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Abstract

This paper provides a new comparative analysis of pooled least squares and fixed effects
estimators of the slope coefficients in the case of panel data models when the time dimension
(T) is fixed while the cross section dimension (V) is allowed to increase without bounds.
The individual effects are allowed to be correlated with the regressors, and the comparison is
carried out in terms of an exponent coefficient, 4, which measures the degree of pervasiveness
of the fixed effects in the panel. The use of § allows us to distinguish between poolability of
small N dimensional panels with large T" from large N dimensional panels with small T'. Tt is
shown that the pooled estimator remains consistent so long as § < 1, and is asymptotically
normally distributed if § < 1/2, for a fixed T and as N — oo. It is further shown that
when § < 1/2, the pooled estimator is more efficient than the fixed effects estimator. We
also propose a Hausman type diagnostic test of 6 < 1/2 as a simple test of poolability, and
propose a pretest estimator that could be used in practice. Monte Carlo evidence supports
the main theoretical findings and gives some indications of gains to be made from pooling
when § < 1/2.
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1 Introduction

This paper re-examines the issue of pooling in standard panel data models with exogenous
regressors in terms of an exponent coefficient, 0 < § < 1, which measures the degree of perva-

siveness of correlated individual effects, defined by

N
> Bl =0 (N?),
i=1

where N is the cross-section dimension of the panel, and 7, is the mean zero random part
of the individual effects. The use of exponent § allows us to distinguish between poolability
of small N dimensional panels with large T from large N dimensional panels with small T'.
A set of coefficients could be heterogeneous for a finite N, nevertheless can be deemed as
asymptotically homogeneous if their dispersion tends to zero as N — oco. We use this idea to
motivate conditions under which pooling is valid in large N dimensional panels, both when T’
is fixed and when it rises with V.

Throughout we allow for non-zero correlations between the individual effects and the re-
gressors, and as a result the pooled estimators will be biased in the standard case where § = 1.
We show that the choice between the pooled least squares (PLS) estimator and the fixed effects
(FE) estimator depends on the value of ¢, with the PLS estimator being consistent for all val-
ues of 0 except when J = 1. For inference, the validity of the PLS estimator requires § < 1/2.
Both of these conditions are significantly weaker than the homogeneity assumption made in the
literature requiring that E |n;| = 0 for all . For example, when § = 0 we could have a finite
number of non-zero F |n;|, or more generally when E |n,;| = Kp', for a fixed positive constant
K, and 0 < p < 1. This corresponds to the sparsity assumption often made in the context of
penalized regressions. But our analysis covers non-sparse structures by allowing the number
of non-zero F |n;|’s to rise with N but not proportionately. The degree to which the number
of units with non-zero F |n,| is allowed to rise with N is governed by ¢. For example, when
0 = 1/2 the number of cross-section units with non-zero random effects could rise with VN ,
with the proportion of such units in total declining to zero at the rate of N —1/2,

The exponent of pervasiveness of individual effects is also closely related to the exponent of
cross-sectional dependence, a, recently introduced in Bailey et al. (2016) to measure the degree
of cross-sectional dependence in panels. Both exponents measure the degree of pervasiveness of
heterogeneity, ¢ relates to the heterogeneity of the individual effects, and « the heterogeneity
of factor loadings in a panel data model with a factor error structure. In a broad sense, § can
also be viewed as an exponent of cross-sectional dependence applied to the intercepts viewed

as a common factor.



Our analysis complements and provides further insights on the discussion of "pool or not to
pool" in the panel literature.! See for example, Baltagi et al. (2000), and Baltagi (2008). More
specifically, we derive the asymptotic properties of the pooled least squares estimator when N
is large and T is fixed for different values of §, and derive the bias of PLS when § = 1, and show
that the pooled estimator is more efficient than the fixed effects estimator if 6 < 1/2. We also
establish the asymptotic equivalence of random effects and PLS estimators when § < 1. In the
case where N and T' — oo, such that T'= O (N d), for some d > 0, the condition for poolability
generalizes to § < (1 —d)/2.

The analysis of this paper also shows the importance of knowing § in the choice between
PLS (or RE) and FE estimators. In the case of large N and 7T panels estimation of § can be
carried out using the approach of Bailey et al. (2016). But for short T panels, which is of
concern in this paper, such an approach will not be applicable and other suitable techniques
will be required. Accordingly, we propose a Hausman type diagnostic test of § < (1 — d)/2
which could be used in practice as a simple test of poolability of panel data models. Finally, as
an alternative strategy, we also propose a pretest estimator using a Hausman type diagnostic
test and derive its asymptotic properties.

Monte Carlo simulations are conducted to compare the finite sample properties, PLS, FE
and the pretest estimators. The results confirm the main theoretical findings and give some
indication of the magnitudes of the gains involved from pooling when § < (1 — d)/2. The
Monte Carlo results also place the small sample performance of the pretest estimator somewhere
between those of PLS and FE estimators and is to be recommended in practice where it is not
known whether § < (1 —d)/2.

The rest of the paper is organized as follows. Section 2 sets out the model and its as-
sumptions. Section 3 presents the main theoretical results on the consistency and asymptotic
normality of PLS and FE estimators in terms of different values of §. The diagnostic test of
poolability is presented in Section 4. The pretest estimator is discussed in Section 5. Monte
Carlo simulations are provided in Section 6, with some concluding remarks in Section 7. All

mathematical derivations are provided in the Appendix.

IThere is also a related literature that considers the problem of pooling more generally and discusses the issue
of pooling in the case of panel data models with heterogenous slopes. As a recent example, see Paap, Wang
and Zhang (2015) and references cited therein. In this paper we focus on the issue of pooling in the context of
standard panel data models with homogeneous slopes. But our approach and generalization of the concept of

cross-sectional heterogeneity can also be applied to panel data models with heterogeneous slopes.



2 Panel data model

Consider the standard panel data model

it = o;+ 8%y +uy, fori=1,2,... ,N;t=1,2,....T (2.1)
a = a+mn;fori=1,2..N, (2.2)

where «a; are the individual effects, x;; is a k x 1 vector of regressors which we decompose as
Xt = 1;8t + Wiy, fori=1,2,... ,N;t=1,2,...,T, (2.3)

where 7,8 represents the part of x;; which is correlated with the individual effects , «;, with g
being a kx 1 vector of time effects, and w;; is the part of x;; which is distributed independently of
the individual effects. This is a fairly general specification which allows for non-zero, possibly
time-varying, correlations between x;; and «;, and allows the regressors to have individual-
specific effects and be cross-sectionally correlated. Additional individual-specific effects can be
included in x;; through wy;. For example, using (2.3), and assuming that g§ = 71 ZtT:l gt # 0,
then

n; = 'R 4 vi, (2.4)

where

—r=\—1_s

© = (@8) g, u-=- (% 'gw,

T T
X; = 71 E X;it, and w; =7t E Wit,
t=1 t=1

which is the same as Mundlak (1978) formulation of the individual effects in standard panel
data models.
Throughout we assume 7' is fixed and carry out our analysis for IV large. Except for the
assumption regarding the individual effects, n;, we make the following standard assumptions:
Assumption 1: The individual effects, n, for i = 1,2,..., N, are either deterministic and
bounded (i.e. ;| < K), or stochastic with second order moments, E (n?) < K, and distributed

independently of g; and wj; for all i,j and ¢; satisfying the conditions?

N
Nt ZEW@"S =0 <N571> , for s =1 and 2, where 0 < § < 1. (2.5)
i=1

2K represents a generic finite positive constant.



Remark 2.1 The conditions of Assumption 1 are satisfied, for example, if there exists an

ordering of the indiwvidual units such that for § in the range [0, 1]

n = &, fori=1,2,... [N,
= 0, fori=[N°]+1,[N°]+2,..,.N

where {e; ,i =1,2,..., N} is a sequence of random variables with zero means and finite variances

such that as M — oo

M

1 s

i g E|ei|” = 0(1), for s=1 and 2.
i=1

Then,
N [N°]
NS Bl =N N el | =0 (N0,
=1 =1

Note that the above result holds even if €}s are cross-sectionally correlated. Furthermore, the
condition that m; = 0, for i = [N°] + 1,[N°] +2,...,N, can be relaved by requiring (See also
Bailey et al. (2016)).
N
Z En|®=0(), fors=1and?2.
i=[N%]+1
This condition holds, for example, if E |n,|® = kisp’, for i = [N°] +1,[N°| +2,..., N, where k;s

are finite positive constants and 0 < p, < 1.

Remark 2.2 Conditions (2.5) also imply

N_liiv;n? =0, (N5_1> , and N_1§;|77i| =0, (N‘S_l) .

These results follow by application of Markov inequality to (2.5).

Assumption 2: (a) u; is distributed independently of 7, and wy for all 4, j, ¢, and ¢'. (b)
uiy ~ IID(0,02) and E |uy|*" < K < oo, for some small positive e.

Assumption 3: The time effects, g, are bounded such that ||g:g}|| < K < oo, if g; is
deterministic and F ||g;g}|| < K < oo, if g; is stochastic. ||A| represents the Frobenius norm
of A defined by [T (AA)]Y2.

Assumption 4: The variables, w;;, are either deterministic and bounded, namely ||w|| <
K < oo, or they satisfy the moment conditions E ||wi; — ;> < K < oo, for all i and ¢, where

Wi =T '] wy. Similarly, E ||%; — w||> < K < oo, for all i, where w =N~V | w;.



Assumption 5: The k£ x k matrices

N T
1 _ _\/
Qpn = WZZ(Wit—W)(Wu—W);

i=1 t=1

1
NT

Qrpn = (Wit — W) (Wi — W),

Mz
N

1t

7 1

are positive definite for all 7', and as N — oo. The probability limits of Qpx and Qrg v, as
N tends to infinity, will be denoted by Qp and Qrg, respectively.

1/2 1/2
Remark 2.3 Note that E |wi — wi| < | E |#; —v_v||2] <K, and E |%; — w|| < [E||v_vi —v-v||2] <

K. Hence under Assumption 4 we also have

E(wir = w)|| = Ell(wir — Wi + Wi — W)|| < E (Wi —Wi)|[ + Ef|(Ww; —W)[| <K.  (2.6)

3 Pooled least squares and FE estimators

The PLS and FE estimators, B p and B FE, respectively, can be written as

Br =Qplvarw, (3.1)

and
Brp = Q;}E,NQFENa (3.2)
where
1 L 1 M I
QpnN = WZZ Xt — %) (x4 — %), qp,N = WZZ (xit —X) (yit — 9) , (3.3)

=1 t=1 =1 t=1

N T N T
1 _ 1 _ _
QrenN = NT ; ; Xit — X;) (Xit — %), ArE.N = NT ; ; (xit —X3) (Yir — Ui), (3.4)

and



3.1 The PLS estimator

For the pooled least square estimator (PLS) defined in (3.1), we note that it can be rewritten

as

T N T
N _ 1 _ 1 __
Bp=0B+Qpx NT DO (Wi — W) (m; + uat) + T DO (g —18) (i +wir) |, (3.7)
i=1 t=1

i=1 t=1

and it is shown in the appendix that under § < 1 (for a fixed 7" and as N — o0)

Qpy —p Qp = lim NLT ZE wit — W) (Wi — W)'] > 0. (3.8)
=1 t=1
and
1 N T 1 N T
7 2 D (Wi = W) (1 wie) + 5o > Y (1,8 — 78) (0 + wir) = Op (N‘H) - (39)
i=1 t=1 i=1 t=1

Substituting (3.8) and (3.9) into (3.7) now establishes the following proposition.

Proposition 3.1 Consider the panel data model defined by (2.1), (2.2) and (2.3). Further,
suppose that Assumptions 1-5 hold. Then the PLS estimator, BP, defined by (3.1) is consistent
for B, as long as § < 1.

Remark 3.2 The asymptotic bias of the PLS estimator in the case of § =1 is given by

plimy_ o0 (BP) =B+ U%nglgv

where
o= lim N
N—oo
and
QP— hmﬁ ZE X@t—X Xlt—X)].

=1 t=1
For a derivation see Section 26.3 in Pesaran (2015). As a corollary it also follows that Haus-
man’s (1978) mis-specification test that compares the pooled and FE estimators will only be

consistent if § = 1.

To derive the asymptotic distribution of B p, following the derivation in the appendix, we

have

"

N T
E g Wlt - uzt

=1 t=1

\/N(ﬁp—ﬁ) = +0, (NfS 1/2> (3.10)

2

T

7



Also under Assumptions 2, 4 and 5, using standard results from panel data literature (e.g.,
Pesaran (2015, Chapter 26)), we have (for a fixed T and as N — o0)

N T
1

— > ) (wi — W) u N (0,02771Qp).
TVN = = (it = W) = N (0 ")

Hence, for a fixed T and as N — oo

VN (BP - ﬁ) —q N (002771051, if 6 < 1/2. (3.11)

3.2 The FE estimator

Consider now the FE estimator, B, defined by (3.2). Then using (3.4) we obtain

N

T
A 1
VN (Bre —B) = Qrpn | 7= D Y (xit — %) (it — ﬂi)] , (3.12)
(Pre o) = Qb [ B2
and it is shown in the appendix that
T
VN (Brp—B8) = Qi v | ——= Wit — W;) (uig — ;) | +O (N°71/2). 3.13
(IBFE /3) Qren T\/N;;( ¢ ) (wit ) ( ) (3.13)
Therefore, for a fixed T and as N — oo, we have
VN (BFE - 5) 4 N (0,02T71Q5L) , for 6 < 1/2. (3.14)

Using (3.11) and the above result now yields the following proposition:

Proposition 3.3 Suppose that the exponent coefficient, §, defined by Assumption 1, is less
than 1/2, and Assumptions 1-5 hold. Then for a fixred T, and as N — oo

VNT (Bp = B) —a N (0,020,
and

VNT (BFE - ﬁ) —q¢ N (07‘739;7119) :
Furthermore, BP 18 asymptotically more efficient than ,BFE, as long as § < 1/2.
Remark 3.4 In the case where T = O (Nd), for some d > 0, the condition for Bp to be
asymptotically more efficient than By is given by 6 < (1—d)/2, as N and T — oo. This result
follows if the expressions in (8.10) and (3.13) are pre-multiplied by /T, and T is replaced by

N¢. When N and T expand at the same rate, and d = 1, the FE estimator is always more
efficient.

For the above asymptotic distribution of PLS and FE estimators, consistent estimators of

Qp and Qpp are given by Qn, and Qu rE, respectively (see (3.8)).



3.3 Random effects and PLS estimators

Finally, it is easily seen that random effects (RE) and the pooled least squares estimators of 3
are asymptotically equivalent. The RE estimator is given by (see, for example, Chapter 26 in
Pesaran (2015)).

Bre = (Qren +vQon) ' (areN +Yacy) ,

where Qrp v and qrg, N, are defined by (3.4),

N N
Qen=N"> (% -%) (&% -%),acn=N"'> (&K -%) 7 -7
=1 i=1

and

o2

=4 . 3.15
4 ToZ+ o2 (3:15)

However, under (2.5), 0727 =0 (N‘s*l), and for a fixed T', we have ¢ = 1+ O (N‘;*l), and using
(3.3) and (3.4) we obtain®

QrenN +9YQeNn = (¥
qreN +Ydon = (¥

)Qon + Qpn,
)dc.N +dpN

-1
-1
Hence (for a fixed T')

\/N(BRE_BP) —>p0, aSN—>OO, 1f§<].7
which establishes the asymptotic second order equivalence of random effects and pooled least
squares estimators as N — oo, for § < 1 and a fixed T

4 Diagnostic test of § < %

In the above analysis, we establish the asymptotic properties of PLS and FE estimators. We
also compare the efficiency of PLS and FE in Proposition (3.3) and show that the PLS estimator
is more efficient than the FE estimator when § < % Hence, it would be desirable to use the
PLS estimator for model (2.1) in terms of efficiency if 6 < 1/2. Here we propose a Hausman
type diagnostic test (Hausman, (1978)) for the test of

1
Hy:0 = 376 against Hp:0 > 1/2, (4.1)

3Note tha Qp,n = Qre.~ + Qc,n, and qp,x = qre N + do,N.



where 0 < € < % Such a test will be based on the difference between the PLS and FE estimators,
given by (3.1) and (3.2), respectively. We note that under § < 1 both estimators are consistent,
but under null hypothesis (4.1), (3.1) is more efficient than (3.2). Let

a=Bp — Bre (4.2)

then the Hausman test examines whether the PLS and FE estimators are significantly different.

Then under the null hypothesis, Hy, we have

Var (q) = Var <BFE) —Var (Bp> , (4.3)
which can be estimated as
Var (&) = Var <BFE) ~Var (BP) ; (4.4)

where Var (f‘] FE) and Var (B P) are the estimated covariance matrices of 3 rg and B p ob-
tained under the assumption that errors, u;;, are serially uncorrelated and homoscedastic. Under

this setting, the Hausman test statistics is given by

Hy =4 [Var @] & (15)

which is distributed as Xi for N sufficiently large, where k is the number of regressors in model
(2.1).

If the Hausman test statistics (4.5) can’t reject the null hypothesis Hy in (4.1), then by using
the result in Proposition 3.3, it is more efficient to pool the data and use the PLS estimator.

However, it should be noted that the above test does not apply if the errors u;; are serially
correlated or cross-sectionally heteroscedastic. In this case, we can still show that both B p and
B rg are consistent, but neither is efficient. Therefore, the Hausman formula for variance of the
difference doesn’t apply, namely Var (BP — BFE) # Var (BFE> —Var (BP>. But we note
that

a=(Bp-8) - (Bre—8), (4.6)

and (using results from the previous section)
E(Bp - BrplX) = 0. (4.7)

Also, in order to control the effects of ¢ and sample sizes (N, T'), suppose now T' = O (N d), for

some d > 0. In the case where T is fixed, then d is close to zero. In view of (4.6) we have
VNTa=VNT (Bp— B) = VNT (Brs - 8),

10



and using the results in (3.10) and (3.13) we obtain

N T
~NT€1:LZZ QPN Wit — W) — QFEN(Wlt_Wz) it + Op N§+g_1/2 ,  (4.8)
VTN “

where the first term will contribute to the limiting distribution, and the second will vanish if
d 1
6+§—1/2<O or 5<§(1—d). (4.9)

This is the same as the poolability condition discussed in Remark 3.4

Remark 4.1 It is of interest to note that both § and d have significant impact on the validity
of the test. From (4.8), the second term on the RHS will disappear if and only if § < % (1-4d).
By definition of d, we have d = InT/In N, thus we require § < % (1—=InT/InN). It should be
noted that InT/In N will not be a small number even if T is fivred and N is large. For instance,
d = 0.1590 if N = 1000 and T = 3, and d = 0.2330 if N = 1000 and T = 5. As a result,
the magnitude of InT/In N matters for the size of the Hausman type tests, a feature which is

apparent from the Monte Carlo simulations reported below.

For the implementation of the Hausman test in the general case, by direct derivations, we
have

Var (\/NTq> — NT x Var (BP - BFE) , (4.10)

and it is shown in the appendix that

-1 -1 -1 -1
A% A%
Var (VNTa) = [ WreVreQeet Qe VeQp ) (4.11)
—QrpVrerQp — Qp VereQrgp

where Qrg and Qp are probability limit of Qrg ny and Qp n, respectively, and

N T T
Vp= hm Vpn = hm —ZZZ’yltt ) (Wit — W) (Wit — W), (4.12)
N—oo NT 7= i
with v;(¢, ') = E (uiuw [X),
N T T
Vig = hm VFEN = IE)IIOO NT ZZ Zﬁyi(t’ t’) (Wit — Wz) (Wit — Wi)/, (4.13)
i=1 t=1t=1
1 N T
Vrgp = hm VFEPN = lgnoo NT ZZ Z’yi(t,t/) (Wit — V_Vl) (Wz‘t’ — V_V)I, (4.14)
i=1 t=1 t'=1
and
N T T
Vprg = ]\}i_{nOOVPFE,N hmOO ﬁ ZZ Z’yz (t, 1) (Wi — W) (Wi — W) (4.15)
i=1 t=1 /=1

11



Remark 4.2 [t should be noted that for the general form (4.11), it can be easily verified that
it reduces to the standard formula if the errors are assumed to be serially uncorrelated and
homoscedastic. To see this, note that in the case of serially uncorrelated errors, v,(t,t') = 0 if
t £t and ;(t, t) = o2

o, we then have

. 1 _ _
Vrep = A}gnoo NT Z; ; o2 (wir — W;) (Wi — W)’
1= =
| N7
— ]\;inoo ~NT ; tz_;oi (Wit — W;) [(wWi — W;) + (W; — v‘v)]'

= o2 Qrg.
Similarly, Vprg = 02Qpg. Therefore, in this case
Var (BP _BFE|X> - N1T012L< _?IFE?ZFE?Z j;—: 131399_ )
FESSFE P p Y4FE FE

= 7k (k- )

= Var (IBFE) —Var (BP> ,
which accords with the Hausman’s variance formula in (4.3). See also Section 26.9 in Pesaran
(2015).

Given the consistent estimator of (4.11), a general Hausman test statistics of (4.1) has the
form

Oy=¢ [@" (BP - BFE)] B q, (4.16)

which is distributed as X% for N sufficiently large. In the general case where the errors are serially

correlated and/or cross-sectionally heteroscedastic, using (4.11), under the null hypothesis,

Var (B p— B Ve E) can be consistently estimated by*

1

QrpnVreENQrgy + Qo VeNTQEY 417
NT (4.17)

1 1 S .} )
—QrpnVFrEPNQp Ny — QpnVPrENQRE N

@ (BP _BFE) =

where (see (3.8) and (A.10))

N T
QreN = NlTZZ (xit — %;) (xir — %i)'; QP,N:%ZZ (xit — %) (%t — %),

i=1 t=1 i=1 t=1

*See Pesaran (2015, pp 653-655).

12



and

1 N 1 N
Vepn = —= 3 XiMrafa;/MrX, Venr = — Y Xii onsl) 16X
LS4t
) NT 7 () ) g NT W, i,
=1 i=1
1 N
- . A y L .
i=1
/ -~ 7 </ < = 5
where XZ = (Xﬂ’XiQ’ ce 7XiT) ’ u;k = MT (yl - XZIBFE> ’ X’L = (Xil — X, X2 — X, ..., X7 — X) )
N ~ ~ ~ /. ~ — =\ 7
W, 015 = (Gi1,0LS, Wi2,0LS; - WiT,0LS) With @it ors =yt —§ — (xie —X) Bp for t =1,...,T,

and My = Iy — 77(757r) " 17) with 77 being a vector of ones of length T.

5 A pretest estimator

Using Hausman test statistic, Hy, given by (4.16), the following pretest estimator can also be

considered

Bpretest = Bp + 1 (gN > Xi,kT) (BFE - BP) ; (5.1)
where 1 (A) is the indicator function which takes the value of unity if A > 0 and zero otherwise,
7 is the nominal level of the chi-square distribution with k degrees of freedom (Xi) Following
the line of proof in Guggenberger (2010), Kabaila et al. (2015) and Wang et al. (2016), the

asymptotic distribution of B Pretest 15 established in the following proposition, and the proof is

provided in the Appendix.

Proposition 5.1 Suppose that the exponent coefficient, §, defined by Assumption 1, is less
than 1/2, and Assumptions 1-5 hold. Then for a fixred T, and as N — oo

. Br-p Py . Vp Vp
VN | . —q P = ~ N (0,V), with V = ,
¥ (ﬁFE_ﬁ> " <¢2> 0. V), ws <VP VFE)

where Vp = o2T71Q5, and Vip = 02T71Q 1
(i) f{N —d P = 'l,bé'l,bg, where 3 = 2 (g —1y) ~ N (0,1;), with @ = (Vpg — VP)71/2;
(ZZZ) \/N (ﬁPretest - B) —d Py + Qil’ll)z;l (tp > Xi71_7_>

Remark 5.2 The above results can be easily extend to the case where T = O (Nd), with d > 0,

i.e., T — 00 as N — oo. For this scenario, we note that as (N,T) — oo, we have
vNT (BP - ﬁ) —d N (0)0391_31) )

and

VNT (BFE _18> —d N (070121,92’2‘) )

13



Furthermore, BP 1s asymptotically more efficient than BFE, as long as 0 < 1/2. For the
hypothesis testing problem (4.1), the test statistic is given by (4.5) and the pretest estimator is
defined by (5.1). The limiting distribution of (5.1) is given by

WW( e >—>d¢=<¢1>~N(0,V) withV:(VP G )
Bre —B (I Vp Vig

where Vp = U%Q;l, and Vpgp = U%Q}}E;
(i) Hy —q ¢ = Phtpy, where phy = Q (5 — ;) ~ N (0,1;), with @ = (Vpg — Vp) /%
(i'éi/) \/ﬁ (BPretest - 5) —d 1/’1 + Qil"pi’)l (‘P > X%,l—q—) )

6 Monte Carlo simulations

To compare the performance of the FE and pooled least square estimators when T is fixed as
well as N | ;| = O(N?), we conduct several Monte Carlo simulations. The data generating

process (DGP) is given by
Yit = 1+"7i+$1,itﬁl —I—Z‘Q’itﬁz—i—uit, 1=1,2,...,N;t=1,2,...,T, (6.1)

with 8; = 1 and 35 = 2, N = 100, 500, 1000, 2000 and 7' = 5.> We assume u;; ~ [IDN(0,0?),
with 02 ~ ITDx%(2), n; ~ IIDN(0,2) for i = 1,2,...,[N°] and n; = 0, for i = [N°] + 1, [N°] +
2,...,N. We let § to take the following values 1, 0.75, 0.5, 0.48, 0.46, 0.44, 0.42, 0.4, 0.25 and

0. The elements of x;; = (21,1, 24) , are generated as
Tjit = 1+ aji+ gjm; +wjq, for j =1,2,
with o ; ~ IIDN(0,1), g;+ ~ IIDU[0.1,0.9], and w; ;+ generated by
Wjit = P iWkit—1 + €54t for j=1,2,

where wj0 = 0, p;; ~ IIDU[0.05,0.95], €j40 = 0, and € ~ IIDN(0 o2 ) with o2

VY et J,Et

IIDx?2(2) for j = 1,2. For the DGP described above, the first 50 observations are discarded,

and the number of replications is set to 1000.

~

We compute the PLS, FE and Pretest estimates and the associated bias, absolute bias and
RMSE. These estimation results are summarized in Table 1-4. In line with our theoretical
results, we note that the RMSE of the PLS estimator is much smaller than those of the FE

estimator for values of 6 < 1/2. However, the PLS estimator starts to show significant bias as

>To save space, here we only provide the simulation results of 7' = 5. The simulation results of T' = 3,10 are

provided in the appendix.
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0 is allowed to increase beyond the 1/2 threshold, and the RMSE of the PLS estimator is much
larger than the FE estimator.

As far as the Pretest estimator is concerned, again as to be expected, we observe from
the simulation results that it performs better than the FE estimator when § < 1/2, but is less
efficient than the PLS estimator. However, when ¢ > 1/2, the pretest estimator is more efficient
than the PLS estimator, but not as efficient as the FE estimator.

The results of the poolability test using the Hausman type statistic are summarized in Table
5. We can observe that the empirical size is very close to the 5% nominal value when § < 0.25,
which makes sense since for all our combinations of (N, 7T), the minimum d is 0.1445 and the
maximum d is 0.5. The proposed poolability test has good power for values of § > (1 —d)/2,
as predicted by the theory.

7 Conclusion

This paper introduces a new approach to the analysis of the relative efficiency of fixed effects
and pooled least square estimators for standard panel data models. We show that the potential
benefit from pooling is directly related to the degree with which the heterogeneity of individual
effects is pervasive across the individual units in the panel. We characterize this feature by an
exponent, ¢, and show that pooled least square estimator is consistent for values of § < 1. Our
specification allows for non-zero correlations between the individual effects and the regressors
which renders the pooled least squares and random effects inconsistent if ) = 1. We also derive
the asymptotic distributions of the pooled least squares, FE and RE estimators for different
values of § and establish the relative efficiency of the pooled least squares estimator over the
FE estimator when § < (1 — d)/2, where d is given by In7'/In N. We also propose a Hausman
type diagnostic test of poolability, and an associated pretest estimator. The theoretical results

are supported by small sample evidence from Monte Carlo experiments.
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Table 5: Empirical rejection frequencies for the Hausman type test at 5% significance level

)
N T 0 0.25 0.4 0.42 0.44 0.46 0.48 0.5 0.75 1
3 161% 74% 7.6% 6.5% 85% 85% 72% 87% 225% 90.6%
100 5 | 76% 57% 82% 68% 81% 81% 83% 102% 56.7% 100%
10 | 5.2% 6.7% 14.2% 9% 122% 12.2% 15.6% 20.7% 98.5%  100%
56% 52% 75% 62% 87% 71% 68% 85% 59.8% 100%
500 5 | 5.9% ™% 74%  11.7% 123%  14% 18%  13.2% 99.2%  100%
10 | 4.6% 5.6% 11.3% 24.9% 29.4% 432% 50.4% 36.9% 100% 100%
3 % 6% 6% 6.4% 6.6% 62% 68% 81% 71.3% 100%
1000 5 | 7.1% 59% 81% 9.7% 11.8% 129% 15% 14.5% 100%  100%
10 | 5.2% 6.2% 21.9% 31.5% 32.6% 49.3% 582% 53.9% 100% 100%
42% 54% 59% 59% 5.6% 73% 7.6% 92% 88.7% 100%
2000 5 | 45% 6% 6.9% 62% 85% 172% 153% 184% 100%  100%
10 | 52% 4.7% 202% 35% 36.8% 61.5% 62.4% 71.7% 100% 100%

Note: The 5% significance level for x? (2) is 5.991.
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Appendix: Mathematical derivations and additional simulation

results

This appendix contains the mathematical derivations of the main theoretical results in the main paper and some additional

simulation results.

A.1 Proof of Proposition 3.1
To derive the asymptotic properties of PLS, using (2.3), we first note that
Xit — X = (1;8¢ — M8) + (Wit — W),

and
yit — g =m; — 1+ B (xit — %) + (uix — ),
where

T N N
g= 71 th, n= Nﬁlzni, and u = Nﬁlzui.
t=1 i=1 i=1

Then for PLS estimator (3.1), using (A.1) in (3.3) we have

N
1 - -
Qen = 72D (g + Wit — g — W) (0,80 + Wit — 78 — W)’
i=1t=1
N N T
= NT Z Z (Wit — W) (Wit — W) + <N1 an) <T1 thé) -7’ (88")
i=1t=1 i=1 t=1
, NT
WZZm (Wit — W) gt + gt (wir —w)'] .
i=1t=1

Similarly, using (A.2) in (3.3) we have

M=
] =

ap,N = (x5t — X) (yir — 7)

1

<
Il
-
-
I

I

3~ 3
M= 1
] =

(xit = %) [n; — 7+ B’ (xit — %) + wir — 4
1t

1

T
sztfx)( 77]+U'Lt7u)

t=1

M=

1
QP,Nﬁ + ﬁ

1l
N

[

which upon using (A.1) can be written as

N T N T
1 _ 1
apN = QpNB+ —= D> (Wit — W) (n; + wit) + —= > > (0,8 — n&) (n; + wir) ,
NT — NT el
i=1t=1 1=1t=1
which in turn yields
;N 1 T
Br=B+Qply |57 22 (Wit = W) (ni +wie) + o D> (g — 18) (0 + war)

i=1t=1 i=1t=1
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Furthermore,

1
NT

M=

(n;8t — ME) wit

Il
3=
M=

]=

o
Il
=
o~
Il
-

T 1 N T
> (nige — 18) (0, + uir) = > (e —mE) +
t=1 NT i=1t=1

Il
_

[

(8t — N8) wit

I
=
Mz

n
§
0Q|

+
Z‘H
N~
M=
M=

<
Il
-
<
Il
=
~
Il
—

(]}
+
Z‘H

S
_MZ
M=

1;8tUit — NEU.
=1 1=1t=1
But under Assumption 1 we have
N N
NI B =0 (N°7Y) and Bl < NTY D jngl = 0 (N°71),

i=1 i=1
and since 7, is distributed independently of g and w4, then
1 N T N

Blm> > (nige —78) (n; +wi)| < |[NTIY OB (n; - 7‘7)2] E(|lell)

i=1t=1 i=1

+supE|unlsupE llgtll) < 1E:Em)JrEIWEIUIE(IEI)

= o(n71).
Similarly

T Ny N 9 N T
— ZZ% (Wi — W) gl + & (wae —®)' ] < =D " Inl [ (wir — %) |l
NT i=1t=1 NT i=1t=1

2 & .
= 5 Elml ZH wit — W) [lgtll
i

and since under Assumption 1, n; is distributed independently of g; and w;;, we have

1 2 X e _
Eﬁ SN;EImI T ;E[II(Wit*W)HIIgtII] .

However, by Cauchy—-Schwarz inequality and under Assumptions 3 and 4

N T
Do i [(wie — W) gl + &t (wie —W)']
i1=1t=1

B {|(wie — %) lgel] < [ 1w )17 [Blgl?] " < i

and

N T
1 _ _
NT DN ni [(wie — W) &) + g (Wit — W)’
i=1t=1

Using (A.6) and the above result in (A.3) we obtain

< fﬁ;mm =0 (N*1).

N T
Qp,N = ﬁ ;;(wit —w) (Wit — W) +Op (N‘S—l) ,

which establishes that under § < 1 (for a fixed T and as N — o0)

N T
Qp,N —p Qp = lim ZZE [(Wit — W) (wiz — W) ] >
_”X’NTz:u:l
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Consider now the second component of (3.7), and note from (A.5) that since by assumption 7;, u;, and g are

distributed independently, then

1 N T 1 N T
‘sz | €SS Bl Bl
=1t=1 i=1t=1
N
K _
K5 i o(v).
Ni:].

Hence, in view of (3.8) and using the above results we have

(Wig — W) (n; + uit)

N T
=1

” _ 1 _
Bp=p+a;! {NTZ; +0p (N771). (A7)

Furthermore
1
NT

M=

T 1 N
szt__ ¢:NZ(V_V1'—V_V)771'~,
i=1

i=1t=1

and since by Assumption 1,7; and W; — w are independently distributed and by Assumption 4, E ||W; — W|| < K, then

1 N T
7 D> (Wi = W) | < —ZEm\Ean—wH < —ZEW =o(N1).
i =1

= i=1

Therefore, (A.7) simplifies further to

N

T
- _ 1
Bp =8+ p1 |:NTZZ (Wit — W) uie | +Op (N(; 1) (A.8)
1=1t=1
Using this result and noting that under Assumptions 2 and 4,
;] N
S w0 o
i=1t=1

Combining (A.8) and (A.9) yields the desired proposition.

A.2 Proof of Proposition 3.3

For this result, noting that x;; — ®; = (Wit — W;) +n; (8¢ — &), and yir — ¥ = B’ (xit — R;) + (uit — U;), we have

1 T
Qren = 5> > (o — %) (xie — %)
NT ==
1 X Z 1 NI
= . oo . — N/ . _ .
= ﬁ;;(wzt_Wz)(Wzt_Wz) +ﬁ;;nl (Wzt_Wz)(gt—g)
;] N7 LN L
= Y 1 1 o L
NT;;n (gt —8) (Wit = Wi)' + N§n><T;(gt g) (gt g)>7
and
1 NI 1 N T
m ;; X %) (i )= ﬁ;; (Wit —Wi) +n; (8¢ — 8)] (wie — )
1 LI
= o 2D (wa — @) (Wi — W)
T\/NizltZI
1



Under Assumptions 1-4, using the above results, and following the same line of reasoning as in Section 3.1 we have (for a
fixed T and as N — o0)

QrFe,.N = ]\}l_{rloo NT;;E (Wit — ;) (Wip — W;)']
1 2 1 T —\/
+ NZE(m) 72 Fle—2) (e —8)]
i=1 =
= Qrp+0p (N‘s*l) , (A.10)
where
;] N7
Qrg = llm ZZE wzt—wl)(wzt—wz)]. (A.11)
NTZ 1t=1

Similarly, since n; is distributed independently of u;; and g, then

N T
ZZElni|E|(u“ — ;) (gt — 8)|

i=1t=1

SupE‘(“zt *“z) (gt < I/ZZEW |>

Zm (wie — i) (8¢ — B)

'\/7’111 1t=1 = \/NT

IA

1/2 1/2
But E|(uit — ;) (gt — 8)| < [E (wir — ﬂi)z] / [E gt — g||2] / < K, and by Assumptions 1 and 2, it follows that

<0 (N‘s 1/2>

N T
' \/7T Z Z (uit — ;) (8¢ — B)

Finally, under Assumptions 2-4, using standard results from panel data literature we have

T
1
m;; Uit — (Wn—Wz) —>dN(00' T IQFE)

where Qpp is already defined by (A.11).
To establish the relative asymptotic efficiency of BP we first note that

- -1 - —1
[AsyVar <\/TN,BP)] — [AsyVar (\/TNBFE>] =0.2[Qp — Qrg]. (A.12)
Also, we note that since
T ;N 1
gy Wit — Wzt - e — Wit — Wz) Wit — Wz) + = (Wz - V_V) (Wz - V_V) )
N7 2 2 w7 2 2 N 2
then
Qp =Qrg + Qc, (A.13)
where
N
Qc = lim =3 B[(% - w) (% - )],

and by Assumption 5, Q¢ is a positive definite matrix. Using (A.13) in (A.12) we have

[AsyVar (ﬂﬁp)] o [AsyVar (WBFE)] - =0,2Q¢ >0,

and hence

AsyVar (\/ﬁBFE> > AsyVar (\/ﬁﬁp> ,

which gives the desired results in the proposition.
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A.3 Derivation of equation (4.11)

To show this result, we notice that
Var(\/ﬁél) = NTXVaT(ﬁP—BFE)
- NTVar (BP) 4+ NTVar (ﬁFE> — NTCov (BFE,BP) — NTCov (Bpﬁm) ,

and it can be shown that

E (Wit — W) (Wi — W) iy ] Qp'

O
vl
2‘._.
~
M=
[]=
[]=

<
Il
—
-
Il
—
RS
Il
—

NT x Var <BP —BFE) =

+Qpg B [(Wit — Wi) (Wi — W:) wiruiy ] Qpp

s
Il
—
-
Il
-

-
- g
RN

s
Il
—
-
Il
-

E [(wit — W) (Wi — W) i ] Qp'

- 3
~

o
vl
=
N~
M-
M=

s
Il
—
-
Il
=

E [(wit — W) (Wi — Wi) wirtge] Qo + O (N‘H) . (A.14)

Then by letting

T
1
Vp= lim Vpy= lim — ZZ Z Yi(t ) (Wir — W) (wig — W),

with v;(t, ') = E (uirujp |X) = v;(¢,'),if i = j and ¢t # ¢/, and

N T T
1
Vpg = lim V :hm—E E E () (Wip — W) (Wae —W3)
FE = lim Vppy N_'°°NT¢:1t:1t/=1'Yl( ) (Wit i) (Wit i)

and
N T T

. . 1 _ _
Vepp = lim Veppn = Jim o Zl ; ;1 Vit t) (Wit — W) (Wi — ),

and
N T T

. . 1 _ _
Vprg = NITOOVPFE’N = leqoo NT ;;t;l%(t, t’) (Wi — W) (Wit *wi)':

we can obtain the desired results.

A.4 Proof of Proposition 5.1

The derivation is straightforward by following Wang et al. (2016). For (i), one can apply the Cramer-Wold device, since

it is shown in the Proposition 3.3,
VN (Bp-B) — aN(0g277'05"),
VN (Bre—8) — aN (0,027 105k,
and it can be shown that under Assumptions 1-5,

Cov [\/ﬁ(ﬁp*ﬁ),\/ﬁ(ﬁplgfﬁ)] =Vp=o2T7105" (A.15)
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Result (ii) is established in the paper. To establish result (iii) we first note that under Assumption 1 and for § < % we

have

Cov[(Br—8). (Brs~Br)] = Cov(BrBr)—Cov(Br.Br)

= Cov (BPaBP) —Cov (BP?BP)
= 0,

where the penultimate identity follows using (A.15). Then by continuous mapping theorem we obtain

VN (BPretest - ﬁ) VN (BP - ﬁ) +1 (gN > X%,pf) VN (BFE - BP)
- ay + Qs (LP > Xi,lfr) )

as required.

A.5 Additional simulation results

Here we provide additional simulation results for DGP (6.1) when 7' = 3 and 10.
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