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1 Introduction

This paper contributes to the literature by proposing a multiple testing procedure to model
selection in high dimensional regression settings. The goal of the proposed procedure is to select
an approximating model that encompasses the true model, and does not contain any noise
variables that are uncorrelated with signal (true) variables. We use ideas from the multiple
testing literature to control the probability of selecting the approximating model, the false
positive rate and the false discovery rate. We refer to the proposed method as One Covariate at
a Time Multiple Testing (OCMT) procedure. OCMT is computationally simple and fast even
for extremely large data sets.

Our approach is to be contrasted to penalised regressions where the vector of regression
coefficients, 3, of a regression of y; on x,; = (w1, Ta, ...,a:nt)/, known as the active set, is
estimated by 3 where 3 = argmin >, (g — 21,8)> + Px (B)]. Px(B) is a penalty function
that penalises B, while A is a vector of tuning parameters to be set by the researcher. A
variety of penalty functions have been considered, yielding a wide range of penalised regression
methods. Chief among them is Lasso, where Py (3) is chosen to be proportional to the L; norm
of B. This has subsequently been generalised to penalty functions involving L,, 0 < ¢ < 2,
norms. While these techniques have found considerable use in econometrics,! their theoretical
properties have been mainly analysed in the statistical literature starting with the seminal
work of Tibshirani (1996) and followed up with important contributions by Fan and Li (2001),
Antoniadis and Fan (2001), Efron et al. (2004), Zhou and Hastie (2005), Candes and Tao (2007),
Lv and Fan (2009), Bickel et al. (2009), Zhang (2010), Fan and Lv (2013) and Fan and Tang
(2013). Despite considerable advances made in the theory and practice of penalised regression,
there are still a number of open questions. These include the choice of the penalty function
and tuning parameters. A number of contributions, notably by Fan and Li (2001) and Zhang
(2010), have considered the use of nonconvex penalty functions with some success.?

Like penalised regressions, OCMT is valid when the underlying regression model is sparse.
Further, it does not require the x,; to have a sparse covariance matrix, and is applicable even if
the covariance matrix of the noise variables, to be defined below, is not sparse. Of course, since
OCMT is a model selection device, well known impossibility results for the uniform validity
of post-selection estimators, such as those obtained in Leeb and Potscher (2006) and Leeb
and Potscher (2008), apply. The main idea is to test the statistical significance of the net
contribution of all n available potential covariates in explaining y; individually, whilst taking

full account of the multiple testing nature of the problem under consideration. All covariates

'A general discussion of high-dimensional data and their use in microeconomic analysis can be found in
Belloni et al. (2014a).

2As an alternative to penalized regression, a number of procedures developed in the machine learning lit-
erature such as boosting, regression trees, and step-wise regressions are also widely used. See, for example,
Friedman et al. (2000), Friedman (2001), Buhlmann (2006) and Fan and Lv (2008).



with statistically significant net contributions are then selected jointly to form an initial model
specification for y,. Unlike boosting and other greedy algorithms, our procedure is not sequential
and selects in a single step all covariates whose t-ratios exceed a given threshold. A second
stage will be needed only if there exist hidden signals, in the sense that there are covariates
whose net contribution to y; is zero, despite the fact that they belong to the true model for ;.
To allow for the possibility of hidden signals, we propose a multi-stage version, where OCMT
is repeated by testing the statistical contribution of the remaining covariates, not selected in
the first stage, again one at a time, to the unexplained part of 3;,. We will show that this multi-
stage process converges in a finite number of steps, since the number of hidden signals cannot
rise with n. In a final step all statistically significant covariates, from all stages, are included
as joint determinants of y; in a multiple regression setting. Whilst the initial regressions of
our procedure are common to boosting (see Buhlmann (2006)) and to the screening approach
discussed in Fan and Lv (2008), Huang et al. (2008), Fan et al. (2009) and Fan and Song
(2010), OCMT provides an inferentially motivated stopping rule without resorting to the use
of information criteria, or penalised regression after the initial stage.

Related sequential model selection approaches have been proposed, among others, by Fithian
et al. (2014), Tibshirani et al. (2014) and Fithian et al. (2015). In the context of linear regres-
sion, these methods build regression models by selecting variables from active sets, based on a
sequence of tests. The use of multiple testing, implies that the choice of critical values, used
at every testing step in the sequence, is crucial and there have been a number of important
contributions, in this respect, including Li and Barber (2015) and G’Sell et al. (2016).

We provide theoretical results for the proposed OCMT procedure under relatively mild
assumptions. In particular, we do not assume either a fixed design or time series independence
for x,; but consider a martingale difference condition for the cross-products z;x; and T,.uy,
where u; is the error term of the true model. While these martingale difference conditions are
our maintained assumption, we also provide theoretical arguments that allow the covariates to
follow mixing processes. We establish theoretical results on the true positive rate, the false
positive rate, the false discovery rate, and the norms of the coefficient estimate as well as the
regression error.

We investigate the small sample properties of the proposed estimator and compare its per-
formance with a number of penalised regressions (including Lasso and Adaptive Lasso), and
boosting techniques. We consider data generating processes with and without lagged values of
yi, and carry out a large number of experiments. Although no method uniformly dominates,
the results clearly show that OCMT does well across a number of dimensions. In particular,
OCMT is very successful at eliminating noise variables, whereas it is still quite powerful at
picking up the signals. It is outperformed by Lasso and Adaptive Lasso for a small fraction
of experiments only. The relative performance of OCMT is also illustrated in an empirical

application to forecasting U.S. output growth and inflation.



The paper is structured as follows: Section 2 explains the basic idea behind the OCMT
method and introduces the concepts of the true and approximating models. Section 3 provides
a formal description of the OCMT method and derives its asymptotic properties. Sections 4
presents a number of extensions. Section 5 gives the details of the Monte Carlo experiments
and the summary of the simulation results. Section 6 presents the empirical application, and
Section 7 concludes. Online supplement, organized in three parts, provide additional theoretical
results and proofs, a complete set of Monte Carlo results for all the experiments conducted,
and additional empirical findings.

Notations: Generic positive finite constants are denoted by C; for ¢ = 0,1,2,... . They
can take different values at different instances. If {f,} 7, is any real sequence and {g, } -, is a
sequences of positive real numbers, then f,, = O(g,), if there exists a positive finite constant Cj
such that |f,,| /gn < Co for all n. f,, = o(gn) if fn/gn — 0asn — oco. If {f,} 7, and {g,} - are
both positive sequences of real numbers, then f,, = & (g,) if there exists Ny > 1 and positive
finite constants Cy and C1, such that inf,>n, (fu/gn) > Co, and sup,sy, (fa/gn) < C1. —y

denotes convergence in probability as n,T — oo.

2 True and Approximating Models and OCMT

Consider the data generating process (DGP),

yr=a'z + SO0 Bira + w, (1)

where z; is a known vector of pre-selected variables, 1, xo, ..., Ty are the k unknown true or
signal variables, 0 < |3;| < C < oo, fori = 1,2, ..., k, and u, is an error term. It is assumed that
z; and xy, 2 = 1,2, ..., k, are uncorrelated with u; at time t. z;, may include deterministic terms
such as a constant, linear trend and dummy variables, and/or stochastic variables, possibly
including common factors and lagged values of y;, that are considered crucial for the modelling
of y;, and are selected based possibly on a priori theoretical grounds.

Further suppose that the k signals are contained in a set S,y = {zy,i = 1,2, ...,n}, with n
being potentially larger than T, which we refer to as the active set.® In addition to the k signals,
the active set is comprised of noise variables that have zero correlations with the signals once
the effects of z; are filtered out, and a remaining set of variables that, net of z;, are correlated
with the signals. We refer to the latter as pseudo-signals or proxy variables, since they can be

falsely viewed as signals.

3We assume that the signal variables are contained in the active set. Nevertheless, OCMT can be applied
even if the active set does not contain all of the signal variables. It is clear that in such a setting the true model
or a model that contains the true model cannot be identified. However, OCMT will still weed out the variables
that are uncorrelated with the signals. In support of this, we provide Monte Carlo evidence in Section 5 of the
online MC supplement, based on a Monte Carlo experiment suggested to us by a referee.



The OCMT procedure considers the least squares (LS) regression of y; on z; and the re-
gressors in the active set one at the time. Let t; be the t-ratio of x;; in the regression of y; on

z; and xu, for i =1,2,....n,

T2 M,y T2 M. 1t T-Y22'M,u
t; = - L = - ! + - ! = ti,p + ti,u; (2)
O'i\/TfliIZ;MZIEi O'i\/TfliB;Mz.’Bi O',L'\/Tfl.’B;MziBi
where ©; = (7,1, Zi2,...,7;7) and y = (y1,92,...,yr) are T x 1 vectors of observations on

x; and y;, respectively, p = (Nl; 2, -'-7NT),7 Mt = Z?:lﬁixita u = (UI; U2, ---7UT)/, M, =
I;—Z(Z'Z) ' Z', Z=(z1, 23, ..., zr) is the matrix of observations on z,, and 6; is the standard
error of the regression of y; on z; and x;.

Consider first t; ,,, defined by (2), which plays a key role in the workings of the OCMT. As
n,T — oo, we rely on ¢; , to remain bounded in probability sufficiently sharply so as to allow for
multiple testing over very large values of n. We obtain such bounds under a variety of relatively
mild assumptions on u; and x;. For example, we allow u; to be a martingale difference process
and require z;; to be uncorrelated with u;. We do not require x;; to be strictly exogenous.

Regarding t; , in (2), we distinguish between the cases where ¢; , is bounded in probability
sufficiently sharply as n,T" — oo and when it is not. The latter case is of special interest and
suggests that z;; has power in explaining y;, net of the pre-selected variables, z;. In such a
case, we select x;;, and we distinguish between the signal variables, that are contained in py,
and pseudo-signal variables, which are not in p; but are nevertheless correlated with it. We
show that OCMT identifies all such covariates with probability approaching one.

In the former case where ¢; , is bounded in probability sufficiently sharply as n,T" — oo,
we characterise x;; as a noise covariate if it is not contained in p;, and a hidden signal if it is
contained in ;. We show that all hidden signals will be selected by the application of one or
more additional stages of OCMT.

It is clear from the above exposition that our variable selection approach focusses on the
net impact of x; on y; conditional on the vector of pre-selected variables z;, rather than the
marginal effects defined by ;. The conditional net impact coefficient of x; on y; generalizes

the mean net impact coefficient considered by Pesaran and Smith (2014), and it is given by

Oir (2) = Y5100 (2) 4 (3)

where 0 r(2) = E (T '@;M ,z;). To simplify the exposition, we suppress the 7" subscript and
use 6; (z) and o, (2z) below.

6;(z) plays a crucial role in our proposed approach, as it determines whether ¢; , in (2) is
bounded in probability sufficiently sharply as n,T" — oo. Ideally, we would like to be able to
base our selection decision directly on (3; and its estimate. But when n is large such a strategy
is not feasible. Instead, we propose to base variable selection on 6;(z). It is important to

stress that knowing 6;(z) does not imply we can determine ;. Due to the correlation between
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variables, nonzero 6;(z) does not necessarily imply nonzero /3; and we have the following four

possibilities:
Bi # 0 | (I) Signals with nonzero net effect (II) Hidden signals
B; = 0 | (III) Pseudo-signals (IV) Noise variables

The first and the last case, where 0;(z) # 0 if and only if 5; # 0, is the most straightforward
case to be considered. But there is also a possibility of case II where 6;(z) = 0 and 3; # 0 and
case III where 0;(z) # 0 and /3; = 0. These cases will also be considered in our analysis. Case 11
is likely to be rare in practice since it requires an ezact equality between the coefficients of the
true model, namely 3; = —Zle’j 2iBio; ' (2) 0i; (z). However, the presence of pseudo-signals
(case III) is quite likely, and will be an important consideration in our model selection strategy.

We shall refer to the model that contains only the signals as the true model, and to the model
that contains the signals as well as one or more of the pseudo-signals, but none of the noise
variables, as an approximating model. We assume that there are k* pseudo-signal variables
ordered to follow the k signal variables, so that the first £ + £* variables in S,; are signals
and pseudo-signals, although this is not known to the investigator. The remaining n — k — k*
variables are the noise variables. We assume that k is an unknown fixed constant, but allow £*
to rise with n such that k*/n — 0, and k*/T — 0, at a sufficiently slow rate. Specifically, we
allow k* = © (n®) for some appropriately bounded ¢ > 0. We expect € to be small when the
correlation between the signals and the remaining covariates is sparse.

Our secondary maintained assumptions are somewhat more general and, accordingly, lead
to fewer and weaker results. A first specification assumes that there exists an ordering (possibly
unknown) such that

0:(z) = Cio', fori=1,2,...n, and |o| < 1, (4)

for a given set of constants, C;. A second specification modifies the decay rate and assumes
that
0i(z) =Cyi 7 fori=1,2,...,n, and for some v > 0. (5)

In both specifications max;<;<, |C;| < C' < co. These specifications allow for various rates of
decay in the way covariates are correlated with the signals. These cases are of technical interest
and cover the autoregressive type designs considered in the literature in order to model the

correlations across the covariates. See, for example, Zhang (2010) and Belloni et al. (2014b).

3 The Multiple Testing Approach

OCMT is inspired by the multiple testing literature, although the focus of OCMT is on con-

trolling the probability of selecting an approximating model and the false discovery rate, rather



than controlling the size of the union of the multiple tests that are being carried out. To sim-
plify the exposition below, we assume that the vector of pre-selected variables, z;, contains only

an intercept, in which case, the DGP (1) simplifies to
Ui :a—i—Zf:lﬁixit—l—ut, fort=1,2,....,T. (6)

In matrix notation, we have
y:aTT+Xk/6k+ua (7)

where 77 is a T' x 1 vector of ones, X = (1, 2, ..., xx) is the T' X k matrix of observations
on signal variables, 3, = (81, 32, ..., Bx)’ is the k x 1 vector of associated slope coefficients and
w = (u1,us, ...,ur) is T x 1 vector of errors. In addition, the conditional net impact coefficient
0;(z) simplifies, for z; = 1, to

k
0; = ijlﬁjaz'j, (8)
where (we again suppress the subscript T'), 0;; = E (T M, z;), and M, = I+ — 7774 /T.

We consider the following assumptions:

Assumption 1 Let Xy = (X4, X.), where Xy, = (21, 2, ..., ), and

X = (Tpy1, Trioy oo Trypr) are T X k and T X k* observation matrices on signals and pseudo-
signals, and suppose that there exists Ty such that for all T > Ty, (TﬁlX;ﬁ’k*th*)*l 18 NONSIN-
gular with its smallest eigenvalue uniformly bounded away from 0, and ¥y, j» = E (T‘lX;ﬁk*Xng*)

18 nonsingular for all T.

Assumption 2 The error term, u;, in DGP (6) is a martingale difference process with respect

to F | = o (us_1,Us_2, ..., ), with a zero mean and a constant variance, 0 < o < C' < oo.

Assumption 3 Let F}, = o (@i, Tig—1,....), where xy, for i = 1,2,...,n, is the i-th covariate
in the actve set Spi. Define Fy™ = Ui, . Fi, Fi° = Uk G and FEo= FT U F.
Then, xz; is independent of xjp fort = 1,2,.. .k +Fk*, j =k +k + 1L, k+k*+2,...n, and
for allt and t', and E [a:itxjt — E (ziuxjt) |]:f_1] =0, fori,j =1,2,....,n, and all t. Finally,

E (zgui|Fi—1) =0, for i =1,2,...,n, and all t, where F, = FF U F}.

Assumption 4 There exist sufficiently large positive constants Cy, C1, Cy and Cs and s,, s, > 0

such that the covariates in the active set S, satisfy
sup; ; Pr (Jzi| > o) < Cpexp (=Cra™), for all a >0, 9)
and the errors, us, in DGP (6) satisfy

sup, Pr (|uy| > a) < Cyexp (—Csa°*), for all a > 0. (10)



Assumption 5 Consider x; and the lp x 1 vector of covariates q, = (q14, oy, ---anT,t)/- q.

can contain a constant term, and x; is a generic element of S,; that does not belong to q.,.

It is assumed that £ (q.v,) and Xy = E(q,q,;) evist and 3y, is invertible. Define v, r =
-1 T

T E(qry)] and

. o /
Ugpt T = Ugt = Tt — Pqu,th' (11)

All elements of the vector of projection coefficients, v, v, are uniformly bounded and only a

finite number of the elements of v, 7 are different from zero.

Assumption 6 The number of signals, k, in (6) is finite, and their slope coefficients could
change with T, such that fori=1,2,..,k, Bir =© (T*ﬁ), for some 0 < 9 < 1/2.

Before formally outlining OCMT procedure and presenting our theoretical results, we pro-
vide some remarks on the pros and cons of our assumptions as compared to the ones typically
assumed in the penalised regression and boosting literature.

Assumption 1 ensures that regression coefficients in the model containing all signals and
pseudo-signals and none of the noise variables are identified. Assumption 2 is slightly more
general than the usual assumption in the regression analysis. Assumption 3 allows x; to be
a martingale difference sequence which is somewhat weaker than the IID assumption typically
made in the literature on penalised regression. Relaxation of this assumption to allow for
serially correlated covariates is discussed in Section 4.2.

The exponential bounds in Assumption 4 are sufficient for the existence of all moments of
the covariates, z;;, and the error term, u;. It is very common in the literature to assume some
form of exponentially declining bound for probability tails of u; and z;. See, for example,
Zheng et al. (2014).

Assumption 5 is a technical condition that is required for some results derived in the Ap-
pendix and in the online theory supplement, which consider a more general multiple regression
context where subsets of regressors in «,,; are included in the regression equation. In the simple
case where q, = 1, then Assumption 5 is trivially satisfied and follows from the rest of the
assumptions, and we have v,, r = flo7 = % Zle E(xt), and ug 7 = T — o1

Assumption 6 allows for the possibility of weak signal variables whose coefficients, f;r,
for ¢ = 1,2,...,k, decline with the sample size, T, at a sufficiently slow rate. To simplify
notation, subscript 7" is dropped subsequently, and it is understood that the slope and net effect
coefficients can change with the sample size according to this assumption. Using #;, we can
refine our concept of pseudo-signals as variables with 6, = © (T _19) fori=k+1,k+2,...,k+k*,
for some 0 < ¥ < 1/2. Remark 1 discusses further how this condition enters the theoretical
results.

Regarding our assumptions on the correlation between variables in the active set we note the
following. The signal and noise variables are allowed to be correlated amongst themselves, so no

restrictions are imposed on o;; for ¢, 7 = 1,2, ...k, and on o;; for ¢, j = k+k*+1, k+k*+2, ..., n.



Also, signals and pseudo-signals are allowed to be correlated; namely, o;; could be non-zero for
1,7 = 1,2, ..., k+k*. Therefore, signals and pseudo-signals as well as noise variables can contain
common factors, but, under our definition of noise variables, the factors cannot be shared
between the signals/pseudo-signals and noise variables, since the latter are uncorrelated with
the former. If there are common factors affecting signal variables as well as a large number
of the remaining variables in the active set, one can and should condition on such factors, as
we do in our empirical illustration.* Without such conditioning, the size of the approximating
model would be too large to be of practical use, when common factors affect both signal and a
large number of the remaining variables in the active set.

In contrast, a number of crucial issues arise in the context of Lasso, or more generally when
L, penalty functions with 0 < ¢ < 1 are used. Firstly, it is customary to assume a framework
of fixed-design regressor matrices, where in many cases a generalisation to stochastic regressors
is not straightforward, requiring conditions such as the spark condition of Donoho and Elad
(2003) and Zheng et al. (2014). Secondly, a frequent condition for Lasso to be a valid variable
selection method is the irrepresentable condition which bounds the maximum of all regression
coefficients, in regression of any noise or pseudo-signal variable on the signals, to be less than
one in the case of normalised regressor variables. See, for example, Section 7.5 of Buhlmann
and van de Geer (2011).

Further, most results for penalised regression essentially take as given the knowledge of the
tuning parameter associated with the penalty function. In practice, cross-validation is used
to determine this parameter but theoretical results on the properties of such cross-validation
schemes are rare. Available theoretical results on boosting, as presented in Buhlmann (2006),
are also limited to the case of bounded and IID regressors, while few restrictions are placed on
their correlation structure.

We proceed next with formally describing the OCMT procedure. It is a multi-stage proce-
dure. In the first stage, we consider the n bivariate regressions of y; on a constant (z; in the

general case) and x, for i = 1,2, ..., n,
yt:C¢+¢¢$it+uit, t= 1,2,...,T, (12)
where ¢; = 0;/0;;, 0; is defined in (8) and oy; is defined below (8). Denoting the t-ratio of ¢; in

this regression by ¢; 0y e have

in /
z- M.,
¢ Z; Yy (13)

173 = - N )

4Note that our theory allows for conditioning on observed common factors by incorporating them in z;.
But when factors are unobserved they need to be replaced by their estimates using, for example, principal
components. A formal argument that the associated estimation error is asymptotically negligible involves
additional technical complications, and requires deriving exponential inequalities for the quantities analysed in
Theorem 1 of Bai and Ng (2002) and Lemma A1 of Bai and Ng (2006), and then assuming that v/7'/n — 0 as
n,T — oo. While such a derivation is clearly feasible under appropriate regularity conditions, a formal analysis
is beyond the scope of the present paper.




where ¢; = (/M ,x;)"" /M,y denotes the LS estimator of ¢;, 62 = e,e;/T, and e; denotes
the T' x 1 vector of residual of the regression of y on 7 and x;. The first stage OCMT selection

indicator is given by
Tiy = 1llts, | > ¢ (n,6)], fori = 1,2,....m, (14)

where ¢,(n,0) is a critical value function defined by

¢, (n,8) = @ (1 - %) : (15)

®~!(.) is the inverse of standard normal distribution function, f (n,d) = cn’ for some positive
constants 0 and ¢, and p (0 < p < 1) is the nominal size of the individual tests to be set by
the investigator. We will refer to ¢ as the critical value exponent. One value of ¢ is used in the
first stage, while another one (denoted by §*) is used in subsequent stages of OCMT. As we
shall see, it will be required that 6* > 4. Variables with flﬁ) = 1 are selected as signals and
pseudo-signals in the first stage. Denote the number of covariates selected in the first stage by
k:‘)) the index set of the selected variables by S(1)> and the T x /%2’1) observation matrix of the
k;(o) selected variables by X7). Further, let X 1) = (77, X)) = (@)1, B),7)’, ka) = k()
Sny = SE’l), and A9 = {1,2,...,n} \ Su). For future 1"efe1"en(:ei we also set X () = 77 and
Aqy = {1,2,...,n}. In stages j = 2,3, ..., we consider the n — k(;_1) regressions of y, on the
variables in X (;_;) and, one at the time, x; for i belonging in the active set, ;. We then
compute the following t-ratios

b (i ;M ;_
Gi,(5) _ G-y , forie Ay, j=2,3,..., (16)

- =
$ii ) >
Y s (qﬁi,m) i)V M 1) Ti

where ngSi,(j) = (:B;M(j,l)mi)fl x;M (j_1)y is the LS estimator of the conditional net effect of
T on ¥ in stage j, 63,(;‘) = T‘legv(j)ei’(j), M 1y =1Ir— X(j_l)(X'(jfl)X(j_l))_lX'(jfl), and
e; ;) denotes the residual vector of the regression of y on X; ;_1) = (a:i, X - 1)) Regressors
for which jl (j) = 1, are then added to the set of already selected covariates from the previous
stages, where ‘717 Gy = 1|t d%,(ﬂ’ > ¢, (n,0%)]. Denote the number of variables selected in stage
j by k?j)’ their index set by S(Oj), and the T x k‘E’j) matrix of the k") selected variables in
stage j by X{,). Also let X(;) = (X(;_1), X)) = (T),1, T2, TG)1) s k(]) = /{:j 1+ k

S(j) = S(j-1) U Sy}, define the (j + 1) stage active set by ;1) = {1,2,...,n} \ S, and then
proceed to the next stage by increasing j by one. Note that & ;) is the total number of variables
selected up to and including stage 7, QASL(J-) —p i)/ 0ii (), where 0; ;) and 0;; (jy are used in the
remainder of this paper to denote 6; (:zz(j_l)) and oy (sc(j_l)) introduced in (3). Also to simplify
the notation, 6; ;) is shown as ;. The procedure stops when no regressors are selected at a

given stage, say J, in which case the final number of selected variables will be given, as before,



by k= /%(j_l). The multi-stage OCMT selection indicator is thus given by T, = Zf:lj;(j%
where P denotes the number of stages at completion of OCMT, formally defined as

P =min{j: Y T =0} — L. (17)

It is important to note that the number of stages needed for OCMT is bounded in n. To
show this we note that not all signals can be hidden, and once we condition on the set of signals
that are not hidden, then there must exist 7 such that ;(z) # 0, while 6; = 0 and S; # 0, where
here z denotes the signal variables that are not hidden.® Using this result one can successively
uncover all hidden signals. We denote by P the number of stages that need to be considered
to uncover all hidden signals. Its true population value is denoted by Fy. This is defined as the
index of the last stage where OCMT finds further signals (or pseudo-signals), assuming that
Pr[]t$i7(j)] > ¢p(n,0) |0, # 0] =1 and Pr[\tq;i’(j)\ > ¢p(n,0)|0;,; = 0] = 0, for all variables
indexed by 7, and OCMT stages indexed by j. Of course, these probabilities do not take the
values 1 and 0 respectively, in small samples, but we will handle this complication later on.

The following proposition provides an upper bound to F.

Proposition 1 Suppose that y;, t = 1,2, ..., T, are generated according to (6), with B; # 0 for
i =1,2,...,k, and that Assumption 1 holds. Then, there exists j, 1 < j < k, for which 0; ;) # 0,
and the population value of the number of stages required to select all the signals, denoted as
Py, satisfies 1 < Py < k.

A proof is provided in Subsection A.2.1 of the Appendix.

In practice, P is likely to be small since hidden signals arise only in rare cases where 6; = 0
whilst the associated (; is non-zero. Also, as we show all signals with nonzero 6 will be picked
up with probability tending to one in the first stage. Stopping after the first stage tends to
improve the small sample performance of the OCMT approach, investigated in Section 5, only
marginally when no hidden signals are present. Thus, allowing P > 1, using the stopping rule
defined above, does not significantly deteriorate the small sample performance of OCMT when
hidden signals are not present, while it picks-up all hidden signals with probability tending to
one. Finally, using (7), note that the conditional net effect coefficient of variable i at stage j of
OCMT, 0; (), can be written as

0iy = E (T ' oM j_1yy) = E (T2, M ;1) X1By) = Yp_1 0w (x-1),  (18)

and to allow for the possibility of weak signals as defined by Assumption 6, pseudo-signal
variables can be more generally defined as covariates i = k + 1,k + 2, ...,k + k* with 0, ;) =
= (T‘ﬁ), for some 0 < < 1/2 and some 1 < j < F.

’For a proof see Lemma Al in the online supplement. Note also that z; may contain lagged values of v,
principal components or other estimates of common effects as well as covariates that the investigator believes
must be included.
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Once the OCMT procedure is completed, the OCMT estimator of 3;, denoted by B;, is set

as

BZ:{ Y HT=1 fio10 (19)
0, otherwise

where Bfk) is the LS estimator of the coefficient of the i*" variable in a regression of y; on all
the selected covariates, namely all the covariates for which jz = 1, plus a constant term (z; in
the general case).

The choice of the critical value function, ¢, (n, d), given by (15), is important since it allows
the investigator to relate the size and power of the selection procedure to the inferential problem
in classical statistics, with the modification that p (type I error) is now scaled by a function of
the number of covariates under consideration. As we shall see, the OCMT procedure applies
irrespective of whether n is small or large relative to 7', so long as T' = © (n"'), for any finite
k1 > 0. This follows from result (i) of Lemma A2 in the online supplement, which establishes
that ¢ (n,0) = O[d1In(n)]. It is also helpful to bear in mind that, using result (ii) of Lemma
A2 in the online supplement, exp [—«c2 (n,0) /2] = & (%), and ¢, (n,d) = o (T), for all
Co > 0, assuming there exists k1 > 0, such that 7" = & (n").

Note that setting 6 = 1 in the first stage, is equivalent to using a Bonferroni correction for
the multiple testing problem. Of course, other ¢, values can be used, such as those proposed
by Holm (1979), Benjamini and Hochberg (1995), or Gavrilov et al. (2009) which are designed
to control the family-wise error rate associated with a set of tests. However, since most impose
some restriction on the dependence structure between the multiple tests (with the exception
of the original Bonferroni procedure and the one proposed by Holm (1979)), we choose to use
(15) which, furthermore, has a bespoke design, in terms of the conditions placed on §, and is
appropriate for the multi-stage OCMT method, where the number of tests carried out is not
predetermined in advance.

We now consider the relationship of OCMT to sequential model selection procedures ad-
vanced in the literature. A notable example is Lo-Boosting by Buhlmann (2006) which starts
with the same set of bivariate regressions, (12), but in the first step selects only the covariate
with the maximum fit, as measured by the sum of squared residuals (SSR). Additional covari-
ates are added sequentially by regressing a quasi-residual from the first step on the remaining
covariates. The process is continued till convergence decided based on some information cri-
terion.® Other sequential model selection approaches, such as those by Fithian et al. (2014),
Tibshirani et al. (2014) and Fithian et al. (2015) build regression models by selecting variables
from active sets, based on a sequence of tests. Variables are selected, and added to the model,
one by one and selection stops once a test does not reject the latest null hypothesis in the

sequence. It is important to note that these methods select one covariate (or at most a block

6The quasi-residuals are computed as 3; — v 9, where ; is the fitted value in terms of the selected covariate,
and v is a constant tuning parameter referred to as the step size. Buhlmann (2006) recommends choosing v < 1.
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of covariates) in each of the steps. In contrast, OCMT operates as a ‘hub and spoke’ approach.
It selects, in a single step, all variables whose t-ratios, in (12), exceed a threshold (given by
¢y (n,0)), in absolute value. As aresult, it is clear that in its main implementation OCMT is not
a sequential approach. Only in the presence of hidden signals, does OCMT require subsequent
stages. Even then, under our setting, where k is finite, the number of stages cannot exceed k
with a high probability, and as a result in the vast majority of cases the number of additional
stages required will be rather small.

We investigate the asymptotic properties of the OCMT procedure and the associated OCMT
estimators, f3;, for i = 1,2,...,n, in terms of the probability of selecting the approximating
model, and in terms of support recovery type statistics used in the Lasso literature, namely the
true and false positive rates (TRP and F PR, respectively) defined by

S I(J; =1 and §; # 0) S I =1, and §; = 0)

TPR,r = " ,and FPR, r = 5 20
! Zi:1 1(B; #0) ! Zi:l I(B8; = 0) ( )
We also examine the following false discovery rate
" I(Ji=1, and B; = 0; =
FDRmT _ Zzzl (uyz , all Bz i 0) , (21)

2 Jit1
which applies to selection of signals and pseudo-signals. Further, we consider the error and the

coefficient norms of the selected model, defined by

Fy =T Yal? = T7'C 4, and Fg = (18, =B, || = [Zi= (5 — 572, (22)
respectively, where @ = (g, Uy, ..., Ur), U = Y — G — B;wnt, B, = (B1,52, -, Bn)s ﬁn =
(Bl, Bs, ..., Bn)’, B;, for i = 1,2, ...,n are defined by (19), and a is the estimator of the constant
term in the final regression.

We now present the main theoretical results using lemmas established in the online supple-
ment. The key is Lemma A10 in the online supplement, which provides sharp bounds on the
probability of |¢ éﬁi,(j)| > ¢, (n,0) conditional on whether the net effect coefficient 0; ;) is zero or
not. Here we provide a simpler version of this lemma which focuses on the first-stage regressions
and should provide a better understanding of the main mathematical results that lie behind

the proofs in the more complicated multi-stage version of the OCMT.

Proposition 2 Suppose y; is given by (6) and Assumptions 2-4 hold. Let x; be a generic
element of the active set Sy, and suppose Assumption 5 holds for x; and q, = 1. Consider the

t-ratio of x; in the regression of y; on an intercept and x;:

T—1/2w/MTy
V(T-1ee) (T-1z'M,z)

T

where e is the T x 1 vector of regression residuals. Let § = E (T~ 'z’M.,y) be the net impact

effect of x;, and suppose there exists k1 > 0 such that T = © (n"'). Then, for some finite
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positive constants Cy and Cy, we have
Pr(|t.] > ¢, (n,0)]0 = 0] < exp [—ch, (n,d) /2] + exp (—C’OTcl) , (23)

where ¢, (n,d) is the critical value function given by (15), and x = [(1 — ) / (1 + d7)]?, for any
min the range 0 < 7w < 1, any dr > 0 and bounded in T. Suppose further that in the case where
0 # 0, we have 0 = © (T~"), for some 0 <9 < 1/2, where ¢, (n,8) = O (T*/*79=C4), for some

positive constant Cy. Then,
Pr(|t,] > ¢, (n,8)|0 £ 0] > 1 — exp (_CQTCS) . (24)

Result (23) establishes a sharp probability bound for the absolute value of the ¢-ratio of x
with zero net impact effect. The first term on the right side of (23) asymptotically dominates,
and using result (ii) of Lemma A2 in the online supplement we have exp [—Xcg (n,0)/ 2} =
) (n_‘sx). Result (24), on the other hand, establishes a lower bound on the probability of the
event |t $i7(1)| > ¢, (n,0) conditional on 6 being sufficiently away from zero.

Since we wish to allow for the possibility of hidden signals for which # = 0 even if the
associated [ # 0, the results in Lemma A10 in the online supplement are obtained for ¢-ratios
in multiple regression contexts where subsets of regressors in the active set are also included in
the regression equation for y;. Nevertheless, it is instructive to initially consider the OCMT in
the absence of such hidden signals. Theorems 1 and 2 below provide the results for the general
case where hidden signals are allowed.

We first examine T'PR,, r defined by (20), under the assumption that 6; # 0 if 5; # 0. Note
that by definition TPR,r = k™* Zle I(ji,(l) = 1 and ; # 0). Since the elements of this
summation are 0 or 1, then taking expectations we have (note that in the present simple case
0; # 0 implies 5; # 0)

TPR,r = k‘lzleE[I(i7(1) =1land g #0)] = k:_IZf:l Pr[|tq3i’(1)| > ¢, (n,0)10; # 0.
Now using result (24) of Proposition 2, and recalling that 7' = © (n"!) , we have
TPR,r >1—exp (—CoT®) =1+ O [exp (—Con®™)] (25)

for some Cy, C5 > 0. Hence, TPR, + —, 1 for any x; > 0.

Consider now F'PR,, 1 defined by (20). Again, note that the elements of F'PR,, 1 are either
0 or 1 and hence |FPR,r| = FPR,r. Taking expectations of the right part of (20), and
assuming ¢; = © (T‘ﬁ), fori = k+ 1,k +2,...k + k, and some 0 < ¢ < 1/2, we have
(= k) S Prllty, | > ¢ (n,0) 18 = 0] = (n— k) S8 Prllty | > ¢ (n,6) |6 #
0]4+(n—k)~" > ki Pr[|tq;i’(1)| > ¢, (n,0)16;] = 0. Using (24) of Proposition 2 and assuming
there exists k1 > 0 such that T'= & (n*'), we have k* — Zf:,fﬂ Pr[|td~)l_’(1)| > ¢, (n,0)0; # 0] =
O [exp (—CgTC"')}, for some finite positive constants Cy and C3. Moreover, (23) of Proposition
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2, which holds uniformly over i, given the uniformity of (9) and (10) of Assumption 4, implies

that for any 0 < 3¢ < 1 there exist finite positive constants Cy and C; such that

> ke Pr[|tq§i,(1>| > ¢y (n,0)10; =01 < 30, iy {exp [—3ec (n,6) /2] + exp (=CoTY) }.
(26)

Using these results we obtain

(n—Fk)* Yot Pr[|tq;i7(1)| > ¢, (n,0)|8;=01=k"/(n—k)+ O {exp [—%CZ (n,0) /2] }
+0 [exp(—C’OTcl)} + O [exp (—CQTC?’) /(n—k)]. (27)

Next, we consider the probability of choosing the approximating model. A selected re-
gression model is referred to as an approximating model if it contains the signal variables x;,
1 =1,2,.... k, and none of the noise variables, x;, : = k + k* + 1,k + k* 4+ 2, ...,n. The models
in the set may contain one or more of the pseudo-signals, =, i = k+ 1,k + 2,....k + k*. We
refer to all such regressions as the set of approximating models. So, the event of choosing the

approximating model is given by

Ao = {30 T =k} 0 {0 e n s = O} (28)

Theorem 1 below states the conditions under which Pr (Ag) — 1. The results for the general
multi-stage case that allows for the possibility of hidden signals are given in the following
theorem. Since it is assumed that the expansion rates of 7" and n are related, the results that
follow are reported in terms of n for presentational ease and consistency. They could, of course,

be reported equally in terms of T, if required.

Theorem 1 Consider the DGP (6) with k signals, k* pseudo-signals, and n — k — k* noise
variables, and suppose that Assumptions 1-4 and 6 hold, Assumption 5 holds for x; and q, =
Ti—n 0 € Ay, J=1,2,..k, where ;) is the active set at stage j of the OCMT procedure.
¢, (n,0) is given by (15) with 0 < p < 1 and let f (n,8) = en®, for the first stage of OCMT,
and f (n,8*) = cn® for subsequent stages, for some ¢ > 0, 6* > § > 0. n,T — oo, such that
T =6 (n™), for some k1 > 0, and k* = &(n°) for some positive ¢ < min {1, k,/3}. Then, for

any 0 < 3¢ < 1, and for some constant Cy > 0,

(a) the probability that the number of stages in the OCMT procedure, P, defined by (17),

exceeds k is given by

Pr(P>k) =0 () +0 () £ 0 fexp (-n®)] . (20)

(b) the probability of selecting the approximating model, Ay, defined by (28), is given by

Pr(Ag) =140 (nl"s}f) +0 (nQ"s*”) +0 (nlf'“/?’*”‘;) +0 [eXp (—nc‘)’“)} , (30)
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(c) for the True Positive Rate, TPR,, r, defined by (20), we have
E |TPRn7T| — 140 (n17/€1/37%6) +0 [exp (_ncom)] ’ (31)

and if 6 > 1 —rky1/3, then TPR, v —, 1; for the False Positive Rate, FPR,, r, defined by
(20), we have

*

n—=k

E|FPR,r| = +0 (n_%‘;) +0 (nl_’“/?’_”‘;) +0 (nl_”é*)+0 (n“ )40 [exp (—nco“l)] ,
(32)
and if 6 > min {0,1 — k,/3}, and 6* > 1, then FPR, r —, 0. For the False Discovery

Rate, FDR,, 1, defined in (21), we have FDR, r —, 0, if § > max {1,2 — x;/3}.

Since our proof requires that 0 < s < 1, it is sufficient to set sz to be arbitrarily close to,
but less than, unity. Also, k; can be arbitrarily small which allows n to rise much faster than
T. The condition 0 < € < min {1, x;/3} ensures that k*/n — 0 and k* = o(T"/3).

Remark 1 Assumption 6 allows for weak signals. In particular, we allow slope coefficients of
order © (T™"), for some 0 < ¥ < 1/2. Then, by (B.57) and (B.58) of Lemma A10 of the
online supplement, it is seen that such weak signals can be picked up at no cost, in terms of
rates, with respect to the exponential inequalities that underlie all the theoretical results. In

particular, the power of the OCMT procedure in selecting the signal variable x;; rises with the
cp(n,0)

VT|6;, 5|

(18), 0¢, (1) and o4, (1) are defined by (B.49), replacing e, x, and M, by e;, x;, and M ;_y),

ratio /T |9i7(j)| [Ce,(T)Oz: (T), SO long as — 0, asn and T — oo, where 0; ;) is given by
respectively. When this ratio is low, a large T will be required for the OCMT approach to select
the it" signal variable. This condition is similar to the so-called ‘beta-min’ condition assumed

in the penalised regression literature. (See, for example, Section 7.4 of Buhlmann and van de
Geer (2011) for a discussion.)

Remark 2 When the focus of the analysis is the true model, and not the approrimating model

that encompasses it, then the false discovery rate of the true model is given by

N Z?:l%‘i‘].

It is now easily seen that DRy, 1 can tend to a nonzero value when pseudo-signals are present

(33)

(i.e. if k* > 0). In such cases, where the selection of the true model is the main objective of the
analysis, a post-OCMT selection, using, for example, the Schwarz information criterion, could
be considered to separate the signals from the pseudo-signals. However, when the norm of slope
coefficients or the in-sample fit of the model is of main concern, then, under appropriate condi-
tions on the rate at which k* expands with n, the inclusion of pseudo-signals is asymptotically

mnocuous, as shown in Theorem 2 below.

Consider now the error and coefficient norms of the selected model, F, and Fj, defined in

(22). We need the following additional regularity condition.
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Assumption 7 Let S denote the T X Il observation matrix on the Iy regressors selected by the
OCMT procedure. Then, let X3 = E (S'S/T) with eigenvalues denoted by py < pg < ... < py,.
Let iy = O (Ip), i = lp — M + 1,lp — M + 2, ..., Iy, for some finite M, and sup,<;<;,. n fi <
Cp < 00, for some Cy > 0. In addition, int;<;<;, p; > C1 > 0, for some Cy > 0.

Theorem 2 Consider the DGP defined by (6), and the error and coefficient norms of the
selected model, Iy and Fg, defined in (22). Suppose that Assumptions 1-4 and 6-7 hold, As-
sumption 5 holds for v and q, = x(j_1)¢, 1 € Uy, ] = 1,2, ...k, where ™) is the active set at
stage j of the OCMT procedure, and k* (the number of pseudo-signals) is of order & (n€) for
some positive €. ¢, (n,d) is given by (15) with0 < p < 1 and let f (n,8) = cn®, for the first stage
of OCMT, and f (n,d*) = cn® for subsequent stages, for some ¢ > 0, 6* > 6 > 0. n,T — oo,
such that T = & (n"™), for some k1 > 0, and k* = S(n°) for some positive ¢ < min {1, x1/3}.
Let ,én be the estimator of B, = (51, P2, --., Bn)’ in the final regression. Then, for any 0 < ¢ < 1,

and some constant Cy > 0, we have
Fy =T Y@l = 0® + O,(T7?) + O(n*T73/2) = 6% + O,(n"/?) + O(n*>37/2),  (34)

and

Eg =18, =B || = 0p(n>">7™) + 0, (n/2). (35)

As can be seen from the above theorem, (34) and (35) require slightly stronger conditions
than those needed for the proof of the earlier results in Theorem 1. In particular, a condition
that relates to the eigenvalues of the population covariance of the selected regressors, denoted
by X, is needed. It aims to control the rate at which [|X_}|| grows. It is mild in the sense
that it allows for the presence of considerable collinearity between the regressors. Under this
condition and e < min {1, k;/3}, we in fact obtain an oracle rate of T~%/2 for the error norm.

It is important to provide intuition on why we can get a consistency result for the coefficient
norm of the selected model even though the selection process includes pseudo-signals. There
are two reasons for this. First, since OCMT procedure selects all signals with probability
approaching one as n,T" — o0, then the coefficients of the additionally selected regressors
(whether pseudo-signal or noise) will tend to zero with 7. Second, restricting the rate at which
k* rises with n, as set out in Theorem 2, implies that the inclusion of pseudo-signals can be
accommodated since their estimated coefficients will tend to zero and the variance of these
estimated coefficients will be controlled.

In the case where hidden signals are not present, we have F; = 1, and as noted earlier
further stages of the OCMT will not be required. Consequently, the results of Theorem 1 can
be simplified and obtained under a less restrictive set of conditions. When Py = 1, and assuming
that the conditions of Theorem 1 hold, with the exception of the condition on € which could
lie in [0, 1), we obtain the following results, established in Section A.2.5 of the Appendix. The

probability of selecting the approximating model is given by

Pr(A4g) =140 (n') 4+ O [nexp (—n“)], (36)
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and Pr(Ag) —, 1, if 6 > 1. For the support recovery statistics, we have
E|TPR,7| =14 O [exp (—n°)], and (37)

E|\FPR,7|=k"/(n—Fk)+ O (n_‘s%) +0 (n°) 4+ O [exp(—n“?)] . (38)
Hence, if 6 > 0, then TPR,, 7 —, 1, and FPR,r —, 0, and FDR, 7 —, 0, if 0 > 1.

4 Extensions

4.1 Alternative specifications for 6;

Theorems 1 and 2, and the results discussed above relate to the first maintained assumption
about the pseudo-signal variables where at most k* of them have non-zero ¢; (;) for some j. This
result can be extended to the case where potentially all variables have non-zero 6;, as long as
6,;’s are absolutely summable. Two leading cases considered in the literature are to assume that
there exists a (possibly unknown) ordering given by (4) or (5). The assumption that there is
only a finite number of variables for which 3; # 0, is retained. The rationale for hidden signals
is less clear for these cases, since rather than a discrete separation between variables with zero
and non-zero 6;, we consider a continuum that unites these two classes of variables. Essentially,
we have no separation in terms of signals (or pseudo-signals) and noise variables, since under
this setting there are no noise variables. Below, we provide some results for the settings implied

by (4) and (5), proven in the online supplement.

Theorem 3 Consider the DGP defined by (6), suppose that Assumptions 1-4 and 6 hold, As-
sumption 5 holds for xy and q, = 1, 1 = 1,2,...,n, and condition (4) holds. Moreover, let
cp (n,9) be given by (15) with 0 < p < 1 and f (n,d8) = cn?, for some ¢,§ > 0, and suppose there
exists k1 > 0 such that T = & (n"). Consider the variables selected by the OCMT procedure.
Then, for all ¢ > 0, we have E |FPR, 7| = o(n®~') + O [exp(—n)], for some finite positive
constant Cy, where FPR,, 1 is defined by (20). If condition (5) holds instead of condition (4),

then, assuming v > %m%, we have FPR,, 7 —, 0.

4.2 Dynamic Extensions

An important assumption made so far is that noise variables are martingale difference processes
which is restrictive in the case of time series applications. This assumption can be relaxed. In
particular, under the less restrictive assumption that noise variables are exponentially mixing,
it can be shown that all the theoretical results derived above hold. Details are provided in
Section C of the online theory supplement. A further extension involves relaxing the martingale
difference assumption for the signals and pseudo-signals. If we are willing to assume that
either u; is normally distributed or the covariates are deterministic, then a number of results

become available. The relevant lemmas for the deterministic case are presented in Section
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E of the online supplement. Alternatively, signals and pseudo-signals can be assumed to be
exponentially mixing. In this general case, similar results to those in Theorems 1 and 2 can still
be obtained. These are described in Section C of the online supplement. In the light of these
theoretical extensions, one can also allow the DGP, (6), to include lagged dependent variables,
Veh = (Yi—1,Yi—2, .., Y4—p)’, where h is unknown. The OCMT procedure can now be applied to

x; augmented with y; 5, , where hy.x is a maximum lag order selected by the investigator.

5 A Monte Carlo Study

We employ five different Monte Carlo (MC) designs, with or without lagged values of y,. We
allow the covariates to be serially correlated and consider different degrees of correlations across

them. In addition, we experiment with Gaussian and non-Gaussian errors.

5.1 Data-generating processes (DGPs)
5.1.1 Design I (no hidden signals and no pseudo-signals)

y; is generated as:
Yi = OYi—1 + P11 + Boxoy + Paa + Barar + Suy, (39)

where u; ~ IIDN (0,1) in the Gaussian case, and u; = [xZ(2) — 2] /2 in the non-Gaussian case,
in which x?(2) are independent draws from a x*-distribution with 2 degrees of freedom, for
t=1,2,....,T. We consider the ‘static’ specification with ¢ = 0, and two ‘dynamic’ specifications
with ¢ = 0.4 and 0.8.7 We set 3; = 3, = 83 = 4 = 1 and consider the following alternative

. /
ways of generating @,; = (1, Tat, .oy Tpt)

DGP-I(a) Temporally uncorrelated and weakly collinear covariates: Signal variables are
generated as z; = (5 + vg;) /V/1+ 12, for i = 1,2,3,4, and noise variables are generated as
Tst = €51, Tip = (€i—14+€it) / V2, for i > 5, where g, and ¢;; are independent draws either from
N(0,1) or from [x?(2) — 2] /2, for t =1,2,...,T, and i = 1,2, ...,n. We set v = 1, which
implies 50% pair-wise correlation among the signal variables.

DGP-I(b) Temporally correlated and weakly collinear covariates: Covariates are generated
as in DGP-I(a), but with e;; = pig; -1 + \/1—7,0%%, in which e; ~ IIDN (0,1) or

IID [x?(2) — 2] /2. We set p; = 0.5 for all i.

DGP-I(c) Strongly collinear noise variables due to a persistent unobserved common factor:
Signal variables are generated as x;; = (g5 + g¢) / V2, for i = 1,2,3,4, and noise variables are
generated as x5, = (5, + b; ;) /3 and xy = [(81;71,15 +eun) /V2 + bl-ft] /\/3, for i > 5, where
bi ~ IIDN (1,1), f; = 0.95f,_1 + V1 — 0.952v;, and v;, g; and &;; are independent draws from
N (0,1) or [x7(2) — 2] /2.

"Dynamic processes are initialized from zero starting values and the first 100 observations are discarded.
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DGP-I(d) Low or high pair-wise correlation of signal variables: Covariates are generated as
in DGP-I(a), but we set v = \/w/ (1 —w), for w = 0.2 (low pair-wise correlation) and 0.8

(high pair-wise correlation). This ensures that average correlation among the signals is w.
5.1.2 Design II (featuring pseudo-signals)
The DGP is given by (39) and x,; is generated as:

DGP-I1I(a) Two pseudo-signals: Signal variables are generated as xy = (i + g;) /V/2, for

1 =1,2,3,4, pseudo-signal variables are generated as x5; = €5, + Kryy, and T = €6 + Koy,
and noise variables are generated as z; = (g;_1+ + i) / V2, for i > 6, where, as before, gi, and
git are independent draws from N (0,1) or [x?(2) — 2] /2. We set k = 1.33 (to achieve 80%
correlation between the signal and the pseudo-signal variables).

DGP-II(b) All variables collinear with signals: @, ~ 11D (0,3,) with the elements of 3,
given by 0.5/°77!, 1 < i, j < n. We generate x,; with Gaussian and non-Gaussian innovations.
In particular, x,; = 2916/ 2€t, where €, = (€14, €9, ...,6mt)’, and €;; are generated as independent
draws from N (0,1) or [x?(2) — 2] /2.

5.1.3 Design III (featuring hidden signals)

y; is generated by (39), @, is generated as in DGP-I(a), and the slope coefficients for the signals

in (39) are selected so that, conditional on y;_1, 6, = 0:

DGP-III The fourth variable is hidden signal: We set 5; = o = 3 = 1 and 84 = —1.5. This
implies 0; # 0 for : = 1,2,3 and 6; = 0 for ¢ > 4, conditional on y;_.

5.1.4 Design IV (featuring both hidden signals and pseudo-signals)
In this case y,; is generated by (39), and:

DGP-IV(a) We generate x,; in the same way as in DGP-II(a) which features two
pseudo-signal variables. We generate slope coefficients [3; as in DGP-III to ensure 6; # 0 for
1=1,2,3, and ¢; = 0 for + = 4, conditional on y;_;.

DGP-IV(b) We generate x,, in the same way as in DGP-II(b), where all covariates are
collinear with signals. We set 5 = —0.875 and 85 = 83 = 34 = 1. This implies §;, =0 for : = 1
and 0; > 0 for all 4 > 1, conditional on ;_;.

5.1.5 Design V (Many signals)

For this design the DGP (DGP-V) is given by

Yt = PYt—1 + Z?:li_int + Sy, (40)

where x,; are generated as in design DGP-1I(b), and u; is generated in the same way as before.

This design is inspired by the literature on approximately sparse models (Belloni et al. (2014b)).
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Autoregressive processes are generated with zero starting values and 100 burn-in periods.
s is set so that R? = 30%, 50% or 70% (on average) in static specifications (¢ = 0). We do
not change any parameters of the designs with an increase in ¢, and we refer to the three R?
measures corresponding to the three choices of ¢ as a low, medium and high fit. The sample
combinations, n = (100, 200, 300) and 7" = (100, 300, 500) are considered, and all experiments

are carried out using Ry;c = 2,000 replications.

5.2 Variable selection methods

We consider six variable selection procedures, namely OCMT, Lasso, Adaptive Lasso (A-Lasso),
Hard thresholding, SICA, and Boosting. In static specifications, the OCMT method is imple-
mented as outlined in Section 3, where ¢, (n,d) is defined by (15) with f (n,d) = n° in the
first stage and f (n,d*) = n® in the subsequent stages. We use p = 0.01, and in line with the
theoretical derivations we set 6 = 1 and 6* = 2. An online MC supplement provides results for
other choices of p € {0.01,0.05,0.1} and (0,d*) € {(1,1.5),(1,2)}. It turns out that the choice
of p is of second order importance. In the dynamic case, we augment the set of n covariates
with Anax = 4 lags of the dependent variable. Penalised regressions are implemented using
the same set of possible values for the penalisation parameter A as in Zheng et al. (2014), and
following the literature \ is selected using 10-fold cross-validation. All methods are described

in detail in the online MC supplement.

5.3 Monte Carlo results

We begin by reporting on the number of stages, denoted by P, taken by OCMT before comple-
tion. This is important since our theory suggests that it should be close to Py, which is 1 for
DGPs I, II, and V without hidden signals, and 2 in the case of DGPs III and IV that do contain
hidden signals. Realizations of P are very close to P, for both groups of experiments. The
average number of stages in the two groups of experiments is P =1.03 and 1.78, respectively.
In addition, the frequency of MC replications with P > Py and P > P, + 1 turn out to be very
small and amounted to 1.6%, and 0.003%, respectively.

Next, we focus on the average performance of Lasso, adaptive Lasso and OCMT methods,
whilst the full set of results for all experiments and all six variable selection procedures is given
in the online supplement. In our comparisons we focus on Lasso and adaptive Lasso since these
are the main penalised regression methods used in the literature and also because they tend to
perform better than Boosting. In our evaluation we use the following criteria: the true positive
rate (TPR) defined by (20), the false positive rate (FPR) defined by (20), the false discovery
rate of the true model (FDR*) defined by (33), the false discovery of the approximating model
(FDR) defined by (21), the out-of-sample root mean square forecast error (RMSFE), and the
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® We find that no method uniformly outperforms in

root mean square error of 3 (RMSEj).
the set of experiments we consider. This is true for the full set of methods (OCMT, Lasso,
adaptive Lasso, Hard thresholding, SICA and Boosting) reported in the online supplement.
The performance of individual methods can be quite different for individual experiments, and
a relative assessment of these methods is provided in Table 1, which reports the fraction of
experiments (in percent) where OCMT is outperformed by Lasso and Adaptive Lasso. These
results clearly show that no method universally dominates. But it is interesting that the fraction
of such experiments where OCMT is beaten by its competitors is relatively small, at most 22%
for RMSFE and RMSEj entries, in all experiments with the exception of dynamic specifications
with ¢ = 0.8.

Summary statistics across the three choices of R? (low medium and high) and all the sample
sizes (n = 100,200,300 and 7" = 100, 300, 500), for each of the five DGPs and with or without
the lagged dependent variable, are reported Table A.1 in the Appendix. Lasso’s TPR is in the
majority of experiments larger than OCMT’s, but so is the FPR and FDR as Lasso tends to
overestimate the number of signals, which is well known in the literature. Adaptive Lasso in
turn achieves better FPR and FDR outcomes compared with Lasso, but the performance of
adaptive Lasso can be worse for TPR, RMSFE and RMSEj in these experiments. The reported
RMSFE and RMSE; averages of Lasso and Adaptive Lasso are outperformed by OCMT in
static specifications and dynamic specifications with low value of ¢ = 0.4 in Table A.1, by
about 1.6% to 3.4%, and 9.1% to 40%, respectively. OCMT is very successful at eliminating
the noise variables. On the other hand, the power of OCMT procedure to pick up the signals
rises with /T }Gi,(j)‘ /Oe;(1Y0, (1), See Remark 1.” Hence the magnitude of 0.y, T and R? are
all important for the power of the OCMT. For instance, detailed findings reported in the online
supplement show that an increase in the collinearity among signal variables, which results in
a larger 0; (;), improves the performance of OCMT, but it worsens the performance of Lasso,
since a higher collinearity of signal variables diminishes the marginal contribution of signals to
the fit of the model. The performance of OCMT method also deteriorates with an increase
in ¢, and we see that in dynamic specifications with ¢ = 0.8 reported in the bottom panel of
Table A.1, OCMT is beaten by Lasso and/or Adaptive Lasso in some instances. Findings for
the non-Gaussian experiments are presented in Table A.2 in Appendix, which shows that the
effects of allowing for non-Gaussian innovations seem to be rather marginal.

Overall, the small sample evidence suggests that the OCMT method is a valuable alternative
to penalised regressions, since, in many cases, it can outperform the penalised regressions, that

have become the de facto benchmark in the literature.

8RMSEﬁ is the square root of the trace of the MSE matrix of ,@ Additional summary statistics, including
the frequency of selecting the true model, and the statistics summarizing the distribution of the number of
selected covariates are reported in the online supplement.

gaei,(T) and o, (1 are defined by (B.49) in the online theory supplement, replacing e, &, and M, by e;, x;,
and M (;_1), respectively.
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6 Empirical Illustration

In this section we present an empirical application that highlights the utility of OCMT. In
particular, we present a macroeconomic forecasting exercise for US GDP growth and CPI
inflation using a large set of macroeconomic variables. The data set is quarterly and comes
from Stock and Watson (2012). We use the smaller data set considered in Stock and Watson
(2012), which contains 109 series. The series are transformed by taking logarithms and/or
differencing following Stock and Watson (2012).1° The transformed series span 1960Q3 to
2008Q4 and are collected in the vector &, together with the target variable y; (either US GDP
growth or differenced log CPI inflation). Our estimation period is from 1960Q3 to 1990Q2
(120 periods) while the forecast evaluation period is 1990Q3 to 2008Q4. We produce one step
ahead forecasts using five different procedures:'! (a) AR benchmark with the number of lags
selected by Schwarz Bayesian criterion (SBC) with maximum lag set equal to hmay; (AR), (b)
AR augmented with one lag of principal components, and the number of lags of the dependent
variable is selected by SBC with maximum lag hmay; (factor-augmented AR), (c-d) Lasso and
adaptive Lasso regressions of the target variable y; on lagged principal components, &, ;, and
hmax lags of y;. For Lasso and adaptive Lasso regressions, both the target variable and regressors
are demeaned, and the regressors are normalised to have unit variances. (¢) OCMT procedure is
applied to regressions of y, conditional on lagged principal components (included as pre-selected
regressors), with &, ; and hnyay lags of y; considered for variable selection. We set § = 1 in
the first stage of OCMT, and 6* = 2 in the subsequent stages. We consider p = 0.05 below
and findings for p = 0.01 and 0.1 are reported in the online empirical supplement. In all three
data-rich procedures (b) to (e), the principal components are selected in a rolling scheme by the
PC,, Bai and Ng (2002) criterion (with the maximum number of PCs set to 5). The maximum
number of lags for the dependent variable, hy,.y, is set to 4. We generate rolling forecasts using
a rolling window of 120 observations.

We evaluate the forecasting performance of the methods using relative RMSFE where the
AR forecast is the benchmark. Relative RMSFE statistics for the whole evaluation sample as
well as for the pre-crisis sub-period (1990Q3-2007Q2) are reported in Table 2. In the case of
GDP growth forecasts, we note that factor-augmented AR, Lasso and OCMT methods perform
better than the AR benchmark. OCMT performs the best while Adaptive Lasso is the worst

12 The differences in

performer. However, the performance of the best methods is very close.
RMSFE in the case of inflation, reported in the bottom half of Table 2, are also relatively small
with the factor-augmented AR(1) performing the best followed by OCMT and Lasso.

Variable inclusion frequencies are reported in Table 3, using the full evaluation sample.

0For further details, see the online supplement of Stock and Watson (2012), in particular columns E and T
of their Table B.1.

HEyrther detail is provided in the online empirical supplement.

12Djebold-Mariano test statistics for all pairwise method comparisons can be found in the online supplement.
The RMSFE differences among the best performing methods are not generally statistically significant.
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Interestingly, for forecasting growth, the first lag of the dependent variable is among the most
selected variables using OCMT (with the inclusion frequency of 45.9%), while no lags of the
dependent variable are selected in the case of Lasso in any of the rolling windows. Results
are different when inflation is considered. In this case, the inclusion frequency of the first
lag of the dependent variable is 100% for both OCMT and Lasso methods. OCMT selects
considerably fewer number of variables as compared to Lasso, an outcome that mirrors the
Monte Carlo findings. In summary, we see that there is no method that uniformly outperforms
all competitor methods and that OCMT is not far behind the best performing method.

7 Conclusion

Model selection is a recurring and fundamental topic in econometric analysis. This problem
has become considerably more difficult for large-dimensional data sets where the set of possible
specifications rise exponentially with the number of available covariates. In the context of
linear regression models, penalised regression has become the de facto benchmark method of
choice. However, issues such as the choice of penalty function and tuning parameters remains
contentious.

In this paper, we provide an alternative approach based on multiple testing that is compu-
tationally simple, fast, and effective for sparse regression functions. Extensive theoretical and
Monte Carlo results highlight these properties. In particular, we find that although no single
method dominates across the broad set of experiments we considered, our proposed method
can in many instances outperform existing penalised regression methods, whilst at the same
time being computationally much faster by some orders of magnitude.

There are a number of avenues for future research. We have already considered the possibility
of allowing for dynamics, but further extensions to more general settings with weakly exogenous
regressors is clearly desirable. For empirical economic applications it is also important to allow
for the possibility of weak and strong common factors affecting both the signal and pseudo-
signal variables. A further possibility is to extend the idea of considering regressors individually
to other testing frameworks, such as tests of forecasting ability. It is hoped that the results

presented in this paper provide a basis for such further developments and empirical applications.
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Table 2: RMSFE performance of the AR, factor-augmented AR, Lasso and OCMT
methods

Evaluation sample: Full Pre-crisis

1990Q3-2008Q4 1990Q3-2007Q2

RMSFE  Relative RMSFE Relative

(x100) RMSFE (x100) RMSFE

Real output growth
AR benchmark 0.561 1.000 0.505 1.000
Factor-augmented AR 0.484 0.862 0.470 0.930
Lasso 0.510 0.910 0.465 0.922
Adaptive Lasso 0.561 1.000 0.503 0.996
OCMT 0.477 0.850 0.461 0.912
Inflation

AR benchmark 0.601 1.000 0.435 1.000
Factor-augmented AR 0.557 0.927 0.415 0.954
Lasso 0.599 0.997 0.462 1.063
Adaptive Lasso 0.715 1.190 0.524 1.205
OCMT 0.590 0.982 0.464 1.068

Notes: RMSFE is computed based on rolling forecasts with a rolling window of 120 observations. The source of the data is the
smaller data set with 109 time series provided by Stock and Watson (2012). The series are transformed by taking logarithms
and/or differencing following Stock and Watson (2012). The transformed series span 1960Q3 to 2008Q4 and are collected in the
vector &€,. Set of regressors in Lasso and adaptive-Lasso contains hmax = 4 lags of y¢ (lagged target variables), &,_;, and a lagged

set of principal components obtained from the large data set given by (yt,ég)’. OCMT procedure is applied to regressions of y¢
conditional on lagged principal components (included as pre-selected regressors) with &, _; and hmax = 4 lags of y; considered for
variable selection. OCMT is reported for p = 0.05 and § = 1 in the first stage, and p = 0.05 and §* = 2 in the subsequent stages
of the OCMT procedure. The number of principal components in the factor-augmented AR, Lasso, adaptive-Lasso, and OCMT
methods is determined in a rolling scheme by using criterion PC)p, of Bai and Ng (2002) (with the maximum number of PCs set
to 5). See Section 6 and the online empirical supplement for further details.

Table 3: Top 5 variables with highest inclusion frequencies based on the Lasso and
OCMT selection methods

Output growth

Lasso OoOCMT

1. Real gross private domestic investment - residential (*) 100.0% 1. Residential price index 47.3%
2. Real personal consumption expenditures - services (*) 100.0% 2. First lag of the dependent variable 45.9%
3. Employees, nonfarm - mining 89.2% 3. Industrial production index - fuels 43.2%
4. Index of help - wanted advertising in newspapers 75.7% 4. Labor productivity (output per hour) 37.8%
5. Employment: Ratio; Help-wanted ads: No. unemployed CLF  56.8% 5. Employees, nonfarm - mining 27.0%
Average number of selected variables 8.1 Average number of selected variables 2.2

(excluding pre-selected factors)
Inflation

Lasso OCMT

1. Interest rate: U.S. Treasury bills, sec. mkt, 3-mo (% per ann) 100.0% 1. First lag of the dependent variable 100.0%
2. Real personal consumption expenditures - services (*) 100.0% 2. Third lag of the dependent variable 78.4%
3. First lag of the dependent variable 100.0% 3. MZM money stock (FRB St. Lois) 71.6%
4. Employees, nonfarm - mining 98.6% 4. Money stock: M2 45.9%
5. Second lag of the dependent variable 98.6% 5. Recreation price index 33.8%
Average number of selected variables 21.7 Average number of selected variables 4.0

(excluding pre-selected factors)

Notes: This table reports the top 5 highest inclusion frequencies of the variables selected using the Lasso and OCMT procedure
on the full evaluation sample, 1990Q3-2008Q4. OCMT is reported p = 0.05 and for 6 = 1 in the first stage, and 6* = 2 in the
subsequent stages of the OCMT procedure.

(*) quantity index.

25



A Appendix

A.1 Additional notations and definitions

Throughout this appendix we consider the following events:
Ao =HNG, where H ={3¥ |7, =k}, and G ={>", ..., J: = O}. (A.1)

Ao, also defined by (28), is the event of selecting the approximating model, H is the event
that all signals are selected, and G is the event that no noise variable is selected. We also
denote the event that exactly j noise variables are selected by G; = {>°", . +1ji = j}, for
j=0,1,...n—k — k*, with G = Gy. For the analysis of different stages of OCMT, we also
introduce the event B; s, which is the event that variable 7 is selected at the s stage of the
OCMT procedure. L; s = U;_,B, ), is the event that variable 7 is selected up to and including
stage s, namely in any of the stages j = 1,2, ..., s of the OCMT procedure, and L, = NE_ L,
is the event that all signals are selected up to and including stage s of the OCMT procedure.
7, is the event that OCMT stops after s stages or less. D, is the event that the number of
variables selected in the first s stages of OCMT (/2:(]-), j =1,2,....s) is smaller than or equal
to I, where Iy = ©(n”) and v satisfies € < v < k;/3. Note that when 7" = © (n") then
lr =6 (T”/’“) =0 (T1/3) for v < k1/3.

Notations: Let a = (a1, ay, ...,a,) and A = (a;;) be an n x 1 vector and an n x m matrix,
2 and lall;, = X, |a;| are the Euclidean (Ly) and L,
norms of a, respectively. ||A| = [Tr (AA')]l/ ? is the Frobenius norm of A.

respectively. Then, [ja]| = (X ,a?)

A.2 Proofs of Propositions and Theorems

All proofs are based on the set of lemmas presented and established in the online theory sup-
plement. In particular, Lemmas A1-A9 are auxiliary ones, mostly providing supporting results
for the main lemma of the paper, namely Lemma A10, which provides the basic exponential
inequalities that underlie most of our results. A simple version of this lemma is included in the

paper as Proposition 2.

A.2.1 Proof of Proposition 1

We recall that Py is a population quantity. This formally means that, to determine F,, OCMT
is carried out assuming Pr[\téi,(j)\ > ¢y (n,0)10;) # 0] = 1, and Pr[’téi,(]-)‘ > ¢, (n,0) |6,y =
0] = 0 for all i, j. So, if 6; 1) # 0, for all ¢ for which §; # 0, it obviously follows that Fy = 1.
Next, assume that the subset of signal variables in X}, such that for each element of this subset,
0i,1) = 0, is not empty. Then, these signals will not be selected in the first stage of OCMT. By
Lemma Al in the online supplement, it follows that the subset of signals for which 6; ;) = 0

is smaller than the set of signals and therefore at least one signal will be picked up in the first
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stage of OCMT. It then follows, by Lemma Al, that in the second stage of OCMT, at least
one hidden signal, for which 6; ;) = 0 will have 6; 5y # 0. Therefore, such hidden signal(s)
will be picked up in the second stage. Proceeding recursively using Lemma A1, it then follows

that all hidden signals for which 60; ) = 0, will satisfy 6; ;) # 0 for some j < k, proving the

proposition.!?

A.2.2 Proof of Theorem 1
Noting that 7 is the event that the OCMT procedure stops after k£ stages or less, we have
Pr (]5 > k) = Pr(7) = 1—Pr (7;), where P is defined by (17). Substituting (B.83) of Lemma

A20 in the online supplement for Pr (7;), we obtain, Pr <]AD > k) =0 (nl_”_”é) +0 (nl_”‘s*) +
O [nexp (—C’Oncl”l)], for some Cy, C; > 0, any »in0 < s < l,andany v in 0 < e < v < Kk1/3,
where k1 > 0 defines the rate for "= & (n"), and € in 0 < ¢ < min {1, k1 /3} defines the rate
for k* = & (n°). But note that O (n'~*~*°) can be written equivalently as O (n'~%1/3=%) . This
follows since 1 — k1/3 — 30 =1 — (k1/3 —€0) — (sc+¢)d = 1 — U — 35, where U = K, /3 — €0
and 7 = s+ ¢, for £ > 0 sufficiently small. Specifically, setting ¢ < min {1 — s, (k1/3 —€) /d},

it follows that 3 and 7 satisfy 0 < 3z < 1 and € < 7 < k1/3, respectively, as required. Hence
Pr(P > k) =Pr(7y) = O (n'/*77) + O (n' ") + O [nexp (—Con™")] (A.2)

for some Cy, C; > 0 and any »in 0 < > < 1. Noting that O [n exp (—ancml)} =0 [exp (—nCQ"“)]
for any 0 < Cy < (', we have Pr <P > k) =0 (nl_’“/?’_’“s) + 0 (nl_%(s*) +0 [eXp (—n@"“)],
for some Cy > 0, which establishes (29). Similarly, by (B.86) and noting that n > n'™" for

v > 0, we also have (which is required subsequently)
Pr (D ;) =0 (nl_’“/?’_}“s) +0 (nl_"‘l/?’_”‘s*) + O [nexp (=CoT"™)], (A.3)

for some Cy, C7; > 0 and any s in 0 < s < 1.
To establish result (30), we first note that

Pr(Ag) = Pr(A5| D7) Pr(Dyr) + Pr(AG| Dy ) Pr(Dy, 1) < Pr(A§|Dyr) + Pr(Dyp),  (A4)
where Pr(Dj, ;) is given by (A.3). Also using (A.1) we have Aj = H°U G*, and hence
Pr(AG|Dyr) < Pr(H| Dyr) +Pr(G°| Dir) = Anr + Bur, (A.5)

where H and G are given by (A.1). Therefore H® = {Zlejz < k}, and G° = {Z?:k%*“ji >

0}. Consider the terms A, 7 and B, 7, in turn:

Apr = Pr(H| Dpr) < Pr(J; = 0| Dir). (A.6)

13Note that this proposition allows the net effects to tend to zero with T' (or n) at a sufficiently slow rate as
set out in Assumption 6, as long as they are not exactly zero. See also Lemma A1 in the online supplement.

27



But, the event {J; = 0|Dy,r} can occur only if {N5_,Bf | Dy r} occurs, while {N:_, By ;|Dy.r}
can occur without {7; = 0|Dyr} occurring. Therefore, Pr[J; = 0|Dy1] < Pr(N*_, BY ;| Dr.r).
Then,

Pr (mﬁzlsgj\ Dyr) =Pr (B;l} Dyr) % Pr (B¢2| BS 1, D) x Pr (B 4| B, N By, Dir)
X .. X Pr(B5y| By N ... N BSy, Dyr) - (A7)

But, by Proposition 1 we are guaranteed that for some jin 1 <j <k, 0;;) #0,1=1,2,... k.
Therefore, for some j in 1 < j <k,

Pr(BS,| B,y N ... N By, Dir) = Pr(B5,;| B _y N ... N By, 0; ) # 0, Dir),

and by (B.52) of Lemma A10 in the online supplement, Pr(B ]| B, NN BEy by #
0,Dpr) =0 [exp (—C’oTcl)} ,fori=1,2,...,k, and some Cy, C; > 0. Therefore,

Pr(fi =0 | Dyr) = O [exp (—CoT)], fori=1,2,.... k. (A.8)
Substituting this result in (A.6), we have
A, =Pr(H| Dir) < kexp (—CoT) . (A.9)
Similarly, for B,, r we first note that
Bur = PrlUL i1 (Fi > O Der] < Ty 11 BT (D). (A.10)

Also, B(J; |Dir) = E(J; D Te) Pr(Te| D) +E(J: [Dir, T) Pr (T | D) < BT [Dir, Ti )+
Pr (7,f|Dy 1), since E(jz Drr, Ti¢) < 1. Hence By < D00 e (x7z Di,r, Ti )+
(n —k — k*) Pr (7,¢|Dy.r). Consider now the first term of the above and note that
Z?:k+k*+1E(~7i |Dk,T777c) :Z? krk*+1 PrHt” | > Cp 7%5 }91‘ 1) = O,Dk,T7Tk]
+ Zz k+k*+1zg 2Pr[| | > ¢y (n,6%) i,(j) = 0, D7, T1 ]

where we have made use of the fact that the net effect coefficients, 0; (;), of noise variables are
zero for i = k+k*+1,k+k*+2,...,n and all j. Also by (B.51) of Lemma A10 and result (%)

of Lemma A2, we have

Z Pr (|t¢ o | > ¢, (n,9) ‘9 = O,Dk,T,'E) + Z Z Pr <|t | > ¢, (n,0") ‘9,-7(5) = O,Dk,T,'E)
=k k41 i—k k15—

< (n—k—k)exp [-3c2(n,6)/2] + (k—1)(n — k — k*) exp [—%cﬁ(n, §%)/2] + O [nexp (—CoT")]
= O( = V‘S) + O( = ”5*) +0 [nexp (—C’OTcl)} .

Further, by (B.92), nPr (7,¢|Dyr) = O (n* ") + O [n?exp (—CoT")], giving, overall,
Bur = 0 (05) +0 (1) + 0 [ exp (~CoT)], (A1)
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where we used that O [n exp (—COTcl)] is dominated by O [n2 exp (—C'OTCI)] , and O (nlf}“s*)
is dominated by O (nl_”‘s) for 0* > ¢ > 0. Substituting for A, r and B,, 7 from (A.9) and (A.11)
in (A.5) and using (A.4) we obtain Pr(A45) < O (n'=%%) + O (n*79*) + O [n?exp (—CoT“")] +
Pr(Dj 1), where Pr(Dj ;) is already given by (A.3), and kexp (—CoT") is dominated by
O [n? exp (—CoT“")]. Hence, noting that Pr (Ag) = 1 — Pr(A5), then

Pr(Ap) =140 (') + 0 (n*°%) + O (n'/*) + O [n*exp (=CoT™")],  (A.12)

since O[n exp (—CoT“")] is dominated by O[n? exp (—CoT“*)], and O(n'~*1/370") is dominated
by O(n!=%/3=%%) for 6* > § > 0. Result (30) now follows noting that 7' = © (n"*) and that
@) [nQ exp (—Concl“l)] =0 [exp (—ncﬁl)} for some C5 in 0 < Cy < (4. If, in addition, § > 1,
and 0* > 2, then Pr(A4y) — 1, as n,T — oo, for any k; > 0.

We establish result (32) next, before establishing results (31) and the result on FDR. Con-
sider F'PR,, r defined by (20), and note that the probability of noise or pseudo-signal variable ¢
being selected in any stages of the OCMT procedure is given by Pr (£, ,,), fori = k+1,k+2, ..., n.
Then

Z?:k-i-l Pr (L) o Zfiliil Pr(Li,) n Z?:k:+k*+1 Pr(L;,)

E|FPR,r| = p— = — — (A.13)
Since 0¥ Pr(L;,,) < k* then
E|FPR, 7| <(n—k) 'k +(n—k) ", i Pr(Lin) - (A.14)
Note that
(n—k)" D ik LT (Lin) < (n— k) > ictsko1 P (Lin|Dyr) + Pr (’Dli,T) - (A15)
Furthermore
Pr(Lin|Drr) < Pr(Lin|Drr, Ti) + Pr(Zy7) . (A.16)

An upper bound to Pr(7¢) = Pr(P > k) is established in the first part of this proof, see
(A.2). We focus on Pr(L;,|Dy,r, 7;) next. Due to the conditioning on the event 7, we have
Pr (L n|Drr, i) = Pr (Lix|, Di1, Ti), and in view of L, = Uf_,B;;, we obtain

Pr (Lo Dir, Te) < Sor_ Pr (Bigl0is) = 0, Do, i) , for i > k + k", (A.17)

where we note that Pr (B, s| Dy r, 7)) = Pr (Bi75|9i,(8) =0, Dy, ’Z}), for ¢ > k + k* since the net
effect coefficients of the noise variables at any stage of OCMT are zero. Further, using (B.51)
of Lemma A10, for i =k + k*+ 1,k + k* + 2,...,n, we have

O {exp [—sc2(n,6)/2] } + O [exp(—CoT")], s =1
O {exp [—%cﬁ(n,é*)/ﬂ} + O [exp(=CoTM)], s > 1~
(A.18)

)

Pr (Bi,s|07, (s) — 0, Dk,Ty 77{}) = {
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where s = [(1—m) /(1 +dr)]>. Clearly 0 < s < 1, since 0 < 7 < 1, and dr is a bounded
positive sequence. Hence, given result (ii) of Lemma A2 in the online supplement, for i =
k+k*+1,k+k*+2,....,n, we have

S Pr (Biglbis) = 0, Dir, Ti) = O (n7%) + 0 (n7°%) + O [exp(—CoT™)] .
Using this result in (A.17) and averaging across i = k + k* + 1,k + k* 4+ 2, ..., n, we obtain
(n—k)~" S ikt P (LD, Te) = O (n77°) + O (n7") + O [exp(—CoT")] . (A.19)

Overall, with 0* > §, T = ©(n™), k* = ©(n), and using (A.2), (A.3), (A.14)-(A.16)
and (A.19), we have E|FPR,r| = k*/(n—k) + O (n7°) + O (n=") 4+ O (n'~"/3770) 4
O (n'=F/37") + O (n'=") + O [exp(—Con®**1)] 4+ O (n°*) + O [nexp (—Con“**)]. But
O [eXp(—Concl’“)] and O [n exp (—Concl’”"l)} are dominated by [exp (—ncwl)] for some 0 <
C5 < Cy. In addition, since 0* > § and s is positive, the terms O (n™") and O (n!~"/3770")
are dominated by O (n™%) and O (n'~*/3=%9) respectively. Hence, E |FPR, | = k*/ (n — k)+
O (=) + 0 (n'=/370) £ O (n“" 1)+ O (n' ") + O [exp (—n“?"1)], for some Cy > 0, which
completes the proof of (32).
To establish (31) we note from (20) that

E|TPR,z| = k' Pr[J; = 1. (A.20)

But Pr[J; = 1] = 1 — Pt[J; = 0], and Pr[7; = 0] < Pr[J; = 0|Dyz] + Pr (Df ;). Using (A.8)
and (A.3) and dropping the terms O [exp (—COTcl)] and O (nl_’“/ 3_”5*) that are dominated
by O [nexp (—CoT)] and O (n'~*1/37%) respectively (noting that §* > § > 0) we obtain
Pr[7 =0/ =0 (nt=m/3=20) £ O [nexp (—CoT“")], for i = 1,2, ..., k. Hence, S Pr|7 =1] =
k+ O (n'=/370) + O [nexp (—CoT")], which, after substituting this expression in (A.20),
and noting that 7' = © (n"), and

O [n exp (—C’oncml)} =0 [exp (—nCQ’“)], for some C5 in 0 < Cy < (Y yields

E|TPR, 7| =1+ 0 (n'™/37) 4 O [exp (—n")] (A.21)

for some C; > 0, as required.
To establish the result on FDR, we first note that

~

>l <~7i =1, and 3; = 0; = 0>

FDR,r = .
T (n—k)FPR,s+ kTPR, 1 + 1

Consider the numerator first. Taking expectations EY " 1 [7; =1, and 8; = 6, = 0] =
Yo i1 Pr(Liy). Using (A.2),(A.3),(A.15), and (A.16), and noting T = © (n"'), we have
Yo ines1 PT(Lig) = O (n') +0 (n' ") +0 (nQ_“l/?’_}“s) +0 (nz_’“/?’_’“s*)

+ 0 (n*77) 4+ O [nexp(—Con™™)] + O [n® exp (—Con“™)], (A.22)
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for some Cy, Cy > 0. Hence, if 6 > max {1,2 — £1/3}, and 6* > 2, then > ", . Pr(L;n) — 0,
and
> 1I[j—1 and 3; = 0; = 0] —, 0. (A.23)

Consider the term kT PR,, 1 in the denominator next. Using (A.21), we have
KT PR, —, k, (A.24)

if 6 > 1—k;/3. Using (A.23), (A.24), and noting that (n — k) FPR,, 7 > 0, we have FDR,, 1 —,
0, if 6 > max {1,2 — k;/3}, and §* > 2, as required.

A.2.3 Proof of Theorem 2

We prove the error norm result first. Define a sequence r;, such that r;, = O(n?’e’g’”l/ 2) +
O (n_"“/ 2) . By the definition of convergence in probability, we need to show that, for any € > 0,
there exists some B, < oo, such that Pr (r;; |Fy — 02| > Bg) < e. We have Pr (rﬂ_; |Fz — 02| > Ba) <
Pr (rg ), |[Fa — 0% > B:|Ao) + Pr (A§). By (A.12), lim, .o Pr (A§) = 0. Then, it is sufficient to
show that, for any € > 0, there exists some B. < oo, such that Pr (rﬂ_; |Fy — 02| > B€|A0) < e.
But, by (B.95) of Lemma A21 in the online supplement, the desired result follows immediately.

To prove the result for the coefficient norm, we proceed similarly. Recall that £* =
© (nf) and define a sequence rg,, such that 75, = O(n*/27") + O(n"1/2). To establish
3.
that Pr(rﬁ_’; HBn—ﬂnH > B.) < e. We have Pr(rgj1 ) < Pr(@,;
B.|Ap) + Pr (A§). Again, by (A.12), lim,,_,. Pr (A§) = 0. Then it is sufficient to show that,
) < €. But this

follows immediately from (B.96) of Lemma A21 in the online Supplement, since, conditional on

= O, (rgn), we need to show that, for any ¢ > 0, there exists some B, < oo, such

for any € > 0, there exists some B. < oo, such that PI“(TB

the event Ay, the set of selected regressors includes all signals.

A.2.4 Proof of Theorem 3

See Section B of the online supplement.

A.2.5 Proofs of results for the single stage OCMT in the absence of hidden signals

Result (37) follows from (25), and (38) follows from the analysis preceding Theorem 1, using
(26) and (27). The result on F'DR, r continues to hold using the same arguments as in the
proof of Theorem 1. To obtain Pr (.4y) we follow the derivations in the proof of the multi-stage
version of OCMT provided in Section A.2.2, but note that we only need to consider the terms
from the first stage of OCMT. Similarly to (A.5) and without the need to condition on Dy, r, we
have Pr(Ag) < Pr(>F 1JZ <k)+Pr(> " k+k*+1‘-7l > 0) = An1 + By, noting that J; = ‘_7;,

Also, as with (A.9) and (A.10), we have A, 7 < kexp (—C1T%). Similarly, for B, s we first

31



note that

Bur € St BT 5= 0) = S Pl | > (n,8) |6 = 0],

which, by (B.51) of Lemma A10 in the online supplement, yields B, r < (n—k—k*) exp [—3ec2(n,8) /2] +
O [nexp (—CoT“")], or upon using result (ii) of Lemma A2, Pr (A§) < A, r+Bnr < O (n'707)+

O [nexp (—CoT“")], and hence Pr (A4g) = O (n*~%) 4 O [exp (—n?)], for some C5 > 0. If, in
addition, § > 1, then Pr(Ay) — 1, as n,7 — oo, such that 7' = O (n"*) for some xk; > 0, as

required.
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Online Theory Supplement to

"A One-Covariate at a Time, Multiple Testing Approach to
Variable Selection in High-Dimensional Linear Regression Models"

A. Chudik G. Kapetanios
Federal Reserve Bank of Dallas King’s College, London

M. Hashem Pesaran
University of Southern California, USA and Trinity College, Cambridge, UK

This online theory supplement is organised as follows: Section A provides lemmas for the
Appendix of the main paper. Section B provides a proof of Theorem 3. Section C provides a
discussion of various results related to the case where both signal and noise variables are mixing
processes. Section D presents lemmas for regressions with covariates that are mixing processors.
Section E provides lemmas for the case where the regressors are deterministic, while Section F

provides some further supplementary lemmas needed for Sections B and C of this supplement.

A. Lemmas

Before presenting the lemmas and their proofs we give an outline of their use. Lemmas A1l and
A2 are technical auxiliary lemmas. Lemmas A3-Ab provide extensions to existing results in the
literature that form the building blocks for our exponential probability inequalities. Lemmas
A6 and A7 provide exponential probability inequalities for squares and cross-products of sums
of random variables. Lemmas A8 and A9 provide results that help handle the denominator of a
t-statistic in the context of exponential inequalities. Lemma A10 is a key lemma that provides

exponential inequalities for t-statistics. Lemmas A11-A21 are further auxiliary lemmas.

Lemma A1l Lety,, fort =1,2,...T, be given by DGP (6) and define x; = (21, Ti2, ..., Ti)
fori=1,2,...k, and Xy = (&1, 3, ..., T), and suppose that Assumption 1 holds. Moreover,
let di. = (v, Giay ooy i)' fori = 1,2, .., 1y, Q = (qu., 2., .., Qi) , and assume M, = Ip —
Q (Q’Q)_1 Q' ewists. Further, assume that 77 = (1,1,...,1)" is included in Q, a (0 < a < k)
column vectors of Xy belong to Q, and the remaining b = k — 1 > 0 columns of Xy that do
not belong in Q are collected in the T x b matrix X,. The slope coefficients that correspond
to regressors in Xy are collected in the b x 1 wvector B, . Define Oy = 1B, where
Qr = E(T'X,M,X,). If Q1 is nonsingular, and Brr = (Bir, B, ey Ber) # 0, then at

least one element of the b x 1 vector @, is nonzero.

Proof. Since €2, 7 is nonsingular and B3, # 0, it follows that 8,7 # 0; otherwise B, =
Q. 7057 = 0, which contradicts the assumption that 3, # 0. m
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Lemma A2 Consider the critical value function c,(n,0) defined by (15), with 0 < p < 1
and f (n,0) = cn’, for some c¢,6 > 0. Moreover, let a > 0 and 0 < b < 1. Then: (i)
¢ (n,0) =0 ([5 In (n)]1/2>, (ii) n" exp [—bc2 (n,8)] = & (n*72).

Proof. Results follow from Lemma 3 of the Supplementary Appendix A of Bailey et al. (2018).
n

Lemma A3 Let 2, be a martingale difference sequence with respect to the filtration F7 | =
o ({zs}i;ll), and suppose that there exist finite positive constants Cy and Cy, and s > 0 such that
sup, Pr (|z] > @) < Coexp (—C1a®), for all a > 0. Let 0% = E(22 |F7,) and 02 = L 3/ o2,
Suppose that (z = S(T?), for some 0 < X\ < (s+1)/(s +2). Then, for any 7 in the range
0 <m<1, we have

Pr(|3,_y 21l > ¢r) < exp[— (1 —m)* (3T '0%/2). (B.1)
If A > (s+1)/(s+2), then for some finite positive constant Cs,
Pr(| izl > Gr) < exp[=Ci/ 7, (B.2)

Proof. We proceed to prove (B.1) first and then prove (B.2). Decompose z; as z; = w; + vy,
where w; = 2,1(]z¢| < Dr) and v, = 2,1(|2¢| > Dr), and note that

Pr{S0, [z — Bz > G} <PR{ISL, [w, — Bw)] | > (1 - ) ¢r)
P, [~ E(w)]| > 7}, (B.3)

for any 0 < 7 < 1.! Further, it is easily verified that w; — F (w;) is a martingale difference
process, and since |w;| < Dyp then by setting b = T'o? and a = (1 — 7) {r in Proposition 2.1 of
Freedman (1975), for the first term on the RHS of (B.3) we obtain

Pr{|>, [we — B (w)]| > (1= 7) r} < exp{—¢} [To? + (1—7) Dr¢r] (1 7)° /2.
Consider now the second term on the RHS of (B.3) and first note that
Pr{|3_; [v: — E(v)]| > n(r} < Pr[_ |vr — Ev)| > w¢rl, (B4)
and by Markov’s inequality,

Pr{}>,_y o = B(u)]| > nér} < 7' Bl — Bv)| < 207G 0 Elul . (B.5)

"Let Ap = 1, [zt — E(2:)] = Bio+ Bar, where By p = S\ [wi — E(w;)] and Bop = o1, [vr — E(uvy))].
We have |[Ap| < |By,r|+ |Be,r| and, therefore, Pr (|Ar| > ¢r) < Pr(|B1,r|+ |B2,r| > {r). Equation (B.3) now
readily follows using the same steps as in the proof of (B.59).




But by Holder’s inequality, for any finite p,q > 1 such that p™' + ¢! = 1 we have F |v;| =
E (|l [|2| > Drl)) < (Elaf")""{E[ (|| > Do)I"}"* = (E|al") " {E[I (2| > Dr)]}"",
and therefore

Elv| < (B |2")" [Pr(jz| > Dr)]'". (B.6)

Also, for any finite p > 1 there exists a finite positive constant Cy such that F |z[" < Cy <
00, by Lemma A15. Further, by assumption sup, Pr(|z;| > Dr) < Cyexp (—C1D%). Using
this upper bound in (B.6) together with the upper bound on F |z|", we have sup, F |v]
Cy/PC/ [exp (—C1 D3], Therefore, using (B.4)-(B.5), Pr{| S o= E(w)]| > 7}
(2/7) C3PCYCT [exp (—C1D3)]Y. We need to determine Dy such that

<
<

(2/m) C’Ql/pCé/qulT lexp (—Cy D3]V < exp{—(2 [To? + (1 — ) Drr] - (1—m)*/2}. (B.7)

Taking logs, we have In[(2/m) Czl/pCol/q] +In(¢'T) = (Ch/q) Dy < —(1— ™) 2 /{2[To? +
(1= m) Drérl}, or Crg™ Dy > nf(2/m) Gy PGy *Jotn (G T)+(1 = m)° B/ {2[T°02 + (1= m) Daorl}
Post-multiplying by 2 [To? + (1 — 7) Dr(r] > 0 we have

(202C1q7 ") TD; + (2C1qg ") (1 — 7)) D' ¢ — 2(1 — ) Dplr{In ((7'T) + In[(2/7) cyPey
> 20°T In[(2/7) Cy/"Cy/*) + 20°T In (¢;'T) + (1 — m)* (2. (B.8)

The above expression can now be simplified for values of 7' — oo, by dropping the constants and
terms that are asymptotically dominated by other terms on the same side of the inequality.?
Since (r = © (T’\), for some 0 < A < (s +1)/(s + 2), and considering values of Dy such
that Dr = © (T¢), for some ¢ > 0, implies that the third and fourth term on the LHS of
(B.8), which have the orders © [ln(T)T’\“Z’] and © (T )‘“”), respectively, are dominated by the
second term on the LHS of (B.8) which is of order © (T*T¥¥). Further the first term on
the RHS of (B.8) is dominated by the second term. Note that for (; = © (T’\), we have
Thn(('T) = ©[TIn(T)], whilst the order of the first term on the RHS of (B.8) is ©(T)).
Result (B.7) follows if we show that there exists Dy such that

(Ciq7") [202TD5 + 2 (1 — 7) D ¢r] > 202T In (G'T) + (1 — ™) 2. (B.9)

Set (C1g™1) Dyt = (1=7)(p/2, or D = (Crlq(1—m)¢r/2)" Y, and note that (B.9)
can be written as 202 (Ci¢™") T (Cy'q (1 — ) CT/Z)S/(SH) +(1-7m)2¢ > 202TIn ((F'T) +
(1 — m)* ¢2. Hence, the required condition is met if limz— o [(Cig™") (Cy g (1 — 7) (T/Q)S/(SH)—
In (C; T )] > 0. This condition is clearly satisfied noting that for values of (;y = © (T ’\) ,q>0,
Ci>0and 0 <7 <1,

(Crg™) (Cq (1 =) ¢r/2)" Y —n (G'T) = o(TT) — & I (T))],

2A term A is said to be asymptotically dominant compared to a term B if both tend to infinity and A/B — oo.



since s > 0 and A > 0, the first term on the RHS, which is positive, dominates the sec-
ond term. Finally, we require that Dyr(r = o(T), since then the denominator of the frac-
tion inside the exponential on the RHS of (B.7) is dominated by 7" which takes us back
to the Exponential inequality with bounded random variables and proves (B.1). Consider
T 'Dr¢r = [Cilq (1 —7) /2]1/(5+1)T*1CZ(F2+8)/(1+8), and since (; = ©(T?) then Dy = o(T),
as long as A < (s +1)/(s + 2), as required.

IfA> (s+1)/(s+2), it follows that Dr(r dominates 7' in the denominator of the frac-
tion inside the exponential on the RHS of (B.7). So the bound takes the form exp[—(1 —
7)(2/ (CyD7(r)], for some finite positive constant Cy. Noting that Dr = 9((%/(5“)), gives a
bound of the form exp[—C5¢/ ] proving (B.2). m

Lemma A4 Let x; and u; be sequences of random wvariables and suppose that there exist
Co,C1 > 0, and s > 0 such that Supt Pr(|xt| > a) < Cyexp (—Cia®) and sup, Pr(|ut| > a) <
Coexp (—Cha®), for all > 0. Let ft = o({u Y o)z} D) and F @) — o({us )20z,
Then, assume either that (i) E(u|F2) =0 or (ii) E(zu — | FL) = 0, where iy = E(xuy).
Let ¢ = © (T*), for some X such that 0 < X\ < (s/2+1)/(s/2 + 2). Then, for any « in the

range 0 < m < 1 we have

Pr(|i, (weue — ) | > (r) < exp[—(1 = 7)°¢E/ (2T ol (B.10)

2

where o7 =T ST 62 and 02 = El(zuy — ) |FU). IFA > (s/2+1)/(s/2 + 2), then for

some finite positive constant Cs,

Pr(|S0, (wou — ) | > Cr) < exp[—Cagy/®?). (B.11)

Proof. Let Fi_; = o({z,u,}'"}) and note that under (i), E(zyu| Fy_1) = E[E(ug| F)a| Fooy) =
0. Therefore, z;u; is a martingale difference process. Under (ii) we simply note that z,u; — 1

is a martingale difference process by assumption. Next, for any o > 0 we have (using (B.60)

with Cj set equal to o and C} set equal to /)

Pr (|| > o] < Pr |z, > 041/2] + Pr [|u,| > 041/2] (B.12)

But, under the assumptions of the lemma, sup, Pr [|z;| > a'/?] < Coe=Cr*? and
sup, Pr [Ju,] > o!/?] < Coe= @1 Hence sup, Pr [|zu] > a] < 2Coe~"*. Therefore, the

process x;u,; satisfies the conditions of Lemma A3 and the results of the lemma apply. =

Lemma A5 Let © = (11,29, ..., x7)" and q, = (q1.4, oty - Qi) e sequences of random vari-
ables and suppose that there exist finite positive constants Cy and Cy, and s > 0 such that
sup, Pr (|7;| > a) < Cyoexp (=C1a?) and sup;, Pr(|gi;| > a) < Coexp (=Chra?), for all a > 0.
Consider the linear projection x; = Zéilﬁijt + Uy, and assume that only a finite number of
slope coefficients (3's are nonzero and bounded, and the remaining [5’s are zero. Then, there

exist finite positive constants Cy and Cs, such that sup, Pr (|u,:| > ) < Cyexp (—Csa).
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Proof. We assume without any loss of generality that the |5;| < Cy for i = 1,2,..., M,

M is a finite positive integer and 5; = 0 for ¢« = M + 1, M + 2,...,lp. Note that for some

0 <7 <1, sup, Pr(Juz | > ) < sup, Pr(|z; — ij‘ilﬁjqﬁ| > «a) < sup, Pr(|z] > (1 —7m)a) +
sup, Pr(|S°Y, g0l > ma) < sup, Pr(jai] > (1= m)a) + sup, X1, Pr (|| > ma/M), and
since |3;| > 0, then sup; Pr (|uz| > a) < sup, Pr (2] > (1 — m)a)+M sup;, Pr{|g;| > ma/(M |5;])].
But sup; ; Pr([q;| > ma/(M |B;])] < sup;, Pr{|g;e| > ma/(M Brmax)] < Coexp{—Ci[ra/(M Buax)]*},
and, for fixed M, the probability bound condition is clearly met. m

Lemma A6 Let xy, i = 1,2,...n, t = 1,2,....,T, and n; be processes that satisfy exponen-
tial tail probability bounds of the form (9) and (10), with tail exponents s, and s,, where
s = min(s,,s,) > 0. Further, let xyn;, i = 1,2,...,n, be martingale difference processes.
Let q, = (1.t 2, ...,qlT’t)' contain a constant and a subset of T, = (14, Tog, ..., Tpe)'. Let
X,=T" Z;‘le E(q.q,) and ﬁ)qq = Q'Q/T be both invertible, where Q = (qy., qy.,-.., q,.)
and q;. = (g1, Qizy s i)', for i = 1,2,....1p. Suppose that Assumption 5 holds for x; and
q. t=1,2,...n, and for n, and q,, and denote the corresponding projection residuals de-
fined by (11) as Uzt = Tt — Yogu, 794 and Upy = T — Vo, 79y, Tespectively. Let @, =
(Tay 1, Ugy 2y ooy Ugy 7)) = Myzi, T = (Ti1, Tigy oo, Tir), Uy = (Uy1, U2y o, Upr) = Mym, m =
(1, o)y My = T = Q(QQ) ™ Q, o = FIUFE, frage = B (gt [Fir ), w210 =
LS E [(wame — E (zame |Fier))], and wanr = L3 B (e, tine — pame)’]. Let Cp =
o(T?*). Then, for any 7 in the range 0 < ™ < 1, we have,

Pr(|32yzien — B (e | Fior) | > ] < expl— (1= 7)° 3/ (2Tw2 1)), (B.13)
if0 <A< (s/241)/(s/2+2). Further, if \ > (s/2+1)/(s/2 + 2), we have,
Prl| i am — B (zam | Fia) | > o) < expl[=CoG ™) (B.14)

for some finite positive constant Cy. If it is further assumed that lp = © (Td), such that
0<d<1/3, then, if3d/2 < X< (s/2+4+1)/(s/2+2),

Pr(|32 2 (G, s — Hama) | > Gr) < Coexpl— (1= m)* (7/(2T w3, 7)] +exp [~C1T] . (B.15)
for some finite positive constants Cy, Cy and Cy, and, if A > (s/2+1)/(s/2 + 2) we have
Pr300 (e sfins = prans) | > Gr] < Coexp[=CaG/ ™) texp [-CT], (B.16)
for some finite positive constants Cy, C7, Cy and Cs.

Proof. Note that all the results in the proofs below hold both for sequences and for triangular
arrays of random variables. If g, contains z;, all results follow trivially, so, without loss of
generality, we assume that, if this is the case, the relevant column of Q is removed. (B.13) and

(B.14) follow immediately given our assumptions and Lemma A4. We proceed to prove the rest
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of the lemma. Let w,, = (uy; 1, Uz, 2, -, Uz, 1) a0d Uy = (Up1,Up 2, ..., up 7). We first note that
T s s AR T T
D i (U 4l g — floipt) = “’fpl Uy — D 4y Mt = ulxiMqun_ > i1 Haymt, and
T s s T - e
thl (s Ut — Pzipt) = thl (U Ut — Maimt) — (T 1'“';,(’2) qul (Q,un) ) (B.17)

where 2qq =T71(Q'Q). The second term of the above expression can now be decomposed as

(T74,Q) £, (Quy) = (T7'4,Q) (5, - 2,) (Qwy) + (T4, Q) =, (Qwy) . (B1S)

By (B.59) and for any 0 < 7y, 79, 73 < 1such that 327 7, = 1, we have Pr[| 327, (tia, sty s — flass) | >

Gr] < Prl| 30, (tay stin g = pane) | > mr] +
Prl| (T7'), Q) (3.} — 2.1 (Q'uy) | > maolr] + Pr[| (T7'u), Q) .1 (Q'u,) | > m3¢r]. Also ap-
plying (B.60) to the last two terms of the above we obtain

Prl| (T4, Q) (£~ (Q'uy) | > matr] < Pr (|85} = 2 e |77, Q| Qg o > mar) <

Pr(||2 =2 r > Cr/or)+Pr (T7 | ul, Q|| 1Q wyll > madr) < Pr (|83} — S M|p > Cr/or)+

Pr [HUQQHF > (ma07T)?) + Pr Q]| > (w87 T) %], where 67 > 0 is a deterministic se-

quence. In what follows, we set é7 = S (¢%), for some a > 0. Similarly,

Pr ([ (T, Q) . (Quy) | > ms¢r] < Pr (|2 ]|, T4, Q| 1Quyl p > ms¢r) <
Pr| H%QHFHQ’unHF>7T3CTT/I|E H | < Pr (||, Qfl, > = G T 55 +
Pr (Q |l > 3¢ * T2 | 21|, Overall

Pr(|S00 (it — frane) | > Gr) < PRI (gt — prens) | > i)
+Pr (|8 =2 > G/or) + Pr(1Quylp > (re2T)?) + Pr (e, Qllp > (202 T)?)

qq
+ Pr(| Q| > w222 |31 )

+ Pr(| Q|| > 2GPT S (B.19)

First, since uy 4, —tzn, is @ martingale difference process with respect to a({ns}s 1 {335}5 1 {qs}

by Lemma A4, we have, for any 7 in the range 0 < 7 < 1,

Pr{|So0 (e ting — fhogn) | > miCr] < exp[—(1 — m)2C2/(2Tw2, 1)), (B.20)
if0< A< (s/24+1)/(s/2+2), and
Pr{| S0 (U st — i) | > miCr] < exp[—Cogi/ 1Y), (B.21)

if A > (s/2+1)/(s/2 + 2), for some finite positive constant Cy. We now show that the last
five terms on the RHS of (B.19) are of order exp [—C’lTCQ] , for some finite positive constants
C1 and C,. We will make use of Lemma A4 since by assumption {g;u,} and {gyu,, .} are
martingale difference sequences. We note that some of the bounds of the last five terms exceed,
in order, 7"/2. Since we do not know the value of s, we need to consider the possibility that
either (B.10) or (B.11) of Lemma A4, apply. We start with (B.10). Then, for some finite

positive constant Cj, we have?

sup; Pr]||qiu,|| > (m207T)"?] < exp (—Cody) . (B.22)

3The required probability bound on u,; follows from the probability bound assumptions on z; and on gy,
for i =1,2,...,1lp, even if [ — oco. See also Lemma A5.
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Also, using [| Qw5 = 277, (3, gjewe)” and (B.59), Pr[[|Qu, |- > (ma07T)"] = Pr(||Quy|I7. >
ma0rT) < S P qjeuns)? > me0rT/lr] = S Pr(| 00 qietne] > (m200T/lr)"?),
which upon using (B.22) yields (for some finite positive constant Cj)

Pr||Qu, || » > (m267T)?] < Ipexp (—Codr/lr), Pr[|Qus|| > (m0rT)"?] < lpexp (—Codr/lr) .
(B.23)
Similarly,

Pr(|Quy |l > 2G|S0 %) < b expl—Colr/ (| S5 1 1) (B.24)

Pr([| Q|| > w3 ¢/ *TV? || = HF”2 ) < lpexp=Colr /(|| 20 || - 10)]-

Turning to the second term of (B.19), since for all ¢ and j, {¢iq; — E(¢iq;i)} is a martingale
difference process and ¢;; satisfy the required probability bound then

supy; Pr{|T ">, [auqje — Eaieqje)] | > m2lr/0r} < exp(—CoT'(3/63). (B.25)

Therefore, by Lemma A16, for some finite positive constant Cy, we have

Pr(|2,) — || >Cr/or) < Bexp[—CoT (o727 |2, HF N0 |l 5 + 07 ¢r) ]
+H2 exp(—CoT || 21| 172): (B.26)
Further by Lemma Al4, HE HF o (Z;ﬂ), and T'¢26,%1 2 ||§J H (1= HF +0:1¢r) 2 =

T2 HE H » (677" HE H » 1)~2. Consider now the different terms in the above expression
and let Py = 0r/lr, Pio = Gr/(|Z1| 0 1r), Pis = T2 (|20 0G|S0 - + 172, and
Py = THE HF lTQ. Under 67 = © (¢2), Ir = ©(T?), and (r = &(T?), we have Py = dp/lr =
e (T°7),

Py = ¢r/( ||23 HF Ir) =6 (T*34?), (B.27)
P13 _ l 2 HZ || 5T<T1 HE HF 1]—2 =0 (Tmax{1+2)\—4d—2a,1+)\—7d/2—a,1—3d})’ and Py, =
T HE HF ZT2 = © (T"*"). Suppose that d < 1/3, and by (B.27) note that A > 3d/2. Then,
setting &« = 1/3, ensures that all the above four terms tend to infinity polynomially with

T. Therefore, it also follows that they can be represented as terms of order exp [—C’chﬂ ,

for some finite positive constants C; and Cy, and (B.15) follows. The same analysis can be



repeated under (B.11). In this case, (B.23), (B.24), (B.25) and (B.26) are replaced by

(
C 63/2(s+2 Ts/2(s+2) [ 5T 5/2(s4+2)]
Pr <||Q,'“'n||p > (7r25TT)1/2> < lrexp 3/2 Ty = lrexp |[—Cp <T—) ,

Iy

5T s/2(s+2)7]
= lT exp —CO (T—) s
It

C 58/2(S+2 Ts/2(s+2)

Pr <||Q’ux|] > (m267T) ) < Iy exp TeaE

_C Cs/2(s+2)TS/2(S+2) T s/2(s+2):
<trew |t e ) e | <O \g )|

1/2 1/2T1/2 _C 5/2(s42) s /2(s+2) T 5/2(s+2)]
ety > =, u”?>§l“"p o ) =rew 6t

[ K I

1/2 1/2T1/2
(ucz 4> B :
(e i r _

supy, Pr{{T 5, [0 — Blauay]| > malr/br) < expl=C: e/, and, us-

ing Lemma A17, Pr[||(%] > Y. =B > malr/or] <

12 exp|— CTS/(S+2)CS/(S+2)(5 S/ s+2 lfs/ (s+2) HE ”FS/ (s+2) HE “F+5 Lep) s/ s+2)]+

enpl=Co 2 [ 74 = b (= Co Tt 5 25+ o7 o) +
12 exp[—Co(T HE H P lr 71)%/ 542 respectively. Once again, we need to derive conditions that

imply that Py = 67T /Iy, Py = (T || 2, HF I, Pos = TCrorlr || B3| o (120 | o+ 071 ¢r)] ™

and Poy = T||S. 1|

then, as before, the relevant terms are of order exp [—C’l TCZ} , for some finite positive constants

I7! are terms that tend to infinity polynomially with 7. If that is the case

(4 and Cy, and (B.16) follows, completing the proof of the lemma. Py dominates Pa3 so we focus
on Py1, Pa3 and Pay. We have 07T /Iy = (T1+a W2), Trlorlr |2 |, (|Zgd | p+67 ¢ =
O [Imax(ttr=a=2d1=3d/2)] and T ||, H i = © (T"3%2). It immediately follows that under
the conditions set when using (B.10), Whlch were that o« = 1/3, d < 1/3 and A > 3d/2, and as
long as s > 0, Py to Py tend to infinity polynomially with 7', proving the lemma.? m

Lemma AT Letxy,i=1,2,....,n, be processes that satisfy exponential tail probability bounds of
the form (9), with positive tail exponent s. Let q, = (q1.4,Gays -, Qipz) contain a constant and a
subset of Ty = (T14, oty ooy Ty) . Suppose that Assumption 5 holds for zy and q,, i =1,2,...,n

and denote the corresponding projection residuals defined by (11) as uy,; = xy — Vou, 7D Let
Y,=T" Zle (q.4,) and qu Q'Q/T be both invertible, where Q = (q,., qs., ..., q;,..) and
q;. = (¢, G, - qir)', fori = 1,2, .. lp. Let Uy, = (Ug, 1, Ugy 25 oy Uy, ) = Myz;, where x; =
(Ti1, Tigy -y Tir) and M, = Ip—Q (Q’Q)_1 Q. Moreover, suppose that E (u%zt — agit|.7:t_1) =0,

Tt is important to highlight one particular feature of the above proof. In (B.23), Qituz+ needs to be a
martingale difference process. Note that if g;; is a martingale difference process distributed independently of
Ug.t, then g u, 4 is also a martingale difference process irrespective of the nature of u, ;. This implies that one
may not need to impose a martingale difference assumption on u,, if ;; is a noise variable. Unfortunately,
a leading case for which this lemma is used is one where ¢;; = 1. It is then clear that one needs to impose
a martingale difference assumption on u,, to deal with covariates that cannot be represented as martingale
difference processes. We relax this assumption in Section C of the online theory supplement where we allow
noise variables to be mixing processes.



where Fy = F{ and o2, = E(u2 ,). Let (r = &(T*). Then, if 0 <X < (s/241)/(s/2+2), for
any  in the range 0 < w < 1, and some finite positive constant Cy, we have,

T
D1 (%21; - Uit)
Otherwise, if A > (s/2+1)/(s/2 + 2), for some finite positive constant Cy, we have

T
D1 (IzZt - Uit)
If it is further assumed that lp = © (Td), such that 0 < d < 1/3, then, if 3d/2 < \ <
(s/241)/(s/2+2),

Pr [ T= (aii,t B 0'9231'15)
for some finite positive constants Cy, Cy and Cy, and, if X > (s/2+1)/(s/2 + 2),

Pr HZtT=1 (a?&lt Oy, t)

for some finite positive constants Cy, C1, Cy and Cs, where wi%l,T =T Zthl E [(xzt — Ugit)g]
and wi%T - T_l Zf:l E [(uii,t - Ugit) 2] :

Proof. If g, contains x;, all results follow trivially, so, without loss of generality, we assume
that, if this is the case, the relevant column of Q is removed. (B.28) and (B.29) follow sim-
ilarly to (B.13) and (B.14). For (B.30) and (B.31), we first note that |>",_, (a2, — 02,)| <
[Ci (=2 [+ (T, Q) (T7'QQ) ™ (Qua) |

difference process and for a > 0 and s > 0, sup, Pr (|u2 ,| > a?) = sup, Pr (|u, .

|

| < Coexp [~ (1= 7 GTwi20/2] (B.28)

|

> CT} < exp [ C CS/ S+2] (B.29)

] < Coexp [— (1 —m)? GT 'wi7/2] + exp [-C1T<?],  (B.30)

> CT} < Cyexp [ C Cs/ 8+2] + exp [—ClTCQ} , (B.31)

Since {u2 , — 02} is a martingale
>a) <
Coexp (—C1a®), by Lemma A5, then the conditions of Lemma A3 are met and we have
PrTT, (12,0~ 02) | > Grl < expl— (1 — m BT wi2/2), i 0 < A < (/2 + 1)/(s/2 +2),
and Pr[| S, (u2,, —02,) | > ¢r] < exp[~CoGy/ ™), if A > (s/2 +1)/(s/2 + 2). Then, using
the same line of reasoning as in the proof of Lemma A6 we establish the desired result. =

Lemma A8 Let vy, fort=1,2,....,T, be given by the data generating process (6) and suppose
that uy and Tpy = (T14, Toty -y Tny)' Satisfy Assumptions 2-4, with s = min(s,, s,) > 0. Let g, =
(q1.45 G2ty -, Q) contain a constant and a subset of ;. Assume that B, = %Zle E(q.4q,)
and fqu = Q'Q/T are both invertible, where Q = (qy., q., ..., q;,.) and q; = (¢i1, Gi2, ---, i)’
for i = 1,2 ....lp. Moreover, suppose that Assumption 5 holds for x; and q,, where x; is
a generic element of {1, Tat, ..., T} that does not belong to q,. Denote the corresponding
projection residuals defined by (11) as uy: = x4 — Voe1 1> and the projection residuals of y; on
(@, w) as er = yr — Vypur (@, ). Define x = (21, 22,...,;27)", and My = Iy — QQQ'qQ,
and let ap = © (T)‘_l). Then, for any m in the range 0 < w < 1, and as long as lp = © (Td),
such that 0 < d < 1/3, we have, that, if 3d/2 < X < (s/2+4+1)/(s/2 +2),

(‘T 1 72 /M T — 1‘ > CLT) < exp[ (T )(1 —7T) TCLTCU (T)/2:| +6Xp[ COTCI} 9 and
(B.32)



Pr(|(T™ o, (' Myz)” Y2 —1] > ar] < exp[—0 gy (1 —7)° Tazw, {ry /2] + exp [-CoT],
(B.33)
where
Uch,(T) = T7123:1E (uit) ] %2:,(T) = TﬁthTzlE |:(u926t - Uazct) 2] . (B.34)
IfA> (s/2+1)/(s/2 +2),
Pr(|T "o, 22 Moz — 1| > ar) < exp[—Co (Tar)” ] + exp [-C1T] (B.35)

and
Pr(|(T "0, 2py 2 Mym) /% = 1] > ar] < exp[~Co (Tar)”**?) + exp [-C1T] . (B.36)
Also, if 3d/2 < A < (s/2+1)/(s/2+2),

Pr(]T’lo;%T)e’e —1] >ar) < exp[—af;m (1—m)° Ta%w;?T)/Q] +exp [-CoT“"],  (B.37)

Pr[|(a;?T) ee/T) Y2 — 1| > ay] < exp|—0o ( ) (1= )2 Tajw, 7/2] + exp [— CoT“], (B.38)
where e = (e, €3, ...,e7),
Ou(T) = T_IZLUE, and W?L,T = T‘TLE[(U? - 03)2]‘ (B.39)

IfA>(s/2+1)/(s/2+2),

PI“(|T_1O';?T) de—1|>ar) < exp[—Cy (Tar)” ] + exp [-CiT%], and (B.40)
Pr(|(o, 57 €e/T)"? = 1| > a] < exp[—Co (Tar)* "] + exp [-C1T] (B.41)
Proof. First note that T-'z'Myz — 02 ) = T Sy (@2, — 0%), where d,,, for t =

1,2,...,T,. is the t-th element of &1, = M,z. Now applying Lemma A7 to 3, (a2, — o2,) with
(r = Tap wehave Pr(| S/, (42, — 0%) | > ¢r) < exp[— (1 —7)* C%w;?T)/(ZT)]jLeXp [—CoT™],
if 3d/2 < A < (s/2+1)/(s/2 +2), and Pr(| 21, (a2, — 02) | > ¢r) < exp[-Coy/ ] +
exp [~C1T9], if A > (3/2 +1)/(s/2 +2), where w?  is defined by (B.34). Also

Pr(|T~o ¢ Zt (@ —0%) | > T o 7 Cr) < exp[— (1 - )’ G i T /2] +exp [-CoT],
if 3d/2 < /\ < (s/2 + )/(3/2 +2), and Pr(|T "o, ¢ S (a2, —0%)| > T o i) <
exp[—C CS/ 2] Lexp [—CiT ], if X > (s/2+1)/(s/242). Therefore, setting ar = CT/TO'i(T) =
o (T*1), we have

(|a_2 T'2’M,z — 1| > ar) < exp[—ai,(T) (1— W)zTa%w;?T)/ﬂ +exp [-CoT"], (B.42)

(T)
if 3d/2 < A< (s/2+1)/(s/2+2), and
Pr(|a;?T)T_1m’qu — 1| > ar) < exp[— C’OCS/ (s+2) ] +exp [-C1T],

10



if A > (s/2+41)/(s/2+2), as required. Now setting wy = J;%T)Tflm’Mqa:, and using Lemma
A13, we have Pr(|(o, (T~ 2'M,2)"? —1| > ar] < Pr(lo, {1 T~ &'Myz—1| > ar), and hence

Pr(|(0, 1T &' M)~ /*=1| > ar] < expl=0} () (1 — )" Tajw, iy | +exp [~CoT] , (B.43)
if 3d/2 < A < (s/2+41)/(s/2 4+ 2), and
Pr[\(a;%T)Tflw'qu)’l/Q — 1] > ar] < exp[—Co/ )] + exp [-Ci 7],
if A > (s/2+1)/(s/2+ 2). Furthermore

|(0;%T)T*1:c’qu) — 1|

(0rin T e Myz)/2 + 1

Pr|(0 2, T ''M,x)"/? — 1| > ar] = Pr

x:(T) > aT Y

and using Lemma A11 for some finite positive constant C, we have Pr{|(o, ¢, T~ &'Myz)"/? —

1| > ar] < Prllo, ¢ T e’ Mz —1| > arC '+ Pr[(o, (T ' Myz)/? +1 < C7']. Let O = 1,

and note that for this choice of C, Pr[(o ?T)T le'M,z)/2+1 < C71] = Pr|(o me)T le'M,z)'? <
0] = 0. Hence Pr[|(a;?T)T*1m’Mqa:)1/2 — 1] > ar] < Prf|(0, 2, T '2'M,z) — 1| > ar], and

,(T)
using (B.42),

Pr[|(a;?T)T_1w’Mq:c)1/2 — 1| > ag] < exp[—0y ) (1 — ™)? TaQTw;?T)/2] +exp [~CoT],
(B.44)
if 3d/2 < A< (s/2+1)/(s/2+2), and

Pr[|(a;?T)T_1m’qu)1/2 —1] >ar] < exp[—C’oCS/ 2] 4 exp [-Ci T,

if \ > (s/2+1)/(s/2 + 2). Consider now €'e = 3,_, ¢? and note that |3, (2 — 0?)| <
ST (W2 = 0?) |+ | (T'W/'W) (T 'W'W) ™ (W) |, where W = (Q, z). As before, applying

Lemma A7 to Zthl (€2 — 0?), and following similar lines of reasoning we have
Pr{Ci (e = 0f) | > Grl < expl— (1= m)* GT ey By /2] 4 exp [~ CoT ]
if 3d/2 < A < (s/2+1)/(s/2 + 2), and
Pr[30s (¢ = 0f) | > Gr] < expl=Cogy/ ™) + exp [~ 7]

if A > (s/2+1)/(s/2 + 2), which yield (B.37) and (B.40). Result (B.38) also follows along
similar lines as used above to prove (B.33). m

Lemma A9 Let vy, fort=1,2,...,T, be given by the data generating process (6) and suppose
that uy and @,y = (T14, Top, ..., Tnt)' satisfy Assumptions 2-4. Let q, = (qu1t, @a.t, -, qlTﬂg)' contain
a constant and a subset of Tn; = (T14, Tog, .oy Tur)'s and Iy = o(TY?). Assume that X,, =
%Zthl E(q.q,) and f]qq = Q'Q/T are both invertible, where Q = (q,., qy., ..., q;,..) and q; =

11



(Gi1, Qio, -, qir)’, fori =1,2, ... lp. Suppose that Assumption 5 holds for x; and q.,, where x; is a
generic element of {x1y, Ty, ..., Tpt} that does not belong to q,. Denote the projection residuals
of yr on (@, x1)" as er = Yo — Vo (@, v)'. Define ¢ = (21, 72,...,27)", e = (e1,¢e2,...,er),
and My = Ir — Q(Q'Q)™'Q’". Moreover, let E(e'e/T) = 02 ) and E(x'M,z/T) = 02 .
Then

ar ar

Pr
V(Ttee) (T '2'M,x)

> @ ("’5)) (B.45)

<
>cp(n,5)]_Pr< 1 d

+ exp [—COTcl]

Oe,(T)0,(T)

for any random wvariable ar, some finite positive constants Cy and Cy, and some bounded se-

quence dp > 0, where ¢, (n,0) is defined in (15). Similarly,

== v

Proof. We prove (B.45). (B.46) follows similarly. Define

¢ (n,0)
1+dr

ar
Pr

> ¢, (n,0)

) + exp [—C’OTQ} (B.46)

Te,(T)

gr = (02 0/ (T € e)'? =1, hy = [07 () /(T &' Myz)]'/? — 1.
Using results in Lemma A11, note that for any d; > 0 bounded in T,

ar ar

Pr
‘ V(Tee) (T '2'M,x)

¢ (n,0)
= < p ’
> ¢ (n,0) |0 o]_m( > 1+dT>+

Pr([(14gr) (14 hy)| > 1+dy).

Oe,(T)0x,(T)

Since (1 + gr) (1 + hy) > 0, then
PI‘(|(1 +gT) (1 + hT)| >1 +dT) =Pr [(]. +gT) (1 + hT) >1 +dT] = PI‘(gThT +gT+ ]’LT) > dT) .
Using (B.33), (B.36), (B.38) and (B.41),

Pr(|hr| > dr] < exp [-CoT'], Pr[lhr| > c] <exp [-CoT“'],
Pr||lgr| > dr] < exp [—COTcl] , Prllgr| > dr/c] <exp [—C’OTQ} ,

for some finite positive constants Cy and C;. Using the above results, for some finite positive

constants Cy and C', we have,
ar ar

Pr
V(Ttee) (T '2'M,x)

> @2 (z, 6))+6Xp [—CoT™ ],

Oe(T)0z,(T) 1+dp

>cp(n,5)|0:0] §Pr(

which establishes the desired result. m

12



Lemma A10 Lety;, fort =1,2,...,T, be given by the data generating process (6) and suppose
that u; and Tny = (T14, Tog, ..., Tpy)' satisfy Assumptions 2-4, with s = min(s,, s,) > 0. Let
q, = (Q1,t,Q2,t7~-~,QZT,t), contain a constant and a subset of T, and let n, = =z By + uy,
where x,; 1s ky X 1 dimensional vector of signal variables that do not belong to q.,, with the
associated coefficients, 3,. Assume that X, = %ZtT:l E(q.q,) and 3, = QQ/T are both
invertible, where Q = (q,., q., ..., q;,..) and q;. = (¢i1, Qi -, @ir)’, for i =1,2,...,lp. Moreover,
let Iy = o(T"/3) and suppose that Assumption 5 holds for x and q,, i = 1,2,...,n, where x,
is a generic element of {x1y, Ty, ..., Tn} that does not belong to q,. Denote the corresponding
projection residuals defined by (11) as u,; = x; — Yoe1 s and the projection residuals of
Ye on (@4, ) as e = Yo — Yypur(dy, ). Define ¢ = (11,29, ..., 27), y = (Y1, Y2, - Y1)
e = (e, e9,..er), M, = Ir — Q(Q'Q)'Q/, and Oy = E (T '2'M,X,) B,, where X, is T
xky, matriz of observations on xp;. Finally, ¢, (n,d) is given by (15) with 0 < p < 1 and
f(n,68) = cn®, for some ¢, 6 > 0, and there exists k, > 0 such that T = © (n**). Then, for any
7w in the range 0 < 7w < 1, any dr > 0 and bounded in T, and for some finite positive constants
Cy and C1,

2

Prllt,| > ¢, (n,0)|0r =0] <ex
] > ¢y () 0 = 0] < exp | —— o=

+exp [-CoT"], (B.AT)

where )
t, = T PaM,y (B.48)
T /([T tee) (T l2Myz)
ooy =E(T7'ee), oy =E (T2’ Mz), (B.49)
and
w?ye,T = T_lzf:lE [(Ux,tﬁt)2] . (B.50)

Under o? = 0% and/or E (uit) =02, =02, foralt=1,2,..T,
Pr(|t;| > ¢, (n,0) |07 = 0] < exp [— (1 — )2 2 (n,6) (1+ dr) ™ /2] + exp (—CoT“") . (B.51)

In the case where O # 0, let O = G(T_ﬂ), for some 0 < ¥ < 1/2, where ¢, (n,d) =
O (Tl/Q_ﬂ_CS), for some positive Cy. Then, for some bounded positive sequence dr, and for

some Cy,C3 > 0, we have
Pr(|t,| > ¢, (n,0) |07 # 0] > 1 — exp (—CoT). (B.52)

Proof. The DGP, given by (7), can be written as y = atr + XyB+u = atr + X0, +

X8, + u, where X, is a subset of Q. Let Q, = (Q,z), M, = Ir — Q(QQ 'qQ, M, =

Ir — Q.(Q.Q.)'Q.. Then, M,X, = 0, and let M, X}, = (Zpg.1, T2, - Tpqr)- Then,
T-122'M,y T-122'M,X,3, T-122'M,u

- _ . (B.53
' V(Tteel) (T eMyz) /(T 'ee) (T 'a'Mx) - V(T'ee) (T '2’'M,x) (B.53)
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Let Oy = E (T '2'M,X,) B,, n = X8, + u, n = (71, m2, ...,nr)", and write (B.53) as

_ \/T@T ﬁ (T71$/qu — QT) B.54
te V([Ttee/) (T 1M, x) " V(T tee)) (T z'M,z) (B:54)

First, consider the case where 67 = 0 and note that in this case
ty = (T 'a'M,z) "/ (T-'22'M,n) (T-'e'e) "*. Now by Lemma A9, we have

(T'x'M,z)""/* (T2’ M,n)
(T—le’e)l/2
T122'Mmn| ¢, (n,9)
>
1+ dr

Pr(|ty| > ¢, (n,0) |0y =0] =Pr

§Pr<

where o2 ; and o2 ;) are defined by (B.49). Hence, noting that c, (n,d) = o(T), for all

> ¢, (n,0) |0r = 0]

) + exp (—C’OTcl) .
Oe,(T)0x,(T)
Co > 0, under Assumption 3, and by Lemma A6, we have

2
—(1—m) agﬁ(T)ai(T)c% (n,d)

2 (1 + dT)2 wiej

Pr(|t.] > ¢, (n,0) |07 = 0] < exp +exp (—CoT™),

where w2, = TS El(upym)’] = TflzLE[u;t (.8, + ut)z], and u,, being the er-
ror in the regression of z; on Q, is defined by (11). Since by assumption u, are distributed

independently of u,; and x;,, then

wie,T = T_thTzlE[Ui,t(wéq,tﬁb)2} + T_lthzlE (ugzct) E (U?) )

where x}, 3, is the {-th element of M X,8,. Furthermore, E[u? ,(z},,53,)] = E (u2,) E(x},,3,)* =

E (u2,) ByE (@1}, ,) By, noting that under 0 = 0, u,; and x;,; are independently distributed.

Hence

w:%e,T = T_IZthlE (uit) ﬂQ,E(:qu,tiB;,q’t),Bb + T_IZthlE (uit) E (uf) . (B.55)
Similarly

O'i(T) =F (Tﬁle’e) =F (Tﬁln’qun) = E[T*1 (Xu0, + u)/ M. (X8, + u)]
= BB (T X)M.Xy) By, + T E (u?),

and since under # = 0, x being a noise variable will be distributed independently of X,, then
E(T'X|M,,X,) = E(T7'X;M,X}), and we have

oty = B E (T XM X) BT Y E (uf) = T LBy (ag0hy,) Byt Ty B () -
(B.56)

Using (B.55) and (B.56), it is now easily seen that if either E (u2,) = o2, or E (uf) = o?, for

2

€,

all ¢, then we have w7, 7 = 07 1,03 1y, and hence
Pr(|t,| > ¢, (n,6) |07 = 0] < exp [— (1 — m)° 012) (n,6) (1 +dp)~? /2] + exp (—CoT“) ,
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giving a rate that does not depend on error variances. Next, we consider 67 # 0. By (B.45) of
Lemma A9, for dr > 0 and bounded in T,

1/2 ,qu

T-122'M,y
V(T 1e’e/ ) (T tz’'M,x)

Oe,(T)0,(T)

- cp (n,0)
1+drp

> ¢ (n,é)] <Pr (

)+eXp (—OoTcl) .

We then have

T-'2g'Myy  TY? (T 'a'M, X8, — 0r) N T-122'M,u N TV20;

Oe (T) 0, (T) Te (T) 0, (T) Oe(T)0u/(T)  Oe(T)0a(T)
_ T2 (T 'a'Myn — Or) N V201
Oe ()0 (T) Oe (T)0u,(T)

Then Pr(|T"?0 (ot (T 2 Myn — 0r) + TV?0_1pyo, ipbr| > ¢, (n,0) /(1 +dr)] = 1 —
Pr HTl ’1 ) ;%T) (T'z'Mn — 07) + T2 7(1 ) x(T)HT‘ < ¢, (n,d) /(1 + dT)]. Note that since
¢p (n,8) is given by (15), then, TV 07| /(0c (1)0x 1)) — ¢p (0, 8) / (1 4 d7) > 0. Then by Lemma

Al12,
Pr [

gPr[

But, setting (7 = T2 [T |07 /[0, (1)041)] — ¢ (n,6) / (1 + dr)] and noting that 67 = O(T~?),
0 < ¥ < 1/2, implies that this choice of (r satisfies (v = © (T)‘) with A =1 -4, (B.16) of

Lemma A6 applies regardless of s > 0, which gives us

o

T1/2 s/(s+2)
< Cyexp {—05 {TW ( brl & 5))} +exp (—CeT") (B.57)

V(T *x'M,n — 0r) N T'20; < O (n, (5)}
Oe(T)0x,(T) Oe(1)0z)| — 1+drp
TV (T *z'M,n — Or) T2 07| e (n, 5)}

Oe (T)Tx,(T) Oe(T)0x(T) 1+dp

TV (T *x'M,n — 0r)

Te,(T)T,(T)

R G (n,é)]
Oe(T)0xyT) 1+ dr

Oe(T)0x,(T) 1+ dp

for some Cy, C5, Cs and C7 > 0. Hence, as long as the assumption that ¢, (n,d) = O (Tl/Q_ﬁ_CS)

holds, for some positive Cy, there must exist positive finite constants Cy and (5, such that

o

for any s > 0. So overall

TV (T-'x'M,n — 0) ‘ . TV 07 ¢, (n,9)
Oe(T)0,(T) 1+ dyp

} < exp (—CoT) (B.58)

Oe,(1)0,(T)

T- 1/2 M WY
V(T tee/) (T z'M,x)

> ¢, (n, 6)] >1—exp (—CQTC?’) .
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Lemma A1l Let X;7, fori = 1,2,...,lp, Yr and Zy be random variables. Then, for some
finite positive constants Cy, C7 and Cy, and any constants 7;, for 1 = 1,2,....lp, satisfying
0<m<1and 1" =1, we have

lT lT
Pr (Z |XZT| > O()) < ZPI‘ (|X’LT| > WiCO) , (B59)
=1 =1

P1"<|XT| X |YT| > 00) < Pl"<|XT| > 00/01) + PI‘(lYT| > 01>, (B60)
and
Pr(\XT| X |YT’ X |ZT| > CO) < Pl“(|XT| > Co/ (ClCQ)) +P1"<|YT| > C1)+ (B61)
Pr(|Zr| > Cy).

Proof. Without loss of generality we consider the case Iy = 2. Consider the two random

variables X7 and Xs7. Then, for some finite positive constants Cy and C7, we have

PI‘(|X1T| + |X2T| > O()) < Pr ({|X1T| > (1 — W)Oo} U {|X2T| > 7TC()})
< PI‘(|X1T| > (]_ — 7T)C()) + Pr (|X2T| > 7TO()) ,

proving the first result of the lemma.

Define events $ = {|Xr| x |Yr| > Co}, B={|Xr| > Co/C1} and € = {|Yr| > C;}. Then
$H C (BUCL), namely H must be contained in B U €. Hence P($H) < P(BUC). But
P(BUC) < P(B) + P(€). Therefore, P(H) < P(B) + P (<), proving the second result
of the lemma. The third result follows by a repeated application of the second result. m

Lemma A12 Consider the scalar random variable X, and the constants B and C. Then, if
|B| > C >0,
Pr(|X+B|<C)<Pr(|X|>|Bl-0C). (B.62)

Proof. We note that the event we are concerned with is of the form A = {|X + B| < C}.
Consider two cases: (i) B > 0. Then, A can occur only if X <0 and |X| > B —-C = |B|—C.
(ii) B < 0. Then, A can occur only if X > 0 and X = |X| > |B| — C. It therefore follows that
the event {|X| > |B| — C} implies A proving (B.62). =

Lemma A13 Consider the scalar random variable, wr, and the deterministic sequence, ar >

0, such that ar — 0 as T — oo. Then there exists Ty > 0 such that for all T > Ty we have

1
PI‘( \/w_T—l‘ >CkT> SPr(‘WT_l‘ >OéT). (B63)
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Proof. We first note that for ar < 1/2

=

Also, since ar — 0 then there must exist a Ty > 0 such that ar < 1/2, for all ' > Tj, and hence

if event A : |wr — 1| < ar is satisfied, then it must be the case that event B : |2 — 1’ < ar

Jor
is also satisfied for all T" > Ty. Further, since A = B, then B® = A, where A° denotes the

1
Zor 1

— 1‘ > aT> < Pr(lwr — 1| > ar), as required. m

—1‘<|wT—1| for any wr € [1 —ar, 1 + ar].

complement of A. Therefore, > ap implies |wr — 1| > ap, for all T > T, and we

have Pr <

_1_
Jor
Lemma Al14 Let Ap = (a;jr) be a symmetric lp x lp matriz with eigenvalues py < pg < ... <

gy Let gy = S (Ir), i = lp =M +1,lp —M+2, ..., I, for some finite M, and sup,<;<;,._ s fi <

Cy < 00, for some finite positive Cy. Then,
[Az|p =& (). (B.64)
If, in addition, infy1<;<, p; > C1 > 0, for some finite positive Cy, then
|Az'], = (Vir) - (B.65)
Proof. We have W
|Arll} = Tr (ArAy) = Tr (A%) =D 4.
i=1

where p;, for i = 1,2,...,lp, are the eigenvalues of Ar. But by assumption p; = © (Ir),
for i = lp — M + 1,lp — M + 2,...,lp, and supy<;«;,_p i < Cop < 00, then ZiL u: = M
S (2) +O(ly — M) = © (1), and since M is fixed then (B.64) follows. Note that A" is also

symmetric, and using similar arguments as above, we have

I
IAZH 5 = Tr (A7%) = > i,
=1

but all eigenvalues of A are bounded away from zero under the assumptions of the lemma,
which implies y;> = & (1) and therefore ||AZ'|, = © (VIr), which establishes (B.65). m

Lemma A15 Let z be a random variable and suppose there exists finite positive constants Cy,
Ci and s > 0 such that

Pr(|z| > a) < Cyexp (—C1a®), for all a > 0. (B.66)
Then for any finite p > 0 and p/s finite, there exists Cy > 0 such that
E|z|P < Cs. (B.67)
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Proof. We have that -
E|zlP = / aPdPr(|z] < a).
0

Using integration by parts, we get

/ aPdPr(|z] < «) :p/ a1 Pr(|z| > a)da.
0 0

But, using (B.66), and a change of variables, implies

_poooo
_50

E|zf < pC’o/ o’ Lexp (—Craf) da u" exp (—Chu) du = CoCy P (£> r (£> :
0 s

S

where I' () is a gamma function. But for a finite positive p/s, I" (p/s) is bounded and (B.67)
follows. m

Lemma A16 Let Ar = (a;jr) be an lp X lp matriz and A = (Gijr) be an estimator of Ar.

Suppose that Ar is invertible and there exists a finite positive Cy, such that

sup Pr (|ayjr — aijr| > br) < exp (—CoTh7) , (B.68)
1,]
for all by > 0. Then
2
Pr (HAT - ATH > bT) < Zexp (—COT—gT> , (B.69)
F I3
and
~—1 _ _C(]Tb2
Pr{|Ap —AIH > by Sl%exp( T )
( 7o) G A7 (17| + br)°

T
+ 12 exp <—00—> . (B.70)
' (R

Proof. First note that since by > 0, then

N N 2
Pr <HAT - ATHF > br) = Pr (HAT - ATHF > b%)

lr lr
= Pr ( Z Z (Gijr — aij,T)2 > b%]) )

j=1 i=1
and using the probability bound result, (B.59), and setting m; = 1/l7, we have

lr lr
A R 9 B
Pr (HAT — ATHF > bT> < E 1 E 1 Pr (‘aij,T — amT\ > ZTQb%)
j=1 i=

lr I

= Z Z Pr (|(All'j’T — aij,T| > l;le)
j=1 i=1
< l% sup [PI‘ (|CALij’T — aij,T| > l;le)} .
ij=1,2,. 17

18



Hence by (B.68) we obtain (B.69). To establish (B.70) define the events
—1 A At —1
= {182 - o, <1) i - {37 -], o)
and note that by (2.15) of Berk (1974) if A7 holds we have

|A7'[I7 |Ar - Aq|,

HA;l e i . (B.71)
C A A - A,
Hence
Al A H
Pr (BT ‘AT) < Pr H - Hf " : L > br
L[| A7 ], |[Ar - Ac],
X by
—Pr H _ ) . (B.72)
( Fo AR (A7 ] + br)

Note also that

Pr (BT) Pr ({BT N .AT} U {BT N Ag}) PI’ BT|.AT) Pr (.AT) + Pr (BT|-’4T) Pr (.AC)

(B.73)
Furthermore
Pr (Af) = Pr (|| A7, [Ar — ar| >1)
_ A — ~1| ¢
(o], 147
and by (B.69) we have
T
Pr (A$) < I3 exp ( —) :
| Az 5
Using the above result and (B.72) in (B.73), we now have
A br
Pr(Br) < Pr( |Ar— Aq|| > 7 . Pr (A
o0 <00 (e 4, > g, ) 9
T
+ Pr (Br|AS) 12 —Cp——5— | .
e e (o
Furthermore, since Pr (A7) < 1 and Pr (BT\A%) < 1 then
J— A 71 _1 A bT
e = ([ a2, =) < oo ], i)

T
+1exp | -Co——— | .
! ( ”HAFH?@)

Result (B.70) now follows if we apply (B.69) to the first term on the RHS of the above. m
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Lemma A17 Let Ar = (a;;1) be a lp X lp matriz and Ap = (Gijr) be an estimator of Ar.

Let HA;lHF > 0 and suppose that for some s > 0, any by > 0 and some finite positive constant
CO;
sup Pr (|a;;r — air| > br) < exp [ Co (Thr )s/ S+2)} .
1,3
Then
s/(s+2)
.1 . ) —Cy (Thr)
(i -4, n) o ) 09

2 Ts/(+2)
+ l7 exp —COH _1Hs/s+2)ls/(s+2) :

Proof. First note that since by > 0, then

N N 2
Pr (HAT - ATHF > bT) —Pr (HAT - ATH > b%)

I
ZZ azyT az]T >b2]

7j=1 =1

=Pr

and using the probability bound result, (B.59), and setting m; = 1/I2%, we have

Pr(HAT—ATHF >br) < ;;Pr g — agrl” > 7262) (B.75)
lr
= ZZPI‘ ‘aij ang‘ >l bT)
7j=1 =1

A ) p/0+)
<12 sup [Pr (|agr — aiyr| > I5'br)] = G exp ( Co TS/(S+1)—ZS/(5+2) .

i t
To establish (B.74) define the events
—1
Ar = {47l
and note that by (2.15) of Berk (1974) if A7 holds we have

ATHF < 1} and By = {HA;I - A;lH > bT}

A7

Ar— A,

I
F

A;l — A;lH <

L[l A7 ]| Ar - A,
Hence

- )
Pr(Br|Ar) <Pr

> by

L- Az

Ar]
F

br
1Azl (A7 + br)

e [ar- a], >
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Note also that
Pr(Br) = Pr ({Br N Ar} U {Br N AS}) = Pr (Br|Ar) Pr (Ar) + Pr (Br|AS) Pr (Af)
Furthermore
Pr (A7) = Pr (|| 47|, |Ar - As | >1)

=Pr ([ ar - |, > 47']).

and by (B.75) we have

e T/ (+2)
Pr (A$) < 7. exp ( O,y T4/ +1)l8/(72)> = exp < HA 1HS/ 512) s/(s+2)> :

Using the above result, we now have

. by
PrBr) =P (”“‘T ~ 41|, > AT bT>) Fr{Ar)
7s/(s42)
+ Pr (Br|A) exp ” _1Hs/(5+2) e .

Furthermore, since Pr (A7) < 1 and Pr (Br|A$) < 1 then

o . b
Pr(B;) = Pr HA 1—A*1H>b §Pr<HA A H S Ul )
Br) =Pr ([ Ar" - a7t > br) AT AT (AT, + o)
Ts/(s+2)
FeR T AT e )

Result (B.74) now follows if we apply (B.75) to the first term on the RHS of the above. m

Lemma A18 Let S, and S, respectively, be T' X l,r and T' X I, matrices of observations
ON Sait, and Spit, for i = 1,2,.. 0y, t = 1,2,....T, and suppose that {s.i, St} are either
non-stochastic and bounded, or random with finite 8" order moments. Consider the sample

covariance matrizc 2(11, = T1S!S, and denote its expectations by X, = T FE (S.Sy). Let
Zijt = Sa,itShjt — E (Sa,itsb,jt) )

and suppose that

T T
sup | Y > Blzijezije)| = O(T). (B.76)
R S
Then,
E Hﬁ) -3 L O larlor (B.77)
ab ab P — T . .




If, in addition,

T T T T
Sup [Z Z Z Z E(zijﬁtzij,t/zi/j/’szi/j@s/)] = O (Tz) y (B78)

7'7.771/7-7/ t=1 t'/=1 s=1 s'=1

then
E Hiab - 2ab

Proof. We first note that E(z;;,2i;¢) and E (2202 5%y s) €xist since by assumption

{Sat, Sv.it} have finite 8" order moments. The (i, j) element of S — S is given by

@ij,T = T_l Z Zijﬂg, (BSO)
and hence
la,7 o1 lar b T T
E HEQb - ab ZZE z]T = T_QZZZZE<ZUJZU¢')
i=1 j=1 i=1 j=1 t=1 t'=1
] T T
T”A[zzw%%ﬂf
LI t=1 =1
and (B.77) follows from (B.76). Similarly,
4 la,7 v, 2
Hzab — Zab) = D2
i=1 j=1

la o la7 o

= E E E am Tal’]/ T-

=1 j=14=175=1

But using (B.80) we have

T T T
2 =74 o s
Qij, Taz’]’ T = ZijtZig,t! gl %l s
t=1 t'=1

s=1 s/=1

T T T
-4
=T g E E g ZijtLig,t! Zil s il 5 s

T
t=1 /=1 s=1 s'=1
and

lar b lor lbr T T T T

i 30 30 3)3)3) 3) ) Y IEHETERI»

i=1 j=1i=1j'=1 t=1 t/=1 s=1 s'=1
[T T T T

E Hzab - ab

l 12
aTbT ZZZZE Zij tZigt Zil ' s Zil §! S)

t=1 t/=1 s=1 s/'=1

sup
7] /L 7]

Result (B.79) now follows from (B.78). =
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Remark 1 It is clear that conditions (B.76) and (B.78) are met under Assumption 3 that
requires zy to be a martingale difference process. But it is easily seen that condition (B.76)
also follows if we assume that s, and sy are stationary processes with finite 8-th moments,
since the product of stationary processes is also a stationary process under a certain additional
cross-moment conditions (Wecker (1978)). The results of the lemma also follow readily if we

assume that s, ;; and s, jy are independently distributed for all i # j and all t and t'.

Lemma A19 Consider the data generating process (6) with k signal variables, k* pseudo-signal
variables, and n—k —k* noise variables. Let ff?s) be the number of variables selected at the stage
s of the OCMT procedure and suppose that conditions of Lemma A10 hold. Let k* = © (nf)
for some 0 < € < min{1,k1/3}, where Ky is the positive constant that defines the rate for
T = ©(n"™) in Lemma A10. Let Dy, be the event that the number of variables selected in
the first s stages of OCMT is smaller than or equal to Iy, where ly = ©(n”) and v satisfies
€ < v < k1/3. Then there exist constants Cy, Cy > 0 such that for any 0 < »x < 1, any 65 > 0,
and any j > 0, it follows that

Pr (kgy —k— k" > jID,1r) <

n—k—k {exp [_M} + exp(—C’oTcl)} (B8

fors=1,2,... k.

Proof. By convention, the number of variables selected at the stage zero of OCMT is zero.
Conditioning on D,_; r allows the application of Lemma A10. We drop the conditioning nota-

tion in the rest of the proof to simplify notations. Then, by Markov’s inequality

B (ke — k — k)

Pr () —k =k > j) < J e
But
B (e, - ZE[S> (i #0)
=S m[ G0+ 3 B[R0 e o).

i=k+k*+1

<k+k+ Z E[I (B £ 0) 0o ]
i=k+k*+1

—_—

where we have used I, (3; # 0) < 1. Moreover,

E [Ty (5 7 0) 01,9 = 0] = Pr ([ts,.,,| > e (0,8 18:) = 0)
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fori =k+k*+1,k+k*+2,...,n, and using (B.51) of Lemma A10, we have (for some 0 < > < 1
and Co, Cl > 0)

»c;, (n, 0s)

2 :| -+ eXp(-CoTcl>.

sup Pr (‘%Ti (s)‘ > ¢p (1, 65) |9i,(s) = 0) < exp [_
i>k+k* N

Hence,

»c (n,dy)

E (AE)S)) —k—k<(n-k-Fk) {exp {—p—

5 } —l—exp(—C’oTcl)},

and therefore (using this result in (B.82))

N « . n—*k—k* %62 (nv 65)
Pr (k;(s) —k—-kKk"> j) < f {exp [—pT] + exp(—COTCI)} ,

as desired. =

Lemma A20 Consider the data generating process (6) with k signal, k* pseudo-signal, and
n — k — k* noise variables. Let Ty, be the event that the OCMT procedure stops after k stages
or less, and suppose that conditions of Lemma A10 hold. Let k* = & (n) for some 0 < € <
min {1, k1/3}, where ky is the positive constant that defines the rate for T = © (n"*) in Lemma
A10. Moreover, let 6 > 0 and 6 > 0 denote the critical value exponents for stage 1 and
subsequent stages of the OCMT procedure, respectively. Then,

Pr(7;) =140 (n""")+ 0 (n") + O [nexp (—Con“**)] (B.83)
for some Cy,Cy >0, any > in 0 < <1, and any v in e < v < K1 /3.

Proof. Consider the event Dy, = {ff(j) < lp,j7 =1,2,....k} for k > 1, which is the event
that the number of variables selected in the first k stages of OCMT is smaller than or equal to

l7 = ©(n”), where v lies in the interval € < v < k1/3. Such a v exists since by assumption
0 <e<min{l,x;/3}. We have Pr(7;) =1 — Pr(7), and

Pr () = Pr (Z|Dy.r) Pr (Dir) + Pr (T¢|Df r) Pr (Df 1)
< Pr(Z|Dyr) + Pr (D,;T) ,

Therefore,
Pr(T;) > 1 — Pr(Z|Der) — Pr (D5 1) - (B.84)

We note that

o~

~

o T 7.0 lT
Pr (Dk,T) 2 Pr |:( (1) S ?> N <k7(2) S z
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where IQ:E’S) is the number of variables selected in the s-th stage of OCMT and D = {/2:0) <
lr,j=1,2,...,s} for s =1,2,..., k. Hence

S0 ! Yo ! ¢
Pr (Djr) < Pr (< %) 0 (Ko < [ D) 1
kT) > .
7 N (lfok) < %T Dk—l,T)
Furthermore
o ! "o ! ¢
- ;

N (k(k) S s Dk*l,T)

_ Py (lf(ol) > %) U (/2302) > % Dl,T) U
U <Aok) > % ’Dkfl’T)

k
. L lr
S Pr (k(l) > E) + ZPI‘ (k(s) > E DS_I’T> .
s=2
Since k is finite and 0 < € < v, there exists T such that for all T' > Ty we have Ir/k > k + k¥,
and we can apply (B.81) of Lemma A19 (for j = ir/k — k — k* > 0), to obtain

7.0 [ 7.0 * ! *
Pr(k(1)>%)—Pr( 0y —k—k >%—k—k>

A 2 (0§

g
for some Cy, C; > 0 and any 0 < s < 1. Noting that for 0 < e < v,
n—k—k* 1w
%T—k——k* =0 (n ) y (B.85)

and using also result (i7) of Lemma A2, we obtain

Pr <l%2’1) > l—T) =0 (") +0 [n'Vexp (—CoT™)] .

k
Ds—l,T)
n—k—k* »ct (n,0%)
) {exp l_pT] *eXp(_C‘)T%}

=0 (W) £ 0 [0 exp (—CoT)]

Similarly,

- DS_LT) :Pr(l%fs)—k—k*>%—k—k*

where the critical value exponent in the higher stages (s > 1) of OCMT (6*) could differ from
the one in the first stage (J). So, overall

k
c 7.0 It 2 7.0 It
Pr (Dk),T) S Pr (k(l) > E) + — Pr ( (s) > E DS].,T)

=0 (") +0 (') + 0 [ exp (—CoTY)], (B.86)
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for some Cp,C; > 0, any > in 0 < » < 1, and any v in € < v < k1/3. Next, consider
Pr (7| Dk 1), and note that

Pr (7| Dr,r) = Pr (T |Der, Li) Pr(Li|Dir) + Pr (L | Dy, Lf) Pr(Li| D)
S Pr (%C‘Dkg*, £k> + Pr(ﬁlehT), (B87)

where Pr (7,°|Dyr, L) is the probability that a noise variable will be selected in a stage of
OCMT that includes as regressors all signal variables, conditional on the event that fewer than
l7 variables are selected in the first £ steps of OCMT. Note that the event 7,| Dy 1, L, can only
occur if OCMT selects some pseudo-signal and/or some noise variables in stage k£ + 1. But the
net effect coefficient of signal variables in stage k£ 4+ 1 must be zero when all signal variables
were selected in earlier stages (s = 1,2,...,k), namely 0; 41y =0fori =k +1,k+2,... k+k*.
Moreover, 0; (,41) = 0 also for i =k + k* + 1,k + k* + 2, ..., n, since the net effect coefficient of

noise variables is always zero (in any stage). Therefore, we have

Pr (7;:|Dk,T;£k) S i Pr [t

i=k+1

J)i,(k-i,-l) > Cp <n’ 5*) ‘67;7(’64-1) = 07 Dk,T] .

Note that the number of regressors in the regressions involving the ¢ statistics t, i1 does not
exceed Ir = © (n”), for v in the interval 0 < € < v < x;/3 and hence I = o(T"/?) as required
by the conditions of Lemma A10. Using (B.51) of Lemma A10, we have

_ 2 ,5*
Pr(T¢|Dir. £2) < (n— k) exp [%]

+ (n— k) exp (—CoT") . (B.88)

for some Cp, Cy > 0 and any 0 < »r < 1. By Lemma A2, exp [—3c2(n,6%)/2] = & (n=7"), for
any 0 < s < 1, and noting that n — k < n we obtain

Pr(T¢|Dyr, Lx) = O (n* ) + O [nexp (—CoT™)] . (B.89)

Consider next the second term of (B.87), Pr(L{|Dy.r), and recall that £, = NF_,L; ) where
L U _1Bij,i=1,2,.... k. Hence L, = ﬂ _1B5;, and
Pr (L ,| Te, Der) = Pr (NS_B5 ;| Th, D) =
¢1|77€,DkT) Pr 2|811,779;Dk,T)
By 5| By QHBH,’]}C,D,CT) X ... X
Pr( el By NN By, T, Dir) -

But by Proposition 1 we are guaranteed that for some 1 < j <k, 6; (;) # 0. Therefore,
PI’( ‘ 4J— 1m mBZl’%’DkT)_ ( j‘B] 1m mlea %O%aDkT>
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and by (B.52) of Lemma A10,
Pr (Bf]| B, N ..NB5y 0y # 0, T, D) = O [exp (—C’OTCI)] ,
for some Cjy, C; > 0. Therefore, for some j € {1,2,...,k} and Cy, C; > 0,

Pr (Lik‘ 77,3, Dk,T) S Pr (Bz]‘ Bic,j—l N...N Bf,l’ Qiy(j) 7é 0, 77.3, Dk,T)
= O [exp (—COTcl)} : (B.90)

Noting that & is finite and
Pr (L§| Ty, Dir) = Pr (UL, L5| T, Dir)

k
< Pr(L5| 7, D),

i=1

it follows, using (B.90), that
Pr (L] Ty, Diz) = O [exp (—CoT™)], (B.91)
for some Cy, C; > 0. Using (B.89) and (B.91) in (B.87) now gives®
Pr (Z¢|Dyr) = O (n' ") + O [nexp (—CoTY)] . (B.92)
Using (B.86) and (B.92) in (B.84), yields

Pr (I]-];J) —14+0 (nl—l/—%5> +0 (nl—u—%é*) +0 [TLl_V exp (—C[)TCI)]
+0 (nl_”‘s*) + O [nexp (—C’QTC?’)] ,

for some Cy, C1,C3,C3 > 0 and any » in 0 < 2 < 1, and any v in € < v < k;/3. But
O (n*=7*") is dominated by O (n'="), and O [n'~" exp (—CoT“")] is dominated by O [nexp (—C>2T)],

since v > ¢ > 0. Hence,
Pr(7;) =1+0 (n"")+ 0 (n") + O [nexp (—CoT“")],

for some Cp,Cy > 0, any » in 0 < » < 1, and any v in € < v < k1/3. This result in turn
establishes (B.83), noting that 7' = & (n"!). =

Lemma A21 Suppose that the data generating process (DGP) is given by

y = X - + u, (B.93)
Tx1  Txk+l pyix1  Tx1

where w = (uy, Uy, ...,ur), E(u) =0, E(uu') = 01y, 0 < 02 < oo, I is a T x T identity

matriz, X = (77, Xg) = (T, ®1, X2, ..., k) includes a T x 1 column of ones, T, and T x 1

>We have dropped the term O [exp (—C’oTcl)], which is dominated by O [n exp (—C’OTcl)].
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vectors of observations, ®; = (T, Ti, ..., Tir) , on the signal variables i = 1,2, ...k, and the
elements of B are bounded. Consider the regression model
=S -4 B.94
T:Zl Txly lpx1 +T§1’ (B.94)
where S = (s) = (81, S2..., 81,), with s; = (sj1, Sj2, ...,sz)', forj =1,2,...,lp, Denote the least
squares estimator of 8 in the regression model (B.94), by o & , and the associated T x 1 vector of

least squares residuals, by 1 = y—SS, and set B, = (,6' (/S 1) . Denote the eigenvalues of
Yo =FE(T7'S'S) by 1 < po < ... <y, and assume that the following conditions hold:

i pti = O (lp), i = lp—=M+1, lp—M+2, ..., Iy, for some finite M, sup;<;<;,. s s < Co < 00,
for some Cy > 0, and infi<;;, p; > C1 > 0, for some C; > 0.

ii. Regressors are uncorrelated with the errors, E (sju;) = 0 = E (zvus), forallt =1,2...,T,
i=1,2,..,k, and j = 1,2,....lp, sy have finite 8" order moments, and Zijt = SitSjt —
E (sisji) satisfies conditions (B.76) and (B.78) of Lemma A18. Moreover, zj;, = si%j; —
E (syxji) satisfies condition (B.76) of Lemma A18.

Suppose that 13./T — 0, as Iy and T — oo, Then, if S contains X

Fo=T'a|> =02+ 0 1 o) G 0, i’ B.95
a = ||U.|| =0+ U ﬁ + 0y T3/2 + T ) ( )

Js- e, -0, (1) +0. (). (.96

But if one or more columns of X are not contained in S, then

and

F,=0"+0,(1), (B.97)

H O (I7) + O, (ZZQ) +0, (5/_2) 40, (lT) (B.98)

Proof. Let 3,, = S'S /T, and recall that by assumption matrices X, = F (T~'S’S) and 3.,
are positive definite. Let A,, = 37! — X! and using (2.15) of Berk (1974), note that

and

=37 |12

- 2ss
F

HAssH < - (B.99)
P ||2;£HFHZSS—ESS
F

We focus on the individual terms on the right side of (B.99) to establish a bound, in probability,
ASS

for

. The assumptions on eigenvalues of ¥, in this lemma are the same as in Lemma A14
F
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with the only exception that O (.) terms are used instead of & (.). Using the same arguments
as in the proof of (B.64) and (B.65) of Lemma A14, it follows that

[Zssllp = O (lr) (B.100)

and

|53, =0 (Vi) (B.101)

Moreover, note that (i,j)-th element of <285 — 285>, Zijt = SuSjt — E (susj), satisfies the

1) ~0 (%) , (B.102)

Ess - 23ss

conditions of Lemma A18, which establishes

E (Hiss - 2)ss

A 5\ 11/2
and therefore, using £ HZSS — s ‘ < {E < )} , and the fact that L;—convergence
F F

implies convergence in probability, we have.

‘ Zss - z}ss
F

_o, (1) B.103
(%) (5.103)

13/2
=0, T _ 7
F VT

S

Using (B.101) and (B.103), it now follows that

st_sl 2ss - Ess

I

3/2
and since by assumption % — 0, then

1
(1= 122 B - =

)2 =0,(1). (B.104)

Now using (B.103), (B.104), and (B.101) in (B.99), we have

|a.| =00, (l—\/TT) 0,(1) = 0, (%) | (B105)
and hence
H (s;s)‘l = |54, < |A., =L =0 (%) +o, (V). (B106)

Further, since by the assumption F (s;u;) = 0, then HSIT”Hi =0, (l%), and

Iy
o {5 o
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Consider now the T' x 1 vector of residuals, u from the regression model (B.94) and note that

under (B.93) it can be written as
it = M,y= M,u+M,Xf, where M, = I, — S(S'S)"' §". (B.108)
In the case where X is a sub-set of S, M, X3 = 0, and
Fp =T a)” = T '/ Myu=T"v"u— (T"'u'S) (T7'S'S) ™" (T"'S"u). (B.109)

2

Also since u; are serially uncorrelated with zero means and variance ¢, we have

T '"wu=0*+0, (T’1/2) ,

and
S/ ||?

T

|crrus) (r1s8) ™ (12s)| < ‘

(7).

-1,/ —1g/q) 1 —1q/ l%’ l;ﬂ

)

F

F F

which in view of (B.106) and (B.107) yields

The result (B.95) now follows using the above results in (B.109). Now consider the case where
S does not contain X, and note from (B.108) that

Fy = T '/Mu+T 8 X'M, X3 + 2T 8'X'M,u. (B.110)

Since M is an idempotent matrix then

X'X
T

7 xMXBl, < (3 ) 8= BEB 40, (1) = 0,0)

Similarly,

T8 X'Mu=T"'8X"u— (T7'@X'S) (T7'S'S) ™" (T"'S'u)

1/2 lT l?’/g

The result (B.97) now follows if we use the above results in (B.110) and recalling that the
probability order of T~'u/'M,u is given by (B.95). Consider now the least squares estimator of
6 and note that under (B.93) it can be written as

6 =(S'S)"'S'y=(S'S) 'S'’X3 + (S'S) "' Su. (B.111)

Suppose that X is included as the first k£ + 1 columns of S, ar}d denote the remaining I — k — 1
columns of S by W. Also partition § accordingly as (5/ 5 ) , where 8, is the (k+1) x 1 vector

) T w
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of estimated coefficients associated with X. Note also that in this case S (8'S)™' §’X = X, and
we have

S =XB+ S (S'S) ' S,

or

X (8.~ 8) + W (8,-0, 4 1) =S(8'9)'S'n,

which can be written more compactly as S (5 — ,80) = S (S'S)"! S'u, where 3, = (8, O;T_k_l),.
Premultiplying both sides by S’, and noting that S’S is invertible yields

6 —B,=(S'S)"'Su,

(7)

with the norm of § — B, given by

()" () =

Now using (B.106) and (B.107) it readily follows that

o, -0 () o (F) 3112

as required. Finally, in the case where one or more columns of X are not included in S, consider

F

J5- o, -|

AGF)

the decomposition
§— B, = (3 - 5*) (0. — By). (B.113)

where §, = ¥ '3,,.3, and X, = E (T'S'X). When at least one of the columns of X does not
belong to S, then 4, #3y. To investigate the probability order of the first term of the above,
using (B.111), we note that

§-6,= (2;12%—2;;2“) B+ (S'S)" S,

where 3,, = T7'8'X. But 3'3,,-3.'%,, = A A, + A2, + XA, where A,, =
3. — .., and, as before, A,, = 331 — 1. Hence

(51550308, < a.
F

155 | A

oA

181+ A

Il

Esx
Nl 18]

Using Lemma A18 by setting S, = S (lor = Ir) and Sy = X (I, = k + 1), we also have, by

(B.77),
=0 (@) . (B.114)

AS.Z‘

- Hgsw - Esx
F
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Atso A =0, (B/VT) by (B105), |2, = O (Vi) , by (BAOD), [ Ball, = O (Vin),
18]l = O (1) . Therefore

|(s25mm.) 8], -0, (87 0, ()~ (svT) 0 (Vi) w0 (vir) o ()
o () o (5) o (L)

Therefore, also using (B.112), overall we have

‘“— =0, <lf:>+0 (l;/;>+0 (\l/%)

Finally, using (B.113)
|- 8], <]

where ||3,]| = O (1), since 3, contains finite (k + 1) number of bounded nonzero elements, and

6.1 = [ 25 Zua |
< |[Z3 5 1Bl -

12 = O (VIr) by (B.101), and ||Z,,|| = O (VIr). Hence, in the case where at least one

of the columns of X does not belong to S, we have

H O (ir) + O, (l;p)ﬂ) (%)H} (\Z/TT)

which completes the proof of (B.98). =

B. Proof of Theorem 3

We proceed as in the proof of (B.52) in Lemma A10. We have that

z; My
T_1/2£B;qu T1/2 ( T 9) N T1/29i - cp (n,(S)

Pr

> ¢, (n,0)| <Pr

/ _ - Oe(T\Ou: Oe(TV\Ou: 1+4d
\/ (ee/T) (Mez2) (T)Tai,(7) (T)0; () r
‘ot : . _TY26;] cp(n,9) /216, cp(n,9) T/216,| cp(n,9)
We distinguish two cases: ERSE— Trdr Te )T D) < Ty e Trdy
1/2 [ =Mgn
T (Tq - 9) /20, ¢ (n,9)
Pr + > =
Te,(T) 0, (T) Oc(1)0ui(r)| 1 4dr
1/2 [ =Mgn
TV (Tq - 9) /20, ¢y (n,9)
1—-Pr + < ,
Oe,(T) Oz, (T) Oe,(T)0x;,(T) 1+dr
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and, by Lemma A12

z/ M,
T1/2 ( - n_ (9) . Tl/Q@i _ ¢ (n,0)

Pr <
e (T) 0w, (T) O (T)Ta; (T) 1+ dr
1/2 ( =Mgn
T ( T 9) TV210,] ¢, (n,d)
<Pr > -2
e (T) 0, (T) Oe(1)0ai(ry  L+dr

while, if Tl < 9) 1,0 (B.150) of Lemma F4,

Te (T)0a;, (1) — 1+dr

x/ M,
T1/2 < . n_ 0) . T1/29i N ¢ (n,(s)

Pr
Te (T)0x; (T) Oe (T)0w; (T) 1+dr
TL/2 <—mil\;qn - 9) ¢, (n,9) T1/2 16,]
S Pl" > 4 ) _ 2
Te(T)Oa; (T) L+dpr  Oe(r)0,(T)

T1/2|9’L‘ > Cp(nvé)

We further note that since ¢, (n,d) — oo,
Te (T) %y, (T) Itdr

implies T2 |0;| > Cs, for some

C5 > 0. Then, noting that m’Man — 0 is the average of a martingale difference process, by

Lemma A6, for some positive constants, C, Cy, C3, Cy, C5, and, for any ¢ > 0, we have

zn: Pr T PeMy | ¢, (n,0)| <O zn: I (ﬁei > 02)
i=k+1 \/(e’e/T) (fc%l‘:/;qfci> i=k+1

+Cs i I (\/TQZ < C'4> exp [_ 111(77,)05] 7

1=k+1

=0 Y 1(VT6 > o) +o(n™) + 0 [exp(~CT)] (B.115)
i=k+1
since exp [—1In(n)5] = o(n?), which follows by noting that CyIn(n)'/? = o (C In(n)), for any
Co,C1 > 0. As a result, the crucial term for the behaviour of FPR,, 1 is the first term on
the RHS of (B.115). Consider now the above probability bound under the two specifications
assumed for 6; as given by (4) and (5). Under (4), for any ¢ > 0,

z”: Pr T e M,y > ¢, (n,0)| <C 2": I (\/Tg’ > Ci) +o(n'™Y).
i=k+1 \/(e/e/T) (_mél\;qwi> i=k+1

for some Cy,C; > 0, ¢ = k+ 1,...,n. So we need to determine the limiting property of
Sl <\/T o' > Ci). Then, without loss of generality, consider ¢ = [n¢], T = n"*, ¢ € [0, 1],
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k1 > 0. Then, VT = \/TQT(W"“C = o(1) for all k1,¢ > 0. Therefore,

C, Z 1 (ﬁQZ > C’b/C’i> = o(n%),
i=k+1
for all ¢ > 0. This implies that under (4), 6; = C;¢', |o| < 1, and ¢, (n,d) = O [In(n)"/?], we
have
E|FPR, 7| =on* ')+ 0 [exp(—nc‘))} ,
for all ¢ > 0. Similarly, under (5), §; = C;i~", and setting i = [n%], T' = n"1, {, k; > 0, we have
VT, = T~/s)0+1/2 We need —(1/k1)¢y+1/2 < 0 or ¢ > —2—. Then,

2k 1y

% S (VTo; > cyjci) = 0 (T) -0 <n1>

i=k+1

So
E|FPR, 7| =o0(1), (B.116)

as long as 2r7 %y > Lorif v > 5.
k1

Remark B1 Note that if k1 = 1, then the condition for (B.116) requires that v > .

C. Some results for the case where either noise variables are mixing,
or both signal/pseudo-signal and noise variables are mixing

When only noise variables are mixing, all the results of the main paper go through since we
can use the results obtained under (D1)-(D3) of Lemma D2 to replace Lemma AG6.

As discussed in Section 4.2, some weak results can be obtained if both signal /pseudo-signal
and noise variables are mixing processes, but only if ¢, (n) is allowed to grow faster than under
the assumption of a martingale difference. This case is covered under (D4) of Lemma D2 and
(B.140)-(B.141) of Lemma D3. There, it is shown that, for sufficiently large constants Cy — Cj
for Assumption 4, the martingale difference bound which is given by exp [—%%cﬁ (n)] in Lemma

s/ (5+2)}, for some Cy > 0, where s is the exponent

A6 is replaced by the bound exp [—C4cp (n)
in the probability tail in Assumption 4. It is important to note here that this bound seems
to be relatively sharp (see, e.g., Roussas (1996)), under our assumptions, and so we need to
understand its implications for our analysis. We abstract from the constant C); which can

further deteriorate rates. Given (see result (i) of Lemma A2),

am=o{[n (4]},
{5
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exp | —¢, (n)s/(s+2)} =0




Let f (n) = 2pexp(n®). Then,

s/2(s+2)
o ()] e

To obtain the same bound as for the martingale difference case, we need to find a sequence

{a,}, such that n“ = O (In(n)). Setting n“® = In(n), it follows that a,, = In (In(n)) /CInn.

Further, setting C' = s/2(s +2), we have a,, = 2+200M) “which Jeads to the following choice

slnn
for f(n
f( ) 2(5+2) In(In(n))

f(n)=2pexp <nT) ~ 2pexp <1n(n) 2(5:2)) .

»(n) =0 [ln <exp (ln(n)2(5:2)>>] =0 <1n(n) 2(Ss+2)> :

Then,

C

2(s+2)

which for n = O (T"), C; > 0, implies that c,(n) = O (ln(T) s >, and so, ¢,(n) = o (T?),
for all C5 > 0, as long as s > 0.

We need to understand the implications of this result. For example, setting s = 2 which
corresponds to the normal case gives exp (In(n)*) which makes the calculation of ®~* (1 — %)
numerically problematic for n > 25. The fast rate at which f (n) grows basically implies that
we need s — oo which corresponds to f (n) = 2pexp (In(n)?). Even then, the analysis becomes
problematic for large n. s — oo corresponds for all practical purposes to assuming boundedness
for ;. As a result, while the case of mixing z; can be analysed theoretically, its practical
implications are limited. On the other hand our Monte Carlo study in Section 5 suggests that
setting f (n) = f (n,8) = n’, § > 1 provides quite good results for autoregressive x; in small

samples.

D. Lemmas for mixing results

We consider the following assumptions that replace Assumption 3.

Assumption D1 z;, i = 1,2,....k + k*, are martingale difference processes with respect to
FiEs, U FFt, where FP, and F™ are defined in Assumption 3. wxy, i = 1,2,....k + k* are
independent of iy, t = k+k +1,k+k"+2,...,n. E (mitxjt — E (zyxj) }Fffl) =0,i,j =
1,2, k4+k* xy,i=k+Ek*+1,k+ k"4 2,...,n, are heterogeneous strongly mizring processes
with mixing coefficients given by oy = Cyt for some Cyy such that sup, ,Cyy < 0o and some
0<¢é< 1. Elrgug | Fio1] =0, fori=1,2,....,n, and all t.

Assumption D2 x;, i =1,2,....k+ k* are independent of vy, 1 = k+k*+ 1, k+Ek*+2,....n.
Tit, 1 = 1,2,...,n, are heterogeneous strongly mixing processes with mixing coefficients given by
ayr = Ciy&t for some Cy such that sup; , Cyy < 00 and some 0 < § < 1. E[vyu; |[F_1] =0, for
1=1,2,....,n, and all t.

35



Lemma D1 Let & be a sequence of zero mean, mixing random variables with exponential
mixing coefficients given by ¢ = agp”®, 0 < < 1, agp < 00, k = 1,.... Assume, further,
that Pr (|&| > a) < Coexp[—Chra®], s > 1. Then, for some Cy,C5 > 0, each 0 < 6 < 1 and
vp > €T, A > (1+0)/2,

T
Pr ( PR
t=1

Proof. We reconsider the proof of Theorem 3.5 of White and Wooldridge (1991) relaxing the
assumption of stationarity. Define wy; = &I(z; < Dr) and vy = & — w; where Dy will be
defined below. Using Theorem 3.4 of White and Wooldridge (1991), which does not assume

stationarity, we have that constants Cy and (' in the statement of the present Lemma can be

> UT) < Cyexp [— (CgUTT_(1+5)/2)5/(5+1)]

chosen sufficiently large such that

Pr ( Zwt—E(wt)

for some Cy, Cs > 0, rather than

pr(_

T
Z wy — E (wy)
t=1
for some Cg, C7 > 0, which uses Theorem 3.3 of White and Wooldridge (1991). We explore the
effects this change has on the final rate. We revisit the analysis of the bottom half of page 489
of White and Wooldridge (1991). We need to determine D such that

D s 1/q -C T—(1+6)/2
' fow (0 (3) )] e[ =25—

for some C' > 0. Take logs and we have

1 D S _ T7(1+5)/2
mern) - (3) e (5) ==,

(B.117)

—CyupT~(149)/2
Dy

> UT> < Cyexp [

—Cu T2
1) =G [T
T

or

Dy 22 (Ci) In (v7'T) + —Cﬁff;ﬁ? D,
For this it suffices that 2qCuy
TaRD, 2 2°qIn (vy'T) (B.118)
and 2qCy
Di 2 ey (B.119)
Set 254C' 1/(s+1)
Dy = <ﬁ) ,
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so that (B.119) holds with equality. But since vy > €T, A > (1+4)/2, (B.118) holds. Therefore,

25qCup ( 25qCup )S/(s+1)
2 )

C,T+8)/2 Dy, - C,T0+6)/

and the desired result follows. =

Remark D1 The above lemma shows how one can relax the boundedness assumption in Theo-
rem 3.4 of White and Wooldridge (1991) to obtain an exponential inequality for heterogeneous
mixing processes with exponentially declining tail probabilities. Note that neither Theorem 3.4
of White and Wooldridge (1991) which deals with heterogeneity nor Theorem 3.5 of White and
Wooldridge (1991) which deals with stationary mixing processes is sufficient for handling the

heterogeneous mixing processes we consider.

Remark D2 [t is important for the rest of the lemmas in this supplement, and in particular,
the results obtained under (D4) of Lemma D2, to also note that Lemma 2 of Dendramis et al.
(2015) provides the result of Lemma D1 when § = 0.

Lemma D2 Let z, ¢, = (q1.4, G2t -, qlT,t)/, and u; be sequences of random variables and sup-
pose that there exist finite positive constants Cy and Cy, and s > 0 such that sup, Pr (|z;| > a) <
Coexp (—Cia?), sup;; Pr (|gi¢| > ) < Coexp (—Cia?), and sup, Pr (us| > o) < Coexp (—Cha®),

foralla > 0. Let £y = 7 S L E(q.q,) be a nonsingular matriz such that 0 < (D2 Sup-

pose that Assumption 5 holds for x; and q,, and denote the corresponding projection U“gsiduals
defined by (11) as uyy = T4 —Yop 74 Let @y = (Up1, Up 2, -, Up,r) denote the T x 1 LS residual
vector of the regression of x; on q,. Let F, = FF UF!, Fl =0 ({q~t}i:1) and assume either
(D1) E (ux,tut — fgut| Fro1 U ﬁq_l) =0, where fizy: = E(ugut), ©p and uy are martingale dif-
ference processes, q, is an exponentially mizing process, and (p = o(T?), for all X > 1/2, or
(D2) E (umut — fgut| Fro1 U .7-";1_1) = 0, where gyt = E(ugiur), ue is a martingale difference
processes, x; and q, are exponentially mixing processes, and (r = o(T?), for all X > 1/2, or
(D3) x4, uy and q, are exponentially mixing processes, and (r = o(T*), for all X > 1, or (D4)
x4, up and q, are exponentially mixing processes, and (r = o(T?), for all A > 1/2. Then, we
have the following. If (D1) or (D2) hold, then, for any m in the range 0 < w < 1, there exist

finite positive constants Cy and C4, such that

T 2 2
—(1—
Pr ( thu,f — E(xyu)| > CT) < exp % + exp [—CoT“] (B.120)
t=1 wa:u,l,T
and
T 2 -2
—(1 -
Pr ( > g gty — flpug| > §T> < exp # +exp [-CoT], (B.121)
t=1 zu, T
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as long as ly = o(T3), where wm =7 Zt L [(xtut — E(xtut))2] , wiuvT = %ZL E [(uwvtut — umu,t)Q] .
If (D3) holds

T
Pr < thut — E(zyug)| > QT) < exp [—C’OTcl] , (B.122)
t=1
for some Cy,Cy > 0, and
T
Pr < Zﬁmut — fgut| > CT> < exp [—C’OTCI] , (B.123)
t=1

for some Cy, Cy > 0, as long as lp = o(T*?). Finally, if (D4) holds,

T
Pr (
t=1

Z Tl — E(xtut)

for some Cy,Cy > 0, and

.

for some Cy, Cy,Cy, C3 > 0, as long as lp = o(T?).

> <T> < Crexp [~y (GT2)"™] (B.124)

T

E Uy Ut — Hgu,t

t=1

> CT) S CQ exp |:—03 (QTT_1/2)S/(S+2):| + exp [—C()Tcl} s (B125)

Proof. We first prove the lemma under (D1) and then modify the derivations to establish that
the results also hold under (D2)-(D4). The assumptions of the lemma state that there exists a

regression model underlying 4, , which is denoted by

- ﬁ;qt + um,t

A~

for some | x 1 vector, B,. Denoting u, = (uy1,Us2,...,Us7), W = (U1, U, ..., ur), Xy =

! (QIQ)7 Q - (q17 qs; .-, ql)? and q; = <Qi17 qi2y -+ qiT)/7 we have
W u=u,u— (T*IU;Q) 2;; (Qu) = u, u— (Tﬁlu'xQ) (2;]1 — 2;;) (Q'u) +
(T, Q) =, (Qu)

Noting that, since u; is a martingale difference process with respect to o ({us}s Lo e Yy {ast D

by Lemma A4,
—(1 —m)*¢F
It therefore suffices to show that
1 o _
Pr( (T’U,;Q> <2qq1 — zqql) (Qu)| > gT) < exp [~CoT“"] (B.127)
and .
Pr (‘ <TufEQ> Y., (Qu)| > gT) <exp [—CoT“] (B.128)
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We explore (B.126) and (B.127). We start with (B.126). We have by Lemma A1l that, for

some sequence p,°
1 - /
P (| (7 )(2 Z) ()| > &) <

re([ el ) e > ) <vn (55 -39 - )«
Pr([[v,Qllz |Qu z > 7T) (B.130)

We consider the first term of the RHS of (B.130). Note that for all 1 <i,j <.

“(

since ¢;1qjt — F(girq;e) 1s a mixing process and sup, Pr(|gi4| > a) < Cyexp (—Cia®), s > 0.
Then, by Lemma F3,

> <T> < exp(—Cy (TV2¢)™), (B.131)

T
Z qitqjt — QZtth)]
t=1

) - 5/2(s+2) -8/ (542)
o (H(EQJ )| > ) < I exp S e |
5;/(s+2 s/(s+2) HZ HS/ (s+1) (HE 1| (CST)
F T
Ts/2(s+2)
17 exp | —Co ”2 Hs/(s+2) ls/(s+2 ) -

s/(s+2)
T2

et 2521 (1521, + &)

5/(5+2)
1/2
7 exp | —Co <||ET—>

I

13 exp

We now consider the second term of the RHS of (B.130). By (B.12), we have

Pr (||, Qll, |Qullp > 67T) < Pr (||w,Qll > 8°T"2) + Pr (| Qull, > 8/°T'2)

6In what follows we use
Pr(|AB| > ¢) < Pr(|A]|B| > ¢) (B.129)

where A and B are random variables. To see this note that |AB| < |A||B|. Further note that for any random
variables A7 > 0 and As > 0 for which Ay > A; the occurrence of the event {A4; > ¢}, for any constant ¢ > 0,
implies the occurrence of the event {Ay > ¢}. Therefore, Pr (A2 > ¢) > Pr(A; > ¢) proving the result.
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2
Note that ||Q'u|% = ZéTzl (ZL thut> , and

Pr (IQull > (0r1)"?) = Pr (IQull} > 6:7)
Iy [ /T 2
orT
<3| (Sum) -2
j=1 t=1
lr | T
=D _Pr| > auu
j=1 || t=1

Noting further that ¢;;u; and ¢;;u,; are martingale difference processes satisfying a result of the

usual form we obtain

5L2T1/2 —Cs
Pr(||u;Q||F>6¥2T”2)SZTPr<|u;qi|>Tll—/2 ngeXp< )

T lr

or

T by

SY2p1/2 5T ¥+
Pr(||u;Q||F>5;/2T1/2)ngPr<|u;qi|>Tll—/2 < Iy exp ( T> :

. . 55/ 2T1/2 - , 1/2r1 /2
depending on the order of magnitude of ~77—, and a similar result for Pr <|| Qull, > 0,°T > .
T
Therefore,
Pr (|u, Q| |Qu » > 67T) < exp [-CoT“"]. (B.132)
We wish to derive conditions for /7 under which T%r , T , and 2Z are
! e I o R e P

of larger, polynomial in 7', order than % Then, the factors in Iz in (B.26) and (B.132) are
negligible. We let (p = T, Iy = T, ||Eq_q1HF = l%,,/2 = T%? and 67 = T, where a > 0, can be
chosen freely. This is a complex analysis and we simplify it by considering relevant values for

our setting and, in particular, A > 1/2, A < 1/2+¢, for all ¢ > 1/2, and d < 1. We have

T1/2<T —0 (T1/2+,\—a—2d) +0 (T1/2—3d/2) 7 (B.133)
oply ||Eq_q1HF <H2¢;¢I1HF + g_;)

T1/2 B

W _0 (T1/2 3d/2) ’ (B.134)
aq Il p
clS_; — 0 (177, (B.135)
and 2

CTT 0 (TQ)\—l) =0 (cInT). (B.136)

Clearly d < 1/3. Setting v = 1/3, ensures all conditions are satisfied. Since X_!

norm order than 5];11 — X1 (B.128) follows similarly proving the result under (D1). For (D2)

qq

is of lower
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and (D3) we proceed as follows. Under (D3), noting that u; is a mixing process, then by Lemma
D1, we have that (B.126) is replaced by

Pr(|u.ul > Cr) < exp [—Co (T*(lﬂ”/?gT)S/(S“)}

, (B.137)

else, under (D2), we have again that (B.126) holds. Further, by a similar analysis to that above,
it is easily seen that, under (D2),

s/(s+2)
—C§ T-/254/2
Pr([|u,Qllp [|Qul ; > 07T) < Ipexp ( T) +lrexp | —Co <—l1/2T :

lr b

and under (D3),

/ / T7§/25T s/2(s+2)
P (ol Qe > 6r7) < 2oy | ~Co (£ 0) .

Tl/QCT T1/2

Under (D2), we wish to derive conditions for /3 under which =
(b2), " seiela], (15, ) ol

2
and ‘;—; are of larger, polynomial in 7', order than %T But this is the same requirement to that un-

der (D1). Under (D3), we wish to derive conditions for /7 under which TU%r ,
(DL Under (D3) ' srclmaal ([, )
ﬁ, ?—; and (T‘l/ 2CT) 42 re of positive polynomial in 7', order. But again the same
qq || p'T
conditions are needed as for (D1) and (D2). Finally, we consider (D4). But, noting Remark
D2, the only difference to (D3) is that (; > T'/2, rather than (; > T. Then, as long as

(T_I/QCT)S/(SH) — 00 the result follows. m

Lemma D3 Let y;, fort =1,2,...,T, be given by the data generating process (6) and suppose
that u; and @, = (14, Tog, .., Tnt)' Satisfy Assumptions 2-4. Let @, = (qu.s, oty -, Qips) cONtain
a constant and a subset of x,;, and let n, = wgﬂtﬁb + ug, where @y, is ky X 1 dimenstonal vector
of signal variables that do not belong to q.,, with the associated coefficients, B,. Assume that
Y = %ZtT:lE(q,tqft) and f]qq = Q'Q/T are both invertible, where Q = (q,., qy., ..., q,.)
and q; = (¢, Gias .-, qir)’, for i = 1,2,....lp. Moreover, let ly = o(T*) and suppose that
Assumption 5 holds for x; and q.,, where x; is a generic element of {x1s, Tay, ..., Tni} that does
not belong to q,. Denote the corresponding projection residuals defined by (11) as uz; =
Tt — Voo 94, and the projection residuals of yi on (@, x:) as er = yi — Yypur(dy, vt)'. Define
z = (21,72, 27), Yy = (Y1,Y2, - yr), € = (e, e9,....,er), M, = Ir — Q(Q'Q)~'Q/, and
6 =FE (T '2'M,X,) 3,, where Xy, is T xk, matriz of observations on xy;. Finally, ¢, (n,d) is
such that ¢, (n,d) = o (\/T) Then, under Assumption D1,for any 7 in the range 0 < m < 1,
dr > 0 and bounded in T, and for some C;,c > 0 fori=0,1,

2
—(1-m) Uz,(T)ai,(T)CIQJ (n,0)
2 (1 + dT)2 wge,T

+ exp (—C’OTcl) ,

Prlt.| > ¢, (n,0) |0 = 0] <exp [ (B.138)
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where
T-122'M,y

e (=3)

Uzv(T) =E(Tee), Ui,(T) = E (T 'z'M,z),

and

meT__ZE U’Itnt

Under of = 0® and/or E (u2,) = 02, = 02, for allt =1,2,....T,

—(1=m)2c(n,é
Pr([t,] > ¢, (n,8) [0 = 0] < exp [ = (1j d;j)(z ’ 1

+ exp (—CoTcl) .

In the case where 6 > 0, and assuming that there exists Ty such that for oll T > Ty, Ap —
¢y (n,0) /\/T > 0, where A\ =0/ (amﬁ(T)ae,(T)), then for dr > 0 and bounded in T and some C;
>0,7=0,1,2, we have

Pr(|t,] > ¢, (n,0) |0 # 0] > 1 —exp (—CoT“") . (B.139)
Under Assumption D2, for some Cy, Cy,Cy > 0,
Pr|t,| > ¢, (n,8) |0 = 0] < exp |—Che, (n, 5)8/“*2)] +exp (—CoT) (B.140)

and

Pr([t.| > ¢, (n,6)|0 #0] > 1 —exp (—CoT"). (B.141)

Proof. We start under Assumption D1 and in the end note the steps that differ under As-
sumption D2. We recall that the DGP, given by (7), can be written as

y=atr+ XpB+u =arr + X8, + Xp 8, + u

where X, is a subset of Q. Recall that Q, = (Q,xz), M, = Ir — Q(Q'Q)AQ’, M, =
I, — Qx(Q;Qm)_lQ;. Then, M,X, = 0, and let M, X, = (Zpg1, Zpg,2, ---, Togr)'- Then,

L T'V2eMy  TV2a'M X8, N T-122'M,u

Jleem (22) fieerm (282) - fieerm (mm)'

Let 0 = E (T '2'M,X}) By, 1 = Xp8y, +u, n = (01,72, ...,nr) , and write (B.53) as

VT0 72 (£5m —g)

e eem )
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First consider the case where # = 0, and note that in this case

T1/2 z'Myx —1/2 z'Myn
T T

r =

(e'e/T)

Now by (B.46) of Lemma A9 and (B.121) of Lemma D2, we have

T1/2 <w/1\7/{qw>1/2 a:ll\j/fqn
Pr(|t;| > ¢, (n,0)|0 =0] =Pr

>c,(n,0)0=0| < (B.142)

T ¢ (1, 0)
O-e,(T) 1+ dT

+ exp (—C()Tcl) .

, ~1/2
Then, by Lemma F1, under Assumption D1 and defining a(X 7 ) = <%) x'M, where

a(X 7) is exogenous to y;, a(X 1) a(X 1) =1 and by (B.121) of Lemma D2, we have,

—(1—7)2‘73@) i( (n J)
2 (1 + dT) ze,T
+ exp (—C’OTcl)

Pr(lt.| > ¢, (n,0) |0 = 0] <exp [ (B.143)

where
xeT__ZE Uact77t ZE[xt wbtﬁb+ut):|7

and u,;, being the error in the regression of x; on Q, is defined by (11). Since by assumption

u, are distributed independently of u,; and x;;, then

W2 = —ZE[ (wh80)°] + 7 S F (12) B (o).

where @}, , 3, is the t-th element of M, X;/3,. Furthermore £ [ (9 (mbq Bs) } =E(u2,) E (wgqiﬁb)z =

( a:,t) BL,E (mbq,t%q,t) By, noting that under 6 = 0, u,; and x;; are independently distributed.
Hence

T
reT_TZ wbqtmbqt ﬂb ZE

Similarly
agm =E(I'ee)=E(T'fMyn) = E [T (XuB, + u) My, (X458, + u)]

/ — / 1
= BLE (T7' XMy Xy) By + = > E (u})



and since under § = 0, = being a noise variable will be distributed independently of X, then
E(T'X)M_.X;) = E(T7'X;M,X}), and we have

1 T
o2y = BE (T XIM,X,) B, + 7= > E (i)
t=1

1 <& 1z
t=1 t=1

Using (B.55) and (B.56), it is now easily seen that if either E (u2,) = 02, or E (uf) = o2, for

all t, then we have w?, ; = o7 ) o2 (7> and hence

—(1- 7T)2 012, (n,d)
2(1+ dy)?

Pr(|t,] > ¢, (n,0)]0 =0] <exp [ +exp (—CoT“) .

giving a rate that does not depend on error variances. Next, we consider 6 # 0. By (B.45) of
Lemma A9, for dr > 0,

T-122'M,y

e (222)

We then have

Pr

> ¢, (n,0) §Pr(

Tl/Qm’qu‘ S (n,9)

_ C1
1+dT>+exp( o).

Te,(T)0,(T)

ey (MR- 0)  pegne 1
= + +

Ue,(T)O'x,(T) O-e,(T)O-I,(T) O-ev(T)o-xv(T) O-ev(T)O-'rv(T)
P (S g) g
— + .
Oe,(T)0,(T) Oe,(T)O0,(T)
Then
1/2 [ £'Mgn
T ( T _9> T'/%9 ¢y (n,9)
Pr + >
Oe(T)0x,(T) Oe,(T)0x,(T) 1+dr
T C I R
1 py T N =0 <cp(n,5)

Oe(T)0x,(T) Oe(1)0z)| ~ 1+drp

We note that, by Lemma A12,

1/2 ('Mgn
T ( T 9)+ V%9 <cp(n,(5)

Pr <
Oe(T)Ta,(T) Te(T)Ta,(T) 1+dr
1/2 ('Mgn )
o (I (=7 -0 _ T ()
- Oe (T)0x,(T) Oe(T)0zT)y 1 +dr

44



But (T'2'M,n — ) is the average of a martingale difference process and so

x' M,
(0| ke )

Pr (B.144)
Oe(T)0x,(T) Oe(T)0zT)y  1+dp
T1/2 9 9 5 5/(s+2)
<o (rn (22t t)y)
O (T)0z,(T) + dr
So overall
T-122'"M
Pr T VY > ¢, (n,6)| >1—exp (—=CoT)

Jleer) (2282)

e[ (o (Tt
Oe (T)0,(T) 1+dr

Finally, we note the changes needed to the above arguments when Assumption D2 holds,
rather than D1. (B.140) follows if in (B.142) we use (B.125) of Lemma D2 rather than (B.121)
and, in (B.143), we use Lemma F2 rather than Lemma F1 and, again, we use (B.125) of
Lemma D2 rather than (B.121). (B.140) follows again by using (B.125) of Lemma D2 rather
than (B.121). =

Remark D3 We note that the above proof makes use of Lemmas F1 and F2. Alternatively
one can use (B.45) of Lemma A9 in (B.142)-(B.143), rather that (B.46) of Lemma A9 and use
the same line of proof as that provided in Lemma A10. However, we consider this line of proof

as Lemmas F1 and F2 are of independent interest.

E. Lemmas for the deterministic case

Lemmas E1 and E2 provide the necessary justification for the case where x; are bounded

deterministic sequences, by replacing Lemmas A6 and A10.

Lemma E1 Let xy, i = 1,2,...,n, be a set of bounded deterministic sequences and u; satisfy

Assumption 2 and condition (10) of Assumption 4, and consider the data generating process

(6) with k signal variables x1;, T, ..., Tpe-  Let @, = (G, Gogs -, Qips) contain a constant
and a subset of T, = (¢, Top, ..., xnt)' . Let my = xpBp + wyy, where xzy, contains all sig-
nals that do not belong to q,. Let ¥,, = Q' Q/T be invertible for all T, and HE;;HFF =

O(\/E); where Q = (q1-7q2-""7qlT~) and q; = (qi17Qi27"'aQiT)/7 fOTZ. = 172a"'7lT' Sup_
pose that Assumption 5 holds for x; and q,, and u; and q,. Let u,,r be as in (11), such

Ly R . A .
w < C < o0, and let Gy, = (Ug; 1, Usy 25 ooy Ug, 1) = My, & =

(Tir, Tizs ooy Tir)'s By = (U1, U2y ooy W) = Mym, m = (01,025 s r), My = Ir—Q(Q'Q) ™ Q,

that sup; limy_,
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ft = FFUFY, fame = B (g ptine | Fior), @210 = 251 B [(wam — E (i |Fie1))?] and
WanT = F LS E [(tg, ung — uxm,t)ﬂ. Then, for any m in the range 0 < m < 1, we have,

under Assumption 3,

T
Pr <
t=1

Z e — B (2 |[Fio1)
where ¢r = O (T*), and (s +1)/(s+2) > X If (s+1)/(s +2) < A,

T
Pr (
t=1

for some Cy > 0. If it is further assumed that lr = O (Td), for some A and d such that d < 1/3,
and 1/2 < X< (s+1)/(s+2), then

T
Pr < Z (axi,tun,t - M$i777t)
t=1

for some Cy, Cy,Cy > 0. Otherwise, if A > (s +1)/(s + 2),

T
Pr § (U:qu,tun,t - Nmm,t)
t=1

for some Cy, Cy,Cy > 0.

> CT) < exp

_(1_—7%] 7 (B.145)

2
2Twy 1 r

E (iUitnt ’-7:7&71)

> <T) < exp |[~Co¢y/ Y]

—(1-n)°¢
2Tw?

J:mT

~+ exp (—C’chl) .

> CT) < Cyexp

> §T> < exp [—C’ (S/(S+ ] +exp (—CoT“)

Proof. Note that all results used in this proof hold both for sequences and triangular ar-
rays. (B.145) follows immediately given our assumptions and Lemma A3. We proceed to
prove the rest of the lemma. Note that now @, is a bounded deterministic vector and

Uy, = (Ug, 1, Uz, 2, - Uy, 1) & segment of dimension T of its limit. We first note that

T T
Z (Ui Ut — M) Z faine = Uy, Mgty — Z Hoain,t
t=1 t=1
T
-1 -1
- Z (uﬂﬂi,tu%t - /‘wm,t) - (T U;ZQ) qu (Q,uﬂ) )
t=1

where ©, = (U1, Uy 2, ..., Up,r) and w, = (Uy1,Ug2, ..., Uy ). By (B.59) and for any 0 < m; < 1

such that 37 m; = 1,we have
> CT) <Pr ( > 7T1CT>

T
Pr ( Z (U it — fhant)
t=1

+Pr ((T7'u,,Q) 3, (Q'u,)| > malr) .

T
Z (ﬁ’xi,tﬁ’nzt - ,u:rm,t)
t=1
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Also applying (B.60) to the last term of the above we obtain

Pr(|(T7"w;,Q) 2y (Quy)| > matr)
< Pr (|2l 1774, QL Qg > 7

< Pr (HE(;;”F > W§§T> + Pr (T_l Hu;leHF ”QIUUHF - 7T25T)

- G /
< e (Il > 57 )+ P (I @l > )
+Pr (| Q| > (mabr)?).

where d7 > 0 is a deterministic sequence. In what follows we set dr = O (¢%), with 0 < o < A,
so that (r/d7 is rising in T'. Overall

.

<Pr

T
Dl gty = fians)

t=1

g CT) (B.146)
T _ C

Z (umu%t - “xn,t) > 7T1CT) + Pr <||qu1HF = ;TT>

t=1

+ Pr (1Quy > (mabrT)?) + Pr (||, Q> (madrT)?)

We consider the four terms of the above, and note that since by assumption {g;u,.} are
martingale difference sequences and satisfy the required probability bound conditions of Lemma

A4, and {g;tu,,;} are bounded sequences, then for some C, ¢ > 0 we have’
sup Pr <||q;un|| > (7T25TT)1/2> <exp (—CoT“")

and as long as lr = o (d7),
Pr([[4,Qlly > (mdrT)"?) =0

2
Also, since ||Q’u77||fm = ZzT:l (Zthl C]jtut> ;

Pr (| Q. > (m20r1)"?)

— Pr (||Q'un||; > 7r26TT>
I T 2
7T2(5TT
<3| (S - 22
7=1 t=1
I T
j=1 t=1

Y

7T2(5TT 1/2
>
I
"The required probability bound on u,; follows from the probability bound assumptions on x; and on g,
for i =1,2,...,1lp, even if [ — oco. See also Lemma A5.
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which upon using (B.22) yields (for some C, ¢ > 0)
Pr(1Qu > (m20rT)?) < lrexp (~CT*), Pr (I1Qua| > (madrT)") = 0.
Further, it is easy to see that
7r
Pr (”Eq_quF = ;_TCT) =0
¢r

im0 But as long as I = o (Tl/ 3), there exists a sequence dr such that
Tt

Cr/or — o0, Iy = o (1) and 6‘;—7{/2 — 00 as required, establishing the required result. m
T'T

as long as p

Lemma E2 Let y;, fort =1,2,...,T, be given by the data generating process (6) and suppose
that ®.; = (T14, Taty .., Tny) are bounded deterministic sequences, and uy satisfy Assumption
2 and condition (10) of Assumption 4. Let q, = (qi.¢, 2.4, Qips) contain a constant and a
subset of Tne = (11, Toty ..., Tnt), and let my = @B + ur, where Ty, is ky, X 1 dimensional
vector of signal variables that do not belong to q,. Assume that ¥,, = Q'Q/T is invertible
for all T, and qu_qlup =0 (\/E), where Q = (q,., 4., ..., q,,..) and q;. = (qi1, Gz, ..., Gi7)', for
1= 1,2,....lp. Moreover, let Il = 0(T1/4) and suppose that Assumption 5 holds for x; and
q., and u; and q,. Define T = (z1, 79, ...,x7), Y= (y1, Y2, ., yr), M, = Ir — Q(Q'Q)'Q/,
and 0 = T‘lm’Mqu,Bb, where X, is T' X ky, matriz of observations on x,. Let uy, v be as in

i
i |

(11), such that sup; ; limy .o *—=A— < C < 0o. Let e = (e1,¢€q,...,er)" be the T' X 1 vector

of residuals in the linear regression model of y; on q, and x;. Then, for any 7™ in the range
0<7m<1,dr >0 and bounded in T, and for some C; >0 fori=0,1,

2
—(1—m) UZ,(T)Ui(T)C;% (n,d)
2 (1 + dT)2 wiuyT

+ exp (—COTcl) ,

Pr(lta] > ¢ (n,0) [0 = 0] < exp [

where
T-122'M,y

e (222)

037(T) and Ui,(T) are defined by (B.39) and (B.34), and

by =

2

T
2 _ l 2 2
wxu,T - T O4t0¢ 5
t=1

Under o = 0% and/or 02, = o2 for allt =1,2,...,T,

Pr[|t,| > ¢, (n,d) |0 = 0] < exp [— (1-m)c (n,é)]

2(1+ dy)?
~+ exp (—C’oTcl) .
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for some Cy,Cy > 0. In the case where 0 > 0, and assuming that c, (n,8) = o(\/T), then for
dr > 0 and some C; > 0, 1= 0,1, we have

Pr(|t,] > ¢, (n,0) |0 #0] > 1 —exp (—CoT“").
Proof. The model for y can be written as
y=atr + XpBt+u=arr + X0, + Xp8, + u

where 71 is a T'x 1 vector of ones, X, is a subset of Q. Let Q, = (Q,xz), M, = I-QQQ)'qQ,
M, = Ir — Q.(Q.Q.) 'Q.. Then, M, X, = 0. M,X; = (Zp,1, Tpg2, -, Togr)'- Then,

. T-122'M,y B T-122'M, X, 3, n T-122'M,u

\/(e e/T) (quw> \/(e’e/T) (‘“‘/ITW) \/(e e/T) < 'qu>'

n=XB,+uw, 1= 1 nr)

Let

9 - T_lwquXb/Bb,

n'M,.n M,z
0-37(T) =L (e/e/T) =FE (Tq> ) 0-57(T) =E ( Tq )

and write (B.53) as

t, = VT6 n T2 [2'M, n— E (2'M,n)]
\/(e’e/T) (—wll\;qm) \/(e’e/T) <wlMTq$>
#'M,n— E (&'Myn) = [#'M, u— E <w’M wl,
M,X,3,) (M, X -
(M, b5b>T( XoBy) _ =7 Z :z:bq 1,3,, = Zazbt Ul?,(T)'

t=1

Then, we consider two cases: % =60 =0 and 6 # 0. We consider each in turn. First,

we consider § = 0 and note that

T2 [2'M, u— E (z'M,u)]

Jleer) (228)

ly =

By Lemma A9, we have

T-122'M,n

Jleern) (232)

T‘1/2m’Mq77‘ _ % (n,9)

Pr(|t.| > ¢, (n,0) |0 =0] = Pr

o

> ¢, (n,0)|0=0] <

1+4+dr

) + exp (—COTCI) .

Ox,(T)%¢,(T)
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By Lemma E1, it then follows that,

Pr[t,| > ¢, (n,d)|0 = 0] <exp [_(1_7T) 03( T) w(T (” 5)]

(1 +dT) a:eT
+ exp (—COTcl)

where wg&T = % thl E [(u%mt)ﬂ. Note that, by independence of u; with u,; and x;,; we

have .
1
M——ZE wnm)’] = 7 DB [, (@4,,8)° | + B (1) E (uf).
t=1

By the deterministic nature of z;;, and under homoscedasticity for r, it follows that o (T)ai ) =

2
Wi and so

Pr(t] > ¢, (n,6) |0 = 0] < exp [— (1-m)2e2 (n,(;)]

2(1+dr)”
+ exp (—CoTcl) .

giving a rate that does not depend on variances. Next, we consider 6 # 0. By Lemma A9, for
dr > 0,

T-122'M,y

(e (222)

Pr

—1/2
> ¢, (n,0) §PI(T quy'>cp(n,5)>

1+dr

Te,(T)T,(T)

+ exp (—C’OTCI) .

We then have

T-2x'Myy T Y22'M,u T'/29
a9 _ ¢z 4
Oe(T)0z,(T) Oe,(T)0x,(T) Oe,(T)0z,(T)
Then,

T-122'M,u N /20

o

_ o (n,é))

Te(T)0x,(T) Oe,(T)0a,(T) 1+dr
1P <‘T1/2T_1/2:c’Mqu N V%9 <% (n,(s)) |
Oe(T)0z,(T) Oe,(T)0z,(T) 1+dr

We note that

—1/2 .1 1/2
Pr(T quu+ T/20 Scp(n,5)>
Oe (T)0,(T) Oe (T)0x,(T) 1+ dp
< Pr ( T-122'M,u - V20 ¢ (n,&)) ‘
Oe (T)Tx,(T) Oe(T)0x(T) 1+dp
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But T '2'M,u is the average of a martingale difference process and so

1/2 w’Mqu>
| G

Oe (T)0x,(T) Oe(TY0uT) 1 +dp

s/(s+2)
—C (T1/2 < T1/2‘0| . Cp (TL, 6))) )
Oc(r)0uyr)  1+dr

Pr

<exp (—CoT“") + exp

So overall,

T—122'M,y

e (22=)

Pr

> ¢, (n,0)| >1—exp (—CoT“")
_C (T1/2 ( T1/2 ’9’ B Cp (n’ 5)))5/(5"!‘2)
Oe(T)0z,(T) 14+ dr .

F. Supplementary lemmas for Sections B and C of the online theory
supplement

— exp

Lemma F1 Suppose that uy, t = 1,2,....,T, is a martingale difference process with respect to

F | and with constant variance o>

, and there exist constants Cy,C7 > 0 and s > 0 such that
Pr(|u:| > a) < Coexp (—Cha®), for all « > 0. Let X7 = (%1, 1, X1y 2,5 - Tip1), Where Ty, 4 is
an ly X 1 dimensional vector of random variables, with probability measure given by P(Xr),
and assume

E(uw|Fp) =0, forallt=1,2,...,T, (B.147)

where Ff. = 0 (Tip1, Tip 2 5 - Tipr). Further assume that there exist functions
a(Xr) = [01(X 1), 09(X 1), . ar(X )] such that 0 < supy, a(X 1) a(X7) < gr, for some

sequence gr > 0. Then,
—¢7
Pr > (p | <exp 5 )
2gTO'

Proof. Define Ar= {‘Zthl ay (X r)ug| > CT}. Then,

Z (X 7)uy

t=1

Pr(Ag) — / Pr (A |72) P(X 1) < sup Pr (Ap | F2) /
XT XT X

u
But, by (B.147) and Lemma A3

P(Xr) = sup Pr (Ar |F7)

T

¢
Pr (Ar |Fr) <
HANTT S e (202 >, a%<XT>>
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But

sup exp _C% < exp ( _C% >
X7 2023 2(Xp) ) T 29702 )’

proving the result.

Lemma F2 Suppose that vy, t = 1,2,...,7T, is a zero mean mixing random variable with ex-
ponential mizing coefficients given by ¢ = agr®, 0 < ¢ < 1, ag, < o0, k = 1,..., with

2 and there exist sufficiently large constants Cy, C; > 0 and s > 0 such that

constant variance o
Pr(Jut| > a) < Cyexp (—=Cha®), for all @« > 0. Let X7 = (101, Tip 2, -, Tip1), Where Ty, ¢ is
an lr x 1 dimensional vector of random variables, with probability measure given by P(Xr).
Further assume that there exist functions

a(X 1) = [on(X7), 09(X ), ..., ar(X )] such that 0 < SUPx . a(Xr) (X)) < gr, for some

sequence gr > 0. Then,
s/(s+1)
(r
> gT S €xXp | — 1/2
dr 9

Pr (
Proof. Define AT:{)Zthl ay (X p)ug| > CT} and consider F7 = 0 (Xip1, Tip 25y TipT) -

Then,

T

Z (X r)uy

t=1

Pr(Ar) = /X Pr(Ar|F7) P(X ) < s;(lpPr (Ar|F7) /X P(X 1) = supPr (Ar|F7)

T X

But, using Lemma 2 of Dendramis et al. (2015) we can choose Cy, C; such that

s/(s+1)
Pr(Ar |Ff) <exp |— T_CT ,
a4/ > i1 03 (Xr)
and
o/ (s1) s/(s+1)
—Cr Cr
supexp |— <exp |— s ,
xr o/ Y 0F(X 1) Ir 7

thus establishing the desired result. m

Lemma F3 Let Ar = (a;jr) be a lr X Ip matriz and A = (G;jr) be an estimator of Ar. Let

HAFHF > 0 and suppose that for some s > 0, any by > 0 and Cy > 0

sup Pr (’dij,T - Cliij’ > bT) < exp <_CO (Tl/ng)S/(s+2)> '
0,J
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Then

o

A;l — A

712 )/ 6H2)
) < 2 exp ( - —Co (170 XGE (B.148)

(s+2) HA 1Hs/ (s+2) HA;IHF"H)T

Ts/2(s+2)
12 exp
+ir ( HA 1HS/ (s+2) s/(8+2)>’

where |Al| denotes the Frobenius norm of A.

Proof. First note that since by > 0, then

Pr< A

N 2
ATHF > bT) —Pr (HAT - ATH > b%)

(iz (Gijr — agjr) >b2]),

7j=1 =1
and using the probability bound result, (B.59), and setting m; = 1/l7, we have

Iy
Pr (||Ar - Aq|| > br) < ZZPr sz — arl® > 17262) (B.149)
j=1 i=1
I
= ZZPI’ ‘aij aUT\ >l 1bT)
Jj=1 =1
2 1 2 2 1)bs/(s+2)
<lF sgp [Pr (laz‘j7T —aiir| >l bT)] =liexp | —Cp T3/t lS/(8+2) )

To establish (B.148) define the events

Ar={1A7' ],

~—1 _
ATHF < 1} and By = {HAT - ATlH > bT}
and note that by (2.15) of Berk (1974) if Ar holds we have

L AR,

T T

- Az, |Ar - Ar|
Hence

A7

d
T |lF

A1)
Pr (BT ‘.AT> < Pr " £ > by
L= |[A7 ) [ Ar - ax],

:Pr< A

br
> 1Azl (1A + bT)) |

53



Note also that
Pr (Br) = Pr ({Br N Az} U {Br N AS}) = Pr (Br|Ar) Pr (A7) + Pr (Br|AS) Pr (A) .
Furthermore
Pr (A7) = Pr (A7), [Ar - ar| >1)
=Pr ([[4r - ar], > fla],")

and by (B.149) we have

s bs/(s+2) Ts/2(s+2)
Pr (A7) < 7 exp ( CoT*™ +2)ls/(TZ) - P HA 1H8/ (s+2) s/(s+2)

t

Using the above result, we now have

. by
Pr(By) < Pr (”AT — ATHF > HA_lHF (||A—1||F n bT)) Pr(Ar)
Ts/2(s+2)
+ Pr (Br|AS) exp( ”A YRR SH)) .

Furthermore, since Pr (A7) < 1 and Pr (BﬂAg) < 1 then

R br
> <Pr <HAT - ATHF > ||A:F1HF (HACFIHF +bT)>

Ts/2(s+2)
T exp ||A 1”8/ (s+2) s/(s+2) )

Result (B.148) now follows if we apply (B.149) to the first term on the RHS of the above. m

Pr (By) = Pr (HA; _ A

Lemma F4 Consider the scalar random variable X, and the constants B and C. Then, if
C >|B| >0,
Pr(|IX+B|>C)<Pr(|X|>C-|BJ). (B.150)

Proof. The result follows by noting that | X + B| < |X|+ |B|. =
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1 Introduction

This supplement to Chudik, Kapetanios, and Pesaran (2018, hereafter CKP) provides a description of the
individual methods employed in the empirical illustration, and additional empirical results. The empirical
illustration is set out in Section 6 of CKP. Section 2 below describes the forecasting exercise, and Section

3 reports additional empirical results.

2 Description of the forecasting exercise

We forecast the U.S. GDP growth and CPI inflation using a set of macroeconomic variables. We use
the smaller dataset considered in Stock and Watson (2012), which contains 109 series. The series are
transformed by taking logarithms and/or differencing following Stock and Watson (2012).! After trans-
formations, the available sample is 1960Q3:2008Q4, or 7' = 194. Let &, = (§1t7£2t7 ...,fn_u), be a vector
of the 109 transformed variables. Define the n x 1 vector x; = (£t,yt,yt,1,yt,2,yt,3)' considered below,
where y; is either the first-differenced log of real gross domestic product, or the second differenced log of

consumer price index.

We are interested in forecasting y;y1 with the predictors in x; and common factors f; extracted from
variables in z;, where zj is the standardized z; = (yt,ﬁg)’ (by subtracting its sample mean and dividing

each series by its sample standard deviation). We consider:
(a) the AR(h) model,

h
Yt = Z PeYt—e + Ut
=1

which we use as a benchmark. The lag order h is selected using the SBC criterion with the maximum

number of lags set equal to Apax = 4.

'For further details, see the online supplement of Stock and Watson (2012), in particular columns E and T of their Table
B.1.



Data-rich forecasting methods are:

(b) The factor-augmented AR,

h
Yr = szytfe +7'fi-1 + v,
=1

where f; is m X 1 vector of unobserved common factors extracted from variables in z;. We use Bai and
Ng’s PC) criterion to select the number of factors (m) with the maximum number of factors set to
5. The vector of unobserved factors, f;, is estimated using the method of principal components. Same
as in the AR case, the lag order h is selected using the SBC criterion with the maximum number of

lags set equal to hpax = 4.

(c) Lasso method, implemented in the same way as described in Section 2 of the online Monte Carlo

supplement of CKP using (x}_;,f/_;) as the vector of predictors for y;.

(d) Adaptive Lasso method, implemented in the same way as described in Section 2 of the online Monbte

Carlo supplement of CKP using (x]_;,f/_;) as the vector of predictors for y;.

(e-g) OCMT method. We use OCMT described in CKP to select the relevant variables from the vector
x¢—1 to forecasts the target variable y;. We set p = 0.01 (e), 0.05 (f) and 0.1 (g), and (4,5*) = (1,2),
and we always include ¢ (intercept) , and f;_; (lagged factors) in the testing regressions. Next, we

use the selected variables together with ¢, and f;_; in an ordinary least squares regression for y;.

We use a rolling window of 7' = 120 time periods, which leaves us with the last H = 74 out-of-sample
evaluation periods, 1990Q3-2008Q4. We also consider pre-crisis evaluation subsample, 1990Q3-2007Q2
with H = 68 periods, to evaluate the sensitivity of results to exclusion of the global financial crisis from

the sample.

3 Results

Table 1 reports the root mean squared forecasting error (RMSFE) findings for all forecasting methods.
Diebold-Mariano (DM) test statistics for testing Hy : E (0;5,) = 0, where 0;;; = éit — égz,t is the difference
between the squared forecasting errors of methods ¢ and j, are presented in Table 2. The DM statistics is

computed assuming serially uncorrelated one-step-ahead forecasting errors. Specifically

DM;; = VHS (1)
GH,ij

where H = 68 or 74 (depending on the evaluation period) is the length of the evaluation period, 51{7”- =
H! ZtT:J“Tﬁl 0;5,+ is the sample mean of ;;¢, and




Table 1: RMSFE performance of the AR, factor-augmented AR, Lasso, adaptive Lasso, and
OCMT methods

Evaluation sample: Full Pre-crisis
1990Q3-2008Q4 1990Q3-2007Q2
RMSFE Relative RMSFE Relative
(x100) RMSFE (x100) RMSFE
Real output growth

(a) AR benchmark 0.561 1.000 0.505 1.000
(b) Factor-augmented AR 0.484 0.862 0.470 0.930
(c) Lasso 0.510 0.910 0.465 0.922
(d) Adaptive Lasso 0.561 1.000 0.503 0.996
(e) OCMT, p =0.01 0.495 0.881 0.479 0.948
(f) OCMT, p = 0.05 0.477 0.850 0.461 0.912
(g) OCMT, p=0.1 0.490 0.874 0.464 0.918
Inflation
(a) AR (1) benchmark 0.601 1.000 0.435 1.000
(b) Factor-augmented AR (1) 0.557 0.927 0.415 0.954
(c) Lasso 0.599 0.997 0.462 1.063
(d) Adaptive Lasso 0.715 1.190 0.524 1.205
(e) OCMT, p =0.01 0.596 0.992 0.472 1.086
(f) OCMT, p =0.05 0.590 0.982 0.464 1.068
(g) OCMT, p=0.1 0.595 0.990 0.471 1.084

Notes: RMSFE is computed using a rolling forecasting scheme with a rolling window of 120 observations. We use the smaller
dataset considered in Stock and Watson (2012) which contains 109 series. The series are transformed by taking logarithms
and/or differencing following Stock and Watson (2012). The transformed series span 1960Q3 to 2008Q4 and are collected
in the vector &,. Set of regressors in Lasso and adaptive-Lasso contains hmax = 4 lags of y, (lagged target variables), &,_,,

and a lagged set of principal components obtained from the large dataset given by (yt,ﬁg)/. OCMT procedure is applied to
regressions of y; conditional on lagged principal components, with elements of £, _; and hmax = 4 lags of y; considered one at
a time. OCMT is reported for 4 = 1 in the first stage, and §* = 2 in the subsequent stages of the OCMT procedure, and three
choices of p, similarly to the MC section of CKP. The number of principal components in the factor-augmented AR, Lasso,
adaptive Lasso, and OCMT methods is determined in a rolling scheme by using criterion PC),; of Bai and Ng (2002) (with
the maximum number of PCs set to 5). See Section 2 for further details.



Table 2: DM statistics for the forecasting performance of the AR, factor-augmented AR,
Lasso, adaptive Lasso, and OCMT methods

DM;; test statistics

Full evaluation sample: 1990Q3-2008Q4

Real output growth Inflation
Method pair i (below), j @ 0 © @ (© 0 @& @ 0 © @ © 0 (@
(a) AR(1) 1.50 1.95 0.00 1.49 1.73 1.44 . 112 0.06 -2.55 0.12 0.28 0.14
(b) Factor-augmented AR (1) -1.50 . -0.67 -1.39 -0.59 0.43 -0.38 -1.12 . -1.89 -2.06 -2.39 -2.07 -2.09
(c) Lasso -1.95 0.67 . -1.76 0.45 0.92 0.57 -0.06 1.89 . -1.82 0.14 0.45 0.20
(d) Adaptive Lasso 0.00 1.39 1.76 . 1.29 156 1.31 2.55 2.06 1.82 1.61 1.69 1.62
(e) OCMT, p =0.01 -1.49 0.59 -0.45 -1.29 . 1.32 0.24 -0.12 2.39 -0.14 -1.61 0.49 0.08
(f) OCMT, p =0.05 -1.73 -0.43 -0.92 -1.56 -1.32 . -1.21 -0.28 2.07 -0.45 -1.69 -0.49 . -0.71
(g) OCMT, p =0.05 -1.44 0.38 -0.57 -1.31 -0.24 1.21 . -0.14 2.09 -0.20 -1.62 -0.08 0.71
Pre-Crisis evaluation sample: 1990Q3-2007Q2

(a) AR(1) 0.95 1.60 0.13 0.84 1.19 1.11 . 098 -1.13 -2.28 -1.54 -1.01 -1.18
(b) Factor-augmented AR (1) -0.95 0.14 -0.88 -0.48 0.52 0.34 -0.98 . -1.66 -2.31 -2.46 -2.21 -2.21
(c) Lasso -1.60 -0.14 . -1.39 -0.48 0.16 0.06 1.13 1.66 . -1.78 -0.47 -0.07 -0.37
(d) Adaptive Lasso -0.13 0.88 1.39 . 0.66 1.07 1.00 2.28 2.31 1.78 1.22 1.31 1.15
(e) OCMT, p=0.01 -0.84 0.48 0.48 -0.66 . 122 0.82 1.54 2.46 047 -1.22 0.46 0.05
(f) OCMT, p = 0.05 -1.19 -0.52 -0.16 -1.07 -1.22 . -0.33 1.01 2.21 0.07 -1.31 -0.46 . -0.71
(g) OCMT, p =0.05 -1.11 -0.34 -0.06 -1.00 -0.82 0.33 . 1.18 2.21 0.37 -1.15 -0.05 0.71

Notes: This table reports results for DM;;

statistics defined in (1). See also notes to Table 1.
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