 = (0, Yi1 — Yi0, ...,y@T_l — yio)l, and €3 — (0, 0{1“><17 1,0)’.

To evaluate the expectations in the above formulas, we first derive some preliminary results. From
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the model (56), for ¢t = 2,...,T, we have

Gt = vit —vio = (L+7+ . +757) (bo + mHA%;) + 75" (yir — vio)

t—2 i—2
+ By YV (@ig—j —xa) | + (L+v9+ ... + 7672) &+ Z’Y{)Ui,tfj
§=0 5=0
1 -4 — 1—75 =
= (52 (ot mbm) + 60 | b= | + (228 64 S v
Y0 =0 Yo =0
Then, for s=1,...,T
_ o2 At > g
E [(yit — yio) wis) = E [ (wit + YoUig—1 + - + 75 Twi) uis) = { 070 . (63)
0 t<s
Also, we have
11—~ 1-— 7t
Bl — ] = (122 ) o2 = (1220 o - (64
Then, using (63) and (64), we have
./ / / ./ 0120 1 - 70 2
E(Yz‘,ALT’JTUi) = vk (ui}’i,ﬂ) lr = 1— T — 1—, = T'¢y050,

T—1 o2 T—1
E(&yi_qr) = Z E & (yir — yio)] = <Z> Z(l —5) = Thgoi(wio — 1)

t=1
b= L <1 11—fy§>
T 11— Tl-7)"

Using the above results it now readily follows that

where

lim
N—>oo

yl _1 IT —h LTLT) (eré; + uz)] Tpyo5 [(1 — hT) (wo— 1) — h].

||Mz

Using this result with h = hy = (wx — 1) /[1 + T (ws« — 1)] in (62) and then in (61) yields

(¢, — @) = e3 lim —ZE (T7'¥, _\ Vi)

N—oo N

i S (W)

_ —¢0‘70 (w*_WO)
T %02 14T (1) (65)
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Similarly,

) —
. 1 —1vir! el @005 (T —1) (Wo — 1) + wy]
am N ZE [ Wi (Ir = ha eref) rl] - 1+ T (ws — 1) ’
and hence using (60) we have
) 147 (@, — 1) » iy N
CrT o3 (T —1) (o - Ngnoo Z [ erir) } (¢ = 0)
C2¢[(T = 1) (@0 — 1) + wi] /

(T _ 1) (90* 900) €3 (66)

Furthermore, we note that the following limits exist

N
~ lim 7§ E( 1W§Wi>, B= lim - E(T—lngTL’TWi),

N—>oo

and
1 1 &
-1 ; : 1< .
]\;EnoonE( W/ Wz) = (ﬂ]\}gnooNz;E[T W; (IT_thTL/T)Wi}
- 1 A_w*——lB ’

which is a positive definite matrix. Using these result in (65) and (66) we have

(ws — @o) wi —1 !
Px— P _¢O 01—|—T( . )|: _l—l—T(w*—l)B} €3, (67)
and
N 14+ T (we —1) / Wy
(wy —@o) = —W (. — ¥0) [A_l—i—T(w*—l)B} (¢4 — o)
251 _(lj)" (iiol)— Shat (¢. — o) 3.

Substituting ¢, — ¢, from (67) in the above and after some algebra we have

2690253 [(T — 1) (@0 — 1) + w4] L —R1050 _
{1_ 2<%31>[1+T<Z*_1>] }(“’*_“’0)(T—1)[1i:0r(2;*_1)]( —@0). (68)
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where

-1 ! w we — 1 —1
= / A— Wx B _ * B % B
-1 -1
— o A ¥ B
K2 83[ 14T (0. —1) ] e3
Also, using (58)
1 N /
2 o o
_ 20052 T
= 0% + T 0_ f(‘P* - 900),e3 + <T—1> (90* — QOU),C (go* — 900) (69)

where C = A—-T"'B.

It is clear that for a finite T all the terms in (68) are finite and as required w, = @y is a solution of
the first order equations. Using this result in (68) and (69) it also follows that ¢, = ¢, and 02 = &3.
However, for a finite T' this solution is not unique and (68) has another solution given implicitly by

(T = 1) [1+ T (wi — 1)] = 26505 (T — 1) (@0 — 1) + w.] K2

Pk

Wy = Wo —
Under this solution ¢, # .

B.4 Proof of Theorem 3

First, by applying the mean-value theorem to (1 /NN ) (%p(/é) /00 around 6 = 6., we have

0

“JN 080 N 06 N 0000'

1 0 (5) 1 aﬁp(e*)Jri@Z@p (9)\@(5_3)

where 0 lies element-wise between the line segment joining 0 and 6,. Rearranging, we have

_ 1920, 1 o¢,(6.) o

where Ay (0) is defined in (40). We demonstrate that Ay (8,) — Ay (8) —? 0 as N — oo and for
fixed T'. First note that

r(@) = ri(e) - AWi(@-p.).
Qe - L2 - )4 L EE “Ew)] + w9 @)]E ()
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where Aw = 0 — w, Also, given consistency results, we have @ —p, —P 0, Aw = © — w, —P 0,
A (Aw) —P 0, 02 — 52 =P 0, and g (0) — g (w«) = TAw —P 0. Using these, we have

_ 0.2_0,2 1 N / . 11 N /
An11(0) — Ay (9) = ((720_2> ~ > AW (w,) AW, + =N S AW/A (Aw) AW; =7 0,
* i=1 i=1
_ 2 wy)? — g ()2 o2 w)d =329 (@3 T /
AN (0) —Anae (6) = _% gg( (w)2g(i()2> ] [ Uzg( (w))3a2g (i()?’) Nzri (p.) ®r; (p,)
* * * =1
N
+5ng; )3]1VZ; —2r; (p,) AW, (p — ¢,) + (P — p,) AW BAW, (7 — ¢, )]
T g(w)’ -9 (@)
2 | 9@’ g(w.)?
(02 —52) g (w.)’ + 07 (g(w*) —g(®)3) T
— r; (¢, "®r; .
: 79 (@) oy (0] v 2 rileenlen)
N
b L [ () BAWL (= ) + (P = ) AWIBAW, (o)
=1
—P 0,
o2)2 _ (52)? o2\ _ (52)3 N
Ans3(0) —Angss (0) = _g ((;)2>2((£2>2) + ((;)2)3 ((52)3) ] %Zr’ (0,) Q@ (we) "1 ()
* * i=1

L In [ e Q@) AW (3 - ¢.) )
TP N ; +(@— ) AWIQ (@) AW, (- ¢,) )
- olg (w.)’ —Ug( )?
Ani2(0) — An12 (0) = [ = 5 Z AW!®r; (p,)
0% (@)% 0 ( )
1

1 _
T2 @2 N Z AW RAW, (@ — ¢,) =7 0,
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An23(0) —Anos (6) =

—2r; (90*), PAW; ((I_D —¥,)
+ (7 — ¢.) AW RAW, (p — ¢,)

Thus, Ay (6+) — Ay (8) =P 0 as N — oo which in turn implies that A (8,) — Ax (6) —? 0. Then
by the Slutsky’s theorem

VN (5 - e*) = A(6,) "by (0,) +0,(1).
Further, by Lemma A2, as N — oo and for a fixed T' we have

_ mTiN(O,B*),

where the elements of B* are given in expressions (44)-(49). Hence, result (14) follows, and 0 is

asymptotically normally distributed for a fixed T, and as N tends to infinity.H
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Table 1: Median bias(x100) and MAE(x100) of v and 8 (v = 0.4, 8 = 0.26) for ARX(1) model

v=04
median bias(x100) [ MAE(x100) median bias(x100) [ MAE(x100)
=1 2 =5
N/T 5 10 15 [ 5 10 15 5 10 5 [ 5 10 15
Transformed likelihood estimator
50 -0.253  -0.081 -0.078 | 7.477 3.294 2.655 | -0.253  -0.081  -0.078 | 7.477 3294  2.655

150 -0.184 0.063  -0.039 | 3.830 2.153 1.631 | -0.184 0.063 -0.039 3.830 2.153 1.631
500 0.042 -0.054  -0.107 | 2.073 1.192 0.827 0.042 -0.054 -0.107 2.073 1.192 0.827
One-step first-difference GMM estimator based on “DIF2"
50 -10.112  -5.709 - 11.943  6.308 - -19.590  -14.454 - 20.144  14.546 —

150 -4.124  -1.949 -1.962 | 6.335  3.149 2.733 | -9.768 -6.161 -5.505 | 11.082  6.491 5.669
500 -1.107  -0.648 -0.572 | 3.260 1.642 1.189 | -3.204 -2.047 -1.782 5.366 3.048 2.283
One-step system GMM estimator based on “SYS2"
50 7.035 - - 9.044 - - 46.392 - - 46.392 - -

150 3.955 2.767 2.331 5.525  3.425  2.810 | 35.877 35.838  34.855 | 35.877 35.838 34.855
500 2.369 0.941 0.673 3.042 1.657 1.219 | 23.131 20.218  18.993 | 23.131 20.218 18.993

8 =0.26

median bias(x100) [ MAE(x100) median bias(x100) [

=1 2 =5
N/T 5 10 15 [ 5 10 15 5 10 15 ]

Transformed likelihood estimator

50 0.040 0.144 0.028 5.340  3.025  2.389 0.040 0.144 0.028 5.340 3.025 2.389
150 -0.024  -0.115  0.219 3.073  1.988 1.454 | -0.024 -0.115 0.219 3.073 1.988 1.454
500 -0.056  -0.066  0.040 1.488  0.951 0.760 | -0.056 -0.066 0.040 1.488 0.951 0.760
One-step first-difference GMM estimator based on “DIF2"
50 -0.771  -0.237 — 5.609  3.860 — -1.007 -0.872 — 5.488 3.802 —
150 -0.276 ~ -0.072  -0.009 | 3.644  2.369 1.895 | -0.449 -0.384  -0.308 3.577 2.418 1.901
500 -0.120 0.009 -0.014 | 1.818 1.162 0.941 | -0.181 -0.120 -0.131 1.806 1.150 0.948
One-step system GMM estimator based on “SYS2"
50 2.031 — — 6.408 - — 4.064 — — 7.800 - —
150 1.011 0.986 1.056 3.775  2.667  2.013 3.751 3.780 4.187 5.286 4.359 4.253
500 0.523 0.350 0.379 1.954  1.271 1.105 2.549 2.368 2.277 3.330 2.472 2.327

MAE(x100)

5 10 15

Note: “DIF2" denotes Arellano and Bond type moment conditions: E(y; ;—2—jAu;;) = 0withl =0fort=2,1=0,1fort=3,...,T
and E(x; t—1Aug) =0 with 1 =0,1 for t =2,1=0,1,2 for t = 3,...,T. One-step first-difference GMM estimator is computed by
(20) with a suitable modification of Z;. “SYS2" denotes Blundell and Bond type moment conditions: E[Ay;t—1(0; +ui)] =0
and E[Az;(a; +ui)] =0 for t = 2,...,T in addition to the ones used in “DIF2". One-step system GMM estimator is computed
by (25) with a suitable modification of Z;. The numbers of moment conditions of “DIF2" and “SYS2" are 18 and 26 when T = 5,
43 and 61 when T'= 10 and 68 and 96 when T' = 15.“—" denotes the cases where the GMM estimators are not computed since the

number of moment conditions exceeds the sample size.
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Table 2: Median bias(x100) and MAE(x100) of v and 8 (v = 0.9, 8 = 0.56) for ARX(1) model

median bias(x100) [ MAE(x100) median bias(x100) [ MAE(x100)
2 =1 T2 =5
N/T 5 10 15 ] 5 10 15 5 10 15 ]
Transformed likelihood estimator
50 -0.061  -0.128  0.108 7.251  3.003 1.646 | -0.076  -0.126  0.084 7.117 2970 1.637
150 -0.030 0.017 -0.092 | 4.284 1.728 1.027 | -0.017 0.037  -0.090 | 4.237 1.732 1.024
500 0.115 -0.009  -0.020 | 2.091 0.842 0.520 0.091 -0.023  -0.022 | 2.091 0.846 0.515
One-step first-difference GMM estimator based on “DIF2"
50 -10.001  -6.630 - 10.747  6.855 - -11.931  -7.690 — 12.431  7.816 —
150 -3.894  -2.761 -2.402 | 5916  3.267 2.605 | -4.955  -3.239 -2.657 | 6.481 3.696 2.774
500 -1.536  -0.767 -0.714 | 2.909 1.462 1.075 | -1.831 -0.890 -0.867 | 3.007 1.678 1.188
One-step system GMM estimator based on “SYS2"
50 5.682 — — 5.686 — — 9.155 - - 9.155 - —
150 5.343 4.594  4.197 5.343  4.594  4.197 8.992 8.827  8.765 8.992  8.827 8.765
500 4.625 3.349 2.875 4.625  3.349 2.875 8.717 8.260 8.122 8.717  8.260 8.122

10 15

ot

B =0.56

median bias(x100) [ MAE(x100) median bias(x100) [ MAE(x100)
2 =1 T2 =5

N/T 5 10 15 ] 5 10 15 5 10 15 [ 5 10 15
Transformed likelihood estimator
50 0.157 0.229 0.118 5.203  3.085  2.368 0.101 0.246 0.107 5.210  3.085  2.353
150 0.043 -0.104  0.177 3.122 1.985 1.482 0.039 -0.108  0.181 3.125 1.984 1.481
500 -0.007  -0.020  0.042 1.520  0.912 0.771 | -0.002 -0.019  0.041 1.506  0.910 0.771
One-step first-difference GMM estimator based on “DIF2"
50 -2.939  -2.221 — 6.203  4.424 — -3.399  -2.628 — 6.400 4.721 —
150 -1.259 -1.079  -0.788 3.918 2.674 2.111 -1.434 -1.274  -0.983 3.971 2.691 2.143
500 -0.421  -0.233  -0.223 1.931 1.310 0.984 | -0.487  -0.306 -0.302 1.935 1.302 1.039
One-step system GMM estimator based on “SYS2"
50 1.766 — — 5.821 — — 2.145 - - 6.054 - -
150 2.598 2.013 1.978 4.026  2.841  2.406 3.743 3.276 3.229 4.692  3.593  3.349
500 2.755 1.996 1.572 2.870  2.039  1.648 4.285 3.963 3.723 4.290  3.963  3.723

Note: See notes to Table 1.
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Table 3: Size(%) and power(%) of v and 5 (y = 0.4, 5 = 0.26) for ARX(1) model

v=04
size (Ho : v =0.4) [ power (Hy :v=0.3) size (Ho : v =0.4) | power (H; : v =0.3)
T2 =1 T2 =5
N/T | 5 10 15 [ 5 10 15 5 10 15 ] 5 10 15
Transformed likelihood estimator
50 9.1 6.4 5.5 28.1 51.2 75.6 9.1 6.4 5.5 28.1 51.2 75.6
150 7.3 5.2 5.8 46.8 914 99.9 7.3 5.2 5.8 46.8 914 99.9
500 7.7 5.3 5.8 86.5 100.0  100.0 7.7 5.3 5.8 86.5 100.0  100.0
One-step first-difference GMM estimator based on “DIF2"
50 144 13.2 - 36.7  59.3 - 21.1 293 - 41.1  66.8 -
150 7.8 8.6 8.1 41.0 794 95.5 129 164 189 | 36.4 65.2 85.4
500 6.1 5.7 5.3 68.1 99.3 100.0 8.1 8.9 8.5 43.2  86.9 98.3
One-step system GMM estimator based on “SYS2"
50 16.1 - - 7.4 — - 97.7 - - 93.6 - -
150 10.5 122 12,5 | 16.5 473 71.4 93.7 99.7 100.0 | 81.9 97.5 99.4
500 11.1 8.7 5.9 53.2 978 100.0 | 85.6 97.8 99.8 | 54.5  64.1 71.2
B8 =0.26
size (Ho : 8 = 0.26) | power (Hy : 8 =0.16) [ size (Ho : 8 =0.26) [ power (Hi : 8 = 0.16)
=1 2 =5
N/T | 5 10 5 [ 5 10 15 5 10 15 [ 5 10 15
Transformed likelihood estimator
50 5.7 6.6 5.9 30.2 589 80.4 5.7 6.6 5.9 30.2 589 80.4
150 6.0 6.7 5.3 629 954 99.9 6.0 6.7 5.3 629 954 99.9
500 4.9 4.0 5.1 99.1 100.0  100.0 4.9 4.0 5.1 99.1 100.0  100.0
One-step first-difference GMM estimator based on “DIF2"
50 5.8 5.5 — 27.5 449 — 6.7 6.0 — 29.8  50.1 —
150 5.1 7.3 6.1 52.2  83.2 94.0 4.9 7.8 5.6 53.2  85.3 95.5
500 5.5 3.8 4.8 95.9 100.0 100.0 5.5 4.0 5.2 95.8 100.0  100.0
One-step system GMM estimator based on “SYS2"
50 7.5 - - 15.8 — - 7.0 - - 9.2 - —
150 6.1 8.4 9.7 35.4  69.6 84.7 7.7 154  23.0 143 274 38.4
500 6.1 4.7 5.4 90.5 100.0 100.0 | 10.4 16.5 234 | 44.8 86.9 98.1

Note: For the definition of “DIF2" and “SYS2", see notes to Table 1.
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Table 4: Size(%) and power(%) of v and 8 (v = 0.9, 3 = 0.56) for ARX(1) model

~v=0.9
size (Ho : v =0.9) [ power (H; :y=0.8) size (Ho : v =0.9) [ power (H; :v=0.8)
T2 =1 72 =5
N/T [ 5 10 15 [ 5 10 15 5 10 15 5 10 15
Transformed likelihood estimator
50 5.9 5.6 5.2 26.3  62.1 90.0 5.7 5.4 5.2 26.7 624 90.1
150 4.8 5.9 5.2 40.3  93.1 99.9 4.9 5.8 4.9 40.2 934 99.9
500 5.5 4.1 5.1 83.1 100.0  100.0 5.2 4.3 5.2 83.5 100.0  100.0
One-step first-difference GMM estimator based on “DIF2"

50 179 222 — 46.6  81.1 — 18.5 25.1 — 47.3  81.3 —
150 9.9 11.2 139 | 51.2  90.6 99.4 10.0 13.4 15.2 | 48.5 884 99.2
500 5.8 5.9 6.5 82.0 100.0  100.0 6.6 6.7 6.7 77.9  99.9 100.0

One-step system GMM estimator based on “SYS2"

50 58.3 — - 37.9 — - 99.8 - — 16.5 - —
150 | 62.4 79.1 88.0 | 57.8 945 99.7 100.0 100.0 100.0 | 31.9  68.0 88.1
500 | 79.4 780 80.9 | 94.7 100.0 100.0 | 100.0 100.0 100.0 | 79.3  99.2 100.0

B =0.56
size (Ho : 8 = 0.56) | power (H; : 3 = 0.46) size (Ho : 8 =0.56) [ power (H; : 3 = 0.46)
T2 =1 72 =5
N/T [ 5 10 15 [ 5 10 15 5 10 5 [ 5 10 15
Transformed likelihood estimator
50 5.3 6.6 6.0 27.5  57.2 80.5 5.2 6.6 5.9 27.5  57.3 80.5
150 5.3 6.3 5.5 57.6  94.6 99.8 5.4 6.3 5.5 57.6  94.6 99.8
500 4.9 4.6 4.9 98.4 100.0  100.0 4.9 4.6 4.9 98.4 100.0  100.0
One-step first-difference GMM estimator based on “DIF2"

50 9.2 8.7 — 35.2 549 — 9.4 9.1 — 36.3  57.0 —
150 6.3 7.7 6.4 53.9  83.8 95.1 5.6 8.0 7.0 53.9  84.5 95.5
500 5.4 4.7 4.6 94.8 100.0  100.0 6.0 4.5 5.6 94.6  100.0  100.0

One-step system GMM estimator based on “SYS2"

50 6.4 - - 17.3 — - 7.2 - - 16.1 — —
150 9.3 10.6 12.8 31.2 64.2 82.8 11.7 174 23.4 23.1 47.5 67.6
500 182 19.0 18.1 | 77.9  99.3 100.0 32.1 56.2 69.2 | 53.5  89.9 98.9

Note: See notes to Table 3.
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Table 5: Size(%) and power(%) of weeazlioial%t_%l)ments robust tests for ARX(1) model

size (Ho : @ = (0.4,0.26)")  power (Hi : 6 = (0.3,0.16)") | size (Ho : 8 = (0.4,0.26)") | power (H; : 6 = (0.3,0.16)")
2 =1 2 =5
N/T | 5 10 15 [ 5 10 15 5 10 15 [ 5 10 15
Anderson and Rubin test based on moment conditions “DIF2"
50 49.9  100.0 - 56.4  100.0 - 49.7  100.0 — 55.1  100.0 —
150 10.7 53.3 95.1 30.5 85.2 99.5 114 53.8 95.0 25.8 78.3 98.8
500 8.9 15.1 22.9 72.6 98.5 100.0 8.3 14.2 22.5 62.8 91.2 99.3
Anderson and Rubin test based on moment conditions “SYS2"
50 84.2 — - 89.5 - - 85.6 - — 88.4 — —
150 23.7 88.3 99.9 47.5 98.0 100.0 25.0 89.1 100.0 48.3 98.6 100.0
500 11.8 22.3 50.0 79.2 99.6 100.0 13.6 23.2 49.0 80.8 99.6 100.0
Lagrange Multiplier test based on moment conditions “DIF2"
50 33.7 77.8 - 40.5 82.7 - 35.9 81.9 — 43.2 82.9 —
150 7.4 26.3 70.1 12.2 29.3 86.2 8.4 28.8 73.1 8.1 29.3 84.4
500 6.7 7.1 8.4 30.8 88.8 98.7 6.6 8.6 8.7 8.2 16.4 40.7
Lagrange Multiplier test based on moment conditions “SYS2"
50 40.7 - — 41.9 — — 40.5 - — 43.4 - —
150 11.9 28.8 52.4 31.1 40.0 74.5 10.7 26.4 48.4 29.2 34.2 57.1
500 7.9 10.3 114 67.1 98.0 99.8 6.6 114 11.3 58.9 96.7 98.7
Conditional likelihood ratio test based on moment conditions “DIF2"
50 50.9 78.0 - 56.0 82.9 - 51.5 82.0 - 55.9 83.2 —
150 9.0 30.0 80.8 15.1 38.8 90.6 11.9 40.8 86.9 13.8 47.3 92.0
500 6.4 7.2 8.1 31.4 89.3 98.8 6.7 8.6 8.8 9.8 19.2 42.9
Conditional likelihood ratio test based on moment conditions “SYS2"
50 44.8 — - 45.2 — - 41.0 - — 44.3 — —
150 12.6 35.5 52.9 334 44.5 75.1 11.6 27.1 48.6 31.0 354 57.4
500 8.1 10.2 11.6 67.4 98.1 99.8 6.8 11.9 11.6 60.4 96.8 98.8
6=(0.9,0.5)
size (Hp : 6 = (0.9,0.5)") power (Hp : 6 = (0.8,0.4)") size (Ho : 8 = (0.9,0.5)) [ power (H; : 6 = (0.8,0.4)")
=1 2 =5
N/T | 5 10 15 [ 5 10 15 5 10 15 [ 5 10 15
Anderson and Rubin test based on moment conditions “DIF2"
50 48.0  100.0 - 53.4 99.9 - 48.2  100.0 — 53.3  100.0 —
150 11.8 54.7 95.2 25.3 79.1 99.2 10.9 54.8 94.5 24.1 77.3 99.2
500 9.2 13.6 23.5 59.9 93.5 99.8 8.5 13.4 23.3 56.4 90.7 99.4
Anderson and Rubin test based on moment conditions “SYS2"
50 87.1 — - 88.9 - - 87.5 - — 89.4 - —
150 31.1 89.8 100.0 50.1 98.8 100.0 42.7 92.4 100.0 51.6 99.0 100.0
500 31.8 34.5 53.4 89.5 99.9 100.0 68.1 56.2 66.3 91.7  100.0 100.0
Lagrange Multiplier test based on moment conditions “DIF2"
50 36.6 81.1 - 42.6 85.2 — 37.5 77.9 — 42.4 84.4 —
150 7.7 23.7 67.9 7.7 22.0 90.0 7.7 23.3 66.4 7.9 22.2 89.2
500 4.6 6.2 7.7 16.1 69.3 92.4 4.0 6.6 7.6 9.6 50.0 79.6
Lagrange Multiplier test based on moment conditions “SYS2"
50 47.4 — - 53.3 — — 42.0 — — 46.8 — —
150 15.6 41.7 64.4 19.6 70.8 88.9 20.7 28.5 52.5 22.6 61.7 78.7
500 16.9 8.9 12.0 62.7 41.5 44.6 9.7 11.9 154 68.3 39.9 73.6
Conditional likelihood ratio test based on moment conditions “DIF2"

0 46.4 81.0 — 52.7 85.1 — 47.1 78.0 — 52.9 84.4 —
150 8.0 24.9 71.9 9.0 28.5 91.7 8.3 25.7 71.4 8.8 28.4 91.2
500 4.7 6.3 7.5 16.9 69.7 92.5 4.0 6.5 7.9 10.1 51.0 80.0

Conditional likelihood ratio test based on moment conditions “SYS2"
50 47.5 — — 53.4 — — 41.8 - — 46.6 — —
150 16.0 42.0 64.6 19.8 71.2 89.0 20.7 28.4 52.5 22.2 61.4 78.9
500 17.6 8.7 12.2 62.8 42.0 44.7 9.9 11.7 15.3 68.3 39.8 73.8

For the definition of “DIF2" and “SYS2", see notes to Table 1. “Anderson and Rubin test" denotes Anderson and Rubin test for
GMM (Stock and Wright 2000)(eq. (30)). “Lagrange multiplier test" denotes Kleibergen’s(2005) LM test (eq. (31)). “Conditional
likelihood ratio test" denotes the conditional likelihood ratio test of Moreira (2003)(extended by Kleibergen(2005)) (eq.(32)). “—"

denotes the cases where the GMM estimators are not computed since the number of moment conditions exceeds the sample size.
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Table 7: Size(%) and power(%) of v for AR(1) model

v=0.4
size (Hp : v = 0.4) power (Hy : v =0.3) size (Hp : v = 0.4) [ power (Hy : v =0.3)
2=1 2 =5
N/T 5 10 15 20 5 10 15 20 10 15 20 [ 5 10 15 20
Transformed likelihood estimator
50 7.8 6.9 7.2 6.7 | 24.1 47.7 70.1 85.7 74 7.3 6.7 26.1 48.1 70.1 85.7
150 5.0 4.7 4.2 5.8 | 424  90.3 99.6 99.8 4.8 4.2 5.8 43.7 904 99.6 99.8
500 5.1 5.3 5.0 4.7 | 814 100.0 100.0 100.0 5.3 5.0 4.7 81.5 100.0 100.0 100.0
One-step first-difference GMM estimator based on “DIF2"
50 7.9 8.9 7.9 7.0 | 21.8  36.9 54.4 67.0 13.6 13.3 13.2 26.0 35.7 44.1 55.2
150 5.5 6.1 5.9 6.9 27.9 67.3 86.9 96.0 9.8 7.4 9.2 22.9 37.1 54.2 73.1
500 6.1 5.8 4.8 4.1 53.0 97.2 100.0 100.0 5.6 5.2 4.5 23.5 55.7 86.6 98.3
One-step system GMM estimator based on “SYS2"
50 9.5 11.5 8.8 — 11.0  21.0 29.0 - 93.6 97.8 - 64.0 83.1 89.7 -
150 6.3 5.4 5.6 7.9 244 57.1 76.8 88.4 86.5 94.5 98.4 | 42.1 60.5 68.7 74.0
500 5.9 6.2 4.8 5.5 64.4  97.6 99.9 100.0 65.6 84.6 92.5 12.6 15.8 17.1 15.6
v=0.9
size (Hp : v = 0.9) power (Hy : v =0.8) size (Hop : v = 0.9) [ power (Hy : v =0.8)
=1 2 =5
N/T 5 10 15 20 5 10 15 20 10 15 20 [ 5 10 15 20
Transformed likelihood estimator
50 15.0 220 199 21.3 | 239 32.9 49.6 68.2 22.3 19.1 19.9 24.2 33.3 51.4 70.2
150 209 20.8 17.6 122 | 25.3 45.1 71.1 87.6 19.1 14.7 11.5 274 478 75.0 89.2
500 25.7 18.3 9.9 8.0 | 324  65.7 88.4 94.1 16.4 10.8 9.4 37.0 70.1 87.1 90.7
One-step first-difference GMM estimator based on “DIF2"
50 34.5 315 26.2 23.7 | 45.1 53.5 58.1 67.4 41.1 40.3 41.1 47.8 60.9 63.5 70.0
150 254 17.7 10.0 9.9 36.2 43.2 52.5 73.4 37.3 33.3 32.8 | 42.2 55.8 61.0 69.7
500 13.3 7.9 6.0 5.6 25.1 40.1 72.7 91.8 28.3 25.7 22.6 | 37.0 51.1 60.6 66.2
One-step system GMM estimator based on “SYS2"
50 306 54.1 639 - 1.6 5.2 11.9 - 99.8  100.0 - 0.0 0.6 1.8 —
150 28.6 46.1 58.3 66.9 3.7 174 34.2 50.8 99.9 100.0  100.0 0.2 1.6 2.6 3.0
500 204 33.0 40.0 452 | 223 72.2 93.5 98.5 99.8 100.0 100.0 1.7 6.8 12.3 18.7

Note: For the definition of “DIF2" and “SYS2", see notes to Table 6.
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Table 8: Size(%) and power(%) of weak instruments robust tests for AR(1) model
60=0.4
size (Hp : 0 = 0.4) [ power (Hp :6=0.3) size (Hp : 6 = 0.4) power (Hi : 6 =0.3)
2 =1 2 =5
N/T 5 10 15 20 [ 5 10 15 20 5 10 15 20 5 10 15 20
Anderson and Rubin test based on moment conditions “DIF2"
50 12.8 45.1 87.1 99.1 | 15.1  50.9 90.5 99.5 13.1  45.3 87.8 99.8 12.9 484 89.0 99.7
150 6.3 13.5 22.1 40.5 | 12.5 32.2 53.2 76.9 7.2 13.1 21.5 42.6 8.2 18.6 32.3 60.8
500 4.7 7.0 7.8 9.2 24.9  66.9 90.6 97.2 5.0 6.0 8.3 9.6 9.0 16.6 39.9 65.9
Anderson and Rubin test based on moment conditions “SYS2"
50 23.7 86.2 100.0 — 29.5 89.1 100.0 — 26.0 84.9 100.0 — 29.6 87.8 100.0 —
150 9.1 23.8 49.1 81.3 | 24.9 54.7 80.9 96.5 9.2 23.3 46.6 81.6 22.7 523 79.1 95.8
500 5.8 7.5 13.5 17.5 | 48.0 81.4 95.7 98.8 5.8 7.3 13.8 18.1 424 78.8 94.5 98.7
Lagrange Multiplier test based on moment conditions “DIF2"
50 11.8  28.3 45.2 61.7 | 11.7  32.3 68.8 76.0 12.4  29.7  45.3 62.4 11.5  30.0 56.2 74.0
150 5.3 8.7 12.7 17.0 | 19.5 53.8 74.8 80.4 5.8 8.5 12.5 18.5 8.9 17.1 33.2 51.2
500 6.2 6.3 5.9 6.3 46.3  96.6 99.9 100.0 5.7 6.8 5.3 6.5 15.3  45.9 82.1 97.3
Lagrange Multiplier test based on moment conditions “SYS2"
50 16.1 37.2 72.5 - 20.5 41.9 76.7 - 17.0 39.1 70.7 - 21.4  40.8 74.1 -
150 7.1 11.1 14.4 23.7 | 41.2 73.0 82.0 59.9 7.3 12.3 16.5 23.5 35.9 587 54.9 34.5
500 4.8 7.6 6.5 8.0 82.4 99.5 100.0 100.0 5.2 7.9 6.9 7.9 75.5 99.2 100.0 100.0
Conditional likelihood ratio test based on moment conditions “DIF2"
50 14.9  40.0 48.9 61.8 16.1 44.1 72.7 76.3 14.9 434 48.5 62.7 14.6  42.6 60.7 74.2
150 5.4 8.6 12.9 18.0 | 19.6 54.1 75.3 82.1 6.9 9.2 13.3 19.8 8.8 18.3 35.2 54.0
500 6.0 6.5 6.1 6.2 46.4  96.6 99.9 100.0 5.8 6.6 5.7 6.4 15.5  46.1 81.7 97.5
Conditional likelihood ratio test based on moment conditions “SYS2"
50 19.5  39.6 72.3 — 25.5 434 76.5 - 18.1  39.3 70.5 — 22.2  41.2 74.0 -
150 7.1 11.5 15.9 26.3 | 41.3 73.6 84.0 63.3 7.5 12.9 17.3 23.5 35.8 58.8 55.2 34.8
500 4.9 7.6 6.6 8.4 82.1 99.5 100.0 100.0 5.2 8.0 6.8 7.7 75.8  99.2 100.0 100.0
6=0.9
size (Hp : 6 = 0.9) [ power (Hy : 6 =0.8) size (Hp : 6 = 0.9) power (Hi : 6 =0.8)
2 =1 2 =5
N/T 5 10 15 20 [ 5 10 15 20 5 10 15 20 5 10 15 20
Anderson and Rubin test based on moment conditions “DIF2"
50 11.5  45.1 86.6 99.6 | 11.5 46.4 87.4 99.9 12.3 454 86.2 100.0 | 11.8 45.7 86.9 99.8
150 6.8 12.6 21.3 41.8 7.3 15.5 27.6 56.4 6.9 13.1 22.2 41.0 7.1 12.8 22.0 42.1
500 5.7 5.5 7.6 9.1 6.1 8.8 22.3 41.4 5.6 5.4 9.0 9.3 5.6 5.6 9.3 11.0
Anderson and Rubin test based on moment conditions “SYS2"
50 23.8 85.8 100.0 - 26.6 88.6 100.0 - 23.8 85.7 99.9 - 26.4 88.5 100.0 -
150 9.3 22.2 49.0 81.4 | 20.5 48.2 79.7 96.4 9.1 23.1 48.3 80.1 19.4 478 79.6 96.7
500 5.6 6.8 15.2 19.0 | 45.2 78.7  94.2 98.9 5.2 6.8 14.2 17.7 | 45.1  79.3 94.0 98.8
Lagrange Multiplier test based on moment conditions “DIF2"
50 15.4 384 57.0 68.0 | 15.6 44.2 68.5 77.4 14.8  40.9 54.9 68.1 15.2  46.7 62.8 73.4
150 6.8 10.2 13.3 19.8 6.2 10.3 18.9 29.7 7.3 12.7 19.8 30.6 7.8 12.0 23.7 33.8
500 5.3 6.1 6.0 6.6 7.6 17.8 50.4 82.4 7.0 7.0 7.2 7.2 7.2 7.0 5.9 10.4
Lagrange Multiplier test based on moment conditions “SYS2"
50 16.8  35.6 74.0 — 17.1 429 75.8 - 17.1 37.1 72.8 — 17.6  41.6 74.9 -
150 7.8 10.7 14.9 23.7 | 28.8 48.4 41.6 31.6 7.6 11.9 14.7 23.1 28.9 329 29.9 31.0
500 5.5 6.4 6.1 8.1 76.7 99.2 100.0 100.0 5.9 7.1 6.6 7.8 74.8 88.1 84.7 82.7
Conditional likelihood ratio test based on moment conditions “DIF2"
50 12.6 44.2 60.1 68.1 12.1 45.3 71.4 7.7 12.9 443 57.8 68.1 13.4  46.3 65.0 74.2
150 7.3 12.2 16.8 25.0 7.7 14.8 23.5 37.7 7.7 13.5 21.1 36.8 7.6 13.2 22.6 38.6
500 5.6 6.0 6.0 6.8 7.7 17.5 50.6 82.6 6.1 5.5 8.6 9.4 5.4 6.4 8.9 12.1
Conditional likelihood ratio test based on moment conditions “SYS2"
50 17.1  36.0 74.3 — 17.8  43.2 75.8 — 16.8 37.1 72.7 — 17.6  41.6 74.9 —
150 8.2 11.2 15.1 24.0 | 29.2 48.6 42.5 32.2 7.5 11.7 15.0 23.3 29.2  33.2 29.9 30.8
500 5.6 6.4 5.9 8.2 76.6 99.2 100.0 100.0 5.9 7.0 6.5 7.8 74.8 88.4 84.9 82.7

For the definition of “DIF2" and “SYS2", see notes to Table 6. “Anderson and Rubin test" denotes Anderson and Rubin test for
GMM (Stock and Wright 2000)(eq. (30)). “Lagrange multiplier test" denotes Kleibergen’s(2005) LM test (eq. (31)). “Conditional
likelihood ratio test" denotes the conditional likelihood ratio test of Moreira (2003)(extended by Kleibergen(2005)) (eq.(32)). “—"

denotes the cases where the GMM estimators are not computed since the number of moment conditions exceeds the sample size.
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