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S1 Statement and proof of lemmas

Lemma S1 Let A be a k × k matrix and xT+h−j a k × 1 vector, and suppose that Ik−A is

invertible, then

H−1
H∑
h=1

h−1∑
j=0

AjxT+h−j = H−1
H∑
j=1

(
Ik+A + ...+ AH−j)xT+j

= H−1 (Ik−A)−1
H∑
j=1

(
Ik −AH−j+1)xT+j

= (Ik−A)−1

H−1 H∑
j=1

xT+j

− (Ik−A)−1

H−1 H∑
j=1

AH−j+1xT+j

 .

Proof. The result follows by direct manipulation of the terms.

Lemma S2 Suppose that the k×k matrices A and B have bounded spectral norms ‖A‖ ≤ λ and
‖B‖ ≤ λ, for some fixed positive constant λ. Then∥∥∥Ah −Bh

∥∥∥ ≤ hλh−1 ‖A−B‖ , for h = 1, 2, .... (A.1)

Proof. We establish this result by backward induction. It is clear that it holds for h = 1. For

h = 2, using the identity

A2 −B2 = A(A−B) + (A−B)B,

the result for h = 2 follows∥∥A2 −B2
∥∥ ≤ (‖A‖+ ‖B‖) ‖A−B‖ = 2λ ‖A−B‖ .

More generally, we have the identity

Ah −Bh = Ah(A−B) + (A−B)Bh + A(Ah−2 −Bh−2)B.

Now suppose now that (A.1) holds for h− 2, and using the above note that∥∥∥Ah −Bh
∥∥∥ ≤ ∥∥∥Ah−1

∥∥∥ ‖A−B‖+ ‖A−B‖
∥∥∥Bh−1

∥∥∥+ ‖A‖
∥∥∥Ah−2 −Bh−2

∥∥∥ ‖B‖
≤ ‖A‖h−1 ‖A−B‖+ ‖A−B‖ ‖B‖h−1 + ‖A‖

∥∥∥Ah−2 −Bh−2
∥∥∥ ‖B‖

≤ 2λh−1 ‖A−B‖+ λ2
∥∥∥Ah−2 −Bh−2

∥∥∥
≤ 2λh−1 ‖A−B‖+ λ2

[
(h− 2)λh−3 ‖A−B‖

]
≤ hλh−1 ‖A−B‖ .
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Hence, if (A.1) holds for h − 2, then it must also hold for h. But since we have established that

(A.1) holds for h = 1 and h = 2, then it must hold for any h.

Lemma S3 Consider the k × k matrix A(θ) = (aij(θ)), where k is a finite integer and aij(θ),

for all i, j = 1, 2, .., k, are continuously differentiable real-valued functions of the p × 1 vector of

parameters, θ ∈ Θ. Suppose that aij(θ) has finite first order derivatives at all points in Θ, and

assume that θ̂T is a
√
T consistent estimator of θ0. Then∥∥∥A(θ̂T )−A(θ0)

∥∥∥ ≤ aT ∥∥∥θ̂T − θ0∥∥∥ , (A.2)∥∥∥A(θ̂T )
∥∥∥ ≤ ∥∥A(θ0)

∥∥+ aT

∥∥∥θ̂T − θ0∥∥∥ , (A.3)

where aT =
∥∥∂A

(
θ̄T
)
/∂θ′

∥∥ is bounded in T , and elements of θ̄T∈ Θ lie on the line segment

joining θ0 and θ̂T

Proof. Consider the mean-value expansions

aij

(
θ̂T

)
− aij

(
θ0
)

=
∂aij

(
θ̄T
)

∂θ′

(
θ̂T − θ0

)
, for i, j = 1, 2, ..., k,

where elements of θ̄T lie on the line segment joining θ0 and θ̂T . Given that θ̂T is consistent for

θ0, it must also be that θ̄T →p θ
0, as T →∞. Collecting all the k2 terms we have

A(θ̂T )−A(θ0) =

(
∂A

(
θ̄T
)

∂θ′

)[
Ik ⊗

(
θ̂T − θ0

)]
,

where ⊗ denotes the Kronecker matrix product. Hence

∥∥∥A(θ̂T )−A(θ0)
∥∥∥ ≤ ∥∥∥∥∥∂A

(
θ̄T
)

∂θ′

∥∥∥∥∥∥∥∥θ̂T − θ0∥∥∥ ,
∥∥∥A(θ̂T )

∥∥∥ =

∥∥∥∥∥A(θ0) +

(
∂A

(
θ̄T
)

∂θ′

)[
Ik ⊗

(
θ̂T − θ0

)]∥∥∥∥∥ ≤ ∥∥A(θ0)
∥∥+

∥∥∥∥∥∂A
(
θ̄T
)

∂θ′

∥∥∥∥∥∥∥∥θ̂T − θ0∥∥∥ .
The results (A.2) and (A.3) now follow since θ̄T →p θ

0, and by assumption the derivatives

∂aij
(
θ0
)
/∂θ′ exist and are bounded in T .

Lemma S4 Suppose that λT = λ+T−1/2aT , aT > 0 and bounded in T , λT 6= 1, H = κT ε, where

ε ≤ 1/2, 0 < λ < 1, and κ is a positive fixed constant. Then

H∑
h=1

hλh−1T =
1

(1− λ)2
+Op

(
T−1/2

)
+Op

(
HλH

)
, (A.4)

and
H∑
h=1

h−1∑
j=0

jλj−1T =
1

(1− λ)2

(
H − 1 + λ

1− λ

)
+Op

(
T−1/2

)
+Op

(
HλH

)
. (A.5)
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Proof. We first note that
H∑
h=1

hλh−1T =
∂

∂λT

(
H∑
h=1

λhT

)

=
1− λHT

(1− λT )2
− HλHT

(1− λT )
, (A.6)

Also since λT = λ+Op
(
T−1/2

)
H∑
h=1

hλh−1T =
1

(1− λ)2
+Op

(
T−1/2

)
+Op

(
HλHT

)
. (A.7)

But,

λHT =
(
λ+ T−1/2aT

)H
= λH

(
1 +

T−1/2aT
λ

)H
= Op

(
λHedTH/

√
T
)
, (A.8)

where dT = aT /λ, which is also bounded in T . Finally, H/
√
T = T 1−ε/2 and for ε ≤ 1/2, edTH/

√
T

will be bounded in T . Using this result in (A.7) yields (A.4), as desired. Similarly,

H∑
h=1

h−1∑
j=0

jλj−1T =
H∑
h=1

[(
1− λhT

)
− h(1− λT )λh−1T

(1− λT )2

]

=
1

(1− λT )2

[
H∑
h=1

[(
1− λhT

)
− h(1− λT )λh−1T

]]

=
1

(1− λT )2

[
H −

H∑
h=1

λhT − (1− λT )
H∑
h=1

hλh−1T

]
.

Using (A.6) we have

H∑
h=1

h−1∑
j=0

jλj−1T =
1

(1− λT )2

{
H − λT − λH+1T

1− λT
− (1− λT )

[
1− λHT

(1− λT )2
− HλHT

(1− λT )

]}
.

Now using (A.8) and recalling that λT = λ+Op
(
T−1/2

)
, we obtain (A.5).

S2 The numerical solution of the DGSE model used in Section 5

The unique solution of the New Keynesian model is given by (see also equation (2) in the paper):

q̃t= Φ(θ)q̃t−1 + Γ(θ)ut,

whereΦ(θ) solves the quadratic matrix equationA1Φ
2(θ−A0Φ(θ)+A2 = 0, and Γ= [A0 −A1Φ(θ)]−1 .

Φ(θ) can be solved numerically by iterative back-substitution procedure which involves iterating

on an initial arbitrary choice of Φ(θ) say Φ(θ(0)) = Φ(0) using the recursive relation

Φ(r) = [Ik−(A−10 A1)Φ(r−1)]
−1(A−10 A2).

See Binder and Pesaran (1995) for further details. The iterative procedure is continued until

convergence using the criteria ‖ Φ(r) −Φ(r−1) ‖max≤ 10−6.
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S3 Standard and Policy Impulse Response Functions for the new-
Keynesian model

Here we first provide impulse response functions, IRFs for the effects of monetary policy, demand

and supply shocks in the new-Keynesian model. As Figure S1 shows a contractionary monetary

policy shock raises interest rates and reduces output and inflation, with output falling by more

than inflation. A positive demand shock increases all three variables; output by the most, then

interest rates, and then inflation. A negative supply shock, increases inflation, the interest rate

rises to offset the higher inflation, but not by as much as inflation and output falls. The impact

effects of the monetary policy shock are given by the first column of Γ(θ0) defined by equation

(50) of the paper, while the impact effects of the demand and supply shocks are given by its second

and third columns. It is clear that in terms of IRFs the behaviour of the model is as expected.

Turning to the policy impulse response function, PIRF, discussed in Section 3.1 of the paper,

as noted in the text it is important that the choice of q̃T0 reflects a sensible combination of values

of interest rate, inflation and output. One possible approach is to set q̃T0 equal to the impact

effects of IRFs. For example, one could set q̃T0 to q̃R,T0 = σuRΓ(θ0)eR, which is the impact

effect of a monetary policy shock. Similarly, for the demand and supply shocks qT0 can be set to

q̃y,T0 = σu yΓ(θ0)ey and q̃π,T0 = σuπΓ(θ0)eπ, respectively, where ey = (0, 1, 0)′ and eπ = (0, 0, 1)′.

These values are given by the columns of Γ(θ0) defined by equation (50) of the paper. We will

also consider multiples of the effects of such shocks as representing different degrees of deviations

from equilibrium. The power of the policy ineffectiveness test will then be an increasing function

of the extent to which, at the time of the policy change, the economy has deviated from steady

state.

Figure S2 shows PIRFs for the effects of changing the degree of persistence (or the interest rate

smoothing) associated with the Taylor rule, Figure S2a shows the effect of intervention 1A and

Figure S2b of 1B. These are the only policy changes which have much effect. This is consistent

with the theoretical results that it is the dynamics that are central to policy having mean effects.

Intervention 1A increases the degree of persistence from δR = 0.7, to δR = 0.9. This causes the

interest rate to rise and output and inflation to fall initially, with a maximum effect after about

three periods before returning to zero. Intervention 1B reduces the degree of persistence from

δR = 0.7, to δR = 0.25. This has the opposite effect causing the interest rate to fall, by more than

it rose in case 1A, and output and inflation to rise by rather less than they fell under case 1A.

The initial effects are the same as the values of
[
Φ
(
θ1
)
−Φ

(
θ0
)]
for the two cases. When the

degree of persistence is low as in intervention 1B, the variables return to zero much faster, making

the mean effect of policy much smaller. This is reflected in the power of the policy ineffectiveness

tests discussed in the text.
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Figure S1: Impulse response functions for interest rates, R̃t, output, ỹt, and

inflation π̃t deviations

S1a. Monetary Policy Shock

S1b. Demand Shock

S1c. Supply Shock
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Figure S2: Policy impulse response functions: q̃R,T0 = σuRΓ(θ0)eR.

S2a. Intervention 1A : δR = 0.7, to δR = 0.9

S2b. Intervention 1B : δR = 0.7, to δR = 0.25
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