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1 Introduction

This paper contributes to the literature by proposing a multiple testing procedure to model

selection in high dimensional regression settings. The goal of the proposed procedure is to select

an approximating model that encompasses the true model, and does not contain any noise

variables that are uncorrelated with signal (true) variables. We use ideas from the multiple

testing literature to control the probability of selecting the approximating model, the false

positive rate and the false discovery rate. We refer to the proposed method as One Covariate at

a Time Multiple Testing (OCMT) procedure. OCMT is computationally simple and fast even

for extremely large data sets.

Our approach is to be contrasted to penalised regressions where the vector of regression

coeffi cients, β, of a regression of yt on xnt = (x1t, x2t, ..., xnt)
′, known as the active set, is

estimated by β̂ where β̂ = argminβ[
∑T

t=1(yt − x′ntβ)2 + Pλ (β)]. Pλ (β) is a penalty function

that penalises β, while λ is a vector of tuning parameters to be set by the researcher. A

variety of penalty functions have been considered, yielding a wide range of penalised regression

methods. Chief among them is Lasso, where Pλ (β) is chosen to be proportional to the L1 norm

of β. This has subsequently been generalised to penalty functions involving Lq, 0 ≤ q ≤ 2,

norms. While these techniques have found considerable use in econometrics,1 their theoretical

properties have been mainly analysed in the statistical literature starting with the seminal

work of Tibshirani (1996) and followed up with important contributions by Fan and Li (2001),

Antoniadis and Fan (2001), Efron et al. (2004), Zhou and Hastie (2005), Candes and Tao (2007),

Lv and Fan (2009), Bickel et al. (2009), Zhang (2010), Fan and Lv (2013) and Fan and Tang

(2013). Despite considerable advances made in the theory and practice of penalised regression,

there are still a number of open questions. These include the choice of the penalty function

and tuning parameters. A number of contributions, notably by Fan and Li (2001) and Zhang

(2010), have considered the use of nonconvex penalty functions with some success.2

Like penalised regressions, OCMT is valid when the underlying regression model is sparse.

Further, it does not require the xnt to have a sparse covariance matrix, and is applicable even if

the covariance matrix of the noise variables, to be defined below, is not sparse. Of course, since

OCMT is a model selection device, well known impossibility results for the uniform validity

of post-selection estimators, such as those obtained in Leeb and Pötscher (2006) and Leeb

and Pötscher (2008), apply. The main idea is to test the statistical significance of the net

contribution of all n available potential covariates in explaining yt individually, whilst taking

full account of the multiple testing nature of the problem under consideration. All covariates

1A general discussion of high-dimensional data and their use in microeconomic analysis can be found in
Belloni et al. (2014a).

2As an alternative to penalized regression, a number of procedures developed in the machine learning lit-
erature such as boosting, regression trees, and step-wise regressions are also widely used. See, for example,
Friedman et al. (2000), Friedman (2001), Buhlmann (2006) and Fan and Lv (2008).
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with statistically significant net contributions are then selected jointly to form an initial model

specification for yt. Unlike boosting and other greedy algorithms, our procedure is not sequential

and selects in a single step all covariates whose t-ratios exceed a given threshold. A second

stage will be needed only if there exist hidden signals, in the sense that there are covariates

whose net contribution to yt is zero, despite the fact that they belong to the true model for yt.

To allow for the possibility of hidden signals, we propose a multi-stage version, where OCMT

is repeated by testing the statistical contribution of the remaining covariates, not selected in

the first stage, again one at a time, to the unexplained part of yt. We will show that this multi-

stage process converges in a finite number of steps, since the number of hidden signals cannot

rise with n. In a final step all statistically significant covariates, from all stages, are included

as joint determinants of yt in a multiple regression setting. Whilst the initial regressions of

our procedure are common to boosting (see Buhlmann (2006)) and to the screening approach

discussed in Fan and Lv (2008), Huang et al. (2008), Fan et al. (2009) and Fan and Song

(2010), OCMT provides an inferentially motivated stopping rule without resorting to the use

of information criteria, or penalised regression after the initial stage.

Related sequential model selection approaches have been proposed, among others, by Fithian

et al. (2014), Tibshirani et al. (2014) and Fithian et al. (2015). In the context of linear regres-

sion, these methods build regression models by selecting variables from active sets, based on a

sequence of tests. The use of multiple testing, implies that the choice of critical values, used

at every testing step in the sequence, is crucial and there have been a number of important

contributions, in this respect, including Li and Barber (2015) and G’Sell et al. (2016).

We provide theoretical results for the proposed OCMT procedure under relatively mild

assumptions. In particular, we do not assume either a fixed design or time series independence

for xnt but consider a martingale difference condition for the cross-products xitxjt and xntut,

where ut is the error term of the true model. While these martingale difference conditions are

our maintained assumption, we also provide theoretical arguments that allow the covariates to

follow mixing processes. We establish theoretical results on the true positive rate, the false

positive rate, the false discovery rate, and the norms of the coeffi cient estimate as well as the

regression error.

We investigate the small sample properties of the proposed estimator and compare its per-

formance with a number of penalised regressions (including Lasso and Adaptive Lasso), and

boosting techniques. We consider data generating processes with and without lagged values of

yt, and carry out a large number of experiments. Although no method uniformly dominates,

the results clearly show that OCMT does well across a number of dimensions. In particular,

OCMT is very successful at eliminating noise variables, whereas it is still quite powerful at

picking up the signals. It is outperformed by Lasso and Adaptive Lasso for a small fraction

of experiments only. The relative performance of OCMT is also illustrated in an empirical

application to forecasting U.S. output growth and inflation.
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The paper is structured as follows: Section 2 explains the basic idea behind the OCMT

method and introduces the concepts of the true and approximating models. Section 3 provides

a formal description of the OCMT method and derives its asymptotic properties. Sections 4

presents a number of extensions. Section 5 gives the details of the Monte Carlo experiments

and the summary of the simulation results. Section 6 presents the empirical application, and

Section 7 concludes. Online supplement, organized in three parts, provide additional theoretical

results and proofs, a complete set of Monte Carlo results for all the experiments conducted,

and additional empirical findings.

Notations: Generic positive finite constants are denoted by Ci for i = 0, 1, 2, ... . They

can take different values at different instances. If {fn}∞n=1 is any real sequence and {gn}
∞
n=1 is a

sequences of positive real numbers, then fn = O(gn), if there exists a positive finite constant C0
such that |fn| /gn ≤ C0 for all n. fn = o(gn) if fn/gn → 0 as n→∞. If {fn}∞n=1 and {gn}

∞
n=1 are

both positive sequences of real numbers, then fn = 	 (gn) if there exists N0 ≥ 1 and positive

finite constants C0 and C1, such that infn≥N0 (fn/gn) ≥ C0, and supn≥N0 (fn/gn) ≤ C1. →p

denotes convergence in probability as n, T →∞.

2 True and Approximating Models and OCMT

Consider the data generating process (DGP),

yt = a′zt +
∑k

i=1βixit + ut, (1)

where zt is a known vector of pre-selected variables, x1t, x2t, ..., xkt are the k unknown true or

signal variables, 0 < |βi| ≤ C <∞, for i = 1, 2, ..., k, and ut is an error term. It is assumed that

zt and xit, i = 1, 2, ..., k, are uncorrelated with ut at time t. zt may include deterministic terms

such as a constant, linear trend and dummy variables, and/or stochastic variables, possibly

including common factors and lagged values of yt, that are considered crucial for the modelling

of yt, and are selected based possibly on a priori theoretical grounds.

Further suppose that the k signals are contained in a set Snt = {xit, i = 1, 2, ..., n}, with n
being potentially larger than T , which we refer to as the active set.3 In addition to the k signals,

the active set is comprised of noise variables that have zero correlations with the signals once

the effects of zt are filtered out, and a remaining set of variables that, net of zt, are correlated

with the signals. We refer to the latter as pseudo-signals or proxy variables, since they can be

falsely viewed as signals.

3We assume that the signal variables are contained in the active set. Nevertheless, OCMT can be applied
even if the active set does not contain all of the signal variables. It is clear that in such a setting the true model
or a model that contains the true model cannot be identified. However, OCMT will still weed out the variables
that are uncorrelated with the signals. In support of this, we provide Monte Carlo evidence in Section 5 of the
online MC supplement, based on a Monte Carlo experiment suggested to us by a referee.
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The OCMT procedure considers the least squares (LS) regression of yt on zt and the re-

gressors in the active set one at the time. Let ti be the t-ratio of xit in the regression of yt on

zt and xit, for i = 1, 2, ..., n,

ti =
T−1/2x′iMzy

σ̂i
√
T−1x′iMzxi

=
T−1/2x′iMzµ

σ̂i
√
T−1x′iMzxi

+
T−1/2x′iMzu

σ̂i
√
T−1x′iMzxi

= ti,µ + ti,u, (2)

where xi = (xi1, xi2, ..., xiT )′ and y = (y1, y2, ..., yT )′ are T × 1 vectors of observations on

xit and yt, respectively, µ = (µ1, µ2, ..., µT )′, µt =
∑k

i=1βixit, u = (u1, u2, ..., uT )′, Mz =

IT−Z (Z ′Z)
−1
Z ′, Z= (z1, z2, ...,zT )′ is the matrix of observations on zt, and σ̂i is the standard

error of the regression of yt on zt and xit.

Consider first ti,u, defined by (2), which plays a key role in the workings of the OCMT. As

n, T →∞, we rely on ti,u to remain bounded in probability suffi ciently sharply so as to allow for
multiple testing over very large values of n. We obtain such bounds under a variety of relatively

mild assumptions on ut and xit. For example, we allow ut to be a martingale difference process

and require xit to be uncorrelated with ut. We do not require xit to be strictly exogenous.

Regarding ti,µ in (2), we distinguish between the cases where ti,µ is bounded in probability

suffi ciently sharply as n, T → ∞ and when it is not. The latter case is of special interest and

suggests that xit has power in explaining yt, net of the pre-selected variables, zt. In such a

case, we select xit, and we distinguish between the signal variables, that are contained in µt,

and pseudo-signal variables, which are not in µt but are nevertheless correlated with it. We

show that OCMT identifies all such covariates with probability approaching one.

In the former case where ti,µ is bounded in probability suffi ciently sharply as n, T → ∞,
we characterise xit as a noise covariate if it is not contained in µt, and a hidden signal if it is

contained in µt. We show that all hidden signals will be selected by the application of one or

more additional stages of OCMT.

It is clear from the above exposition that our variable selection approach focusses on the

net impact of xit on yt conditional on the vector of pre-selected variables zt, rather than the

marginal effects defined by βi. The conditional net impact coeffi cient of xit on yt generalizes

the mean net impact coeffi cient considered by Pesaran and Smith (2014), and it is given by

θi,T (z) =
∑k

j=1βjσij,T (z) , (3)

where σij,T (z) = E (T−1x′iM zxj). To simplify the exposition, we suppress the T subscript and

use θi (z) and σij (z) below.

θi(z) plays a crucial role in our proposed approach, as it determines whether ti,µ in (2) is

bounded in probability suffi ciently sharply as n, T → ∞. Ideally, we would like to be able to
base our selection decision directly on βi and its estimate. But when n is large such a strategy

is not feasible. Instead, we propose to base variable selection on θi(z). It is important to

stress that knowing θi(z) does not imply we can determine βi. Due to the correlation between
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variables, nonzero θi(z) does not necessarily imply nonzero βi and we have the following four

possibilities:

θi(z) 6= 0 θi(z) = 0
βi 6= 0 (I) Signals with nonzero net effect (II) Hidden signals
βi = 0 (III) Pseudo-signals (IV) Noise variables

.

The first and the last case, where θi(z) 6= 0 if and only if βi 6= 0, is the most straightforward

case to be considered. But there is also a possibility of case II where θi(z) = 0 and βi 6= 0 and

case III where θi(z) 6= 0 and βi = 0. These cases will also be considered in our analysis. Case II

is likely to be rare in practice since it requires an exact equality between the coeffi cients of the

true model, namely βi = −
∑k

j=1,j 6=iβjσ
−1
ii (z)σij (z). However, the presence of pseudo-signals

(case III) is quite likely, and will be an important consideration in our model selection strategy.

We shall refer to the model that contains only the signals as the true model, and to the model

that contains the signals as well as one or more of the pseudo-signals, but none of the noise

variables, as an approximating model. We assume that there are k∗ pseudo-signal variables

ordered to follow the k signal variables, so that the first k + k∗ variables in Snt are signals
and pseudo-signals, although this is not known to the investigator. The remaining n− k − k∗

variables are the noise variables. We assume that k is an unknown fixed constant, but allow k∗

to rise with n such that k∗/n → 0, and k∗/T → 0, at a suffi ciently slow rate. Specifically, we

allow k∗ = 	 (nε) for some appropriately bounded ε ≥ 0. We expect ε to be small when the

correlation between the signals and the remaining covariates is sparse.

Our secondary maintained assumptions are somewhat more general and, accordingly, lead

to fewer and weaker results. A first specification assumes that there exists an ordering (possibly

unknown) such that

θi(z) = Ci%
i, for i = 1, 2, ..., n, and |%| < 1, (4)

for a given set of constants, Ci. A second specification modifies the decay rate and assumes

that

θi(z) = Cii
−γ, for i = 1, 2, ..., n, and for some γ > 0. (5)

In both specifications max1≤i≤n |Ci| < C < ∞. These specifications allow for various rates of
decay in the way covariates are correlated with the signals. These cases are of technical interest

and cover the autoregressive type designs considered in the literature in order to model the

correlations across the covariates. See, for example, Zhang (2010) and Belloni et al. (2014b).

3 The Multiple Testing Approach

OCMT is inspired by the multiple testing literature, although the focus of OCMT is on con-

trolling the probability of selecting an approximating model and the false discovery rate, rather
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than controlling the size of the union of the multiple tests that are being carried out. To sim-

plify the exposition below, we assume that the vector of pre-selected variables, zt, contains only

an intercept, in which case, the DGP (1) simplifies to

yt = a+
∑k

i=1βixit + ut, for t = 1, 2, ...., T . (6)

In matrix notation, we have

y = aτ T +Xkβk + u, (7)

where τ T is a T × 1 vector of ones, Xk = (x1,x2, ...,xk) is the T × k matrix of observations
on signal variables, βk = (β1, β2, ..., βk)

′ is the k × 1 vector of associated slope coeffi cients and

u = (u1, u2, ..., uT )′ is T × 1 vector of errors. In addition, the conditional net impact coeffi cient

θi(z) simplifies, for zt = 1, to

θi =
∑k

j=1βjσij, (8)

where (we again suppress the subscript T ), σij = E (T−1x′iM τxj), andM τ = IT − τ Tτ ′T/T .
We consider the following assumptions:

Assumption 1 Let Xk,k∗ = (Xk,X
∗
k∗), where Xk = (x1,x2, ...,xk), and

X∗k∗ = (xk+1,xk+2, ...,xk+k∗) are T ×k and T ×k∗ observation matrices on signals and pseudo-
signals, and suppose that there exists T0 such that for all T > T0,

(
T−1X ′k,k∗Xk,k∗

)−1
is nonsin-

gular with its smallest eigenvalue uniformly bounded away from 0, andΣk,k∗ = E
(
T−1X ′k,k∗Xk,k∗

)
is nonsingular for all T .

Assumption 2 The error term, ut, in DGP (6) is a martingale difference process with respect
to Fut−1 = σ (ut−1, ut−2, ..., ), with a zero mean and a constant variance, 0 < σ2 < C <∞.

Assumption 3 Let Fxit = σ (xit, xi,t−1, ....), where xit, for i = 1, 2, ..., n, is the i-th covariate

in the active set Snt. Define Fxnt = ∪nj=k+k∗+1Fxjt, Fxot = ∪k+k∗i=1 Fxjt, and Fxt = Fxnt ∪ Fxot .
Then, xit is independent of xjt′ for i = 1, 2, ..., k + k∗, j = k + k∗ + 1, k + k∗ + 2, ..., n, and

for all t and t′, and E
[
xitxjt − E (xitxjt)

∣∣Fxt−1 ] = 0, for i, j = 1, 2, ..., n, and all t. Finally,

E (xitut |Ft−1 ) = 0, for i = 1, 2, ..., n, and all t, where Ft = Fxt ∪ Fut .

Assumption 4 There exist suffi ciently large positive constants C0, C1, C2 and C3 and sx, su > 0

such that the covariates in the active set Snt satisfy

supi,t Pr (|xit| > α) ≤ C0 exp (−C1αsx) , for all α > 0, (9)

and the errors, ut, in DGP (6) satisfy

supt Pr (|ut| > α) ≤ C2 exp (−C3αsu) , for all α > 0. (10)
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Assumption 5 Consider xt and the lT × 1 vector of covariates q·t = (q1,t, q2,t, ..., qlT ,t)
′. q·t

can contain a constant term, and xt is a generic element of Snt that does not belong to q·t.
It is assumed that E (q·txt) and Σqq = E (q·tq

′
·t) exist and Σqq is invertible. Define γqx,T =

Σ−1qq [T−1
∑T

t=1E (q·txt)] and

ux,t,T =: ux,t = xt − γ ′qx,Tq·t. (11)

All elements of the vector of projection coeffi cients, γqx,T , are uniformly bounded and only a

finite number of the elements of γqx,T are different from zero.

Assumption 6 The number of signals, k, in (6) is finite, and their slope coeffi cients could
change with T , such that for i = 1, 2, ..., k, βi,T = 	

(
T−ϑ

)
, for some 0 ≤ ϑ < 1/2.

Before formally outlining OCMT procedure and presenting our theoretical results, we pro-

vide some remarks on the pros and cons of our assumptions as compared to the ones typically

assumed in the penalised regression and boosting literature.

Assumption 1 ensures that regression coeffi cients in the model containing all signals and

pseudo-signals and none of the noise variables are identified. Assumption 2 is slightly more

general than the usual assumption in the regression analysis. Assumption 3 allows xit to be

a martingale difference sequence which is somewhat weaker than the IID assumption typically

made in the literature on penalised regression. Relaxation of this assumption to allow for

serially correlated covariates is discussed in Section 4.2.

The exponential bounds in Assumption 4 are suffi cient for the existence of all moments of

the covariates, xit, and the error term, ut. It is very common in the literature to assume some

form of exponentially declining bound for probability tails of ut and xit. See, for example,

Zheng et al. (2014).

Assumption 5 is a technical condition that is required for some results derived in the Ap-

pendix and in the online theory supplement, which consider a more general multiple regression

context where subsets of regressors in xnt are included in the regression equation. In the simple

case where q·t = 1, then Assumption 5 is trivially satisfied and follows from the rest of the

assumptions, and we have γqx,T = µx,T = 1
T

∑T
t=1E(xt), and ux,t,T = xt − µx,T .

Assumption 6 allows for the possibility of weak signal variables whose coeffi cients, βi,T ,

for i = 1, 2, ..., k, decline with the sample size, T , at a suffi ciently slow rate. To simplify

notation, subscript T is dropped subsequently, and it is understood that the slope and net effect

coeffi cients can change with the sample size according to this assumption. Using θi, we can

refine our concept of pseudo-signals as variables with θi = 	
(
T−ϑ

)
for i = k+1, k+2, ..., k+k∗,

for some 0 ≤ ϑ < 1/2. Remark 1 discusses further how this condition enters the theoretical

results.

Regarding our assumptions on the correlation between variables in the active set we note the

following. The signal and noise variables are allowed to be correlated amongst themselves, so no

restrictions are imposed on σij for i, j = 1, 2, ..., k, and on σij for i, j = k+k∗+1, k+k∗+2, ..., n.
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Also, signals and pseudo-signals are allowed to be correlated; namely, σij could be non-zero for

i, j = 1, 2, ..., k+k∗. Therefore, signals and pseudo-signals as well as noise variables can contain

common factors, but, under our definition of noise variables, the factors cannot be shared

between the signals/pseudo-signals and noise variables, since the latter are uncorrelated with

the former. If there are common factors affecting signal variables as well as a large number

of the remaining variables in the active set, one can and should condition on such factors, as

we do in our empirical illustration.4 Without such conditioning, the size of the approximating

model would be too large to be of practical use, when common factors affect both signal and a

large number of the remaining variables in the active set.

In contrast, a number of crucial issues arise in the context of Lasso, or more generally when

Lq penalty functions with 0 ≤ q ≤ 1 are used. Firstly, it is customary to assume a framework

of fixed-design regressor matrices, where in many cases a generalisation to stochastic regressors

is not straightforward, requiring conditions such as the spark condition of Donoho and Elad

(2003) and Zheng et al. (2014). Secondly, a frequent condition for Lasso to be a valid variable

selection method is the irrepresentable condition which bounds the maximum of all regression

coeffi cients, in regression of any noise or pseudo-signal variable on the signals, to be less than

one in the case of normalised regressor variables. See, for example, Section 7.5 of Buhlmann

and van de Geer (2011).

Further, most results for penalised regression essentially take as given the knowledge of the

tuning parameter associated with the penalty function. In practice, cross-validation is used

to determine this parameter but theoretical results on the properties of such cross-validation

schemes are rare. Available theoretical results on boosting, as presented in Buhlmann (2006),

are also limited to the case of bounded and IID regressors, while few restrictions are placed on

their correlation structure.

We proceed next with formally describing the OCMT procedure. It is a multi-stage proce-

dure. In the first stage, we consider the n bivariate regressions of yt on a constant (zt in the

general case) and xit, for i = 1, 2, ..., n,

yt = ci + φixit + uit, t = 1, 2, ..., T, (12)

where φi = θi/σii, θi is defined in (8) and σii is defined below (8). Denoting the t-ratio of φi in

this regression by tφ̂i,(1), we have

tφ̂i,(1) =
φ̂i

s.e.
(
φ̂i

) =
x′iM τy

σ̂i
√
x′iM τxi

, (13)

4Note that our theory allows for conditioning on observed common factors by incorporating them in zt.
But when factors are unobserved they need to be replaced by their estimates using, for example, principal
components. A formal argument that the associated estimation error is asymptotically negligible involves
additional technical complications, and requires deriving exponential inequalities for the quantities analysed in
Theorem 1 of Bai and Ng (2002) and Lemma A1 of Bai and Ng (2006), and then assuming that

√
T/n→ 0 as

n, T →∞. While such a derivation is clearly feasible under appropriate regularity conditions, a formal analysis
is beyond the scope of the present paper.
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where φ̂i = (x′iM τxi)
−1 x′iM τy denotes the LS estimator of φi, σ̂2i = e′iei/T , and ei denotes

the T ×1 vector of residual of the regression of y on τ T and xi. The first stage OCMT selection

indicator is given by

Ĵi,(1) = I[|tφ̂i,(1)| > cp (n, δ)], for i = 1, 2, ..., n, (14)

where cp(n, δ) is a critical value function defined by

cp (n, δ) = Φ−1
(

1− p

2f (n, δ)

)
, (15)

Φ−1 (.) is the inverse of standard normal distribution function, f (n, δ) = cnδ for some positive

constants δ and c, and p (0 < p < 1) is the nominal size of the individual tests to be set by

the investigator. We will refer to δ as the critical value exponent. One value of δ is used in the

first stage, while another one (denoted by δ∗) is used in subsequent stages of OCMT. As we

shall see, it will be required that δ∗ > δ. Variables with Ĵi,(1) = 1 are selected as signals and

pseudo-signals in the first stage. Denote the number of covariates selected in the first stage by

k̂o(1), the index set of the selected variables by So(1), and the T × k̂o(1) observation matrix of the
k̂o(1) selected variables by X

o
(1). Further, let X(1) = (τ T ,X

o
(1)) = (x(1),1, ...,x(1),T )′, k̂(1) = k̂o(1),

S(1) = So(1), and A(2) = {1, 2, ..., n} \ S(1). For future reference, we also set X(0) = τ T and

A(1) = {1, 2, ..., n}. In stages j = 2, 3, ..., we consider the n − k̂(j−1) regressions of yt on the

variables in X(j−1) and, one at the time, xit for i belonging in the active set, A(j). We then

compute the following t-ratios

tφ̂i,(j) =
φ̂i,(j)

s.e.
(
φ̂i,(j)

) =
x′iM (j−1)y

σ̂i,(j)
√
x′iM (j−1)xi

, for i ∈ A(j), j = 2, 3, ..., (16)

where φ̂i,(j) =
(
x′iM (j−1)xi

)−1
x′iM (j−1)y is the LS estimator of the conditional net effect of

xit on yt in stage j, σ̂2i,(j) = T−1e′i,(j)ei,(j), M (j−1) = IT −X(j−1)(X
′
(j−1)X(j−1))

−1X ′(j−1), and

ei,(j) denotes the residual vector of the regression of y on X i,(j−1) =
(
xi,X(j−1)

)
. Regressors

for which Ĵi,(j) = 1, are then added to the set of already selected covariates from the previous

stages, where Ĵi,(j) = I[|tφ̂i,(j) | > cp (n, δ∗)]. Denote the number of variables selected in stage

j by k̂o(j), their index set by So(j), and the T × k̂o(j) matrix of the k̂
o
(j) selected variables in

stage j by Xo
(j). Also let X(j) = (X(j−1),X

o
(j)) = (x(j),1,x(j),2, ...,x(j),T )′, k̂(j) = k̂(j−1) + k̂o(j),

S(j) = S(j−1) ∪ So(j), define the (j + 1) stage active set by A(j+1) = {1, 2, ..., n} \ S(j), and then
proceed to the next stage by increasing j by one. Note that k̂(j) is the total number of variables

selected up to and including stage j, φ̂i,(j) →p θi,(j)/σii,(j), where θi,(j) and σii,(j) are used in the

remainder of this paper to denote θi
(
x(j−1)

)
and σii

(
x(j−1)

)
introduced in (3). Also to simplify

the notation, θi,(1) is shown as θi. The procedure stops when no regressors are selected at a

given stage, say ̂, in which case the final number of selected variables will be given, as before,
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by k̂ = k̂(̂−1). The multi-stage OCMT selection indicator is thus given by Ĵi =
∑P̂

j=1Ĵi,(j),
where P̂ denotes the number of stages at completion of OCMT, formally defined as

P̂ = minj{j :
∑n

i=1Ĵi,(j) = 0} − 1. (17)

It is important to note that the number of stages needed for OCMT is bounded in n. To

show this we note that not all signals can be hidden, and once we condition on the set of signals

that are not hidden, then there must exist i such that θi(z) 6= 0, while θi = 0 and βi 6= 0, where

here z denotes the signal variables that are not hidden.5 Using this result one can successively

uncover all hidden signals. We denote by P the number of stages that need to be considered

to uncover all hidden signals. Its true population value is denoted by P0. This is defined as the

index of the last stage where OCMT finds further signals (or pseudo-signals), assuming that

Pr[|tφ̂i,(j)| > cp (n, δ) |θi,(j) 6= 0] = 1 and Pr[|tφ̂i,(j)| > cp (n, δ) |θi,(j) = 0] = 0, for all variables

indexed by i, and OCMT stages indexed by j. Of course, these probabilities do not take the

values 1 and 0 respectively, in small samples, but we will handle this complication later on.

The following proposition provides an upper bound to P0.

Proposition 1 Suppose that yt, t = 1, 2, ..., T , are generated according to (6), with βi 6= 0 for

i = 1, 2, ..., k, and that Assumption 1 holds. Then, there exists j, 1 ≤ j ≤ k, for which θi,(j) 6= 0,

and the population value of the number of stages required to select all the signals, denoted as

P0, satisfies 1 ≤ P0 ≤ k.

A proof is provided in Subsection A.2.1 of the Appendix.

In practice, P̂ is likely to be small since hidden signals arise only in rare cases where θi = 0

whilst the associated βi is non-zero. Also, as we show all signals with nonzero θ will be picked

up with probability tending to one in the first stage. Stopping after the first stage tends to

improve the small sample performance of the OCMT approach, investigated in Section 5, only

marginally when no hidden signals are present. Thus, allowing P > 1, using the stopping rule

defined above, does not significantly deteriorate the small sample performance of OCMT when

hidden signals are not present, while it picks-up all hidden signals with probability tending to

one. Finally, using (7), note that the conditional net effect coeffi cient of variable i at stage j of

OCMT, θi,(j), can be written as

θi,(j) = E
(
T−1x′iM (j−1)y

)
= E

(
T−1x′iM (j−1)Xkβk

)
=
∑k

`=1β`σi`
(
x(j−1)

)
, (18)

and to allow for the possibility of weak signals as defined by Assumption 6, pseudo-signal

variables can be more generally defined as covariates i = k + 1, k + 2, ..., k + k∗ with θi,(j) =

	
(
T−ϑ

)
, for some 0 ≤ ϑ < 1/2 and some 1 ≤ j ≤ P0.

5For a proof see Lemma A1 in the online supplement. Note also that zt may contain lagged values of yt,
principal components or other estimates of common effects as well as covariates that the investigator believes
must be included.
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Once the OCMT procedure is completed, the OCMT estimator of βi, denoted by β̃i, is set

as

β̃i =

{
β̂
(k̂)
i , if Ĵi = 1

0, otherwise
, for i = 1, 2, ..., n, (19)

where β̂(k̂)i is the LS estimator of the coeffi cient of the ith variable in a regression of yt on all

the selected covariates, namely all the covariates for which Ĵi = 1, plus a constant term (zt in

the general case).

The choice of the critical value function, cp (n, δ), given by (15), is important since it allows

the investigator to relate the size and power of the selection procedure to the inferential problem

in classical statistics, with the modification that p (type I error) is now scaled by a function of

the number of covariates under consideration. As we shall see, the OCMT procedure applies

irrespective of whether n is small or large relative to T , so long as T = 	 (nκ1), for any finite

κ1 > 0. This follows from result (i) of Lemma A2 in the online supplement, which establishes

that c2p (n, δ) = O [δ ln (n)]. It is also helpful to bear in mind that, using result (ii) of Lemma

A2 in the online supplement, exp
[
−κc2p (n, δ) /2

]
= 	

(
n−δκ

)
, and cp (n, δ) = o

(
TC0

)
, for all

C0 > 0, assuming there exists κ1 > 0, such that T = 	 (nκ1).

Note that setting δ = 1 in the first stage, is equivalent to using a Bonferroni correction for

the multiple testing problem. Of course, other cp values can be used, such as those proposed

by Holm (1979), Benjamini and Hochberg (1995), or Gavrilov et al. (2009) which are designed

to control the family-wise error rate associated with a set of tests. However, since most impose

some restriction on the dependence structure between the multiple tests (with the exception

of the original Bonferroni procedure and the one proposed by Holm (1979)), we choose to use

(15) which, furthermore, has a bespoke design, in terms of the conditions placed on δ, and is

appropriate for the multi-stage OCMT method, where the number of tests carried out is not

predetermined in advance.

We now consider the relationship of OCMT to sequential model selection procedures ad-

vanced in the literature. A notable example is L2-Boosting by Buhlmann (2006) which starts

with the same set of bivariate regressions, (12), but in the first step selects only the covariate

with the maximum fit, as measured by the sum of squared residuals (SSR). Additional covari-

ates are added sequentially by regressing a quasi-residual from the first step on the remaining

covariates. The process is continued till convergence decided based on some information cri-

terion.6 Other sequential model selection approaches, such as those by Fithian et al. (2014),

Tibshirani et al. (2014) and Fithian et al. (2015) build regression models by selecting variables

from active sets, based on a sequence of tests. Variables are selected, and added to the model,

one by one and selection stops once a test does not reject the latest null hypothesis in the

sequence. It is important to note that these methods select one covariate (or at most a block

6The quasi-residuals are computed as yt− v ŷt, where ŷt is the fitted value in terms of the selected covariate,
and v is a constant tuning parameter referred to as the step size. Buhlmann (2006) recommends choosing v < 1.
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of covariates) in each of the steps. In contrast, OCMT operates as a ‘hub and spoke’approach.

It selects, in a single step, all variables whose t-ratios, in (12), exceed a threshold (given by

cp (n, δ)), in absolute value. As a result, it is clear that in its main implementation OCMT is not

a sequential approach. Only in the presence of hidden signals, does OCMT require subsequent

stages. Even then, under our setting, where k is finite, the number of stages cannot exceed k

with a high probability, and as a result in the vast majority of cases the number of additional

stages required will be rather small.

We investigate the asymptotic properties of the OCMT procedure and the associated OCMT

estimators, β̃i, for i = 1, 2, ..., n, in terms of the probability of selecting the approximating

model, and in terms of support recovery type statistics used in the Lasso literature, namely the

true and false positive rates (TRP and FPR, respectively) defined by

TPRn,T =

∑n
i=1 I(Ĵi = 1 and βi 6= 0)∑n

i=1 I(βi 6= 0)
, and FPRn,T =

∑n
i=1 I(Ĵi = 1, and βi = 0)∑n

i=1 I(βi = 0)
. (20)

We also examine the following false discovery rate

FDRn,T =

∑n
i=1 I(Ĵi = 1, and βi = θi = 0)∑n

i=1 Ĵi + 1
, (21)

which applies to selection of signals and pseudo-signals. Further, we consider the error and the

coeffi cient norms of the selected model, defined by

Fũ = T−1||ũ||2 = T−1
∑T

t=1ũ
2
t , and Fβ̃ = ||β̃n−βn || = [

∑n
i=1(β̃i − βi)2]1/2, (22)

respectively, where ũ = (ũ1, ũ2, ...., ũT )′, ũt = yt − â − β̃′nxnt, βn = (β1, β2, ..., βn)′, β̃n =

(β̃1, β̃2, ..., β̃n)′, β̃i, for i = 1, 2, ..., n are defined by (19), and â is the estimator of the constant

term in the final regression.

We now present the main theoretical results using lemmas established in the online supple-

ment. The key is Lemma A10 in the online supplement, which provides sharp bounds on the

probability of |tφ̂i,(j)| > cp (n, δ) conditional on whether the net effect coeffi cient θi,(j) is zero or

not. Here we provide a simpler version of this lemma which focuses on the first-stage regressions

and should provide a better understanding of the main mathematical results that lie behind

the proofs in the more complicated multi-stage version of the OCMT.

Proposition 2 Suppose yt is given by (6) and Assumptions 2-4 hold. Let xt be a generic
element of the active set Snt, and suppose Assumption 5 holds for xt and q·t = 1. Consider the

t-ratio of xt in the regression of yt on an intercept and xt:

tx =
T−1/2x′Mτy√

(T−1e′e) (T−1x′Mτx)
,

where e is the T × 1 vector of regression residuals. Let θ = E (T−1x′Mτy) be the net impact

effect of xt, and suppose there exists κ1 > 0 such that T = 	 (nκ1). Then, for some finite
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positive constants C0 and C1, we have

Pr [|tx| > cp (n, δ) |θ = 0] ≤ exp
[
−χc2p (n, δ) /2

]
+ exp

(
−C0TC1

)
, (23)

where cp (n, δ) is the critical value function given by (15), and χ = [(1− π) / (1 + dT )]2, for any

π in the range 0 < π < 1, any dT > 0 and bounded in T . Suppose further that in the case where

θ 6= 0, we have θ = 	
(
T−ϑ

)
, for some 0 ≤ ϑ < 1/2, where cp (n, δ) = O

(
T 1/2−ϑ−C4

)
, for some

positive constant C4. Then,

Pr [|tx| > cp (n, δ) |θ 6= 0] > 1− exp
(
−C2T

C3
)
. (24)

Result (23) establishes a sharp probability bound for the absolute value of the t-ratio of x

with zero net impact effect. The first term on the right side of (23) asymptotically dominates,

and using result (ii) of Lemma A2 in the online supplement we have exp
[
−χc2p (n, δ) /2

]
=

	
(
n−δχ

)
. Result (24), on the other hand, establishes a lower bound on the probability of the

event |tφ̂i,(1)| > cp (n, δ) conditional on θ being suffi ciently away from zero.

Since we wish to allow for the possibility of hidden signals for which θ = 0 even if the

associated β 6= 0, the results in Lemma A10 in the online supplement are obtained for t-ratios

in multiple regression contexts where subsets of regressors in the active set are also included in

the regression equation for yt. Nevertheless, it is instructive to initially consider the OCMT in

the absence of such hidden signals. Theorems 1 and 2 below provide the results for the general

case where hidden signals are allowed.

We first examine TPRn,T defined by (20), under the assumption that θi 6= 0 if βi 6= 0. Note

that by definition TPRn,T = k−1
∑k

i=1 I(Ĵi,(1) = 1 and βi 6= 0). Since the elements of this

summation are 0 or 1, then taking expectations we have (note that in the present simple case

θi 6= 0 implies βi 6= 0)

TPRn,T = k−1
∑k

i=1E[I(Ĵi,(1) = 1 and βi 6= 0)] = k−1
∑k

i=1 Pr[|tφ̂i,(1)| > cp (n, δ) |θi 6= 0].

Now using result (24) of Proposition 2, and recalling that T = 	 (nκ1) , we have

TPRn,T ≥ 1− exp
(
−C2TC3

)
= 1 +O

[
exp

(
−C2nC3κ1

)]
, (25)

for some C2, C3 > 0. Hence, TPRn,T →p 1 for any κ1 > 0.

Consider now FPRn,T defined by (20). Again, note that the elements of FPRn,T are either

0 or 1 and hence |FPRn,T | = FPRn,T . Taking expectations of the right part of (20), and

assuming θi = 	
(
T−ϑ

)
, for i = k + 1, k + 2, ..., k + k, and some 0 ≤ ϑ < 1/2, we have

(n− k)−1
∑n

i=k+1 Pr[|tφ̂i,(1) | > cp (n, δ) |βi = 0] = (n− k)−1
∑k+k∗

i=k+1 Pr[|tφ̂i,(1) | > cp (n, δ) |θi 6=
0]+(n− k)−1

∑n
i=k+k∗+1 Pr[|tφ̂i,(1)| > cp (n, δ) |θi] = 0. Using (24) of Proposition 2 and assuming

there exists κ1 > 0 such that T = 	 (nκ1), we have k∗ −
∑k+k∗

i=k+1 Pr[|tφ̂i,(1)| > cp (n, δ) |θi 6= 0] =

O
[
exp

(
−C2TC3

)]
, for some finite positive constants C2 and C3. Moreover, (23) of Proposition
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2, which holds uniformly over i, given the uniformity of (9) and (10) of Assumption 4, implies

that for any 0 < κ < 1 there exist finite positive constants C0 and C1 such that∑n
i=k+k∗+1 Pr[|tφ̂i,(1) | > cp (n, δ) |θi = 0] ≤

∑n
i=k+k∗+1

{
exp

[
−κc2p (n, δ) /2

]
+ exp

(
−C0TC1

)}
.

(26)

Using these results we obtain

(n− k)−1
∑n

i=k+1 Pr[|tφ̂i,(1)| > cp (n, δ) |βi = 0] = k∗/ (n− k) +O
{

exp
[
−κc2p (n, δ) /2

]}
+O

[
exp(−C0TC1)

]
+O

[
exp

(
−C2TC3

)
/ (n− k)

]
. (27)

Next, we consider the probability of choosing the approximating model. A selected re-

gression model is referred to as an approximating model if it contains the signal variables xit,

i = 1, 2, ..., k, and none of the noise variables, xit, i = k + k∗ + 1, k + k∗ + 2, ..., n. The models

in the set may contain one or more of the pseudo-signals, xit, i = k + 1, k + 2, ..., k + k∗. We

refer to all such regressions as the set of approximating models. So, the event of choosing the

approximating model is given by

A0 = {
∑k

i=1Ĵi = k} ∩ {
∑n

i=k+k∗+1Ĵi = 0}. (28)

Theorem 1 below states the conditions under which Pr (A0)→ 1. The results for the general

multi-stage case that allows for the possibility of hidden signals are given in the following

theorem. Since it is assumed that the expansion rates of T and n are related, the results that

follow are reported in terms of n for presentational ease and consistency. They could, of course,

be reported equally in terms of T , if required.

Theorem 1 Consider the DGP (6) with k signals, k∗ pseudo-signals, and n − k − k∗ noise

variables, and suppose that Assumptions 1-4 and 6 hold, Assumption 5 holds for xit and q·t =

x(j−1),t, i ∈ A(j), j = 1, 2, ...k, where A(j) is the active set at stage j of the OCMT procedure.

cp (n, δ) is given by (15) with 0 < p < 1 and let f (n, δ) = cnδ, for the first stage of OCMT,

and f (n, δ∗) = cnδ
∗
for subsequent stages, for some c > 0, δ∗ > δ > 0. n, T → ∞, such that

T = 	 (nκ1), for some κ1 > 0, and k∗ = 	(nε) for some positive ε < min {1, κ1/3}. Then, for
any 0 < κ < 1, and for some constant C0 > 0,

(a) the probability that the number of stages in the OCMT procedure, P̂ , defined by (17),

exceeds k is given by

Pr
(
P̂ > k

)
= O

(
n1−κδ

∗)
+O

(
n1−κ1/3−κδ

)
+O

[
exp

(
−nC0κ1

)]
, (29)

(b) the probability of selecting the approximating model, A0, defined by (28), is given by

Pr (A0) = 1 +O
(
n1−δκ

)
+O

(
n2−δ

∗κ)+O
(
n1−κ1/3−κδ

)
+O

[
exp

(
−nC0κ1

)]
, (30)
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(c) for the True Positive Rate, TPRn,T , defined by (20), we have

E |TPRn,T | = 1 +O
(
n1−κ1/3−κδ

)
+O

[
exp

(
−nC0κ1

)]
, (31)

and if δ > 1− κ1/3, then TPRn,T →p 1; for the False Positive Rate, FPRn,T , defined by

(20), we have

E |FPRn,T | =
k∗

n− k+O
(
n−κδ

)
+O

(
n1−κ1/3−κδ

)
+O

(
n1−κδ

∗)
+O

(
nε−1

)
+O

[
exp

(
−nC0κ1

)]
,

(32)

and if δ > min {0, 1− κ1/3}, and δ∗ > 1, then FPRn,T →p 0. For the False Discovery

Rate, FDRn,T , defined in (21), we have FDRn,T →p 0, if δ > max {1, 2− κ1/3}.

Since our proof requires that 0 < κ < 1, it is suffi cient to set κ to be arbitrarily close to,
but less than, unity. Also, κ1 can be arbitrarily small which allows n to rise much faster than

T . The condition 0 ≤ ε < min {1, κ1/3} ensures that k∗/n→ 0 and k∗ = o(T 1/3).

Remark 1 Assumption 6 allows for weak signals. In particular, we allow slope coeffi cients of
order 	

(
T−ϑ

)
, for some 0 ≤ ϑ < 1/2. Then, by (B.57) and (B.58) of Lemma A10 of the

online supplement, it is seen that such weak signals can be picked up at no cost, in terms of

rates, with respect to the exponential inequalities that underlie all the theoretical results. In

particular, the power of the OCMT procedure in selecting the signal variable xit rises with the

ratio
√
T
∣∣θi,(j)∣∣ /σei,(T )σxi,(T ), so long as cp(n,δ)√

T |θi,(j)| → 0, as n and T →∞, where θi,(j) is given by
(18), σei,(T ) and σxi,(T ) are defined by (B.49), replacing e, x, and M q by ei, xi, and M (j−1),

respectively. When this ratio is low, a large T will be required for the OCMT approach to select

the ith signal variable. This condition is similar to the so-called ‘beta-min’condition assumed

in the penalised regression literature. (See, for example, Section 7.4 of Buhlmann and van de

Geer (2011) for a discussion.)

Remark 2 When the focus of the analysis is the true model, and not the approximating model
that encompasses it, then the false discovery rate of the true model is given by

FDR∗n,T =

∑n
i=1 I(Ĵi = 1, and βi = 0)∑n

i=1 Ĵi + 1
. (33)

It is now easily seen that FDR∗n,T can tend to a nonzero value when pseudo-signals are present

(i.e. if k∗ > 0). In such cases, where the selection of the true model is the main objective of the

analysis, a post-OCMT selection, using, for example, the Schwarz information criterion, could

be considered to separate the signals from the pseudo-signals. However, when the norm of slope

coeffi cients or the in-sample fit of the model is of main concern, then, under appropriate condi-

tions on the rate at which k∗ expands with n, the inclusion of pseudo-signals is asymptotically

innocuous, as shown in Theorem 2 below.

Consider now the error and coeffi cient norms of the selected model, Fu and Fβ̃, defined in

(22). We need the following additional regularity condition.
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Assumption 7 Let S denote the T × lT observation matrix on the lT regressors selected by the
OCMT procedure. Then, let Σss = E (S′S/T ) with eigenvalues denoted by µ1 ≤ µ2 ≤ ... ≤ µlT .

Let µi = O (lT ), i = lT −M + 1, lT −M + 2, ..., lT , for some finite M , and sup1≤i≤lT−M µi <

C0 <∞, for some C0 > 0. In addition, inf1≤i<lT µi > C1 > 0, for some C1 > 0.

Theorem 2 Consider the DGP defined by (6), and the error and coeffi cient norms of the

selected model, Fũ and Fβ̃, defined in (22). Suppose that Assumptions 1-4 and 6-7 hold, As-

sumption 5 holds for xit and q·t = x(j−1),t, i ∈ A(j), j = 1, 2, ...k, where A(j) is the active set at

stage j of the OCMT procedure, and k∗ (the number of pseudo-signals) is of order 	 (nε) for

some positive ε. cp (n, δ) is given by (15) with 0 < p < 1 and let f (n, δ) = cnδ, for the first stage

of OCMT, and f (n, δ∗) = cnδ
∗
for subsequent stages, for some c > 0, δ∗ > δ > 0. n, T → ∞,

such that T = 	 (nκ1), for some κ1 > 0, and k∗ = 	(nε) for some positive ε < min {1, κ1/3}.
Let β̃n be the estimator of βn = (β1, β2, ..., βn)′ in the final regression. Then, for any 0 < κ < 1,

and some constant C0 > 0, we have

Fũ = T−1||ũ||2 = σ2 +Op(T
−1/2) +O(n3εT−3/2) = σ2 +Op(n

−κ1/2) +O(n3ε−3κ1/2), (34)

and

Fβ̃ = ||β̃n−βn || = Op(n
5ε/2−κ1) +Op(n

ε−κ1/2). (35)

As can be seen from the above theorem, (34) and (35) require slightly stronger conditions

than those needed for the proof of the earlier results in Theorem 1. In particular, a condition

that relates to the eigenvalues of the population covariance of the selected regressors, denoted

by Σss, is needed. It aims to control the rate at which ‖Σ−1ss ‖F grows. It is mild in the sense
that it allows for the presence of considerable collinearity between the regressors. Under this

condition and ε < min {1, κ1/3}, we in fact obtain an oracle rate of T−1/2 for the error norm.
It is important to provide intuition on why we can get a consistency result for the coeffi cient

norm of the selected model even though the selection process includes pseudo-signals. There

are two reasons for this. First, since OCMT procedure selects all signals with probability

approaching one as n, T → ∞, then the coeffi cients of the additionally selected regressors
(whether pseudo-signal or noise) will tend to zero with T . Second, restricting the rate at which

k∗ rises with n, as set out in Theorem 2, implies that the inclusion of pseudo-signals can be

accommodated since their estimated coeffi cients will tend to zero and the variance of these

estimated coeffi cients will be controlled.

In the case where hidden signals are not present, we have P0 = 1, and as noted earlier

further stages of the OCMT will not be required. Consequently, the results of Theorem 1 can

be simplified and obtained under a less restrictive set of conditions. When P0 = 1, and assuming

that the conditions of Theorem 1 hold, with the exception of the condition on ε which could

lie in [0, 1), we obtain the following results, established in Section A.2.5 of the Appendix. The

probability of selecting the approximating model is given by

Pr (A0) = 1 +O
(
n1−δκ

)
+O

[
n exp

(
−nC0

)]
, (36)
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and Pr (A0)→p 1, if δ > 1. For the support recovery statistics, we have

E |TPRn,T | = 1 +O
[
exp

(
−nC0

)]
, and (37)

E |FPRn,T | = k∗/ (n− k) +O
(
n−δκ

)
+O

(
nε−1

)
+O

[
exp(−nC0)

]
. (38)

Hence, if δ > 0, then TPRn,T →p 1, and FPRn,T →p 0, and FDRn,T →p 0, if δ > 1.

4 Extensions

4.1 Alternative specifications for θi

Theorems 1 and 2, and the results discussed above relate to the first maintained assumption

about the pseudo-signal variables where at most k∗ of them have non-zero θi,(j) for some j. This

result can be extended to the case where potentially all variables have non-zero θi, as long as

θi’s are absolutely summable. Two leading cases considered in the literature are to assume that

there exists a (possibly unknown) ordering given by (4) or (5). The assumption that there is

only a finite number of variables for which βi 6= 0, is retained. The rationale for hidden signals

is less clear for these cases, since rather than a discrete separation between variables with zero

and non-zero θi, we consider a continuum that unites these two classes of variables. Essentially,

we have no separation in terms of signals (or pseudo-signals) and noise variables, since under

this setting there are no noise variables. Below, we provide some results for the settings implied

by (4) and (5), proven in the online supplement.

Theorem 3 Consider the DGP defined by (6), suppose that Assumptions 1-4 and 6 hold, As-
sumption 5 holds for xit and q·t = 1, i = 1, 2, ..., n, and condition (4) holds. Moreover, let

cp (n, δ) be given by (15) with 0 < p < 1 and f (n, δ) = cnδ, for some c, δ > 0, and suppose there

exists κ1 > 0 such that T = 	 (nκ1). Consider the variables selected by the OCMT procedure.

Then, for all ζ > 0, we have E |FPRn,T | = o(nζ−1) + O
[
exp(−nC0)

]
, for some finite positive

constant C0, where FPRn,T is defined by (20). If condition (5) holds instead of condition (4),

then, assuming γ > 1
2
κ21, we have FPRn,T →p 0.

4.2 Dynamic Extensions

An important assumption made so far is that noise variables are martingale difference processes

which is restrictive in the case of time series applications. This assumption can be relaxed. In

particular, under the less restrictive assumption that noise variables are exponentially mixing,

it can be shown that all the theoretical results derived above hold. Details are provided in

Section C of the online theory supplement. A further extension involves relaxing the martingale

difference assumption for the signals and pseudo-signals. If we are willing to assume that

either ut is normally distributed or the covariates are deterministic, then a number of results

become available. The relevant lemmas for the deterministic case are presented in Section
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E of the online supplement. Alternatively, signals and pseudo-signals can be assumed to be

exponentially mixing. In this general case, similar results to those in Theorems 1 and 2 can still

be obtained. These are described in Section C of the online supplement. In the light of these

theoretical extensions, one can also allow the DGP, (6), to include lagged dependent variables,

yt,h = (yt−1, yt−2, ..., yt−h)
′, where h is unknown. The OCMT procedure can now be applied to

xt augmented with yt,hmax , where hmax is a maximum lag order selected by the investigator.

5 A Monte Carlo Study

We employ five different Monte Carlo (MC) designs, with or without lagged values of yt. We

allow the covariates to be serially correlated and consider different degrees of correlations across

them. In addition, we experiment with Gaussian and non-Gaussian errors.

5.1 Data-generating processes (DGPs)

5.1.1 Design I (no hidden signals and no pseudo-signals)

yt is generated as:

yt = ϕyt−1 + β1x1t + β2x2t + β3x3t + β4x4t + ςut, (39)

where ut ∼ IIDN (0, 1) in the Gaussian case, and ut = [χ2t (2)− 2] /2 in the non-Gaussian case,

in which χ2t (2) are independent draws from a χ2-distribution with 2 degrees of freedom, for

t = 1, 2, ..., T . We consider the ‘static’specification with ϕ = 0, and two ‘dynamic’specifications

with ϕ = 0.4 and 0.8.7 We set β1 = β2 = β3 = β4 = 1 and consider the following alternative

ways of generating xnt = (x1t, x2t, ..., xnt)
′:

DGP-I(a) Temporally uncorrelated and weakly collinear covariates: Signal variables are
generated as xit = (εit + νgt) /

√
1 + ν2, for i = 1, 2, 3, 4, and noise variables are generated as

x5t = ε5t, xit = (εi−1,t + εit) /
√

2, for i > 5, where gt and εit are independent draws either from

N(0, 1) or from [χ2t (2)− 2] /2, for t = 1, 2, ..., T, and i = 1, 2, ..., n. We set ν = 1, which

implies 50% pair-wise correlation among the signal variables.

DGP-I(b) Temporally correlated and weakly collinear covariates: Covariates are generated
as in DGP-I(a), but with εit = ρiεi,t−1 +

√
1− ρ2i eit, in which eit ∼ IIDN (0, 1) or

IID [χ2t (2)− 2] /2. We set ρi = 0.5 for all i.

DGP-I(c) Strongly collinear noise variables due to a persistent unobserved common factor:
Signal variables are generated as xit = (εit + gt) /

√
2, for i = 1, 2, 3, 4, and noise variables are

generated as x5t = (ε5t + bift) /
√

3 and xit =
[
(εi−1,t + εit) /

√
2 + bift

]
/
√

3, for i > 5, where

bi ∼ IIDN (1, 1), ft = 0.95ft−1 +
√

1− 0.952vt, and vt, gt and εit are independent draws from

N (0, 1) or [χ2t (2)− 2] /2.

7Dynamic processes are initialized from zero starting values and the first 100 observations are discarded.
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DGP-I(d) Low or high pair-wise correlation of signal variables: Covariates are generated as
in DGP-I(a), but we set ν =

√
ω/ (1− ω), for ω = 0.2 (low pair-wise correlation) and 0.8

(high pair-wise correlation). This ensures that average correlation among the signals is ω.

5.1.2 Design II (featuring pseudo-signals)

The DGP is given by (39) and xnt is generated as:

DGP-II(a) Two pseudo-signals: Signal variables are generated as xit = (εit + gt) /
√

2, for

i = 1, 2, 3, 4, pseudo-signal variables are generated as x5t = ε5t + κx1t, and x6t = ε6t + κx2t,

and noise variables are generated as xit = (εi−1,t + εit) /
√

2, for i > 6, where, as before, gt, and

εit are independent draws from N (0, 1) or [χ2t (2)− 2] /2. We set κ = 1.33 (to achieve 80%

correlation between the signal and the pseudo-signal variables).

DGP-II(b) All variables collinear with signals: xnt ∼ IID (0,Σx) with the elements of Σx

given by 0.5|i−j|, 1 ≤ i, j ≤ n. We generate xnt with Gaussian and non-Gaussian innovations.

In particular, xnt = Σ1/2
x εt, where εt = (ε1t, ε2t, ..., εnt)

′, and εit are generated as independent

draws from N (0, 1) or [χ2t (2)− 2] /2.

5.1.3 Design III (featuring hidden signals)

yt is generated by (39), xnt is generated as in DGP-I(a), and the slope coeffi cients for the signals

in (39) are selected so that, conditional on yt−1, θ4 = 0:

DGP-III The fourth variable is hidden signal: We set β1 = β2 = β3 = 1 and β4 = −1.5. This

implies θi 6= 0 for i = 1, 2, 3 and θi = 0 for i ≥ 4, conditional on yt−1.

5.1.4 Design IV (featuring both hidden signals and pseudo-signals)

In this case yt is generated by (39), and:

DGP-IV(a) We generate xnt in the same way as in DGP-II(a) which features two
pseudo-signal variables. We generate slope coeffi cients βi as in DGP-III to ensure θi 6= 0 for

i = 1, 2, 3, and θi = 0 for i = 4, conditional on yt−1.

DGP-IV(b) We generate xnt in the same way as in DGP-II(b), where all covariates are
collinear with signals. We set β1 = −0.875 and β2 = β3 = β4 = 1. This implies θi = 0 for i = 1

and θi > 0 for all i > 1, conditional on yt−1.

5.1.5 Design V (Many signals)

For this design the DGP (DGP-V) is given by

yt = ϕyt−1 +
∑n

i=1i
−2xit + ςut, (40)

where xnt are generated as in design DGP-II(b), and ut is generated in the same way as before.

This design is inspired by the literature on approximately sparse models (Belloni et al. (2014b)).
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Autoregressive processes are generated with zero starting values and 100 burn-in periods.

ς is set so that R2 = 30%, 50% or 70% (on average) in static specifications (ϕ = 0). We do

not change any parameters of the designs with an increase in ϕ, and we refer to the three R2

measures corresponding to the three choices of ς as a low, medium and high fit. The sample

combinations, n = (100, 200, 300) and T = (100, 300, 500) are considered, and all experiments

are carried out using RMC = 2, 000 replications.

5.2 Variable selection methods

We consider six variable selection procedures, namely OCMT, Lasso, Adaptive Lasso (A-Lasso),

Hard thresholding, SICA, and Boosting. In static specifications, the OCMT method is imple-

mented as outlined in Section 3, where cp (n, δ) is defined by (15) with f (n, δ) = nδ in the

first stage and f (n, δ∗) = nδ
∗
in the subsequent stages. We use p = 0.01, and in line with the

theoretical derivations we set δ = 1 and δ∗ = 2. An online MC supplement provides results for

other choices of p ∈ {0.01, 0.05, 0.1} and (δ, δ∗) ∈ {(1, 1.5) , (1, 2)}. It turns out that the choice
of p is of second order importance. In the dynamic case, we augment the set of n covariates

with hmax = 4 lags of the dependent variable. Penalised regressions are implemented using

the same set of possible values for the penalisation parameter λ as in Zheng et al. (2014), and

following the literature λ is selected using 10-fold cross-validation. All methods are described

in detail in the online MC supplement.

5.3 Monte Carlo results

We begin by reporting on the number of stages, denoted by P̂ , taken by OCMT before comple-

tion. This is important since our theory suggests that it should be close to P0, which is 1 for

DGPs I, II, and V without hidden signals, and 2 in the case of DGPs III and IV that do contain

hidden signals. Realizations of P̂ are very close to P0 for both groups of experiments. The

average number of stages in the two groups of experiments is P̂ = 1.03 and 1.78, respectively.

In addition, the frequency of MC replications with P̂ > P0 and P̂ > P0 + 1 turn out to be very

small and amounted to 1.6%, and 0.003%, respectively.

Next, we focus on the average performance of Lasso, adaptive Lasso and OCMT methods,

whilst the full set of results for all experiments and all six variable selection procedures is given

in the online supplement. In our comparisons we focus on Lasso and adaptive Lasso since these

are the main penalised regression methods used in the literature and also because they tend to

perform better than Boosting. In our evaluation we use the following criteria: the true positive

rate (TPR) defined by (20), the false positive rate (FPR) defined by (20), the false discovery

rate of the true model (FDR∗) defined by (33), the false discovery of the approximating model

(FDR) defined by (21), the out-of-sample root mean square forecast error (RMSFE), and the

20



root mean square error of β̃ (RMSEβ̃).
8 We find that no method uniformly outperforms in

the set of experiments we consider. This is true for the full set of methods (OCMT, Lasso,

adaptive Lasso, Hard thresholding, SICA and Boosting) reported in the online supplement.

The performance of individual methods can be quite different for individual experiments, and

a relative assessment of these methods is provided in Table 1, which reports the fraction of

experiments (in percent) where OCMT is outperformed by Lasso and Adaptive Lasso. These

results clearly show that no method universally dominates. But it is interesting that the fraction

of such experiments where OCMT is beaten by its competitors is relatively small, at most 22%

for RMSFE and RMSEβ̃ entries, in all experiments with the exception of dynamic specifications

with ϕ = 0.8.

Summary statistics across the three choices of R2 (low medium and high) and all the sample

sizes (n = 100, 200, 300 and T = 100, 300, 500), for each of the five DGPs and with or without

the lagged dependent variable, are reported Table A.1 in the Appendix. Lasso’s TPR is in the

majority of experiments larger than OCMT’s, but so is the FPR and FDR as Lasso tends to

overestimate the number of signals, which is well known in the literature. Adaptive Lasso in

turn achieves better FPR and FDR outcomes compared with Lasso, but the performance of

adaptive Lasso can be worse for TPR, RMSFE and RMSEβ̃ in these experiments. The reported

RMSFE and RMSEβ̃ averages of Lasso and Adaptive Lasso are outperformed by OCMT in

static specifications and dynamic specifications with low value of ϕ = 0.4 in Table A.1, by

about 1.6% to 3.4%, and 9.1% to 40%, respectively. OCMT is very successful at eliminating

the noise variables. On the other hand, the power of OCMT procedure to pick up the signals

rises with
√
T
∣∣θi,(j)∣∣ /σei,(T )σxi,(T ), see Remark 1.9 Hence the magnitude of θi,(j), T and R2 are

all important for the power of the OCMT. For instance, detailed findings reported in the online

supplement show that an increase in the collinearity among signal variables, which results in

a larger θi,(j), improves the performance of OCMT, but it worsens the performance of Lasso,

since a higher collinearity of signal variables diminishes the marginal contribution of signals to

the fit of the model. The performance of OCMT method also deteriorates with an increase

in ϕ, and we see that in dynamic specifications with ϕ = 0.8 reported in the bottom panel of

Table A.1, OCMT is beaten by Lasso and/or Adaptive Lasso in some instances. Findings for

the non-Gaussian experiments are presented in Table A.2 in Appendix, which shows that the

effects of allowing for non-Gaussian innovations seem to be rather marginal.

Overall, the small sample evidence suggests that the OCMTmethod is a valuable alternative

to penalised regressions, since, in many cases, it can outperform the penalised regressions, that

have become the de facto benchmark in the literature.

8RMSEβ̃ is the square root of the trace of the MSE matrix of β̃. Additional summary statistics, including
the frequency of selecting the true model, and the statistics summarizing the distribution of the number of
selected covariates are reported in the online supplement.

9σei,(T ) and σxi,(T ) are defined by (B.49) in the online theory supplement, replacing e, x, andM q by ei, xi,
andM (j−1), respectively.
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6 Empirical Illustration
In this section we present an empirical application that highlights the utility of OCMT. In

particular, we present a macroeconomic forecasting exercise for US GDP growth and CPI

inflation using a large set of macroeconomic variables. The data set is quarterly and comes

from Stock and Watson (2012). We use the smaller data set considered in Stock and Watson

(2012), which contains 109 series. The series are transformed by taking logarithms and/or

differencing following Stock and Watson (2012).10 The transformed series span 1960Q3 to

2008Q4 and are collected in the vector ξt together with the target variable yt (either US GDP

growth or differenced log CPI inflation). Our estimation period is from 1960Q3 to 1990Q2

(120 periods) while the forecast evaluation period is 1990Q3 to 2008Q4. We produce one step

ahead forecasts using five different procedures:11 (a) AR benchmark with the number of lags

selected by Schwarz Bayesian criterion (SBC) with maximum lag set equal to hmax; (AR), (b)

AR augmented with one lag of principal components, and the number of lags of the dependent

variable is selected by SBC with maximum lag hmax; (factor-augmented AR), (c-d) Lasso and

adaptive Lasso regressions of the target variable yt on lagged principal components, ξt−1, and

hmax lags of yt. For Lasso and adaptive Lasso regressions, both the target variable and regressors

are demeaned, and the regressors are normalised to have unit variances. (e) OCMT procedure is

applied to regressions of yt conditional on lagged principal components (included as pre-selected

regressors), with ξt−1 and hmax lags of yt considered for variable selection. We set δ = 1 in

the first stage of OCMT, and δ∗ = 2 in the subsequent stages. We consider p = 0.05 below

and findings for p = 0.01 and 0.1 are reported in the online empirical supplement. In all three

data-rich procedures (b) to (e), the principal components are selected in a rolling scheme by the

PCp1 Bai and Ng (2002) criterion (with the maximum number of PCs set to 5). The maximum

number of lags for the dependent variable, hmax, is set to 4. We generate rolling forecasts using

a rolling window of 120 observations.

We evaluate the forecasting performance of the methods using relative RMSFE where the

AR forecast is the benchmark. Relative RMSFE statistics for the whole evaluation sample as

well as for the pre-crisis sub-period (1990Q3-2007Q2) are reported in Table 2. In the case of

GDP growth forecasts, we note that factor-augmented AR, Lasso and OCMT methods perform

better than the AR benchmark. OCMT performs the best while Adaptive Lasso is the worst

performer. However, the performance of the best methods is very close.12 The differences in

RMSFE in the case of inflation, reported in the bottom half of Table 2, are also relatively small

with the factor-augmented AR(1) performing the best followed by OCMT and Lasso.

Variable inclusion frequencies are reported in Table 3, using the full evaluation sample.

10For further details, see the online supplement of Stock and Watson (2012), in particular columns E and T
of their Table B.1.
11Further detail is provided in the online empirical supplement.
12Diebold-Mariano test statistics for all pairwise method comparisons can be found in the online supplement.

The RMSFE differences among the best performing methods are not generally statistically significant.
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Interestingly, for forecasting growth, the first lag of the dependent variable is among the most

selected variables using OCMT (with the inclusion frequency of 45.9%), while no lags of the

dependent variable are selected in the case of Lasso in any of the rolling windows. Results

are different when inflation is considered. In this case, the inclusion frequency of the first

lag of the dependent variable is 100% for both OCMT and Lasso methods. OCMT selects

considerably fewer number of variables as compared to Lasso, an outcome that mirrors the

Monte Carlo findings. In summary, we see that there is no method that uniformly outperforms

all competitor methods and that OCMT is not far behind the best performing method.

7 Conclusion

Model selection is a recurring and fundamental topic in econometric analysis. This problem

has become considerably more diffi cult for large-dimensional data sets where the set of possible

specifications rise exponentially with the number of available covariates. In the context of

linear regression models, penalised regression has become the de facto benchmark method of

choice. However, issues such as the choice of penalty function and tuning parameters remains

contentious.

In this paper, we provide an alternative approach based on multiple testing that is compu-

tationally simple, fast, and effective for sparse regression functions. Extensive theoretical and

Monte Carlo results highlight these properties. In particular, we find that although no single

method dominates across the broad set of experiments we considered, our proposed method

can in many instances outperform existing penalised regression methods, whilst at the same

time being computationally much faster by some orders of magnitude.

There are a number of avenues for future research. We have already considered the possibility

of allowing for dynamics, but further extensions to more general settings with weakly exogenous

regressors is clearly desirable. For empirical economic applications it is also important to allow

for the possibility of weak and strong common factors affecting both the signal and pseudo-

signal variables. A further possibility is to extend the idea of considering regressors individually

to other testing frameworks, such as tests of forecasting ability. It is hoped that the results

presented in this paper provide a basis for such further developments and empirical applications.
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Table 2: RMSFE performance of the AR, factor-augmented AR, Lasso and OCMT
methods

Evaluation sample: Full Pre-crisis
1990Q3-2008Q4 1990Q3-2007Q2

RMSFE Relative RMSFE Relative
(×100) RMSFE (×100) RMSFE

Real output growth
AR benchmark 0.561 1.000 0.505 1.000
Factor-augmented AR 0.484 0.862 0.470 0.930
Lasso 0.510 0.910 0.465 0.922
Adaptive Lasso 0.561 1.000 0.503 0.996
OCMT 0.477 0.850 0.461 0.912

Inflation
AR benchmark 0.601 1.000 0.435 1.000
Factor-augmented AR 0.557 0.927 0.415 0.954
Lasso 0.599 0.997 0.462 1.063
Adaptive Lasso 0.715 1.190 0.524 1.205
OCMT 0.590 0.982 0.464 1.068

Notes: RMSFE is computed based on rolling forecasts with a rolling window of 120 observations. The source of the data is the
smaller data set with 109 time series provided by Stock and Watson (2012). The series are transformed by taking logarithms
and/or differencing following Stock and Watson (2012). The transformed series span 1960Q3 to 2008Q4 and are collected in the
vector ξt. Set of regressors in Lasso and adaptive-Lasso contains hmax = 4 lags of yt (lagged target variables), ξt−1, and a lagged
set of principal components obtained from the large data set given by (yt, ξ′t)

′. OCMT procedure is applied to regressions of yt
conditional on lagged principal components (included as pre-selected regressors) with ξt−1 and hmax = 4 lags of yt considered for
variable selection. OCMT is reported for p = 0.05 and δ = 1 in the first stage, and p = 0.05 and δ∗ = 2 in the subsequent stages
of the OCMT procedure. The number of principal components in the factor-augmented AR, Lasso, adaptive-Lasso, and OCMT
methods is determined in a rolling scheme by using criterion PCp1 of Bai and Ng (2002) (with the maximum number of PCs set
to 5). See Section 6 and the online empirical supplement for further details.

Table 3: Top 5 variables with highest inclusion frequencies based on the Lasso and
OCMT selection methods

Output growth
Lasso OCMT
1. Real gross private domestic investment - residential (*) 100.0% 1. Residential price index 47.3%
2. Real personal consumption expenditures - services (*) 100.0% 2. First lag of the dependent variable 45.9%
3. Employees, nonfarm - mining 89.2% 3. Industrial production index - fuels 43.2%
4. Index of help - wanted advertising in newspapers 75.7% 4. Labor productivity (output per hour) 37.8%
5. Employment: Ratio; Help-wanted ads: No. unemployed CLF 56.8% 5. Employees, nonfarm - mining 27.0%

Average number of selected variables 8.1 Average number of selected variables 2.2
(excluding pre-selected factors)

Inflation
Lasso OCMT
1. Interest rate: U.S. Treasury bills, sec. mkt, 3-mo (% per ann) 100.0% 1. First lag of the dependent variable 100.0%
2. Real personal consumption expenditures - services (*) 100.0% 2. Third lag of the dependent variable 78.4%
3. First lag of the dependent variable 100.0% 3. MZM money stock (FRB St. Lois) 71.6%
4. Employees, nonfarm - mining 98.6% 4. Money stock: M2 45.9%
5. Second lag of the dependent variable 98.6% 5. Recreation price index 33.8%

Average number of selected variables 21.7 Average number of selected variables 4.0
(excluding pre-selected factors)

Notes: This table reports the top 5 highest inclusion frequencies of the variables selected using the Lasso and OCMT procedure
on the full evaluation sample, 1990Q3-2008Q4. OCMT is reported p = 0.05 and for δ = 1 in the first stage, and δ∗ = 2 in the
subsequent stages of the OCMT procedure.
(*) quantity index.
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A Appendix

A.1 Additional notations and definitions

Throughout this appendix we consider the following events:

A0 = H ∩ G, where H ={
∑k

i=1Ĵi = k}, and G ={
∑n

i=k+k∗+1Ĵi = 0}. (A.1)

A0, also defined by (28), is the event of selecting the approximating model, H is the event

that all signals are selected, and G is the event that no noise variable is selected. We also
denote the event that exactly j noise variables are selected by Gj = {

∑n
i=k+k∗+1Ĵi = j}, for

j = 0, 1, ..., n − k − k∗, with G ≡ G0. For the analysis of different stages of OCMT, we also
introduce the event Bi,s, which is the event that variable i is selected at the sth stage of the
OCMT procedure. Li,s = ∪sh=1Bi,h is the event that variable i is selected up to and including
stage s, namely in any of the stages j = 1, 2, ..., s of the OCMT procedure, and Ls = ∩ki=1Li,s
is the event that all signals are selected up to and including stage s of the OCMT procedure.

Ts is the event that OCMT stops after s stages or less. Ds,T is the event that the number of
variables selected in the first s stages of OCMT (k̂(j), j = 1, 2, ..., s) is smaller than or equal

to lT , where lT = 	 (nν) and ν satisfies ε < ν < κ1/3. Note that when T = 	 (nκ1) then

lT = 	
(
T ν/κ1

)
= o

(
T 1/3

)
for ν < κ1/3.

Notations: Let a = (a1, a2, ..., an)′ and A = (aij) be an n× 1 vector and an n×m matrix,

respectively. Then, ‖a‖ = (Σn
i=1a

2
i )
1/2 and ‖a‖1 = Σn

i=1 |ai| are the Euclidean (L2) and L1

norms of a, respectively. ‖A‖F = [Tr (AA′)]
1/2 is the Frobenius norm of A.

A.2 Proofs of Propositions and Theorems

All proofs are based on the set of lemmas presented and established in the online theory sup-

plement. In particular, Lemmas A1-A9 are auxiliary ones, mostly providing supporting results

for the main lemma of the paper, namely Lemma A10, which provides the basic exponential

inequalities that underlie most of our results. A simple version of this lemma is included in the

paper as Proposition 2.

A.2.1 Proof of Proposition 1

We recall that P0 is a population quantity. This formally means that, to determine P0, OCMT

is carried out assuming Pr[|tφ̂i,(j)| > cp (n, δ) |θi,(j) 6= 0] = 1, and Pr[|tφ̂i,(j)| > cp (n, δ) |θi,(j) =

0] = 0 for all i, j. So, if θi,(1) 6= 0, for all i for which βi 6= 0, it obviously follows that P0 = 1.

Next, assume that the subset of signal variables inXk, such that for each element of this subset,

θi,(1) = 0, is not empty. Then, these signals will not be selected in the first stage of OCMT. By

Lemma A1 in the online supplement, it follows that the subset of signals for which θi,(1) = 0

is smaller than the set of signals and therefore at least one signal will be picked up in the first
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stage of OCMT. It then follows, by Lemma A1, that in the second stage of OCMT, at least

one hidden signal, for which θi,(1) = 0 will have θi,(2) 6= 0. Therefore, such hidden signal(s)

will be picked up in the second stage. Proceeding recursively using Lemma A1, it then follows

that all hidden signals for which θi,(1) = 0, will satisfy θi,(j) 6= 0 for some j ≤ k, proving the

proposition.13

A.2.2 Proof of Theorem 1

Noting that Tk is the event that the OCMT procedure stops after k stages or less, we have
Pr
(
P̂ > k

)
= Pr (T ck ) = 1−Pr (Tk), where P̂ is defined by (17). Substituting (B.83) of Lemma

A20 in the online supplement for Pr (Tk), we obtain, Pr
(
P̂ > k

)
= O

(
n1−ν−κδ

)
+O

(
n1−κδ

∗)
+

O
[
n exp

(
−C0nC1κ1

)]
, for some C0, C1 > 0, any κ in 0 < κ < 1, and any ν in 0 ≤ ε < ν < κ1/3,

where κ1 > 0 defines the rate for T = 	 (nκ1) , and ε in 0 ≤ ε < min {1, κ1/3} defines the rate
for k∗ = 	 (nε). But note that O

(
n1−ν−κδ

)
can be written equivalently as O

(
n1−κ1/3−κδ

)
. This

follows since 1 − κ1/3 − κδ = 1 − (κ1/3− εδ) − (κ + ε) δ = 1 − ν̃ − κ̃δ, where ν̃ = κ1/3 − εδ
and κ̃ = κ + ε, for ε > 0 suffi ciently small. Specifically, setting ε < min {1− κ, (κ1/3− ε) /δ},
it follows that κ̃ and ν̃ satisfy 0 < κ̃ < 1 and ε < ν̃ < κ1/3, respectively, as required. Hence

Pr(P̂ > k) = Pr (T ck ) = O
(
n1−κ1/3−κδ

)
+O

(
n1−κδ

∗)
+O

[
n exp

(
−C0nC1κ1

)]
, (A.2)

for someC0, C1 > 0 and any κ in 0 < κ < 1. Noting thatO
[
n exp

(
−C0nC1κ1

)]
= O

[
exp

(
−nC2κ1

)]
for any 0 < C2 < C1, we have Pr

(
P̂ > k

)
= O

(
n1−κ1/3−κδ

)
+ O

(
n1−κδ

∗)
+ O

[
exp

(
−nC2κ1

)]
,

for some C2 > 0, which establishes (29). Similarly, by (B.86) and noting that n ≥ n1−ν for

ν ≥ 0, we also have (which is required subsequently)

Pr
(
Dck,T

)
= O

(
n1−κ1/3−κδ

)
+O

(
n1−κ1/3−κδ

∗)
+O

[
n exp

(
−C0TC1κ1

)]
, (A.3)

for some C0, C1 > 0 and any κ in 0 < κ < 1.

To establish result (30), we first note that

Pr(Ac0) = Pr(Ac0|Dk,T ) Pr(Dk,T ) + Pr(Ac0|Dck,T ) Pr(Dck,T ) ≤ Pr(Ac0|Dk,T ) + Pr(Dck,T ), (A.4)

where Pr(Dck,T ) is given by (A.3). Also using (A.1) we have Ac0 = Hc ∪ Gc, and hence

Pr(Ac0|Dk,T ) ≤ Pr (Hc| Dk,T ) + Pr (Gc| Dk,T ) = An,T +Bn,T , (A.5)

where H and G are given by (A.1). Therefore Hc = {
∑k

i=1Ĵi < k}, and Gc = {
∑n

i=k+k∗+1Ĵi >
0}. Consider the terms An,T and Bn,T , in turn:

An,T = Pr (Hc| Dk,T ) ≤
∑k

i=1 Pr(Ĵi = 0
∣∣∣Dk,T ). (A.6)

13Note that this proposition allows the net effects to tend to zero with T (or n) at a suffi ciently slow rate as
set out in Assumption 6, as long as they are not exactly zero. See also Lemma A1 in the online supplement.
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But, the event {Ĵi = 0|Dk,T} can occur only if {∩kj=1Bci,j|Dk,T} occurs, while {∩kj=1Bci,j|Dk,T}
can occur without {Ĵi = 0|Dk,T} occurring. Therefore, Pr[Ĵi = 0|Dk,T ] ≤ Pr(∩kj=1Bci,j|Dk,T ).

Then,

Pr
(
∩kj=1Bci,j

∣∣Dk,T ) = Pr
(
Bci,1
∣∣Dk,T )× Pr

(
Bci,2
∣∣Bci,1,Dk,T )× Pr

(
Bci,3
∣∣Bci,2 ∩ Bci,1,Dk,T )

× ...× Pr
(
Bci,k
∣∣Bci,k−1 ∩ ... ∩ Bci,1,Dk,T ) . (A.7)

But, by Proposition 1 we are guaranteed that for some j in 1 ≤ j ≤ k, θi,(j) 6= 0, i = 1, 2, ..., k.

Therefore, for some j in 1 ≤ j ≤ k,

Pr(Bci,j
∣∣Bci,j−1 ∩ ... ∩ Bci,1,Dk,T ) = Pr(Bci,j

∣∣Bci,j−1 ∩ ... ∩ Bci,1, θi,(j) 6= 0,Dk,T ),

and by (B.52) of Lemma A10 in the online supplement, Pr(Bci,j
∣∣Bci,j−1 ∩ ... ∩ Bci,1, θi,(j) 6=

0,Dk,T ) = O
[
exp

(
−C0TC1

)]
, for i = 1, 2, ..., k, and some C0, C1 > 0. Therefore,

Pr(Ĵi = 0 | Dk,T ) = O
[
exp

(
−C0TC1

)]
, for i = 1, 2, ..., k. (A.8)

Substituting this result in (A.6), we have

An,T = Pr (Hc| Dk,T ) ≤ k exp
(
−C0TC1

)
. (A.9)

Similarly, for Bn,T we first note that

Bn,T = Pr[∪ni=k+k∗+1(Ĵi > 0)|Dk,T ] ≤
∑n

i=k+k∗+1E(Ĵi |Dk,T ). (A.10)

Also, E(Ĵi |Dk,T ) = E(Ĵi |Dk,T , Tk ) Pr (Tk|Dk,T )+E(Ĵi |Dk,T , T ck ) Pr (T ck |Dk,T ) ≤ E(Ĵi |Dk,T , Tk )+

Pr (T ck |Dk,T ), since E(Ĵi |Dk,T , T ck ) ≤ 1. Hence Bn,T ≤
∑n

i=k+k∗+1E(Ĵi |Dk,T , Tk )+

(n− k − k∗) Pr (T ck |Dk,T ). Consider now the first term of the above and note that∑n
i=k+k∗+1E(Ĵi |Dk,T , Tk ) =

∑n
i=k+k∗+1 Pr[|tφ̂i,(1)| > cp (n, δ)

∣∣θi,(1) = 0,Dk,T , Tk ]

+
∑n

i=k+k∗+1

∑k
j=2 Pr[|tφ̂i,(j)| > cp (n, δ∗)

∣∣θi,(j) = 0,Dk,T , Tk ],

where we have made use of the fact that the net effect coeffi cients, θi,(j), of noise variables are

zero for i = k+ k∗+ 1, k+ k∗+ 2, ..., n and all j. Also by (B.51) of Lemma A10 and result (ii)

of Lemma A2, we have

n∑
i=k+k∗+1

Pr
(
|tφ̂i,(1)| > cp (n, δ)

∣∣θi,(1) = 0,Dk,T , Tk
)

+
n∑

i=k+k∗+1

k∑
s=2

Pr
(
|tφ̂i,(s) | > cp (n, δ∗)

∣∣θi,(s) = 0,Dk,T , Tk
)

≤ (n− k − k∗) exp
[
−κc2p(n, δ)/2

]
+ (k − 1)(n− k − k∗) exp

[
−κc2p(n, δ∗)/2

]
+O

[
n exp

(
−C0TC1

)]
= O

(
n1−κδ

)
+O

(
n1−κδ

∗)
+O

[
n exp

(
−C0TC1

)]
.

Further, by (B.92), nPr (T ck |Dk,T ) = O
(
n2−κδ

∗)
+O

[
n2 exp

(
−C0TC1

)]
, giving, overall,

Bn,T = O
(
n1−δκ

)
+O

(
n2−δ

∗κ)+O
[
n2 exp

(
−C0TC1

)]
, (A.11)
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where we used that O
[
n exp

(
−C0TC1

)]
is dominated by O

[
n2 exp

(
−C0TC1

)]
, and O

(
n1−κδ

∗)
is dominated by O

(
n1−κδ

)
for δ∗ > δ > 0. Substituting for An,T and Bn,T from (A.9) and (A.11)

in (A.5) and using (A.4) we obtain Pr(Ac0) ≤ O
(
n1−δκ

)
+O

(
n2−δ

∗κ
)

+O
[
n2 exp

(
−C0TC1

)]
+

Pr(Dck,T ), where Pr(Dck,T ) is already given by (A.3), and k exp
(
−C0TC1

)
is dominated by

O
[
n2 exp

(
−C0TC1

)]
. Hence, noting that Pr (A0) = 1− Pr(Ac0), then

Pr (A0) = 1 +O
(
n1−δκ

)
+O

(
n2−δ

∗κ)+O
(
n1−κ1/3−κδ

)
+O

[
n2 exp

(
−C0TC1

)]
, (A.12)

sinceO[n exp
(
−C0TC1

)
] is dominated byO[n2 exp

(
−C0TC1

)
], andO(n1−κ1/3−κδ

∗
) is dominated

by O(n1−κ1/3−κδ), for δ∗ > δ > 0. Result (30) now follows noting that T = 	 (nκ1) and that

O
[
n2 exp

(
−C0nC1κ1

)]
= O

[
exp

(
−nC2κ1

)]
for some C2 in 0 < C2 < C1. If, in addition, δ > 1,

and δ∗ > 2, then Pr (A0)→ 1, as n,T →∞, for any κ1 > 0.

We establish result (32) next, before establishing results (31) and the result on FDR. Con-

sider FPRn,T defined by (20), and note that the probability of noise or pseudo-signal variable i

being selected in any stages of the OCMT procedure is given by Pr (Li,n), for i = k+1, k+2, ..., n.

Then

E |FPRn,T | =
∑n

i=k+1 Pr (Li,n)

n− k =

∑k+k∗

i=k+1 Pr (Li,n)

n− k +

∑n
i=k+k∗+1 Pr (Li,n)

n− k . (A.13)

Since
∑k+k∗

i=k+1 Pr (Li,n) ≤ k∗ then

E |FPRn,T | ≤ (n− k)−1k∗ + (n− k)−1
∑n

i=k+k∗+1 Pr (Li,n) . (A.14)

Note that

(n− k)−1
∑n

i=k+k∗+1 Pr (Li,n) ≤ (n− k)−1
∑n

i=k+k∗+1 Pr (Li,n|Dk,T ) + Pr
(
Dck,T

)
. (A.15)

Furthermore

Pr (Li,n|Dk,T ) ≤ Pr (Li,n|Dk,T , Tk) + Pr (T ck ) . (A.16)

An upper bound to Pr (T ck ) = Pr(P̂ > k) is established in the first part of this proof, see

(A.2). We focus on Pr (Li,n|Dk,T , Tk) next. Due to the conditioning on the event Tk, we have
Pr (Li,n|Dk,T , Tk) = Pr (Li,k|,Dk,T , Tk), and in view of Li,k = ∪kh=1Bi,h we obtain

Pr (Li,k|Dk,T , Tk) ≤
∑k

s=1 Pr
(
Bi,s|θi,(s) = 0,Dk,T , Tk

)
, for i > k + k∗, (A.17)

where we note that Pr (Bi,s|Dk,T , Tk) = Pr
(
Bi,s|θi,(s) = 0,Dk,T , Tk

)
, for i > k + k∗ since the net

effect coeffi cients of the noise variables at any stage of OCMT are zero. Further, using (B.51)

of Lemma A10, for i = k + k∗ + 1, k + k∗ + 2, ..., n, we have

Pr
(
Bi,s|θi,(s) = 0,Dk,T , Tk

)
=

{
O
{

exp
[
−κc2p(n, δ)/2

]}
+O

[
exp(−C0TC1)

]
, s = 1

O
{

exp
[
−κc2p(n, δ∗)/2

]}
+O

[
exp(−C0TC1)

]
, s > 1

,

(A.18)
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where κ = [(1− π) / (1 + dT )]2. Clearly 0 < κ < 1, since 0 < π < 1, and dT is a bounded

positive sequence. Hence, given result (ii) of Lemma A2 in the online supplement, for i =

k + k∗ + 1, k + k∗ + 2, ..., n, we have∑k
s=1 Pr

(
Bi,s|θi,(s) = 0,Dk,T , Tk

)
= O

(
n−δκ

)
+O

(
n−δ

∗κ)+O
[
exp(−C0TC1)

]
.

Using this result in (A.17) and averaging across i = k + k∗ + 1, k + k∗ + 2, ..., n, we obtain

(n− k)−1
∑n

i=k+k∗+1 Pr (Li,k|Dk,T , Tk) = O
(
n−κδ

)
+O

(
n−κδ

∗)
+O

[
exp(−C0TC1)

]
. (A.19)

Overall, with δ∗ > δ, T = 	 (nκ1), k∗ = 	 (nε), and using (A.2), (A.3), (A.14)-(A.16)

and (A.19), we have E |FPRn,T | = k∗/ (n− k) + O
(
n−κδ

)
+ O

(
n−κδ

∗)
+ O

(
n1−κ1/3−κδ

)
+

O
(
n1−κ1/3−κδ

∗)
+ O

(
n1−κδ

∗)
+ O

[
exp(−C0nC1κ1)

]
+ O (nε−1) + O

[
n exp

(
−C0nC1κ1

)]
. But

O
[
exp(−C0nC1κ1)

]
and O

[
n exp

(
−C0nC1κ1

)]
are dominated by

[
exp

(
−nC2κ1

)]
for some 0 <

C2 < C1. In addition, since δ∗ > δ and κ is positive, the terms O
(
n−κδ

∗)
and O

(
n1−κ1/3−κδ

∗)
are dominated byO

(
n−κδ

)
andO

(
n1−κ1/3−κδ

)
, respectively. Hence, E |FPRn,T | = k∗/ (n− k)+

O
(
n−κδ

)
+O

(
n1−κ1/3−κδ

)
+O (nε−1) +O

(
n1−κδ

∗)
+O

[
exp

(
−nC2κ1

)]
, for some C2 > 0, which

completes the proof of (32).

To establish (31) we note from (20) that

E |TPRn,T | = k−1
∑k

i=1 Pr[Ĵi = 1]. (A.20)

But Pr[Ĵi = 1] = 1 − Pr[Ĵi = 0], and Pr[Ĵi = 0] ≤ Pr[Ĵi = 0|Dk,T ] + Pr
(
Dck,T

)
. Using (A.8)

and (A.3) and dropping the terms O
[
exp

(
−C0TC1

)]
and O

(
n1−κ1/3−κδ

∗)
that are dominated

by O
[
n exp

(
−C0TC1

)]
and O

(
n1−κ1/3−κδ

)
, respectively (noting that δ∗ > δ > 0) we obtain

Pr[Ĵi = 0] = O
(
n1−κ1/3−κδ

)
+O

[
n exp

(
−C0TC1

)]
, for i = 1, 2, ..., k. Hence,

∑k
i=1 Pr[Ĵi = 1] =

k + O
(
n1−κ1/3−κδ

)
+ O

[
n exp

(
−C0TC1

)]
, which, after substituting this expression in (A.20),

and noting that T = 	 (nκ1), and

O
[
n exp

(
−C0nC1κ1

)]
= O

[
exp

(
−nC2κ1

)]
, for some C2 in 0 < C2 < C1 yields

E |TPRn,T | = 1 +O
(
n1−κ1/3−κδ

)
+O

[
exp

(
−nC2κ1

)]
, (A.21)

for some C2 > 0, as required.

To establish the result on FDR, we first note that

FDRn,T =

∑n
i=1 I

(
Ĵi = 1, and βi = θi = 0

)
(n− k)FPRn,T + kTPRn,T + 1

.

Consider the numerator first. Taking expectations E
∑n

i=1I[Ĵi = 1, and βi = θi = 0] =∑n
i=k+k∗+1 Pr (Li,n). Using (A.2),(A.3),(A.15), and (A.16), and noting T = 	 (nκ1), we have∑n

i=k+k∗+1 Pr (Li,n) = O
(
n1−κδ

)
+O

(
n1−κδ

∗)
+O

(
n2−κ1/3−κδ

)
+O

(
n2−κ1/3−κδ

∗)
+O

(
n2−κδ

∗)
+O

[
n exp(−C0nC1κ1)

]
+O

[
n2 exp

(
−C0nC1κ1

)]
, (A.22)
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for some C0, C1 > 0. Hence, if δ > max {1, 2− κ1/3}, and δ∗ > 2, then
∑n

i=k+k∗+1 Pr (Li,n)→ 0,

and ∑n
i=1I[Ĵi = 1, and βi = θi = 0]→p 0. (A.23)

Consider the term kTPRn,T in the denominator next. Using (A.21), we have

kTPRn,T →p k, (A.24)

if δ > 1−κ1/3. Using (A.23), (A.24), and noting that (n− k)FPRn,T ≥ 0, we have FDRn,T →p

0, if δ > max {1, 2− κ1/3}, and δ∗ > 2, as required.

A.2.3 Proof of Theorem 2

We prove the error norm result first. Define a sequence rũ,n such that rũ,n = O(n3ε−3κ1/2) +

O
(
n−κ1/2

)
. By the definition of convergence in probability, we need to show that, for any ε > 0,

there exists someBε <∞, such that Pr
(
r−1ũ,n |Fũ − σ2| > Bε

)
< ε. We have Pr

(
r−1ũ,n |Fũ − σ2| > Bε

)
≤

Pr
(
r−1ũ,n |Fũ − σ2| > Bε|A0

)
+ Pr (Ac0). By (A.12), limn→∞ Pr (Ac0) = 0. Then, it is suffi cient to

show that, for any ε > 0, there exists some Bε <∞, such that Pr
(
r−1ũ,n |Fũ − σ2| > Bε|A0

)
< ε.

But, by (B.95) of Lemma A21 in the online supplement, the desired result follows immediately.

To prove the result for the coeffi cient norm, we proceed similarly. Recall that k∗ =

	 (nε) and define a sequence rβ,n, such that rβ,n = O(n5ε/2−κ1) + O(nε−κ1/2). To establish∥∥∥β̃n−βn∥∥∥ = Op (rβ,n), we need to show that, for any ε > 0, there exists some Bε < ∞, such

that Pr(r−1β,n

∥∥∥β̃n−βn∥∥∥ > Bε) < ε. We have Pr(r−1β,n

∥∥∥β̃n−βn∥∥∥ > Bε) ≤ Pr(r−1β,n

∥∥∥β̃n−βn∥∥∥ >
Bε|A0) + Pr (Ac0). Again, by (A.12), limn→∞ Pr (Ac0) = 0. Then, it is suffi cient to show that,

for any ε > 0, there exists some Bε < ∞, such that Pr(r−1β,n

∥∥∥β̃n−βn∥∥∥ > Bε|A0) < ε. But this

follows immediately from (B.96) of Lemma A21 in the online supplement, since, conditional on

the event A0, the set of selected regressors includes all signals.

A.2.4 Proof of Theorem 3

See Section B of the online supplement.

A.2.5 Proofs of results for the single stage OCMT in the absence of hidden signals

Result (37) follows from (25), and (38) follows from the analysis preceding Theorem 1, using

(26) and (27). The result on FDRn,T continues to hold using the same arguments as in the

proof of Theorem 1. To obtain Pr (A0) we follow the derivations in the proof of the multi-stage
version of OCMT provided in Section A.2.2, but note that we only need to consider the terms

from the first stage of OCMT. Similarly to (A.5) and without the need to condition on Dk,T , we
have Pr(Ac0) ≤ Pr(

∑k
i=1Ĵi < k) + Pr(

∑n
i=k+k∗+1Ĵi > 0) = An,T +Bn,T , noting that Ĵi = Ĵi,(1).

Also, as with (A.9) and (A.10), we have An,T ≤ k exp
(
−C1TC2

)
. Similarly, for Bn,T we first
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note that

Bn,T ≤
∑n

i=k+k∗+1E(Ĵi,(1) |βi = 0) =
∑n

i=k+k∗+1 Pr[|tφ̂i,(1) | > cp (n, δ) |θi = 0],

which, by (B.51) of Lemma A10 in the online supplement, yieldsBn,T ≤ (n−k−k∗) exp
[
−κc2p(n, δ)/2

]
+

O
[
n exp

(
−C0TC1

)]
, or upon using result (ii) of Lemma A2, Pr (Ac0) ≤ An,T+Bn,T ≤ O

(
n1−δκ

)
+

O
[
n exp

(
−C0TC1

)]
, and hence Pr (A0) = O

(
n1−δκ

)
+O

[
exp

(
−nC2

)]
, for some C2 > 0. If, in

addition, δ > 1, then Pr (A0) → 1, as n,T → ∞, such that T = O (nκ1) for some κ1 > 0, as

required.
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Online Theory Supplement to

"A One-Covariate at a Time, Multiple Testing Approach to
Variable Selection in High-Dimensional Linear Regression Models"

A. Chudik G. Kapetanios
Federal Reserve Bank of Dallas King’s College, London

M. Hashem Pesaran
University of Southern California, USA and Trinity College, Cambridge, UK

This online theory supplement is organised as follows: Section A provides lemmas for the

Appendix of the main paper. Section B provides a proof of Theorem 3. Section C provides a

discussion of various results related to the case where both signal and noise variables are mixing

processes. Section D presents lemmas for regressions with covariates that are mixing processors.

Section E provides lemmas for the case where the regressors are deterministic, while Section F

provides some further supplementary lemmas needed for Sections B and C of this supplement.

A. Lemmas

Before presenting the lemmas and their proofs we give an outline of their use. Lemmas A1 and

A2 are technical auxiliary lemmas. Lemmas A3-A5 provide extensions to existing results in the

literature that form the building blocks for our exponential probability inequalities. Lemmas

A6 and A7 provide exponential probability inequalities for squares and cross-products of sums

of random variables. Lemmas A8 and A9 provide results that help handle the denominator of a

t-statistic in the context of exponential inequalities. Lemma A10 is a key lemma that provides

exponential inequalities for t-statistics. Lemmas A11-A21 are further auxiliary lemmas.

Lemma A1 Let yt, for t = 1, 2, ..., T , be given by DGP (6) and define xi = (xi1, xi2, ..., xiT )′,

for i = 1, 2, ..., k, and Xk = (x1,x2, ...,xk), and suppose that Assumption 1 holds. Moreover,

let qi· = (qi1, qi2, ...., qiT )′ , for i = 1, 2, ..., lT , Q = (q1·,q2·, ...,qlT ·)
′, and assume Mq = IT −

Q (Q′Q)−1 Q′ exists. Further, assume that τ T = (1, 1, ..., 1)′ is included in Q, a (0 ≤ a < k)

column vectors of Xk belong to Q, and the remaining b = k − 1 > 0 columns of Xk that do

not belong in Q are collected in the T × b matrix Xb. The slope coeffi cients that correspond

to regressors in Xb are collected in the b × 1 vector βb,T . Define θb,T = Ωb,Tβb,T , where

Ωb,T = E (T−1X′bMqXb). If Ωb,T is nonsingular, and βk,T = (β1,T , β2,T , ..., βk,T )′ 6= 0, then at

least one element of the b× 1 vector θb,T is nonzero.

Proof. Since Ωb,T is nonsingular and βb,T 6= 0, it follows that θb,T 6= 0; otherwise βb,T =

Ω−1b,Tθb,T = 0, which contradicts the assumption that βb,T 6= 0.

1



Lemma A2 Consider the critical value function cp (n, δ) defined by (15), with 0 < p < 1

and f (n, δ) = cnδ, for some c, δ > 0. Moreover, let a > 0 and 0 < b ≤ 1. Then: (i)

cp (n, δ) = O
(

[δ ln (n)]1/2
)
, (ii) na exp

[
−bc2p (n, δ)

]
= 	

(
na−2bδ

)
.

Proof. Results follow from Lemma 3 of the Supplementary Appendix A of Bailey et al. (2018).

Lemma A3 Let zt be a martingale difference sequence with respect to the filtration F zt−1 =

σ
(
{zs}t−1s=1

)
, and suppose that there exist finite positive constants C0 and C1, and s > 0 such that

supt Pr (|zt| > α) ≤ C0 exp (−C1αs), for all α > 0. Let σ2zt = E(z2t
∣∣F zt−1 ) and σ2z = 1

T

∑T
t=1 σ

2
zt.

Suppose that ζT = 	(T λ), for some 0 < λ ≤ (s + 1)/(s + 2). Then, for any π in the range

0 < π < 1, we have

Pr(|
∑T

t=1zt| > ζT ) ≤ exp[− (1− π)2 ζ2TT
−1σ−2z /2]. (B.1)

If λ > (s+ 1)/(s+ 2), then for some finite positive constant C3,

Pr(|
∑T

t=1zt| > ζT ) ≤ exp[−C3ζs/(s+1)T ]. (B.2)

Proof. We proceed to prove (B.1) first and then prove (B.2). Decompose zt as zt = wt + vt,

where wt = ztI(|zt| ≤ DT ) and vt = ztI(|zt| > DT ), and note that

Pr{|
∑T

t=1 [zt − E(zt)] | > ζT} ≤Pr{|
∑T

t=1 [wt − E(wt)] | > (1− π) ζT}
+ Pr{|

∑T
t=1 [vt − E(vt)] | > πζT}, (B.3)

for any 0 < π < 1.1 Further, it is easily verified that wt − E (wt) is a martingale difference

process, and since |wt| ≤ DT then by setting b = Tσ2z and a = (1− π) ζT in Proposition 2.1 of

Freedman (1975), for the first term on the RHS of (B.3) we obtain

Pr{|
∑T

t=1 [wt − E (wt)] | > (1− π) ζT} ≤ exp{−ζ2T
[
Tσ2z + (1− π)DT ζT

]−1
(1− π)2 /2}.

Consider now the second term on the RHS of (B.3) and first note that

Pr{|
∑T

t=1 [vt − E(vt)] | > πζT} ≤ Pr[
∑T

t=1 |vt − E(vt)| > πζT ], (B.4)

and by Markov’s inequality,

Pr{
∑T

t=1 |[vt − E(vt)]| > πζT} ≤ π−1ζ−1T
∑T

t=1E |vt − E(vt)| ≤ 2π−1ζ−1T
∑T

t=1E |vt| . (B.5)

1Let AT =
∑T

t=1 [zt − E(zt)] = B1,T +B2,T , where B1,T =
∑T

t=1 [wt − E(wt)] and B2,T =
∑T

t=1 [vt − E(vt)].
We have |AT | ≤ |B1,T |+ |B2,T | and, therefore, Pr (|AT | > ζT ) ≤ Pr (|B1,T |+ |B2,T | > ζT ). Equation (B.3) now
readily follows using the same steps as in the proof of (B.59).

2



But by Holder’s inequality, for any finite p, q ≥ 1 such that p−1 + q−1 = 1 we have E |vt| =

E (|ztI [|zt| > DT ]|) ≤ (E |zt|p)1/p {E [|I (|zt| > DT )|q]}1/q = (E |zt|p)1/p {E [I (|zt| > DT )]}1/q,
and therefore

E |vt| ≤ (E |zt|p)1/p [Pr (|zt| > DT )]1/q . (B.6)

Also, for any finite p ≥ 1 there exists a finite positive constant C2 such that E |zt|p ≤ C2 <

∞, by Lemma A15. Further, by assumption supt Pr (|zt| > DT ) ≤ C0 exp (−C1Ds
T ). Using

this upper bound in (B.6) together with the upper bound on E |zt|p, we have suptE |vt| ≤
C
1/p
2 C

1/q
0 [exp (−C1Ds

T )]1/q. Therefore, using (B.4)-(B.5), Pr{|
∑T

t=1 [vt − E(vt)] | > πζT} ≤
(2/π)C

1/p
2 C

1/q
0 ζ−1T T [exp (−C1Ds

T )]1/q. We need to determine DT such that

(2/π)C
1/p
2 C

1/q
0 ζ−1T T [exp (−C1Ds

T )]1/q ≤ exp{−ζ2T
[
Tσ2z + (1− π)DT ζT

]−1
(1− π)2 /2}. (B.7)

Taking logs, we have ln[(2/π)C
1/p
2 C

1/q
0 ] + ln

(
ζ−1T T

)
− (C1/q)D

s
T ≤ − (1− π)2 ζ2T/{2[Tσ2z +

(1− π)DT ζT ]}, orC1q−1Ds
T ≥ ln[(2/π)C

1/p
2 C

1/q
0 ]+ln

(
ζ−1T T

)
+(1− π)2 ζ2T/ {2 [Tσ2z + (1− π)DT ζT ]}.

Post-multiplying by 2 [Tσ2z + (1− π)DT ζT ] > 0 we have(
2σ2zC1q

−1)TDs
T +

(
2C1q

−1) (1− π)Ds+1
T ζT − 2 (1− π)DT ζT{ln

(
ζ−1T T

)
+ ln[(2/π)C

1/p
2 C

1/q
0 ]}

≥ 2σ2zT ln[(2/π)C
1/p
2 C

1/q
0 ] + 2σ2zT ln

(
ζ−1T T

)
+ (1− π)2 ζ2T . (B.8)

The above expression can now be simplified for values of T →∞, by dropping the constants and
terms that are asymptotically dominated by other terms on the same side of the inequality.2

Since ζT = 	
(
T λ
)
, for some 0 < λ ≤ (s + 1)/(s + 2), and considering values of DT such

that DT = 	
(
Tψ
)
, for some ψ > 0, implies that the third and fourth term on the LHS of

(B.8), which have the orders 	
[
ln(T )T λ+ψ

]
and 	

(
T λ+ψ

)
, respectively, are dominated by the

second term on the LHS of (B.8) which is of order 	
(
T λ+ψ+sψ

)
. Further the first term on

the RHS of (B.8) is dominated by the second term. Note that for ζT = 	
(
T λ
)
, we have

T ln
(
ζ−1T T

)
= 	 [T ln(T )], whilst the order of the first term on the RHS of (B.8) is 	 (T ).

Result (B.7) follows if we show that there exists DT such that(
C1q

−1) [2σ2zTDs
T + 2 (1− π)Ds+1

T ζT
]
≥ 2σ2zT ln

(
ζ−1T T

)
+ (1− π)2 ζ2T . (B.9)

Set (C1q
−1)Ds+1

T = (1− π) ζT/2, or DT =
(
C−11 q (1− π) ζT/2

)1/(s+1)
, and note that (B.9)

can be written as 2σ2z (C1q
−1)T

(
C−11 q (1− π) ζT/2

)s/(s+1)
+ (1− π)2 ζ2T ≥ 2σ2zT ln

(
ζ−1T T

)
+

(1− π)2 ζ2T . Hence, the required condition is met if limT→∞[(C1q
−1)
(
C−11 q (1− π) ζT/2

)s/(s+1)−
ln
(
ζ−1T T

)
] ≥ 0. This condition is clearly satisfied noting that for values of ζT = 	

(
T λ
)
, q > 0,

C1 > 0 and 0 < π < 1,(
C1q

−1) (C−11 q (1− π) ζT/2
)s/(s+1) − ln

(
ζ−1T T

)
= 	(T

λs
1+s )−	 [ln (T )] ,

2A term A is said to be asymptotically dominant compared to a term B if both tend to infinity and A/B →∞.
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since s > 0 and λ > 0, the first term on the RHS, which is positive, dominates the sec-

ond term. Finally, we require that DT ζT = o(T ), since then the denominator of the frac-

tion inside the exponential on the RHS of (B.7) is dominated by T which takes us back

to the Exponential inequality with bounded random variables and proves (B.1). Consider

T−1DT ζT = [C−11 q (1− π) /2]1/(s+1)T−1ζ
(2+s)/(1+s)
T , and since ζT = 	(T λ) then DT ζT = o(T ),

as long as λ < (s+ 1)/(s+ 2), as required.

If λ > (s + 1)/(s + 2), it follows that DT ζT dominates T in the denominator of the frac-

tion inside the exponential on the RHS of (B.7). So the bound takes the form exp[−(1 −
π)ζ2T/ (C4DT ζT )], for some finite positive constant C4. Noting that DT = 	(ζ

1/(s+1)
T ), gives a

bound of the form exp[−C3ζs/(s+1)T ] proving (B.2).

Lemma A4 Let xt and ut be sequences of random variables and suppose that there exist

C0, C1 > 0, and s > 0 such that supt Pr (|xt| > α) ≤ C0 exp (−C1αs) and supt Pr (|ut| > α) ≤
C0 exp (−C1αs), for all α > 0. Let F (1)t−1 = σ({us}t−1s=1 , {xs}

t−1
s=1) and F

(2)
t = σ({us}t−1s=1 , {xs}

t
s=1).

Then, assume either that (i) E(ut|F (2)t ) = 0 or (ii) E(xtut−µt|F (1)t−1) = 0, where µt = E(xtut).

Let ζT = 	
(
T λ
)
, for some λ such that 0 < λ ≤ (s/2 + 1)/(s/2 + 2). Then, for any π in the

range 0 < π < 1 we have

Pr(|
∑T

t=1 (xtut − µt) | > ζT ) ≤ exp[−(1− π)2ζ2T/(2Tσ
2
(T ))], (B.10)

where σ2(T ) = T−1
∑T

t=1 σ
2
t and σ

2
t = E[(xtut − µt)2 |F (1)t−1]. If λ > (s/2 + 1)/(s/2 + 2), then for

some finite positive constant C2,

Pr(|
∑T

t=1 (xtut − µt) | > ζT ) ≤ exp[−C2ζs/(s+2)T ]. (B.11)

Proof. Let F̃t−1 = σ({xsus}t−1s=1) and note that under (i), E(xtut|F̃t−1) = E[E(ut|F (2)t )xt|F̃t−1] =

0. Therefore, xtut is a martingale difference process. Under (ii) we simply note that xtut − µt
is a martingale difference process by assumption. Next, for any α > 0 we have (using (B.60)

with C0 set equal to α and C1 set equal to
√
α)

Pr [|xtut| > α] ≤ Pr
[
|xt| > α1/2

]
+ Pr

[
|ut| > α1/2

]
. (B.12)

But, under the assumptions of the lemma, supt Pr
[
|xt| > α1/2

]
≤ C0e

−C1αs/2 , and

supt Pr
[
|ut| > α1/2

]
≤ C0e

−C1αs/2 . Hence supt Pr [|xtut| > α] ≤ 2C0e
−C1αs/2 . Therefore, the

process xtut satisfies the conditions of Lemma A3 and the results of the lemma apply.

Lemma A5 Let x = (x1, x2, ..., xT )′ and q·t = (q1,t, q2,t, ..., qlT ,t)
′ be sequences of random vari-

ables and suppose that there exist finite positive constants C0 and C1, and s > 0 such that

supt Pr (|xt| > α) ≤ C0 exp (−C1αs) and supi,t Pr (|qi,t| > α) ≤ C0 exp (−C1αs), for all a > 0.

Consider the linear projection xt =
∑lT

j=1βjqjt + ux,t, and assume that only a finite number of

slope coeffi cients β′s are nonzero and bounded, and the remaining β’s are zero. Then, there

exist finite positive constants C2 and C3, such that supt Pr (|ux,t| > α) ≤ C2 exp (−C3αs).
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Proof. We assume without any loss of generality that the |βi| < C0 for i = 1, 2, ...,M ,

M is a finite positive integer and βi = 0 for i = M + 1,M + 2, ..., lT . Note that for some

0 < π < 1, supt Pr (|ux,t| > α) ≤ supt Pr(|xt −
∑M

j=1βjqjt| > α) ≤ supt Pr (|xt| > (1− π)α) +

supt Pr(|
∑M

j=1βjqjt| > πα) ≤ supt Pr (|xt| > (1− π)α) + supt
∑M

j=1 Pr (|βjqjt| > πα/M), and

since |βj| > 0, then supt Pr (|ux,t| > α) ≤ supt Pr (|xt| > (1− π)α)+M supj,t Pr[|qjt| > πα/(M |βj|)].
But supj,t Pr[|qjt| > πα/(M |βj|)] ≤ supj,t Pr[|qjt| > πα/(Mβmax)] ≤ C0 exp{−C1[πα/(Mβmax)]

s},
and, for fixed M , the probability bound condition is clearly met.

Lemma A6 Let xit, i = 1, 2, ..., n, t = 1, 2, ..., T , and ηt be processes that satisfy exponen-

tial tail probability bounds of the form (9) and (10), with tail exponents sx and sη, where

s = min(sx, sη) > 0. Further, let xitηt, i = 1, 2, ..., n, be martingale difference processes.

Let q·t = (q1,t, q2,t, ..., qlT ,t)
′ contain a constant and a subset of xnt = (x1t, x2t, ..., xnt)

′. Let

Σqq = T−1
∑T

t=1E (q·tq
′
·t) and Σ̂qq = Q′Q/T be both invertible, where Q = (q1·, q2·, ..., qlT ·)

and qi· = (qi1, qi2, ..., qiT )′, for i = 1, 2, ..., lT . Suppose that Assumption 5 holds for xit and

q·t, i = 1, 2, ..., n, and for ηt and q·t, and denote the corresponding projection residuals de-

fined by (11) as uxi,t = xit − γ ′qxi,Tq·t and uη,t = ηt − γ ′qη,Tq·t, respectively. Let ûxi =

(ûxi,1, ûxi,2, ..., ûxi,T )′ = Mqxi, xi = (xi1, xi2, ..., xiT )′, ûη = (ûη,1, ûη,2, ..., ûη,T )′ = Mqη, η =

(η1, η2, ..., ηT )′, Mq = IT −Q (Q′Q)−1 Q, Ft = Fηt ∪ Fxt , µxiη,t = E (uxi,tuη,t |Ft−1 ), ω2xiη,1,T =
1
T

∑T
t=1E

[
(xitηt − E (xitηt |Ft−1 ))2

]
, and ω2xiη,T = 1

T

∑T
t=1E

[
(uxi,tuη,t − µxiη,t)

2]. Let ζT =

	(T λ). Then, for any π in the range 0 < π < 1, we have,

Pr[|
∑T

t=1xitηt − E (xitηt |Ft−1 ) | > ζT ] ≤ exp[− (1− π)2 ζ2T/(2Tω
2
xiη,1,T

)], (B.13)

if 0 < λ ≤ (s/2 + 1)/(s/2 + 2). Further, if λ > (s/2 + 1)/(s/2 + 2), we have,

Pr[|
∑T

t=1xitηt − E (xitηt |Ft−1 ) | > ζT ] ≤ exp[−C0ζs/(s+2)T ], (B.14)

for some finite positive constant C0. If it is further assumed that lT = 	
(
T d
)
, such that

0 ≤ d < 1/3, then, if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2),

Pr[|
∑T

t=1 (ûxi,tûη,t − µxiη,t) | > ζT ] ≤ C0 exp[− (1− π)2 ζ2T/(2Tω
2
xiη,T

)]+exp
[
−C1TC2

]
. (B.15)

for some finite positive constants C0, C1 and C2, and, if λ > (s/2 + 1)/(s/2 + 2) we have

Pr[|
∑T

t=1 (ûxi,tûη,t − µxiη,t) | > ζT ] ≤ C0 exp[−C3ζs/(s+2)T ] + exp
[
−C1TC2

]
, (B.16)

for some finite positive constants C0, C1, C2 and C3.

Proof. Note that all the results in the proofs below hold both for sequences and for triangular
arrays of random variables. If q·t contains xit, all results follow trivially, so, without loss of

generality, we assume that, if this is the case, the relevant column of Q is removed. (B.13) and

(B.14) follow immediately given our assumptions and Lemma A4. We proceed to prove the rest
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of the lemma. Let uxi = (uxi,1, uxi,2, ..., uxi,T )′ and uη = (uη,1, uη,2, ..., uη,T )′. We first note that∑T
t=1 (ûxi,tûη,t − µxiη,t) = û′xiûη −

∑T
t=1 µxiη,t = u′xiMquη−

∑T
t=1 µxiη,t, and∑T

t=1 (ûxi,tûη,t − µxiη,t) =
∑T

t=1 (uxi,tuη,t − µxiη,t)−
(
T−1u′xiQ

)
Σ̂−1qq (Q′uη) , (B.17)

where Σ̂qq = T−1 (Q′Q). The second term of the above expression can now be decomposed as(
T−1u′xiQ

)
Σ̂−1qq (Q′uη) =

(
T−1u′xiQ

)
(Σ̂−1qq −Σ−1qq ) (Q′uη) +

(
T−1u′xiQ

)
Σ−1qq (Q′uη) . (B.18)

By (B.59) and for any 0 < π1, π2, π3 < 1 such that
∑3

i=1πi = 1, we have Pr[|
∑T

t=1 (ûxi,tûη,t − µxiη,t) | >
ζT ] ≤ Pr[|

∑T
t=1 (uxi,tuη,t − µxiη,t) | > π1ζT ] +

Pr[|
(
T−1u′xiQ

)
(Σ̂−1qq −Σ−1qq ) (Q′uη) | > π2ζT ] + Pr[|

(
T−1u′xiQ

)
Σ−1qq (Q′uη) | > π3ζT ]. Also ap-

plying (B.60) to the last two terms of the above we obtain

Pr[|
(
T−1u′xiQ

)
(Σ̂−1qq −Σ−1qq ) (Q′uη) | > π2ζT ] ≤ Pr (||Σ̂−1qq −Σ−1qq ||F

∥∥T−1u′xiQ∥∥F ‖Q′uη‖F > π2ζT ) ≤
Pr(||Σ̂−1qq −Σ−1qq ||F > ζT/δT )+Pr (T−1

∥∥u′xiQ∥∥F ‖Q′uη‖F > π2δT ) ≤ Pr (||Σ̂−1qq −Σ−1qq ||F > ζT/δT )+

Pr [
∥∥u′xiQ∥∥F > (π2δTT )1/2] + Pr [‖Q′uη‖F > (π2δTT )1/2] , where δT > 0 is a deterministic se-

quence. In what follows, we set δT = 	 (ζαT ), for some α > 0. Similarly,

Pr [|
(
T−1u′xiQ

)
Σ−1qq (Q′uη) | > π3ζT ] ≤ Pr (

∥∥Σ−1qq ∥∥F ∥∥T−1u′xiQ∥∥F ‖Q′uη‖F > π3ζT ) ≤
Pr [

∥∥u′xiQ∥∥F ‖Q′uη‖F > π3ζTT/
∥∥Σ−1qq ∥∥F ] ≤ Pr (

∥∥u′xiQ∥∥F > π
1/2
3 ζ

1/2
T T 1/2

∥∥Σ−1qq ∥∥−1/2F
) +

Pr (‖Q′uη‖F > π
1/2
3 ζ

1/2
T T 1/2

∥∥Σ−1qq ∥∥−1/2F
) . Overall

Pr(|
∑T

t=1 (ûx,tûη,t − µxη,t) | > ζT ) ≤ Pr(|
∑T

t=1 (ux,tuη,t − µxη,t) | > π1ζT )

+ Pr
(∥∥∥Σ̂−1qq −Σ−1qq

∥∥∥
F
> ζT/δT

)
+ Pr

(
‖Q′uη‖F > (π2δTT )1/2

)
+ Pr

(
‖u′xQ‖F > (π2δTT )1/2

)
+ Pr(‖u′xQ‖F > π

1/2
3 ζ

1/2
T T 1/2

∥∥Σ−1qq ∥∥−1/2F
) + Pr(‖Q′uη‖F > π

1/2
3 ζ

1/2
T T 1/2

∥∥Σ−1qq ∥∥−1/2F
). (B.19)

First, since ux,tuη,t−µxη,t is a martingale difference process with respect to σ({ηs}t−1s=1 , {xs}
t−1
s=1 , {qs}

t−1
s=1),

by Lemma A4, we have, for any π in the range 0 < π < 1,

Pr[|
∑T

t=1 (uxi,tuη,t − µxiη,t) | > π1ζT ] ≤ exp[−(1− π)2ζ2T/(2Tω
2
xη,T )], (B.20)

if 0 < λ ≤ (s/2 + 1)/(s/2 + 2), and

Pr[|
∑T

t=1 (uxi,tuη,t − µxiη,t) | > π1ζT ] ≤ exp[−C0ζs/(s+1)T ], (B.21)

if λ > (s/2 + 1)/(s/2 + 2), for some finite positive constant C0. We now show that the last

five terms on the RHS of (B.19) are of order exp
[
−C1TC2

]
, for some finite positive constants

C1 and C2. We will make use of Lemma A4 since by assumption {qituη,t} and {qituxi,t} are
martingale difference sequences. We note that some of the bounds of the last five terms exceed,

in order, T 1/2. Since we do not know the value of s, we need to consider the possibility that

either (B.10) or (B.11) of Lemma A4, apply. We start with (B.10). Then, for some finite

positive constant C0, we have3

supi Pr[‖q′iuη‖ > (π2δTT )1/2] ≤ exp (−C0δT ) . (B.22)

3The required probability bound on uxt follows from the probability bound assumptions on xt and on qit,
for i = 1, 2, ..., lT , even if lT →∞. See also Lemma A5.
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Also, using ‖Q′uη‖2F =
∑lT

j=1(
∑T

t=1 qjtut)
2 and (B.59), Pr[‖Q′uη‖F > (π2δTT )1/2] = Pr(‖Q′uη‖2F >

π2δTT ) ≤
∑lT

j=1 Pr[(
∑T

t=1 qjtuη,t)
2 > π2δTT/lT ] =

∑lT
j=1 Pr[|

∑T
t=1 qjtuη,t| > (π2δTT/lT )1/2],

which upon using (B.22) yields (for some finite positive constant C0)

Pr[‖Q′uη‖F > (π2δTT )1/2] ≤ lT exp (−C0δT/lT ) , Pr[‖Q′ux‖ > (π2δTT )1/2] ≤ lT exp (−C0δT/lT ) .

(B.23)

Similarly,

Pr(‖Q′uη‖F > π
1/2
3 ζ

1/2
T T 1/2

∥∥Σ−1qq ∥∥−1/2F
) ≤ lT exp[−C0ζT/(

∥∥Σ−1qq ∥∥F lT )], (B.24)

Pr(‖Q′ux‖ > π
1/2
3 ζ

1/2
T T 1/2

∥∥Σ−1qq ∥∥−1/2F
) ≤ lT exp[−C0ζT/(

∥∥Σ−1qq ∥∥F lT )].

Turning to the second term of (B.19), since for all i and j, {qitqjt − E(qitqjt)} is a martingale
difference process and qit satisfy the required probability bound then

supij Pr{|T−1
∑T

t=1 [qitqjt − E(qitqjt)] | > π2ζT/δT} ≤ exp(−C0Tζ2T/δ2T ). (B.25)

Therefore, by Lemma A16, for some finite positive constant C0, we have

Pr(‖Σ̂−1qq −Σ−1qq ‖ >ζT/δT ) ≤ l2T exp[−C0Tζ2T δ−2T l−2T
∥∥Σ−1qq ∥∥−2F (

∥∥Σ−1qq ∥∥F + δ−1T ζT )−2]

+l2T exp(−C0T
∥∥Σ−1qq ∥∥−2F l−2T ). (B.26)

Further by Lemma A14,
∥∥Σ−1qq ∥∥F = 	

(
l
1/2
T

)
, and Tζ2T δ

−2
T l−2T

∥∥Σ−1qq ∥∥−2F (
∥∥Σ−1qq ∥∥F + δ−1T ζT )−2 =

T l−2T
∥∥Σ−1qq ∥∥−2F (δT ζ

−1
T

∥∥Σ−1qq ∥∥F + 1)−2. Consider now the different terms in the above expression

and let P11 = δT/lT , P12 = ζT/(
∥∥Σ−1qq ∥∥F lT ), P13 = T l−2T

∥∥Σ−1qq ∥∥−2F [δT ζ
−1
T

∥∥Σ−1qq ∥∥F + 1]−2, and

P14 = T
∥∥Σ−1qq ∥∥−2F l−2T . Under δT = 	 (ζαT ), lT = 	(T d), and ζT = 	(T λ), we have P11 = δT/lT =

	
(
Tα−d

)
,

P12 = ζT/(
∥∥Σ−1qq ∥∥F lT ) = 	

(
T λ−3d/2

)
, (B.27)

P13 = T l−2T
∥∥Σ−1qq ∥∥−2F [δT ζ

−1
T

∥∥Σ−1qq ∥∥F + 1]−2 = 	
(
Tmax{1+2λ−4d−2α,1+λ−7d/2−α,1−3d}

)
, and P14 =

T
∥∥Σ−1qq ∥∥−2F l−2T = 	

(
T 1−3d

)
. Suppose that d < 1/3, and by (B.27) note that λ ≥ 3d/2. Then,

setting α = 1/3, ensures that all the above four terms tend to infinity polynomially with

T . Therefore, it also follows that they can be represented as terms of order exp
[
−C1TC2

]
,

for some finite positive constants C1 and C2, and (B.15) follows. The same analysis can be
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repeated under (B.11). In this case, (B.23), (B.24), (B.25) and (B.26) are replaced by

Pr
(
‖Q′uη‖F > (π2δTT )1/2

)
≤ lT exp

(
−C0δ

s/2(s+2)
T T s/2(s+2)

l
s/2(s+2)
T

)
= lT exp

[
−C0

(
δTT

lT

)s/2(s+2)]
,

Pr
(
‖Q′ux‖ > (π2δTT )1/2

)
≤ lT exp

(
−C0δ

s/2(s+2)
T T s/2(s+2)

l
s/2(s+2)
T

)
= lT exp

[
−C0

(
δTT

lT

)s/2(s+2)]
,

Pr

(
‖Q′uη‖F >

π
1/2
3 ζ

1/2
T T 1/2∥∥Σ−1qq ∥∥1/2F

)
≤ lT exp

(
−C0ζs/2(s+2)T T s/2(s+2)∥∥Σ−1qq ∥∥s/2(s+2)F

l
s/2(s+2)
T

)
= lT exp

−C0( ζTT∥∥Σ−1qq ∥∥F lT
)s/2(s+2)


Pr

(
‖Q′ux‖ >

π
1/2
3 ζ

1/2
T T 1/2∥∥Σ−1qq ∥∥1/2F

)
≤ lT exp

(
−C0ζs/2(s+2)T T s/2(s+2)∥∥Σ−1qq ∥∥s/2(s+2)F

l
s/2(s+2)
T

)
= lT exp

−C0( ζTT∥∥Σ−1qq ∥∥F lT
)s/2(s+2)

 ,
supij Pr{|T−1

∑T
t=1 [qitqjt − E(qitqjt)] | > π2ζT/δT} ≤ exp[−C0T s/(s+2)ζs/(s+2)T δ

−s/(s+2)
T ], and, us-

ing Lemma A17, Pr[||(Σ̂−1qq −Σ−1qq || > π2ζT/δT ] ≤
l2T exp[−C0T s/(s+2)ζs/(s+2)T δ

−s/(s+2)
T l

−s/(s+2)
T

∥∥Σ−1qq ∥∥−s/(s+2)F
(
∥∥Σ−1qq ∥∥F + δ−1T ζT )−s/(s+2)]+

l2T exp[−C0T s/(s+2)
∥∥Σ−1qq ∥∥−s/(s+2)F

l
−s/(s+2)
T ] = l2T exp

(
−C0{TζT/[δT lT

∥∥Σ−1qq ∥∥F (
∥∥Σ−1qq ∥∥F + δ−1T ζT )]}s/(s+2)

)
+

l2T exp[−C0(T
∥∥Σ−1qq ∥∥−1F l−1T )s/(s+2)], respectively. Once again, we need to derive conditions that

imply that P21 = δTT/lT , P22 = ζTT
∥∥Σ−1qq ∥∥−1F l−1T , P23 = TζT [δT lT

∥∥Σ−1qq ∥∥F (
∥∥Σ−1qq ∥∥F +δ−1T ζT )]−1

and P24 = T
∥∥Σ−1qq ∥∥−1F l−1T are terms that tend to infinity polynomially with T . If that is the case

then, as before, the relevant terms are of order exp
[
−C1TC2

]
, for some finite positive constants

C1 and C2, and (B.16) follows, completing the proof of the lemma. P22 dominates P23 so we focus

on P21, P23 and P24. We have δTT/lT = 	
(
T 1+α−d/2

)
, TζT [δT lT

∥∥Σ−1qq ∥∥F (
∥∥Σ−1qq ∥∥F +δ−1T ζT )]−1 =

	
[
Tmax(1+λ−α−2d,1−3d/2)

]
, and T

∥∥Σ−1qq ∥∥−1F l−1T = 	
(
T 1−3d/2

)
. It immediately follows that under

the conditions set when using (B.10), which were that α = 1/3, d < 1/3 and λ > 3d/2, and as

long as s > 0, P21 to P24 tend to infinity polynomially with T , proving the lemma.4

Lemma A7 Let xit, i = 1, 2, ..., n, be processes that satisfy exponential tail probability bounds of

the form (9), with positive tail exponent s. Let q·t = (q1,t, q2,t, ..., qlT ,t)
′ contain a constant and a

subset of xnt = (x1t, x2t, ..., xnt)
′. Suppose that Assumption 5 holds for xit and q·t, i = 1, 2, ..., n,

and denote the corresponding projection residuals defined by (11) as uxit = xit − γ ′qxi,Tq·t. Let
Σqq = T−1

∑T
t=1E (q·tq

′
·t) and Σ̂qq = Q′Q/T be both invertible, where Q = (q1·, q2·, ..., qlT ·) and

qi· = (qi1, qi2, .., qiT )′, for i = 1, 2, ..., lT . Let ûxi = (ûxi,1, ûxi,2, ..., ûxi,T )′ = Mqxi, where xi =

(xi1, xi2, ..., xiT )′ andMq = IT−Q (Q′Q)−1 Q. Moreover, suppose that E
(
u2xi,t − σ

2
xit
|Ft−1

)
= 0,

4It is important to highlight one particular feature of the above proof. In (B.23), qitux,t needs to be a
martingale difference process. Note that if qit is a martingale difference process distributed independently of
ux,t, then qitux,t is also a martingale difference process irrespective of the nature of ux,t. This implies that one
may not need to impose a martingale difference assumption on ux,t if xit is a noise variable. Unfortunately,
a leading case for which this lemma is used is one where qit = 1. It is then clear that one needs to impose
a martingale difference assumption on ux,t, to deal with covariates that cannot be represented as martingale
difference processes. We relax this assumption in Section C of the online theory supplement where we allow
noise variables to be mixing processes.
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where Ft = Fxt and σ2xit = E(u2xi,t). Let ζT = 	(T λ). Then, if 0 < λ ≤ (s/2 + 1)/(s/2 + 2), for

any π in the range 0 < π < 1, and some finite positive constant C0, we have,

Pr
[∣∣∣∑T

t=1

(
x2it − σ2xit

)∣∣∣ > ζT

]
≤ C0 exp

[
− (1− π)2 ζ2TT

−1ω−2i,1,T/2
]
. (B.28)

Otherwise, if λ > (s/2 + 1)/(s/2 + 2), for some finite positive constant C0, we have

Pr
[∣∣∣∑T

t=1

(
x2it − σ2xit

)∣∣∣ > ζT

]
≤ exp

[
−C0ζs/(s+2)T

]
. (B.29)

If it is further assumed that lT = 	
(
T d
)
, such that 0 ≤ d < 1/3, then, if 3d/2 < λ ≤

(s/2 + 1)/(s/2 + 2),

Pr
[∣∣∣∑T

t=1

(
û2xi,t − σ

2
xit

)∣∣∣ > ζT

]
≤ C0 exp

[
− (1− π)2 ζ2TT

−1ω−2i,T/2
]

+ exp
[
−C1TC2

]
, (B.30)

for some finite positive constants C0, C1 and C2, and, if λ > (s/2 + 1)/(s/2 + 2),

Pr
[∣∣∣∑T

t=1

(
û2xi,t − σ

2
xit

)∣∣∣ > ζT

]
≤ C0 exp

[
−C3ζs/(s+2)T

]
+ exp

[
−C1TC2

]
, (B.31)

for some finite positive constants C0, C1, C2 and C3, where ω2i,1,T = T−1
∑T

t=1E
[(
x2it − σ2xit

)2]
and ω2i,T = T−1

∑T
t=1E

[(
u2xi,t − σ

2
xit

)2]
.

Proof. If q·t contains xit, all results follow trivially, so, without loss of generality, we assume
that, if this is the case, the relevant column of Q is removed. (B.28) and (B.29) follow sim-

ilarly to (B.13) and (B.14). For (B.30) and (B.31), we first note that |
∑T

t=1

(
û2xi,t − σ

2
xit

)
| ≤

|
∑T

t=1

(
u2xi,t − σ

2
xit

)
| + |

(
T−1u′xiQ

)
(T−1Q′Q)

−1
(Q′uxi) |. Since

{
u2xi,t − σ

2
xit

}
is a martingale

difference process and for α > 0 and s > 0, supt Pr
(∣∣u2xi,t∣∣ > α2

)
= supt Pr (|uxi,t| > α) ≤

C0 exp (−C1αs), by Lemma A5, then the conditions of Lemma A3 are met and we have
Pr[|

∑T
t=1

(
u2xi,t − σ

2
xit

)
| > ζT ] ≤ exp[− (1− π)2 ζ2TT

−1ω−2i,T/2], if 0 < λ ≤ (s/2 + 1)/(s/2 + 2),

and Pr[|
∑T

t=1

(
u2xi,t − σ

2
xit

)
| > ζT ] ≤ exp[−C0ζs/(s+2)T ], if λ > (s/2 + 1)/(s/2 + 2). Then, using

the same line of reasoning as in the proof of Lemma A6 we establish the desired result.

Lemma A8 Let yt, for t = 1, 2, ..., T , be given by the data generating process (6) and suppose

that ut and xnt = (x1t, x2t, ..., xnt)
′ satisfy Assumptions 2-4, with s = min(sx, su) > 0. Let q·t =

(q1,t, q2,t, ..., qlT ,t)
′ contain a constant and a subset of xnt. Assume that Σqq = 1

T

∑T
t=1E (q·tq

′
·t)

and Σ̂qq = Q′Q/T are both invertible, where Q = (q1·, q2·, ..., qlT ·) and qi· = (qi1, qi2, ..., qiT )′,

for i = 1, 2, ..., lT . Moreover, suppose that Assumption 5 holds for xt and q·t, where xt is

a generic element of {x1t, x2t, ..., xnt} that does not belong to q·t. Denote the corresponding
projection residuals defined by (11) as ux,t = xt− γ ′qx,Tq·t, and the projection residuals of yt on
(q′·t, xt)

′ as et = yt − γ ′yqx,T (q′·t, xt)
′. Define x = (x1, x2, ..., xT )′, and Mq = IT −Q(Q′Q)−1Q′,

and let aT = 	
(
T λ−1

)
. Then, for any π in the range 0 < π < 1, and as long as lT = 	

(
T d
)
,

such that 0 ≤ d < 1/3, we have, that, if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2),

Pr
(∣∣∣T−1σ−2x,(T )x′Mqx− 1

∣∣∣ > aT

)
≤ exp

[
−σ4x,(T ) (1− π)2 Ta2Tω

−2
x,(T )/2

]
+ exp

[
−C0TC1

]
, and

(B.32)
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Pr[|(T−1σ−2x,(T )x
′Mqx)−1/2 − 1| > aT ] ≤ exp[−σ4x,(T ) (1− π)2 Ta2Tω

−2
x,(T )/2] + exp

[
−C0TC1

]
,

(B.33)

where

σ2x,(T ) = T−1
∑T

t=1E
(
u2x,t
)
, ω2x,(T ) = T−1

∑T
t=1E

[(
u2x,t − σ2xt

)2]
. (B.34)

If λ > (s/2 + 1)/(s/2 + 2),

Pr(|T−1σ−2x,(T )x
′Mqx− 1| > aT ) ≤ exp[−C0 (TaT )s/(s+2)] + exp

[
−C1TC2

]
, (B.35)

and

Pr[|(T−1σ−2x,(T )x
′Mqx)−1/2 − 1| > aT ] ≤ exp[−C0 (TaT )s/(s+2)] + exp

[
−C1TC2

]
. (B.36)

Also, if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2),

Pr(|T−1σ−2u,(T )e
′e− 1| > aT ) ≤ exp[−σ4u,(T ) (1− π)2 Ta2Tω

−2
u,(T )/2] + exp

[
−C0TC1

]
, (B.37)

and

Pr[|(σ−2u,(T )e
′e/T )−1/2 − 1| > aT ] ≤ exp[−σ4u,(T ) (1− π)2 Ta2Tω

−2
u,T/2] + exp

[
−C0TC1

]
, (B.38)

where e = (e1, e2, ..., eT )′,

σ2u,(T ) = T−1
∑T

t=1σ
2
t , and ω

2
u,T = T−1

∑T
t=1E[

(
u2t − σ2t

)2
]. (B.39)

If λ > (s/2 + 1)/(s/2 + 2),

Pr(|T−1σ−2u,(T )e
′e− 1| > aT ) ≤ exp[−C0 (TaT )s/(s+2)] + exp

[
−C1TC2

]
, and (B.40)

Pr[|(σ−2u,(T )e
′e/T )−1/2 − 1| > aT ] ≤ exp[−C0 (TaT )s/(s+2)] + exp

[
−C1TC2

]
, (B.41)

Proof. First note that T−1x′Mqx − σ2x,(T ) = T−1
∑T

t=1

(
û2x,t − σ2xt

)
, where ûx,t, for t =

1, 2, ..., T ,. is the t-th element of ûx = Mqx. Now applying Lemma A7 to
∑T

t=1

(
û2x,t − σ2xt

)
with

ζT = TaT we have Pr(|
∑T

t=1

(
û2x,t − σ2xt

)
| > ζT ) ≤ exp[− (1− π)2 ζ2Tω

−2
x,(T )/(2T )]+exp

[
−C0TC1

]
,

if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2), and Pr(|
∑T

t=1

(
û2x,t − σ2xt

)
| > ζT ) ≤ exp[−C0ζs/(s+2)T ] +

exp
[
−C1TC2

]
, if λ > (s/2 + 1)/(s/2 + 2), where ω2x,(T ) is defined by (B.34). Also

Pr[|T−1σ−2x,(T )
∑T

t=1

(
û2x,t − σ2xt

)
| > T−1σ−2x,(T )ζT ] ≤ exp[− (1− π)2 ζ2Tω

−2
x,(T )T

−1/2]+exp
[
−C0TC1

]
,

if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2), and Pr[|T−1σ−2x,(T )
∑T

t=1

(
û2x,t − σ2xt

)
| > ζTT

−1σ−2x,(T )] ≤
exp[−C0ζs/(s+2)T ]+exp

[
−C1TC2

]
, if λ > (s/2+1)/(s/2+2). Therefore, setting aT = ζT/Tσ

2
x,(T ) =

	
(
T λ−1

)
, we have

Pr(|σ−2x,(T )T
−1x′Mqx− 1| > aT ) ≤ exp[−σ4x,(T ) (1− π)2 Ta2Tω

−2
x,(T )/2] + exp

[
−C0TC1

]
, (B.42)

if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2), and

Pr(|σ−2x,(T )T
−1x′Mqx− 1| > aT ) ≤ exp[−C0ζs/(s+2)T ] + exp

[
−C1TC2

]
,
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if λ > (s/2 + 1)/(s/2 + 2), as required. Now setting ωT = σ−2x,(T )T
−1x′Mqx, and using Lemma

A13, we have Pr[|(σ−2x,(T )T−1x′Mqx)−1/2−1| > aT ] ≤ Pr(|σ−2x,(T )T−1x′Mqx−1| > aT ), and hence

Pr[|(σ−2u,(T )T
−1x′Mqx)−1/2−1| > aT ] ≤ exp[−σ4x,(T ) (1− π)2 Ta2Tω

−2
x,(T )]+exp

[
−C0TC1

]
, (B.43)

if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2), and

Pr[|(σ−2u,(T )T
−1x′Mqx)−1/2 − 1| > aT ] ≤ exp[−C0ζs/(s+2)T ] + exp

[
−C1TC2

]
,

if λ > (s/2 + 1)/(s/2 + 2). Furthermore

Pr[|(σ−2x,(T )T
−1x′Mqx)1/2 − 1| > aT ] = Pr

[
|(σ−2x,(T )T−1x′Mqx)− 1|
(σ−2x,(T )T

−1x′Mqx)1/2 + 1
> aT

]
,

and using Lemma A11 for some finite positive constant C, we have Pr[|(σ−2x,(T )T−1x′Mqx)1/2 −
1| > aT ] ≤ Pr[|σ−2x,(T )T−1x′Mqx−1| > aTC

−1]+Pr[(σ−2x,(T )T
−1x′Mqx)1/2+1 < C−1]. Let C = 1,

and note that for this choice of C, Pr[(σ−2x,(T )T
−1x′Mqx)1/2+1 < C−1] = Pr[(σ−2x,(T )T

−1x′Mqx)1/2 <

0] = 0. Hence Pr[|(σ−2x,(T )T−1x′Mqx)1/2 − 1| > aT ] ≤ Pr[|(σ−2x,(T )T−1x′Mqx) − 1| > aT ], and

using (B.42),

Pr[|(σ−2x,(T )T
−1x′Mqx)1/2 − 1| > aT ] ≤ exp[−σ4x,(T ) (1− π)2 Ta2Tω

−2
x,(T )/2] + exp

[
−C0TC1

]
,

(B.44)

if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2), and

Pr[|(σ−2x,(T )T
−1x′Mqx)1/2 − 1| > aT ] ≤ exp[−C0ζs/(s+2)T ] + exp

[
−C1TC2

]
,

if λ > (s/2 + 1)/(s/2 + 2). Consider now e′e =
∑T

t=1 e
2
t and note that |

∑T
t=1 (e2t − σ2t ) | ≤

|
∑T

t=1 (u2t − σ2t ) |+ | (T−1u′W) (T−1W′W)
−1

(W′u) |, where W = (Q,x). As before, applying

Lemma A7 to
∑T

t=1 (e2t − σ2t ), and following similar lines of reasoning we have

Pr[|
∑T

t=1

(
e2t − σ2t

)
| > ζT ] ≤ exp[− (1− π)2 ζ2TT

−1ω−2u,(T )/2] + exp
[
−C0TC1

]
,

if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2), and

Pr[|
∑T

t=1

(
e2t − σ2t

)
| > ζT ] ≤ exp[−C0ζs/(s+2)T ] + exp

[
−C1TC2

]
,

if λ > (s/2 + 1)/(s/2 + 2), which yield (B.37) and (B.40). Result (B.38) also follows along

similar lines as used above to prove (B.33).

Lemma A9 Let yt, for t = 1, 2, ..., T , be given by the data generating process (6) and suppose

that ut and xnt = (x1t, x2t, ..., xnt)
′ satisfy Assumptions 2-4. Let q·t = (q1,t, q2,t, ..., qlT ,t)

′ contain

a constant and a subset of xnt = (x1t, x2t, ..., xnt)
′, and lT = o(T 1/3). Assume that Σqq =

1
T

∑T
t=1E (q·tq

′
·t) and Σ̂qq = Q′Q/T are both invertible, where Q = (q1·, q2·, ..., qlT ·) and qi· =
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(qi1, qi2, .., qiT )′, for i = 1, 2, ..., lT . Suppose that Assumption 5 holds for xt and q·t, where xt is a

generic element of {x1t, x2t, ..., xnt} that does not belong to q·t. Denote the projection residuals
of yt on (q′·t, xt)

′ as et = yt − γ ′yqx,T (q′·t, xt)
′. Define x = (x1, x2, ..., xT )′, e = (e1, e2, ..., eT )′,

and Mq = IT − Q(Q′Q)−1Q′. Moreover, let E (e′e/T ) = σ2e,(T ) and E (x′Mqx/T ) = σ2x,(T ).

Then

Pr

[∣∣∣∣∣ aT√
(T−1e′e) (T−1x′Mqx)

∣∣∣∣∣ > cp (n, δ)

]
≤ Pr

(∣∣∣∣ aT
σe,(T )σx,(T )

∣∣∣∣ > cp (n, δ)

1 + dT

)
(B.45)

+ exp
[
−C0TC1

]
for any random variable aT , some finite positive constants C0 and C1, and some bounded se-

quence dT > 0, where cp (n, δ) is defined in (15). Similarly,

Pr

[∣∣∣∣∣ aT√
(T−1e′e)

∣∣∣∣∣ > cp (n, δ)

]
≤ Pr

(∣∣∣∣ aTσe,(T )

∣∣∣∣ > cp (n, δ)

1 + dT

)
+ exp

[
−C0TC1

]
(B.46)

Proof. We prove (B.45). (B.46) follows similarly. Define

gT = [σ2e,(T )/(T
−1e′e)]1/2 − 1, hT = [σ2x,(T )/(T

−1x′Mqx)]1/2 − 1.

Using results in Lemma A11, note that for any dT > 0 bounded in T ,

Pr

[∣∣∣∣∣ aT√
(T−1e′e) (T−1x′Mqx)

∣∣∣∣∣ > cp (n, δ) |θ = 0

]
≤ Pr

(∣∣∣∣ aT
σe,(T )σx,(T )

∣∣∣∣ > cp (n, δ)

1 + dT

)
+

Pr (|(1 + gT ) (1 + hT )| > 1 + dT ) .

Since (1 + gT ) (1 + hT ) > 0, then

Pr (|(1 + gT ) (1 + hT )| > 1 + dT ) = Pr [(1 + gT ) (1 + hT ) > 1 + dT ] = Pr (gThT + gT + hT ) > dT ) .

Using (B.33), (B.36), (B.38) and (B.41),

Pr [|hT | > dT ] ≤ exp
[
−C0TC1

]
, Pr [|hT | > c] ≤ exp

[
−C0TC1

]
,

Pr [|gT | > dT ] ≤ exp
[
−C0TC1

]
, Pr [|gT | > dT/c] ≤ exp

[
−C0TC1

]
,

for some finite positive constants C0 and C1. Using the above results, for some finite positive

constants C0 and C1, we have,

Pr

[∣∣∣∣∣ aT√
(T−1e′e) (T−1x′Mqx)

∣∣∣∣∣ > cp (n, δ) |θ = 0

]
≤ Pr

(∣∣∣∣ aT
σe,(T )σx,(T )

∣∣∣∣ > cp (n, δ)

1 + dT

)
+exp

[
−C0TC1

]
,

which establishes the desired result.
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Lemma A10 Let yt, for t = 1, 2, ..., T , be given by the data generating process (6) and suppose

that ut and xnt = (x1t, x2t, ..., xnt)
′ satisfy Assumptions 2-4, with s = min(sx, su) > 0. Let

q·t = (q1,t, q2,t, ..., qlT ,t)
′ contain a constant and a subset of xnt, and let ηt = x′b,tβb + ut,

where xb,t is kb × 1 dimensional vector of signal variables that do not belong to q·t, with the

associated coeffi cients, βb. Assume that Σqq = 1
T

∑T
t=1E (q·tq

′
·t) and Σ̂qq = Q′Q/T are both

invertible, where Q = (q1·, q2·, ..., qlT ·) and qi· = (qi1, qi2, ..., qiT )′, for i = 1, 2, ..., lT . Moreover,

let lT = o(T 1/3) and suppose that Assumption 5 holds for xit and q·t, i = 1, 2, ..., n, where xt
is a generic element of {x1t, x2t, ..., xnt} that does not belong to q·t. Denote the corresponding
projection residuals defined by (11) as ux,t = xt − γ ′qx,Tq·t, and the projection residuals of
yt on (q′·t, xt)

′ as et = yt − γ ′yqx,T (q′·t, xt)
′. Define x = (x1, x2, ..., xT )′, y = (y1, y2, ..., yT )′,

e = (e1, e2, ..., eT )′, Mq = IT − Q(Q′Q)−1Q′, and θT = E (T−1x′MqXb)βb, where Xb is T

×kb matrix of observations on xb,t. Finally, cp (n, δ) is given by (15) with 0 < p < 1 and

f (n, δ) = cnδ, for some c, δ > 0, and there exists κ1 > 0 such that T = 	 (nκ1). Then, for any

π in the range 0 < π < 1, any dT > 0 and bounded in T , and for some finite positive constants

C0 and C1,

Pr [|tx| > cp (n, δ) |θT = 0] ≤ exp

[
− (1− π)2 σ2e,(T )σ

2
x,(T )c

2
p (n, δ)

2 (1 + dT )2 ω2xe,T

]
+ exp

[
−C0TC1

]
, (B.47)

where

tx =
T−1/2x′Mqy√

(T−1e′e) (T−1x′Mqx)
, (B.48)

σ2e,(T ) = E
(
T−1e′e

)
, σ2x,(T ) = E

(
T−1x′Mqx

)
, (B.49)

and

ω2xe,T = T−1
∑T

t=1E
[
(ux,tηt)

2] . (B.50)

Under σ2t = σ2 and/or E
(
u2x,t
)

= σ2xt = σ2x, for all t = 1, 2, ..., T ,

Pr [|tx| > cp (n, δ) |θT = 0] ≤ exp
[
− (1− π)2 c2p (n, δ) (1 + dT )−2 /2

]
+ exp

(
−C0TC1

)
. (B.51)

In the case where θT 6= 0, let θT = 	
(
T−ϑ

)
, for some 0 ≤ ϑ < 1/2, where cp (n, δ) =

O
(
T 1/2−ϑ−C8

)
, for some positive C8. Then, for some bounded positive sequence dT , and for

some C2, C3 > 0, we have

Pr [|tx| > cp (n, δ) |θT 6= 0] > 1− exp
(
−C2TC3

)
. (B.52)

Proof. The DGP, given by (7), can be written as y = aτ T + Xkβ+u = aτ T + Xaβa +

Xbβb + u, where Xa is a subset of Q. Let Qx = (Q,x), Mq = IT − Q(Q′Q)−1Q′, Mqx =

IT −Qx(Q
′
xQx)

−1Q′x. Then, MqXa = 0, and let MqXb = (xbq,1,xbq,2, ...,xbq,T )′. Then,

tx =
T−1/2x′Mqy√

(T−1e′e/) (T−1x′Mqx)
=

T−1/2x′MqXbβb√
(T−1e′e) (T−1x′Mqx)

+
T−1/2x′Mqu√

(T−1e′e) (T−1x′Mqx)
. (B.53)
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Let θT = E (T−1x′MqXb)βb, η = Xbβb + u, η = (η1, η2, ..., ηT )′ , and write (B.53) as

tx =

√
TθT√

(T−1e′e/) (T−1x′Mqx)
+

√
T (T−1x′Mqη − θT )√

(T−1e′e/) (T−1x′Mqx)
. (B.54)

First, consider the case where θT = 0 and note that in this case

tx = (T−1x′Mqx)
−1/2 (

T−1/2x′Mqη
)

(T−1e′e)
−1/2. Now by Lemma A9, we have

Pr [|tx| > cp (n, δ) |θT = 0] = Pr

[∣∣∣∣∣(T−1x′Mqx)
−1/2 (

T−1/2x′Mqη
)

(T−1e′e)1/2

∣∣∣∣∣ > cp (n, δ) |θT = 0

]

≤Pr

(∣∣∣∣T−1/2x′Mqη

σe,(T )σx,(T )

∣∣∣∣ > cp (n, δ)

1 + dT

)
+ exp

(
−C0TC1

)
.

where σ2e,(T ) and σ
2
x,(T ) are defined by (B.49). Hence, noting that cp (n, δ) = o(TC0), for all

C0 > 0, under Assumption 3, and by Lemma A6, we have

Pr [|tx| > cp (n, δ) |θT = 0] ≤ exp

[
− (1− π)2 σ2e,(T )σ

2
x,(T )c

2
p (n, δ)

2 (1 + dT )2 ω2xe,T

]
+ exp

(
−C0TC1

)
,

where ω2xe,T = T−1
∑T

t=1E[(ux,tηt)
2] = T−1

∑T
t=1E[u2x,t

(
x′b,tβb + ut

)2
], and ux,t, being the er-

ror in the regression of xt on Q, is defined by (11). Since by assumption ut are distributed

independently of ux,t and xb,t, then

ω2xe,T = T−1
∑T

t=1E[u2x,t(x
′
bq,tβb)

2] + T−1
∑T

t=1E
(
u2xt
)
E
(
u2t
)
,

where x′bq,tβb is the t-th element ofMqXbβb. Furthermore, E[u2x,t(x
′
bq,tβb)

2] = E
(
u2x,t
)
E(x′bq,tβb)

2 =

E
(
u2x,t
)
β′bE(xbq,tx

′
bq,t)βb, noting that under θ = 0, ux,t and xb,t are independently distributed.

Hence

ω2xe,T = T−1
∑T

t=1E
(
u2x,t
)
β′bE(xbq,tx

′
bq,t)βb + T−1

∑T
t=1E

(
u2xt
)
E
(
u2t
)
. (B.55)

Similarly

σ2e,(T ) = E
(
T−1e′e

)
= E

(
T−1η′Mqxη

)
= E[T−1 (Xbβb + u)′Mqx (Xbβb + u)]

= β′bE
(
T−1X′bMqxXb

)
βb + T−1

∑T
t=1E

(
u2t
)
,

and since under θ = 0, x being a noise variable will be distributed independently of Xb, then

E (T−1X′bMqxXb) = E (T−1X′bMqXb), and we have

σ2e,(T ) = β′bE
(
T−1X′bMqXb

)
βb+T

−1∑T
t=1E

(
u2t
)

= T−1
∑T

t=1β
′
bE
(
xbq,tx

′
bq,t

)
βb+T

−1∑T
t=1E

(
u2t
)
.

(B.56)

Using (B.55) and (B.56), it is now easily seen that if either E
(
u2x,t
)

= σ2ux or E (u2t ) = σ2, for

all t, then we have ω2xe,T = σ2e,(T )σ
2
x,(T ), and hence

Pr [|tx| > cp (n, δ) |θT = 0] ≤ exp
[
− (1− π)2 c2p (n, δ) (1 + dT )−2 /2

]
+ exp

(
−C0TC1

)
,
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giving a rate that does not depend on error variances. Next, we consider θT 6= 0. By (B.45) of

Lemma A9, for dT > 0 and bounded in T ,

Pr

[∣∣∣∣∣ T−1/2x′Mqy√
(T−1e′e/) (T−1x′Mqx)

∣∣∣∣∣ > cp (n, δ)

]
≤ Pr

(∣∣∣∣T−1/2x′Mqy

σe,(T )σx,(T )

∣∣∣∣ > cp (n, δ)

1 + dT

)
+exp

(
−C0TC1

)
.

We then have

T−1/2x′Mqy

σe,(T )σx,(T )
=
T 1/2 (T−1x′MqXbβb − θT )

σe,(T )σx,(T )
+
T−1/2x′Mqu

σe,(T )σx,(T )
+

T 1/2θT
σe,(T )σx,(T )

=
T 1/2 (T−1x′Mqη − θT )

σe,(T )σx,(T )
+

T 1/2θT
σe,(T )σx,(T )

.

Then Pr[|T 1/2σ−1e,(T )σ
−1
x,(T ) (T−1x′Mqη − θT ) + T 1/2σ−1e,(T )σ

−1
x,(T )θT | > cp (n, δ) /(1 + dT )] = 1 −

Pr
[∣∣∣T 1/2σ−1e,(T )σ−1x,(T ) (T−1x′Mqη − θT ) + T 1/2σ−1e,(T )σ

−1
x,(T )θT

∣∣∣ ≤ cp (n, δ) /(1 + dT )
]
. Note that since

cp (n, δ) is given by (15), then, T 1/2 |θT | /(σe,(T )σx,(T ))−cp (n, δ) / (1 + dT ) > 0. Then by Lemma

A12,

Pr

[∣∣∣∣T 1/2 (T−1x′Mqη − θT )

σe,(T )σx,(T )
+

T 1/2θT
σe,(T )σx,(T )

∣∣∣∣ ≤ cp (n, δ)

1 + dT

]
≤ Pr

[∣∣∣∣T 1/2 (T−1x′Mqη − θT )

σe,(T )σx,(T )

∣∣∣∣ > T 1/2 |θT |
σe,(T )σx,(T )

− cp (n, δ)

1 + dT

]
.

But, setting ζT = T 1/2
[
T 1/2 |θT | /[σe,(T )σx,(T )]− cp (n, δ) / (1 + dT )

]
and noting that θT = O(T−ϑ),

0 ≤ ϑ < 1/2, implies that this choice of ζT satisfies ζT = 	
(
T λ
)
with λ = 1 − ϑ, (B.16) of

Lemma A6 applies regardless of s > 0, which gives us

Pr

[∣∣∣∣T 1/2 (T−1x′Mqη − θT )

σe,(T )σx,(T )

∣∣∣∣ > T 1/2 |θT |
σe,(T )σx,(T )

− cp (n, δ)

1 + dT

]
≤ C4 exp

{
−C5

[
T 1/2

(
T 1/2 |θT |
σe,(T )σx,(T )

− cp (n, δ)

1 + dT

)]s/(s+2)}
+ exp

(
−C6TC7

)
, (B.57)

for some C4, C5, C6 and C7 > 0. Hence, as long as the assumption that cp (n, δ) = O
(
T 1/2−ϑ−C8

)
holds, for some positive C8, there must exist positive finite constants C2 and C3, such that

Pr

[∣∣∣∣T 1/2 (T−1x′Mqη − θ)
σe,(T )σx,(T )

∣∣∣∣ > T 1/2 |θT |
σe,(T )σx,(T )

− cp (n, δ)

1 + dT

]
≤ exp

(
−C2TC3

)
(B.58)

for any s > 0. So overall

Pr

[∣∣∣∣∣ T−1/2x′Mqy√
(T−1e′e/) (T−1x′Mqx)

∣∣∣∣∣ > cp (n, δ)

]
> 1− exp

(
−C2TC3

)
.
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Lemma A11 Let XiT , for i = 1, 2, ..., lT , YT and ZT be random variables. Then, for some

finite positive constants C0, C1 and C2, and any constants πi, for i = 1, 2, ..., lT , satisfying

0 < πi < 1 and
∑lT

i=1 πi = 1, we have

Pr

(
lT∑
i=1

|XiT | > C0

)
≤

lT∑
i=1

Pr (|XiT | > πiC0) , (B.59)

Pr (|XT | × |YT | > C0) ≤ Pr (|XT | > C0/C1) + Pr (|YT | > C1) , (B.60)

and

Pr (|XT | × |YT | × |ZT | > C0) ≤ Pr (|XT | > C0/ (C1C2)) + Pr (|YT | > C1) + (B.61)

Pr (|ZT | > C2) .

Proof. Without loss of generality we consider the case lT = 2. Consider the two random

variables X1T and X2T . Then, for some finite positive constants C0 and C1, we have

Pr (|X1T |+ |X2T | > C0) ≤ Pr ({|X1T | > (1− π)C0} ∪ {|X2T | > πC0})
≤ Pr (|X1T | > (1− π)C0) + Pr (|X2T | > πC0) ,

proving the first result of the lemma.

Define events H = {|XT | × |YT | > C0}, B= {|XT | > C0/C1} and C = {|YT | > C1}. Then
H ⊂ (B ∪ C), namely H must be contained in B ∪ C. Hence P (H) ≤ P (B ∪ C). But

P (B ∪ C) ≤ P (B) + P (C). Therefore, P (H) ≤ P (B) + P (C), proving the second result

of the lemma. The third result follows by a repeated application of the second result.

Lemma A12 Consider the scalar random variable X, and the constants B and C. Then, if

|B| ≥ C > 0,

Pr (|X +B| ≤ C) ≤ Pr (|X| > |B| − C) . (B.62)

Proof. We note that the event we are concerned with is of the form A = {|X +B| ≤ C}.
Consider two cases: (i) B > 0. Then, A can occur only if X < 0 and |X| > B − C = |B| − C.
(ii) B < 0. Then, A can occur only if X > 0 and X = |X| > |B| −C. It therefore follows that
the event {|X| > |B| − C} implies A proving (B.62).

Lemma A13 Consider the scalar random variable, ωT , and the deterministic sequence, αT >

0, such that αT → 0 as T →∞. Then there exists T0 > 0 such that for all T > T0 we have

Pr

(∣∣∣∣ 1
√
ωT
− 1

∣∣∣∣ > αT

)
≤ Pr (|ωT − 1| > αT ) . (B.63)
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Proof. We first note that for αT < 1/2∣∣∣∣ 1
√
ωT
− 1

∣∣∣∣ < |ωT − 1| for any ωT ∈ [1− αT , 1 + αT ] .

Also, since aT → 0 then there must exist a T0 > 0 such that aT < 1/2, for all T > T0, and hence

if event A : |ωT − 1| ≤ aT is satisfied, then it must be the case that event B :
∣∣∣ 1√

ωT
− 1
∣∣∣ ≤ aT

is also satisfied for all T > T0. Further, since A ⇒ B, then Bc ⇒ Ac, where Ac denotes the

complement of A. Therefore,
∣∣∣ 1√

ωT
− 1
∣∣∣ > aT implies |ωT − 1| > aT , for all T > T0, and we

have Pr
(∣∣∣ 1√

ωT
− 1
∣∣∣ > αT

)
≤ Pr (|ωT − 1| > αT ), as required.

Lemma A14 Let AT = (aij,T ) be a symmetric lT × lT matrix with eigenvalues µ1 ≤ µ2 ≤ ... ≤
µlT . Let µi = 	 (lT ), i = lT −M+1, lT −M+2, ..., lT , for some finite M , and sup1≤i≤lT−M µi <

C0 <∞, for some finite positive C0. Then,

‖AT‖F = 	 (lT ) . (B.64)

If, in addition, inf1≤i<lT µi > C1 > 0, for some finite positive C1, then∥∥A−1T ∥∥F = 	
(√

lT

)
. (B.65)

Proof. We have

‖AT‖2F = Tr (ATA′T ) = Tr
(
A2
T

)
=

lT∑
i=1

µ2i ,

where µi, for i = 1, 2, ..., lT , are the eigenvalues of AT . But by assumption µi = 	 (lT ),

for i = lT − M + 1, lT − M + 2, ..., lT , and sup1≤i≤lT−M µi < C0 < ∞, then
∑lT

i=1 µ
2
i = M

	 (l2T ) + O(lT −M) = 	 (l2T ), and since M is fixed then (B.64) follows. Note that A−1T is also

symmetric, and using similar arguments as above, we have

∥∥A−1T ∥∥2F = Tr
(
A−2T

)
=

lT∑
i=1

µ−2i ,

but all eigenvalues of AT are bounded away from zero under the assumptions of the lemma,

which implies µ−2i = 	 (1) and therefore
∥∥A−1T ∥∥F = 	

(√
lT
)
, which establishes (B.65).

Lemma A15 Let z be a random variable and suppose there exists finite positive constants C0,

C1 and s > 0 such that

Pr (|z| > α) ≤ C0 exp (−C1αs) , for all α > 0. (B.66)

Then for any finite p > 0 and p/s finite, there exists C2 > 0 such that

E |z|p ≤ C2. (B.67)
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Proof. We have that
E |z|p =

∫ ∞
0

αpdPr (|z| ≤ α) .

Using integration by parts, we get∫ ∞
0

αpdPr (|z| ≤ α) = p

∫ ∞
0

αp−1 Pr (|z| > α) dα.

But, using (B.66), and a change of variables, implies

E |z|p ≤ pC0

∫ ∞
0

αp−1 exp (−C1αs) dα =
pC0
s

∫ ∞
0

u
p−s
s exp (−C1u) du = C0C

−p/s
1

(p
s

)
Γ
(p
s

)
,

where Γ (·) is a gamma function. But for a finite positive p/s, Γ (p/s) is bounded and (B.67)

follows.

Lemma A16 Let AT = (aij,T ) be an lT × lT matrix and ÂT = (âij,T ) be an estimator of AT .

Suppose that AT is invertible and there exists a finite positive C0, such that

sup
i,j

Pr (|âij,T − aij,T | > bT ) ≤ exp
(
−C0Tb2T

)
, (B.68)

for all bT > 0. Then

Pr
(∥∥∥ÂT −AT

∥∥∥
F
> bT

)
≤ l2T exp

(
−C0

Tb2T
l2T

)
, (B.69)

and

Pr
(∥∥∥Â−1T −A−1T ∥∥∥

F
> bT

)
≤ l2T exp

(
−C0Tb2T

l2T
∥∥A−1T ∥∥2F (∥∥A−1T ∥∥F + bT

)2
)

+ l2T exp

(
−C0

T∥∥A−1T ∥∥2F l2T
)
. (B.70)

Proof. First note that since bT > 0, then

Pr
(∥∥∥ÂT −AT

∥∥∥
F
> bT

)
= Pr

(∥∥∥ÂT −AT

∥∥∥2
F
> b2T

)
= Pr

([
lT∑
j=1

lT∑
i=1

(âij,T − aij,T )2 > b2T

])
,

and using the probability bound result, (B.59), and setting πi = 1/lT , we have

Pr
(∥∥∥ÂT −AT

∥∥∥
F
> bT

)
≤

lT∑
j=1

lT∑
i=1

Pr
(
|âij,T − aij,T |2 > l−2T b2T

)
=

lT∑
j=1

lT∑
i=1

Pr
(
|âij,T − aij,T | > l−1T bT

)
≤ l2T sup

ij=1,2,...,lT

[
Pr
(
|âij,T − aij,T | > l−1T bT

)]
.
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Hence by (B.68) we obtain (B.69). To establish (B.70) define the events

AT =
{∥∥A−1T ∥∥F ∥∥∥ÂT −AT

∥∥∥
F
< 1
}
and BT =

{∥∥∥Â−1T −A−1T ∥∥∥
F
> bT

}
and note that by (2.15) of Berk (1974) if AT holds we have

∥∥∥Â−1T −A−1T ∥∥∥
F
≤

∥∥A−1T ∥∥2F ∥∥∥ÂT −AT

∥∥∥
F

1−
∥∥A−1T ∥∥F ∥∥∥ÂT −AT

∥∥∥
F

. (B.71)

Hence

Pr (BT |AT ) ≤ Pr

 ∥∥A−1T ∥∥2F ∥∥∥ÂT −AT

∥∥∥
F

1−
∥∥A−1T ∥∥F ∥∥∥ÂT −AT

∥∥∥
F

> bT


= Pr

(∥∥∥ÂT −AT

∥∥∥
F
>

bT∥∥A−1T ∥∥F (∥∥A−1T ∥∥F + bT
)) . (B.72)

Note also that

Pr (BT ) = Pr
(
{BT ∩ AT} ∪

{
BT ∩ ACT

})
= Pr (BT |AT ) Pr (AT ) + Pr

(
BT |ACT

)
Pr
(
ACT
)
.

(B.73)

Furthermore

Pr
(
ACT
)

= Pr
(∥∥A−1T ∥∥F ∥∥∥ÂT −AT

∥∥∥
F
> 1
)

= Pr
(∥∥∥ÂT −AT

∥∥∥
F
>
∥∥A−1T ∥∥−1F ) ,

and by (B.69) we have

Pr
(
ACT
)
≤ l2T exp

(
−C0

T∥∥A−1T ∥∥2F l2T
)
.

Using the above result and (B.72) in (B.73), we now have

Pr (BT ) ≤ Pr

(∥∥∥ÂT −AT

∥∥∥
F
>

bT∥∥A−1T ∥∥F (∥∥A−1T ∥∥F + bT
))Pr (AT )

+ Pr
(
BT |ACT

)
l2T exp

(
−C0

T∥∥A−1T ∥∥2F l2T
)
.

Furthermore, since Pr (AT ) ≤ 1 and Pr
(
BT |ACT

)
≤ 1 then

Pr (BT ) = Pr
(∥∥∥Â−1T −A−1T ∥∥∥

F
> bT

)
≤ Pr

(∥∥∥ÂT −AT

∥∥∥
F
>

bT∥∥A−1T ∥∥F (∥∥A−1T ∥∥F + bT
))

+ l2T exp

(
−C0

T∥∥A−1T ∥∥2F l2T
)
.

Result (B.70) now follows if we apply (B.69) to the first term on the RHS of the above.
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Lemma A17 Let AT = (aij,T ) be a lT × lT matrix and ÂT = (âij,T ) be an estimator of AT .

Let
∥∥A−1T ∥∥F > 0 and suppose that for some s > 0, any bT > 0 and some finite positive constant

C0,

sup
i,j

Pr (|âij,T − aij,T | > bT ) ≤ exp
[
−C0 (TbT )s/(s+2)

]
.

Then

Pr
(∥∥∥Â−1T −A−1T ∥∥∥

F
> bT

)
≤ l2T exp

(
−C0 (TbT )s/(s+2)

l
s/(s+2)
T

∥∥A−1T ∥∥s/(s+2)F

(∥∥A−1T ∥∥F + bT
)s/(s+2)

)
(B.74)

+ l2T exp

(
−C0

T s/(s+2)∥∥A−1T ∥∥s/(s+2)F
l
s/(s+2)
T

)
.

Proof. First note that since bT > 0, then

Pr
(∥∥∥ÂT −AT

∥∥∥
F
> bT

)
= Pr

(∥∥∥ÂT −AT

∥∥∥2
F
> b2T

)
= Pr

[
lT∑
j=1

lT∑
i=1

(âij,T − aij,T )2 > b2T

]
,

and using the probability bound result, (B.59), and setting πi = 1/l2T , we have

Pr
(∥∥∥ÂT −AT

∥∥∥
F
> bT

)
≤

lT∑
j=1

lT∑
i=1

Pr
(
|âij,T − aij,T |2 > l−2T b2T

)
(B.75)

=

lT∑
j=1

lT∑
i=1

Pr
(
|âij,T − aij,T | > l−1T bT

)
≤ l2T sup

ij

[
Pr
(
|âij,T − aij,T | > l−1T bT

)]
= l2T exp

(
−C0T s/(s+1)

b
s/(s+2)
T

l
s/(s+2)
t

)
.

To establish (B.74) define the events

AT =
{∥∥A−1T ∥∥F ∥∥∥ÂT −AT

∥∥∥
F
< 1
}
and BT =

{∥∥∥Â−1T −A−1T ∥∥∥ > bT

}
and note that by (2.15) of Berk (1974) if AT holds we have

∥∥∥Â−1T −A−1T ∥∥∥ ≤
∥∥A−1T ∥∥2F ∥∥∥ÂT −AT

∥∥∥
F

1−
∥∥A−1T ∥∥F ∥∥∥ÂT −AT

∥∥∥
F

.

Hence

Pr (BT |AT ) ≤ Pr

 ∥∥A−1T ∥∥2F ∥∥∥ÂT −AT

∥∥∥
F

1−
∥∥A−1T ∥∥F ∥∥∥ÂT −AT

∥∥∥
F

> bT


= Pr

[∥∥∥ÂT −AT

∥∥∥
F
>

bT∥∥A−1T ∥∥F (∥∥A−1T ∥∥F + bT
)] .
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Note also that

Pr (BT ) = Pr
(
{BT ∩ AT} ∪

{
BT ∩ ACT

})
= Pr (BT |AT ) Pr (AT ) + Pr

(
BT |ACT

)
Pr
(
ACT
)

Furthermore

Pr
(
ACT
)

= Pr
(∥∥A−1T ∥∥F ∥∥∥ÂT −AT

∥∥∥
F
> 1
)

= Pr
(∥∥∥ÂT −AT

∥∥∥
F
>
∥∥A−1T ∥∥−1F ) ,

and by (B.75) we have

Pr
(
ACT
)
≤ l2T exp

(
−C0T s/(s+1)

b
s/(s+2)
T

l
s/(s+2)
t

)
= exp

(
−C0

T s/(s+2)∥∥A−1T ∥∥s/(s+2)F
l
s/(s+2)
T

)
.

Using the above result, we now have

Pr (BT ) ≤ Pr

(∥∥∥ÂT −AT

∥∥∥
F
>

bT∥∥A−1T ∥∥F (∥∥A−1T ∥∥F + bT
))Pr (AT )

+ Pr
(
BT |ACT

)
exp

(
−C0

T s/(s+2)∥∥A−1T ∥∥s/(s+2)F
l
s/(s+2)
T

)
.

Furthermore, since Pr (AT ) ≤ 1 and Pr
(
BT |ACT

)
≤ 1 then

Pr (BT ) = Pr
(∥∥∥Â−1T −A−1T ∥∥∥ > bT

)
≤ Pr

(∥∥∥ÂT −AT

∥∥∥
F
>

bT∥∥A−1T ∥∥F (∥∥A−1T ∥∥F + bT
))

+ exp

(
−C0

T s/(s+2)∥∥A−1T ∥∥s/(s+2)F
l
s/(s+2)
T

)
.

Result (B.74) now follows if we apply (B.75) to the first term on the RHS of the above.

Lemma A18 Let Sa and Sb, respectively, be T × la,T and T × lb,T matrices of observations

on sa,it, and sb,it, for i = 1, 2, ..., lT , t = 1, 2, ..., T , and suppose that {sa,it, sb,it} are either
non-stochastic and bounded, or random with finite 8th order moments. Consider the sample

covariance matrix Σ̂ab = T−1S′aSb and denote its expectations by Σab = T−1E (S′aSb). Let

zij,t = sa,itsb,jt − E (sa,itsb,jt) ,

and suppose that

sup
i,j

[
T∑
t=1

T∑
t′=1

E(zij,tzij,t′)

]
= O (T ) . (B.76)

Then,

E
∥∥∥Σ̂ab −Σab

∥∥∥2
F

= O

(
la,T lb,T
T

)
. (B.77)
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If, in addition,

sup
i,j,i′,j′

[
T∑
t=1

T∑
t′=1

T∑
s=1

T∑
s′=1

E(zij,tzij,t′zi′j′,szi′j′,s′)

]
= O

(
T 2
)
, (B.78)

then

E
∥∥∥Σ̂ab −Σab

∥∥∥4
F

= O

(
l2a,T l

2
b,T

T 2

)
. (B.79)

Proof. We first note that E(zij,tzij,t′) and E (zij,tzij,t′zi′j′,szi′j′,s′) exist since by assumption

{sa,it, sb,it} have finite 8th order moments. The (i, j) element of Σ̂ab −Σab is given by

aij,T = T−1
T∑
t=1

zij,t, (B.80)

and hence

E
∥∥∥Σ̂ab −Σab

∥∥∥2
F

=

la,T∑
i=1

lb,T∑
j=1

E
(
a2ij,T

)
= T−2

la,T∑
i=1

lb,T∑
j=1

T∑
t=1

T∑
t′=1

E (zij,tzij,t′)

≤ la,T lb,T
T 2

sup
i,j

[
T∑
t=1

T∑
t′=1

E(zij,tzij,t′)

]
,

and (B.77) follows from (B.76). Similarly,

∥∥∥Σ̂ab −Σab

∥∥∥4
F

=

 la,T∑
i=1

lb,T∑
j=1

a2ij,T

2

=

la,T∑
i=1

lb,T∑
j=1

la,T∑
i′=1

lb,T∑
j′=1

a2ij,Ta
2
i′j′,T .

But using (B.80) we have

a2ij,Ta
2
i′j′,T = T−4

(
T∑
t=1

T∑
t′=1

zij,tzij,t′

)(
T∑
s=1

T∑
s′=1

zi′j′,szi′j′,s′

)

= T−4
T∑
t=1

T∑
t′=1

T∑
s=1

T∑
s′=1

zij,tzij,t′zi′j′,szi′j′,s′ ,

and

E
∥∥∥Σ̂ab −Σab

∥∥∥4
F

= T−4
la,T∑
i=1

lb,T∑
j=1

la,T∑
i′=1

lb,T∑
j′=1

T∑
t=1

T∑
t′=1

T∑
s=1

T∑
s′=1

E (zij,tzij,t′zi′j′,szi′j′,s′)

≤
l2a,T l

2
b,T

T 4
sup
i,j,i′,j′

[
T∑
t=1

T∑
t′=1

T∑
s=1

T∑
s′=1

E (zij,tzij,t′zi′j′,szi′j′,s′)

]
.

Result (B.79) now follows from (B.78).
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Remark 1 It is clear that conditions (B.76) and (B.78) are met under Assumption 3 that
requires zit to be a martingale difference process. But it is easily seen that condition (B.76)

also follows if we assume that sa,it and sb,jt are stationary processes with finite 8-th moments,

since the product of stationary processes is also a stationary process under a certain additional

cross-moment conditions (Wecker (1978)). The results of the lemma also follow readily if we

assume that sa,it and sb,jt′ are independently distributed for all i 6= j and all t and t′.

Lemma A19 Consider the data generating process (6) with k signal variables, k∗ pseudo-signal
variables, and n−k−k∗ noise variables. Let k̂o(s) be the number of variables selected at the stage
s of the OCMT procedure and suppose that conditions of Lemma A10 hold. Let k∗ = 	 (nε)

for some 0 ≤ ε < min {1, κ1/3}, where κ1 is the positive constant that defines the rate for
T = 	 (nκ1) in Lemma A10. Let Ds,T , be the event that the number of variables selected in
the first s stages of OCMT is smaller than or equal to lT , where lT = 	 (nν) and ν satisfies

ε < ν < κ1/3. Then there exist constants C0, C1 > 0 such that for any 0 < κ < 1, any δs > 0,

and any j > 0, it follows that

Pr
(
k̂o(s) − k − k∗ > j|Ds−1,T

)
≤ n− k − k∗

j

{
exp

[
−
κc2p (n, δs)

2

]
+ exp(−C0TC1)

}
, (B.81)

for s = 1, 2, ..., k.

Proof. By convention, the number of variables selected at the stage zero of OCMT is zero.
Conditioning on Ds−1,T allows the application of Lemma A10. We drop the conditioning nota-
tion in the rest of the proof to simplify notations. Then, by Markov’s inequality

Pr
(
k̂o(s) − k − k∗ > j

)
≤
E
(
k̂o(s) − k − k∗

)
j

. (B.82)

But

E
(
k̂o(s)

)
=

n∑
i=1

E
[

̂I(s) (βi 6= 0)
]

=
k+k∗∑
i=1

E
[

̂I(s) (βi 6= 0)
]

+

n∑
i=k+k∗+1

E
[

̂I(s) (βi 6= 0)
∣∣θi,(s) = 0

]
.

≤ k + k∗ +

n∑
i=k+k∗+1

E
[

̂I(s) (βi 6= 0)
∣∣θi,(s) = 0

]
,

where we have used ̂I(s) (βi 6= 0) ≤ 1. Moreover,

E
[

̂I(s) (βi 6= 0)
∣∣θi,(s) = 0

]
= Pr

(∣∣∣tφ̂T,i,(s)∣∣∣ > cp (n, δs) |θi,(s) = 0
)
,
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for i = k+k∗+1, k+k∗+2, ..., n, and using (B.51) of Lemma A10, we have (for some 0 < κ < 1

and C0, C1 > 0)

sup
i>k+k∗

Pr
(∣∣∣tφ̂T,i,(s)∣∣∣ > cp (n, δs) |θi,(s) = 0

)
≤ exp

[
−
κc2p (n, δs)

2

]
+ exp(−C0TC1).

Hence,

E
(
k̂o(s)

)
− k − k∗ ≤ (n− k − k∗)

{
exp

[
−
κc2p (n, δs)

2

]
+ exp(−C0TC1)

}
,

and therefore (using this result in (B.82))

Pr
(
k̂o(s) − k − k∗ > j

)
≤ n− k − k∗

j

{
exp

[
−
κc2p (n, δs)

2

]
+ exp(−C0TC1)

}
,

as desired.

Lemma A20 Consider the data generating process (6) with k signal, k∗ pseudo-signal, and
n − k − k∗ noise variables. Let Tk be the event that the OCMT procedure stops after k stages
or less, and suppose that conditions of Lemma A10 hold. Let k∗ = 	 (nε) for some 0 ≤ ε <

min {1, κ1/3}, where κ1 is the positive constant that defines the rate for T = 	 (nκ1) in Lemma

A10. Moreover, let δ > 0 and δ∗ > 0 denote the critical value exponents for stage 1 and

subsequent stages of the OCMT procedure, respectively. Then,

Pr (Tk) = 1 +O
(
n1−ν−κδ

)
+O

(
n1−κδ

∗)
+O

[
n exp

(
−C0nC1κ1

)]
, (B.83)

for some C0, C1 > 0, any κ in 0 < κ < 1, and any ν in ε < ν < κ1/3.

Proof. Consider the event Dk,T = {k̂(j) ≤ lT , j = 1, 2, ..., k} for k ≥ 1, which is the event

that the number of variables selected in the first k stages of OCMT is smaller than or equal to

lT = 	 (nν), where ν lies in the interval ε < ν < κ1/3. Such a ν exists since by assumption

0 ≤ ε < min {1, κ1/3}. We have Pr (Tk) = 1− Pr (T ck ), and

Pr (T ck ) = Pr (T ck |Dk,T ) Pr (Dk,T ) + Pr
(
T ck |Dck,T

)
Pr
(
Dck,T

)
≤ Pr (T ck |Dk,T ) + Pr

(
Dck,T

)
,

Therefore,

Pr (Tk) ≥ 1− Pr (T ck |Dk,T )− Pr
(
Dck,T

)
. (B.84)

We note that

Pr (Dk,T ) ≥ Pr

[(
k̂o(1) ≤

lT
k

)
∩
(
k̂o,(2) ≤

lT
k

∣∣∣∣D1,T) ∩ ... ∩ ( k̂o(k) ≤ lT
k

∣∣∣∣Dk−1,T)] ,

24



where k̂o(s) is the number of variables selected in the s-th stage of OCMT and Ds,T = {k̂(j) ≤
lT , j = 1, 2, ..., s} for s = 1, 2, ..., k. Hence

Pr
(
Dck,T

)
≤ Pr


 (k̂o(1) ≤ lT

k

)
∩
(
k̂o(2) ≤

lT
k

∣∣∣D1,T) ∩ ...
∩
(
k̂o(k) ≤

lT
k

∣∣∣Dk−1,T)
c .

Furthermore

Pr


 (k̂o(1) ≤ lT

k

)
∩
(
k̂o(2) ≤

lT
k

∣∣∣D1,T) ∩ ...
∩
(
k̂o(k) ≤

lT
k

∣∣∣Dk−1,T)
c

= Pr


 (k̂o(1) > lT

k

)
∪
(
k̂o(2) >

lT
k

∣∣∣D1,T) ∪ ...
∪
(
k̂o(k) >

lT
k

∣∣∣Dk−1,T)


≤ Pr

(
k̂o(1) >

lT
k

)
+

k∑
s=2

Pr

(
k̂o(s) >

lT
k

∣∣∣∣Ds−1,T) .
Since k is finite and 0 ≤ ε < ν, there exists T0 such that for all T > T0 we have lT/k > k + k∗,

and we can apply (B.81) of Lemma A19 (for j = lT/k − k − k∗ > 0), to obtain

Pr

(
k̂o(1) >

lT
k

)
= Pr

(
k̂o(1) − k − k∗ >

lT
k
− k − k∗

)
≤ n− k − k∗

lT
k
− k − k∗

{
exp

[
−
κc2p (n, δ)

2

]
+ exp(−C0TC1)

}
,

for some C0, C1 > 0 and any 0 < κ < 1. Noting that for 0 ≤ ε < ν,

n− k − k∗
lT
k
− k − k∗

= 	
(
n1−ν

)
, (B.85)

and using also result (ii) of Lemma A2, we obtain

Pr

(
k̂o(1) >

lT
k

)
= O

(
n1−ν−κδ

)
+O

[
n1−ν exp

(
−C0TC1

)]
.

Similarly,

Pr

(
k̂o(s) >

lT
k

∣∣∣∣Ds−1,T) = Pr

(
k̂o(s) − k − k∗ >

lT
k
− k − k∗

∣∣∣∣Ds−1,T)
≤ n− k − k∗

lT
k
− k − k∗

{
exp

[
−
κc2p (n, δ∗)

2

]
+ exp(−C0TC1)

}
= O

(
n1−ν−κδ

∗)
+O

[
n1−ν exp

(
−C0TC1

)]
,

where the critical value exponent in the higher stages (s > 1) of OCMT (δ∗) could differ from

the one in the first stage (δ). So, overall

Pr
(
Dck,T

)
≤ Pr

(
k̂o(1) >

lT
k

)
+

k∑
s=2

Pr

(
k̂o(s) >

lT
k

∣∣∣∣Ds−1,T)
= O

(
n1−ν−κδ

)
+O

(
n1−ν−κδ

∗)
+O

[
n1−ν exp

(
−C0TC1

)]
, (B.86)
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for some C0, C1 > 0, any κ in 0 < κ < 1, and any ν in ε < ν < κ1/3. Next, consider

Pr (T ck |Dk,T ), and note that

Pr (T ck |Dk,T ) = Pr (T ck |Dk,T ,Lk) Pr(Lk|Dk,T ) + Pr (T ck |Dk,T ,Lck) Pr(Lck|Dk,T )

≤ Pr (T ck |Dk,T ,Lk) + Pr(Lck|Dk,T ), (B.87)

where Pr (T ck |Dk,T ,Lk) is the probability that a noise variable will be selected in a stage of
OCMT that includes as regressors all signal variables, conditional on the event that fewer than

lT variables are selected in the first k steps of OCMT. Note that the event T ck |Dk,T ,Lk can only
occur if OCMT selects some pseudo-signal and/or some noise variables in stage k+ 1. But the

net effect coeffi cient of signal variables in stage k + 1 must be zero when all signal variables

were selected in earlier stages (s = 1, 2, ..., k), namely θi,(k+1) = 0 for i = k+ 1, k+ 2, ..., k+ k∗.

Moreover, θi,(k+1) = 0 also for i = k + k∗ + 1, k + k∗ + 2, ..., n, since the net effect coeffi cient of

noise variables is always zero (in any stage). Therefore, we have

Pr (T ck |Dk,T ,Lk) ≤
n∑

i=k+1

Pr
[∣∣∣tφ̂i,(k+1)∣∣∣ > cp (n, δ∗) |θi,(k+1) = 0,Dk,T

]
.

Note that the number of regressors in the regressions involving the t statistics tθ̂i,(k+1) , does not

exceed lT = 	 (nν), for ν in the interval 0 ≤ ε < ν < κ1/3 and hence lT = o(T 1/3) as required

by the conditions of Lemma A10. Using (B.51) of Lemma A10, we have

Pr (T ck |Dk,T ,Lk) ≤ (n− k) exp

[−κc2p(n, δ∗)
2

]
+ (n− k) exp

(
−C0TC1

)
. (B.88)

for some C0, C1 > 0 and any 0 < κ < 1. By Lemma A2, exp
[
−κc2p(n, δ∗)/2

]
= 	

(
n−κδ

∗)
, for

any 0 < κ < 1, and noting that n− k ≤ n we obtain

Pr (T ck |Dk,T ,Lk) = O
(
n1−κδ

∗)
+O

[
n exp

(
−C0TC1

)]
. (B.89)

Consider next the second term of (B.87), Pr(Lck|Dk,T ), and recall that Lk = ∩ki=1Li,k where
Li,k = ∪kj=1Bi,j, i = 1, 2, ..., k. Hence Lci,k = ∩kj=1Bci,j, and

Pr
(
Lci,k
∣∣ Tk,Dk,T ) = Pr

(
∩kj=1Bci,j

∣∣ Tk,Dk,T ) =

Pr
(
Bci,1
∣∣ Tk,Dk,T )Pr

(
Bci,2
∣∣Bci,1, Tk,Dk,T )

Pr
(
Bci,3
∣∣Bci,2 ∩ Bci,1, Tk,Dk,T )× ...×

Pr
(
Bci,k
∣∣Bci,k−1 ∩ ... ∩ Bci,1, Tk,Dk,T ) .

But by Proposition 1 we are guaranteed that for some 1 ≤ j ≤ k, θi,(j) 6= 0. Therefore,

Pr
(
Bci,j
∣∣Bci,j−1 ∩ ... ∩ Bci,1, Tk,Dk,T ) = Pr

(
Bci,j
∣∣Bci,j−1 ∩ ... ∩ Bci,1, θi,(j) 6= 0, Tk,Dk,T

)
,
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and by (B.52) of Lemma A10,

Pr
(
Bci,j
∣∣Bci,j−1 ∩ ... ∩ Bci,1, θi,(j) 6= 0, Tk,Dk,T

)
= O

[
exp

(
−C0TC1

)]
,

for some C0, C1 > 0. Therefore, for some j ∈ {1, 2, ..., k} and C0, C1 > 0,

Pr
(
Lci,k
∣∣ Tk,Dk,T ) ≤ Pr

(
Bci,j
∣∣Bci,j−1 ∩ ... ∩ Bci,1, θi,(j) 6= 0, Tk,Dk,T

)
= O

[
exp

(
−C0TC1

)]
. (B.90)

Noting that k is finite and

Pr (Lck| Tk,Dk,T ) = Pr
(
∪ki=1Lcik

∣∣ Tk,Dk,T )
≤

k∑
i=1

Pr (Lcik| Tk,Dk,T ) ,

it follows, using (B.90), that

Pr (Lck| Tk,Dk,T ) = O
[
exp

(
−C0TC1

)]
, (B.91)

for some C0, C1 > 0. Using (B.89) and (B.91) in (B.87) now gives5

Pr (T ck |Dk,T ) = O
(
n1−κδ

∗)
+O

[
n exp

(
−C0TC1

)]
. (B.92)

Using (B.86) and (B.92) in (B.84), yields

Pr (Tk) =1 +O
(
n1−ν−κδ

)
+O

(
n1−ν−κδ

∗)
+O

[
n1−ν exp

(
−C0TC1

)]
+O

(
n1−κδ

∗)
+O

[
n exp

(
−C2TC3

)]
,

for some C0, C1, C2, C3 > 0 and any κ in 0 < κ < 1, and any ν in ε < ν < κ1/3. But

O
(
n1−ν−κδ

∗)
is dominated byO

(
n1−κδ

∗)
, andO

[
n1−ν exp

(
−C0TC1

)]
is dominated byO

[
n exp

(
−C2TC3

)]
,

since ν > ε ≥ 0. Hence,

Pr (Tk) = 1 +O
(
n1−ν−κδ

)
+O

(
n1−κδ

∗)
+O

[
n exp

(
−C0TC1

)]
,

for some C0, C1 > 0, any κ in 0 < κ < 1, and any ν in ε < ν < κ1/3. This result in turn

establishes (B.83), noting that T = 	 (nκ1).

Lemma A21 Suppose that the data generating process (DGP) is given by

y
T×1

= X
T×k+1

· β
k+1×1

+ u
T×1
, (B.93)

where u = (u1, u2, ..., uT )′, E (u) = 0, E (uu′) = σ2IT , 0 < σ2 < ∞, IT is a T × T identity

matrix, X = (τ T ,Xk) = (τ T ,x1,x2, ...,xk) includes a T × 1 column of ones, τ T , and T × 1

5We have dropped the term O
[
exp

(
−C0TC1

)]
, which is dominated by O

[
n exp

(
−C0TC1

)]
.
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vectors of observations, xi = (xi1, xi2, ..., xiT )′, on the signal variables i = 1, 2, ..., k, and the

elements of β are bounded. Consider the regression model

y
T×1

= S
T×lT
· δ
lT×1

+ ε
T×1
, (B.94)

where S = (sit) = (s1, s2..., slT ), with sj = (sj1, sj2, ..., sjT )′, for j = 1, 2, ..., lT , Denote the least

squares estimator of δ in the regression model (B.94), by δ̂ , and the associated T × 1 vector of

least squares residuals, by ũ = y−Sδ̂, and set β0 =
(
β′,0′lT−k−1

)′
. Denote the eigenvalues of

Σss = E (T−1S′S) by µ1 ≤ µ2 ≤ ... ≤ µlT , and assume that the following conditions hold:

i. µi = O (lT ), i = lT−M+1, lT−M+2, ..., lT , for some finiteM , sup1≤i≤lT−M µi < C0 <∞,
for some C0 > 0, and inf1≤i<lT µi > C1 > 0, for some C1 > 0.

ii. Regressors are uncorrelated with the errors, E (sjtut) = 0 = E (xitut) , for all t = 1, 2..., T ,

i = 1, 2, ..., k, and j = 1, 2, ..., lT , sit have finite 8th order moments, and zij,t = sitsjt −
E (sitsjt) satisfies conditions (B.76) and (B.78) of Lemma A18. Moreover, z∗ij,t = sitxjt−
E (sitxjt) satisfies condition (B.76) of Lemma A18.

Suppose that l3T/T → 0, as lT and T →∞, Then, if S contains X

Fũ = T−1 ‖ũ‖2 = σ2 +Op

(
1√
T

)
+Op

(
l3T
T 3/2

)
+Op

(
l
3/2
T

T

)
, (B.95)

and ∥∥∥δ̂ − β0

∥∥∥
F

= Op

(
lT√
T

)
+Op

(
l
5/2
T

T

)
. (B.96)

But if one or more columns of X are not contained in S, then

Fũ = σ2 +Op (1) , (B.97)

and ∥∥∥δ̂ − β0

∥∥∥
F

= O (lT ) +Op

(
l
5/2
T

T

)
+Op

(
l
5/2
T√
T

)
+Op

(
lT√
T

)
. (B.98)

Proof. Let Σ̂ss = S′S/T , and recall that by assumption matrices Σss = E (T−1S′S) and Σ̂ss

are positive definite. Let ∆̂ss = Σ̂−1ss −Σ−1ss and using (2.15) of Berk (1974), note that

∥∥∥∆̂ss

∥∥∥
F
≤

‖Σ−1ss ‖
2
F

∥∥∥Σ̂ss −Σss

∥∥∥
F

1− ‖Σ−1ss ‖F
∥∥∥Σ̂ss −Σss

∥∥∥
F

. (B.99)

We focus on the individual terms on the right side of (B.99) to establish a bound, in probability,

for
∥∥∥∆̂ss

∥∥∥
F
. The assumptions on eigenvalues ofΣss in this lemma are the same as in Lemma A14
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with the only exception that O (.) terms are used instead of 	 (.). Using the same arguments

as in the proof of (B.64) and (B.65) of Lemma A14, it follows that

‖Σss‖F = O (lT ) , (B.100)

and ∥∥Σ−1ss ∥∥F = O
(√

lT

)
. (B.101)

Moreover, note that (i, j)-th element of
(
Σ̂ss −Σss

)
, zijt = sitsjt − E (sitsjt), satisfies the

conditions of Lemma A18, which establishes

E

(∥∥∥Σ̂ss −Σss

∥∥∥2
F

)
= O

(
l2T
T

)
, (B.102)

and therefore, usingE
∥∥∥Σ̂ss −Σss

∥∥∥
F
≤
[
E

(∥∥∥Σ̂ss −Σss

∥∥∥2
F

)]1/2
, and the fact that L1−convergence

implies convergence in probability, we have.∥∥∥Σ̂ss −Σss

∥∥∥
F

= Op

(
lT√
T

)
. (B.103)

Using (B.101) and (B.103), it now follows that

∥∥Σ−1ss ∥∥F ∥∥∥Σ̂ss −Σss

∥∥∥
F

= Op

(
l
3/2
T√
T

)
,

and since by assumption l
3/2
T√
T
→ 0, then

1(
1− ‖Σ−1ss ‖F

∥∥∥Σ̂ss −Σss

∥∥∥
F

)2 = Op (1) . (B.104)

Now using (B.103), (B.104), and (B.101) in (B.99), we have∥∥∥∆̂ss

∥∥∥
F

= O (lT )Op

(
lT√
T

)
Op (1) = Op

(
l2T√
T

)
, (B.105)

and hence∥∥∥∥∥
(

S′S

T

)−1∥∥∥∥∥
F

=
∥∥∥Σ̂−1ss ∥∥∥

F
≤
∥∥∥∆̂ss

∥∥∥
F

+
∥∥Σ−1ss ∥∥F = Op

(
l2T√
T

)
+Op

(√
lT

)
. (B.106)

Further, since by the assumption E (stut) = 0, then
∥∥S′u

T

∥∥2
F

= Op

(
lT
T

)
, and∥∥∥∥S′u

T

∥∥∥∥
F

= Op

(√
lT
T

)
. (B.107)
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Consider now the T × 1 vector of residuals, ũ from the regression model (B.94) and note that

under (B.93) it can be written as

ũ = Msy= Msu+MsXβ, where Ms = IT − S (S′S)
−1

S′. (B.108)

In the case where X is a sub-set of S, MsXβ = 0, and

Fũ = T−1 ‖ũ‖2 = T−1u′Msu=T−1u′u−
(
T−1u′S

) (
T−1S′S

)−1 (
T−1S′u

)
. (B.109)

Also since ut are serially uncorrelated with zero means and variance σ2, we have

T−1u′u = σ2 +Op

(
T−1/2

)
,

and ∥∥∥(T−1u′S) (T−1S′S)−1 (T−1S′u)∥∥∥
F
≤
∥∥∥∥S′u

T

∥∥∥∥2
F

∥∥∥∥∥
(

S′S

T

)−1∥∥∥∥∥
F

,

which in view of (B.106) and (B.107) yields

(
T−1u′S

) (
T−1S′S

)−1 (
T−1S′u

)
= Op

(
l3T
T 3/2

)
+Op

(
l
3/2
T

T

)
.

The result (B.95) now follows using the above results in (B.109). Now consider the case where

S does not contain X, and note from (B.108) that

Fũ = T−1u′Msu+T−1β′X′MsXβ + 2T−1β′X′Msu. (B.110)

Since Ms is an idempotent matrix then∥∥T−1β′X′MsXβ
∥∥
F
≤ β′

(
X′X

T

)
β = β′Σxxβ +Op

(
T−1/2

)
= Op(1).

Similarly,

T−1β′X′Msu=T−1β′X′u−
(
T−1β′X′S

) (
T−1S′S

)−1 (
T−1S′u

)
= Op

(
T−1/2

)
+Op

(
lT√
T

)
+Op

(
l
5/2
T

T

)
.

The result (B.97) now follows if we use the above results in (B.110) and recalling that the

probability order of T−1u′Msu is given by (B.95). Consider now the least squares estimator of

δ̂ and note that under (B.93) it can be written as

δ̂ = (S′S)
−1

S′y= (S′S)
−1

S′Xβ + (S′S)
−1

S′u. (B.111)

Suppose that X is included as the first k+ 1 columns of S, and denote the remaining lT − k− 1

columns of S byW. Also partition δ̂ accordingly as
(
δ̂
′
x, δ̂

′
w

)′
, where δ̂x is the (k+1)×1 vector
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of estimated coeffi cients associated with X. Note also that in this case S (S′S)−1 S′X = X, and

we have

Sδ̂ = Xβ + S (S′S)
−1

S′u,

or

X
(
δ̂x − β

)
+ W

(
δ̂w − 0lT−k−1

)
= S (S′S)

−1
S′u,

which can be written more compactly as S
(
δ̂ − β0

)
= S (S′S)−1 S′u, where β0 =

(
β′,0′lT−k−1

)′
.

Premultiplying both sides by S′, and noting that S′S is invertible yields

δ̂ − β0 = (S′S)
−1

S′u,

with the norm of δ̂ − β0 given by∥∥∥δ̂ − β0

∥∥∥
F

=

∥∥∥∥∥
(

S′S

T

)−1(
S′u

T

)∥∥∥∥∥
F

≤
∥∥∥∥∥
(

S′S

T

)−1∥∥∥∥∥
F

∥∥∥∥(S′u

T

)∥∥∥∥
F

.

Now using (B.106) and (B.107) it readily follows that

∥∥∥δ̂ − β0

∥∥∥
F

= Op

(
lT√
T

)
+Op

(
l
5/2
T

T

)
, (B.112)

as required. Finally, in the case where one or more columns of X are not included in S, consider

the decomposition

δ̂ − β0 =
(
δ̂ − δ∗

)
+ (δ∗ − β0) , (B.113)

where δ∗ = Σ−1ss Σsxβ, and Σsx = E (T−1S′X). When at least one of the columns of X does not

belong to S, then δ∗ 6=β0. To investigate the probability order of the first term of the above,

using (B.111), we note that

δ̂ − δ∗ =
(
Σ̂−1ss Σ̂sx−Σ−1ss Σsx

)
β + (S′S)

−1
S′u,

where Σ̂sx = T−1S′X. But Σ̂−1ss Σ̂sx−Σ−1ss Σsx = ∆̂ss∆̂sx + ∆̂ssΣsx + Σ−1ss ∆̂sx, where ∆̂sx =

Σ̂sx −Σsx, and, as before, ∆̂ss = Σ̂−1ss −Σ−1ss . Hence∥∥∥(Σ̂−1ss Σ̂sx−Σ−1ss Σsx

)
β
∥∥∥
F
≤
∥∥∥∆̂ss

∥∥∥
F

∥∥∥∆̂sx

∥∥∥
F
‖β‖+

∥∥∥∆̂ss

∥∥∥
F
‖Σsx‖F ‖β‖

+
∥∥Σ−1ss ∥∥F ∥∥∥∆̂sx

∥∥∥
F
‖β‖

Using Lemma A18 by setting Sa = S (la,T = lT ) and Sb = X (lb,T = k + 1), we also have, by

(B.77), ∥∥∥∆̂sx

∥∥∥
F

=
∥∥∥Σ̂sx −Σsx

∥∥∥
F

= Op

(√
lT
T

)
. (B.114)
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Also
∥∥∥∆̂ss

∥∥∥
F

= Op

(
l2T/
√
T
)
by (B.105), ‖Σ−1ss ‖F = O

(√
lT
)
, by (B.101), ‖Σsx‖F = O

(√
lT
)
,

‖β‖ = O (1) . Therefore∥∥∥(Σ̂−1ss Σ̂sx−Σ−1ss Σsx

)
β
∥∥∥
F

= Op

(
l2T/
√
T
)
Op

(√
lT
T

)
+Op

(
l2T/
√
T
)
O
(√

lT

)
+O

(√
lT

)
Op

(√
lT
T

)

= Op

(
l
5/2
T

T

)
+Op

(
l
5/2
T√
T

)
+Op

(
lT√
T

)
.

Therefore, also using (B.112), overall we have∥∥∥δ̂ − δ∗∥∥∥
F

= Op

(
l
5/2
T

T

)
+Op

(
l
5/2
T√
T

)
+Op

(
lT√
T

)
.

Finally, using (B.113) ∥∥∥δ̂ − β0

∥∥∥
F
≤
∥∥∥δ̂ − δ∗

∥∥∥
F

+ ‖δ∗‖F + ‖β0‖F ,

where ‖β0‖ = O (1), since β0 contains finite (k+ 1) number of bounded nonzero elements, and

‖δ∗‖F =
∥∥Σ−1ss Σsx

∥∥
F

≤
∥∥Σ−1ss ∥∥F ‖Σsx‖F .

‖Σ−1ss ‖F = O
(√

lT
)
by (B.101), and ‖Σsx‖F = O

(√
lT
)
. Hence, in the case where at least one

of the columns of X does not belong to S, we have∥∥∥δ̂ − β0

∥∥∥
F

= O (lT ) +Op

(
l
5/2
T

T

)
+Op

(
l
5/2
T√
T

)
+Op

(
lT√
T

)
.

which completes the proof of (B.98).

B. Proof of Theorem 3

We proceed as in the proof of (B.52) in Lemma A10. We have that

Pr


∣∣∣∣∣∣∣∣

T−1/2x′iMqy√
(e′e/T )

(
x′iMqxi

T

)
∣∣∣∣∣∣∣∣ > cp (n, δ)

 ≤ Pr

∣∣∣∣∣∣
T 1/2

(
x′iMqη

T
− θ
)

σe,(T )σxi,(T )
+

T 1/2θi
σe,(T )σxi,(T )

∣∣∣∣∣∣ > cp (n, δ)

1 + dT

 .

We distinguish two cases: T 1/2|θi|
σe,(T )σxi,(T )

> cp(n,δ)

1+dT
and T 1/2|θi|

σe,(T )σxi,(T )
≤ cp(n,δ)

1+dT
. If T 1/2|θi|

σe,(T )σxi,(T )
> cp(n,δ)

1+dT
,

Pr

∣∣∣∣∣∣
T 1/2

(
x′iMqη

T
− θ
)

σe,(T )σxi,(T )
+

T 1/2θi
σe,(T )σxi,(T )

∣∣∣∣∣∣ > cp (n, δ)

1 + dT

 =

1− Pr

∣∣∣∣∣∣
T 1/2

(
x′iMqη

T
− θ
)

σe,(T )σxi,(T )
+

T 1/2θi
σe,(T )σxi,(T )

∣∣∣∣∣∣ ≤ cp (n, δ)

1 + dT

 ,
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and, by Lemma A12

Pr

∣∣∣∣∣∣
T 1/2

(
x′iMqη

T
− θ
)

σe,(T )σxi,(T )
+

T 1/2θi
σe,(T )σxi,(T )

∣∣∣∣∣∣ ≤ cp (n, δ)

1 + dT


≤ Pr

∣∣∣∣∣∣
T 1/2

(
x′iMqη

T
− θ
)

σe,(T )σxi,(T )

∣∣∣∣∣∣ > T 1/2 |θi|
σe,(T )σxi,(T )

− cp (n, δ)

1 + dT


while, if T 1/2|θi|

σe,(T )σxi,(T )
≤ cp(n,δ)

1+dT
, by (B.150) of Lemma F4,

Pr

∣∣∣∣∣∣
T 1/2

(
x′iMqη

T
− θ
)

σe,(T )σxi,(T )
+

T 1/2θi
σe,(T )σxi,(T )

∣∣∣∣∣∣ > cp (n, δ)

1 + dT


≤ Pr

∣∣∣∣∣∣
T 1/2

(
x′iMqη

T
− θ
)

σe,(T )σxi,(T )

∣∣∣∣∣∣ > cp (n, δ)

1 + dT
− T 1/2 |θi|
σe,(T )σxi,(T )


We further note that since cp (n, δ) → ∞, T 1/2|θi|

σe,(T )σxi,(T )
> cp(n,δ)

1+dT
implies T 1/2 |θi| > C2, for some

C2 > 0. Then, noting that x′iMqη

T
− θ is the average of a martingale difference process, by

Lemma A6, for some positive constants, C1, C2, C3, C4, C5, and, for any ψ > 0, we have

n∑
i=k+1

Pr


∣∣∣∣∣∣∣∣

T−1/2x′iMqy√
(e′e/T )

(
x′iMqxi

T

)
∣∣∣∣∣∣∣∣ > cp (n, δ)

 ≤ C1

n∑
i=k+1

I
(√

Tθi > C2

)

+ C3

n∑
i=k+1

I
(√

Tθi ≤ C4

)
exp

[
− ln(n)C5

]
,

= C1

n∑
i=k+1

I
(√

Tθi > C2

)
+ o(n1−ψ) +O

[
exp(−CTC5)

]
, (B.115)

since exp
[
− ln(n)C5

]
= o(nψ), which follows by noting that C0 ln(n)1/2 = o (C1 ln(n)), for any

C0, C1 > 0. As a result, the crucial term for the behaviour of FPRn,T is the first term on

the RHS of (B.115). Consider now the above probability bound under the two specifications

assumed for θi as given by (4) and (5). Under (4), for any ψ > 0,

n∑
i=k+1

Pr


∣∣∣∣∣∣∣∣

T−1/2x′iMqy√
(e′e/T )

(
x′iMqxi

T

)
∣∣∣∣∣∣∣∣ > cp (n, δ)

 ≤ C0

n∑
i=k+1

I
(√

T%i > Ci

)
+ o(n1−ψ).

for some C0, Ci > 0, i = k + 1, ..., n. So we need to determine the limiting property of∑n
i=k+1 I

(√
T%i > Ci

)
. Then, without loss of generality, consider i = [nζ ], T = nκ1 , ζ ∈ [0, 1],
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κ1 > 0. Then,
√
T%i =

√
T%T

(1/κ1)ζ = o(1) for all κ1, ζ > 0. Therefore,

Ca

n∑
i=k+1

I
(√

T%i > Cb/Ci

)
= o(nζ),

for all ζ > 0. This implies that under (4), θi = Ci%
i, |%| < 1, and cp (n, δ) = O

[
ln(n)1/2

]
, we

have

E |FPRn,T | = o(nζ−1) +O
[
exp(−nC0)

]
,

for all ζ > 0. Similarly, under (5), θi = Cii
−γ, and setting i = [nζ ], T = nκ1 , ζ, κ1 > 0, we have√

Tθi = T−(1/κ1)ζγ+1/2. We need −(1/κ1)ζγ + 1/2 < 0 or ζ > 1
2κ−11 γ

. Then,

Ca
n

n∑
i=k+1

I
(√

Tθi > Cb/Ci

)
= O

(
T

1

2κ−11 γ
−κ−11

)
= O

(
n

1

2κ−21 γ
−1
)

So

E |FPRn,T | = o(1), (B.116)

as long as 2κ−21 γ > 1 or if γ > 1
2κ−21

.

Remark B1 Note that if κ1 = 1, then the condition for (B.116) requires that γ > 1
2
.

C. Some results for the case where either noise variables are mixing,
or both signal/pseudo-signal and noise variables are mixing

When only noise variables are mixing, all the results of the main paper go through since we

can use the results obtained under (D1)-(D3) of Lemma D2 to replace Lemma A6.

As discussed in Section 4.2, some weak results can be obtained if both signal/pseudo-signal

and noise variables are mixing processes, but only if cp (n) is allowed to grow faster than under

the assumption of a martingale difference. This case is covered under (D4) of Lemma D2 and

(B.140)-(B.141) of Lemma D3. There, it is shown that, for suffi ciently large constants C0 −C3
for Assumption 4, the martingale difference bound which is given by exp

[
−1
2
κc2p (n)

]
in Lemma

A6 is replaced by the bound exp
[
−C4cp (n)s/(s+2)

]
, for some C4 > 0, where s is the exponent

in the probability tail in Assumption 4. It is important to note here that this bound seems

to be relatively sharp (see, e.g., Roussas (1996)), under our assumptions, and so we need to

understand its implications for our analysis. We abstract from the constant C4 which can

further deteriorate rates. Given (see result (i) of Lemma A2),

cp (n) = O

{[
ln

(
f (n)

2p

)]1/2}
,

it follows that

exp
[
−cp (n)s/(s+2)

]
= O

[
exp

{
−
[
ln

(
f (n)

2p

)]s/2(s+2)}]
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Let f (n) = 2p exp(nan). Then,

exp

{
−
[
ln

(
f (n)

2p

)]s/2(s+2)}
= exp

[
−nans/2(s+2)

]
To obtain the same bound as for the martingale difference case, we need to find a sequence

{an} , such that nCan = O (ln(n)). Setting nCan = ln(n), it follows that an = ln (ln(n)) /C lnn.

Further, setting C = s/2(s+ 2), we have an = 2(s+2) ln(ln(n))
s lnn

, which leads to the following choice

for f(n)

f (n) = 2p exp
(
n
2(s+2) ln(ln(n))

s lnn

)
∼ 2p exp

(
ln(n)

2(s+2)
s

)
.

Then,

cp(n) = O
[
ln
(

exp
(

ln(n)
2(s+2)
s

))]
= O

(
ln(n)

2(s+2)
s

)
,

which for n = O
(
TC1

)
, C1 > 0, implies that cp(n) = O

(
ln(T )

2(s+2)
s

)
, and so, cp(n) = o

(
TC2

)
,

for all C2 > 0, as long as s > 0.

We need to understand the implications of this result. For example, setting s = 2 which

corresponds to the normal case gives exp (ln(n)4) which makes the calculation of Φ−1
(

1− p
2f(n)

)
numerically problematic for n > 25. The fast rate at which f (n) grows basically implies that

we need s→∞ which corresponds to f (n) = 2p exp (ln(n)2). Even then, the analysis becomes

problematic for large n. s→∞ corresponds for all practical purposes to assuming boundedness

for xit. As a result, while the case of mixing xit can be analysed theoretically, its practical

implications are limited. On the other hand our Monte Carlo study in Section 5 suggests that

setting f (n) = f (n, δ) = nδ, δ ≥ 1 provides quite good results for autoregressive xit in small

samples.

D. Lemmas for mixing results

We consider the following assumptions that replace Assumption 3.

Assumption D1 xit, i = 1, 2, ..., k + k∗, are martingale difference processes with respect to

Fxst−1 ∪ Fxnt , where Fxst−1 and Fxnt are defined in Assumption 3. xit, i = 1, 2, ..., k + k∗ are

independent of xit, i = k + k∗ + 1, k + k∗ + 2, ..., n. E
(
xitxjt − E (xitxjt)

∣∣Fxst−1 ) = 0, i, j =

1, 2, ..., k + k∗. xit, i = k + k∗ + 1, k + k∗ + 2, ..., n, are heterogeneous strongly mixing processes

with mixing coeffi cients given by αi` = Ci`ξ
` for some Ci` such that supi,`Ci` < ∞ and some

0 < ξ < 1. E [xitut |Ft−1 ] = 0, for i = 1, 2, ..., n, and all t.

Assumption D2 xit, i = 1, 2, ..., k+ k∗ are independent of xit, i = k+ k∗+ 1, k+ k∗+ 2, ..., n.

xit, i = 1, 2, ..., n, are heterogeneous strongly mixing processes with mixing coeffi cients given by

αi` = Ci`ξ
` for some Ci` such that supi,`Ci` <∞ and some 0 < ξ < 1. E [xitut |Ft−1 ] = 0, for

i = 1, 2, ..., n, and all t.
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Lemma D1 Let ξt be a sequence of zero mean, mixing random variables with exponential

mixing coeffi cients given by φk = a0kϕ
k, 0 < ϕ < 1, a0k < ∞, k = 1, .... Assume, further,

that Pr (|ξt| > α) ≤ C0 exp [−C1αs], s ≥ 1. Then, for some C2, C3 > 0, each 0 < δ < 1 and

vT ≥ εT λ, λ > (1 + δ)/2,

Pr

(∣∣∣∣∣
T∑
t=1

ξt

∣∣∣∣∣ > vT

)
≤ C2 exp

[
−
(
C3vTT

−(1+δ)/2)s/(s+1)]
Proof. We reconsider the proof of Theorem 3.5 of White and Wooldridge (1991) relaxing the

assumption of stationarity. Define wt = ξtI(zt ≤ DT ) and vt = ξt − wt where DT will be

defined below. Using Theorem 3.4 of White and Wooldridge (1991), which does not assume

stationarity, we have that constants C0 and C1 in the statement of the present Lemma can be

chosen suffi ciently large such that

Pr

(∣∣∣∣∣
T∑
t=1

wt − E (wt)

∣∣∣∣∣ > vT

)
≤ C4 exp

[
−C5vTT−(1+δ)/2

DT

]
(B.117)

for some C4, C5 > 0, rather than

Pr

(∣∣∣∣∣
T∑
t=1

wt − E (wt)

∣∣∣∣∣ > vT

)
≤ C6 exp

[
−C7vTT−1/2

DT

]
for some C6, C7 > 0, which uses Theorem 3.3 of White and Wooldridge (1991). We explore the

effects this change has on the final rate. We revisit the analysis of the bottom half of page 489

of White and Wooldridge (1991). We need to determine DT such that

v−1T T

[
exp

(
−C1

(
DT

2

)s)]1/q
≤ exp

[
−CvTT−(1+δ)/2

DT

]
for some C > 0. Take logs and we have

ln
(
v−1T T

)
−
(

1

q

)
C1

(
DT

2

)s
≤ −CvTT

−(1+δ)/2

DT

or

Ds
T ≥ 2p

(
q

C1

)
ln
(
v−1T T

)
+

2sqCvT
C1T (1+δ)/2DT

For this it suffi ces that
2sqCvT

T (1+δ)/2DT

≥ 2pq ln
(
v−1T T

)
(B.118)

and

Ds
T ≥

2sqCvT
C1T (1+δ)/2DT

. (B.119)

Set

DT =

(
2sqCvT
C1T (1+δ)/2

)1/(s+1)
,
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so that (B.119) holds with equality. But since vT ≥ εT λ, λ > (1+δ)/2, (B.118) holds. Therefore,

2sqCvT
C1T (1+δ)/2DT

=

(
2sqCvT
C1T (1+δ)/2

)s/(s+1)
,

and the desired result follows.

Remark D1 The above lemma shows how one can relax the boundedness assumption in Theo-
rem 3.4 of White and Wooldridge (1991) to obtain an exponential inequality for heterogeneous

mixing processes with exponentially declining tail probabilities. Note that neither Theorem 3.4

of White and Wooldridge (1991) which deals with heterogeneity nor Theorem 3.5 of White and

Wooldridge (1991) which deals with stationary mixing processes is suffi cient for handling the

heterogeneous mixing processes we consider.

Remark D2 It is important for the rest of the lemmas in this supplement, and in particular,
the results obtained under (D4) of Lemma D2, to also note that Lemma 2 of Dendramis et al.

(2015) provides the result of Lemma D1 when δ = 0.

Lemma D2 Let xt, q·t = (q1,t, q2,t, ..., qlT ,t)
′, and ut be sequences of random variables and sup-

pose that there exist finite positive constants C0 and C1, and s > 0 such that supt Pr (|xt| > α) ≤
C0 exp (−C1αs), supi,t Pr (|qi,t| > α) ≤ C0 exp (−C1αs), and supt Pr (|ut| > α) ≤ C0 exp (−C1αs),
for all α > 0. Let Σqq = 1

T

∑T
t=1E (q·tq

′
·t) be a nonsingular matrix such that 0 <

∥∥Σ−1qq ∥∥F . Sup-
pose that Assumption 5 holds for xt and q·t, and denote the corresponding projection residuals

defined by (11) as ux,t = xt−γ ′qx,Tq·t. Let ûx = (ûx,1, ûx,2, ..., ûx,T )′ denote the T×1 LS residual

vector of the regression of xt on q·t. Let Ft = Fxt ∪ Fut , F
q
t = σ

(
{q·t}

t
s=1

)
and assume either

(D1) E
(
ux,tut − µxu,t|Ft−1 ∪ F qt−1

)
= 0, where µxu,t = E(ux,tut), xt and ut are martingale dif-

ference processes, q·t is an exponentially mixing process, and ζT = o(T λ), for all λ > 1/2, or

(D2) E
(
ux,tut − µxu,t|Ft−1 ∪ F qt−1

)
= 0, where µxu,t = E(ux,tut), ut is a martingale difference

processes, xt and q·t are exponentially mixing processes, and ζT = o(T λ), for all λ > 1/2, or

(D3) xt, ut and q·t are exponentially mixing processes, and ζT = o(T λ), for all λ > 1, or (D4)

xt, ut and q·t are exponentially mixing processes, and ζT = o(T λ), for all λ > 1/2. Then, we

have the following. If (D1) or (D2) hold, then, for any π in the range 0 < π < 1, there exist

finite positive constants C0 and C1, such that

Pr

(∣∣∣∣∣
T∑
t=1

xtut − E(xtut)

∣∣∣∣∣ > ζT

)
≤ exp

[
− (1− π)2 ζ2T

2Tω2xu,1,T

]
+ exp

[
−C0TC1

]
(B.120)

and

Pr

(∣∣∣∣∣
T∑
t=1

ûx,tut − µxu,t

∣∣∣∣∣ > ζT

)
≤ exp

[
− (1− π)2 ζ2T

2Tω2xu,T

]
+ exp

[
−C0TC1

]
, (B.121)

37



as long as lT = o(T 1/3), where ω2xu,1,T = 1
T

∑T
t=1E

[
(xtut − E(xtut))

2], ω2xu,T = 1
T

∑T
t=1E

[
(ux,tut − µxu,t)2

]
.

If (D3) holds

Pr

(∣∣∣∣∣
T∑
t=1

xtut − E(xtut)

∣∣∣∣∣ > ζT

)
≤ exp

[
−C0TC1

]
, (B.122)

for some C0, C1 > 0, and

Pr

(∣∣∣∣∣
T∑
t=1

ûx,tut − µxu,t

∣∣∣∣∣ > ζT

)
≤ exp

[
−C0TC1

]
, (B.123)

for some C0, C1 > 0, as long as lT = o(T 1/3). Finally, if (D4) holds,

Pr

(∣∣∣∣∣
T∑
t=1

xtut − E(xtut)

∣∣∣∣∣ > ζT

)
≤ C1 exp

[
−C0

(
ζTT

−1/2)s/(s+2)] , (B.124)

for some C0, C1 > 0, and

Pr

(∣∣∣∣∣
T∑
t=1

ûx,tut − µxu,t

∣∣∣∣∣ > ζT

)
≤ C2 exp

[
−C3

(
ζTT

−1/2)s/(s+2)]+ exp
[
−C0TC1

]
, (B.125)

for some C0, C1, C2, C3 > 0, as long as lT = o(T 1/3).

Proof. We first prove the lemma under (D1) and then modify the derivations to establish that
the results also hold under (D2)-(D4). The assumptions of the lemma state that there exists a

regression model underlying ûx,t which is denoted by

xt = β′qq·t + ux,t

for some l × 1 vector, βq. Denoting ux = (ux,1, ux,2, ..., ux,T )′, u = (u1, u2, ..., uT )′, Σ̂qq =

T−1 (Q′Q), Q = (q1, q2, ..., ql), and qi· = (qi1, qi2, ..., qiT )′, we have

û′xu = u′xu−
(
T−1u′xQ

)
Σ̂−1qq (Q′u) = u′x u−

(
T−1u′xQ

) (
Σ̂−1qq −Σ−1qq

)
(Q′u) +(

T−1u′xQ
)
Σ−1qq (Q′u)

Noting that, since ut is a martingale difference process with respect to σ
(
{us}t−1s=1 , {ux,s}

t
s=1 , {qs}

t
s=1

)
,

by Lemma A4,

Pr (|u′xu| > ζT ) ≤ exp

[
−(1− π)2ζ2T

2Tω2xu,T

]
. (B.126)

It therefore suffi ces to show that

Pr

(∣∣∣∣( 1

T
u′xQ

)(
Σ̂−1qq −Σ−1qq

)
(Q′u)

∣∣∣∣ > ζT

)
≤ exp

[
−C0TC1

]
(B.127)

and

Pr

(∣∣∣∣( 1

T
u′xQ

)
Σ−1qq (Q′u)

∣∣∣∣ > ζT

)
≤ exp

[
−C0TC1

]
(B.128)
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We explore (B.126) and (B.127). We start with (B.126). We have by Lemma A11 that, for

some sequence δT ,6

Pr

(∣∣∣∣( 1

T
u′xQ

)(
Σ̂−1qq −Σ−1qq

)
(Q′u)

∣∣∣∣ > ζT

)
≤

Pr

(∥∥∥∥ 1

T
u′xQ

∥∥∥∥∥∥∥(Σ̂−1qq −Σ−1qq

)∥∥∥ ‖Q′u‖F > ζT

)
≤ Pr

(∥∥∥(Σ̂−1qq −Σ−1qq

)∥∥∥ > ζT
δT

)
+

Pr (‖u′xQ‖F ‖Q′u‖F > δTT ) (B.130)

We consider the first term of the RHS of (B.130). Note that for all 1 ≤ i, j ≤ l.

Pr

(∣∣∣∣∣ 1

T

T∑
t=1

[qitqjt − E(qitqjt)]

∣∣∣∣∣ > ζT

)
≤ exp(−C0

(
T 1/2ζT

)s/(s+2)
), (B.131)

since qitqjt − E(qitqjt) is a mixing process and supi Pr (|qi,t| > α) ≤ C0 exp (−C1αs), s > 0.

Then, by Lemma F3,

Pr

(∥∥∥(Σ̂−1qq −Σ−1qq

)∥∥∥ > ζT
δT

)
≤ l2T exp

 −C0T s/2(s+2)ζs/(s+2)T

δ
s/(s+2)
T l

s/(s+2)
T

∥∥Σ−1qq ∥∥s/(s+1)F

(∥∥Σ−1qq ∥∥F + ζT
δT

)s/(s+1)
+

l2T exp

(
−C0

T s/2(s+2)∥∥Σ−1qq ∥∥s/(s+2)F
l
s/(s+2)
T

)
=

l2T exp

−C0
 T 1/2ζT

δT lT
∥∥Σ−1qq ∥∥F (∥∥Σ−1qq ∥∥F + ζT

δT

)
s/(s+2)

+

l2T exp

−C0( T 1/2∥∥Σ−1qq ∥∥F lT
)s/(s+2)

 .

We now consider the second term of the RHS of (B.130). By (B.12), we have

Pr (‖u′xQ‖F ‖Q′u‖F > δTT ) ≤ Pr
(
‖u′xQ‖F > δ

1/2
T T 1/2

)
+ Pr

(
‖Q′u‖F > δ

1/2
T T 1/2

)
.

6In what follows we use
Pr (|AB| > c) ≤ Pr (|A| |B| > c) (B.129)

where A and B are random variables. To see this note that |AB| ≤ |A| |B|. Further note that for any random
variables A1 > 0 and A2 > 0 for which A2 > A1 the occurrence of the event {A1 > c}, for any constant c > 0,
implies the occurrence of the event {A2 > c}. Therefore, Pr (A2 > c) ≥ Pr (A1 > c) proving the result.

39



Note that ‖Q′u‖2F =
∑lT

j=1

(∑T
t=1 qjtut

)2
, and

Pr
(
‖Q′u‖F > (δTT )1/2

)
= Pr

(
‖Q′u‖2F > δTT

)
≤

lT∑
j=1

Pr

( T∑
t=1

qjtut

)2
>
δTT

lT


=

lT∑
j=1

Pr

[∣∣∣∣∣
T∑
t=1

qjtut

∣∣∣∣∣ >
(
δTT

lT

)1/2]
.

Noting further that qitut and qituxt are martingale difference processes satisfying a result of the

usual form we obtain

Pr
(
‖u′xQ‖F > δ

1/2
T T 1/2

)
≤ lT Pr

(
|u′xqi| >

δ
1/2
T T 1/2

l
1/2
T

)
≤ lT exp

(
−CδT
lT

)
,

or

Pr
(
‖u′xQ‖F > δ

1/2
T T 1/2

)
≤ lT Pr

(
|u′xqi| >

δ
1/2
T T 1/2

l
1/2
T

)
≤ lT exp

((
−δTT
lT

)s/2(s+2))
,

depending on the order of magnitude of δ
1/2
T T 1/2

l
1/2
T

, and a similar result for Pr
(
‖Q′u‖F > δ

1/2
T T 1/2

)
.

Therefore,

Pr (‖u′xQ‖F ‖Q′u‖F > δTT ) ≤ exp
[
−C0TC1

]
. (B.132)

We wish to derive conditions for lT under which
T 1/2ζT

δT lT‖Σ−1qq ‖
F

(
‖Σ−1qq ‖

F
+
ζT
δT

) , T 1/2

‖Σ−1qq ‖
F
lT
, and δT

lT
are

of larger, polynomial in T , order than ζ2T
T
. Then, the factors in lT in (B.26) and (B.132) are

negligible. We let ζT = T λ, lT = T d,
∥∥Σ−1qq ∥∥F = l

1/2
T = T d/2 and δT = Tα, where α ≥ 0, can be

chosen freely. This is a complex analysis and we simplify it by considering relevant values for

our setting and, in particular, λ ≥ 1/2, λ < 1/2 + c, for all c > 1/2, and d < 1. We have

T 1/2ζT

δT lT
∥∥Σ−1qq ∥∥F (∥∥Σ−1qq ∥∥F + ζT

δT

) = O
(
T 1/2+λ−α−2d

)
+O

(
T 1/2−3d/2

)
, (B.133)

T 1/2∥∥Σ−1qq ∥∥F lT = O
(
T 1/2−3d/2

)
, (B.134)

δT
lT

= O
(
Tα−d

)
, (B.135)

and
ζ2T
T

= O
(
T 2λ−1

)
= O (c lnT ) . (B.136)

Clearly d < 1/3. Setting α = 1/3, ensures all conditions are satisfied. Since Σ−1qq is of lower

norm order than Σ̂−1qq −Σ−1qq , (B.128) follows similarly proving the result under (D1). For (D2)
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and (D3) we proceed as follows. Under (D3), noting that ut is a mixing process, then by Lemma

D1, we have that (B.126) is replaced by

Pr (|u′xu| > ζT ) ≤ exp
[
−C0

(
T−(1+ϑ)/2ζT

)s/(s+2)]
, (B.137)

else, under (D2), we have again that (B.126) holds. Further, by a similar analysis to that above,

it is easily seen that, under (D2),

Pr (‖u′xQ‖F ‖Q′u‖F > δTT ) ≤ lT exp

(
−CδT
lT

)
+ lT exp

−C0(T−ϑ/2δ1/2T

l
1/2
T

)s/(s+2)
 ,

and under (D3),

Pr (‖u′xQ‖F ‖Q′u‖F > δTT ) ≤ 2lT exp

[
−C0

(
T−ϑ/2δT

lT

)s/2(s+2)]
.

Under (D2), we wish to derive conditions for lT under which
T 1/2ζT

δT lT‖Σ−1qq ‖
F

(
‖Σ−1qq ‖

F
+
ζT
δT

) , T 1/2

‖Σ−1qq ‖
F
lT
,

and δT
lT
are of larger, polynomial in T , order than ζ2T

T
. But this is the same requirement to that un-

der (D1). Under (D3), we wish to derive conditions for lT under which
T 1/2ζT

δT lT‖Σ−1qq ‖
F

(
‖Σ−1qq ‖

F
+
ζT
δT

) ,
T 1/2

‖Σ−1qq ‖
F
lT
, δT
lT
and

(
T−1/2ζT

)s/(s+2)
are of positive polynomial in T , order. But again the same

conditions are needed as for (D1) and (D2). Finally, we consider (D4). But, noting Remark

D2, the only difference to (D3) is that ζT ≥ T 1/2, rather than ζT ≥ T . Then, as long as(
T−1/2ζT

)s/(s+2) →∞ the result follows.

Lemma D3 Let yt, for t = 1, 2, ..., T , be given by the data generating process (6) and suppose

that ut and xnt = (x1t, x2t, ..., xnt)
′ satisfy Assumptions 2-4. Let q·t = (q1,t, q2,t, ..., qlT ,t)

′ contain

a constant and a subset of xnt, and let ηt = x′b,tβb + ut, where xb,t is kb× 1 dimensional vector

of signal variables that do not belong to q·t, with the associated coeffi cients, βb. Assume that

Σqq = 1
T

∑T
t=1E (q·tq

′
·t) and Σ̂qq = Q′Q/T are both invertible, where Q = (q1·, q2·, ..., qlT ·)

and qi· = (qi1, qi2, ..., qiT )′, for i = 1, 2, ..., lT . Moreover, let lT = o(T 1/4) and suppose that

Assumption 5 holds for xt and q·t, where xt is a generic element of {x1t, x2t, ..., xnt} that does
not belong to q·t. Denote the corresponding projection residuals defined by (11) as ux,t =

xt − γ ′qx,Tq·t, and the projection residuals of yt on (q′·t, xt)
′ as et = yt − γ ′yqx,T (q′·t, xt)

′. Define

x = (x1, x2, ..., xT )′, y = (y1, y2, ..., yT )′, e = (e1, e2, ..., eT )′, Mq = IT − Q(Q′Q)−1Q′, and

θ = E (T−1x′MqXb)βb, where Xb is T ×kb matrix of observations on xb,t. Finally, cp (n, δ) is

such that cp (n, δ) = o
(√

T
)
. Then, under Assumption D1,for any π in the range 0 < π < 1,

dT > 0 and bounded in T , and for some Ci, c > 0 for i = 0, 1,

Pr [|tx| > cp (n, δ) |θ = 0] ≤ exp

[
− (1− π)2 σ2e,(T )σ

2
x,(T )c

2
p (n, δ)

2 (1 + dT )2 ω2xe,T

]
(B.138)

+ exp
(
−C0TC1

)
,
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where

tx =
T−1/2x′Mqy√

(e′e/T )
(
x′Mqx

T

) ,
σ2e,(T ) = E

(
T−1e′e

)
, σ2x,(T ) = E

(
T−1x′Mqx

)
,

and

ω2xe,T =
1

T

T∑
t=1

E
[
(ux,tηt)

2] .
Under σ2t = σ2 and/or E

(
u2x,t
)

= σ2xt = σ2x, for all t = 1, 2, ..., T ,

Pr [|tx| > cp (n, δ) |θ = 0] ≤ exp

[
− (1− π)2 c2p (n, δ)

2 (1 + dT )2

]
+ exp

(
−C0TC1

)
.

In the case where θ > 0, and assuming that there exists T0 such that for all T > T0, λT −
cp (n, δ) /

√
T > 0, where λT = θ/

(
σx,(T )σe,(T )

)
, then for dT > 0 and bounded in T and some Ci

> 0, i = 0, 1, 2, we have

Pr [|tx| > cp (n, δ) |θ 6= 0] > 1− exp
(
−C0TC1

)
. (B.139)

Under Assumption D2, for some C0, C1, C2 > 0,

Pr [|tx| > cp (n, δ) |θ = 0] ≤ exp
[
−C2cp (n, δ)s/(s+2)

]
+ exp

(
−C0TC1

)
, (B.140)

and

Pr [|tx| > cp (n, δ) |θ 6= 0] > 1− exp
(
−C0TC1

)
. (B.141)

Proof. We start under Assumption D1 and in the end note the steps that differ under As-
sumption D2. We recall that the DGP, given by (7), can be written as

y = aτ T + Xkβ+u = aτ T + Xaβa + Xbβb + u

where Xa is a subset of Q. Recall that Qx = (Q,x), Mq = IT − Q(Q′Q)−1Q′, Mqx =

IT −Qx(Q
′
xQx)

−1Q′x. Then, MqXa = 0, and let MqXb = (xbq,1,xbq,2, ...,xbq,T )′. Then,

tx =
T−1/2x′Mqy√

(e′e/T )
(
x′Mqx

T

) =
T−1/2x′MqXbβb√
(e′e/T )

(
x′Mqx

T

) +
T−1/2x′Mqu√

(e′e/T )
(
x′Mqx

T

) .
Let θ = E (T−1x′MqXb)βb, η = Xbβb + u, η = (η1, η2, ..., ηT )′ , and write (B.53) as

tx =

√
Tθ√

(e′e/T )
(
x′Mqx

T

) +
T 1/2

(
x′Mqη

T
− θ
)

√
(e′e/T )

(
x′Mqx

T

) .
42



First consider the case where θ = 0, and note that in this case

tx =
T 1/2

(
x′Mqx

T

)−1/2
x′Mqη

T√
(e′e/T )

.

Now by (B.46) of Lemma A9 and (B.121) of Lemma D2, we have

Pr [|tx| > cp (n, δ) |θ = 0] = Pr


∣∣∣∣∣∣∣
T 1/2

(
x′Mqx

T

)−1/2
x′Mqη

T√
(e′e/T )

∣∣∣∣∣∣∣ > cp (n, δ) |θ = 0

 ≤ (B.142)

Pr


∣∣∣∣∣∣∣
T 1/2

(
x′Mqx

T

)−1/2
x′Mqη

T

σe,(T )

∣∣∣∣∣∣∣ >
cp (n, δ)

1 + dT

+ exp
(
−C0TC1

)
.

Then, by Lemma F1, under Assumption D1 and defining α(XT ) =
(
x′Mqx

T

)−1/2
x′Mq where

α(XT ) is exogenous to yt, α(XT )′α(XT ) = 1 and by (B.121) of Lemma D2, we have,

Pr [|tx| > cp (n, δ) |θ = 0] ≤ exp

[
− (1− π)2 σ2e,(T )σ

2
x,(T )c

2
p (n, δ)

2 (1 + dT )2 ω2xe,T

]
(B.143)

+ exp
(
−C0TC1

)
where

ω2xe,T =
1

T

T∑
t=1

E
[
(ux,tηt)

2] =
1

T

T∑
t=1

E
[
u2x,t

(
x′b,tβb + ut

)2]
,

and ux,t, being the error in the regression of xt on Q, is defined by (11). Since by assumption

ut are distributed independently of ux,t and xb,t, then

ω2xe,T =
1

T

T∑
t=1

E
[
u2x,t

(
x′bq,tβb

)2]
+

1

T

T∑
t=1

E
(
u2xt
)
E
(
u2t
)
,

where x′bq,tβb is the t-th element ofMqXbβb. FurthermoreE
[
u2x,t

(
x′bq,tβb

)2]
= E

(
u2x,t
)
E
(
x′bq,tβb

)2
=

E
(
u2x,t
)
β′bE

(
xbq,tx

′
bq,t

)
βb, noting that under θ = 0, ux,t and xb,t are independently distributed.

Hence

ω2xe,T =
1

T

T∑
t=1

E
(
u2x,t
)
β′bE

(
xbq,tx

′
bq,t

)
βb +

1

T

T∑
t=1

E
(
u2xt
)
E
(
u2t
)

Similarly

σ2e,(T ) = E
(
T−1e′e

)
= E

(
T−1η′Mqxη

)
= E

[
T−1 (Xbβb + u)′Mqx (Xbβb + u)

]
= β′bE

(
T−1X′bMqxXb

)
βb +

1

T

T∑
t=1

E
(
u2t
)
,
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and since under θ = 0, x being a noise variable will be distributed independently of Xb, then

E (T−1X′bMqxXb) = E (T−1X′bMqXb), and we have

σ2e,(T ) = β′bE
(
T−1X′bMqXb

)
βb +

1

T

T∑
t=1

E
(
u2t
)

=
1

T

T∑
t=1

β′bE
(
xbq,tx

′
bq,t

)
βb +

1

T

T∑
t=1

E
(
u2t
)
.

Using (B.55) and (B.56), it is now easily seen that if either E
(
u2x,t
)

= σ2ux or E (u2t ) = σ2, for

all t, then we have ω2xe,T = σ2e,(T )σ
2
x,(T ), and hence

Pr [|tx| > cp (n, δ) |θ = 0] ≤ exp

[
− (1− π)2 c2p (n, δ)

2 (1 + dT )2

]
+ exp

(
−C0TC1

)
.

giving a rate that does not depend on error variances. Next, we consider θ 6= 0. By (B.45) of

Lemma A9, for dT > 0,

Pr


∣∣∣∣∣∣∣∣

T−1/2x′Mqy√
(e′e/T )

(
x′Mqx

T

)
∣∣∣∣∣∣∣∣ > cp (n, δ)

 ≤ Pr

(∣∣∣∣T−1/2x′Mqy

σe,(T )σx,(T )

∣∣∣∣ > cp (n, δ)

1 + dT

)
+ exp

(
−C0TC1

)
.

We then have

T−1/2x′Mqy

σe,(T )σx,(T )
=
T 1/2

(
x′MqXbβb

T
− θ
)

σe,(T )σx,(T )
+
T−1/2x′Mqu

σe,(T )σx,(T )
+

T 1/2θ

σe,(T )σx,(T )

=
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )
+

T 1/2θ

σe,(T )σx,(T )
.

Then

Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )
+

T 1/2θ

σe,(T )σx,(T )

∣∣∣∣∣∣ > cp (n, δ)

1 + dT


= 1− Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )
+

T 1/2θ

σe,(T )σx,(T )

∣∣∣∣∣∣ ≤ cp (n, δ)

1 + dT

 .

We note that, by Lemma A12,

Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )
+

T 1/2θ

σe,(T )σx,(T )

∣∣∣∣∣∣ ≤ cp (n, δ)

1 + dT


≤ Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )

∣∣∣∣∣∣ > T 1/2 |θ|
σe,(T )σx,(T )

− cp (n, δ)

1 + dT

 .
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But (T−1x′Mqη − θ) is the average of a martingale difference process and so

Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )

∣∣∣∣∣∣ > T 1/2 |θ|
σe,(T )σx,(T )

− cp (n, δ)

1 + dT

 (B.144)

≤ exp

[
−C1

(
T 1/2

(
T 1/2 |θ|

σe,(T )σx,(T )
− θcp (n, δ)

1 + dT

))s/(s+2)]
.

So overall

Pr


∣∣∣∣∣∣∣∣

T−1/2x′Mqy√
(e′e/T )

(
x′Mqx

T

)
∣∣∣∣∣∣∣∣ > cp (n, δ)

 > 1− exp
(
−C0TC1

)

− exp

[
−C1

(
T 1/2

(
T 1/2 |θ|

σe,(T )σx,(T )
− θcp (n, δ)

1 + dT

))s/(s+2)]
.

Finally, we note the changes needed to the above arguments when Assumption D2 holds,

rather than D1. (B.140) follows if in (B.142) we use (B.125) of Lemma D2 rather than (B.121)

and, in (B.143), we use Lemma F2 rather than Lemma F1 and, again, we use (B.125) of

Lemma D2 rather than (B.121). (B.140) follows again by using (B.125) of Lemma D2 rather

than (B.121).

Remark D3 We note that the above proof makes use of Lemmas F1 and F2. Alternatively
one can use (B.45) of Lemma A9 in (B.142)-(B.143), rather that (B.46) of Lemma A9 and use

the same line of proof as that provided in Lemma A10. However, we consider this line of proof

as Lemmas F1 and F2 are of independent interest.

E. Lemmas for the deterministic case

Lemmas E1 and E2 provide the necessary justification for the case where xit are bounded

deterministic sequences, by replacing Lemmas A6 and A10.

Lemma E1 Let xit, i = 1, 2, ..., n, be a set of bounded deterministic sequences and ut satisfy

Assumption 2 and condition (10) of Assumption 4, and consider the data generating process

(6) with k signal variables x1t, x2t, ..., xkt. Let q·t = (q1,t, q2,t, ..., qlT ,t)
′ contain a constant

and a subset of xnt = (x1t, x2t, ..., xnt)
′. Let ηt = xb,tβb + uη,t, where xb,t contains all sig-

nals that do not belong to q·t. Let Σqq = Q′Q/T be invertible for all T , and
∥∥Σ−1qq ∥∥FF =

O
(√

lT
)
, where Q = (q1·, q2·, ..., qlT ·) and qi· = (qi1, qi2, ..., qiT )′, for i = 1, 2, ..., lT . Sup-

pose that Assumption 5 holds for xit and q·t, and ut and q·t. Let uxi,T be as in (11), such

that supi,j limT→∞
‖q′iuxj,T ‖

T 1/2
< C < ∞, and let ûxi = (ûxi,1, ûxi,2, ..., ûxi,T )′ = Mqxi, xi =

(xi1, xi2, ..., xiT )′, ûη = (ûη,1, ûη,2, ..., ûη,T )′ = Mqη, η = (η1, η2, ..., ηT )′, Mq = IT−Q (Q′Q)−1 Q,
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Ft = Fxt ∪ Fut , µxiη,t = E (uxi,tuη,t |Ft−1 ), ω2xiη,1,T = 1
T

∑T
t=1E

[
(xitηt − E (xitηt |Ft−1 ))2

]
and

ω2xiη,T = 1
T

∑T
t=1E

[
(uxi,tuη,t − µxiη,t)

2]. Then, for any π in the range 0 < π < 1, we have,

under Assumption 3,

Pr

(∣∣∣∣∣
T∑
t=1

xitηt − E (xitηt |Ft−1 )

∣∣∣∣∣ > ζT

)
≤ exp

[
− (1− π)2 ζ2T

2Tω2xiη,1,T

]
, (B.145)

where ζT = O
(
T λ
)
, and (s+ 1)/(s+ 2) ≥ λ. If (s+ 1)/(s+ 2) < λ,

Pr

(∣∣∣∣∣
T∑
t=1

xitηt − E (xitηt |Ft−1 )

∣∣∣∣∣ > ζT

)
≤ exp

[
−C0ζs/(s+1)T

]
,

for some C0 > 0. If it is further assumed that lT = O
(
T d
)
, for some λ and d such that d < 1/3,

and 1/2 ≤ λ ≤ (s+ 1)/(s+ 2), then

Pr

(∣∣∣∣∣
T∑
t=1

(ûxi,tuη,t − µxiη,t)
∣∣∣∣∣ > ζT

)
≤ C2 exp

[
− (1− π)2 ζ2T

2Tω2xiη,T

]
+ exp

(
−C0TC1

)
.

for some C0, C1, C2 > 0. Otherwise, if λ > (s+ 1)/(s+ 2),

Pr

(∣∣∣∣∣
T∑
t=1

(ûxi,tuη,t − µxiη,t)
∣∣∣∣∣ > ζT

)
≤ exp

[
−C2ζs/(s+1)T

]
+ exp

(
−C0TC1

)
,

for some C0, C1, C2 > 0.

Proof. Note that all results used in this proof hold both for sequences and triangular ar-
rays. (B.145) follows immediately given our assumptions and Lemma A3. We proceed to

prove the rest of the lemma. Note that now ûxi is a bounded deterministic vector and

uxi = (uxi,1, uxi,2, ..., uxi,T )′ a segment of dimension T of its limit. We first note that

T∑
t=1

(ûxi,tûη,t − µxiη,t) = û′xiûη −
T∑
t=1

µxiη,t = u′xiMquη−
T∑
t=1

µxiη,t

=
T∑
t=1

(uxi,tuη,t − µxiη,t)−
(
T−1u′xiQ

)
Σ−1qq (Q′uη) ,

where ux = (ux,1, ux,2, ..., ux,T )′ and uη = (uη,1, ux,2, ..., uη,T )′. By (B.59) and for any 0 < πi < 1

such that
∑2

i=1πi = 1,we have

Pr

(∣∣∣∣∣
T∑
t=1

(ûxi,tûη,t − µxiη,t)
∣∣∣∣∣ > ζT

)
≤ Pr

(∣∣∣∣∣
T∑
t=1

(uxi,tuη,t − µxiη,t)
∣∣∣∣∣ > π1ζT

)
+ Pr

(∣∣(T−1u′xiQ)Σ−1qq (Q′uη)
∣∣ > π2ζT

)
.
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Also applying (B.60) to the last term of the above we obtain

Pr
(∣∣(T−1u′xiQ)Σ−1qq (Q′uη)

∣∣ > π2ζT
)

≤ Pr
(∥∥Σ−1qq ∥∥F ∥∥T−1u′xiQ∥∥F ‖Q′uη‖F > π2ζT

)
≤ Pr

(∥∥Σ−1qq ∥∥F > π2ζT
δT

)
+ Pr

(
T−1

∥∥u′xiQ∥∥F ‖Q′uη‖F > π2δT
)

≤ Pr

(∥∥Σ−1qq ∥∥F > π2ζT
δT

)
+ Pr

(∥∥u′xiQ∥∥F > (π2δTT )1/2
)

+ Pr
(
‖Q′uη‖F > (π2δTT )1/2

)
,

where δT > 0 is a deterministic sequence. In what follows we set δT = O (ζαT ), with 0 < α < λ,

so that ζT/δT is rising in T . Overall

Pr

(∣∣∣∣∣
T∑
t=1

(ûx,tuη,t − µxη,t)
∣∣∣∣∣ > ζT

)
(B.146)

≤ Pr

(∣∣∣∣∣
T∑
t=1

(ux,tuη,t − µxη,t)
∣∣∣∣∣ > π1ζT

)
+ Pr

(∥∥Σ−1qq ∥∥F > π2ζT
δT

)
+ Pr

(
‖Q′uη‖F > (π2δTT )1/2

)
+ Pr

(
‖u′xQ‖F > (π2δTT )1/2

)
.

We consider the four terms of the above, and note that since by assumption {qituη,t} are
martingale difference sequences and satisfy the required probability bound conditions of Lemma

A4, and {qituxi,t} are bounded sequences, then for some C, c > 0 we have7

sup
i

Pr
(
‖q′iuη‖ > (π2δTT )1/2

)
≤ exp

(
−C0TC1

)
and as long as lT = o (δT ),

Pr
(
‖u′xQ‖F > (π2δTT )1/2

)
= 0

Also, since ‖Q′uη‖2F =
∑lT

j=1

(∑T
t=1 qjtut

)2
,

Pr
(
‖Q′uη‖F > (π2δTT )1/2

)
= Pr

(
‖Q′uη‖2F > π2δTT

)
≤

lT∑
j=1

Pr

( T∑
t=1

qjtuη,t

)2
>
π2δTT

lT


=

lT∑
j=1

Pr

[∣∣∣∣∣
T∑
t=1

qjtuη,t

∣∣∣∣∣ >
(
π2δTT

lT

)1/2]
,

7The required probability bound on uxt follows from the probability bound assumptions on xt and on qit,
for i = 1, 2, ..., lT , even if lT →∞. See also Lemma A5.
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which upon using (B.22) yields (for some C, c > 0)

Pr
(
‖Q′uη‖F > (π2δTT )1/2

)
≤ lT exp (−CT c) , Pr

(
‖Q′ux‖ > (π2δTT )1/2

)
= 0.

Further, it is easy to see that

Pr

(∥∥Σ−1qq ∥∥F > π2ζT
δT

)
= 0

as long as ζT

δT l
1/2
T

→ ∞. But as long as lT = o
(
T 1/3

)
, there exists a sequence δT such that

ζT/δT →∞, lT = o (δT ) and ζT

δT l
1/2
T

→∞ as required, establishing the required result.

Lemma E2 Let yt, for t = 1, 2, ..., T , be given by the data generating process (6) and suppose

that xnt = (x1t, x2t, ..., xnt)
′ are bounded deterministic sequences, and ut satisfy Assumption

2 and condition (10) of Assumption 4. Let q·t = (q1,t, q2,t, ..., qlT ,t)
′ contain a constant and a

subset of xnt = (x1t, x2t, ..., xnt)
′, and let ηt = xb,tβb + ut, where xb,t is kb × 1 dimensional

vector of signal variables that do not belong to q·t. Assume that Σqq = Q′Q/T is invertible

for all T , and
∥∥Σ−1qq ∥∥F = O

(√
lT
)
, where Q = (q1·, q2·, ..., qlT ·) and qi· = (qi1, qi2, ..., qiT )′, for

i = 1, 2, ..., lT . Moreover, let lT = o(T 1/4) and suppose that Assumption 5 holds for xit and

q·t, and ut and q·t. Define x = (x1, x2, ..., xT )′, y= (y1, y2, ..., yT )′, Mq = IT − Q(Q′Q)−1Q′,

and θ = T−1x′MqXbβb, where Xb is T ×kb matrix of observations on xb,t. Let uxi,T be as in
(11), such that supi,j limT→∞

‖q′iuxj,T ‖
T 1/2

< C < ∞. Let e = (e1, e2, ..., eT )′ be the T × 1 vector

of residuals in the linear regression model of yt on q·t and xt. Then, for any π in the range

0 < π < 1, dT > 0 and bounded in T , and for some Ci > 0 for i = 0, 1,

Pr [|tx| > cp (n, δ) |θ = 0] ≤ exp

[
− (1− π)2 σ2u,(T )σ

2
x,(T )c

2
p (n, δ)

2 (1 + dT )2 ω2xu,T

]
+ exp

(
−C0TC1

)
,

where

tx =
T−1/2x′Mqy√

(e′e/T )
(
x′Mqx

T

) ,
σ2u,(T ) and σ

2
x,(T ) are defined by (B.39) and (B.34), and

ω2xu,T =
1

T

T∑
t=1

σ2xtσ
2
t ,

Under σ2t = σ2 and/or σ2xt = σ2x for all t = 1, 2, ..., T ,

Pr [|tx| > cp (n, δ) |θ = 0] ≤ exp

[
− (1− π)2 c2p (n, δ)

2 (1 + dT )2

]
+ exp

(
−C0TC1

)
.
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for some C0, C1 > 0. In the case where θ > 0, and assuming that cp (n, δ) = o(
√
T ), then for

dT > 0 and some Ci > 0, i = 0, 1, we have

Pr [|tx| > cp (n, δ) |θ 6= 0] > 1− exp
(
−C0TC1

)
.

Proof. The model for y can be written as

y = aτ T + Xkβ+u = aτ T + Xaβa + Xbβb + u

where τ T is a T×1 vector of ones,Xa is a subset ofQ. LetQx = (Q,x),Mq = IT−Q(Q′Q)−1Q′,

Mqx = IT −Qx(Q
′
xQx)

−1Q′x. Then, MqXa = 0. MqXb = (xbq,1,xbq,2, ...,xbq,T )′. Then,

tx =
T−1/2x′Mqy√

(e′e/T )
(
x′Mqx

T

) =
T−1/2x′MqXbβb√
(e′e/T )

(
x′Mqx

T

) +
T−1/2x′Mqu√

(e′e/T )
(
x′Mqx

T

) .
Let

η = Xbβb + u, η = (η1, η2, ..., ηT )′

θ = T−1x′MqXbβb,

σ2e,(T ) = E (e′e/T ) = E

(
η′Mqxη

T

)
, σ2x,(T ) = E

(
x′Mqx

T

)
,

and write (B.53) as

tx =

√
Tθ√

(e′e/T )
(
x′Mqx

T

) +
T−1/2 [x′Mq η− E (x′Mqη)]√

(e′e/T )
(
x′Mqx

T

) .

x′Mq η− E (x′Mqη) = [x′Mq u− E (x′Mqu)] ,

(MqXbβb)
′ (MqXbβb)

T
=

1

T

T∑
t=1

(
x′bq,1βb

)2
=

1

T

T∑
t=1

σ2xbt = σ2b,(T ).

Then, we consider two cases: x′MqXbβb
T

:= θ = 0 and θ 6= 0. We consider each in turn. First,

we consider θ = 0 and note that

tx =
T−1/2 [x′Mq u− E (x′Mqu)]√

(e′e/T )
(
x′Mqx

T

) .

By Lemma A9, we have

Pr [|tx| > cp (n, δ) |θ = 0] = Pr


∣∣∣∣∣∣∣∣

T−1/2x′Mqη√
(e′e/T )

(
x′Mqx

T

)
∣∣∣∣∣∣∣∣ > cp (n, δ) |θ = 0

 ≤
Pr

(∣∣∣∣T−1/2x′Mqη

σx,(T )σe,(T )

∣∣∣∣ > cp (n, δ)

1 + dT

)
+ exp

(
−C0TC1

)
.
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By Lemma E1, it then follows that,

Pr [|tx| > cp (n, δ) |θ = 0] ≤ exp

[
− (1− π)2 σ2e,(T )σ

2
x,(T )c

2
p (n, δ)

2 (1 + dT )2 ω2xe,T

]
+ exp

(
−C0TC1

)
where ω2xe,T = 1

T

∑T
t=1E

[
(ux,tηt)

2]. Note that, by independence of ut with ux,t and xbq,t we
have

ω2xe,T =
1

T

T∑
t=1

E
[
(ux,tηt)

2] =
1

T

T∑
t=1

E
[
u2x,t

(
x′bq,1βb

)2]
+ E

(
u2xt
)
E
(
u2t
)
.

By the deterministic nature of xit, and under homoscedasticity for ηt, it follows that σ2e,(T )σ
2
x,(T ) =

ω2xe,T , and so

Pr [|tx| > cp (n, δ) |θ = 0] ≤ exp

[
− (1− π)2 c2p (n, δ)

2 (1 + dT )2

]
+ exp

(
−C0TC1

)
.

giving a rate that does not depend on variances. Next, we consider θ 6= 0. By Lemma A9, for

dT > 0,

Pr


∣∣∣∣∣∣∣∣

T−1/2x′Mqy√
(e′e/T )

(
x′Mqx

T

)
∣∣∣∣∣∣∣∣ > cp (n, δ)

 ≤ Pr

(∣∣∣∣T−1/2x′Mqy

σe,(T )σx,(T )

∣∣∣∣ > cp (n, δ)

1 + dT

)

+ exp
(
−C0TC1

)
.

We then have
T−1/2x′Mqy

σe,(T )σx,(T )
=
T−1/2x′Mqu

σe,(T )σx,(T )
+

T 1/2θ

σe,(T )σx,(T )

Then,

Pr

(∣∣∣∣T−1/2x′Mqu

σe,(T )σx,(T )
+

T 1/2θ

σe,(T )σx,(T )

∣∣∣∣ > cp (n, δ)

1 + dT

)
= 1− Pr

(∣∣∣∣T 1/2T−1/2x′Mqu

σe,(T )σx,(T )
+

T 1/2θ

σe,(T )σx,(T )

∣∣∣∣ ≤ cp (n, δ)

1 + dT

)
.

We note that

Pr

(∣∣∣∣T−1/2x′Mqu

σe,(T )σx,(T )
+

T 1/2θ

σe,(T )σx,(T )

∣∣∣∣ ≤ cp (n, δ)

1 + dT

)
≤ Pr

(∣∣∣∣T−1/2x′Mqu

σe,(T )σx,(T )

∣∣∣∣ > T 1/2 |θ|
σe,(T )σx,(T )

− cp (n, δ)

1 + dT

)
.
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But T−1x′Mqu is the average of a martingale difference process and so

Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqu

T

)
σe,(T )σx,(T )

∣∣∣∣∣∣ > T 1/2 |θ|
σe,(T )σx,(T )

− cp (n, δ)

1 + dT


≤ exp

(
−C0TC1

)
+ exp

[
−C

(
T 1/2

(
T 1/2 |θ|

σe,(T )σx,(T )
− cp (n, δ)

1 + dT

))s/(s+2)]
.

So overall,

Pr


∣∣∣∣∣∣∣∣

T−1/2x′Mqy√
(e′e/T )

(
x′Mqx

T

)
∣∣∣∣∣∣∣∣ > cp (n, δ)

 > 1− exp
(
−C0TC1

)

− exp

[
−C

(
T 1/2

(
T 1/2 |θ|

σe,(T )σx,(T )
− cp (n, δ)

1 + dT

))s/(s+2)]
.

F. Supplementary lemmas for Sections B and C of the online theory
supplement

Lemma F1 Suppose that ut, t = 1, 2, ..., T , is a martingale difference process with respect to

Fut−1 and with constant variance σ2, and there exist constants C0, C1 > 0 and s > 0 such that

Pr (|ut| > α) ≤ C0 exp (−C1αs), for all α > 0. Let XT = (xlT ,1,xlT ,2, , ..,xlT ,T ), where xlT ,t is

an lT × 1 dimensional vector of random variables, with probability measure given by P (XT ),

and assume

E (ut |FxT ) = 0, for all t = 1, 2, ..., T , (B.147)

where FxT = σ (xlT ,1,xlT ,2, , ..,xlT ,T ). Further assume that there exist functions

α(XT ) = [α1(XT ), α2(XT ), ..., αT (XT )]′ such that 0 < supXT
α(XT )′α(XT ) ≤ gT , for some

sequence gT > 0. Then,

Pr

(∣∣∣∣∣
T∑
t=1

αt(XT )ut

∣∣∣∣∣ > ζT

)
≤ exp

(
−ζ2T

2gTσ2

)
.

Proof. Define AT=
{∣∣∣∑T

t=1 αt(XT )ut

∣∣∣ > ζT

}
. Then,

Pr (AT ) =

∫
XT

Pr (AT |FxT )P (XT ) ≤ sup
XT

Pr (AT |FxT )

∫
XT

P (XT ) = sup
XT

Pr (AT |FxT )

But, by (B.147) and Lemma A3

Pr (AT |FxT ) ≤ exp

(
−ζ2T

2σ2
∑T

t=1 α
2
t (XT )

)
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But

sup
XT

exp

(
−ζ2T

2σ2
∑T

t=1 α
2
t (XT )

)
≤ exp

(
−ζ2T

2gTσ2

)
,

proving the result.

Lemma F2 Suppose that ut, t = 1, 2, ..., T , is a zero mean mixing random variable with ex-

ponential mixing coeffi cients given by φk = a0kϕ
k, 0 < ϕ < 1, a0k < ∞, k = 1, ..., with

constant variance σ2, and there exist suffi ciently large constants C0, C1 > 0 and s > 0 such that

Pr (|ut| > α) ≤ C0 exp (−C1αs), for all α > 0. Let XT = (xlT ,1,xlT ,2, , ..,xlT ,T ), where xlT ,t is

an lT × 1 dimensional vector of random variables, with probability measure given by P (XT ).

Further assume that there exist functions

α(XT ) = [α1(XT ), α2(XT ), ..., αT (XT )]′ such that 0 < supXT
α(XT )′α(XT ) ≤ gT , for some

sequence gT > 0. Then,

Pr

(∣∣∣∣∣
T∑
t=1

αt(XT )ut

∣∣∣∣∣ > ζT

)
≤ exp

−( ζT

g
1/2
T σ

)s/(s+1)
 .

Proof. Define AT=
{∣∣∣∑T

t=1 αt(XT )ut

∣∣∣ > ζT

}
and consider FxT = σ (xlT ,1,xlT ,2, , ..,xlT ,T ) .

Then,

Pr (AT ) =

∫
XT

Pr (AT |FxT )P (XT ) ≤ sup
XT

Pr (AT |FxT )

∫
XT

P (XT ) = sup
XT

Pr (AT |FxT )

But, using Lemma 2 of Dendramis et al. (2015) we can choose C0, C1 such that

Pr (AT |FxT ) ≤ exp

−
 −ζT
σ
√∑T

t=1 α
2
t (XT )

s/(s+1)
 ,

and

sup
XT

exp

−
 −ζT
σ
√∑T

t=1 α
2
t (XT )

s/(s+1)
 ≤ exp

−( ζT

g
1/2
T σ

)s/(s+1)
 ,

thus establishing the desired result.

Lemma F3 Let AT = (aij,T ) be a lT × lT matrix and ÂT = (âij,T ) be an estimator of AT . Let∥∥A−1T ∥∥F > 0 and suppose that for some s > 0, any bT > 0 and C0 > 0

sup
i,j

Pr (|âij,T − aij,T | > bT ) ≤ exp
(
−C0

(
T 1/2bT

)s/(s+2))
.

52



Then

Pr
(∥∥∥Â−1T −A−1T ∥∥∥ > bT

)
≤ l2T exp

(
−C0

(
T 1/2bT

)s/(s+2)
l
s/(s+2)
T

∥∥A−1T ∥∥s/(s+2)F

(∥∥A−1T ∥∥F + bT
)s/(s+2)

)
(B.148)

+ l2T exp

(
−C0

T s/2(s+2)∥∥A−1T ∥∥s/(s+2)F
l
s/(s+2)
T

)
,

where ‖A‖ denotes the Frobenius norm of A.

Proof. First note that since bT > 0, then

Pr
(∥∥∥ÂT −AT

∥∥∥
F
> bT

)
= Pr

(∥∥∥ÂT −AT

∥∥∥2
F
> b2T

)
= Pr

([
lT∑
j=1

lT∑
i=1

(âij,T − aij,T )2 > b2T

])
,

and using the probability bound result, (B.59), and setting πi = 1/lT , we have

Pr
(∥∥∥ÂT −AT

∥∥∥
F
> bT

)
≤

lT∑
j=1

lT∑
i=1

Pr
(
|âij,T − aij,T |2 > l−2t b2T

)
(B.149)

=

lT∑
j=1

lT∑
i=1

Pr
(
|âij,T − aij,T | > l−1t bT

)
≤ l2T sup

ij

[
Pr
(
|âij,T − aij,T | > l−1t bT

)]
= l2T exp

(
−C0T s/2(s+1)

b
s/(s+2)
T

l
s/(s+2)
t

)
.

To establish (B.148) define the events

AT =
{∥∥A−1T ∥∥F ∥∥∥ÂT −AT

∥∥∥
F
< 1
}
and BT =

{∥∥∥Â−1T −A−1T ∥∥∥ > bT

}
and note that by (2.15) of Berk (1974) if AT holds we have

∥∥∥Â−1T −A−1T ∥∥∥ ≤
∥∥A−1T ∥∥2F ∥∥∥ÂT −AT

∥∥∥
F

1−
∥∥A−1T ∥∥F ∥∥∥ÂT −AT

∥∥∥
F

.

Hence

Pr (BT |AT ) ≤ Pr

 ∥∥A−1T ∥∥2F ∥∥∥ÂT −AT

∥∥∥
F

1−
∥∥A−1T ∥∥F ∥∥∥ÂT −AT

∥∥∥
F

> bT


= Pr

(∥∥∥ÂT −AT

∥∥∥
F
>

bT∥∥A−1T ∥∥F (∥∥A−1T ∥∥F + bT
)) .
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Note also that

Pr (BT ) = Pr
(
{BT ∩ AT} ∪

{
BT ∩ ACT

})
= Pr (BT |AT ) Pr (AT ) + Pr

(
BT |ACT

)
Pr
(
ACT
)
.

Furthermore

Pr
(
ACT
)

= Pr
(∥∥A−1T ∥∥F ∥∥∥ÂT −AT

∥∥∥
F
> 1
)

= Pr
(∥∥∥ÂT −AT

∥∥∥
F
>
∥∥A−1T ∥∥−1F ) ,

and by (B.149) we have

Pr
(
ACT
)
≤ l2T exp

(
−C0T s/2(s+2)

b
s/(s+2)
T

l
s/(s+2)
t

)
= exp

(
−C0

T s/2(s+2)∥∥A−1T ∥∥s/(s+2)F
l
s/(s+2)
T

)
.

Using the above result, we now have

Pr (BT ) ≤ Pr

(∥∥∥ÂT −AT

∥∥∥
F
>

bT∥∥A−1T ∥∥F (∥∥A−1T ∥∥F + bT
))Pr (AT )

+ Pr
(
BT |ACT

)
exp

(
−C0

T s/2(s+2)∥∥A−1T ∥∥s/(s+2)F
l
s/(s+2)
T

)
.

Furthermore, since Pr (AT ) ≤ 1 and Pr
(
BT |ACT

)
≤ 1 then

Pr (BT ) = Pr
(∥∥∥Â−1T −A−1T ∥∥∥ > bT

)
≤ Pr

(∥∥∥ÂT −AT

∥∥∥
F
>

bT∥∥A−1T ∥∥F (∥∥A−1T ∥∥F + bT
))

+ exp

(
−C0

T s/2(s+2)∥∥A−1T ∥∥s/(s+2)F
l
s/(s+2)
T

)
.

Result (B.148) now follows if we apply (B.149) to the first term on the RHS of the above.

Lemma F4 Consider the scalar random variable XT , and the constants B and C. Then, if

C > |B| > 0,

Pr (|X +B| > C) ≤ Pr (|X| > C − |B|) . (B.150)

Proof. The result follows by noting that |X +B| ≤ |X|+ |B|.
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1 Introduction

This supplement to Chudik, Kapetanios, and Pesaran (2018, hereafter CKP) provides a description of the

individual methods employed in the empirical illustration, and additional empirical results. The empirical

illustration is set out in Section 6 of CKP. Section 2 below describes the forecasting exercise, and Section

3 reports additional empirical results.

2 Description of the forecasting exercise

We forecast the U.S. GDP growth and CPI inflation using a set of macroeconomic variables. We use

the smaller dataset considered in Stock and Watson (2012), which contains 109 series. The series are

transformed by taking logarithms and/or differencing following Stock and Watson (2012).1 After trans-

formations, the available sample is 1960Q3:2008Q4, or T = 194. Let ξt =
(
ξ1t, ξ2t, ..., ξn−1,t

)′ be a vector
of the 109 transformed variables. Define the n × 1 vector xt = (ξt, yt, yt−1, yt−2, yt−3)′ considered below,
where yt is either the first-differenced log of real gross domestic product, or the second differenced log of

consumer price index.

We are interested in forecasting yt+1 with the predictors in xt and common factors ft extracted from

variables in zst , where z
s
t is the standardized zt =

(
yt, ξ

′
t

)′ (by subtracting its sample mean and dividing
each series by its sample standard deviation). We consider:

(a) the AR(h) model,

yt =
h∑
`=1

ρ`yt−` + vt,

which we use as a benchmark. The lag order h is selected using the SBC criterion with the maximum

number of lags set equal to hmax = 4.
1For further details, see the online supplement of Stock and Watson (2012), in particular columns E and T of their Table

B.1.

1



Data-rich forecasting methods are:

(b) The factor-augmented AR,

yt =
h∑
`=1

ρ`yt−` + γ
′ft−1 + vt,

where ft is m×1 vector of unobserved common factors extracted from variables in zst . We use Bai and
Ng’s PCp1 criterion to select the number of factors (m) with the maximum number of factors set to

5. The vector of unobserved factors, ft, is estimated using the method of principal components. Same

as in the AR case, the lag order h is selected using the SBC criterion with the maximum number of

lags set equal to hmax = 4.

(c) Lasso method, implemented in the same way as described in Section 2 of the online Monte Carlo

supplement of CKP using
(
x′t−1, f

′
t−1
)
as the vector of predictors for yt.

(d) Adaptive Lasso method, implemented in the same way as described in Section 2 of the online Monbte

Carlo supplement of CKP using
(
x′t−1, f

′
t−1
)
as the vector of predictors for yt.

(e-g) OCMT method. We use OCMT described in CKP to select the relevant variables from the vector

xt−1 to forecasts the target variable yt. We set p = 0.01 (e), 0.05 (f) and 0.1 (g), and (δ, δ∗) = (1, 2),

and we always include c (intercept) , and ft−1 (lagged factors) in the testing regressions. Next, we

use the selected variables together with c, and ft−1 in an ordinary least squares regression for yt.

We use a rolling window of T = 120 time periods, which leaves us with the last H = 74 out-of-sample

evaluation periods, 1990Q3-2008Q4. We also consider pre-crisis evaluation subsample, 1990Q3-2007Q2

with H = 68 periods, to evaluate the sensitivity of results to exclusion of the global financial crisis from

the sample.

3 Results

Table 1 reports the root mean squared forecasting error (RMSFE) findings for all forecasting methods.

Diebold-Mariano (DM) test statistics for testing H0 : E (v̂ij,t) = 0, where v̂ij,t = ê2i,t − ê2j,t is the difference
between the squared forecasting errors of methods i and j, are presented in Table 2. The DM statistics is

computed assuming serially uncorrelated one-step-ahead forecasting errors. Specifically

DMij =
√
H
v̂H,ij
σ̂H,ij

, (1)

where H = 68 or 74 (depending on the evaluation period) is the length of the evaluation period, v̂H,ij =

H−1
∑T+H
t=T+1 v̂ij,t is the sample mean of v̂ij,t, and

σ̂H,ij =

√√√√ 1

H

T+H∑
t=T+1

v̂2ij,t.
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Table 1: RMSFE performance of the AR, factor-augmented AR, Lasso, adaptive Lasso, and
OCMT methods

Evaluation sample: Full Pre-crisis
1990Q3-2008Q4 1990Q3-2007Q2
RMSFE Relative RMSFE Relative
(×100) RMSFE (×100) RMSFE

Real output growth
(a) AR benchmark 0.561 1.000 0.505 1.000
(b) Factor-augmented AR 0.484 0.862 0.470 0.930
(c) Lasso 0.510 0.910 0.465 0.922
(d) Adaptive Lasso 0.561 1.000 0.503 0.996
(e) OCMT, p = 0.01 0.495 0.881 0.479 0.948
(f) OCMT, p = 0.05 0.477 0.850 0.461 0.912
(g) OCMT, p = 0.1 0.490 0.874 0.464 0.918

Inflation
(a) AR (1) benchmark 0.601 1.000 0.435 1.000
(b) Factor-augmented AR (1) 0.557 0.927 0.415 0.954
(c) Lasso 0.599 0.997 0.462 1.063
(d) Adaptive Lasso 0.715 1.190 0.524 1.205
(e) OCMT, p = 0.01 0.596 0.992 0.472 1.086
(f) OCMT, p = 0.05 0.590 0.982 0.464 1.068
(g) OCMT, p = 0.1 0.595 0.990 0.471 1.084

Notes: RMSFE is computed using a rolling forecasting scheme with a rolling window of 120 observations. We use the smaller
dataset considered in Stock and Watson (2012) which contains 109 series. The series are transformed by taking logarithms
and/or differencing following Stock and Watson (2012). The transformed series span 1960Q3 to 2008Q4 and are collected
in the vector ξt. Set of regressors in Lasso and adaptive-Lasso contains hmax = 4 lags of yt (lagged target variables), ξt−1,
and a lagged set of principal components obtained from the large dataset given by (yt, ξ′t)

′. OCMT procedure is applied to
regressions of yt conditional on lagged principal components, with elements of ξt−1 and hmax = 4 lags of yt considered one at
a time. OCMT is reported for δ = 1 in the first stage, and δ∗ = 2 in the subsequent stages of the OCMT procedure, and three
choices of p, similarly to the MC section of CKP. The number of principal components in the factor-augmented AR, Lasso,
adaptive Lasso, and OCMT methods is determined in a rolling scheme by using criterion PCp1 of Bai and Ng (2002) (with
the maximum number of PCs set to 5). See Section 2 for further details.
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Table 2: DM statistics for the forecasting performance of the AR, factor-augmented AR,
Lasso, adaptive Lasso, and OCMT methods

DMij test statistics

Full evaluation sample: 1990Q3-2008Q4

Real output growth Inflation

Method pair i (below), j (on right) (a) (b) (c) (d) (e) (f) (g) (a) (b) (c) (d) (e) (f) (g)

(a) AR(1) . 1.50 1.95 0.00 1.49 1.73 1.44 . 1.12 0.06 -2.55 0.12 0.28 0.14

(b) Factor-augmented AR (1) -1.50 . -0.67 -1.39 -0.59 0.43 -0.38 -1.12 . -1.89 -2.06 -2.39 -2.07 -2.09

(c) Lasso -1.95 0.67 . -1.76 0.45 0.92 0.57 -0.06 1.89 . -1.82 0.14 0.45 0.20

(d) Adaptive Lasso 0.00 1.39 1.76 . 1.29 1.56 1.31 2.55 2.06 1.82 . 1.61 1.69 1.62

(e) OCMT, p = 0.01 -1.49 0.59 -0.45 -1.29 . 1.32 0.24 -0.12 2.39 -0.14 -1.61 . 0.49 0.08

(f) OCMT, p = 0.05 -1.73 -0.43 -0.92 -1.56 -1.32 . -1.21 -0.28 2.07 -0.45 -1.69 -0.49 . -0.71

(g) OCMT, p = 0.05 -1.44 0.38 -0.57 -1.31 -0.24 1.21 . -0.14 2.09 -0.20 -1.62 -0.08 0.71 .

Pre-Crisis evaluation sample: 1990Q3-2007Q2

(a) AR(1) . 0.95 1.60 0.13 0.84 1.19 1.11 . 0.98 -1.13 -2.28 -1.54 -1.01 -1.18

(b) Factor-augmented AR (1) -0.95 . 0.14 -0.88 -0.48 0.52 0.34 -0.98 . -1.66 -2.31 -2.46 -2.21 -2.21

(c) Lasso -1.60 -0.14 . -1.39 -0.48 0.16 0.06 1.13 1.66 . -1.78 -0.47 -0.07 -0.37

(d) Adaptive Lasso -0.13 0.88 1.39 . 0.66 1.07 1.00 2.28 2.31 1.78 . 1.22 1.31 1.15

(e) OCMT, p = 0.01 -0.84 0.48 0.48 -0.66 . 1.22 0.82 1.54 2.46 0.47 -1.22 . 0.46 0.05

(f) OCMT, p = 0.05 -1.19 -0.52 -0.16 -1.07 -1.22 . -0.33 1.01 2.21 0.07 -1.31 -0.46 . -0.71

(g) OCMT, p = 0.05 -1.11 -0.34 -0.06 -1.00 -0.82 0.33 . 1.18 2.21 0.37 -1.15 -0.05 0.71 .

Notes: This table reports results for DMij statistics defined in (1). See also notes to Table 1.
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