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Abstract

This paper extends the transformed maximum likelihood approach for estimation of dynamic

panel data models by Hsiao, Pesaran, and Tahmiscioglu (2002) to the case where the errors are

cross-sectionally heteroskedastic. This extension is not trivial due to the incidental parameters

problem and its implications for estimation and inference. We approach the problem by working

with a mis-speci�ed homoskedastic model, and then show that the transformed maximum likelihood

estimator continues to be consistent even in the presence of cross-sectional heteroskedasticity. We

also obtain standard errors that are robust to cross-sectional heteroskedasticity of unknown form.

By means of Monte Carlo simulations, we investigate the �nite sample behavior of the transformed

maximum likelihood estimator and compare it with various GMM estimators proposed in the liter-

ature. Simulation results reveal that, in terms of median absolute errors and accuracy of inference,

the transformed likelihood estimator outperforms the GMM estimators in almost all cases.
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1 Introduction

In dynamic panel data models where the time dimension (T ) is short, the presence of lagged dependent

variables among the regressors makes standard panel estimators inconsistent, and complicates statisti-

cal inference on the model parameters considerably. To deal with these di¢ culties a sizable literature

has emerged, starting with the seminal papers of Anderson and Hsiao (1981, 1982) who proposed the

application of the instrumental variable (IV) approach to the �rst-di¤erenced form of the model. More

recently, a large number of studies have been focusing on the generalized method of moments (GMM),

see, among others, Holtz-Eakin, Newey, and Rosen (1988), Arellano and Bond (1991), Arellano and

Bover (1995), Ahn and Schmidt (1995) and Blundell and Bond (1998). One important reason for the

popularity of GMM in applied economic research is that it provides asymptotically valid inference

under a minimal set of statistical assumptions. Arellano and Bond (1991) proposed GMM estimators

based on moment conditions where lagged variables in levels are used as instruments. Blundell and

Bond (1998) showed that the performance of this estimator deteriorates when the parameter associ-

ated with the lagged dependent variable is close to unity and/or the variance ratio of the individual

e¤ects to the idiosyncratic errors is large, since in such cases the instruments are only weakly related

to the lagged dependent variables.1 The poor �nite sample properties of GMM estimators has been

documented using Monte Carlo studies by Kiviet (2007), for example. To deal with the weak instru-

ment problem, Arellano and Bover (1995) and Blundell and Bond (1998) proposed the use of extra

moment conditions arising from the model in levels, which become available when the initial obser-

vations satisfy certain conditions. The resulting GMM estimator, known as system GMM, combines

moment conditions for the model in �rst di¤erences with moment conditions for the model in levels.

We refer to Blundell, Bond, and Windmeijer (2000) for an extension to the multivariate case, and for a

Monte Carlo study of the properties of GMM estimators using moment conditions from either the �rst

di¤erenced and/or levels models. More recently, Bun and Windmeijer (2010) show that the model in

levels su¤ers from the weak instrument problem when the variance ratio is large, and Hayakawa (2007)

provides �nite sample evidence on the bias of the system GMM estimator for di¤erent values of the

variance ratio and show that the bias rises with the variance ratio. To overcome these shortcomings,

Han and Phillips (2010) and Han, Phillips, and Sul (2014) propose alternative GMM estimators.

The GMM estimators have been used in a large number of empirical studies to investigate problems

in areas such as labour, development, health, macroeconomics and �nance. Theoretical and applied

research on dynamic panels have mostly focused on the GMM, and has by and large neglected the

maximum likelihood (ML) approach though there are several theoretical advances such as Hsiao, Pe-

saran, and Tahmiscioglu (2002), Binder, Hsiao, and Pesaran (2005), Alvarez and Arellano (2004), and

Kruiniger (2008). Hsiao, Pesaran, and Tahmiscioglu (2002) propose the transformed likelihood ap-

proach while Binder, Hsiao, and Pesaran (2005) have extended the approach to estimating panel VAR

(PVAR) models. Alvarez and Arellano (2004) have studied ML estimation of autoregressive panels

1See also the discussion in Binder, Hsiao, and Pesaran (2005), who proved that the asymptotic variance of the Arellano
and Bond (1991) GMM estimator depends on the variance of the individual e¤ects.
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in the presence of time-speci�c heteroskedasticity (see also Bhargava and Sargan (1983)). Kruiniger

(2008) considers ML estimation of a stationary/unit root AR(1) panel data models. More recently,

several papers including Han and Phillips (2013), Moral-Benito (2013), Kruiniger (2013), and Juodis

(2013) also consider the ML approach to estimating dynamic panel data models. There are several

reasons why the GMM approach is preferred to the ML approach. First, the regularity conditions

required to prove consistency and asymptotic normality of the GMM type estimators are relatively

mild and allow for the presence of cross-sectional heteroskedasiticity of the errors. In particular, see

Arellano and Bond (1991), Arellano and Bover (1995) and Blundell and Bond (1998). Second, for the

ML approach, the incidental parameters problem and the initial conditions problem lead to a violation

of the standard regularity conditions, which causes inconsistency. Although Hsiao, Pesaran, and Tah-

miscioglu (2002) developed a transformed likelihood approach to overcome some of the weaknesses of

the GMM approach (particularly the weak IV problem), their analysis still requires the idiosyncratic

errors to be homoskedastic, which is likely to be restrictive in many empirical applications.2

It is therefore desirable to extend the transformed ML approach of Hsiao, Pesaran and Tahmiscioglu

(HPT) so that it allows for heteroskedastic errors.3 This is accomplished in this paper. The extension

is not trivial due to the incidental parameters problem that arises, in particular its implications for

inference. We follow the time series literature, and initially ignore the error variance heterogeneity and

work with a mis-speci�ed homoskedastic model, but show that the transformed maximum likelihood

estimator by Hsiao, Pesaran, and Tahmiscioglu (2002) continues to be consistent. We then derive,

under fairly general conditions, a covariance matrix estimator for the quasi-ML (QML) estimator

which is robust to cross-sectional heteroskedasticity. Using Monte Carlo simulations, we investigate

the �nite sample performance of the transformed QML estimator and compare it with a range of

GMM estimators. Simulation results reveal that, in terms of median absolute errors and accuracy of

inference, the transformed likelihood estimator outperforms the GMM estimators in almost all cases

when the model contains an exogenous regressor, and in many cases if we consider pure autoregressive

panels.

The rest of the paper is organized as follows. Section 2 describes the model and its underlying

assumptions. Section 3 proposes the transformed QML estimator for cross-sectionally heteroskedastic

errors. Section 4 provides an overview of the GMM estimators used in the simulation exercise. Section

5 describes the Monte Carlo design and comments on the small sample properties of the transformed

likelihood and GMM estimators. Finally, Section 6 ends with some concluding remarks.

2 In the application of the GMM approach to dynamic panels, it is generally di¢ cult to avoid the so-called many/weak
instruments problem, which is shown to result in biased estimates and substantially distorted test outcomes. See Section
5 for further evidence.

3Note, however, that since the transformed ML approach does not impose any restrictions on the individual e¤ects,
the errors of the original panel (before di¤erencing) can have any arbitrary degree of cross-sectional heteroskedasticity.
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2 The dynamic panel data model

Consider the following dynamic panel data model

yit = �i + yi;t�1 + �xit + uit; i = 1; 2; :::; N; (1)

where �i, (i = 1; 2; :::; N) are the unobserved individual e¤ects, uit is an idiosyncratic error term,

xit is observed regressor assumed to vary over time (t) and across the individuals (i). It is further

assumed that xit is a scalar variable to simplify the notations.4 We refer to this model as ARX, to

distinguish it from the pure autoregressive speci�cation (AR) that does not include the exogenous

regressor, xit. The coe¢ cients of interest are  and �, which are assumed to be �xed �nite constants.

No restrictions are placed on the individual e¤ects, �i. They can be heteroskedastic, correlated with

xjt and ujt, for all i and j, and can be cross-sectionally dependent. In contrast, the idiosyncratic

errors, uit, are assumed to be uncorrelated with xit0 for all i, t and t0. However, we allow the variance

of uit to vary across i , and let the variance ratio, �2 =
�
N�1�Ni=1V ar (�i)

�
=
�
N�1�Ni=1V ar (uit)

�
to

take any positive value. We shall investigate the robustness of the QML and GMM estimators to the

choices of �2 and .

Following the literature we take �rst di¤erences of (1) to eliminate the individual e¤ects5

�yit = �yi;t�1 + ��xit +�uit; (2)

and make the following assumptions:

Assumption 1 (initialization) The dynamic processes (1) have started at time t = �m, (m being a

positive constant) but only the time series data, fyit; xitg ; (i = 1; 2; :::; N ; t = 0; 1; :::; T ); are observed.

Assumption 2 (Exogenous variable) It is assumed that xit is generated either by

xit = �i + �t+
1X
j=0

aj"i;t�j ;
1X
j=0

jaj j <1 (3)

or

�xit = �+

1X
j=0

dj"i;t�j ;
1X
j=0

jdj j <1 (4)

where �i can either be �xed or random. "it are independently distributed over i and t; with E("it) = 0,

and var("it) = �2"i, where 0 < �2"i < K < 1. Also uis and "it are independently distributed for all s
and t.

Assumption 3 (Initialization) We suppose that either
(i) j  j< 1; and the process has been going on for a long time, namely m!1;

4Extension to the case of multiple regressors is straightforward at the expense of notational complexity.
5As shown in Appendix A of Hsiao, Pesaran, and Tahmiscioglu (2002), other transformations can be used to eliminate

the individual e¤ects and the QML estimator proposed in this paper is invariant to the choice of such transformations.
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or (ii) The process has started from a �nite period in the past not too far back from the 0th period,

namely for given values of yi;�m with m �nite, such that

E(�yi;�m+1j�xi1;�xi2; :::;�xiT ) = bm + �
0
m�xi; for all i;

where bm is a �nite constant, �m is a T -dimensional vector of constants, and �xi = (�xi1;�xi2; :::;�xiT )
0.

Assumption 4 (idiosyncratic shocks) Disturbances uit are serially and cross-sectionally indepen-
dently distributed, with E (uit) = 0; and E

�
u2it
�
= �2i ; such that 0 < �2i < K < 1, for i = 1; 2; :::; N

and t = 1; 2; :::; T .

Remark 1 Assumption 3(ii) constrains the expected changes in the initial values to be the same linear
functions of the observed values of the exogenous variables across all individuals. It does not require

the initial values, yi;�m, to have the same mean across i, and allows yi;�m to vary both with �i and �i.

It is only required that yi;�m+1�yi;�m is free of the incidental parameter problem. For the relationship
between Assumption 3(ii) and the initial conditions, yi;�m+1. See Appendix A.

Remark 2 Assumptions 2, and 4 allow for heteroskedastic disturbances in the equations for yit and
xit.

Remark 3 Assumption 2 requires xit to be strictly exogenous. But this restriction can be relaxed by
considering a panel vector autoregressive speci�cation of the type considered in Binder, Hsiao, and

Pesaran (2005). However, these further developments are beyond the scope of the present paper. See

also the remarks in Section 6 .

3 Transformed likelihood estimation

The �rst-di¤erenced model (2) is well de�ned for t = 2; 3; :::; T , and can be used to derive the joint

distribution of (�yi2;�yi3; :::;�yiT ) conditional on �yi1. To obtain the (unconditional) distribution

of �yi1, starting from �yi;�m+1, and by continuous substitution, we note that

�yi1 = m�yi;�m+1 + �
m�1X
j=0

j�xi;1�j +
m�1X
j=0

j�ui;1�j : (5)

Note that the mean of �yi1 conditional on �yi;�m+1;�xi1;�xi0; :::, is given by

�i1 = E (�yi1j�yi;�m+1;�xi1;�xi0; :::) = m�yi;�m+1 + �
m�1X
j=0

j�xi;1�j ; (6)

which depends on the unknown values �yi;�m+1, and �xi;1�j ; for j = 1; 2; :::;m � 1, i = 1; 2; :::; N .

To solve this problem, we need to express the expected value of �i1, conditional on the observables,
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in a way that it only depends on a �nite number of parameters. The following theorem provides the

conditions under which the marginal model for �yi1 is a linear function of a �nite number of unknown

parameters.

Theorem 1 Consider model (2), where xit follows either (3) or (4). Suppose that Assumptions 1-4
hold. Then �yi1 can be expressed as:

�yi1 = b+ �0�xi + vi1; (7)

where b is a constant, � is a T -dimensional vector of constants, �xi = (�xi1;�xi2; :::;�xiT )
0, and vi1

is independently distributed across i, such that E(vi1) = 0; and E(v2i1) = !i�
2
i ; with 0 < !i < K <1,

for all i.

Remark 4 Under Assumption 3(i) it is easily seen that !i = 2=(1+). But in general !i need not be
the same across i and imposing the restrictions !i = 2=(1+) might result in inconsistent estimators.

On the other hand treating !i as a free parameter when it is in fact restricted to be the same across i

might lead to ine¢ cient estimators but not inconsistent parameters, as it is shown below.

It is now possible to derive the likelihood function of the transformed model given by equations

(2) for t = 2; 3; :::; T and (7). Let �yi = (�yi1;�yi2; :::;�yiT )
0,

�Wi
T�(T+3)

=

0BBBB@
1 �x0i 0 0

0 0 �yi1 �xi2
...

...
...

...

0 0 �yi;T�1 �xiT

1CCCCA ; (8)

and note that the transformed model can be rewritten as

�yi = �Wi'+ ri; (9)

with ' = (b;�0; ; �)0. The covariance matrix of ri = (vi1;�ui2; :::;�uiT )
0 has the form:

E(rir
0
i) = �2i

0BBBBBBBB@

!i �1 0

�1 2
. . .
. . .
. . . 2 �1

0 �1 2

1CCCCCCCCA
= �2i
 (!i) ; (10)
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where !i > 0 is a free parameter de�ned in Theorem 1. The log-likelihood function of the transformed

model (9) is given by

` ( N ) = �NT
2
ln (2�)� T

2

NX
i=1

ln�2i �
1

2

NX
i=1

ln [1 + T (!i � 1)]

�1
2

NX
i=1

1

�2i
(�yi ��Wi')

0
 (!i)
�1 (�yi ��Wi') ;

where  N =
�
'0; !1; !2:::; !N ; �

2
1; �

2
2; :::�

2
N

�0.
Unfortunately, the maximum likelihood estimation based on `( N ) encounters the incidental pa-

rameters problem of Neyman and Scott (1948) since the number of parameters grows linearly with

the sample size, N . As a way of dealing with this problem we follow the mis-speci�cation literature

in econometrics (White, 1982; Kent, 1982), and base the estimation of ', which is �nite dimensional,

on a mis-speci�ed model where the error variances are assumed (incorrectly) to be the same across i.

We show that such quasi (pseudo) ML estimators of ' are consistent even under the mis-speci�cation.

We then derive robust standard errors for the QMLE for use in inference. The quasi or pseudo

log-likelihood function of the transformed model, (9), is given by

`p (�) = �NT
2
ln (2�)� NT

2
ln
�
�2
�
� N

2
ln [1 + T (! � 1)]

� 1

2�2

NX
i=1

(�yi ��Wi')
0
 (!)�1 (�yi ��Wi') ; (11)

where � =
�
'0; !; �2

�0 is the vector of unknown parameters. Let b� be the estimator obtained by
maximizing the quasi log-likelihood function in (11), and consider the quasi-score vector

@`p (�)

@�
=

0BB@
1
�2

PN
i=1�W

0
i
 (!)

�1 (�yi ��Wi')

� NT
2g(!) +

1
2�2g(!)2

PN
i=1 r

0
i�ri

�NT
2�2

+ 1
2�4
PN
i=1 r

0
i
 (!)

�1 ri

1CCA ;

where g (!) = j
 (!)j = 1 + T (! � 1), and

� =

0BBBB@
T 2 T (T � 1) T (T � 2) : : : T

T (T � 1) (T � 1)2 (T � 1)(T � 2) : : : (T � 1)
...

...
... : : :

...

T (T � 1) (T � 2) : : : 1

1CCCCA : (12)
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Under heteroskedastic errors, the pseudo-true value of � denoted by �� = ('0�; !�; �
2
�)
0, is the solution

of limN!1E [@`p (��) =@�] = 0, namely

lim
N!1

1

N

NX
i=1

E
h
�W0

i
 (!�)
�1 (�yi ��Wi'�)

i
= 0;

� T

2g (!�)
+

1

2�2�g (!�)
2 lim
N!1

1

N

NX
i=1

E
�
r0i�ri

�
= 0;

� T

2�2�
+

1

2�4�
lim
N!1

1

N

NX
i=1

E
�
r0i
 (!�)

�1 ri
�

= 0;

where expectations are taken with respect to the true probability measure.

To characterize the relationship between the true parameter values N0 =
�
'00; !10; :::; !N0; �

2
10; :::�

2
N0

�0
and the pseudo true values �� =

�
'0�; !�; �

2
�
�0, we introduce the following average parameter measures.

Assumption 5 The average true parameter values

��2N;0 = N�1
NX
i=1

�2i0; and �!N;0 =
N�1PN

i=1 !i0�
2
i0

N�1PN
i=1 �

2
i0

;

have �nite limits (as N !1) given by

��20 = lim
N!1

��2N;0; and �!0 =
limN!1N�1PN

i=1 !i0�
2
i0

limN!1N�1PN
i=1 �

2
i0

: (13)

The above assumption is clearly satis�ed if j�i0j and j!i0j are �nite and bounded away from zero.

The following theorem establishes the relationship between the true value and the pseudo true value.

Theorem 2 Suppose that Assumptions 1-5 hold, and let �� =
�
'0�; !�; �

2
�
�0 be the solution of

limN!1E [@`p (��) =@�] = 0, where expectations are taken with respect to the true probability measure.

Then,

�� =
�
'00; �!0; ��

2
0

�0
:

The proof is provided in the appendix. This theorem summarizes one of the key results of the paper,

and holds under fairly general conditions. Assumptions 1, 2, 3 are identical to those used in Hsiao et. al.

(2002). Assumption 4 allows the variances of the error terms to be heteroskedastic in an unrestricted

manner. Assumption 5 only requires the individual error variances and their ratios to be �nite. The

possible non-uniqueness of the pseudo true values in the case of heterogenous !i, is analogous to

the non-uniqueness of the ML estimators encountered in the case of the random e¤ect models as

demonstrated initially by Maddala (1971) and further discussed by Breusch (1987) who proposes a

practical approach to detecting the presence of local maxima.6 Theoretically, it is quite complicated
6This result follows since, as established by Grassetti (2011), the transformed likelihood function can be written

equivalently in the form of a random e¤ects model with endogenous regressors. For further details see Section B.3.
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to demonstrate which solution leads to the global maximum of the quasi log-likelihood function.

However, the Monte Carlo simulation results in Section 5 suggest that the solution �� =
�
'00; �!0; ��

2
0

�0
is associated with the global maximum. In what follows we assume that the global maximum of the

probability limit of the quasi log-likelihood function is attained at �� =
�
'00; �!0; ��

2
0

�0
= ��0.

The following theorem establishes the asymptotic distribution of the ML estimator of the trans-

formed model.

Theorem 3 Suppose that Assumptions 1-5 hold and let b� = �b'0; b!; b�2�0 be the QML estimator ob-
tained by maximizing the quasi (pseudo) log-likelihood function in (11). Then as N tends to in�nity,b� is asymptotically normal with

p
N
�b� � ��� d! N

�
0;A��1B�A��1

�
(14)

where �� =
�
'00; �!0; ��

2
0

�0,
A� = lim

N!1
E

�
� 1
N

@2`p (��)

@�@�0

�
; and B� = lim

N!1
E

�
1

N

@`p (��)

@�

@`p (��)

@�0

�
;

where �!0 and ��20 are de�ned by (13).

A consistent estimator of A�, denoted by bA� which is robust to unknown error heteroskedasticity
(�2i0 and !i0 over i), is given by

bA� =
0BB@

1
Nb�2 PN

i=1�W
0
i
(b!)�1�Wi

1
Ng(b!)2b�2 PN

i=1�W
0
i�bri 0

1
Ng(b!)2b�2 PN

i=1 br0i��Wi
T 2

2g(b!)2 T
2g(b!)b�2

0 T
2g(b!)b�2 T

2b�4

1CCA ;

where bri = �yi��Wib'; g(b!) = 1+ T (b!� 1), � is de�ned by (12), and b�2 = N�1PN
i=1 br0i
(b!)�1bri:

Partitioning B�, and its estimator bB�, accordingly to the above partitioned form of bA�, we have
bB�11 =

1

Nb�4
NX
i=1

�W0
i
(b!)�1bribr0i
(b!)�1�Wi; bB�22 = T 2

4g(b!)4b�4
(
1

N

NX
i=1

�br0i�bri
T

�2
� g(b!)2b�4) ;

bB�33 =
T 2

4b�8
(
1

N

NX
i=1

�br0i
(b!)�1bri
T

�2
� b�4) ; bB�21 = 1

2g(b!)2b�4 1N
NX
i=1

�br0i
(b!)�1�Wi

� �br0i�bri� ;
bB�31 =

1

2b�6 1N
NX
i=1

�br0i
(b!)�1�Wi

� �br0i
(b!)�1bri� ;
bB�32 =

T 2

4g(b!)2b�6
"
1

N

NX
i=1

�br0i�bri
T

��br0i
(b!)�1bri
T

�
� g(b!)b�4# :
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See also Lemma A2 and section B.4.

4 GMM Estimators: an overview

In this section, we review, and for completeness, de�ne the GMM type estimators which are included

in our simulation exercise.

The GMM approach assumes that �i and uit have an error components structure,

E (�i) = 0; E (uit) = 0; E(�iuit) = 0; (i = 1; ::; N ; t = 1; 2; :::; T ); (15)

and the errors are uncorrelated with the initial values

E (yi0uit) = 0; (i = 1; ::; N ; t = 1; 2; :::; T ): (16)

As with the transformed likelihood approach, it is also assumed that the errors, uit, are serially and

cross-sectionally independent:

E (uituis) = 0; (i = 1; ::; N ; t = 1; 2; :::; T ): (17)

However, note that under the transformed QML no restrictions are placed on E(�iuit), and E(�iuit)

are allowed to be non-zero and heterogenous across i.

4.1 Estimation

4.1.1 The �rst-di¤erence GMM estimator

Under (15)-(17), and focusing on the equation in �rst di¤erences, (2), Arellano and Bond (1991)

suggest the following T (T � 1)=2 moment conditions:

E (yis�uit) = 0; (s = 0; 1; :::; t� 2; t = 2; 3; :::; T ): (18)

If regressors, xit, are strictly exogenous, i.e., if E (xisuit) = 0, for all t and s, then the following

additional moments can also be used

E (xis�uit) = 0; (s; t = 2; :::; T ): (19)
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The moment conditions (18) and (19) can be written compactly as E
�
_Z0i _ui

�
= 0; where _ui = _qi� _Wi�,

� = (; �)0 = (�1; �2)0 and

_Zi = diag [(yi0; xi1; :::; xiT ) ; (yi0; yi1; xi1; :::; xiT ) ; :::; (yi0; :::; yi;T�2; xi1; :::; xiT )] ;

_qi =

0BB@
�yi2
...

�yiT

1CCA ; _Wi =

0BB@
�yi1 �xi2
...

...

�yi;T�1 �xiT

1CCA :

The one and two-step �rst-di¤erence GMM estimators based on the above moment conditions are

given by

b�difGMM1 =

�
_S0ZW

�
_D1step

��1
_SZW

��1
_S0ZW

�
_D1step

��1
_SZq; (20)

b�difGMM2 =

�
_S0ZW

�
_D2step

��1
_SZW

��1
_S0ZW

�
_D2step

��1
_SZq;

where _SZW = 1
N

PN
i=1

_Z0i
_Wi, _SZq = 1

N

PN
i=1

_Z0i _qi, _D1step =
1
N

PN
i=1

_Z0iH
_Zi, _D2step =

1
N

PN
i=1

_Z0i
b_uib_u0i _Zi,b_ui = _qi � _Wi

b�difGMM1, and H is a matrix with 2�s on the main diagonal, -1�s on the �rst upper and

lower sub-diagonals and 0�s elsewhere.

4.1.2 System GMM estimator

Although consistency of the �rst-di¤erence GMM estimator is obtained under the no serial correlation

assumption, Blundell and Bond (1998) demonstrated that it su¤ers from the so called weak instruments

problem when  is close to unity, and/or the variance ratio �2 = �Ni=1var(�i)=�
N
i=1var(uit) is large.

As a solution, these authors propose the system GMM estimator due to Arellano and Bover (1995)

and show that it works well even if  is close to unity. But as shown recently by Bun and Windmeijer

(2010), the system GMM estimator continues to su¤er from the weak instruments problem when the

variance ratio, �2 is large. See also Appendix of Binder, Hsiao, and Pesaran (2005) where it is shown

that the asymptotic variance of the GMM estimator is an increasing function of �2.

To introduce the moment conditions for the system GMM estimator, we need to assume E(yis�i) =

E(yit�i) and E(xis�i) = E(xit�i); for all s and t: Under these assumptions, we have the following

moment conditions:

E [�yis (�i + uit)] = 0; (s = 1; :::; t� 1; t = 2; 3; :::; T ); (21)

E [�xis (�i + uit)] = 0; (s; t = 2; 3; :::; T ): (22)

In setting up the moment conditions for the system GMM estimator, given the moment conditions for

the �rst-di¤erence GMM estimator, some of the moment conditions in (21) and (22) are redundant.

Hence, to implement the system GMM estimation, in addition to (18) and (19), we use the following
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moment conditions:

E [�yi;t�1 (�i + uit)] = 0; (t = 2; 3; :::; T ); (23)

E [�xit (�i + uit)] = 0; (t = 2; 3; :::; T ): (24)

The moment conditions (18), (19), (23) and (24) can be written compactly as E
�
�Z0i�ui

�
= 0; where

�ui = �qi � �Wi�;
7

�Zi = diag
�
_Zi; �Zi

�
; �Zi = diag [(�yi1;�xi2) ; (�yi2;�xi3) ; :::; (�yi;T�1;�xiT )] ;

�qi =

 
_qi

�qi

!
; �qi =

0BB@
yi2
...

yiT

1CCA ; �Wi =

 
_Wi

�Wi

!
; �Wi =

0BB@
yi1 xi2
...

...

yi;T�1 xiT

1CCA :

The one and two-step system GMM estimators based on the above moment conditions are given

by

b�sysGMM1 =

�
�S0ZW

�
�D1step

��1
�SZW

��1
�S0ZW

�
�D1step

��1
�SZq; (25)

b�sysGMM2 =

�
�S0ZW

�
�D2step

��1
�SZW

��1
�S0ZW

�
�D2step

��1
�SZq; (26)

where �SZW = 1
N

PN
i=1

�Z0i
�Wi, �SZq = 1

N

PN
i=1

�Z0i�qi and �D1step = diag
�
1
N

PN
i=1

_Z0iH
_Zi;

1
N

PN
i=1

�Z0i
�Zi

�
.

The two-step system GMM estimator is obtained by replacing �D1step with �D2step =
1
N

PN
i=1

�Z0i
b�uib�u0i�Zi;

where b�ui = �qi � �Wi
b�sysGMM1.

4.1.3 Continuous-updating GMM estimator

Since the two-step GMM estimators tend to perform poorly in small samples, (Newey and Smith, 2004),

alternative estimation methods have been proposed in the literature. These include the empirical

likelihood estimator, (Qin and Lawless, 1994), the exponential tilting estimator (Kitamura and Stutzer,

1997; Imbens, Spady, and Johnson, 1998) and the continuous updating (CU-) GMM estimator (Hansen,

Heaton, and Yaron, 1996), where these are members of the generalized empirical likelihood estimator

(Newey and Smith, 2004). Amongst these estimators, we focus on the CU-GMM estimator as an

alternative to the two-step GMM estimator.

To de�ne the CU-GMM estimator, we need some additional notation. Let �Zi denote _Zi or �Zi, and

�ui denote _ui or �ui, and set

gi(�) = �Z0i�ui; bgN (�) = 1

N

NX
i=1

gi(�); (27)

7Although additional moment conditions proposed by Ahn and Schmidt (1995) could be used, we mainly focus on
the above two set of moment conditions since they are often used in applied research.
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and b
N (�) = 1

N

NX
i=1

[gi(�)� bgN (�)] [gi(�)� bgN (�)]0 : (28)

Then, the CU-GMM estimator is de�ned as

b�GMM�CU = argmin
�
bg0N (�)b
N (�)�1bgN (�): (29)

Newey and Smith (2004) demonstrate that the CU-GMM estimator has a smaller �nite sample bias

than the two-step GMM estimator.

4.2 Inference using GMM estimators

4.2.1 Alternative standard errors

In the case of GMM estimators the choice of the covariance matrix is often as important as the choice of

the estimator itself for inference. Although, it is clearly important that the estimator of the covariance

matrix should be consistent, in practice it might not have favorable �nite sample properties and could

result in inaccurate inference. To address this problem a number of modi�ed standard errors have

been proposed. For the two-step GMM estimators, Windmeijer (2005) proposes corrected standard

errors for linear static panel data models which are applied to dynamic panel models by Bond and

Windmeijer (2005). For the CU-GMM, while it is asymptotically equivalent to the two-step GMM

estimator, it is more dispersed than the two-step GMM estimator in �nite samples and inference based

on conventional standard errors formula results in large size distortions. To overcome this problem,

Newey and Windmeijer (2009) propose an alternative estimator for the covariance matrix of CU-GMM

estimator under many-weak moments asymptotics and demonstrate by simulation that the use of the

modi�ed standard errors improve the size property of the tests based on the CU-GMM estimators.

4.2.2 Weak instruments robust inference

As noted above, the �rst-di¤erence and system GMM estimators could be subject to the weak in-

struments problem, which in turn could lead to biased estimates and invalid inferences, To overcome

the weak instrument problem a number of tests have been proposed in the literature that have the

correct size asymptotically regardless of the strength of instruments. These include Stock and Wright

(2000) and Kleibergen (2005). Stock and Wright (2000) propose a GMM version of the Anderson

and Rubin(AR) test (Anderson and Rubin, 1949). Kleibergen (2005) proposes a Lagrange Multiplier

(LM) test. This author also extends the conditional likelihood ratio (CLR) test of Moreira (2003) to

the GMM case since the CLR test performs better than other tests in linear homoskedastic regression

models.

We now introduce tests of this type which we include in the Monte Carlo (MC) experiments to be

reported next. The GMM version of the AR statistic proposed by Stock and Wright (2000) is given

13



by

AR(�) = 2NQN (�); (30)

where QN (�) = bgN (�)0 b
(�)�1bgN (�)=2, and bgN (�) is de�ned by (27). Under the null hypothesis
H0 : � = �0, AR(�0) is asymptotically distributed as �2n, as N ! 1, regardless of the strength of
the instruments, where n is the dimension of bgN (�0).

The LM statistic proposed by Kleibergen (2005) is

LM(�) = N
@QN (�)

@�0

h bD(�)0 b
(�)�1 bD(�)i�1 @QN (�)
@�

; (31)

where bD(�) = �bd1(�); bd2(�)� with
bdj(�) = 1

N

NX
i=1

@gi(�)

@�j
�
 
1

N

NX
i=1

@gi(�)

@�j
gi(�)

0

! b
(�)�1bg(�); for j = 1; 2:

Under the null hypothesis H0 : � = �0, LM(�0) is asymptotically distributed as �2k, where k is the

dimension of �, which is equal to 2 in our application.

The GMM version of the CLR statistic proposed by Kleibergen (2005) is given by

CLR(�) =
1

2

"
AR(�)� bR(�) +r�AR(�)� bR(�)�2 + 4LM(�) bR(�)# (32)

where bR(�) is a statistic which is large when instruments are strong and small when the instruments
are weak, and is random only through bD(�) asymptotically. In the MC simulations, following Newey
and Windmeijer (2009), we use bR(�) = N � �min

�bD(�)0 b
(�)�1 bD(�)� where �min(A) denotes the
smallest eigenvalue of A. Under the null hypothesis H0 : � = �0, this statistic has a nonstandard

distribution whose critical values can be obtained by simulation.8

5 Monte Carlo simulations

In this section, we conduct Monte Carlo simulations to investigate the �nite sample properties of the

transformed QML approach and compare them to those of the various GMM estimators proposed in

the literature and reviewed in the previous section.

5.1 Panel ARX(1) model

We �rst consider a panel distributed lag model with one exogenous regressor, panel ARX(1), which is

likely to be more relevant in practice than the pure panel AR(1) model which will be considered later.

8For further details see Kleibergen (2005) and Newey and Windmeijer (2009).
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5.1.1 Monte Carlo design

For each i, the time series processes fyitg are generated as

yit = �i + yi;t�1 + �xit + uit; for t = �m+ 1;�m+ 2; ::; 0; 1; :::; T;

where uit � N (0; �2i ); with �2i � U [0:5; 1:5], so that E(�2i ) = 1. For the initial values, we set yi;�m = 0
and note that for m su¢ ciently large,

yi0 t
�
1� m
1� 

�
�i + �

m�1X
j=0

jxi;�j +
m�1X
j=0

jui;�j :

We discard the �rst m = 50 observations, and use the observations t = 0 through T for estimation

and inference.9 The regressor, xit, is generated as

xit = �i + �it; for t = �m;�m+ 1; ::; 0; 1; :::; T;

where �i � iidN (0; 1)

�it = ��i;t�1 + "it; for t = �49�m;�48�m; :::; 0; 1; :::; T;

"it � N (0; �2"i); �i;�m�50 = 0:

with j�j < 1. We also generate a set of heteroskedastic errors for the xit process and generate �2"i
� U [0:5; 1:5], independently of �2i , which ensures that the variance ratio �2i =�2"i is also heterogenous
across i. We discard the �rst 50 observations of �it and use the remaining T + 1+m observations for

generating xit and yit.

In the simulations, we try the values  = 0:0; 0:4; 0:9, and � = 0:5. The slope coe¢ cient, � , is

chosen to ensure a reasonable degree of �t. But to deal with the error variance heterogeneity across

the di¤erent equations in the panel we use the following average measure of �t

R2y = 1�
N�1PN

i=1 V ar(uit)

N�1PN
i=1 V ar(yitjci)

;

where V ar(yitjci) is the time-series variation of ith unit. Since yit is stable and it is assumed to have
started some time in the past we have

yit = ci + �
1X
j=0

j�i;t�j +
1X
j=0

jui;t�j = ci + �wit +
1X
j=0

jui;t�j ;

ci = (�i + ��i) =(1� ), and wit is an AR(2) process, wit = '1wi;t�1+'2wi;t�2+ "it, with parameters

9Hence, T + 1 is the actual length of the estimation sample.
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'1 =  + �, '2 = ��, and having the variance (Hamilton, 1994, p. 58)

V ar (wit) =
(1 + �)�2"i

(1� �)
h
(1 + �)2 � ( + �)2

i = (1 + �)�2"i
(1� 2)

�
1� �2

�
(1� �)

:

Hence

R2y = 1�
N�1PN

i=1 �
2
i

�2(1+�)(N�1PN
i=1 �

2
"i)

(1�2)(1��2)(1��)
+

N�1
PN

i=1
�2i

(1�2)

=

�2(1+�)��2"N
(1��2)(1��)

+ 2��2N

�2(1+�)��2"N
(1��2)(1��)

+ ��2N

;

��2N = N�1PN
i=1 �

2
i , and ��

2
"N = N�1PN

i=1 �
2
"i. For N su¢ ciently large we now have (note that ��2N

and ��2"N ! 1 with N !1)

R2y =

�2(1+�)

(1��2)(1��)
+ 2

�2(1+�)

(1��2)(1��)
+ 1

;

and

�2 =

 
R2y � 2

1�R2y

! �
1� �2

�
(1� �)

(1 + �)
:

We set � such that R2y = 2 + 0:1. For  = 0:0;  = 0:4 and  = 0:9; we have R2y = 0:1; R
2
y = 0:26

and R2y = 0:91; respectively.

For the individual e¤ects, we set

�i = � (�i + �ui + vi) ;

where �ui = T�1
PT
t=1 uit, and vi � iidN (0; 1). To set � we consider the variance ratio,

�2 =
N�1PN

i=1 V ar(�i)

N�1PN
i=1 V ar(uit)

=
�2(T�1��2N + 2)

��2N
;

and use two values for �2, namely a low value of �2 = 1 often set in the Monte Carlo experiments

conducted in the literature, and the high value of �2 = 5. The sample sizes considered are N =

50; 150; 500 and T = 5; 10; 15.

For the computation of the transformed QML estimators, we try two procedures. One is to

maximize the log likelihood function directly, while the other is to use an iterative procedure suggested

by Grassetti (2011). For the starting value of the nonlinear optimization, we use the minimum distance

estimator of Hsiao, Pesaran, and Tahmiscioglu (2002) where ! is estimated by the one-step �rst-
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di¤erence GMM estimator (20) in which _Zi is replaced with

_Zi =

0BBBB@
yi0 xi1 0 0

yi1 xi2 yi0 xi1
...

...
...

...

yi;T�2 xi;T�1 yi;T�3 xi;T�2

1CCCCA :

This GMM estimator is also used as the starting value for the iterative procedure.

For the GMM estimators, although there are many moment conditions for the �rst-di¤erence GMM

estimator as in (18) and (19), we consider three sets of moment conditions which only exploit a sub-

set of the available instruments. The �rst set of moment conditions, denoted as �DIF1", consists

of E(yis�uit) = 0 for s = 0; :::; t � 2; t = 2; :::; T and E(xis�uit) = 0 for s = 1; :::; t; t = 2; :::; T .

In this case, the number of moment conditions are 24; 99; 224 for T = 5; 10; 15, respectively. The

second set of moment conditions, denoted as �DIF2", consists of E(yi;t�2�l�uit) = 0 with l = 0

for t = 2, l = 0; 1 for t = 3; :::; T and E(xi;t�l�uit) = 0 with l = 0; 1 for t = 2, l = 0; 1; 2 for

t = 3; :::; T . In this case, the number of moment conditions are 18; 43; 68 for T = 5; 10; 15, respec-

tively. The third set of moment conditions, denoted as �DIF3", consists of
PT
t=2E(yi;t�2�uit) = 0,PT�1

t=2 E(yi;t�2�uit) = 0,
PT
t=2E(xit�uit) = 0; and

PT�1
t=2 E(xit�uit) = 0. The number of moment

conditions for this case, often called the stacked instruments, are 4 for all T: Similarly, for the system

GMM estimator, we add moment conditions (23) and (24) in addition to �DIF1" and �DIF2", which

are denoted as �SYS1" and �SYS2", respectively. For �SYS1" we have 32, 117 and 252 moment condi-

tions for T = 5; 10; and 15, respectively, while for �SYS2" we have 26, 61, and 96 moment conditions

for T = 5; 10; and 15, respectively. Also, we add moment conditions
PT
t=2E [�yi;t�1(�i + uit)] = 0,PT�1

t=2 E [�yi;t�1(�i + uit)] = 0,
PT
t=2E [�xit(�i + uit)] = 0 and

PT�1
t=2 E [�xit(�i + uit)] = 0 in addi-

tion to �DIF3", which is denoted as �SYS3". In this case, the number of moment conditions is 8 for

any T:

In a number of cases where N is not su¢ ciently large relative to the number of moment conditions

(for example, when T = 15 and N = 50) the inverse of the weighting matrix can not be computed.

Such cases are denoted by ��" in the summary result tables.
For inference, we use the robust standard errors formula given in Theorem 2 for the transformed

QML estimator. For the GMM estimators, in addition to the conventional standard errors, we also

compute Windmeijer (2005)�s standard errors with �nite sample correction for the two-step GMM

estimators and Newey and Windmeijer (2009)�s alternative standard errors formula for the CU-GMM

estimators. For the computation of optimal weighting matrix, a centered version is used except for

the CU-GMM.10

In addition to the Monte Carlo results for  and �, we also report simulation results for the long-

run coe¢ cient de�ned by  = �=(1� ). We report median bias, median absolute errors (MAE), size
10 In the earlier version, we used centered weighting matirx. However, in this version, uncentered weighting matrix is

used for the CU-GMM since it gave better performance than using centered weighting matrix.

17



and power for , � and  . The power is computed at  � 0:1, � � 0:1 and (� � 0:1)=(1 � ( � 0:1)),
for selected null values of  and �. All tests are carried out at the 5% signi�cance level, and all

experiments are replicated 1; 000 times.

5.1.2 MC results for panel ARX(1) model

To save space, we report the results of the transformed QMLE and GMM estimators which exploit

moment conditions �DIF2" and �SYS2" with one-step estimation procedure for  = 0:4; 0:9 only. The

reason for selecting these moment conditions is that, in practice, these moment conditions are often

used to mitigate the �nite sample bias caused by using too many instruments. A complete set of

results giving the remaining GMM estimators that make use of additional instruments are provided

in a supplement available from the authors on request.

The small sample results for  and � are summarized in Tables 1 to 4.11 We �rst focus on the

results of  and then discuss the results for �: Since the results for  = 0:0 and  = 0:4 are very

similar, we focus on the case of  = 0:4: Table 1 (and A.12 in the supplement) provide the results of

bias and MAE for the case of  = 0:4, and shows that the transformed QMLE has a smaller bias than

the GMM estimators in all cases with the exception of the CU-GMM estimator (see Table A.12). In

terms of MAE the transformed QMLE outperforms the GMM estimators in all cases.

As for the e¤ect of increasing the variance ratio, �2, on the various estimators, we �rst recall that

the transformed QMLE is invariant to the choice of �2. In contrast, as to be expected the performance

of the GMM estimators deteriorates (in some case substantially) as �2 is increased from 1 to 5. This

tendency is especially evident in the case of the system GMM estimators, and is in sharp contrast

to the performance of the transformed QMLE which is robust to changes in �2. These observations

also hold if we consider the experiments with  = 0:9 (Table 2). Although the GMM estimators

have smaller biases than the transformed likelihood estimator in a few cases, in terms of MAE, the

transformed QMLE performs best in all cases (see also Table A.22 in the supplement).

We next consider size and power of the various tests, summarized in Tables 3 and 4 (A.3, A.13 and

A.23 in the supplement). The results in these tables show that the empirical size of the transformed

QMLE is close to the nominal size of 5% for all values of , T , N and �2. In contrast, for the GMM

estimators, we �nd that the test sizes vary considerably depending on ; T , N , �2, the estimation

method (1step, 2step, CU), and whether corrections are applied to the standard errors. In the case

of the GMM results without standard error corrections, most of the GMM methods are subject to

substantial size distortions when N is small. For instance, when  = 0:4; N = 50, T = 5, and �2 = 1,

the size of the test based on the two-step procedure using moment conditions �DIF2" estimator is

34:2%. But the size distortion gets smaller as N increases. Increasing N to 500, reduces the size

of this test to 7:7%. However, even with N = 500, the size distortion gets larger for two-step and

CU-GMM estimators as T increases.

As to the e¤ects of changes in �2 on the estimators, we �nd that the system GMM estimators are

11The corresponding tables in the supplement are labelled as Tables A.1 to A.30.
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signi�cantly a¤ected when �2 is increased. When �2 = 5, all the system GMM estimators have large

size distortions even when T = 5 and N = 500; where conventional asymptotics are expected to work

well. This may be due to large �nite sample biases caused by a large �2.

For the tests based on corrected GMM standard errors, Windmeijer (2005)�s correction seems to

be quite useful, and in many cases it leads to accurate inference, although the corrections do not seem

able to mitigate the size problem of the system GMM estimator when �2 is large. The standard errors

of Newey and Windmeijer (2009) are also helpful: they improve the size property in many cases.

Comparing power of the tests, we observe that the transformed likelihood estimator is in gen-

eral more powerful than the GMM estimators. Speci�cally, the transformed likelihood estimators

have higher power than the most e¢ cient two-step system GMM estimator based on �SYS1" with

Windmeijer�s correction.

The above conclusions for size and power hold generally when we consider experiments with  = 0:9

(Table 4 and A.23), except that the system GMM estimators now perform rather poorly even for a

relatively large N . For example, when  = 0:9, T = 5, N = 500 and �2 = 1, size distortions of the

system GMM estimators are substantial, as compared to the case where  = 0:4. Although it is known

that the system GMM estimators break down when �2 is large12, the simulation results in Table 4 and

A.23 reveal that they perform poorly even when �2 is not so large (�2 = 1).

We next consider the small sample results for � (Tables 1 to 4, A.14 to A.16, and A.24 to A.26).

The outcomes are similar to the results reported for . The transformed likelihood estimator tends

to have smaller biases and MAEs than the GMM estimators in many cases, and there are almost

no size distortions for all values of T , N and �2. The performance of the GMM estimators crucially

depends on the values of T , N and �2. Unless N is large, the GMM estimators perform poorly and the

system GMM estimators are subject to substantial size distortions when �2 is large even for N = 500,

although the magnitude of size distortions are somewhat smaller than those reported for .

The results for the long-run coe¢ cient,  = �=(1 � ), which are reported in the supplement

(Tables A.7 to A.9, A.17 to A.19 and A.27 to A.29), are very similar to those of  and �. Although

the GMM estimators outperform the transformed likelihood estimator in some cases, in terms of

MAE, the transformed likelihood estimator performs best in almost all cases. As for inference, the

transformed likelihood estimator has correct sizes for all values of T , N and �2 when  = 0:4. However,

it shows some size distortions when  = 0:9 and the sample size is small, say, when T = 5 and N = 50.

However, size improves as T and/or N increase(s). When T = 15 and N = 500, there is essentially no

size distortions. For the GMM estimators, it is observed that although the sizes are correct in some

cases, say, the case with T = 5 and N = 500 when  = 0:4, it is not the case when  = 0:9; even for

the case of T = 5 and N = 500, there are size distortions and a large �2 aggravates the size distortions.

Finally, we consider weak instruments robust tests, which are reported in Table 5, and Tables A.10,

A.20 and A.30 of the supplement. We �nd that test sizes are close to the nominal value only when

T = 5 and N = 500. In other cases, especially when N is small and/or T is large, there are substantial

12See Hayakawa (2007) and Bun and Windmeijer (2010).
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size distortions. Although Newey and Windmeijer (2009) prove the validity of these tests under

many weak moments asymptotics, they are essentially imposing n2=N ! 0 where n is the number of

moment conditions, which is unlikely to hold when N is small and/or T is large. Therefore, the weak

instruments robust tests are less appealing, considering the very satisfactory size properties of the

transformed likelihood estimator, the di¢ culty of carrying out inference on subset of the parameters

using the weak instruments robust tests, and large size distortions observed for these tests when N is

small.

In summary, for estimation of ARX panel data models the transformed likelihood estimator has

several favorable properties over the GMM estimators in that the transformed likelihood estimator

generally performs better than the GMM estimators in terms of biases, MAEs, size and power, and

unlike GMM estimators, it is not a¤ected by the variance ratio, �2.

5.2 Panel AR(1) model

5.2.1 Monte Carlo design

The data generating process is the same as that in the previous section with � = 0. More speci�cally,

yit are generated as

yit = �i + yi;t�1 + uit; (t = �m+ 1; :::; 1; :::; T ; i = 1; :::; N);

with yi;�m = 0; where uit � N (0; �2i ); �2i � U [0:5; 1:5], and

yi0 t
�
1� m
1� 

�
�i +

m�1X
j=0

jui;�j :

Individual e¤ects are generated as

�i = � (�ui + vi) ;

where vi � iidN (0; 1), and � is set so that to control the variance ratio

�2 =
N�1PN

i=1 V ar(�i)

N�1PN
i=1 V ar(uit)

=
�2(T�1��2N + 1)

��2N
:

Note that for N su¢ ciently large �2 t �2(1 + 1=T ). For parameters and sample sizes, we consider

 = 0:0; 0:4; 0:9, T = 5; 10; 15; 20 N = 50; 150; 500; and �2 = 1; 5.

Some comments on the computations are in order. In the nonlinear optimization routine for the

computation of the QMLE we use (eb; e; e!; e�2) as starting values, where eb = N�1PN
i=1�yi1, e is the
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one-step �rst-di¤erence GMM estimator (20) where _Wi and _Zi are replaced with13

_Wi =

0BB@
�yi1
...

�yi;T�1

1CCA ; _Zi =

0BBBBBBB@

yi0 0 0

yi1 yi0 0

yi2 yi1 yi0
...

...
...

yi;T�2 yi;T�3 yi;T�4

1CCCCCCCA
;

e! = [(N � 1)e�2u]�1PN
i=1

�
�yi1 �eb�2 and e�2u = [2N(T � 2)]�1PN

i=1 (�yit � e�yi;t�1)2.
For the �rst-di¤erence GMM estimators, we consider three sets of moment conditions. The �rst set

of moment conditions, denoted as �DIF1", consists of E(yis�uit) = 0 for s = 0; :::; t � 2; t = 2; :::; T .
In this case, the number of moment conditions are 10, 45, 105; and 190 for T = 5; 10; 15; and 20,

respectively. The second set of moment conditions, denoted by �DIF2", consist of E(yi;t�2�l�uit) = 0

with l = 0 for t = 2, and l = 0; 1 for t = 3; :::; T . In this case, the number of moment conditions are

7; 17; 27; and 37 for T = 5; 10; 15; and 20, respectively. The third set of moment conditions, denoted

as �DIF3", consists of
PT
t=2E(yi;t�2�uit) = 0,

PT�1
t=2 E(yi;t�2�uit) = 0 and

PT�2
t=2 E(yi;t�2�uit) = 0:

In this case, the number of moment conditions are 3 for all T .

Similarly, for the system GMM estimator, we add moment conditions E[�yi;t�1(�i + uit)] = 0 for

t = 2; :::; T in addition to �DIF1" and �DIF2", which are denoted as �SYS1" and �SYS2", respec-

tively. We also add moment conditions
PT
t=2E [�yi;t�1(�i + uit)] = 0,

PT�1
t=2 E [�yi;t�1(�i + uit)] = 0,PT

t=2E [�xit(�i + uit)] = 0 and
PT�1
t=2 E [�xit(�i + uit)] = 0 in addition to �DIF3". For the moment

conditions �SYS1", we have 14; 54; 119; and 209 moment conditions for T = 5; 10; 15; and 20, respec-

tively, while for the moment conditions �SYS2", we have 11; 26; 41; and 56 moment conditions for

T = 5; 10; 15; and 20, respectively. The number of moment conditions for �SYS3" are 6 for all T:

With regard to the inference, we use the robust standard errors formula given in Theorem 2 for the

transformed log-likelihood estimator. For the GMM estimators, in addition to the conventional stan-

dard errors, we also compute Windmeijer (2005)�s standard errors for the two-step GMM estimators

and Newey and Windmeijer (2009)�s standard errors for the CU-GMM estimators.

We report the median bias, median absolute errors (MAE), sizes ( = 0:0; 0:4 and 0:9) and powers

(resp.  = �0:1; 0:3 and 0:8) with the nominal size set to 5%. As before, the number of replications
is set to 1; 000.

5.2.2 MC results for panel AR(1) model

As with the ARX(1) experiments, to save space, we report the results of the transformed likelihood

estimator and the GMM estimators exploiting moment conditions �DIF2" and �SYS2" with one-step

estimation procedure for  = 0:4; and 0:9. A complete set of results are provided in a supplement,

13This type of estimator is considered in Bun and Kiviet (2006). Since the number of moment conditions are three,
this estimator is always computable for any values of N and T considered in this paper. Also, since there are two more
moments, we can expect that the �rst and second moments of the estimator to exist.
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which is available upon request. In the following, Tables 6 to 8 are given in the paper and Tables A.31

to A.42 are given in the supplement.

The bias and MAEs of the various estimators for the case of  = 0:4 are summarized in Table 6,

and Tables A.32, A.36 and A.40 of the supplement. As can be seen from these tables, the transformed

likelihood estimator performs best (in terms of MAE) in almost all cases, the exceptions being the

CU-GMM estimators that show smaller biases in some experiments. As to be expected, the one- and

two-step GMM estimators deteriorate as the variance ratio, �2, is increased from 1 to 5, and this

tendency is especially evident for the system GMM estimator. For the case of  = 0:9, we �nd that

the system GMM estimators have smaller biases and MAEs than the transformed likelihood estimator

in some cases. However, when � = 5, the transformed likelihood estimator outperforms the GMM

estimators in all cases, both in terms of bias and MAE.

Consider now the size and power properties of the alternative procedures. The results for  = 0:4

are summarized in Table 7 and Table A.37 of the supplement. We �rst note that the transformed

likelihood procedure has the correct size for all experiments. For the GMM estimators, although there

are substantial size distortions when N = 50, the empirical sizes become close to the nominal value

as N is increased. When T = 5 or 10 and N = 500 and �2 = 1, the size distortion of the GMM

estimators are small. However, when �2 = 5, there are severe size distortions for the system GMM

estimator even when N = 500. Also similar results to the ARX(1) case are obtained when the tests are

based on modi�ed standard errors. For example, Windmeijer (2005)�s correction is quite useful, and

in many cases it leads to accurate inference although the corrections do result in severely under-sized

tests in some cases. Also, this correction does not seem that helpful in mitigating the size problem of

the system GMM estimator when �2 is large. The standard errors of Newey and Windmeijer (2009)

used for the CU-GMM estimators are also helpful - they tend to improve the size property in many

cases.

Size and power of the tests in the case of experiments with  = 0:9 are summarized in Table 7 and

Table A.41 of the supplement, and show signi�cant size distortions in many cases.14 The size distortion

of the transformed likelihood gets reduced for relatively large sample sizes and its size declines to 8.0%

when �2 = 1, N = 500 and T = 20. As to be expected, increasing the variance ratio, �2, to 5,

does not change this result. A similar pattern can also be seen in the case of �rst-di¤erence GMM

estimators if we consider �2 = 1. But the size results are much less encouraging if we consider the

system GMM estimators. Also, as to be expected, size distortion of GMM type estimators become

much more pronounced when the variance ratio is increased to �2 = 5.

Finally, we consider the small sample performance of the weak instruments robust tests which are

provided in Table 8, and Tables A.34, A.38 and A.42 of the supplement. These results show that size

distortions are reduced only when N is large (N = 500). In general, size distortions of these tests

14 In the case of QMLE procedure, one reason for the size distortion is the closeness of  to the boundary value of 1. In
the computation of bQML, the parameter space for  is restricted to jj � 0:999: However, when the sample sizes N and
T are small, there are cases where bQML exceeds unity, but in that case, bQML is set to the boundary value of 0.999.
This could also introduce some bias in the standard errors. The case where  = 1 requires a di¤erent MC design and its
investigation is beyond the scope of the present paper.
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get worse as T , or the number of moment conditions, increases. In terms of power, the Lagrange

multiplier test and conditional likelihood ratio test based on �SYS2" have almost the same power as

the transformed likelihood estimator when  = 0:4, T = 5, N = 500 and �2 = 1: For the case of

 = 0:9, the results are very similar to the case of  = 0:4. Size distortions are small only when N is

large. When N is small, there are substantial size distortions.

6 Concluding remarks

In this paper we consider the transformed likelihood approach to estimation and inference in dynamic

panel data models with cross-sectionally heteroskedastic errors, and shown that the transformed like-

lihood estimator due to Hsiao, Pesaran, and Tahmiscioglu (2002) continues to be consistent and

asymptotically normally distributed, but the covariance matrix of the transformed likelihood estima-

tors must be adjusted to allow for the cross-sectional heteroskedasticity. By means of Monte Carlo

simulations, we investigated the �nite sample performance of the transformed likelihood estimator

and compared it with a range of GMM estimators. Simulation results revealed that the transformed

likelihood estimator for an ARX(1) model with a single exogenous regressor has very small biases and

yields test sizes that are close to nominal values, and in most cases outperform the GMM estimators,

whose small sample properties vary considerably across parameter values ( and �), the choice of the

moment conditions, and the value of the variance ratio, �2.

In this paper, xit is assumed to be strictly exogenous. However, in practice, the regressors may be

endogenous or weakly exogenous(c.f. Keane and Runkle, 1992). To allow for endogenous and weakly

exogenous variables, one could consider extending the panel VAR approach advanced in Binder, Hsiao,

and Pesaran (2005) to allow for cross-sectional heteroskedasticity. More speci�cally, consider the

following bivariate model:

yit = �yi + yi;t�1 + �xit + uit

xit = �xi + �yi;t�1 + �xi;t�1 + vit

where cov(uit; vit) = �. In this model, xit is strictly exogenous if � = 0 and � = 0, weakly exogenous

if � = 0, and endogenous if � 6= 0. This model can be written as a PVAR(1) model as follows 
yit

xit

!
=

 
�yi + ��xi

�xi

!
+

 
 + �� ��

� �

! 
yi;t�1

xi;t�1

!
+

 
uit + �vit

vit

!
;

for i = 1; 2; :::; N . Let A = faijg(i; j = 1; 2) be the coe¢ cient matrix of (yi;t�1; xi;t�1)0 in the above
VAR model. Then, we have � = a12=a22,  = a11 � a12a21=a22, � = a22 and � = a21. Thus, if we

estimate a PVAR model in (yit; xit), allowing for �xed e¤ects and cross-sectional heteroskedasticity, we

can recover the parameters of interest,  and �; from the estimated coe¢ cients of the PVAR model.

However, detailed analysis of such a model is beyond the scope of the present paper and is left to
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future research.

A Remark 1: Interpretation of initial conditions

In Remark 1, we noted that yi;�m can vary freely across i so long as the means and variances of

�yi;�m+1 are free from the incidental parameter problem, and hence yi0 does not need to follow a

stationary distribution. As an illustration consider the following data generating process:

yit = �i + yi;t�1 + �xit + uit, (t = �m+ 1; :::; 0; 1; :::; T )

yi;�m =
�y1
1� �i +

�
�y2 +

�y1
1�  �

�
�i + ~ui;�m;

xit = �i + �xi;t�1 + "it, (t = �m+ 1; :::; 0; 1; :::; T )

xi;�m =
�x1
1� �i +

�
�x2 +

�x1
1�  �

�
�i + ~"i;�m;

where �i = �i= (1� �) and j�j < 1: For simplicity, we do not include a time trend in the xit process.
However, the results do not change as long as the coe¢ cient of time trend is homogenous across i.

The above system can be written as a VAR(1) model:

wit = �i +Awi;t�1 + vit; (t = �m+ 1;�m+ 2; :::; T );

wi;�m = D (I�A)�1 �i + ~vi;�m

where I2 is a 2 � 2 identity matrix, wit = (yit; xit)
0 ; �i = (�i + ��i; �i)

0 ; vit = (uit + �"it; "it)
0 ;

~vi;�m = (~ui;�m;~"i;�m)
0 ;

A =

 
 ��

0 �

!
; D =

 
�y1 �y2

�x1 �x2

!
; (I�A)�1 �i =

 
�i+��i
(1�)
�i

!
:

Note that wit can be written as

wit = At+mwi;�m +
�
I2 �At+m

�
(I2 �A)�1 �i +

0@t+m�1X
j=0

Ajvi;t�j

1A
=

�
I2�At+m (I2 �D)

� �i+��i
(1�)
�i

!
+

0@t+m�1X
j=0

Ajvi;t�j

1A+At+m~vi;�m:
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After some algebra, we have the following explicit expressions for yit and xit:

yit =
�
1� t+m (1� �y1) +At+m12 �x1

� �i + ��i
(1� ) +

�
t+m�y2 �At+m12 (1� �x2)

�
�i

+
t+m�1X
j=0

h
j (ui;t�j + �"i;t�j) +A

j
12"i;t�j

i
+ t+m~ui;�m +A

t+m
12 ~"i;�m;

and

xit = �t+m�x1
�i

(1� ) +
�
1 +

�t+m��x1
(1� ) � �t+m (1� �x2)

�
�i +

t+m�1X
j=0

�j"i;t�j + �
t+m~"i;�m

= h�;t�i + h�;t�i + �it:

where ~"i;�m =
P1
j=0 �

j"i;�j , and A
j
12 is the (1; 2) element of A

j . Note that when �x1 = 0; �x2 = 1 then

xit satis�es Assumption 2. However, the speci�cation of ~"i;�m is not essential for the following results

to hold. ~"i;�m can be any arbitrary random variable as long as it is independently distributed of uit
and has a �nite second order moment. The conditional expectations of yit and xit given individual

e¤ects can be written as 
E (yitj�i; �i)
E (xitj�i; �i)

!
=

0@ �
1� t+m (1� �y1) +At+m12 �x1

� �i+��i
(1�) +

�
t+m�y2 �At+m12 (1� �x2)

�
�i

�t+m�x1
�i

(1�) +
h
1 + �t+m��x1

(1�) � �t+m (1� �x2)
i
�i

1A :

From this expression, we �nd that E (yitj�i; �i) does not depend on t only when �y1 = �x2 = 1 and

�y2 = �x1 = 0; and that E (xitj�i; �i) does not depend on t when �x2 = 1 and �x1 = 0 for any �y1 and
�y2: With these restrictions we now investigate the validity of Assumption 3.(ii). Using

�yi;�m+1 = �i + ( � 1) yi;�m + �xi;�m+1 + ui;�m+1

=

�
(1� �y1) +

��

(1� )�x1
�
�i +

�
(1� �y1)� � (1� ) �y2 +

��2

(1� )�x1 � �� (1� �x2)
�
�i

+� ("i;�m+1 + �~"i;�m) + ui;�m+1 � (1� ) ~ui;�m

we have

E(�yi;�m+1j�xi) =

�
(1� �y1) +

��

(1� )�x1
�
E (�ij�xi)

+

�
(1� �y1)� � (1� ) �y2 +

��2

(1� )�x1 � �� (1� �x2)
�
E (�ij�xi)

+�E ("i;�m+1 + �~"i;�mj�xi) :

This expression suggests that the validity of Assumption 3.(ii) depends on the stochastic properties

of �i and �i; and the initial conditions. To investigate the situations under which Assumption 3.(ii)
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holds, we provide some preliminary results. First, note that

�xi = �h��i +�h��i +��i;

where h� = (h�;1; h�;2; :::; h�;T )0, h� = (h�;1; h�;2; :::; h�;T )0 and �i = (�i1; �i2; :::; �iT )
0. Also under the

assumption that E(�i) = � and E(�i) = �; we have

E ("i;�m+1 + �~"i;�mj�xi) = �0";i�xi; �";i = var (�xi)
�1 cov (�xi; "i;�m+1 + �~"i;�m) ;

E (�ij�xi) = �+ �0�;i�xi; ��;i = var (�xi)
�1 cov (�xi; �i) ;

E (�ij�xi) = �+ �0�;i�xi; ��;i = var (�xi)
�1 cov (�xi; �i)

where (note that �h� and �h� are non-stochastic constants)

var(�xi) = var (�i)�h��h
0
� + var (�i)�h��h

0
�

+cov (�i; �i)
�
�h��h

0
� +�h��h

0
�

�
+ �2"iQ;

cov (�xi; "i;�m+1 + �~"i;�m) = E [��i ("i;�m+1 + �~"i;�m)] = �2"iq;

cov (�xi; �i) = �h�var (�i) + �h�cov (�i; �i) ;

cov (�xi; �i) = �h�cov (�i; �i) + �h�var (�i) ;

and E
�
��i��

0
i

�
= �2"iQ: Consider now Case I when �y1 = �x2 = 1 and �y2 = �x1 = 0 i.e., D = I2.

We do not need to impose any assumptions on �i and �i; and hence, �i and �i can be either �xed

or random. (Case II) When �x1 = 0; �x2 = 1; and �i and �i are random with homogenous means,

Assumption 3.(ii) is valid for any �y1 and �y2 since �xi = ��i; �";i; ��;i and ��;i are all homogenous

over i: (Case III) When �x1 6= 0 and/or �x2 6= 1; and �i and �i are random with homogenous means,

then Assumption 3.(ii) is valid when the ratios cov (�i; �i) =�
2
"i; var (�i) =�

2
"i and var (�i) =�

2
"i are

homogenous over i: Thus, there is a trade-o¤ between the assumptions made on the �xed e¤ects and

the initial conditions.

B Mathematical proofs

B.1 Preliminary results

In this appendix we provide some de�nitions and results useful for the derivations in the paper. First,

from (B.2) of Hsiao, Pesaran, and Tahmiscioglu (2002), the inverse of 
 (!) de�ned in (10) is given
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by


 (!)�1 = g (!)�1

0BBBBBBBBB@

T T � 1 ... 2 1

T � 1 (T � 1)! ... 2! !

T � 2

2 2! 2 [(T � 2)! � (T � 3)] (T � 2)! � (T � 3)
1 ! ... (T � 2)! � (T � 3) (T � 1)! � (T � 2)

1CCCCCCCCCA
:

where g (!) is de�ned above (12). The generic (t; s)th element of the (T � 1)� (T � 1) lower block of

 (!)�1, denoted by e
 (!), can be calculated using the following formulae, for t; s = 1; 2; :::; T � 1:

ne
 (!)o
ts
=

(
s (T � t)! � (s� 1) (T � t) ; (s � t)

t (T � s)! � (t� 1) (T � s) ; (s > t)
: (33)

Next, using the fact that �, de�ned in (12), can be written as � = ##0; where #0 = (T; T �
1; : : : ; 2; 1), (Hsiao, Pesaran, and Tahmiscioglu, 2002, p.144), we have

tr (�
 (!)) = tr
�
##0
 (!)

�
= #0
 (!)# = Tg (!) = T [1 + T (! � 1)] :

Lemma A1 Consider the transformed model (9). Under Assumptions 1-5, we have

lim
N!1

1

N

NX
i=1

E
h
�W0

i
 (�!0)
�1 ri

i
= 0; (34)

where 
 (!) is given in (10), �!0 is de�ned in (13). Further,

lim
N!1

1

N

NX
i=1

E
�
�W0

i�ri
�
=
�
0 00T�1

�� 0
�0
; (35)

where �, and �� are given by (12) and (39), respectively.

Proof. Let pi = 
 (�!0)
�1 ri = (pi1; :::; piT )

0 and recall that ri = (vi1;�ui2; :::;�uiT )
0. Hence, using

(33) we have

pi1 = Tvi1 +
TX
s=2

(T � s+ 1)�uis;

pit = (T � t+ 1)vi1 +
tX
s=2

hts (�!0)�uis +

TX
s=t+1

kts (�!0)�uis; (t = 2; :::; T � 1)

piT = vi1 +

TX
s=2

hTs (�!0)�uis
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and

hts(�!0) = (T � t+ 1) [(s� 1)�!0 � (s� 2)] ; (36)

kts(�!0) = (T � s+ 1) [(t� 1)�!0 � (t� 2)] :

Also using (8) and Assumption 2, it readily follows that

E
h
�W0

i
 (�!0)
�1 ri

i
= E

�
�W0

ipi
�
=
�
0;00T�1;E

�
�ey0i;�1pi� ; 0�0 ;

where �eyi;�1 = (0;�yi1; :::;�yi;T�1)0. Hence to establish (34) we need to prove that
lim
N!1

N�1
NX
i=1

E
�
�ey0i;�1pi� = 0:

But, noting that E(�uis�yit) = 0 for t < s� 1, we have

E
�
�ey0i;�1pi� =

TX
t=2

E (pit�yi;t�1) =
T�1X
t=2

E (pit�yi;t�1) + E (piT�yi;T�1)

=
T�1X
t=2

E

"
(T � t+ 1)vi1�yi;t�1 +

tX
s=2

hts(�!0)�uis�yi;t�1 +
TX

s=t+1

kts(�!0)�uis�yi;t�1

#
+E (piT�yi;T�1)

=
TX
t=2

(T � t+ 1)E (vi1�yi;t�1) +
TX
t=2

tX
s=2

hts(�!0)E (�uis�yi;t�1)

= A1i +A2i (�!0) :

Also, we have15

E(vi1�yit) =

(
�2i!i0 t = 1

�2i 
t�2(!i0 � 1) t = 2; :::; T

(37)

E(�uis�yit) =

8><>:
��2i t = s� 1

�2i (2� ) s = t

��2i (1� )2t�s�1 s < t

: (38)

15These results are obtained by noting that �yit can be written as follows

�yi1 = b+ �0�xi + vi1;

�yit = t�1�yi1 + �

 
t�2X
j=0

jxi;t�j

!
+

t�2X
j=0

j�ui;t�j

= t�1
�
b+ �0�xi

�
+ t�1vi1 + �

 
t�2X
j=0

jxi;t�j

!
+

t�2X
j=0

j�ui;t�j ; (t = 2; :::; T ):
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Using these results we now have

A1i = �2i0

"
(T � 1)!i0 + (!i0 � 1)

TX
t=3

(T � t+ 1)t�3
#

= �2i0

"
(T � 1)!i0 +

(!i0 � 1)
�
(T +  � T � 2) + T�1

�
(1� )2

#
;

and (recalling that hts depends on �!0)

A2i = h22 (�!0)E(�ui2�yi1)

+h32 (�!0)E(�ui2�yi2) + h33 (�!0)E(�ui3�yi2)

+h42 (�!0)E(�ui2�yi3) + h43 (�!0)E(�ui3�yi3) + h44 (�!0)E(�ui4�yi3)

+h52 (�!0)E(�ui2�yi4) + h53 (�!0)E(�ui3�yi4) + h54 (�!0)E(�ui4�yi4) + h55 (�!0)E(�ui5�yi4)

...

+hT2 (�!0)E(�ui2�yi;T�1) + hT3 (�!0)E(�ui3�yi;T�1) + � � �+ hT;T�2 (�!0)E(�ui;T�2�yi;T�1) +

+hT;T�1 (�!0)E(�ui;T�1�yi;T�1) + hTT (�!0)E(�uiT�yi;T�1)

= �2i0

"
(�1)

TX
s=2

hss (�!0) + (2� )
T�1X
s=2

hs+1;s (�!0)� (1� )2
TX
t=4

t�2X
s=2

hts (�!0) 
t�s�2

#
= A

(1)
2i (�!0) +A

(2)
2i (�!0) +A

(3)
2i (�!0) :

Then, by using (36), we have

A
(1)
2i (�!0) = �2i0

"
(�1)

TX
s=2

(T � s+ 1) ((s� 1) �!0 � (s� 2))
#

= �2i0

�
3T � �!0 � T �!0 +

1

6
(T + 1) (T + 2) (T + 3�!0 � T �!0 � 6) + 2

�
A
(2)
2i (�!0) = �2i0

"
(2� )

T�1X
s=2

(T � s) ((s� 1) �!0 � (s� 2))
#

= ��
2
i0

6
( � 2) (T � 1) (T � 2) (�T + T �!0 + 3)
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A
(3)
2i (�!0) = �2i0

"
� (1� )2

TX
t=4

t�2X
s=2

t�s�2 (T � t+ 1) ((s� 1) �!0 � (s� 2))
#

= ��2i0 (�10T + 2 + 2�!0 + 6T + 6T �!0 � 4�!0 � 2T�!0)

��2i0
�
�1
6
(T + 1) (T + 2) (T + 9 + 9�!0 � T � T �!0 � 6�!0 + T�!0 � 12)

�
��2i0

�
T+1 (�!0 � 1)
2 (1� )2

+
 (�!0 � 1) (T + 2 � T � 3)

( � 1)2

�

Using these, we obtain limN!1N�1PN
i=1E

�
�ey0i;�1pi�

= limN!1N�1PN
i=1

�
A1i +A

(1)
2i (�!0) +A

(2)
2i (�!0) +A

(3)
2i (�!0)

�
= 0.

To prove (35), �rst note that E (�W0
i�ri) is a (T + 3) dimensional vector having all zeros, except

for the (T + 2)th entry, given by E
�
�ey0i;�1�ri�. We have

#0ri =
TX
t=1

(T � t+ 1)vit = Tvi1 +
TX
t=2

(T � t+ 1)�uit; #0�eyi;�1 = T�1X
s=1

(T � s)yis:

Hence, using results (37)-(38), we have

�i = E
�
#0ri�ey0i;�1#� = T

T�1X
s=1

(T � s)E(�yisvi1) +
T�1X
s=1

TX
t=2

(T � t+ 1)(T � s)E (�yis�uit)

= T

T�1X
s=1

(T � s)E(�yisvi1) +
T�1X
s=1

s+1X
t=1

(T � t+ 1)(T � s)E (�yis�uit)

which can be written as

�i = T (T � 1)E(�yi1vi1) + T
T�1X
s=2

(T � s)E(�yisvi1) +
T�1X
s=1

s�1X
t=1

(T � t+ 1)(T � s)E (�yis�uit)

+
T�1X
s=1

(T � s+ 1)(T � s)E (�yis�uis) +
T�1X
s=1

(T � s)2E (�yis�ui;s+1)

Finally, we have

�� = lim
N!1

N�1
NX
i=1

�i = T (T � 1)�!0 + (�!0 � 1)
T�1X
s=2

(T � s)s�2

���20(1� )2
T�1X
s=1

s�1X
t=1

(T � t+ 1)(T � s)s�t�1 + ��20(2� )
T�1X
s=1

(T � s+ 1)(T � s)� ��20
T�1X
s=1

(T � s)2:

(39)
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Second derivatives

Let us de�ne the second derivatives of the pseudo log likelihood function (11) as follows:

AN (�) = �
1

N

@2`p (�)

@�@�0
=

264 AN;11 (�) AN;12 (�) AN;13 (�)

A0N;12 (�) AN;22 (�) AN;23 (�)

A0N;13 (�) A0N;23 (�) AN;33 (�)

375 (40)

where16

AN;11 (�) = � 1
N

@2`p (�)

@'@'0
=
1

�2
1

N

NX
i=1

�W0
i
 (!)

�1�Wi;

AN;22 (�) = � 1
N

@2`p (�)

@!2
= � T 2

2g (!)2
+

T

�2g (!)3
1

N

NX
i=1

r0i�ri;

AN;33 (�) = � 1
N

@2`p (�)

@ (�2)2
= � T

2 (�2)2
+

1

(�2)3
1

N

NX
i=1

r0i
 (!)
�1 ri;

AN;12 (�) = � 1
N

@2`p (�)

@'@!
=

1

�2g (!)2
1

N

NX
i=1

�W0
i�ri;

AN;13 (�) = � 1
N

@2`p (�)

@'@�2
=

1

(�2)2
1

N

NX
i=1

�W0
i
 (!)

�1 ri;

AN;23 (�) = � 1
N

@2`p (�)

@!@�2
=

1

2 (�2)2 g (!)2
1

N

NX
i=1

r0i�ri:

We now derive plimN!1AN (��) = A
�: First, note that 
 (!i) can be written as 
 (!i) = 
 (!�) +

� (!i � !�) where � (!i � !�) is a matrix whose (1,1) element is !i� !� and zeros otherwise. Then,
since r0i�ri and r

0
i
 (!i)

�1 ri are independent across i, with mean T�2i g (!i) and T�
2
i , respectively, we

have (recall from Assumption 5 that limN!1N
�1PN

i=1 �
2
i!i = ��

2
0�!0)

lim
N!1

1

N

NX
i=1

E
�
r0i�ri

�
= T lim

N!1

1

N

NX
i=1

�2i [1 + T (!i � 1)] = T ��20 [1 + T (�!0 � 1)] = T �2�g (!�) ; (41)

lim
N!1

1

N

NX
i=1

E
�
r0i
 (!�)

�1 ri
�

= lim
N!1

1

N

NX
i=1

�2i tr
�

 (!�)

�1
 (!i)
�

= lim
N!1

1

N

NX
i=1

�2i

h
T + tr

�

 (!�)

�1� (!i � !�)
�i

= T ��20

�
1� T (!� � 1) + (�!0 � !�)

g (!0)

�
= T�2�: (42)

16See also Hsiao, Pesaran, and Tahmiscioglu (2002).
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Then, using these and Lemma A1, the matrix A� is given by

A� =

0BBBBBBB@
plimN!1

1

N�2�

NX
i=1

�W0
i
 (!�)

�1�Wi plimN!1
1

Ng (!�)
2 �2�

NX
i=1

�W0
i�ri 0

plimN!1
1

Ng (!�)
2 �2�

NX
i=1

r0i��Wi
T 2

2g(!�)
2

T
2g(!�)�2�

0 T
2g(!�)�2�

T
2(�2�)

2

1CCCCCCCA
:

Lemma A2 Let bN (��) =
�
1=
p
N
�
@`p (��) =@�, where `p (�) is given by (11), and �� =

�
'�; !�; �

2
�
�0
=�

'0; �!0; ��
2
0

�0 is the vector of pseudo-true values. Then as N tends to in�nity and for �xed T , we have

bN (��)
d! N (0;B�) : (43)

Proof. Note that b�N can be written as

1p
N

@`p (�)

@�

����
�=��

=
1p
N

0BB@
1
�2�

PN
i=1�W

0
i
 (!�)

�1 ri

� NT
2g(!�)

+ 1
2�2�g(!�)

2

PN
i=1 r

0
i�ri

�NT
2�2�

+ 1
2�4�

PN
i=1 r

0
i
 (!�)

�1 ri

1CCA =
1

�2�

1p
N

0BB@
PN
i=1�W

0
i
 (!�)

�1 ri
1

2g(!�)
2

PN
i=1 �i

1
2�2�

PN
i=1 �i

1CCA ;

where

�i = r
0
i�ri � T�2�g (!�) ; �i = r

0
i
 (!�)

�1 ri � T�2�:

By Lemma A1, limN!1N�1PN
i=1E

�
�W0

i
 (!�)
�1 ri

�
has zero mean. Also, from (41) and (42),

we have limN!1 1
N

PN
i=1E (�i) = 0 and limN!1 1

N

PN
i=1E (�i) = 0: For the variance, since cross-

sectional units are mutually independent, we have

B�11 = lim
N!1

1

�4�

1

N
E

 
NX
i=1

�W0
i
 (!�)

�1 ri

NX
i=1

r0i
 (!�)
�1�Wi

!

= lim
N!1

1

�4�

1

N

NX
i=1

E
�
�W0

i
 (!�)
�1 rir

0
i
 (!�)

�1�Wi

�
: (44)

Again, using (41) and (42) and recalling that limN!1N�1PN
i=1E(�i) = 0, we have

B�22 = lim
N!1

1

4g (!�)
4 �4�

E

"
1

N

NX
i=1

�2i

#
=

1

4g (!�)
4 �4�

lim
N!1

E

"
1

N

NX
i=1

�
r0i�ri � Tg (!�)�2�

�2#

= lim
N!1

1

4g (!�)
4 �4�

1

N
E

"
NX
i=1

�
r0i�ri

�2 � 2Tg (!�)�2� NX
i=1

�
r0i �ri

�
+NT 2g (!�)

2 �4�

#

=
T 2

4g (!�)
4 �4�

lim
N!1

E

"
1

N

NX
i=1

�
r0i�ri
T

�2
� g (!�)2 �4�

#
: (45)
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Similarly

B�33 = lim
N!1

1

4N (�2�)
4E

"
NX
i=1

�2i

#
= lim
N!1

1

4N (�2�)
4

(
E

"
NX
i=1

�
r0i
 (!�)

�1 ri
�2#

�NT 2�4�

)

=
T 2

4�8�
lim
N!1

E

24 1
N

NX
i=1

 
r0i
 (!�)

�1 ri
T

!2
� �4�

35 : (46)

The o¤-diagonal elements of B� are (noting that limN!1 1
N

PN
i=1E

�
�W0

i
 (!�)
�1 ri

�
= 0 and

limN!1
1
N

PN
i=1E (�i) = 0):

B�21 = lim
N!1

1

2�4�g (!�)
2E

"
1

N

NX
i=1

�ir
0
i
 (!�)

�1�Wi

#

= lim
N!1

1

2�4�g (!�)
2E

"
1

N

NX
i=1

�
r0i
 (!�)

�1�Wi

� �
r0i�ri � Tg (!�)�2�

�#

= lim
N!1

1

2�4�g (!�)
2E

"
1

N

NX
i=1

�
r0i
 (!�)

�1�Wi

� �
r0i�ri

�#
; (47)

B�31 = lim
N!1

1

2�6�
E

"
1

N

NX
i=1

�
r0i
 (!�)

�1�Wi

��
r0i
 (!�)

�1 ri
�#

: (48)

Similarly, using (41) and (42), we have

B�32 = lim
N!1

1

4�6�g (!�)
2E

 
1

N

NX
i=1

�i�i

!

= lim
N!1

T 2

4�6�g (!)
2E

"
1

N

NX
i=1

�
r0i�ri
T

� g (!�)�2�
� 

r0i
 (!�)
�1 ri

T
� �2�

!#

= lim
N!1

T 2

4�6�g (!�)
2E

"
1

N

NX
i=1

 
r0i�ri
T

r0i
 (!�)
�1 ri

T
� g (!�)�2�

r0i
 (!�)
�1 ri

T
� �2�

r0i�ri
T

+ g (!�)�
4
�

!#

= lim
N!1

T 2

4�6�g (!�)
2E

"
1

N

NX
i=1

 
r0i�ri
T

r0i
 (!�)
�1 ri

T
� g (!�)�4�

!#
: (49)

For �xed T , the elements inside the sum operator in expressions (44)-(49) are �nite for all i. Hence,

(43) is established by applying the central limit theorem for independent and heterogeneous random

variables (White, 2001).
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B.2 Proof of Theorem 1

First note that equation (6) can be rewritten as

�i1 = E(�i1j�xi) + [�i1 � E(�i1j�xi)] = E(�i1j�xi) + & i1; (50)

where & i1 = �i1 � E (�i1j�xi). Also, we have

E(�i1j�xi) = mE(�yi;�m+1j�xi) + ��xi1 + �
m�1X
j=1

jE(�xi;1�j j�xi): (51)

Using either (3) or (4) we have

�xit = �+
1X
j=0

edj"i;t�j ; (52)

with edj = dj under (4), edj = aj � aj�1 under (3), and ed0 = a0. Hence, it is easily seen that under (52)

E (�xi;1�j j�xi) = bj + �
0
j�xi; (j = 1; :::;m� 1) (53)

where bj and �j do not depend on i. Using Assumption 3 and (53) in (51), we have

E(�i1j�xi) = m
�
bm + �

0
m�xi

�
+ ��xi1 + �

m�1X
j=1

j
�
bj + �

0
j�xi

�

=

0@mbm + � m�1X
j=1

jbj

1A+
0@�m + �e1 + � m�1X

j=1

j�j

1A0�xi
= b+ �0�xi (54)

where e1 = (1; 0; :::; 0)0; b is a constant, and � is a T -dimensional vector of parameters. Then, using

(5), (50) and (54), �yi1 can be written as

�yi1 = �i1 +

m�1X
j=0

j�ui;1�j = E(�ij�xi) + & i1 +
m�1X
j=0

j�ui;1�j

= b+ �0�xi + vi1;

where vi1 = & i1 +
Pm�1
j=0 

j�ui;1�j , In the above equation, vi1 has zero mean and variance E
�
v2i1
�
=

!i�
2
i : �
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B.3 Proof of Theorem 2

To simplify the derivation and better understand the model, we consider an alternative expression of

the model proposed by Grassetti (2011). By pre-multiplying (9) by the T � T accumulation matrix,

LT =

0BBBB@
1 0 � � � 0

1 1 � � � 0
...
...
. . . 0

1 1 � � � 1

1CCCCA ;

to obtain 0BBBB@
yi1 � yi0
yi2 � yi0

...

yiT � yi0

1CCCCA =

0BBBB@
1 �x0i 0 0

1 �x0i yi1 � yi0 xi2 � xi1
...

...
...

...

1 �x0i yi;T�1 � yi0 xiT � xi1

1CCCCA'+
0BBBB@

�i + ui1

�i + ui2
...

�i + uiT

1CCCCA ;

which can be written more compactly as

_yi = _Wi'+ _ri; (55)

where

vi1 = ui1 + (vi1 � ui1) = ui1 + �i; and _ri = �T �i + ui:

Since LT does not depend on any parameters, then the likelihood functions for (9) and (55) are

identical, also noting that the Jacobian of the transformation , given by jLT j = 1. Hence, the ML

estimators based on the transformed ML estimator for (9) and (55) will be identical.

The tth row of (55) can be written as

(yit � yi0) = b+�x0i�+(yi;t�1 � yi0) + (xit � xi1)�+�i + uit: (56)

Also, from the de�nition of �i;

�i = vi1 � ui1 =

0@& i1 + m�1X
j=0

j�ui;1�j

1A� ui1 = & i1 � (1� )ui0 � (1� )
m�2X
j=1

jui;�j � m�1ui;�m+1

where & i1 = �i1 � E (�i1j�xi) ; �i1 = E (�yi1j�yi;�m+1;�xi1;�xi0; :::) : Note that var(�i) = �2�i =

�2i (!i � 1) :Using Assumption 5, we have ��2�0 = limN!1 1
N

PN
i=1 �

2
�i0 = limN!1

1
N

PN
i=1 (!i � 1)�2i =

��20(�!0 � 1): Although (55) looks like the standard random e¤ect model, it is not the case since the

regressor (yi;t�1 � yi0) and new individual e¤ects �i are correlated.
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For some �2 and �2� = �2 (! � 1) ; de�ne

VT = E
�
_ri _r

0
i

�
= �2IT + �

2
��T �

0
T ; V

�1
T =

1

�2

�
IT � (1�  )

1

T
�T �

0
T

�
;

QT = IT �
1

T
�T �

0
T ;  =

�2

�2 + T�2�
=

1

1 + T (! � 1) ; 1�  = T (! � 1)
1 + T (! � 1) :

Then, by using jVT j = �2(T�1)(�2 + T�2�) = �2T [1 + T (! � 1)] ; the alternative expression for the
pseudo log-likelihood function under homoskedasticity can be written as

`RE (�) = �NT
2
ln (2�)� N

2
ln jVT j �

1

2

NX
i=1

_r0iV
�1
T _ri

/ �NT
2
ln�2 � N

2
ln [1 + T (! � 1)]� 1

2�2

NX
i=1

�
_yi � _Wi'

�0
QT

�
_yi � _Wi'

�
� 1

2�2T [1 + T (! � 1)]

NX
i=1

�
_yi � _Wi'

�0
�T �

0
T

�
_yi � _Wi'

�

where � =
�
'0; !; �2

�0
: Under heteroskedastic errors, the pseudo-true value of � denoted by �� =

('0�; !�; �
2
�)
0, is the solution of limN!1N�1E [@`RE (��) =@�] = 0, and can be written as

'� =

"
lim
N!1

N�1
NX
i=1

E
�
_W0
iV

�1
T�
_Wi

�#�1
lim
N!1

N�1
NX
i=1

E
�
_W0
iV

�1
T� _yi

�
; (57)

1 + T (!� � 1) =
1

�2�
lim
N!1

1

NT

NX
i=1

E

��
_yi � _Wi'�

�0
�T �

0
T

�
_yi � _Wi'�

��
;

�2� = lim
N!1

1

N(T � 1)

NX
i=1

E

��
_yi � _Wi'�

�0
QT

�
_yi � _Wi'�

��
; (58)

where VT� = �2�IT + �
2
� (!� � 1) �T �0T : Substituting �2� into the expression of �2��; we have

1 + T (!� � 1) =
limN!1

1
NT

PN
i=1E

��
_yi � _Wi'�

�0
�T �

0
T

�
_yi � _Wi'�

��
limN!1

1
N(T�1)

PN
i=1E

��
_yi � _Wi'�

�0
QT

�
_yi � _Wi'�

�� : (59)

The expectations in the above �rst order conditions are taken with respect to the true heteroskedas-

tic model. To derive these expectations we �rst note that

_yi � _Wi'�= _ri � _Wi ('� �'0) ;
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and obtain

1

T
E

��
_yi � _Wi'�

�0
�T �

0
T

�
_yi � _Wi'�

��
= �2i [1 + T (!i � 1)]� 2 ('� �'0)

0E
�
T�1 _W0

i�T �
0
T _ri

�
+('� �'0)0E

�
T�1 _W0

i�T �
0
T
_Wi

�
('� �'0) ;

and

1

T � 1E
��
_yi � _Wi'�

�0
QT

�
_yi � _Wi'�

��
= �2i � 2 ('� �'0)

0E

�
1

T � 1
_W0
iQT _ri

�
+('� �'0)0E

�
1

T � 1
_W0
iQT _Wi

�
('� �'0) :

Using the above results in (59) we obtain

!� � �!0 = �1 + T (!� � 1)
��20 (T � 1)

('� �'0)0 lim
N!1

N�1
NX
i=1

E
h
T�1 _W0

i

�
IT � ha �T �0T

�
_Wi

i
('� �'0)

+
2 [1 + T (!� � 1)]

��20 (T � 1)
('� �'0)0 lim

N!1
N�1

NX
i=1

E
h
T�1 _W0

i

�
IT � ha �T �0T

�
_ri

i
(60)

where ha = !�= [1 + T (!� � 1)]. Similarly, using the �rst order condition (57) we also have"
lim
N!1

1

N

NX
i=1

E
�
T�1 _W0

iV
�1
T�
_Wi

�#
('� �'0) = lim

N!1

1

N

NX
i=1

E
�
T�1 _W0

iV
�1
T� _ri

�
(61)

=
1

�2�
lim
N!1

1

N

NX
i=1

E
h
T�1 _W0

i

�
IT � hb �T �0T

�
_ri

i
where hb = (!� � 1)= [1 + T (!� � 1)]. Since the regressors are assumed to be exogenous then (recall
also that _ri = �T �i + ui)

E

�
_W0
i

�
IT �

!� � 1
1 + T (!� � 1)

�T �
0
T

�
_ri

�
= e3 lim

N!1

1

N

NX
i=1

E
�
_y0i;�1

�
IT � hb �T �0T

�
(�T �i + ui)

�
; (62)

where _yi;�1 = (0; yi1 � yi0; :::; yi;T�1 � yi0)0, and e3 = (0;00T�1; 1; 0)0:
To evaluate the expectations in the above formulas, we �rst derive some preliminary results. From
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the model (56), for t = 2; :::; T; we have

_yit = yit � yi0 =
�
1 + 0 + :::+ 

t�2
0

� �
b0 + �

0
0�xi

�
+ t�10 (yi1 � yi0)

+ �0

0@ t�2X
j=0

j0 (xi;t�j � xi1)

1A+ �1 + 0 + :::+ t�20

�
�i +

t�2X
j=0

j0ui;t�j

=

�
1� t0
1� 0

��
b0 + �

0
0�xi

�
+ �0

0@ t�2X
j=0

j0 (xi;t�j � xi1)

1A+ �1� t0
1� 0

�
�i +

t�1X
j=0

j0ui;t�j :

Then, for s = 1; :::; T

E [(yit � yi0)uis] = E
��
uit + 0ui;t�1 + :::+ 

t�1
0 ui1

�
uis
�
=

(
�2i0

t�s
0 t � s

0 t < s
: (63)

Also, we have

E [�i (yit � yi0)] =
�
1� t0
1� 0

�
�2�i0 =

�
1� t0
1� 0

�
�2i0(!i0 � 1) (64)

Then, using (63) and (64), we have

E( _y0i;�1�T �
0
Tui) = �0TE

�
ui _y

0
i;�1
�
�T =

�
�2i0
1� 0

��
T � 1� 

T
0

1� 0

�
= T�0�

2
i0;

E
�
�i _y

0
i;�1�T

�
=

T�1X
t=1

E [�i (yit � yi0)] =
 

�2�i0
1� 0

!
T�1X
t=1

(1� t0) = T�0�
2
i0(!i0 � 1)

where

�0 =
1

1� 0

�
1� 1

T

1� T0
1� 0

�
:

Using the above results it now readily follows that

lim
N!1

1

N

NX
i=1

E
�
_y0i;�1

�
IT � h �T �0T

�
(�T �i + ui)

�
= T�0��

2
0 [(1� hT ) (�!0 � 1)� h] :

Using this result with h = hb = (!� � 1) = [1 + T (!� � 1)] in (62) and then in (61) yields"
lim
N!1

1

N

NX
i=1

E
�
T�1 _W0

iV
�1
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_Wi

�#
('� �'0) = e3 lim
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1
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E
�
T�1 _y0i;�1V
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T� _ri

�
= e3

��0��20
�2�

(!� � �!0)
1 + T (!� � 1)

. (65)
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Similarly,

lim
N!1

N�1
NX
i=1

E
h
T�1 _W0

i

�
IT � ha �T �0T

�
_ri

i
= �e3

�0��
2
0 [(T � 1) (�!0 � 1) + !�]
1 + T (!� � 1)

;

and hence using (60) we have

!� � �!0 = �1 + T (!� � 1)
��20 (T � 1)

('� �'0)0 lim
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N�1
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�
_Wi

i
('� �'0)

�2�0 [(T � 1) (�!0 � 1) + !�]
(T � 1) ('� �'0)0 e3 (66)

Furthermore, we note that the following limits exist

A = lim
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1

N

NX
i=1

E
�
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i
_Wi

�
; B = lim

N!1

1

N

NX
i=1

E
�
T�1 _W0

i�T �
0
T
_Wi

�
;

and
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B

�
;

which is a positive de�nite matrix. Using these result in (65) and (66) we have

'� �'0 = ��0��20
(!� � �!0)

1 + T (!� � 1)

�
A� !� � 1

1 + T (!� � 1)
B

��1
e3; (67)

and

(!� � �!0) = �1 + T (!� � 1)
(T � 1) ��20

('� �'0)0
�
A� !�

1 + T (!� � 1)
B

�
('� �'0)

�2�0 [(T � 1) (�!0 � 1) + !�]
(T � 1) ('� �'0)0 e3:

Substituting '� �'0 from (67) in the above and after some algebra we have�
1� 2�2�

2
0��
2
0 [(T � 1) (�!0 � 1) + !�]

(T � 1) [1 + T (!� � 1)]

�
(!� � �!0) =

��1�20��20
(T � 1) [1 + T (!� � 1)]

(!� � �!0)2 : (68)
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where

�1 = e03

�
A� !� � 1

1 + T (!� � 1)
B

��1 �
A� !�

1 + T (!� � 1)
B

� �
A� !� � 1

1 + T (!� � 1)
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��1
e3;

�2 = e03
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��1
e3.

Also, using (58)
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0e3 +
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('� �'0)0C ('� �'0) (69)

where C = A�T�1B.
It is clear that for a �nite T all the terms in (68) are �nite and as required !� = �!0 is a solution of

the �rst order equations. Using this result in (68) and (69) it also follows that '� = '0 and �
2
� = ��

2
0.

However, for a �nite T this solution is not unique and (68) has another solution given implicitly by

!� = �!0 �
(T � 1) [1 + T (!� � 1)]� 2�20��20 [(T � 1) (�!0 � 1) + !�]�2

�20��
2
0�1

:

Under this solution '� 6= '0.

B.4 Proof of Theorem 3

First, by applying the mean-value theorem to
�
1=
p
N
�
@`p(b�)=@� around b� = ��, we have
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@�@�0
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N
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where �� lies element-wise between the line segment joining b� and ��. Rearranging, we have
p
N
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where AN (�) is de�ned in (40). We demonstrate that AN (��) �AN
�
��
�
!p 0 as N ! 1 and for

�xed T . First note that

ri (�') = ri ('�)��Wi (�'�'�) ;
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g (!�) [� (�!)�� (!�)] + [g (!�)� g (�!)]� (!�)

g (�!) g (!�)

= 
 (!�)
�1 +� (�!)

40



where �! = �! � !� Also, given consistency results, we have �'�'� !p 0; �! = �! � !� !p 0;

� (�!)!p 0; �2� � ��2 !p 0; and g (�!)� g (!�) = T�! !p 0: Using these, we have
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Thus, AN (��) �AN
�
��
�
!p 0 as N ! 1 which in turn implies that A (��) �AN

�
��
�
!p 0: Then

by the Slutsky�s theorem

p
N
�b� � ��� = A (��)�1 bN (��) + op (1) :

Further, by Lemma A2, as N !1 and for a �xed T we have

bN (��) =
1p
N

@`p (��)

@�

d! N (0;B�) ;

where the elements of B� are given in expressions (44)-(49). Hence, result (14) follows, and b� is
asymptotically normally distributed for a �xed T , and as N tends to in�nity.�
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Table 1: Median bias(�100) and MAE(�100) of  and � ( = 0:4; � = 0:26) for ARX(1) model

 = 0:4
median bias(�100) MAE(�100) median bias(�100) MAE(�100)

�2 = 1 �2 = 5
N=T 5 10 15 5 10 15 5 10 15 5 10 15

Transformed likelihood estimator
50 -0.253 -0.081 -0.078 7.477 3.294 2.655 -0.253 -0.081 -0.078 7.477 3.294 2.655
150 -0.184 0.063 -0.039 3.830 2.153 1.631 -0.184 0.063 -0.039 3.830 2.153 1.631
500 0.042 -0.054 -0.107 2.073 1.192 0.827 0.042 -0.054 -0.107 2.073 1.192 0.827

One-step �rst-di¤erence GMM estimator based on �DIF2"
50 -10.112 -5.709 � 11.943 6.308 � -19.590 -14.454 � 20.144 14.546 �
150 -4.124 -1.949 -1.962 6.335 3.149 2.733 -9.768 -6.161 -5.505 11.082 6.491 5.669
500 -1.107 -0.648 -0.572 3.260 1.642 1.189 -3.204 -2.047 -1.782 5.366 3.048 2.283

One-step system GMM estimator based on �SYS2"
50 7.035 � � 9.044 � � 46.392 � � 46.392 � �
150 3.955 2.767 2.331 5.525 3.425 2.810 35.877 35.838 34.855 35.877 35.838 34.855
500 2.369 0.941 0.673 3.042 1.657 1.219 23.131 20.218 18.993 23.131 20.218 18.993

� = 0:26
median bias(�100) MAE(�100) median bias(�100) MAE(�100)

�2 = 1 �2 = 5
N=T 5 10 15 5 10 15 5 10 15 5 10 15

Transformed likelihood estimator
50 0.040 0.144 0.028 5.340 3.025 2.389 0.040 0.144 0.028 5.340 3.025 2.389
150 -0.024 -0.115 0.219 3.073 1.988 1.454 -0.024 -0.115 0.219 3.073 1.988 1.454
500 -0.056 -0.066 0.040 1.488 0.951 0.760 -0.056 -0.066 0.040 1.488 0.951 0.760

One-step �rst-di¤erence GMM estimator based on �DIF2"
50 -0.771 -0.237 � 5.609 3.860 � -1.007 -0.872 � 5.488 3.802 �
150 -0.276 -0.072 -0.009 3.644 2.369 1.895 -0.449 -0.384 -0.308 3.577 2.418 1.901
500 -0.120 0.009 -0.014 1.818 1.162 0.941 -0.181 -0.120 -0.131 1.806 1.150 0.948

One-step system GMM estimator based on �SYS2"
50 2.031 � � 6.408 � � 4.064 � � 7.800 � �
150 1.011 0.986 1.056 3.775 2.667 2.013 3.751 3.780 4.187 5.286 4.359 4.253
500 0.523 0.350 0.379 1.954 1.271 1.105 2.549 2.368 2.277 3.330 2.472 2.327

Note: �DIF2" denotes Arellano and Bond type moment conditions: E(yi;t�2�l�uit) = 0 with l = 0 for t = 2, l = 0; 1 for t = 3; :::; T

and E(xi;t�l�uit) = 0 with l = 0; 1 for t = 2, l = 0; 1; 2 for t = 3; :::; T . One-step �rst-di¤erence GMM estimator is computed by

(20) with a suitable modi�cation of _Zi. �SYS2" denotes Blundell and Bond type moment conditions: E[�yi;t�1(�i + uit)] = 0

and E[�xit(�i + uit)] = 0 for t = 2; :::; T in addition to the ones used in �DIF2". One-step system GMM estimator is computed

by (25) with a suitable modi�cation of �Zi. The numbers of moment conditions of �DIF2" and �SYS2" are 18 and 26 when T = 5,

43 and 61 when T = 10 and 68 and 96 when T = 15.��" denotes the cases where the GMM estimators are not computed since the

number of moment conditions exceeds the sample size.
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Table 2: Median bias(�100) and MAE(�100) of  and � ( = 0:9; � = 0:56) for ARX(1) model

median bias(�100) MAE(�100) median bias(�100) MAE(�100)
�2 = 1 �2 = 5

N=T 5 10 15 5 10 15 5 10 15 5 10 15
Transformed likelihood estimator

50 -0.061 -0.128 0.108 7.251 3.003 1.646 -0.076 -0.126 0.084 7.117 2.970 1.637
150 -0.030 0.017 -0.092 4.284 1.728 1.027 -0.017 0.037 -0.090 4.237 1.732 1.024
500 0.115 -0.009 -0.020 2.091 0.842 0.520 0.091 -0.023 -0.022 2.091 0.846 0.515

One-step �rst-di¤erence GMM estimator based on �DIF2"
50 -10.001 -6.630 � 10.747 6.855 � -11.931 -7.690 � 12.431 7.816 �
150 -3.894 -2.761 -2.402 5.916 3.267 2.605 -4.955 -3.239 -2.657 6.481 3.696 2.774
500 -1.536 -0.767 -0.714 2.909 1.462 1.075 -1.831 -0.890 -0.867 3.007 1.678 1.188

One-step system GMM estimator based on �SYS2"
50 5.682 � � 5.686 � � 9.155 � � 9.155 � �
150 5.343 4.594 4.197 5.343 4.594 4.197 8.992 8.827 8.765 8.992 8.827 8.765
500 4.625 3.349 2.875 4.625 3.349 2.875 8.717 8.260 8.122 8.717 8.260 8.122

� = 0:56
median bias(�100) MAE(�100) median bias(�100) MAE(�100)

�2 = 1 �2 = 5
N=T 5 10 15 5 10 15 5 10 15 5 10 15

Transformed likelihood estimator
50 0.157 0.229 0.118 5.203 3.085 2.368 0.101 0.246 0.107 5.210 3.085 2.353
150 0.043 -0.104 0.177 3.122 1.985 1.482 0.039 -0.108 0.181 3.125 1.984 1.481
500 -0.007 -0.020 0.042 1.520 0.912 0.771 -0.002 -0.019 0.041 1.506 0.910 0.771

One-step �rst-di¤erence GMM estimator based on �DIF2"
50 -2.939 -2.221 � 6.203 4.424 � -3.399 -2.628 � 6.400 4.721 �
150 -1.259 -1.079 -0.788 3.918 2.674 2.111 -1.434 -1.274 -0.983 3.971 2.691 2.143
500 -0.421 -0.233 -0.223 1.931 1.310 0.984 -0.487 -0.306 -0.302 1.935 1.302 1.039

One-step system GMM estimator based on �SYS2"
50 1.766 � � 5.821 � � 2.145 � � 6.054 � �
150 2.598 2.013 1.978 4.026 2.841 2.406 3.743 3.276 3.229 4.692 3.593 3.349
500 2.755 1.996 1.572 2.870 2.039 1.648 4.285 3.963 3.723 4.290 3.963 3.723

Note: See notes to Table 1.
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Table 3: Size(%) and power(%) of  and � ( = 0:4; � = 0:26) for ARX(1) model

 = 0:4
size (H0 :  = 0:4) power (H1 :  = 0:3) size (H0 :  = 0:4) power (H1 :  = 0:3)

�2 = 1 �2 = 5
N=T 5 10 15 5 10 15 5 10 15 5 10 15

Transformed likelihood estimator
50 9.1 6.4 5.5 28.1 51.2 75.6 9.1 6.4 5.5 28.1 51.2 75.6
150 7.3 5.2 5.8 46.8 91.4 99.9 7.3 5.2 5.8 46.8 91.4 99.9
500 7.7 5.3 5.8 86.5 100.0 100.0 7.7 5.3 5.8 86.5 100.0 100.0

One-step �rst-di¤erence GMM estimator based on �DIF2"
50 14.4 13.2 � 36.7 59.3 � 21.1 29.3 � 41.1 66.8 �
150 7.8 8.6 8.1 41.0 79.4 95.5 12.9 16.4 18.9 36.4 65.2 85.4
500 6.1 5.7 5.3 68.1 99.3 100.0 8.1 8.9 8.5 43.2 86.9 98.3

One-step system GMM estimator based on �SYS2"
50 16.1 � � 7.4 � � 97.7 � � 93.6 � �
150 10.5 12.2 12.5 16.5 47.3 71.4 93.7 99.7 100.0 81.9 97.5 99.4
500 11.1 8.7 5.9 53.2 97.8 100.0 85.6 97.8 99.8 54.5 64.1 71.2

� = 0:26
size (H0 : � = 0:26) power (H1 : � = 0:16) size (H0 : � = 0:26) power (H1 : � = 0:16)

�2 = 1 �2 = 5
N=T 5 10 15 5 10 15 5 10 15 5 10 15

Transformed likelihood estimator
50 5.7 6.6 5.9 30.2 58.9 80.4 5.7 6.6 5.9 30.2 58.9 80.4
150 6.0 6.7 5.3 62.9 95.4 99.9 6.0 6.7 5.3 62.9 95.4 99.9
500 4.9 4.0 5.1 99.1 100.0 100.0 4.9 4.0 5.1 99.1 100.0 100.0

One-step �rst-di¤erence GMM estimator based on �DIF2"
50 5.8 5.5 � 27.5 44.9 � 6.7 6.0 � 29.8 50.1 �
150 5.1 7.3 6.1 52.2 83.2 94.0 4.9 7.8 5.6 53.2 85.3 95.5
500 5.5 3.8 4.8 95.9 100.0 100.0 5.5 4.0 5.2 95.8 100.0 100.0

One-step system GMM estimator based on �SYS2"
50 7.5 � � 15.8 � � 7.0 � � 9.2 � �
150 6.1 8.4 9.7 35.4 69.6 84.7 7.7 15.4 23.0 14.3 27.4 38.4
500 6.1 4.7 5.4 90.5 100.0 100.0 10.4 16.5 23.4 44.8 86.9 98.1

Note: For the de�nition of �DIF2" and �SYS2", see notes to Table 1.
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Table 4: Size(%) and power(%) of  and � ( = 0:9; � = 0:56) for ARX(1) model

 = 0:9
size (H0 :  = 0:9) power (H1 :  = 0:8) size (H0 :  = 0:9) power (H1 :  = 0:8)

�2 = 1 �2 = 5
N=T 5 10 15 5 10 15 5 10 15 5 10 15

Transformed likelihood estimator
50 5.9 5.6 5.2 26.3 62.1 90.0 5.7 5.4 5.2 26.7 62.4 90.1
150 4.8 5.9 5.2 40.3 93.1 99.9 4.9 5.8 4.9 40.2 93.4 99.9
500 5.5 4.1 5.1 83.1 100.0 100.0 5.2 4.3 5.2 83.5 100.0 100.0

One-step �rst-di¤erence GMM estimator based on �DIF2"
50 17.9 22.2 � 46.6 81.1 � 18.5 25.1 � 47.3 81.3 �
150 9.9 11.2 13.9 51.2 90.6 99.4 10.0 13.4 15.2 48.5 88.4 99.2
500 5.8 5.9 6.5 82.0 100.0 100.0 6.6 6.7 6.7 77.9 99.9 100.0

One-step system GMM estimator based on �SYS2"
50 58.3 � � 37.9 � � 99.8 � � 16.5 � �
150 62.4 79.1 88.0 57.8 94.5 99.7 100.0 100.0 100.0 31.9 68.0 88.1
500 79.4 78.0 80.9 94.7 100.0 100.0 100.0 100.0 100.0 79.3 99.2 100.0

� = 0:56
size (H0 : � = 0:56) power (H1 : � = 0:46) size (H0 : � = 0:56) power (H1 : � = 0:46)

�2 = 1 �2 = 5
N=T 5 10 15 5 10 15 5 10 15 5 10 15

Transformed likelihood estimator
50 5.3 6.6 6.0 27.5 57.2 80.5 5.2 6.6 5.9 27.5 57.3 80.5
150 5.3 6.3 5.5 57.6 94.6 99.8 5.4 6.3 5.5 57.6 94.6 99.8
500 4.9 4.6 4.9 98.4 100.0 100.0 4.9 4.6 4.9 98.4 100.0 100.0

One-step �rst-di¤erence GMM estimator based on �DIF2"
50 9.2 8.7 � 35.2 54.9 � 9.4 9.1 � 36.3 57.0 �
150 6.3 7.7 6.4 53.9 83.8 95.1 5.6 8.0 7.0 53.9 84.5 95.5
500 5.4 4.7 4.6 94.8 100.0 100.0 6.0 4.5 5.6 94.6 100.0 100.0

One-step system GMM estimator based on �SYS2"
50 6.4 � � 17.3 � � 7.2 � � 16.1 � �
150 9.3 10.6 12.8 31.2 64.2 82.8 11.7 17.4 23.4 23.1 47.5 67.6
500 18.2 19.0 18.1 77.9 99.3 100.0 32.1 56.2 69.2 53.5 89.9 98.9

Note: See notes to Table 3.
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Table 5: Size(%) and power(%) of weak instruments robust tests for ARX(1) model
�=(0.4,0.26)�

size (H0 : � = (0:4; 0:26)0) power (H1 : � = (0:3; 0:16)0) size (H0 : � = (0:4; 0:26)0) power (H1 : � = (0:3; 0:16)0)
�2 = 1 �2 = 5

N=T 5 10 15 5 10 15 5 10 15 5 10 15
Anderson and Rubin test based on moment conditions �DIF2"

50 49.9 100.0 � 56.4 100.0 � 49.7 100.0 � 55.1 100.0 �
150 10.7 53.3 95.1 30.5 85.2 99.5 11.4 53.8 95.0 25.8 78.3 98.8
500 8.9 15.1 22.9 72.6 98.5 100.0 8.3 14.2 22.5 62.8 91.2 99.3

Anderson and Rubin test based on moment conditions �SYS2"
50 84.2 � � 89.5 � � 85.6 � � 88.4 � �
150 23.7 88.3 99.9 47.5 98.0 100.0 25.0 89.1 100.0 48.3 98.6 100.0
500 11.8 22.3 50.0 79.2 99.6 100.0 13.6 23.2 49.0 80.8 99.6 100.0

Lagrange Multiplier test based on moment conditions �DIF2"
50 33.7 77.8 � 40.5 82.7 � 35.9 81.9 � 43.2 82.9 �
150 7.4 26.3 70.1 12.2 29.3 86.2 8.4 28.8 73.1 8.1 29.3 84.4
500 6.7 7.1 8.4 30.8 88.8 98.7 6.6 8.6 8.7 8.2 16.4 40.7

Lagrange Multiplier test based on moment conditions �SYS2"
50 40.7 � � 41.9 � � 40.5 � � 43.4 � �
150 11.9 28.8 52.4 31.1 40.0 74.5 10.7 26.4 48.4 29.2 34.2 57.1
500 7.9 10.3 11.4 67.1 98.0 99.8 6.6 11.4 11.3 58.9 96.7 98.7

Conditional likelihood ratio test based on moment conditions �DIF2"
50 50.9 78.0 � 56.0 82.9 � 51.5 82.0 � 55.9 83.2 �
150 9.0 30.0 80.8 15.1 38.8 90.6 11.9 40.8 86.9 13.8 47.3 92.0
500 6.4 7.2 8.1 31.4 89.3 98.8 6.7 8.6 8.8 9.8 19.2 42.9

Conditional likelihood ratio test based on moment conditions �SYS2"
50 44.8 � � 45.2 � � 41.0 � � 44.3 � �
150 12.6 35.5 52.9 33.4 44.5 75.1 11.6 27.1 48.6 31.0 35.4 57.4
500 8.1 10.2 11.6 67.4 98.1 99.8 6.8 11.9 11.6 60.4 96.8 98.8

�=(0.9,0.5)�
size (H0 : � = (0:9; 0:5)0) power (H1 : � = (0:8; 0:4)0) size (H0 : � = (0:9; 0:5)0) power (H1 : � = (0:8; 0:4)0)

�2 = 1 �2 = 5
N=T 5 10 15 5 10 15 5 10 15 5 10 15

Anderson and Rubin test based on moment conditions �DIF2"
50 48.0 100.0 � 53.4 99.9 � 48.2 100.0 � 53.3 100.0 �
150 11.8 54.7 95.2 25.3 79.1 99.2 10.9 54.8 94.5 24.1 77.3 99.2
500 9.2 13.6 23.5 59.9 93.5 99.8 8.5 13.4 23.3 56.4 90.7 99.4

Anderson and Rubin test based on moment conditions �SYS2"
50 87.1 � � 88.9 � � 87.5 � � 89.4 � �
150 31.1 89.8 100.0 50.1 98.8 100.0 42.7 92.4 100.0 51.6 99.0 100.0
500 31.8 34.5 53.4 89.5 99.9 100.0 68.1 56.2 66.3 91.7 100.0 100.0

Lagrange Multiplier test based on moment conditions �DIF2"
50 36.6 81.1 � 42.6 85.2 � 37.5 77.9 � 42.4 84.4 �
150 7.7 23.7 67.9 7.7 22.0 90.0 7.7 23.3 66.4 7.9 22.2 89.2
500 4.6 6.2 7.7 16.1 69.3 92.4 4.0 6.6 7.6 9.6 50.0 79.6

Lagrange Multiplier test based on moment conditions �SYS2"
50 47.4 � � 53.3 � � 42.0 � � 46.8 � �
150 15.6 41.7 64.4 19.6 70.8 88.9 20.7 28.5 52.5 22.6 61.7 78.7
500 16.9 8.9 12.0 62.7 41.5 44.6 9.7 11.9 15.4 68.3 39.9 73.6

Conditional likelihood ratio test based on moment conditions �DIF2"
50 46.4 81.0 � 52.7 85.1 � 47.1 78.0 � 52.9 84.4 �
150 8.0 24.9 71.9 9.0 28.5 91.7 8.3 25.7 71.4 8.8 28.4 91.2
500 4.7 6.3 7.5 16.9 69.7 92.5 4.0 6.5 7.9 10.1 51.0 80.0

Conditional likelihood ratio test based on moment conditions �SYS2"
50 47.5 � � 53.4 � � 41.8 � � 46.6 � �
150 16.0 42.0 64.6 19.8 71.2 89.0 20.7 28.4 52.5 22.2 61.4 78.9
500 17.6 8.7 12.2 62.8 42.0 44.7 9.9 11.7 15.3 68.3 39.8 73.8

For the de�nition of �DIF2" and �SYS2", see notes to Table 1. �Anderson and Rubin test" denotes Anderson and Rubin test for

GMM (Stock and Wright 2000)(eq. (30)). �Lagrange multiplier test" denotes Kleibergen�s(2005) LM test (eq. (31)). �Conditional

likelihood ratio test" denotes the conditional likelihood ratio test of Moreira (2003)(extended by Kleibergen(2005)) (eq.(32)). ��"
denotes the cases where the GMM estimators are not computed since the number of moment conditions exceeds the sample size.
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Table 7: Size(%) and power(%) of  for AR(1) model

 = 0:4
size (H0 :  = 0:4) power (H1 :  = 0:3) size (H0 :  = 0:4) power (H1 :  = 0:3)

�2 = 1 �2 = 5
N=T 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Transformed likelihood estimator
50 7.8 6.9 7.2 6.7 24.1 47.7 70.1 85.7 10.5 7.4 7.3 6.7 26.1 48.1 70.1 85.7
150 5.0 4.7 4.2 5.8 42.4 90.3 99.6 99.8 7.9 4.8 4.2 5.8 43.7 90.4 99.6 99.8
500 5.1 5.3 5.0 4.7 81.4 100.0 100.0 100.0 5.5 5.3 5.0 4.7 81.5 100.0 100.0 100.0

One-step �rst-di¤erence GMM estimator based on �DIF2"
50 7.9 8.9 7.9 7.0 21.8 36.9 54.4 67.0 15.5 13.6 13.3 13.2 26.0 35.7 44.1 55.2
150 5.5 6.1 5.9 6.9 27.9 67.3 86.9 96.0 8.2 9.8 7.4 9.2 22.9 37.1 54.2 73.1
500 6.1 5.8 4.8 4.1 53.0 97.2 100.0 100.0 6.3 5.6 5.2 4.5 23.5 55.7 86.6 98.3

One-step system GMM estimator based on �SYS2"
50 9.5 11.5 8.8 � 11.0 21.0 29.0 � 76.6 93.6 97.8 � 64.0 83.1 89.7 �
150 6.3 5.4 5.6 7.9 24.4 57.1 76.8 88.4 59.9 86.5 94.5 98.4 42.1 60.5 68.7 74.0
500 5.9 6.2 4.8 5.5 64.4 97.6 99.9 100.0 34.8 65.6 84.6 92.5 12.6 15.8 17.1 15.6

 = 0:9
size (H0 :  = 0:9) power (H1 :  = 0:8) size (H0 :  = 0:9) power (H1 :  = 0:8)

�2 = 1 �2 = 5
N=T 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Transformed likelihood estimator
50 15.0 22.0 19.9 21.3 23.9 32.9 49.6 68.2 14.6 22.3 19.1 19.9 24.2 33.3 51.4 70.2
150 20.9 20.8 17.6 12.2 25.3 45.1 71.1 87.6 20.0 19.1 14.7 11.5 27.4 47.8 75.0 89.2
500 25.7 18.3 9.9 8.0 32.4 65.7 88.4 94.1 23.3 16.4 10.8 9.4 37.0 70.1 87.1 90.7

One-step �rst-di¤erence GMM estimator based on �DIF2"
50 34.5 31.5 26.2 23.7 45.1 53.5 58.1 67.4 38.1 41.1 40.3 41.1 47.8 60.9 63.5 70.0
150 25.4 17.7 10.0 9.9 36.2 43.2 52.5 73.4 31.6 37.3 33.3 32.8 42.2 55.8 61.0 69.7
500 13.3 7.9 6.0 5.6 25.1 40.1 72.7 91.8 26.3 28.3 25.7 22.6 37.0 51.1 60.6 66.2

One-step system GMM estimator based on �SYS2"
50 30.6 54.1 63.9 � 1.6 5.2 11.9 � 95.5 99.8 100.0 � 0.0 0.6 1.8 �
150 28.6 46.1 58.3 66.9 3.7 17.4 34.2 50.8 95.3 99.9 100.0 100.0 0.2 1.6 2.6 3.0
500 20.4 33.0 40.0 45.2 22.3 72.2 93.5 98.5 94.0 99.8 100.0 100.0 1.7 6.8 12.3 18.7

Note: For the de�nition of �DIF2" and �SYS2", see notes to Table 6.
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Table 8: Size(%) and power(%) of weak instruments robust tests for AR(1) model

� = 0:4
size (H0 : � = 0:4) power (H1 : � = 0:3) size (H0 : � = 0:4) power (H1 : � = 0:3)

�2 = 1 �2 = 5
N=T 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Anderson and Rubin test based on moment conditions �DIF2"
50 12.8 45.1 87.1 99.1 15.1 50.9 90.5 99.5 13.1 45.3 87.8 99.8 12.9 48.4 89.0 99.7
150 6.3 13.5 22.1 40.5 12.5 32.2 53.2 76.9 7.2 13.1 21.5 42.6 8.2 18.6 32.3 60.8
500 4.7 7.0 7.8 9.2 24.9 66.9 90.6 97.2 5.0 6.0 8.3 9.6 9.0 16.6 39.9 65.9

Anderson and Rubin test based on moment conditions �SYS2"
50 23.7 86.2 100.0 � 29.5 89.1 100.0 � 26.0 84.9 100.0 � 29.6 87.8 100.0 �
150 9.1 23.8 49.1 81.3 24.9 54.7 80.9 96.5 9.2 23.3 46.6 81.6 22.7 52.3 79.1 95.8
500 5.8 7.5 13.5 17.5 48.0 81.4 95.7 98.8 5.8 7.3 13.8 18.1 42.4 78.8 94.5 98.7

Lagrange Multiplier test based on moment conditions �DIF2"
50 11.8 28.3 45.2 61.7 11.7 32.3 68.8 76.0 12.4 29.7 45.3 62.4 11.5 30.0 56.2 74.0
150 5.3 8.7 12.7 17.0 19.5 53.8 74.8 80.4 5.8 8.5 12.5 18.5 8.9 17.1 33.2 51.2
500 6.2 6.3 5.9 6.3 46.3 96.6 99.9 100.0 5.7 6.8 5.3 6.5 15.3 45.9 82.1 97.3

Lagrange Multiplier test based on moment conditions �SYS2"
50 16.1 37.2 72.5 � 20.5 41.9 76.7 � 17.0 39.1 70.7 � 21.4 40.8 74.1 �
150 7.1 11.1 14.4 23.7 41.2 73.0 82.0 59.9 7.3 12.3 16.5 23.5 35.9 58.7 54.9 34.5
500 4.8 7.6 6.5 8.0 82.4 99.5 100.0 100.0 5.2 7.9 6.9 7.9 75.5 99.2 100.0 100.0

Conditional likelihood ratio test based on moment conditions �DIF2"
50 14.9 40.0 48.9 61.8 16.1 44.1 72.7 76.3 14.9 43.4 48.5 62.7 14.6 42.6 60.7 74.2
150 5.4 8.6 12.9 18.0 19.6 54.1 75.3 82.1 6.9 9.2 13.3 19.8 8.8 18.3 35.2 54.0
500 6.0 6.5 6.1 6.2 46.4 96.6 99.9 100.0 5.8 6.6 5.7 6.4 15.5 46.1 81.7 97.5

Conditional likelihood ratio test based on moment conditions �SYS2"
50 19.5 39.6 72.3 � 25.5 43.4 76.5 � 18.1 39.3 70.5 � 22.2 41.2 74.0 �
150 7.1 11.5 15.9 26.3 41.3 73.6 84.0 63.3 7.5 12.9 17.3 23.5 35.8 58.8 55.2 34.8
500 4.9 7.6 6.6 8.4 82.1 99.5 100.0 100.0 5.2 8.0 6.8 7.7 75.8 99.2 100.0 100.0

� = 0:9
size (H0 : � = 0:9) power (H1 : � = 0:8) size (H0 : � = 0:9) power (H1 : � = 0:8)

�2 = 1 �2 = 5
N=T 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Anderson and Rubin test based on moment conditions �DIF2"
50 11.5 45.1 86.6 99.6 11.5 46.4 87.4 99.9 12.3 45.4 86.2 100.0 11.8 45.7 86.9 99.8
150 6.8 12.6 21.3 41.8 7.3 15.5 27.6 56.4 6.9 13.1 22.2 41.0 7.1 12.8 22.0 42.1
500 5.7 5.5 7.6 9.1 6.1 8.8 22.3 41.4 5.6 5.4 9.0 9.3 5.6 5.6 9.3 11.0

Anderson and Rubin test based on moment conditions �SYS2"
50 23.8 85.8 100.0 � 26.6 88.6 100.0 � 23.8 85.7 99.9 � 26.4 88.5 100.0 �
150 9.3 22.2 49.0 81.4 20.5 48.2 79.7 96.4 9.1 23.1 48.3 80.1 19.4 47.8 79.6 96.7
500 5.6 6.8 15.2 19.0 45.2 78.7 94.2 98.9 5.2 6.8 14.2 17.7 45.1 79.3 94.0 98.8

Lagrange Multiplier test based on moment conditions �DIF2"
50 15.4 38.4 57.0 68.0 15.6 44.2 68.5 77.4 14.8 40.9 54.9 68.1 15.2 46.7 62.8 73.4
150 6.8 10.2 13.3 19.8 6.2 10.3 18.9 29.7 7.3 12.7 19.8 30.6 7.8 12.0 23.7 33.8
500 5.3 6.1 6.0 6.6 7.6 17.8 50.4 82.4 7.0 7.0 7.2 7.2 7.2 7.0 5.9 10.4

Lagrange Multiplier test based on moment conditions �SYS2"
50 16.8 35.6 74.0 � 17.1 42.9 75.8 � 17.1 37.1 72.8 � 17.6 41.6 74.9 �
150 7.8 10.7 14.9 23.7 28.8 48.4 41.6 31.6 7.6 11.9 14.7 23.1 28.9 32.9 29.9 31.0
500 5.5 6.4 6.1 8.1 76.7 99.2 100.0 100.0 5.9 7.1 6.6 7.8 74.8 88.1 84.7 82.7

Conditional likelihood ratio test based on moment conditions �DIF2"
50 12.6 44.2 60.1 68.1 12.1 45.3 71.4 77.7 12.9 44.3 57.8 68.1 13.4 46.3 65.0 74.2
150 7.3 12.2 16.8 25.0 7.7 14.8 23.5 37.7 7.7 13.5 21.1 36.8 7.6 13.2 22.6 38.6
500 5.6 6.0 6.0 6.8 7.7 17.5 50.6 82.6 6.1 5.5 8.6 9.4 5.4 6.4 8.9 12.1

Conditional likelihood ratio test based on moment conditions �SYS2"
50 17.1 36.0 74.3 � 17.8 43.2 75.8 � 16.8 37.1 72.7 � 17.6 41.6 74.9 �
150 8.2 11.2 15.1 24.0 29.2 48.6 42.5 32.2 7.5 11.7 15.0 23.3 29.2 33.2 29.9 30.8
500 5.6 6.4 5.9 8.2 76.6 99.2 100.0 100.0 5.9 7.0 6.5 7.8 74.8 88.4 84.9 82.7

For the de�nition of �DIF2" and �SYS2", see notes to Table 6. �Anderson and Rubin test" denotes Anderson and Rubin test for

GMM (Stock and Wright 2000)(eq. (30)). �Lagrange multiplier test" denotes Kleibergen�s(2005) LM test (eq. (31)). �Conditional

likelihood ratio test" denotes the conditional likelihood ratio test of Moreira (2003)(extended by Kleibergen(2005)) (eq.(32)). ��"
denotes the cases where the GMM estimators are not computed since the number of moment conditions exceeds the sample size.
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