Exponent of Cross-sectional Dependence for Residuals^{*}

Natalia BaileyGeorge KapetaniosMonash UniversityKing's College London

M. Hashem Pesaran University of Southern California, and Trinity College, Cambridge

April 4, 2019

Abstract

In this paper, we focus on estimating the degree of cross-sectional dependence in the error terms of a classical panel data regression model. For this purpose we propose an estimator of the exponent of cross-sectional dependence denoted by α , which is based on the number of non-zero pair-wise cross correlations of these errors. We prove that our estimator, $\tilde{\alpha}$, is consistent and derive the rate at which $\tilde{\alpha}$ approaches its true value. We also propose a resampling procedure for the construction of confidence bounds around the estimator of α . We evaluate the finite sample properties of the proposed estimator by use of a Monte Carlo simulation study. The numerical results are encouraging and supportive of the theoretical findings. Finally, we undertake an empirical investigation of α for the errors of the CAPM model and its Fama-French extensions using 10-year rolling samples from S&P 500 securities over the period Sept 1989 - May 2018.

Keywords: Pair-wise correlations, Cross-sectional dependence, Cross-sectional averages, Weak and strong factor models, CAPM and Fama-French Factors. JEL Codes: C21, C32

^{*}This paper is written in honour of the 125th anniversary of PC Mahalanobis, for his important contributions to statistics and econometrics. We would like to acknowledge helpful comments from Alex Chudik. Natalia Bailey and Hashem Pesaran acknowledge financial support under ESRC Grant ES/I031626/1.

1 Introduction

Interest in the analysis of cross-sectional dependence applied to households, firms, markets, regional and national economies has become prominent over the past decade, especially so in the aftermath of the latest financial crisis given its effects on the global economy. Researchers in many fields have turned to network theory, spatial and factor models to obtain a better understanding of the extent and nature of such cross dependencies. There are many issues to be considered: how to test for the presence of cross-sectional dependence, how to measure the degree of cross-sectional dependence, how to model cross-sectional dependence, and how to carry out counterfactual exercises under alternative network formations or market interconnections. Many of these topics are the subject of ongoing research. In this paper we focus on measuring cross-sectional dependence.

Bailey, Kapetanios and Pesaran (2016, BKP hereafter) give a thorough account of the rationale and motivation behind the need for determining the extent of cross-sectional dependence, be it in finance, micro or macroeconomics. They focus on the asymptotic behaviour of the variance of the cross section average of the observations on a double array of random variables, say x_{it} , indexed by i = 1, 2, ..., N and t = 1, 2, ..., T, over space and time. In particular, they analyse the rate at which this variance tends to zero and show that it depends on the degree or exponent of cross-sectional dependence which they denote by α . They explore a factor model setting as a vehicle for characterising strong and semi-strong covariance structures as defined in Chudik et al. (2011). They relate these to the degree of pervasiveness of factors in unobserved factor models often used in the literature to model cross-sectional dependence.

In this paper we build on BKP and extend the analysis in two respects. First, we consider a more generic setting which does not require a common factor representation and holds more generally for both moderate to sizable cross-sectional dependence. We achieve this by directly considering the significance of individual pair-wise correlations, and do not concern ourselves with the factors that might underlie these pair-wise correlations. Second, we consider estimating the exponent of cross-sectional dependence, α , of the residuals obtained from a panel data regression model.

We propose a new estimator of α based on the number of statistically significant pair-wise correlations of the residuals from the panel regression under consideration. To establish the statistical significance of the correlation coefficients we adopt the thresholding multiple testing (MT) estimator proposed by Bailey et al. (2018), BPS. Other thresholding estimators can also be used. See, for example, Bickel and Levina (2008) or Karoui (2008) and Cai and Liu (2011) or Fan et al. (2013). The MT testing procedure advanced by BPS has the advantage that it directly considers the statistical significance of the correlation coefficient which is invariant to scales. Other thresholding procedures focus on the sample covariances and resort to cross validation to identify the threshold. Bickel and Levina (2008) use universal thresholding, namely comparing all the sample covariances to the same threshold value, whilst Cai and Liu (2011) propose an 'adaptive' thresholding procedure that allows for differing thresholds across the different pairs of sample covariances. Other contributions to this literature include the work of Huang et al. (2006), Rothman et al. (2009), Cai and Zhou (2011) and Cai and Zhou (2012), Wang and Zhou (2010), and Fan et al. (2011).¹ All these contributions apply the thresholding procedure to sample covariances and do not apply to the residuals from a panel regression model that concerns us in this paper. It is also important to bear in mind that when estimating α we do not assume that the underlying error covariance matrix is sparse, as is assumed in the literature on regularization of the sample covariance. Our objective is to estimate the degree of sparsity of the covariance matrix rather than assume sparsity for the purpose of consistent estimation of the covariance matrix or its inverse. What matters for estimation of α is to ensure that all non-zero entries of the correlation matrix are correctly identified.

We establish consistency of our estimator under the assumptions of exogeneity of regressors and symmetry of the error distribution. We also explain how the derivations can be extended to the case when weakly exogenous variables are present, as for example in a dynamic panel data setting. The proposed estimator is simple to compute and is shown to perform well in small samples, for a variety of correlation matrices, irrespective of whether the cross correlations are generated from a multi-factor structure or specified by a given correlation matrix with a specified degree of sparsity. This is especially the case as compared to basing the estimation of α on the largest eigenvalue of the correlation matrix, which performs particularly poorly. The rate of convergence of our preferred estimator is complex and depends on an interplay of the cross-sectional and time dimensions, N and T. The Monte Carlo results also show that the error in estimating α is smaller for values of α close to unity, which is likely to be of greater interest in practice. The problem of making inference about the value of α raises additional technical difficulties and will not be addressed in this paper. In practice, bootstrap techniques can be used to obtain confidence bounds around our proposed estimator. We provide some Monte Carlo results in support of estimating the empirical distribution of the proposed estimator of α , using cross-sectional resampling as suggested in Kapetanios (2008). Finally, we provide an empirical application investigating the degree of inter-linkages between financial variables using the Standard & Poor's 500 index. We present 10-year rolling estimates of α applied to excess returns on securities included in the S&P 500 data set as well as α estimates applied to the residuals obtained from the CAPM and its Fama-French extensions used extensively in the finance literature.

The rest of the paper is organised as follows: Section 2 discusses alternative characterisations of α , the exponent of cross-sectional dependence, and the conditions under which these measures are equivalent as $N \to \infty$. Section 3 sets up the panel data model and discusses its underlying assumptions. Section 4 proposes the estimator of α in terms of the number of statistically significant non-zero pair-wise correlations of the residuals. Section 5 presents the main theoretical results of the paper for a static panel data model with strictly exogenous regressors. Extensions to dynamic panels or panels with weakly exogenous regressors are discussed in the sub-section 5.2 while inference of α by use of bootstrap procedures is discussed in sub-section 5.3. Section 6 presents a detailed Monte Carlo simulation study. The empirical application is discussed in Section 7. Finally, Section 8 concludes. Proofs of all theoretical results are provided in the Appendix.

¹Shrinkage procedures have also been proposed in the literature for regularization of covariance matrices. See, for example, Stein (1956), Ledoit and Wolf (2003) and Ledoit and Wolf (2004). However, the shrinkage procedure does not set any elements of the covariance matrix to zero, and is not suitable for estimation of α which builds on the support recovery properties of the estimated covariance matrix.

2 Degrees of cross-sectional dependence: alternative measures

Our analysis focuses on the covariance matrix of $\boldsymbol{\varepsilon}_t = (\varepsilon_{1t}, \varepsilon_{2t}, \dots, \varepsilon_{Nt})'$, where $\boldsymbol{\varepsilon}_t$ is the $N \times 1$ vector of errors from a panel data regression model. Let $\boldsymbol{\Sigma}_N = E(\boldsymbol{\varepsilon}_t \boldsymbol{\varepsilon}_t') = (\sigma_{ij})$, and denote its largest eigenvalue by $\lambda_{\max}(\boldsymbol{\Sigma}_N) > 0$. The errors ε_{it} are said to be strongly cross-sectionally correlated, if $\lambda_{\max}(\boldsymbol{\Sigma}_N) = \Theta(N)$, where Θ denotes exact order of magnitude, and they are said to be weakly cross-sectionally correlated, if $\lambda_{\max}(\boldsymbol{\Sigma}_N) = \Theta(N)$, where Θ denotes exact order of magnitude, and they are said to be weakly cross-sectionally correlated, if $\lambda_{\max}(\boldsymbol{\Sigma}_N)$ is bounded in N. All intermediate cases can be parameterized in terms of the exponent α_{λ} , such that

$$\lambda_{\max}\left(\mathbf{\Sigma}_N\right) = \Theta(N^{\alpha_\lambda}). \tag{1}$$

The weak and strong cross dependence cases then relate to $\alpha_{\lambda} = 0$ and $\alpha_{\lambda} = 1$, respectively. It is important to emphasise that the exponent, α_{λ} , is an asymptotic concept, in the sense that α_{λ} can be identified only as $N \to \infty$, as the definition in (1) makes clear.

Suppose now that the cross dependence of ε_{it} is characterized by the following approximate multiple-factor error process

$$\varepsilon_{it} = \beta_i' \mathbf{f}_t + u_{it},\tag{2}$$

where \mathbf{f}_t is the $m \times 1$ vector of unobserved common factors with zero means, and $\boldsymbol{\beta}_i = (\beta_{i1}, \beta_{i2}, \ldots, \beta_{im})'$ is the associated $m \times 1$ vector of factor loadings, and u_{it} is the idiosyncratic component assumed to have mean zero and the covariance matrix $\mathbf{V} = E(\mathbf{u}_t \mathbf{u}_t')$, where $\mathbf{u}_t = (u_{1t}, u_{2t}, \ldots, u_{Nt})'$. Then

$$\Sigma_N = E\left(\varepsilon_t \varepsilon_t'\right) = \mathbf{B}\mathbf{B}' + \mathbf{V}_t$$

where $\mathbf{B} = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots, \boldsymbol{\beta}_N)'$, and without loss of generality we have set $E(\mathbf{f}_t \mathbf{f}'_t) = \mathbf{I}_m$. To identify the factor component from the idiosyncratic component we assume that $\lambda_{\max}(\mathbf{V}) = O(1)$, but allow the factor loadings to satisfy the condition

$$\mathbf{B}'\mathbf{B} = \sum_{i=1}^{N} \boldsymbol{\beta}_{i} \boldsymbol{\beta}_{i}' = \Theta(N^{\alpha_{\beta}}), \ \alpha_{\beta} > 0,$$
(3)

where α_{β} measures the degree to which the factors are pervasive, in the sense that they have non-zero effects on the individual errors, ε_{it} . In what follows we refer to α_{β} as the exponent of factor loadings. In the standard approximate factor models it is assumed that $\alpha_{\beta} = 1$, whilst in practice, where the possibility of weak factors can not be ruled out, α_{β} could be a parameter of interest to be estimated.

To see how α_{β} and α_{λ} are related note that

$$\lambda_{\max}\left(\mathbf{\Sigma}_{N}
ight) \leq \left\|\mathbf{B}\mathbf{B}' + \mathbf{V}\right\|_{1} \leq \left\|\mathbf{B}\right\|_{1} \left\|\mathbf{B}\right\|_{\infty} + \left\|\mathbf{V}\right\|_{1},$$

where $\|\mathbf{B}\|_1$ and $\|\mathbf{B}\|_{\infty}$ are column and row norms of **B**, respectively. To ensure that $Var(\varepsilon_{it})$ is bounded we must have $\|\mathbf{B}\|_{\infty} < K$. Also to ensure that $\lambda_{\max}(\mathbf{V}) = O(1)$, we must have $\|\mathbf{V}\|_1 < K$. Therefore, the rate at which $\lambda_{\max}(\mathbf{\Sigma}_N)$ can rise with N is controlled by

$$\|\mathbf{B}\|_{1} = \max_{1 \le j \le N} \sum_{i=1}^{N} |\beta_{ij}|.$$
(4)

Setting $\sum_{i=1}^{N} |\beta_{ij}| = \Theta(N^{\alpha_{\beta_j}})$, for j = 1, 2, ..., m, then $\|\mathbf{B}\|_1 = \Theta(N^{\alpha_{\beta}})$, where $\alpha_{\beta} = \max_j(\alpha_{\beta_j})$. Then

$$\lambda_{\max}\left(\boldsymbol{\Sigma}_{N}\right) = \Theta(N^{\alpha_{\beta}}) + O(1).$$

To distinguish the effects of the factor component from those of the idiosyncractic component we must have $\alpha_{\beta} > 0$. Comparing this result with (1) establishes that $\alpha_{\lambda} = \alpha_{\beta} > 0$, as $N \to \infty$.

The above analysis suggests two alternative ways of estimating α_{λ} . A direct procedure would be to base the estimate of α_{λ} on $\lambda_{\max}(\Sigma_N)$ and set

$$\lambda_{\max}\left(\mathbf{\Sigma}_{N}\right) = O\left(N^{\alpha_{\lambda}}\right) = \kappa N^{\alpha_{\lambda}}$$

where κ is a constant independent of N. Then

$$\alpha_{\lambda} = \frac{\ln\left[\lambda_{\max}\left(\boldsymbol{\Sigma}_{N}\right)\right]}{\ln\left(N\right)} - \frac{\ln\left(\kappa\right)}{\ln\left(N\right)}.$$
(5)

In order to identify α_{λ} , as $N \to \infty$, we set $\kappa = 1$, so that (5) becomes

$$\alpha_{\lambda} = \frac{\ln\left[\lambda_{\max}\left(\boldsymbol{\Sigma}_{N}\right)\right]}{\ln\left(N\right)}.$$
(6)

In this form, the value of α_{λ} is susceptible to the scaling of elements in ε_t . For this reason we focus our attention rather on the corresponding correlation matrix $\mathbf{R}_N = (\rho_{ij})$ given by

$$\boldsymbol{R}_N = \boldsymbol{D}_N^{-1/2} \boldsymbol{\Sigma}_N \boldsymbol{D}_N^{-1/2}$$

where

$$\mathbf{D}_N = \operatorname{diag}(\sigma_{ii}, i = 1, 2, \dots, N).$$
(7)

Hence, (6) finally becomes

$$\alpha_{\lambda} = \frac{\ln\left[\lambda_{\max}\left(\boldsymbol{R}_{N}\right)\right]}{\ln\left(N\right)},\tag{8}$$

and α_{λ} has fixed bounds at zero and unity, as $N \to \infty$.

Developing a theory based on the maximum eigenvalue of the correlation matrix \mathbf{R}_N can be challenging. To avoid some of the technical problems involved in estimating $\lambda_{\max}(\mathbf{R}_N)$, and noting that $Var(\bar{\varepsilon}_t) \leq N^{-1}\lambda_{\max}(\Sigma_N)$, BKP propose basing the estimation of α_{λ} on $Var(\bar{\varepsilon}_t)$, where $\bar{\varepsilon}_t = N^{-1}\sum_{i=1}^N \varepsilon_{it}$. In the case where ε_{it} has a factor representation, BKP show that $Var(\bar{\varepsilon}_t) = O\left[\max\left(N^{2(\alpha_{\beta}-1)}, N^{-1}\right)\right]$, which reduces to $Std(\bar{\varepsilon}_t) = O\left(N^{(\alpha_{\beta}-1)}\right)$, if $2(\alpha_{\beta}-1) > -1$, or if $\alpha_{\beta} > 1/2$. This means that at least $N^{1/2}$ of the factor loadings must have non-zero values for Σ_N to differ sufficiently from a diagonal Σ_N .

In this paper we consider an alternative estimation strategy that does not require ε_{it} to have a factor representation. Since

$$\lambda_{\max}\left(oldsymbol{R}_{N}
ight) \leq \left\|oldsymbol{R}_{N}
ight\|_{1} = \max_{1 \leq j \leq N} \sum_{i=1}^{N} \left|
ho_{ij}
ight|,$$

we focus directly on estimation of ρ_{ij} and distinguish between values of ρ_{ij} that are close to zero and those that are significantly different from zero, and measure the exponent of crosssectional dependence in terms of the number of significant (non-zero) cross-correlation coefficients. Specifically, we define α such that $M_N = N^{2\alpha}$ where M is the number of non-zero elements of \mathbf{R}_N which can be written equivalently as $M_N = \boldsymbol{\tau}'_N \boldsymbol{\Delta}_N \boldsymbol{\tau}_N$, where $\boldsymbol{\tau}_N$ is an $N \times 1$ vector of ones and $\boldsymbol{\Delta}_N = (\delta_{ij})$ is an $N \times N$ matrix of population correlation indicators with typical elements given by

$$\delta_{ij} = I(\rho_{ij} \neq 0), \ i, j = 1, 2, \dots, N,$$

in which $I(\mathcal{A})$ is equal to unity if \mathcal{A} is true and zero otherwise. Note that by construction $\delta_{ii} = 1$. Hence,

$$\alpha = \frac{\ln(M_N)}{\ln(N^2)} = \frac{\ln(\boldsymbol{\tau}'_N \boldsymbol{\Delta}_N \boldsymbol{\tau}_N)}{\ln N^2}.$$
(9)

Cross-sectional independence refers to the case when $\mathbf{R}_N = \mathbf{I}_N$, and $\alpha = 1/2$, while the case of cross-sectional strong dependence corresponds to all pair-wise correlation coefficients being non-zero such that $\alpha = 1$. Note that by construction $1/2 \leq \alpha \leq 1$, with $\alpha = 1/2$ arising when $\Delta_N = \mathbf{I}_N$, and $\alpha = 1$ if $\rho_{ij} \neq 0$ for all *i* and *j*.

Other exponents of cross-sectional dependence can be defined by focussing only on the offdiagonal elements of \mathbf{R}_N and consider the following exponent of cross-sectional dependence:²

$$\alpha^{\circ} = \frac{\ln \left[\boldsymbol{\tau}_{N}^{\prime} \left(\boldsymbol{\Delta}_{N} - \mathbf{I}_{N}\right) \boldsymbol{\tau}_{N}\right]}{\ln N \left(N - 1\right)}$$

assuming that $\Delta_N \neq \mathbf{I}_N$. Unlike α the above measure is not defined if $\mathbf{R}_N = \mathbf{I}_N$. The two measures coincide, namely $\alpha = \alpha^\circ = 1$, if $\rho_{ij} \neq 0$ for all i and j, as $N \to \infty$. In cases where ε_{it} have a multi-factor error representation given by (2), the largest exponent of the factor loadings is given by $\alpha_\beta > 0$. Assuming, for simplicity that \mathbf{V} is diagonal, it then readily follows that $\boldsymbol{\tau}'_N (\boldsymbol{\Delta}_N - \mathbf{I}_N) \boldsymbol{\tau}_N = N^{2\alpha_\beta} - N^{\alpha_\beta}$, where $(N^{2\alpha_\beta} - N^{\alpha_\beta}) = N^{\alpha_\beta} (N^{\alpha_\beta} - 1)$ is the total number of off-diagonal non-zero pair-wise cross correlations of the errors. In such a multi-factor error set up we have

$$\alpha = \frac{\ln\left(\boldsymbol{\tau}_{N}^{\prime}\boldsymbol{\Delta}_{N}\boldsymbol{\tau}_{N}\right)}{\ln N^{2}} = \frac{\ln\left(N^{2\alpha_{\beta}} - N^{\alpha_{\beta}} + N\right)}{\ln N^{2}}$$

and

$$\alpha^{\circ} = \frac{\ln\left[\boldsymbol{\tau}_{N}^{\prime}\left(\boldsymbol{\Delta}_{N}-\mathbf{I}_{N}\right)\boldsymbol{\tau}_{N}\right]}{\ln N\left(N-1\right)} = \frac{\ln\left(N^{2\alpha_{\beta}}-N^{\alpha_{\beta}}\right)}{\ln N\left(N-1\right)}.$$

Recall that we must have $\alpha_{\beta} > 1/2$ for factors to be distinguishable from the idiosyncratic components. It is then easily seen that $\lim_{N\to\infty} \alpha = \lim_{N\to\infty} \alpha^\circ = \alpha_{\beta}$. However, the two measures could differ if N is not sufficiently large. In finite samples α° can be written in terms of α by first solving the quadratic equation

$$N^{2\alpha_{\beta}} + (N - N^{\alpha_{\beta}}) = N^{2\alpha}, \tag{10}$$

$$\alpha^{\circ} = \frac{\ln\left[\frac{1}{2}\boldsymbol{\tau}_{N}'\left(\boldsymbol{\Delta}_{N}-\mathbf{I}_{N}\right)\boldsymbol{\tau}_{N}\right]}{\ln\left[\frac{1}{2}N\left(N-1\right)\right]} = \frac{\ln\left[\boldsymbol{\tau}_{N}'\left(\boldsymbol{\Delta}_{N}-\mathbf{I}_{N}\right)\boldsymbol{\tau}_{N}\right] - \ln(2)}{\ln\left[N\left(N-1\right)\right] - \ln(2)}$$
$$= \frac{\alpha - \frac{\ln(2)}{\ln[N\left(N-1\right)]}}{1 - \frac{\ln(2)}{\ln[N\left(N-1\right)]}} \to \alpha, \text{ as } N \to \infty.$$

²One can also consider only the distinct off-diagonal elements of \mathbf{R}_N and define α as

for α_{β} , namely

$$\alpha_{\beta} = \frac{\ln\left(1 + \sqrt{1 - 4\left(N - N^{2\alpha}\right)}\right) - \ln 2}{\ln N}.$$
(11)

Since $[N^{\alpha_{\beta}}]$ can only take positive or zero values the second root of (10) is clearly redundant. In what follows, we focus on α since it is defined even if $\mathbf{R}_N = \mathbf{I}_N$, and α is suitably scaled to lie in the range (1/2, 1].

3 Panel data model

Consider the panel data regression model

$$y_{it} = \gamma'_i \mathbf{x}_{it} + \varepsilon_{it}, \text{ for } i = 1, 2, \dots, N; t = 1, 2, \dots, T,$$
 (12)

where \mathbf{x}_{it} is a $k \times 1$ vector of observed regressors, γ_i is the associated vector of coefficients, and ε_{it} are the model's errors. We are interested in estimating the exponent of the cross-sectional dependence of the errors, ε_{it} , defined by (9). First, we obtain residuals e_{it} computed as

$$e_{it} = y_{it} - \mathbf{x}'_{it}\hat{\gamma}_i = y_{it} - \mathbf{x}'_{it}(\mathbf{X}'_i\mathbf{X}_i)^{-1}\mathbf{X}'_i\mathbf{y}_i,$$
(13)

where \mathbf{X}_i is the $T \times k$ matrix of observations on the regressors for the i^{th} unit, and \mathbf{y}_i is the $T \times 1$ vector of observations on the dependent variable of the i^{th} unit. We assume that the regressors are strictly exogenous.

We define the standardized errors, ξ_{it} , and the associated standardized residuals, z_{it} , as

$$\xi_{it} = \frac{\varepsilon_{it}}{\left(T^{-1} \boldsymbol{\varepsilon}_i' \mathbf{M}_i \boldsymbol{\varepsilon}_i\right)^{1/2}},\tag{14}$$

$$z_{it} = \frac{e_{it}}{\left(T^{-1}\mathbf{e}'_{i}\mathbf{M}_{i}\mathbf{e}_{i}\right)^{1/2}} = \frac{e_{it}}{\left(T^{-1}\mathbf{e}'_{i}\mathbf{e}_{i}\right)^{1/2}},$$
(15)

where $\varepsilon_i = (\varepsilon_{i1}, \varepsilon_{i2}, \dots, \varepsilon_{iT})'$, $\mathbf{e}_i = (e_{i1}, e_{i2}, \dots, e_{iT})'$, and $\mathbf{M}_i = \mathbf{I}_T - \mathbf{X}_i (\mathbf{X}'_i \mathbf{X}_i)^{-1} \mathbf{X}'_i$. Note that (since $\mathbf{e}_i = \mathbf{M}_i \varepsilon_i$)

$$z_{it} = \frac{\varepsilon_{it} + \mathbf{x}'_{it}(\gamma_i - \hat{\gamma}_i)}{\left(T^{-1} \varepsilon'_i \mathbf{M}_i \varepsilon_i\right)^{1/2}} = \xi_{it} - \mathbf{a}'_{it} \boldsymbol{\xi}_i,$$
(16)

where

$$\mathbf{a}_{it} = \mathbf{X}_i \left(\mathbf{X}'_i \mathbf{X}_i \right)^{-1} \mathbf{x}_{it},$$

and $\boldsymbol{\xi}_i = (\xi_{i1}, \xi_{i2}, \dots, \xi_{iT})'.$

Further, in what follows we assume that the error terms are symmetrically distributed.

Assumption 1 Conditional on \mathbf{X}_i , the errors of the panel data model, (12), (a) ε_{it} are symmetrically distributed with zero means and variances $0 < c < \sigma_i^2 < K < \infty$, (b) ε_{it} are serially independent, (c) ε_{it} and ε_{jt} are distributed independently if $E(\varepsilon_{it}\varepsilon_{jt}) = 0$, for all $i \neq j$.

Under the above assumption, and using (14) it readily follows that

$$E\left(\xi_{i}\left|\mathbf{X}_{i}\right.\right) = \mathbf{0},\tag{17}$$

and

$$E(\xi_i \xi'_j | \mathbf{X}_i, \mathbf{X}_j) = \rho_{ij} \mathbf{I}_T.$$
(18)

Our main analysis will condition on the observed regressors. Remark 2 will discuss an unconditional version of our results. For the observed regressors, we make the following assumption:

Assumption 2 The $k \times 1$ vector of regressors \mathbf{x}_{it} in (12) is bounded: $\sup_{i,t} ||\mathbf{x}_{it}|| < \infty$. Further, for some T_0 , we have

$$\inf_{T>T_{0,i}} \lambda_{\min}\left(\frac{\mathbf{X}_{i}'\mathbf{X}_{i}}{T}\right) > 0$$

Under Assumption 1 it readily follows that

$$E\left(\mathbf{a}_{it}'\boldsymbol{\xi}_{i} \left| \mathbf{X}_{i} \right.\right) = \mathbf{x}_{it}'(\mathbf{X}_{i}'\mathbf{X}_{i})^{-1}\mathbf{X}_{i}'E\left(\boldsymbol{\xi}_{i} \left| \mathbf{X}_{i} \right.\right) = 0,$$

where \mathbf{x}'_{it} is the t^{th} row of $\mathbf{X}_i = (\mathbf{x}_{i1}, \mathbf{x}_{i2}, \dots, \mathbf{x}_{iT})'$. Hence,

$$E\left(z_{it} \left| \mathbf{X}_{i} \right.\right) = 0,\tag{19}$$

which in turn implies that z_{it} is a martingale difference process with respect to the nondecreasing information set, $\Omega_{it} = (\mathbf{x}_{i1}, \mathbf{x}_{i2}, \dots, \mathbf{x}_{it})$. By construction $\Omega_{iT} \equiv \mathbf{X}_i$. Indeed, since Ω_{it} is a subset of Ω_{iT} , then by the chain rule of conditional expectations we have

$$E(z_{it} | \Omega_{it}) = E[E(z_{it} | \Omega_{iT}) | \Omega_{it}].$$

But in view of (19), $E(z_{it} | \Omega_{iT}) = 0$, and it also follows that $E(z_{it} | \Omega_{it}) = 0$, for all *i* and *t*.

We also require the following assumption that sets a lower bound condition on the non-zero values of the pair-wise correlations.

Assumption 3 Let $\rho_{\min} = \inf_{i,j} (|\rho_{ij}| | \rho_{ij} \neq 0)$. Then,

$$\lim_{T \to \infty} \frac{\ln(T)}{\sqrt{T}\rho_{\min}} = 0.$$
(20)

Remark 1 This assumption is needed for successful recovery of non-zero pair-wise correlations, and is weaker than requiring $\rho_{\min} > 0$, as it allows ρ_{\min} to tend to zero with N or T or both, so long as its rate of decline is slower than $\ln(T)/\sqrt{T}$.

4 Consistent estimation of α

Consider the sample estimate of the pair-wise correlation coefficients of the residuals from units i and j,

$$\hat{\rho}_{ij} = \frac{T^{-1} \mathbf{e}'_i \mathbf{e}_j}{\left(T^{-1} \mathbf{e}'_i \mathbf{e}_i\right)^{1/2} \left(T^{-1} \mathbf{e}'_j \mathbf{e}_j\right)^{1/2}},\tag{21}$$

where $\mathbf{e}_i = (e_{i1}, e_{i2}, \dots, e_{iT})'$, e_{it} is defined by (13), and by construction the sample mean of e_{it} is exactly zero. We can re-write (21) equivalently as

$$\hat{\rho}_{ij} = T^{-1} \sum_{t=1}^{T} z_{it} z_{jt}, \qquad (22)$$

where z_{it} is defined by (15). In order to identify whether the pair-wise correlation coefficients $\hat{\rho}_{ij}$ are significantly different from zero we follow Bailey et al. (2018) and apply the multiple testing estimator associated with $\hat{\rho}_{ij}$. This is defined by

$$\tilde{\rho}_{ij} = \hat{\rho}_{ij} I\left(\left| \hat{\rho}_{ij} \right| > \frac{c_p(n,\delta)}{\sqrt{T}} \right), \tag{23}$$

where

$$c_p(n,\delta) = \Phi^{-1}\left(1 - \frac{p/2}{n^{\delta}}\right), n = \frac{1}{2}N(N-1),$$
 (24)

n is the number of tests carried out, *p* is the nominal size of the individual test, which can be set to 1%, 5% or 10%, $\Phi^{-1}(.)$ is the inverse of the standard normal distribution function, and δ is a tuning parameter to be set *a priori*. This thresholding method is based on the notion that for each unit (i, j) pairs we carry out a total of $\frac{1}{2}N(N-1)$ individual tests of the null hypothesis that $\rho_{ij} = 0$ where $j \neq i, i, j = 1, 2, ..., N$. Such tests can result in spurious outcomes especially when N is larger than T. The critical value function, $c_p(n, \delta)$, is therefore adjusted using parameter δ to take account of the effects of the multiple testing procedure for the estimation of α . It is important to bear in mind that the multiple testing problem encountered here differs from the standard one studied in the literature by Bonferroni (1935), Holm (1979) and others. Our focus here is on identifying the range of values for δ such that α can be consistently estimated, rather than controlling the overall size of the multiple tests being carried out.

Accordingly, we propose to estimate α by

$$\tilde{\alpha} = \frac{\ln\left(\boldsymbol{\tau}'\tilde{\boldsymbol{\Delta}}\boldsymbol{\tau}\right)}{2\ln N},\tag{25}$$

where $\tilde{\boldsymbol{\Delta}} = (\tilde{\delta}_{ij})$, with

$$\tilde{\delta}_{ij} = \begin{cases} \tilde{\rho}_{ij}, \text{ if } |\hat{\rho}_{ij}| > \frac{c_p(n,\delta)}{\sqrt{T}}, \text{ for } i \neq j\\ 1, \text{ for } i = j\\ 0, \text{ otherwise} \end{cases}$$

5 Theoretical Derivations

5.1 Main Results

To establish that $\tilde{\alpha}$ converges to α , in addition to Assumptions 1, 2 and 3, we also require the following additional technical sub-exponential assumption:

Assumption 4 There exist sufficiently large positive constants C_0 , C_1 , s > 0, such that

$$\sup_{i,t} \Pr\left(|\varepsilon_{it}| > \alpha\right) \le C_0 \exp\left(-C_1 \alpha^s\right), \text{ for all } \alpha > 0.$$
(26)

This assumption is used to allow a relatively simple bounding of an infinite sum of probabilities, needed for the proof of Lemmas 2 and 3 in the Appendix. It can be relaxed to allow for fatter tails, at the expense of smaller allowable values for N.

The rate of convergence of $\tilde{\alpha}$ to α is given in Theorem 1 below:

Theorem 1 Consider the panel data regression model (12) and suppose that Assumptions 1-4 hold. Let $\tilde{\alpha}$ and δ be defined by (25), (23), and (24). Then, conditional on the observed \mathbf{x}_{it} , as $N, T \to \infty$, and if, for some d > 0, $N = O(T^d) = o(\exp(T))$,

$$2(\ln N)(\tilde{\alpha} - \alpha) = O(N^{2(1-\alpha-\varkappa\delta)}) + O(N^{2(1-\alpha)}\exp(-C_0T^{C_1})) + O(N^{-\alpha}) + O(N^{1-2\alpha}) =$$

$$(27)$$

$$O(T^{2d(1-\alpha-\varkappa\delta)}) + O(\exp[2d(1-\alpha)\ln(T) - C_0T^{C_1}]) + O(T^{-d\alpha}) + O(T^{d(1-2\alpha)})$$

for any $0 < \varkappa < 1$, and some $C_0, C_1 > 0$.

As long as δ is set large enough ($\delta > 1 - \alpha$), the first term on the RHS of (27) can be made sufficiently small.

Remark 2 If we do not wish to condition on the observed \mathbf{x}_{it} , one could obtain the result of Theorem 1, unconditionally, if it is assumed that the regressors satisfy the following subexponential condition for some s > 0,

$$\sup_{i,t} \Pr\left(\|\mathbf{x}_{it}\| > \alpha \right) \le C_0 \exp\left(-C_1 \alpha^s \right), \text{ for all } \alpha > 0,$$
(28)

and if for some T_0 , $\left(\frac{\mathbf{X}'_i \mathbf{X}_i}{T}\right)^{-1}$ exists for all $T > T_0$. Under these conditions on \mathbf{x}_{it} (which replace Assumption 2), we can then use Lemma A6 of Chudik et al. (2018) to establish suitable probability bounds on $\left(\frac{\boldsymbol{\xi}'_i \mathbf{X}_i}{T}\right)^{-1} \left(\frac{\mathbf{X}'_i \boldsymbol{\xi}_i}{T}\right)$, and to show that, for some $C_0, C_1 > 0$, and $0 < \pi < 1$,

$$\sup_{i,j} \Pr\left(\left|\sum_{t=1}^{T} z_{it} z_{jt}\right| > \sqrt{T} c_p\left(n,\delta\right)\right) \le \sup_{i,j} \Pr\left(\left|\sum_{t=1}^{T} \xi_{it} \xi_{jt}\right| > (1-\pi)\sqrt{T} c_p\left(n,\delta\right)\right) + \exp\left(-C_0 T^{C_1}\right).$$

5.2 Extension to panels with weakly exogenous regressors

In the case of panels with lagged dependent variables, the use of OLS residuals for estimation of α could still be justifiable so long as T is sufficiently large, such that the time series bias in the estimated residuals is not too large. This is supported by the Monte Carlo evidence provided for dynamic panels below.

However, the mathematical proofs provided above will not be applicable to the OLS residuals if the panel regression model, (12), contains weakly exogenous regressors, such as lagged values of y_{it} . An alternative approach which avoids some of the technical issues associated with the use of OLS residuals would be to base the estimation of α on the recursive residuals. Specifically, one could consider the recursive residuals defined by

$$\check{e}_{it} = y_{it} - \check{\gamma}'_{i,t-1} \mathbf{x}_{it},$$

where

$$\tilde{\gamma}_{i,t-1} = \left(\sum_{\tau=1}^{t-1} \mathbf{x}_{i\tau} \mathbf{x}_{i\tau}'\right)^{-1} \left(\sum_{\tau=1}^{t-1} \mathbf{x}_{i\tau} y_{i\tau}\right)$$

Then the pair-wise correlations based on these recursive residuals are given by

$$\check{\rho}_{ij} = (T-h)^{-1} \sum_{t=h}^{T} \check{z}_{it} \check{z}_{jt},$$

where

$$\check{z}_{it} = rac{\check{e}_{it}}{\tilde{\sigma}_{it}},$$

and

$$\check{\sigma}_{it}^2 = \frac{1}{t} \sum_{\tau=1}^t \check{e}_{i\tau}^2.$$

Here h is the size of the training period, which needs to be set by the researcher. It is then easily seen that under cross-sectional independence, $\check{z}_{it}\check{z}_{jt}$ is a martingale process with respect to $\Omega_{\iota i,t-1}$, where $\Omega_{\iota i,t-1} = (y_{i\tau}, x_{i\tau}; \text{ for } \tau = t-1, t-2, \ldots, 1)$. This and other related results then allow us to apply the mathematical analysis of the previous sections to the recursive residuals, after suitable adjustments. The main open question is what critical value to use when checking the significance of $\check{\rho}_{ij}$, and hence the threshold value in the determination of the indicators δ_{ij} defined above. This issue will not be pursued in this paper.

5.3 Confidence intervals for α

Quantifying the uncertainty surrounding the proposed estimator of α is clearly of interest. Given the complexity of developing asymptotic inferential theory, a fruitful avenue is to use bootstrap procedures. In the case of panel datasets a number of important data features matter. One possibility is to consider a parametric bootstrap where residuals are resampled. Again there are a number of ways to construct such a bootstrap method. The first is to resample, with replacement, from the rows of the residual matrix with the rows referring to time periods. This procedure applies if the residuals are serially uncorrelated, although block resampling methods can be considered to deal with the serial correlation. It is important to resample, on which α depends, is not inherited by the bootstrap sample. Initial experimentation suggests that coverage rates for such bootstrap methods are very low. An alternative is to use some estimation method for large dimensional covariance matrices, such as thresholding, to estimate the covariance matrix of the residuals and then implement a wild bootstrap. This approach has been considered, for example, by Gonçalves and Perron (2018). However, its desirable properties depend on the true covariance being sparse and certainly sparser that the structures we consider in this paper. Another alternative is to resample from columns (cross section units) of the residual matrix, namely to resample across units keeping all the residuals (observations) on a given together. This procedure is robust to the serial correlation problem. This resampling procedure, initially proposed by Kapetanios (2008), will be used to obtain bounds on the estimator of α in the Monte Carlo section below.

6 Monte Carlo Simulations

We investigate the small sample properties of our proposed estimator of α , defined by (25), using a number of different simulation designs, allowing for dynamics as well as non-Gaussian errors. We consider the following relatively general dynamic panel data model

$$y_{it} = a_i + \vartheta_i y_{i,t-1} + \gamma_i x_{it} + \varepsilon_{it}, \text{ for } i = 1, 2, \dots, N; \ t = 2, 3, \dots, T,$$
 (29)

with exogenous, but serially correlated, regressors:

$$x_{it} = \rho_{ix} x_{i,t-1} + \left(1 - \rho_{ix}^2\right)^{1/2} \nu_{it}, \text{ for } i = 1, 2, \dots, N; \ t = -50, -49, \dots, 0, \dots, T,$$

where $\rho_{ix} \sim IIDU(0, 0.95)$, and $\nu_{it} \sim IIDN(0, 1)$, with $x_{i,-50} = \nu_{i,-50}$ for i = 1, 2, ..., N. The first 50 observations are disregarded for all units to minimize the effects of the initial values on the observations used in the estimation.

We consider the following cases: (i) a static panel data model, where $\vartheta_i = 0$, $a_i \sim IIDN(1,1)$, and $\gamma_i \sim IIDN(1,1)$, for i = 1, 2, ..., N; and (ii) a dynamic panel data model with exogenous regressors, where $\vartheta_i \sim IIDU(0, 0.95)$, $\gamma_i \sim IIDN(1, 1)$, and $a_i \sim IIDN(1, 1)$, for i = 1, 2, ..., N.³ Our estimator is robust to possible correlations between the fixed effects, α_i , and the regressors, x_{it} .

We consider two different designs for generating the errors, ε_{it} , both with the same exponent of cross-sectional dependence, α :

Design 1 We draw $N \times 1$ vector $\mathbf{b}_N = (b_1, b_2, \dots, b_N)'$ as Uniform(0.7, 0.9) for the first $N_b (\leq N)$ elements, where $N_b = [N^{\alpha_\beta}]$ and set the remaining elements to zero. Then, we construct the correlation matrix \mathbf{R}_N given by

$$\mathbf{R}_N = \mathbf{I}_N + \mathbf{b}_N \mathbf{b}_N' - \mathbf{B}_N^2, \tag{30}$$

where $\mathbf{B}_N = \text{Diag}(\mathbf{b}_N)$ is an $N \times N$ diagonal matrix with its i^{th} diagonal element given by b_i . The degree of sparseness of \mathbf{R}_N is determined by the choice of α_β . If $\alpha_\beta = 0$ then $\mathbf{R}_N = \mathbf{I}_N$ and $\alpha = 1/2$, while if $\alpha_\beta = 1$ then all elements of \mathbf{R}_N will be non-zero and we have $\alpha = 1$. For all intermediate values of α_β , \mathbf{R}_N will have a total of $[N^{\alpha_\beta} (N^{\alpha_\beta} - 1) + N]$ non-zero elements. The exact relationship between α and α_β is given by (11). Further, we generate the variances of ε_{it} as $\sigma_{ii} \sim IID \ 0.5 [1 + 0.5\chi^2(2)]$, for i = 1, 2, ..., N, and set $\mathbf{D}_N = \text{Diag}(\sigma_{ii}, i = 1, 2, ..., N)$. We now generate ε_{it} so that its correlation matrix is

³We also consider (iii) a dynamic panel data model with no exogenous regressors, where $\vartheta_i \sim IIDU(0, 0.95)$ and $\gamma_i = 0$, for i = 1, 2, ..., N. Simulation results for case (iii) are similar to those for cases (i) and (ii) and are available in the online supplement, Tables S1a-S1d.

equal to \mathbf{R}_N . To this end we first obtain matrix \mathbf{P}_N as the Cholesky factor of \mathbf{R}_N , and then set $\mathbf{W}_N = \mathbf{D}_N^{1/2} \mathbf{P}_N = (w_{ij})$, where w_{ij} is the (i, j) element of \mathbf{W}_N . We then generate ε_{it} as

$$\varepsilon_{it} = \sum_{j=1}^{N} w_{ij} u_{jt}, \ i = 1, 2, \dots, N; \ t = 1, 2, \dots, T,$$
(31)

where u_{jt} are *IID* draws from Gaussian or non-Gaussian distributions, to be specified below.⁴

Design 2 The second design closely follows the set up in BKP and employs the two-factor specification given by

$$\varepsilon_{it} = \beta_{i1} f_{1t} + \beta_{i2} f_{2t} + u_{it}, \text{ for } i = 1, 2, \dots, N; \ t = 1, 2, \dots, T,$$
 (32)

where $f_{jt} \sim IIDN(0,1)$, j = 1, 2 and $u_{it} \sim IIDN(0,1)$ for i = 1, 2, ..., N. With regard to the factor loadings, we generate them as follows:

$$\beta_{i1} = \dot{v}_{i1}, \text{ for } i = 1, 2, \dots, [N^{\alpha_{\beta_1}}]$$

$$\beta_{i1} = 0, \text{ for } i = [N^{\alpha_{\beta_1}}] + 1, [N^{\alpha_{\beta_1}}] + 2, \dots, N$$

$$\beta_{i2} = \dot{v}_{i2}, \text{ for } i = 1, 2, \dots, [N^{\alpha_{\beta_2}}],$$

$$\beta_{i2} = 0, \text{ for } i = [N^{\alpha_{\beta_2}}] + 1, [N^{\alpha_{\beta_2}}] + 1, \dots, N,$$
(33)

where β_{i2} are then randomised across *i* to achieve independence from β_{i1} . The loadings are generated as $\dot{v}_{ij} \sim IIDU(\mu_{v_j} - 0.2, \mu_{v_j} + 0.2)$, for j = 1, 2. We examine the case where $\alpha_{\beta 2} < \alpha_{\beta 1} = \alpha_{\beta}$ and consider values of α_{β} and $\alpha_{\beta 2}$ such that $\alpha_{\beta 2} = \frac{2\alpha_{\beta}}{3}$. We set $\mu_{v_2} = 0.71$ and $\mu_{v_1} = \sqrt{\mu_v^2 - N^{2(\alpha_{\beta 2} - \alpha_{\beta})}\mu_{v_2}^2}$ such that $\mu_{v_1}^2 + \mu_{v_2}^2 = \mu_v^2 = 0.75$ - see BKP for further details. Both μ_{v_1} and μ_{v_2} are chosen such that $\mu_{v_j} \neq 0$, j = 1, 2, without $\mu'_{v_j} s$ being too distant from zero either. As before, the exact relationship between α and α_{β} is given by (11).

In both designs, we examine two cases for the innovations u_{jt} : (i) Gaussian, where $u_{jt} \sim IIDN(0,1)$ for j = 1, 2, ..., N; (ii) non-Gaussian, where u_{jt} follows a multivariate t-distribution with v degrees of freedom. This is achieved by generating u_{jt} as

$$u_{jt} = \left(\frac{\mathbf{v}-2}{\chi_{\mathbf{v},t}^2}\right)^{1/2} \tilde{\nu}_{jt}, \text{ for } j = 1, 2, \dots, N,$$

where $\tilde{\nu}_{jt} \sim IIDN(0,1)$ and $\chi^2_{v,t}$ is a chi-squared random variate with v = 8 degrees of freedom.

For the estimation of α , in each replication r = 1, 2, ..., R, we first compute the OLS residuals

$$e_{it}^{(r)} = y_{it} - \hat{a}_i^{(r)} - \hat{\vartheta}_i^{(r)} y_{i,t-1} - \hat{\gamma}_i^{(r)} x_{it}, \ i = 1, 2, \dots, N; \ t = 2, 3, \dots, T,$$

where $\hat{a}_i^{(r)}$, $\hat{\vartheta}_i^{(r)}$, and $\hat{\gamma}_i^{(r)}$ are the OLS estimators of the regressions of y_{it} on an intercept, $y_{i,t-1}$ and x_{it} , computed using the observations $t = 2, 3, \ldots, T$, for each *i*. In the case of the static

⁴Note that $\boldsymbol{\varepsilon}_t = \mathbf{W}_N \mathbf{u}_t$, and $Var(\boldsymbol{\varepsilon}_t) = \mathbf{W}_N \mathbf{W}'_N = \mathbf{D}_N^{1/2} \mathbf{P}_N \mathbf{P}'_N \mathbf{D}_N^{1/2} = \mathbf{D}_N^{1/2} \mathbf{R}_N \mathbf{D}_N^{1/2}$, as required.

regressions where $\vartheta_i = 0$, the residuals are computed from regressions of y_{it} on an intercept and x_{it} using the observations t = 1, 2, ..., T. The sample covariance matrix, $\hat{\Sigma}_N^{(r)} = (\hat{\sigma}_{ij}^{(r)})$, is then computed as

$$\hat{\sigma}_{ij}^{(r)} = T^{-1} \sum_{t=2}^{T} e_{it}^{(r)} e_{jt}^{(r)}, \text{ for } i, j = 1, 2, \dots, N,$$

and diagonal elements $\hat{\sigma}_{ii}^{(r)}$ collected in $\hat{D}_N^{(r)} = \text{Diag}(\hat{\sigma}_{ii}^{(r)}, i = 1, 2, ..., N)$. The corresponding sample correlation matrix is then given by

$$\hat{m{R}}_{N}^{(r)} = \hat{m{D}}_{N}^{(r)-1/2} \hat{m{\Sigma}}_{N}^{(r)} \hat{m{D}}_{N}^{(r)-1/2}.$$

We evaluate the bias and root mean squared error (RMSE) of the exponent of cross-sectional dependence $\tilde{\alpha}$ computed as in (25) with the critical value, $c_p(n, \delta)$, given by (24). For p and δ we consider the values $p = \{0.05, 0.10\}$ and $\delta = \{1/2, 1/3\}$.⁵ Further, we compute the biascorrected version of the exponent of cross-sectional dependence estimator developed in BKP, $\mathring{\alpha}$, and compare its performance with that of $\tilde{\alpha}$.⁶ However, it is important to bear in mind that BKP provide theoretical justification for their estimator only in the case of demeaned observations, namely $x_{it} - \bar{x}_i$, and do not consider residuals from panel regressions as we do in this paper. As a by-product, this paper also provides Monte Carlo evidence on the properties of the estimator, $\mathring{\alpha}$, when applied to residuals from panel regressions.

Finally, for the construction of confidence intervals for $\tilde{\alpha}$, we propose the following bootstrap procedure:

Bootstrap In each replication, r = 1, 2, ..., R, we collect residuals in matrix $E^{(r)} = \left(e_{it}^{(r)}\right)_{T \times N}$ and proceed to resample (with replacement) from the columns a total number of *B* times. More precisely, in each bootstrap b = 1, 2, ..., B, the *N* cross section units are reshuffled with replacement to generate a new matrix of residuals $E^{(r),(b)} = \left(e_{(i)t}^{(r),(b)}\right)_{T \times N}$, where (*i*) denotes the resampled index of the *N* units. For each *b*, we then compute the correlation matrix $\hat{R}_N^{(r),(b)}$ corresponding to residuals $E^{(r),(b)}$ and estimate α , which we denote by $\tilde{\alpha}^{(r),(b)}$. The bootstrap estimates of α are collected in the vector $\tilde{\alpha}^{(r),B} = \left(\tilde{\alpha}^{(r),(1)}, \tilde{\alpha}^{(r),(2)}, ..., \tilde{\alpha}^{(r),(B)}\right)'$ from where we obtain the estimates of α that correspond to the 0.05 and 0.95 percentiles, and which we denote by $\tilde{\alpha}_{0.05}^{(r),B}$ and $\tilde{\alpha}_{0.95}^{(r),B}$, respectively. Finally, we evaluate the frequency at which $\tilde{\alpha}_{0.05}^{(r),B} < \tilde{\alpha}^{(r)} < \tilde{\alpha}_{0.95}^{(r),B}$ across the *R* replications of each MC experiment.

$$\mathring{\alpha} = \mathring{\alpha} \left(\hat{\mu}_v^2 \right) = 1 + \frac{1}{2} \frac{\ln(\hat{\sigma}_{\bar{x}}^2)}{\ln(N)} - \frac{\ln\left(\hat{\mu}_v^2 \right)}{2\ln(N)} - \frac{\hat{c}_N}{2\left[N \ln(N) \right] \hat{\sigma}_{\bar{x}}^2},\tag{34}$$

where $\hat{\sigma}_{\bar{x}}^2$, $\hat{\mu}_v^2$ and \hat{c}_N are consistent estimators of $\sigma_{\bar{x}}^2$, μ_v^2 , and c_N - see BKP for further details. We use four principal components when estimating \hat{c}_N .

⁵The value of $\delta = 1/4$ was also considered. Results are in line with those for $\delta = 1/3$ and are available in the online supplement, Tables S2a-S2d.

⁶Recall that $\overset{\circ}{\alpha}$ corresponds to the most robust bias-adjusted estimator of the exponent of cross-sectional dependence considered in Bailey et al. (2016) and allows for both serial correlation in the factors and weak cross-sectional dependence in the error terms. It is given by

For all experiments we consider the values of $\alpha = 0.55, 0.60, \dots, 0.90, 0.95, 1.00$, and the sample sizes N, T = 100, 200, 500, and carry out all experiments with R = 2,000 replications and B = 500 bootstraps. The values of a_i, ϑ_i and γ_i are drawn randomly in each replication.

6.1 Small sample results

First, we consider the small sample performance of our proposed estimator, $\tilde{\alpha}$, and investigate its robustness to different choices of p and δ , that govern the critical value, $c_p(n, \delta)$, used in estimating it. The results for Gaussian errors are provided in Tables A1a to A2b, and the results for non-Gaussian errors are reported in Tables A3a to A4b. Each table reports bias and RMSE of $\tilde{\alpha}$ computed using the residuals from either static or dynamic panel data regressions. Tables A1a and A1b give the results for static and dynamic panels, respectively, when the cross-sectional dependence in the errors are generated according to Design 1, whilst the same results for Design 2 are summarized in Tables A2a and A2b. Similarly, the results in Tables A3a and A3b give bias and RMSE of $\tilde{\alpha}$ for static and dynamic panels when the errors are non-Gaussian and the cross correlations are generated according to Design 1, whilst the same results for Design 2 are provided in Tables A4a and A4b. In each of these tables, the left panels give bias and RMSE for p = 0.05, and the right panels for p = 0.10, whilst the top panels give the results for $\delta = 1/2$, and the bottom panels for $\delta = 1/3$. Specifically, each Table gives four sets of results for the combinations (p, δ) , with p = 0.05, 0.10 and $\delta = 1/3, 1/2$.

Comparing the left and right panels of the tables, it is clear that $\tilde{\alpha}$ is robust to the choice of p, irrespective of the value of δ , and for all N and T combinations. Observing that n = N(N-1)/2 is quite large even for moderate values of N, the effective p-value of the underlying individual tests is given by $2p/n^{\delta}$, which is likely to be dominated by the choice of δ as compared to p. Therefore, the test outcomes are more likely to be robust to the choice of p as compared to δ .

Turning to the choice of δ , comparing the results reported in top and bottom panels of the tables, we note that for all N and T combinations the choice of $\delta = 1/2$ produces smaller bias and RMSE as compared to $\delta = 1/3$ for values of α close to 1/2 ($\alpha \leq 0.75$). The reverse is true when considering values of α close to unity ($\alpha > 0.80$). Again, this is consistent with the result of Theorem 1 which requires δ to be larger than $1 - \alpha$. Hence, for $\alpha \to 1/2$ setting $\delta = 1/2$ is more appropriate, while as $\alpha \to 1$ values of δ below 1/2 are more appropriate. In cases where there is no priori information regarding the range in which the true value of α might fall, the simulation results suggest setting δ to its upper bound value of $\delta = 1/2$.

Overall, irrespective of whether we consider static or dynamic panel regressions, with Gaussian or non-Gaussian errors, the tabulated results show that the small sample performance of $\tilde{\alpha}$ improves as the true exponent of cross-sectional dependence, α , rises from 0.55 towards 1.0, uniformly over N and T combinations. This finding holds for both Designs, although $\tilde{\alpha}$ generally performs better when Design 1 is used to generate the error cross-sectional dependence. Further, both bias and RMSE of $\tilde{\alpha}$ diminish as N rises for all values of T considered. These results are in line with our main theoretical findings as set out in Theorem 1. It is also interesting to note that under Design 1, the bias and RMSE of $\tilde{\alpha}$ are particularly small for values of α in the range of 0.9-1, even if we consider dynamic panels with non-Gaussian errors. For example,

for T = 100 and N = 500, p = 0.05, $\delta = 1/3$, the bias and RMSE of estimating $\alpha = 0.95$ by $\tilde{\alpha}$, in the case of dynamic panels with non-Gaussian errors are -0.00008 and 0.00067, respectively. (see Table A3b).

Tables A2a and A2b summarize the results for static and dynamic panel data models, respectively, when the error cross-sectional dependence is generated by Design 2 (the two-factor structure). Compared with Tables A1a and A1b, both bias and RMSE are more sizeable across the range of α when T = 100. However, as T increases, the performance of $\tilde{\alpha}$ improves for all values of α , especially when α approaches unity, as to be expected. Perhaps, the signal-to-noise ratio implied by (32) becomes somewhat distorted when the T dimension is short and adversely affects the accuracy of the multiple testing procedure used to identify the non-zero elements of the error correlation matrix, \mathbf{R}_N . To verify this conjecture, we repeated the same experiments attaching a scaling parameter of $\varsigma = \sqrt{1/2}$ to u_{it} in (32), in line with the simulation setup in BKP. Performance of $\tilde{\alpha}$ is much improved in this case and comparable to those shown in Tables A1a and A1b, even when T is small.⁷ Our conclusions regarding the robustness of $\tilde{\alpha}$ to the choice of p and δ arrived at under Design 1 continue to hold for Design 2.

We now consider the small sample performance of $\tilde{\alpha}$ relative to that of $\dot{\alpha}$, the estimator of α proposed in BKP. $\mathring{\alpha}$ is a biased-corrected estimator of α based on the standard deviation of the cross-sectional average of the residuals. As noted earlier, the asymptotic properties of $\overset{\circ}{\alpha}$ are established only for demeaned observations, but it is conjectured that these asymptotic properties are likely to hold even if $\mathring{\alpha}$ is computed using residuals from panel regressions. For comparison we consider bias and RMSE of $\tilde{\alpha}$ computed using p = 0.05 and $\delta = 1/2$, and note that similar results are obtained for other choices of p and δ . Table B1 compares the resulting bias and RMSE of the two α estimators when applied to residuals obtained from a static (top panel) and dynamic panel data models (bottom panel). These results refer to Design 1 with Gaussian errors. Both estimators perform well for all values of α , and irrespective of whether the panel regressions are static or dynamic. This is particularly so for values of $\alpha >$ 0.8. In comparative terms, $\tilde{\alpha}$ outperforms $\dot{\alpha}$ on average, for all values of α , and all N and T combinations. The superior performance $\tilde{\alpha}$ is more pronounced when $\alpha \leq 0.75$ uniformly over N and T. The results for Design 2 (where the cross-sectional dependence of the errors are generated using a two-factor specification) are summarized in Table B2 which has the same format as Table B1. In the case of these experiments, $\dot{\alpha}$ (the estimator proposed by BKP) performs better than $\tilde{\alpha}$ when T is small (T = 100), but the bias and RMSE of $\tilde{\alpha}$ becomes more comparable to $\dot{\alpha}$ as both N and T rise. As noted above, scaling u_{it} by ς in (32) eliminates this relative outperformance of $\mathring{\alpha}^{.8}$

Further, Table C displays bias and RMSE results for estimates of the exponent of crosssectional dependence, given by (8), and computed using the maximum eigenvalue of the correlation matrices $\hat{\mathbf{R}}_N$ derived from the residuals from a static or dynamic panel data model with Gaussian errors generated under Designs 1 or 2. It is clear that all eigenvalue based estimates of α perform rather poorly even for large values of N and T, and even for values of α close to 1.

⁷These results are available in the online supplement - see Table S3.

⁸Comparison of $\tilde{\alpha}$ and $\overset{\circ}{\alpha}$ when errors are non-Gaussian are provided in Tables S4a-S4b.of the online supplement.

Turning to the problem of sampling uncertainty, we compute bootstrapped confidence intervals for the estimate $\tilde{\alpha}$ in the case of Design 1 with Gaussian errors. The results are summarised in Table D and give the average coverage rates (in percent) over the R simulations of $\tilde{\alpha}$ being between the 5th and 95th percentiles of its empirical distribution. The related confidence intervals are constructed by applying the resampling procedure with replacement to the residuals obtained for the static and dynamic panel data models, with the results summarized in the top and bottom panels of Table D, respectively. We set $\delta = 1/2$ in the critical value function $c_p(n, \delta)$, and p = 0.05 (left panel) p = 0.10 (right panel), in each replication of the MC experiments and in each bootstrap. For $\alpha = 0.60$ coverage is low for small values of N, but rises steadily towards unity as N increases and for all values of T considered. For $0.65 \leq \alpha \leq 0.95$ coverage stands universally at 100% but drops significantly when $\alpha = 1.00$. Indeed, in this case for small T coverage is relatively high and improves as N rises but drops toward zero when the T dimension is increased for all values of N considered. This is to be expected since, as noted earlier, the error in estimating $\tilde{\alpha}$ becomes negligible when $\alpha = 1.00$.

Overall, we can conclude that using multiple testing for identifying non-zero elements of $\hat{\boldsymbol{R}}_N$ when computing $\tilde{\alpha}$ is computationally attractive, has sound theoretical properties, with comparable performance to the estimator of the exponent of cross-sectional dependence, $\overset{\circ}{\alpha}$, developed in BKP.

7 An Empirical Application: identifying the weak factor component of CAPM

In their paper BKP investigate the extent to which excess returns on the Standard & Poor's 500 (S&P 500) securities are interconnected through the market factor by computing rolling estimates of α , the degree of cross-sectional dependence of S&P 500 securities. According to asset pricing theories such as the capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965), and arbitrage pricing (APT) of Ross (1976), such estimates of α should be close to unity at all times. This is because both CAPM and APT assume security returns have a common factor representation with at least one strong common factor, with the idiosyncratic component being weakly correlated - see also the approximate factor model due to Chamberlain (1983). Such a factor structure implies that all individual stock returns are significantly affected by the common factor(s) and in consequence they are all pair-wise correlated with varying degrees.

The subsequent analysis in BKP reveals that a disconnect between some asset returns and the market factor does occur particularly at times of stock market bubbles and crashes where these asset returns could be driven by non-fundamentals. In this paper, we focus on the exponent of cross-sectional dependence of the residuals obtained from different versions of the CAPM model, and provide rolling estimates of the exponent of the cross-sectional dependence of the errors from CAPM and related APT models. This is important since under CAPM, after allowing for the market factor, the errors can not be cross-sectionally strongly correlated. It is therefore of interest to see if this is in fact true at all times, or if there are episodes where market factors are not sufficient to capture all the significant interdependencies that might exist across the security returns.

We update the BKP analysis and consider monthly excess returns of the securities included in the S&P 500 index over the period from September 1989 to May 2018. We obtain estimates of α using rolling samples of 120 months (10 years) to capture possible time variations in the degree of cross-sectional dependence.⁹ Since the composition of the S&P 500 index changes over time, we compiled returns on all 500 securities at the end of each month and included in our analysis only those securities that had at least 10 years of data in the month under consideration. On average, we ended up with 442 securities at the end of each month for the 10-year rolling samples. The one-month US treasury bill rate was chosen as the risk-free rate (r_{ft}) , and excess returns were computed as $\tilde{r}_{it} = r_{it} - r_{ft}$, where r_{it} is the monthly return on the i^{th} security in the sample inclusive of dividend payments (if any).¹⁰

First, following BKP, we estimated α for excess security returns to see the extent to which securities in S&P 500 index are fully interconnected at all times. As noted above, under CAPM we would expect estimates of α to be close to unity. To this end we used our proposed estimator, $\tilde{\alpha}$, defined by (25), and computed 10-year rolling estimates $\tilde{\alpha}_t$, for t = September 1989 to May 2018 - a total of 345 estimates - with p = 0.05. To check the robustness of the estimates to the choice of δ we computed the rolling estimates for $\delta = 1/2$ and 1/3.¹¹ The resultant estimates are shown in Figure 1.¹² As expected, estimates of $\tilde{\alpha}_t$, for $\delta = 1/2$, lie below those of $\tilde{\alpha}_t$, using $\delta = 1/3$, but the series track each other very closely. Also the quantitative differences between the two estimates are not that large. Specifically, all the 345 rolling estimates $\tilde{\alpha}_t$ ($\delta = 1/2$) fall in the interval 0.82 to 0.96, whilst the corresponding estimates $\tilde{\alpha}_t$ ($\delta = 1/3$) all lie in the range 0.86 - 0.97. These estimates show a high degree of inter-linkages across individual securities, and are very close to unity at the start and at the end of the sample, with important departures from unity in between. Considering $\tilde{\alpha}_t$ ($\delta = 1/2$), it recorded lows around 0.86 in 1998 before recovering temporarily and falling further to 0.84. This episode coincides with the Russian and the Long-Term Capital crises of 1998 which originated in bond markets but rapidly transmitted through international equity markets. The $\tilde{\alpha}$ estimates remained low, falling to 0.82 - 0.83, around the turn of the century which saw the burst of the Dotcom bubble and 9/11 terrorist attacks in the US. During the less volatile period of 2003 - 2007, $\tilde{\alpha}$ rose slightly to about 0.85 before a new low of 0.82 was recorded in August 2008, around the time of the sub-prime mortgage crisis in the US, and the ensuing global financial meltdown and economic recession.¹³ The estimates of $\tilde{\alpha}$ gradually increase to pre-1997 levels of 0.92 - 0.93 in 2011 and have since remained in this range to the end of our sample, May 2018.

We now turn our attention to the exponent of cross-sectional correlations of the error terms of the CAPM model, and two well known extensions using additional Fama and French factors.

 $^{^{9}}$ We also consider rolling samples of size 60 months (5 years). Results for this setting are shown in the online supplement - Figures 3 and 4.

¹⁰For further details of data sources and definitions see Pesaran and Yamagata (2012).

¹¹For the remaining parameters in (25) we set p = 0.05 and $n = N_t(N_t - 1)/2$, where N_t is the number of securities in a given 10-year rolling window (t = 1, 2, ..., 345).

¹²The same estimates including their 90% confidence intervals are shown in Figures 5 and 6 of the online supplement, where in critical value $c_p(n, \delta)$ we set $\delta = 1/2$ and 1/3, respectively.

¹³The measured increase in $\tilde{\alpha}$ estimates during 2003 – 2007 is partly attributed to the length of the rolling windows being set to 10 years (120 months). Opting for 5-year rolling windows (60 months) produces more pronounced increments in $\tilde{\alpha}$ estimates which is expected - see Figure 3 in the online supplement.

Figure 1: 10-year rolling estimates of the exponent of cross-sectional correlation $(\tilde{\alpha}_t)$ of S&P 500 securities' excess returns

Specifically, the first regression is the usual CAPM one-factor representation given by

$$r_{it} - r_{ft} = a_i + \beta_i \left(r_{mt} - r_{ft} \right) + u_{1i,t}, \text{ for } i = 1, 2, \dots, N,$$
(35)

where r_{mt} is the market return computed as the value-weighed returns on all NYSE, AMEX, and NASDAQ stocks. The second and third regressions assume the following extensions to (35) proposed by Fama and French (2004):

$$r_{it} - r_{ft} = a_i + \beta_{1i} \left(r_{mt} - r_{ft} \right) + \beta_{2i} smb_t + u_{2i,t}, \text{ for } i = 1, 2, \dots, N$$
(36)

and

$$r_{it} - r_{ft} = a_i + \beta_i \left(r_{mt} - r_{ft} \right) + \beta_{2i} smb_t + \beta_{3i} hml_t + u_{3i,t}, \text{ for } i = 1, 2, \dots, N,$$
(37)

where smb_t stands for average return on the three small portfolios minus the average return on the three big portfolios formed by size, while hml_t refers to the average return on securities with high book value to market value ratio minus the average return of securities with low book value to market value ratio.¹⁴

As noted previously, under CAPM we would expect the errors, $u_{1i,t}$, to be cross-sectionally weakly correlated, with α_{u_1} to be close to 1/2. But this need not be the case in reality. In fact the introduction of FF factors, smb_t and hml_t , could be viewed as an attempt to ensure cross-sectionally weakly correlated errors for the augmented CAPM model. It is therefore of interest to consider the estimates of α for the errors, $u_{1i,t}$, $u_{2i,t}$, and $u_{3i,t}$, and see if they are close to 1/2 as required by the theory. To this end, we compute 10-year rolling estimates of α based on the pair-wise correlations of the OLS residuals $\hat{u}_{1i,t}$, $\hat{u}_{2i,t}$ and $\hat{u}_{3i,t}$ in the panel regressions

¹⁴For further details of data sources and definitions see Pesaran and Yamagata (2012).

(35), (36) and (37), respectively. These estimates denoted by $\tilde{\alpha}_{\hat{u}_j t}$, j = 1, 2, 3 for t = September 1989 to May 2018, are shown in Figure 2.^{15,16}

Notes: CAPM model includes excess market returns, CAPM model augmented by SMB includes excess market returns and small minus big (SMB) firm returns, and CAPM model augmented by SMB and HML includes excess market returns, small minus big (SMB) firm returns and high minus low (HML) firm returns as regressors in (35), (36) and (37), respectively.

As expected, estimates of α based on the residuals are smaller compared to the estimates obtained for the securities themselves (as depicted in Figure 1). It is also interesting that all the three estimates $\tilde{\alpha}_{\hat{u}_1t}$, $\tilde{\alpha}_{\hat{u}_2t}$ and $\tilde{\alpha}_{\hat{u}_3t}$ are closely clustered over the two sub-periods September 1989 to September 1997, and February 2011 to May 2018, suggesting that the standard CAPM model provides an adequate characterisation of the cross-sectional correlations of securities, and the additional FF factors are not required in these sub-periods. It is also worth nothing that, over these two sub-periods, estimates of α fall in the narrow range of 0.63-0.71 which are sufficiently small and support CAPM as an adequate model for characterising cross-correlations of S&P 500 security returns. In contrast, the estimates $\tilde{\alpha}_{\hat{u}_1t}$, $\tilde{\alpha}_{\hat{u}_2t}$ and $\tilde{\alpha}_{\hat{u}_3t}$ tend to diverge over the period from October 1997 to January 2011, and more importantly they all start to rise sharply, suggesting important departures from the basic CAPM model. Using only the market

¹⁵We set p = 0.05 and $\delta = 1/2$ when estimating α for the residuals, since *a priori* we would expect the true value of α for the errors of CAPM models to be close to 1/2. See the discussion in Section 6.

¹⁶The same estimates including their 90% confidence intervals are shown in Figures 7, 8 and 9 of the online supplement, respectively.

factor, as in (35), results in $\tilde{\alpha}_{\hat{u}_1t}$ jumping to levels around 0.74 – 0.76. Adding smb_t to (35) reduces the α estimates of the resulting residuals to 0.69–0.73, suggesting that the size portfolio does have some influence on individual security returns during this period. Adding the second FF factor (as in (37)), further reduces the estimates of α to the range 0.66–0.68. These results are also in line with the sharp drop in the estimates of α we reported for the excess returns during the period 1998 – 2010, and provide further evidence in favour of the argument that the presence of factors other than the market factor, namely smb_t and hml_t , tend to become relevant during periods of financial crises and turmoils.

8 Conclusions

Cross-sectional dependence and the extent to which it occurs in large multivariate data sets is of great interest for a variety of economic, econometric and financial analyses. Such analyses vary widely. Examples include the effects of idiosyncratic shocks on aggregate macroeconomic variables, the extent to which financial risk can be diversified by investing in disparate assets or asset classes and the performance of standard estimators such as principal components when applied to data sets with unknown collinearity structures. A common characteristic of such analyses is the need to quantify the degree of cross-sectional dependence, especially when it is prevalent enough to materially affect the outcome of the analysis.

In this paper we generalize the work of Bailey et al. (2016) by proposing a method of measuring the extent of inter-connections in the residuals of large panel data sets in terms of a single parameter, α . We refer to this as the exponent of cross-sectional dependence of the residuals. We show that this exponent can be used to characterize the degree of sparsity of correlation matrices, or the prevalence of factors in multi-factor representations routinely used in economic and financial analysis. We propose a simple consistent estimator of the cross-sectional exponent and derive the rate at which it approaches its true value. We also propose a resampling procedure for the construction of confidence bounds around the estimator of α .

A detailed Monte Carlo study suggests that the proposed estimator has desirable small sample properties especially when $\alpha > 3/4$. We apply our measure to the widely analysed Standard & Poor's 500 data set. We find that for individual securities in S&P 500 index, the 10-year rolling estimates of cross-sectional exponents are sufficiently close to unity over the two sub-periods 1989 - 1997 and 2011 - 2018, but not during the intervening period 1998 - 2010, when markets have been subject to a number of financial turmoils, starting with the LTCM crisis and the Dotcom bubble, and ending with the credit crunch of 2007 - 2008. These results carry over when we consider the cross-sectional dependence of errors from the CAPM model and its multi-factor extensions using Fama-French factors. Estimates of α based on the residuals from the CAPM model lend support to CAPM during the sub-periods 1989 - 1997 and 2011 - 2018, but not when we consider the period 1998 - 2010.

References

- Bailey, N., G. Kapetanios, and M. H. Pesaran (2016). Exponent of cross-sectional dependence: Estimation and inference. Journal of Applied Econometrics 31(6), 929–960.
- Bailey, N., M. H. Pesaran, and L. V. Smith (2018). A multiple testing approach to the regularisation of sample correlation matrices. *Journal of Econometrics: https://doi.org/10.1016/j.jeconom.2018.10.006*.
- Bickel, P. J. and E. Levina (2008). Covariance regularization by thresholding. *The Annals of Statistics 36*, 2577–2604.
- Bonferroni, C. (1935). Il calcolo delle assicurazioni su gruppi di teste. Studi in Onore del Professore Salvatore Ortu Carboni, Rome, Italy, 13–60.
- Cai, T. and W. Liu (2011). Adaptive thresholding for sparse covariance matrix estimation. Journal of American Statistical Association 106, 672–684.
- Cai, T. and H. Zhou (2011). Minimax estimation of large covariance matrices under ℓ_1 norm (with discussion). Statistica Sinica 22, 1319–1378.
- Cai, T. and H. Zhou (2012). Optimal rates of convergence for sparse covariance matrix estimation. The Annals of Statistics 40, 2389–2420.
- Chamberlain, G. (1983). Funds, factors and diversification in arbitrage pricing theory. *Econometrica* 51(5), 1305–1323.
- Chudik, A., G. Kapetanios, and M. H. Pesaran (2018). A one covariate at a time, multiple testing approach to variable selection in high-dimensional linear regression models. *Econometrica* 86(4), 1479–1512.
- Chudik, A., M. H. Pesaran, and E. Tosetti (2011). Weak and strong cross section dependence and estimation of large panels. *The Econometrics Journal* 14(1), C45–C90.
- Fama, E. F. and K. R. French (2004). The capital asset pricing model: Theory and evidence. Journal of Economic Perspectives 18, 25–46.
- Fan, J., Y. Liao, and M. Mincheva (2011). High dimensional covariance matrix estimation in approximate factor models. The Annals of Statistics 39, 3320–3356.
- Fan, J., Y. Liao, and M. Mincheva (2013). Large covariance estimation by thresholding principal orthogonal complements. Journal of Royal Statistical Society, Series B 75, 1–44.
- Gonçalves, S. and P. Perron (2018). Bootstrapping factor models with cross-sectional dependence. Available at https://papyrus.bib.umontreal.ca/xmlui/handle/1866/20818.
- Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 65–70.
- Huang, J., N. Liu, M. Pourahmadi, and L. Liu (2006). Covariance matrix selection and estimation via penalised normal likelihood. *Biometrika* 93, 85–98.
- Kapetanios, G. (2008). A bootstrap procedure for panel datasets with many cross-sectional units. The Econometrics Journal 11(2), 377–395.
- Karoui, N. E. (2008). Operator norm consistent estimation of large dimensional sparse covariance matrices. The Annals of Statistics 36, 2717–2756.
- Ledoit, O. and M. Wolf (2003). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. *Journal of Empirical Finance 10*, 603–621.
- Ledoit, O. and M. Wolf (2004). A well-conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis 88, 365–411.

- Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. *Review of Economics and Statistics* 47(1), 13–37.
- Pesaran, M. H. and T. Yamagata (2012). Testing capm with a large number of assets. Working Paper, University of Cambridge: revised Jan 2018.
- Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory 13, 341–360.
- Rothman, A. J., E. Levina, and J. Zhu (2009). Generalised thresholding of large covariance matrices. Journal of American Statistical Association 104, 177–186.
- Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance 19(3), 425–442.
- Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Univ. California Press, Berkeley, 197–206.
- Wang, Y. and H. Zhou (2010). Vast volatility matrix estimation for high-frequency financial data. The Annals of Statistics 38, 943–978.

Appendices

Appendix I: Statement of Lemmas

Lemma 1 Consider the panel data regression model (12) and suppose that Assumptions 1-4 hold. Then,

$$\sup_{i,j} \Pr\left(\left| \sum_{t=1}^{T} z_{it} z_{jt} - E\left(z_{it} z_{jt} | \Omega_{i,j,t} \right) \right| > \sqrt{T} c_p\left(n,\delta\right) \right) \le \sup_{i,j} \Pr\left(\left| \sum_{t=1}^{T} \xi_{it} \xi_{jt} - E\left(\xi_{is} \xi_{js} | \Omega_{i,j,t} \right) \right| > (1-\pi) \sqrt{T} c_p\left(n,\delta\right) \right) + \exp\left(-C_0 T^{C_1} \right),$$

for some $C_0, C_1 > 0$, where $z_{it} = \frac{e_{it}}{\left(T^{-1}\mathbf{e}'_i\mathbf{M}_i\mathbf{e}_i\right)^{1/2}}$.

Lemma 2 Let

$$W_{NT}^{0} = N^{-2\alpha} \sum_{i \neq j}^{N} I\left(\left| T^{-1} \sum_{t=1}^{T} z_{it} z_{jt} \right| > \frac{c_{p}(n,\delta)}{\sqrt{T}} \left| \rho_{ij} = 0 \right. \right)$$

where $z_{it} = \frac{e_{it}}{\left(T^{-1}\mathbf{e}'_{i}\mathbf{M}_{i}\mathbf{e}_{i}\right)^{1/2}}$. Under Assumptions 1-4,

$$E\left(W_{NT}^{0}\right) = O\left(N^{2(1-\alpha-\varkappa\delta)}\right) + O\left(N^{2(1-\alpha)}\exp\left(-C_{0}T^{C_{1}}\right)\right)$$

for any $0 < \varkappa < 1$, and some $C_0, C_1 > 0$, where δ is defined below (23).

Lemma 3 Let

$$W_{NT}^{1} = N^{-2\alpha} \sum_{i \neq j}^{N} I\left(\left| T^{-1} \sum_{t=1}^{T} z_{it} z_{jt} \right| \le \frac{c_p(n,\delta)}{\sqrt{T}} \left| \rho_{ij} \ne 0 \right. \right)$$

Under Assumptions 1-4, and as long as $N = o(\exp(T))$, $\inf_{i,j} |E(\hat{\rho}_{ij})| > 0$,

$$E\left(W_{NT}^{1}\right) = O\left(\exp\left(-C_{0}T^{C_{1}}\right)\right),$$

for some $C_0, C_1 > 0$, where δ is defined below (23) and $z_{it} = \frac{e_{it}}{\left(T^{-1}\mathbf{e}'_i\mathbf{M}_i\mathbf{e}_i\right)^{1/2}}$.

Appendix II: Proofs of Lemmas

Proof of Lemma 1

Recall $a_{i,t} = (a_{i,t1}, \dots, a_{i,tT})' = \mathbf{X}_i (\mathbf{X}'_i \mathbf{X}_i)^{-1} \mathbf{x}_{it}$. Then, using (15),

$$\sum_{t=1}^{T} z_{it} z_{jt} = \sum_{t=1}^{T} \left(\xi_{it} + \sum_{s=1}^{T} a_{i,ts} \xi_{is} \right) \left(\xi_{jt} + \sum_{s=1}^{T} a_{j,ts} \xi_{js} \right) = \sum_{t=1}^{T} \xi_{it} \xi_{jt} + \sum_{t=1}^{T} \xi_{it} \left(\sum_{s=1}^{T} a_{j,ts} \xi_{js} \right) + \sum_{t=1}^{T} \xi_{jt} \left(\sum_{s=1}^{T} a_{i,ts} \xi_{is} \right) + \sum_{t=1}^{T} \xi_{jt} \left(\sum_{s=1}^{T} a_{i,ts} \xi_{is} \right) \left(\sum_{s'=1}^{T} a_{j,ts'} \xi_{js'} \right) = \sum_{i=1}^{4} A_i.$$

We focus on A_4 . A_2 and A_3 can be treated similarly. We have

$$\sum_{t=1}^{T} \left(\sum_{s=1}^{T} a_{i,ts} \xi_{is} \right) \left(\sum_{s'=1}^{T} a_{j,ts'} \xi_{js'} \right) = \sum_{s=1}^{T} \sum_{s'=1}^{T} \xi_{is} \xi_{js'} \sum_{t=1}^{T} a_{i,ts} a_{j,ts'}$$
$$\sum_{s=1}^{T} \sum_{s'=1}^{T} \xi_{is} \xi_{js'} = \sum_{s=1}^{T} \xi_{is} \xi_{js} + \sum_{s=1}^{T} \xi_{is} \left(\sum_{s\neq s',s'=1}^{T} \xi_{js'} \right)$$

Further,

$$\sum_{s=1}^{T} \sum_{s'=1}^{T} \xi_{is} \xi_{js'} \sum_{t=1}^{T} a_{i,ts} a_{j,ts'} = \sum_{s=1}^{T} \xi_{is} \xi_{js} \left(\sum_{t=1}^{T} a_{i,ts} a_{j,ts'} \right) + \sum_{s=1}^{T} \xi_{is} \left(\sum_{s\neq s',s'=1}^{T} \xi_{js'} \right) \left(\sum_{t=1}^{T} a_{i,ts} a_{j,ts'} \right).$$

Define

$$a_{T,ij,ss'} = T \sum_{t=1}^{T} a_{i,ts} a_{j,ts'}.$$

By Assumption 2, $\sup_{T,i,j,s,s'} a_{T,ij,ss'} < K < \infty$. Further, define

$$\tilde{\xi}_{1,ijs} = \xi_{is}\xi_{js}a_{T,ij,ss'}$$

and

$$\tilde{\xi}_{2,ijs} = \xi_{is} \left(\frac{1}{\sqrt{T}} \sum_{s \neq s', s'=1}^{T} \xi_{js'} \right) a_{T,ij,ss'}.$$

Then,

$$\sum_{s=1}^{T} \xi_{is} \xi_{js} \left(\sum_{t=1}^{T} a_{i,ts} a_{j,ts'} \right) + \sum_{s=1}^{T} \xi_{is} \left(\sum_{s\neq s',s'=1}^{T} \xi_{js'} \right) \left(\sum_{t=1}^{T} a_{i,ts} a_{j,ts'} \right) = \frac{1}{T} \sum_{s=1}^{T} \tilde{\xi}_{1,ijs} + \frac{1}{\sqrt{T}} \sum_{s=1}^{T} \tilde{\xi}_{2,ijs}.$$

It can be easily seen that $\tilde{\xi}_{1,ijs} - E\left(\tilde{\xi}_{1,ijs}|\Omega_{i,j,t}\right)$ and $\tilde{\xi}_{2,ijs} - E\left(\tilde{\xi}_{2,ijs}|\Omega_{i,j,t}\right)$ are martingale difference series with finite variances, and that if $\rho_{ij} = 0$ then $E\left(\tilde{\xi}_{1,ijs}|\Omega_{i,j,t}\right) = E\left(\tilde{\xi}_{2,ijs}|\Omega_{i,j,t}\right) = 0$. Define $c_{ij,t} = E\left(z_{it}z_{jt}|\Omega_{i,j,t}\right)$. Then, using Lemma A3 of Chudik et al. (2018), it easily follows that

$$\sup_{i,j} \Pr\left(\left| \sum_{t=1}^{T} z_{it} z_{jt} - c_{ij,t} \right| > \sqrt{T} c_p\left(n,\delta\right) \right) \le \sup_{i,j} \Pr\left(\left| \sum_{t=1}^{T} \xi_{it} \xi_{jt} - E\left(\xi_{is} \xi_{js} | \Omega_{i,j,t}\right) \right| > (1-\pi) \sqrt{T} c_p\left(n,\delta\right) \right) + \exp\left(-C_0 T^{C_1}\right),$$

for some $C_0, C_1 > 0$.

Proof of Lemma 2

Note that W_{NT}^0 can be written as

$$W_{NT}^{0} = N^{-2\alpha} \sum_{i \neq j}^{N} I\left(\left| T^{-1} \sum_{t=1}^{T} z_{it} z_{jt} \right| > \frac{c_{p}(n,\delta)}{\sqrt{T}} \left| \rho_{ij} = 0 \right. \right)$$

Since by assumption ξ_{it} and ξ_{jt} are distributed independently when $\rho_{ij} = 0$, it also follows that

$$E(z_{it}z_{jt} | \Omega_{i,j,t}) = E(\xi_{it}\xi_{jt} | \Omega_{i,j,t}) + E(\xi_{it}q_{jt} | \Omega_{i,j,t}) + E(\xi_{jt}q_{it} | \Omega_{i,j,t}) + E(q_{it}q_{jt} | \Omega_{i,j,t}) = 0,$$

and hence $\{z_{it}z_{jt}, \Omega_{i,j,t}\}$, is a zero mean martingale difference sequence, where $\Omega_{i,j,t} = \Omega_{i,t} \cup \Omega_{j,t}$. Then, we note that $z_{it}z_{jt}$ is a normalised process since $z_{it} = \frac{e_{it}}{(T^{-1}\mathbf{e}'_i\mathbf{e}_i)^{1/2}}$. Then, noting Lemma 1, using Chudik et al. (2018), and, in particular, their Lemmas A3 (which provides a martingale difference exponential probability inequality under (26)), A4 (which handles exponential probability tails for products of random variables) and A9 (which handles the normalisation by $(T^{-1}\mathbf{e}'_i\mathbf{e}_i)^{1/2}$), we have for any $0 < \pi < 1$, any bounded sequence, $d_T > 0$, and some $C_0, C_1 > 0$,

$$\sup_{i,j} \Pr\left(\left|\sum_{t=1}^{T} z_{it} z_{jt}\right| > \sqrt{T} c_p\left(n,\delta\right) |\rho_{ij} = 0\right) \le \exp\left[-\frac{(1-\pi)^2 c_p\left(n,\delta\right)^2}{2(1+d_T)}\right] + \exp\left(-C_0 T^{C_1}\right).$$
(38)

Note that $\frac{(1-\pi)^2}{1+d_T} < 1$, but can be made arbitrarily close to 1, and that, by Lemma A2 of Chudik et al. (2018), $\exp\left[-bc_p^2\left(n,\delta\right)\right] = O\left(n^{-2b\delta}\right)$. Then, for any $0 < \varkappa < 1$, and some $C_0, C_1 > 0$,

$$\sup_{i,j} \Pr\left(\left| \sum_{t=1}^{T} z_{it} z_{jt} \right| > \sqrt{T} c_p\left(n,\delta\right) \left| \rho_{ij} = 0 \right. \right) = O(n^{-\varkappa\delta}) + O\left(\exp\left(-C_0 T^{C_1}\right) \right) = O(N^{-2\varkappa\delta}) + O\left(\exp\left(-C_0 T^{C_1}\right) \right) + O\left(\exp\left$$

Then, for some some $C_0, C_1 > 0$, any $0 < \varkappa < 1$, and if $N = O(T^d)$

$$E(W_{NT}^{0}) = N^{-2\alpha} \sum_{i \neq j}^{N} \Pr\left(\left| T^{-1} \sum_{t=1}^{T} z_{it} z_{jt} \right| > \frac{c_{p}(n,\delta)}{\sqrt{T}} \left| \rho_{ij} = 0 \right. \right) = O\left(N^{2(1-\alpha-\varkappa\delta)} \right) + O\left(N^{2(1-\alpha)} \exp\left(-C_{0} T^{C_{1}} \right) \right) = O\left(T^{2d(1-\alpha-\varkappa\delta)} \right) + O\left(\exp\left[2d(1-\alpha)\ln(T) - C_{0} T^{C_{1}} \right] \right).$$

Proof of Lemma 3

We need to derive $h_{N,T}$ in

$$\Pr\left[\left|\sum_{t=1}^{T} z_{it} z_{jt}\right| \le \sqrt{T} c_p\left(n,\delta\right) |\rho_{ij} \ne 0\right] = O\left(h_{N,T}\right).$$

Let $c_{ij,t} = E(z_{it}z_{jt}|\Omega_{i,j,t})$, and note the inequality

$$\Pr(|X + B| \le C) \le \Pr(|X| > |B| - C),$$

where X is a random variable, B and C are constants, and $|B| \ge C > 0$. Then, for some $0 < \pi < 1$

$$\Pr\left[\left|\sum_{t=1}^{T} \left(z_{it}z_{jt} - c_{ij,t}\right) + c_{ij,t} - E\left(c_{ij,t}\right) + E\left(c_{ij,t}\right)\right| \le \sqrt{T}c_{p}\left(n,\delta\right)|\rho_{ij} \ne 0\right] \le \Pr\left[\left|\sum_{t=1}^{T} \left(z_{it}z_{jt} - c_{ij,t}\right) + c_{ij,t} - E\left(c_{ij,t}\right)\right| > \left|\sum_{t=1}^{T} E(c_{ij,t})\right| - \sqrt{T}c_{p}\left(n,\delta\right)|\rho_{ij} \ne 0\right] \le \Pr\left[\left|\sum_{t=1}^{T} \left(z_{it}z_{jt} - c_{ij,t}\right)\right| > \left(1 - \pi\right)\left[\left|\sum_{t=1}^{T} E(c_{ij,t})\right| - \sqrt{T}c_{p}\left(n,\delta\right)\right]|\rho_{ij} \ne 0\right] +$$
(39)

$$\Pr\left[\left|\sum_{t=1}^{T} c_{ij,t} - E\left(c_{ij,t}\right)\right| > \pi\left[\left|\sum_{t=1}^{T} E(c_{ij,t})\right| - \sqrt{T}c_{p}\left(n,\delta\right)\right]|\rho_{ij} \neq 0\right]$$

$$\tag{40}$$

But, by (28), (40) is bounded by $\exp\left(-C_0T^{C_1}\right)$ for some $C_0, C_1 > 0$. We consider

$$\Pr\left[\left|\sum_{t=1}^{T} \left(z_{it} z_{jt} - c_{ij,t}\right)\right| > (1 - \pi) \left[\left|\sum_{t=1}^{T} E(c_{ij,t})\right| - \sqrt{T} c_p\left(n,\delta\right)\right] |\rho_{ij} \neq 0\right]$$

But, by (20) of Assumption 1, $\lim_{N,T\to\infty} \frac{\sqrt{Tc_p(n,\delta)}}{\sum_{t=1}^T E(c_{ij,t})} = 0$. Therefore, using again Lemma 1 and (38) of Lemma 2, we have

$$\sup_{ij,} \Pr\left[\left|\sum_{t=1}^{T} \left(z_{it} z_{jt} - c_{ij,t}\right)\right| > (1 - \pi) \left[\left|\sum_{t=1}^{T} E(c_{ij,t})\right| - \sqrt{T} c_p\left(n,\delta\right)\right] |\rho_{ij} \neq 0\right] \le \exp\left(-CT\right),$$

for some C > 0, proving the result.

Appendix III: Proof of Theorem 1

We prove that $\tilde{\alpha}$ converges to α under our assumptions of exogenous regressors and symmetrically distributed errors. We first note that

$$\tilde{\alpha} = \frac{1}{2} \frac{\ln\left(\frac{\tau'\tilde{\Delta}\tau}{N^{2\alpha}}N^{2\alpha}\right)}{\ln N} = \frac{1}{2} \frac{\ln\left(\frac{\tau'\tilde{\Delta}\tau}{N^{2\alpha}}\right)}{\ln N} + \alpha,$$

$$(\ln N) \left(\tilde{\alpha} - \alpha\right) = \frac{1}{2} \ln\left(\frac{\tau'\tilde{\Delta}\tau}{N^{2\alpha}} - 1 + 1\right),$$
(41)

and

$$2(\ln N)(\tilde{\alpha} - \alpha) = \frac{\boldsymbol{\tau}' \tilde{\boldsymbol{\Delta}} \boldsymbol{\tau}}{N^{2\alpha}} - 1 + O\left(\left[\frac{\boldsymbol{\tau}' \tilde{\boldsymbol{\Delta}} \boldsymbol{\tau}}{N^{2\alpha}} - 1\right]^2\right).$$

Further

$$N^{-2\alpha} \boldsymbol{\tau}' \tilde{\boldsymbol{\Delta}} \tau = N^{-2\alpha} \sum_{i \neq j}^{N} I\left(|\hat{\rho}_{ij}| > \frac{c_p(n, \delta)}{\sqrt{T}} \right),$$

and

$$N^{-2\alpha} \boldsymbol{\tau}' \tilde{\boldsymbol{\Delta}} \boldsymbol{\tau} - 1 = N^{-2\alpha} \sum_{i \neq j}^{N} I\left(\left| \hat{\rho}_{ij} \right| > \frac{c_p(n,\delta)}{\sqrt{T}} \left| \rho_{ij} = 0 \right. \right)$$

$$+ \left(N^{-2\alpha} \sum_{i \neq j}^{N} I\left(\left| \hat{\rho}_{ij} \right| > \frac{c_p(n,\delta)}{\sqrt{T}} \left| \rho_{ij} \neq 0 \right. \right) - 1 \right)$$

$$= W_{NT}^0 + W_{NT}^1 + O\left(N^{1-2\alpha} \right).$$

$$(42)$$

We now have

$$N^{-2\alpha} \sum_{i\neq j}^{N} I\left(\left|\hat{\rho}_{ij}\right| > \frac{c_p(n,\delta)}{\sqrt{T}} \left|\rho_{ij} \neq 0\right.\right) - 1$$
$$= N^{-2\alpha} (N^{2\alpha} - N^{\alpha}) - 1 - N^{-2\alpha} \sum_{i\neq j}^{N} I\left(\left|\hat{\rho}_{ij}\right| \le \frac{c_p(N,\delta)}{\sqrt{T}} \left|\rho_{ij} \neq 0\right.\right)$$
$$= -N^{-2\alpha} \sum_{i\neq j}^{N} I\left(\left|\hat{\rho}_{ij}\right| \le \frac{c_p(n,\delta)}{\sqrt{T}} \left|\rho_{ij} \neq 0\right.\right) - N^{-\alpha}.$$

Hence,

$$N^{-2\alpha} \boldsymbol{\tau}' \tilde{\boldsymbol{\Delta}} \boldsymbol{\tau} - 1 = N^{-2\alpha} \sum_{i \neq j}^{N} I\left(\left| \hat{\rho}_{ij} \right| > \frac{c_p(n, \delta)}{\sqrt{T}} \left| \rho_{ij} = 0 \right. \right) - N^{-2\alpha} \sum_{i \neq j}^{N} I\left(\left| \hat{\rho}_{ij} \right| \le \frac{c_p(n, \delta)}{\sqrt{T}} \left| \rho_{ij} \neq 0 \right. \right) - N^{-\alpha},$$

which we write more compactly as

$$N^{-2\alpha}\boldsymbol{\tau}'\tilde{\boldsymbol{\Delta}}\boldsymbol{\tau}-1=W_{NT}^{0}-\tilde{W}_{NT}^{1}+O_{p}\left(N^{-\alpha}\right),$$

where

$$\begin{split} W_{NT}^0 &= N^{-2\alpha} \sum_{i \neq j}^N I\left(\left| \hat{\rho}_{ij} \right| > \frac{c_p(n,\delta)}{\sqrt{T}} \left| \rho_{ij} = 0 \right. \right), \\ \tilde{W}_{NT}^1 &= N^{-2\alpha} \sum_{i \neq j}^N I\left(\left| \hat{\rho}_{ij} \right| \le \frac{c_p(n,\delta)}{\sqrt{T}} \left| \rho_{ij} \neq 0 \right. \right). \end{split}$$

It is worth noting that $E \left| W_{NT}^0 \right| = E \left(W_{NT}^0 \right)$, and $E \left| \tilde{W}_{NT}^1 \right| = E \left(\tilde{W}_{NT}^1 \right)$, and hence,

$$E\left|N^{-2\alpha}\boldsymbol{\tau}'\tilde{\boldsymbol{\Delta}}\boldsymbol{\tau}-1\right| \leq E\left(W_{NT}^{0}\right) + E\left(\tilde{W}_{NT}^{1}\right) + O\left(N^{-\alpha}\right) + O\left(N^{1-2\alpha}\right).$$

Lemmas 2-3 provide bounds for $E\left(W_{NT}^{0}\right)$ and $E\left(\tilde{W}_{NT}^{1}\right)$ proving the result.

5	
mode	
lata	
_	
panel	
atic	
a st	
from	
errors	
the	
t of	
nen	
Do	(
l ex	
iona	1
ect	•
S-S	ļ
cros	
le	,
t,	
of	
timate	
ã es	
the e	,
for	
(0)	
$\times 10$	(
\mathbf{S}	
Z	
Ы	
and	
Š	
Bia	
Ala:	
9	
ble	
\mathbf{Ta}	

	5	0.55	0.60	0.65	0.70	$\frac{Crc}{0.75}$	Discorr	elations	are ger	n of	using D	esign	2 wit	h Gau	ssian e	rrors 0.65	0.70	0.75	0.80	0.85	0.00	0.05	1 00
	5	0.00	00.0	$\frac{c_n(n)}{c_n(n)}$	δ with	n = N(l)	$\frac{V-1}{V-1}$	and $p =$	0.05	00	T.00		5		8	$\frac{c_n(n,\delta)}{c_n(n,\delta)}$	$\frac{0.10}{\text{with }n}$	v = N(N)	$\frac{0.00}{-1)/2}$	and $p =$	0.10	00	00.1
				()d-		s = s	1/2	4								- (\d-		$\delta = \delta$	$\frac{1}{2}$	J			
Η	Z					B	ias					Ē	Z					Bi) JS				
100	100	0.204	-0.609	-0.584	-0.355	-0.289	-0.001	-0.259	-0.279	-0.094 -	-0.016	100	00 0.	634 -0	. 324 -	0.405 -	0.245	-0.218	0.042	-0.230	-0.261	-0.083	-0.009
	200	0.090	-0.426 -0.120	-0.156 -0.162	-0.302 -0.144	-0.254 -0.149	-0.101	-0.165 -0.042	-0.080 -0.046	-0.050 .	-0.025 -0.041			395 -U 332 0	.219 - .021 -	u.u34 - 0.079 -	0.093	-0.205	-0.009	-0.143 -0.021	-0.059 -0.029	-0.046 -0.034	-0.015
200	100	0.243	-0.584	-0.557	-0.328	-0.267	0.017	-0.240	-0.262	-0.078	0.000	200 1	0.	686 -0	- 291 -	0.372 -	0.211	-0.201	0.056	-0.218	-0.251	-0.074	0.000
	200	0.118	-0.380	-0.120	-0.271	-0.226	-0.074	-0.139	-0.057	-0.035	0.000	2.1	200 0.	470 -0	.161 (.003 -	0.198	-0.184	-0.052	-0.127	-0.051	-0.033	0.000
	500	0.158	-0.064	-0.114	-0.101	-0.106	0.007	-0.001	-0.006	-0.011	0.000	ц.)	500 0.	418 0	.081 -	0.035 -	0.059	-0.084	0.019	0.005	-0.004	-0.010	0.000
500	100	0.277	-0.556	-0.549	-0.325	-0.261	0.019	-0.239	-0.262	-0.078	0.000	500	100 0.	718 -0	.251 -	0.356 -	0.210	-0.191	0.059	-0.216	-0.251	-0.073	0.000
	200	0.157	-0.367	-0.110	-0.265	-0.223	-0.073	-0.138	-0.056	-0.035	0.000	2.1	200 0.	519 -0	.139 (.020 -	0.188	-0.179	-0.049	-0.125	-0.050	-0.033	0.000
	500	0.189	-0.047	-0.105	-0.097	-0.104	0.009	0.000	-0.006	-0.011	0.000	L.J	500 0.	470 0	.108 -	0.021 -	0.053	-0.080	0.021	0.006	-0.004	-0.010	0.000
H	z					RN	ISE					Ē	Z					RM	SE				
100	100	0.311	0.633	0.596	0.364	0.296	0.051	0.264	0.282	0.102	0.041	100	100 0.	714 0	.407 ().438	0.269	0.233	0.072	0.235	0.263	0.087	0.026
	200	0.145	0.438	0.174	0.308	0.261	0.124	0.171	0.093	0.070	0.053	6.4	200 0.	436 0	.255 (0.094	0.233	0.211	0.089	0.147	0.072	0.053	0.033
	500	0.118	0.137	0.177	0.157	0.165	0.073	0.078	0.076	0.077	0.079	Ш)	500 0.	345 0	.068 (0.098	0.104	0.124	0.045	0.049	0.050	0.052	0.052
200	100	0.347	0.611	0.571	0.338	0.272	0.042	0.242	0.263	0.079	0.000	200]	100 0.	769 0	381 ((410)	0.243	0.217	0.081	0.222	0.252	0.075	0.000
	200	0.183	0.391	0.133	0.274	0.228	0.076	0.140	0.057	0.035	0.000	6.1	200 0.	509 0	210 (0.082	0.207	0.188	0.058	0.128	0.052	0.033	0.000
	500	0.173	0.075	0.116	0.102	0.107	0.010	0.004	0.007	0.011	0.000	ц.)	500 0.	429 0	100 (0.050	0.063	0.085	0.021	0.008	0.006	0.011	0.000
500	100	0.374	0.584	0.563	0.337	0.268	0.043	0.240	0.263	0.078	0.000	500 1	00 0.	798 0	356 (.397	0.245	0.211	0.083	0.220	0.252	0.075	0.000
	200	0.218	0.379	0.126	0.268	0.225	0.075	0.138	0.057	0.035	0.000		0 00	560 0	193 (0.089	0.199	0.184	0.056	0.126	0.051	0.033	0.000
	500	0.203	0.063	0.108	0.098	0.104	0.011	0.004	0.007	0.011	0.000		000	480 0	124 (0.042	0.057	0.082	0.023	0.009	0.005	0.010	0.000
						$\delta =$	1/3											$\delta =$	1/3				
F	Z					B	ias					E	Z					Bia) SG				
100	100	1.507	0.288	-0.013	-0.003	-0.072	0.127	-0.177	-0.232	-0.070 -	-0.005	100	100 3.	071 1	418 ().712	0.452	0.212	0.289	-0.078	-0.181	-0.050	-0.002
	200	1.433	0.445	0.354	0.011	-0.066	0.010	-0.097	-0.038	-0.032	-0.006		200 2.	970 1	475 (.974	0.391	0.157	0.136	-0.028	-0.004	-0.017	-0.003
	500	1.533	0.715	0.314	0.123	0.008	0.061	0.021	-0.001	-0.015 -	-0.009	ц,	500 3.	037 1	.641 ().849	0.421	0.170	0.146	0.066	0.021	-0.004	-0.005
200	100	1.585	0.330	0.018	0.030	-0.058	0.141	-0.169	-0.226	-0.065	0.000	200 1	100 3.	159 1	461 ().751	0.491	0.218	0.307	-0.075	-0.176	-0.046	0.000
	200	1.531	0.529	0.403	0.040	-0.046	0.024	-0.087	-0.031	-0.026	0.000	64	200 3.	089 1	572	1.030	0.423	0.176	0.148	-0.020	0.001	-0.014	0.000
	500	1.684	0.813	0.370	0.161	0.032	0.078	0.034	0.009	-0.006	0.000	ц.)	500 3.	217 1	.764 (.918	0.464	0.196	0.163	0.076	0.028	0.001	0.000
500	100	1.627	0.386	0.041	0.035	-0.044	0.144	-0.167	-0.225	-0.064	0.000	500	100 3.	192 1	517 (0.778	0.495	0.241	0.310	-0.071	-0.176	-0.045	0.000
	200	1.613	0.564	0.432	0.054	-0.039	0.028	-0.083	-0.030	-0.025	0.000	61	200 3.	175 1	.616	1.067	0.441	0.185	0.154	-0.016	0.003	-0.013	0.000
	500	1.783	0.867	0.399	0.173	0.040	0.082	0.037	0.010	-0.005	0.000	ц,	500 3.	327 1	.827 (0.957	0.483	0.207	0.168	0.080	0.030	0.001	0.000
Η	Z					RN	ISE					H	z					RM	SE				
100	100	1.571	0.448	0.248	0.170	0.143	0.153	0.187	0.236	0.075	0.015	100 1	100 3.	124 1	.492 (.790	0.514	0.280	0.316	0.123	0.192	0.061	0.008
	200	1.461	0.490	0.378	0.098	0.093	0.053	0.102	0.046	0.036	0.016	61	200 2.	991 1	.498 ().993	0.416	0.184	0.153	0.055	0.032	0.026	0.009
	500	1.541	0.722	0.321	0.133	0.037	0.067	0.032	0.019	0.023	0.022	ц,	500 3.	044 1	.646 (0.854	0.426	0.176	0.150	0.070	0.027	0.013	0.013
200	100	1.652	0.475	0.255	0.180	0.137	0.167	0.181	0.230	0.068	0.000	200 1	100 3.	211 1	531 ().826	0.555	0.286	0.335	0.122	0.188	0.058	0.000
	200	1.559	0.570	0.426	0.109	0.082	0.052	0.092	0.037	0.028	0.000	64	200 3.	109 1	598	L.048	0.447	0.203	0.163	0.053	0.032	0.022	0.000
	500	1.692	0.820	0.377	0.167	0.044	0.081	0.036	0.013	0.007	0.000	ц,	500 3.	223 1	.769 ().923	0.469	0.201	0.166	0.079	0.031	0.008	0.000
500	100	1.693	0.524	0.254	0.191	0.138	0.170	0.179	0.229	0.068	0.000	500 1	00 3.	245 1	589 (0.854	0.561	0.307	0.338	0.121	0.187	0.059	0.000
	200	1.641	0.604	0.456	0.116	0.080	0.057	0.090	0.037	0.028	0.000	6.1	200 3.	196 1	640	1.085	0.465	0.211	0.171	0.053	0.034	0.023	0.000
	500	1.790	0.874	0.405	0.180	0.051	0.085	0.040	0.014	0.007	0.000	ц.	500 3.	332 1	832 (.963	0.487	0.212	0.171	0.083	0.033	0.008	0.000
~	Notes:	: Paran	leters o	f the st:	atic paı	ıel data	model	(29), a	re gener	ated as:	$a_i \sim I$	IDN	(1, 1),	$\rho_{ix} \sim$	U(0, 0)	$(95), \vartheta_i$	$= 0 \mathrm{ar}$	$\eta_i \sim \gamma_i$	IIDN	(1,1), 1	or $i = 1$	$-, 2, \ldots,$	N.
Gaus	sian (errors a	are gene	srated 5	is $u_{it} \sim$, IIDN	(0,1) i	n (31).	Design	1 assun	les $b_i \sim$	U(0)	.7, 0.9) for th	te first	$N_b (\leq$	N) ele	ments	of vecto	or \mathbf{b}_N ,	i = 1, 2	$, \ldots, N$	in
the c	onstr	uction	of the (correlat	ion ma	trix of	the err	ors, \mathbf{R}_{Λ}	$\mathbf{I} = \mathbf{I}_N$	$+ \mathbf{b}_N \mathbf{b}'_N$	$v - \mathbf{B}_N^2$	give	n by ((30), w	here E	$N = \Gamma$	$\operatorname{hiag}(\mathbf{b}_{I})$	N). $c_p($	n, δ) co	orrespoi	nds to	the crit	cal
value	asu :	in the	multip	le testiı	ig proc	sedure s	hown i	n (23).	The nu	mber of	replica	tions	is set	to $R =$	= 2000.								

vith
del v
a mo
l dat:
panel
mic]
dyna
m a
s fro
error
the e
t of
nen
expc
onal
sectio
COSS-5
he ci
e of t
mate
esti
he $\tilde{\alpha}$
for t
(00)
$[\times]$
ИSE
d R
s and
Bia
A1b:
ole ∕
Tal

	2	0.55	0.60	0.65	0.70	$\frac{Crc}{0.75}$	DSS COL	elations 0.85	are ge	nerated	using I	Design	i 1 wi	th Gau	ssian e	rrors 0.65	0.70	0.75	0.80	0.85	0.90	0.95	1 00
	5	0.00	00.00	0.00	V.1.0 5) mith	$\frac{N}{N}$	VI 1) //	0000	- 0.05	00.0	00.1		5		00.0	0.00 0 (m K	U.I.U Junith m	<u>- N/N</u>	1)/0		0.10	00.0	00.1
				$c_{p(n)}$	0) w 1011	$-\frac{1}{N} = \frac{n}{N}$	$\frac{1}{2}$	- d nne z	- 0.03							$c_p(n, v)$	11. TITT M (\sqrt{r}	- 7/(1 -	= d nm	01.0		
E	Z						1 201					E	Z					Bia	1 0				
100	100	0.198	-0.621	-0.594	-0.363	-0.295	-0.007	-0.261	-0.284	-0.099	-0.021	100	100	.625 -(.330 -(0.412 -	0.245 -	0.221	0.039	-0.230	-0.264	-0.085	-0.012
	200	0.064	-0.432	-0.161	-0.309	-0.262	-0.108	-0.173	-0.088	-0.070	-0.033		200	.398 -(.218 -(0.035 -	0.229 -	0.211 -	-0.074	-0.148	-0.069	-0.053	-0.019
	500	0.084	-0.123	-0.169	-0.158	-0.158	-0.046	-0.054	-0.059	-0.066	-0.049		500 C	.326 0	.018 -(0.084 -	0.102 -	0.120	-0.016	-0.029	-0.037	-0.045	-0.030
200	100	0.255	-0.573	-0.561	-0.330	-0.266	0.018	-0.240	-0.263	-0.078	0.000	200	100	.687 -().280 -(0.376 -	0.216 -	0.200	0.057	-0.217	-0.252	-0.074	0.000
	200	0.123	-0.381	-0.118	-0.272	-0.225	-0.074	-0.139	-0.056	-0.035	0.000		200 C	.469 -().160 (- 800.0	0.198 -	0.183 -	-0.051	-0.126	-0.050	-0.033	0.000
	500	0.156	-0.063	-0.113	-0.101	-0.106	0.007	-0.001	-0.007	-0.011	0.000		500 C	.417 0	.082 -(0.034 -	0.060 -	0.084	0.019	0.005	-0.004	-0.010	0.000
500	100	0.281	-0.550	-0.550	-0.322	-0.261	0.020	-0.240	-0.261	-0.078	0.000	500	100	.737 -().246 -(0.361 -	0.205 -	0.190	0.060	-0.216	-0.249	-0.073	0.000
	200	0.153	-0.366	-0.108	-0.266	-0.222	-0.072	-0.137	-0.056	-0.035	0.000		200 0	.514 -().139 (.022 -	0.190 -	0.179 -	-0.049	-0.125	-0.050	-0.033	0.000
	500	0.185	-0.049	-0.104	-0.097	-0.104	0.009	0.000	-0.006	-0.011	0.000		500 C	.467 0	.107 -(0.020 -	0.053 -	0.080	0.021	0.006	-0.004	-0.010	0.000
Н	Z					RN	ASE					Ð	z					RMS	Ε				
100	100	0.302	0.644	0.607	0.375	0.305	0.056	0.266	0.289	0.108	0.045	100	100	.702 0	.411 ().444 (0.270	0.238	0.070	0.235	0.267	0.090	0.027
	200	0.153	0.444	0.180	0.316	0.272	0.126	0.183	0.106	0.094	0.064		200 C	.439 0	.255 () 060 (0.237	0.219	0.088	0.154	0.080	0.068	0.041
	500	0.117	0.144	0.185	0.179	0.174	0.102	0.102	0.102	0.107	0.090		500 C	.340 0	.073 ().102 (0.119	0.130	0.066	0.067	0.069	0.073	0.060
200	100	0.354	0.600	0.573	0.339	0.272	0.043	0.241	0.264	0.079	0.000	200	100	.765 0	.374 (.413 (0.246	0.216	0.082	0.221	0.253	0.075	0.000
	200	0.190	0.392	0.131	0.274	0.226	0.076	0.139	0.057	0.035	0.000		200 C	.511 0	.208 (0.085 (0.207	0.187	0.057	0.127	0.051	0.033	0.000
	500	0.169	0.074	0.116	0.102	0.107	0.010	0.004	0.007	0.011	0.000		500 C	.427 0	.100 (0.049 (0.063	0.085	0.021	0.008	0.005	0.011	0.000
500	100	0.375	0.580	0.563	0.332	0.267	0.045	0.241	0.262	0.079	0.000	500	100 0	.815 0	.360 ().402 (0.236	0.208	0.084	0.220	0.251	0.075	0.000
	200	0.213	0.378	0.123	0.270	0.224	0.074	0.138	0.057	0.035	0.000		200 0	.553 0	.195 (0.089 (0.199	0.183	0.056	0.127	0.051	0.033	0.000
	500	0.198	0.065	0.107	0.098	0.104	0.011	0.004	0.007	0.011	0.000		500 C	.478 0	.123 ().042 (0.057	0.082	0.023	0.009	0.006	0.010	0.000
						$\delta =$: 1/3											$\delta = 1$	-/3				
H	z					B	ias					Е	z					Bia	S				
100	100	1.509	0.279	-0.026	-0.005	-0.074	0.125	-0.177	-0.233	-0.071	-0.006	100	100 3	.070 1	.397 ().708 (0.455	0.208	0.290	-0.077	-0.181	-0.049	-0.003
	200	1.431	0.450	0.359	0.009	-0.069	0.009	-0.099	-0.040	-0.035	-0.008		200 2	.974 1	.486 ().983 (0.387	0.156	0.135	-0.029	-0.004	-0.019	-0.004
	500	1.532	0.716	0.311	0.119	0.007	0.059	0.018	-0.004	-0.019	-0.011		500 3	038 1	.642 ().848 (0.418	0.169	0.145	0.065	0.020	-0.007	-0.006
200	100	1.569	0.341	0.017	0.027	-0.054	0.142	-0.168	-0.227	-0.065	0.000	200	100 3	.122 1	.471 0).750 (0.487	0.230	0.307	-0.073	-0.178	-0.047	0.000
	200	1.552	0.529	0.407	0.042	-0.045	0.026	-0.085	-0.030	-0.026	0.000		200 3	.106 1	.571 1	L.035 (0.427	0.177	0.150	-0.017	0.003	-0.014	0.000
	500	1.686	0.819	0.371	0.158	0.032	0.078	0.034	0.010	-0.006	0.000		500 3	.220 1	.765 (.919 (0.462	0.196	0.163	0.076	0.029	0.001	0.000
500	100	1.634	0.384	0.040	0.040	-0.040	0.146	-0.167	-0.223	-0.064	0.000	500	100 3	.196 1	.512 (). 778 (0.502	0.241	0.310	-0.072	-0.174	-0.045	0.000
	200	1.609	0.563	0.432	0.057	-0.038	0.029	-0.083	-0.030	-0.025	0.000		200 3	.172 1	.611 1	1.068 (0.443	0.189	0.152	-0.015	0.003	-0.013	0.000
	500	1.780	0.864	0.401	0.174	0.041	0.082	0.036	0.010	-0.005	0.000		500 3	.321 1	.824 (.961 (0.483	0.208	0.168	0.079	0.030	0.002	0.000
H	Ν					R	ASE					Т	Ν					RMS	SE				
100	100	1.576	0.441	0.242	0.165	0.144	0.150	0.187	0.238	0.076	0.015	100	100 3	.123 1	.466 (). 787 (0.514	0.274	0.315	0.122	0.192	0.062	0.008
	200	1.459	0.493	0.383	0.095	0.098	0.050	0.105	0.049	0.043	0.020		200	1 996	.509	1.001	0.411	0.185	0.152	0.056	0.034	0.029	0.012
0	500	1.541	0.724	0.319	0.130	0.036	0.069	0.037	0.029	0.033	0.026	0		.044 1	.648).853 (0.423	0.175	0.149	0.070	0.029	0.018	0.015
200	100	1.632	0.486	0.247	0.175	0.135	0.169	0.180	0.230	0.069	0.000	200	100	.174 1	.540 ().823 ().548	0.294	0.335	0.120	0.188	0.059	0.000
	200	1.579	0.568	0.430	0.109	0.084	0.053	0.091	0.037	0.028	0.000		500	.127 1	.595	.055).451	0.205	0.166	0.053	0.034	0.023	0.000
	200	1.694	0.826	0.377	0.165	0.045	0.081	0.037	0.013	0.007	0.000			.226 1	.771 ().925 (0.467	0.201	0.166	0.079	0.032	0.007	0.000
500	100	1.700	0.529	0.262	0.182	0.134	0.171	0.179	0.228	0.068	0.000	500	100	.246 1	.581 ().856 (0.564	0.304	0.337	0.121	0.187	0.058	0.000
	200	1.636	0.602	0.454	0.116	0.081	0.056	0.090	0.037	0.028	0.000		200 3	.193 1	.635]	l.086 (0.466	0.216	0.168	0.054	0.034	0.023	0.000
	500	1.787	0.871	0.407	0.180	0.052	0.085	0.039	0.014	0.007	0.000		500 3	.327 1	.830 ().965 (0.487	0.214	0.171	0.082	0.033	0.008	0.000
	Intes:	Paran	neters c	of the d	vnamic	t nanel	data m	() ()	() are	venera	ted as:	2:0	NUL	(1,1)	$v_{z} \sim v_{j}$	<i>1</i> 7(0, 0, 0	(20, 9)	$\sim 1/(0)$	0.95) a	v ‰ pu	UIID	7 (1 , 1)	for
• - • -	9		dense:	n error	are o	enerate	n ac p	~ 11	D N(0 - 1)	buruta	1) Des	inn 1	ulisse	(/+ (+)	LI(U	7 0 0) f	or the	first N	(< N)) alama	nteof	((+ (+))) methor	
ן ד יי ה	ر ب ز	$\dots \dots$	סינפטואד. אינפטאדי	TOTIO III	ים אשרם. יייי היי	יייים הלויס	ഡ അ സ ഹിപ+റ്റം	it · · · · · ·	L (V) V L V		יר <u>ו</u> 1 : ס זי 1 :		میں دورہ میں دورہ	д ²		1, U.U. 1 (30)	UL ULU		b < 2				، کی م
	, i 	· · ¹ · · · 1	ד הדוב רר	י דו			EIGUINT		01 MTC	enne,			NnN	2. 1 :		() 1 1 1 1 1 1	A LICLE	 2 1	Ulag (r	N). Up	(n, u) u	odeatic	sni
to tn	e crit.	ıcal vai	ue usec	l in the	i muuti	le tesu	ng pro	cedure :	shown 1	n (23).	The nu	mber	ot reț	licatio	IS IS SC	t to <i>n</i>	= 2000						

	σ	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.00	0.95	1.00	þ	σ	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00
				$c_p(n,$	δ) with	n = N(i)	N - 1)/2	2 and p =	= 0.05							$c_p(n,$	δ) with i	n = N(N)	(V - 1)/2	and $p =$	0.10		
						$\delta =$	1/2											$\delta =$	1/2				
H	Z					B	ias					Ē	Z					Bi	as				
100	100	-0.880	-2.378	-2.922	-3.026	-3.232	-3.131	-3.509	-3.648	-3.576	-3.598	100	100	-0.092	-1.533	-2.041	-2.119	-2.328	-2.220	-2.609	-2.763	-2.699	-2.738
	200	-1.221	-2.480	-2.800	-3.267	-3.464	-3.434	-3.595	-3.591	-3.658	-3.714		200	-0.542	-1.721	-1.988	-2.435	-2.620	-2.590	-2.750	-2.754	-2.824	-2.883
	500	-1.501	-2.658	-3.266	-3.581	-3.780	-3.779	-3.859	-3.934	-4.011	-4.057		200	-0.910	-1.952	-2.492	-2.775	-2.953	-2.948	-3.026	-3.098	-3.175	-3.222
200	100	0.705	-0.090	-0.160	0.120	0.009	0.205	-0.145	-0.299	-0.242	-0.304	200	100	1.207	0.294	0.129	0.346	0.192	0.362	-0.007	-0.177	-0.131	-0.207
	200	0.375	-0.068	0.134	-0.086	-0.146	-0.063	-0.191	-0.206	-0.269	-0.326		200	0.784	0.236	0.360	0.094	0.001	0.066	-0.071	-0.097	-0.166	-0.228
	500	0.219	-0.024	-0.086	-0.158	-0.206	-0.153	-0.212	-0.267	-0.325	-0.368		500	0.541	0.209	0.094	-0.012	-0.079	-0.038	-0.104	-0.163	-0.222	-0.266
500	100	1.043	0.295	0.247	0.563	0.433	0.625	0.264	0.084	0.114	-0.001	500	100	1.463	0.581	0.426	0.672	0.502	0.666	0.289	0.098	0.121	0.000
	200	0.683	0.313	0.550	0.326	0.254	0.329	0.203	0.161	0.087	-0.001		200	1.031	0.529	0.674	0.401	0.298	0.355	0.218	0.169	0.091	0.000
	500	0.530	0.355	0.331	0.249	0.205	0.246	0.176	0.117	0.056	-0.001		500	0.799	0.504	0.412	0.294	0.229	0.259	0.184	0.121	0.058	0.000
H	Z					RN	ASE					H	Z					RM	ISE				
100	100	1.252	2.688	3.301	3.469	3.699	3.623	3.974	4.094	4.029	4.051	100	100	0.826	1.877	2.412	2.542	2.752	2.671	3.023	3.155	3.097	3.137
	200	1.455	2.748	3.167	3.655	3.868	3.859	4.002	4.009	4.070	4.130		200	0.894	2.002	2.351	2.795	2.987	2.976	3.112	3.125	3.189	3.251
	500	1.662	2.899	3.580	3.938	4.153	4.176	4.260	4.336	4.411	4.456		500	1.115	2.198	2.791	3.105	3.292	3.306	3.386	3.459	3.533	3.580
200	100	0.803	0.377	0.369	0.346	0.298	0.354	0.312	0.405	0.359	0.399	200	100	1.272	0.451	0.314	0.438	0.305	0.426	0.217	0.275	0.239	0.281
	200	0.457	0.291	0.307	0.274	0.296	0.251	0.315	0.318	0.367	0.415		200	0.824	0.336	0.421	0.223	0.199	0.198	0.206	0.208	0.251	0.299
	500	0.303	0.241	0.262	0.299	0.328	0.295	0.326	0.366	0.418	0.456		500	0.571	0.283	0.214	0.196	0.211	0.197	0.216	0.252	0.300	0.337
500	100	1.068	0.337	0.272	0.571	0.442	0.631	0.279	0.116	0.136	0.002	500	100	1.495	0.621	0.451	0.682	0.510	0.672	0.303	0.127	0.141	0.001
	200	0.697	0.325	0.553	0.329	0.257	0.332	0.208	0.166	0.093	0.001		200	1.048	0.542	0.678	0.405	0.301	0.357	0.223	0.174	0.097	0.001
	500	0.534	0.357	0.332	0.250	0.206	0.246	0.177	0.118	0.057	0.001		500	0.804	0.507	0.414	0.294	0.230	0.260	0.184	0.122	0.059	0.001
						$\delta =$: 1/3											$\delta =$	1/3				
H	Ν					B	ias					H	Z					Bi	as				
100	100	1.121	-0.410	-1.023	-1.161	-1.437	-1.372	-1.789	-1.971	-1.926	-1.985	100	100	2.947	1.111	0.208	-0.136	-0.573	-0.609	-1.093	-1.323	-1.312	-1.401
	200	0.926	-0.377	-0.770	-1.305	-1.554	-1.571	-1.758	-1.790	-1.871	-1.940		200	2.750	1.070	0.352	-0.393	-0.787	-0.898	-1.140	-1.210	-1.313	-1.396
	500	0.905	-0.329	-1.008	-1.398	-1.634	-1.672	-1.775	-1.859	-1.939	-1.991		500	2.688	1.017	0.014	-0.590	-0.950	-1.065	-1.210	-1.316	-1.407	-1.466
200	100	2.120	0.962	0.590	0.671	0.425	0.538	0.134	-0.064	-0.038	-0.131	200	100	3.649	2.070	1.338	1.167	0.758	0.763	0.293	0.047	0.039	-0.080
	200	1.900	0.990	0.855	0.438	0.246	0.250	0.080	0.027	-0.056	-0.130		200	3.436	2.034	1.512	0.863	0.520	0.428	0.203	0.113	0.009	-0.082
	500	1.870	1.040	0.622	0.337	0.173	0.156	0.059	-0.017	-0.085	-0.135		500	3.394	2.001	1.200	0.682	0.384	0.290	0.150	0.052	-0.029	-0.088
500	100	2.305	1.160	0.797	0.898	0.641	0.748	0.338	0.123	0.131	0.000	500	100	3.785	2.210	1.487	1.322	0.905	0.903	0.429	0.171	0.150	0.000
	200	2.073	1.186	1.057	0.633	0.434	0.431	0.261	0.191	0.099	0.000		200	3.571	2.177	1.653	0.999	0.650	0.553	0.328	0.224	0.112	0.000
1	000	2.060	1.231	0.815	0.514	0.348	0.322	0.216	0.137	0.064	0.000	ł	200	3.556	2.152	1.346	0.811	010.0	0.406	0.259	0.157	0.071	0.000
-	z					KI	ASE.					Ţ	z					KIM	SE.				
100	100	1.349	166.0	1.458	1.6U8	1.841	1.798	2.153	2.306	2.267	2.325	100	100	3.029 9.709	1.332	0.832	0.867	1.049	1.073	1.429	1.011	1.603	1.085
	200	1 017	0.007	1.325	1 603	1 916	1 966	2 063	2.031 9.144	0.11.2	172.2		200	2.130 9.711	1.136	0.643	0.004	1 294	1.335	1 465	1.407 1.562	1.647	1.040
200	100	2.169	1.026	0.649	0.711	0.469	0.568	-0.216	0.175	0.153	0.187	200	100	3.688	2.111	1.371	1.190	0.780	0.780	0.326	0.140	0.120	0.121
	200	1.922	1.014	0.873	0.463	0.284	0.281	0.155	0.125	0.135	0.181		200	3.453	2.049	1.523	0.874	0.534	0.440	0.228	0.145	0.089	0.119
	500	1.878	1.049	0.633	0.357	0.208	0.192	0.124	0.111	0.144	0.180		500	3.399	2.005	1.205	0.688	0.394	0.301	0.169	0.093	0.088	0.122
500	100	2.345	1.200	0.824	0.910	0.651	0.755	0.350	0.149	0.150	0.001	500	100	3.823	2.246	1.513	1.336	0.917	0.911	0.441	0.192	0.168	0.000
	200	2.091	1.200	1.063	0.638	0.437	0.434	0.266	0.195	0.105	0.000		200	3.586	2.190	1.661	1.005	0.655	0.556	0.332	0.228	0.117	0.000
	500	2.065	1.234	0.817	0.515	0.349	0.322	0.217	0.138	0.065	0.000		500	3.560	2.155	1.348	0.813	0.511	0.407	0.260	0.158	0.073	0.000
	otes:	Param	eters of	the sta	tic pan	el data	model.	(29). a:	e gener	ated as:	$a_z \sim I$	IDN	(1.1)	. 0:~ ~	U(0, 0)	$95). \eta_{i}$	= 0 a.n	ر م	IIDN	(1, 1). fc	r i = 1	2.	Ň
Decio	- 0 r	Settines		factor	nodel 1	…i+h [∧	I lan	N N	l non-z	aro load	inne foi	- + +	first.	n ru and ser	ond fa	otor r	ernertiv	∽ n molvr W	In cot.		900 / 3	-, -, -, -, -, -, -, -, -, -, -, -, -, -	, .
greod	ט 1 1	entinee		. דמריה	IDUUGI	. דו דין א	α_{β} and	α L ^I να _{β2}		בו ה זהמר	or egim		ACTI	ntip	DITA TO	, UUUI, 1	moodeo	W .VID	ם סכר.	$\alpha_{\beta 2} = -$	$\frac{1}{2}$	MITCLE	κβ

ñ

relates to α under (11), f_{jt} and $u_{it} \sim IIDN(0,1)$, $v_{ij} \sim IIDU(\mu_{v_j} - 0.2, \mu_{v_j} + 0.2)$, $j = 1, 2, \mu_v = 0.87, \mu_{v_2} = 0.71, \mu_{v_1} = \sqrt{\mu_v^2 - N^{2(\alpha_{\beta_2} - \alpha_{\beta})}\mu_{v_2}^2}$, in (32) and (33). The number of replications is set to R = 2000.

	σ	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00	19102	σ	0.55	09.0	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00
				$c_p(n)$	δ) with	n = N(.	$N-1)/{$	2 and p =	= 0.05							$c_p(n,$	δ) with	n = N(N)	(I - 1)/2	and $p =$	0.10		
						ε δ =	1/2											$\delta =$	1/2				
H	Ν					Е	ias					Ĺ	Ν					Bi	as				
100	100	-1.016	-2.571	-3.183	-3.319	-3.568	-3.479	-3.838	-3.998	-3.922	-3.952	100	100	-0.216	-1.691	-2.254	-2.354	-2.602	-2.509	-2.879	-3.047	-2.978	-3.024
	200	-1.320	-2.042 -2.840	-3.032	-3.008	-3.745	-3.703 -4.194	-3.918 -4 225	-3.925 -4 304	-4.003	-4.057 -4.430		200	-0.027	-1.858 -9 110	-2.175	-2.071 -3.035	-2.840 -3 997	-2.850	-3.011	-3.025	-3.104 -3.400	-3.103 -3.543
200	100	0.689.0	-0.109	-0.179	0.088	-0.030	0.166	-0.181	-0.329	-0.272	-0.336	200	100	1.194	0.280	0.115	0.329	0.162	0.332	-0.035	-0.199	-0.153	-0.230
) 	200	0.357	-0.089	0.115	-0.120	-0.177	-0.095	-0.227	-0.240	-0.301	-0.360		200	0.774	0.220	0.345	0.068	-0.022	0.043	-0.099	-0.122	-0.189	-0.253
	500	0.209	-0.033	-0.095	-0.170	-0.215	-0.165	-0.225	-0.281	-0.337	-0.380		500	0.538	0.204	0.087	-0.022	-0.085	-0.047	-0.114	-0.173	-0.230	-0.275
500	100	1.040	0.294	0.248	0.565	0.436	0.627	0.261	0.081	0.115	-0.001	500	100	1.466	0.583	0.430	0.676	0.504	0.670	0.286	0.095	0.121	0.000
	200	0.685	0.313	0.548	0.324	0.253	0.330	0.202	0.162	0.086	-0.001		200	1.031	0.528	0.672	0.399	0.298	0.355	0.217	0.170	0.089	0.000
E	200 N	0.527	0.353	0.330	0.249	0.204 BV	0.246 ASE	0.176	0.117	0.055	-0.001	E	200 N	0.797	0.502	0.412	0.294	0.229 RM	0.259 SF	0.183	0.122	0.057	0.000
100	100	1.360	2.876	3.549	3.762	4.031	3.981	4.301	4.455	4.378	4.411	100	100	0.871	2.032	2.621	2.783	3.038	2.976	3.296	3.453	3.383	3.430
	200	1.536	2.902	3.398	3.954	4.170	4.208	4.358	4.367	4.445	4.497		200	0.955	2.133	2.536	3.040	3.233	3.258	3.404	3.418	3.497	3.553
	500	1.769	3.101	3.849	4.273	4.512	4.554	4.659	4.740	4.822	4.870		500	1.207	2.375	3.024	3.391	3.597	3.625	3.725	3.803	3.881	3.932
200	100	0.794	0.393	0.393	0.369	0.326	0.359	0.355	0.440	0.398	0.446	200	100	1.257	0.440	0.318	0.438	0.306	0.415	0.242	0.301	0.269	0.317
	200	0.448	0.292	0.301	0.306	0.330	0.284	0.354	0.355	0.401	0.453		200	0.816	0.323	0.412	0.229	0.213	0.207	0.230	0.233	0.275	0.327
	500	0.295	0.245	0.274	0.306	0.329	0.296	0.335	0.376	0.422	0.463		500	0.567	0.281	0.217	0.197	0.209	0.194	0.221	0.258	0.301	0.342
500	100	1.065	0.332	0.272	0.573	0.443	0.634	0.276	0.118	0.135	0.002	500	100	1.501	0.622	0.457	0.686	0.513	0.676	0.300	0.129	0.141	0.001
	200	0.698	0.326 0.355	0.551	0.328	0.257	0.332	0.207	0.166	0.092	0.001		200	1.048 0.803	0.540 0.505	0.676	0.403	0.301	0.357	0.221	0.174	0.095	0.001
		100.0	0.00	100.0	0.2.0	207.0	1 /9	0/1/0	011.0	100.0	100.0			0.002	0.00	0.410	0.230	0.2.0	1/0	1.104	0.120	6000	
E							1/0					E	2						1/0				
100		1 045	0 603	1 106	1 944	1 640	185 1 E.07	1 007	0 100	0 1 / 1	0.007	100	1001	0 005	1 090	0.001	0.971	10 0 799	as 0 77 /	1 0.47	1 407	1 47.4	1 60
100	200	0.891	-0.265 -0.465	000:0-	-1.344 -1.471	-1.032	-1.397	-1.997	-2.190	-2.141	-2.143	100	200	2.717 2.717	1.001	0.254	-0.516	-0.900	-0.//4	-1.247	-1.40/ -1.359	-1.4/4 -1.469	-1.550
	500	0.840	-0.446	-1.157	-1.577	-1.822	-1.868	-1.984	-2.074	-2.157	-2.213		500	2.641	0.932	-0.096	-0.725	-1.094	-1.216	-1.373	-1.485	-1.578	-1.640
200	100	2.112	0.951	0.581	0.663	0.406	0.518	0.112	-0.078	-0.052	-0.148	200	100	3.662	2.072	1.345	1.171	0.749	0.749	0.276	0.039	0.030	-0.091
	200	1.882	0.979	0.841	0.418	0.231	0.234	0.061	0.011	-0.070	-0.146		200	3.415	2.020	1.496	0.845	0.508	0.416	0.189	0.102	-0.001	-0.093
	500	1.866	1.037	0.617	0.330	0.170	0.151	0.053	-0.022	-0.088	-0.140		500	3.392	1.999	1.198	0.678	0.382	0.286	0.146	0.048	-0.031	-0.091
500	100	2.311	1.162	0.799	0.900	0.646	0.752	0.335	0.122	0.132	0.000	500	100	3.798	2.219	1.489	1.327	0.913	0.909	0.428	0.170	0.152	0.000
	200	2.077	1.187	1.057	0.632	0.433	0.431	0.260	0.191	0.098	0.000		200	3.573	2.179	1.657	0.999	0.649	0.553	0.327	0.224	0.111	0.000
E	200	2.053	1.220	0.811	0.513	0.348	0.322 ref	0.216	0.137	0.003	0.000	E	000	3.549	2.147	1.341	0.810	0.509	0.406	0.258	0.157	0.071	0.000
		000	100 F	010	1	TU 000 0	101	0000	0010	101	1	-		0100	100	0000	1000	MINI	1010	T C L	L T		500
100	200	1 074	1.065 0.929	1 335	1.794	2.008 2.056	2.041 2.113	2.300 2.276	2.038 2.310	2.491 2.398	2.007 2.463	100	200	2.9756 2.766	1 179	0.803 0.793	106.U	1 255	1.240 1.378	1.575	1. 680 1. 640	1.743	1.819
	500	0.969	0.873	1.488	1.895	2.130	2.189	2.303	2.387	2.467	2.521		500	2.667	1.086	0.715	1.086	1.390	1.509	1.654	1.756	1.843	1.904
200	100	2.161	1.015	0.645	0.708	0.457	0.555	0.216	0.188	0.171	0.213	200	100	3.700	2.111	1.380	1.196	0.774	0.768	0.316	0.140	0.127	0.139
	200	1.906	1.006	0.861	0.448	0.273	0.272	0.153	0.131	0.148	0.198		200	3.432	2.036	1.508	0.858	0.522	0.430	0.217	0.140	0.093	0.130
	500	1.874	1.046	0.629	0.351	0.204	0.186	0.121	0.112	0.142	0.183		500	3.397	2.003	1.202	0.684	0.391	0.296	0.165	0.092	0.085	0.123
500	100	2.351	1.200	0.825	0.912	0.656	0.759	0.348	0.151	0.151	0.001	500	100	3.835	2.253	1.515	1.342	0.924	0.916	0.440	0.194	0.169	0.000
	200	2.095	1.201	1.064	0.636	0.437	0.434	0.264	0.196	0.104	0.000		200	3.589	2.193	1.664	1.004	0.654	0.556	0.330	0.228	0.116	0.000
	500	2.059	1.229	0.813	0.514	0.349	0.322	0.216	0.138	0.065	0.000		500	3.553	2.150	1.343	0.811	0.510	0.406	0.259	0.158	0.072	0.000
۲.	lotes:	Param	ieters o	of the d	ynamic	panel	data m	odel, (2	(9), are	generat	ed as: a	$l_i \sim 1$	NDI.	(1,1),	$\rho_{ix} \sim 0$	$U_{(0, 0.6)}$	$(5), \vartheta_i$	$\sim U(0,$	(0.95) at (1.01)	$\gamma_i \sim \prod_{i=1}^{n} \gamma_i$	IIDN	(1,1), 1	or
l = l	, Z, .	., <i>I</i> V. es	sign Z a	ssumes	a two-	-factor i	nodel v	with $[N_{\rm c}]$	x_{β} and	$[N_{\alpha_{\beta_2}}]$	non-zer	o loa(lings	tor the	nrst al	nd seco	nd lact	or, resp	ectivel	y. we s	et: $\alpha_{\beta 2}$	$= 2\alpha_{\beta}$	ũ,
where	ξαβ	relates t	$0 \alpha \text{ un}$	der (11), f_{jt} a	and u_{it}	$\sim IID$	N(0, 1),	$v_{ij} \sim$	$IIDU(\mu$	$v_{v_i} - 0.2$	$, \mu_{v_i}$	+0.2)	j, j = 1	, 2, μ_v	= 0.87	$\mu_{v_2} =$	$0.71, \mu$	$v_1 = $	$\mu_v^2 - N$	$2(\alpha_{\beta 2} - \alpha$	$^{\scriptscriptstyle eta}(\mu^2_{v_2}),$	in
(32)) put	33). Th	e numl	oer of r	eplicati	ions is ;	set to I	3 = 200	0.										*				

Table A2b: Bias and RMSE (×100) for the $\tilde{\alpha}$ estimate of the cross-sectional exponent of the errors from a dynamic panel data model with

Table A3a: Bias and RMSE $\times 100$) for the $\tilde{\alpha}$ estimate of the cross-sectional exponent of the errors from a static panel data model

						ross co	rrelatio	ns are g	generate	d using	Desi	gn I v	vith non	-Gauss	ian err	ors			0		1
	σ	0.0 0.0	<u>co.u u</u>	0.70	0.75	U.SU	0.8.U	0.90	0.95	1.00		σ	0.00	.0 0.	.0 60	70 0.7	0 0.80	0.8.U	0.90	0.95	1.00
			$c_{p(1)}$	<i>t</i> , <i>o</i>) with	$\frac{\lambda}{\delta} = \frac{1}{2}$	$\frac{1}{1} - \frac{1}{9}$	/ z anu <i>b</i>	co.o =						5	o(n, o) w	r = u In r	$\frac{1}{5} - \frac{1}{7}$	1 nns 7/(0.10		
E	L.					7/T					E	14					7/T - C				
-	z					Blas					Ļ.	Z					Bias				
100	100 2	.272 0.85	37 0.315	0.221	0.042	0.176	-0.159	-0.243	-0.103	-0.047	100	001	1.653 1.	847 0.9	991 0.6	70 0.31	8 0.350	0.048	-0.179	-0.068	-0.030
	2001 2	138 1.15 138 1.15	19 U.035 33 D.485	0.179 U	0.027	0.020	-0.114	-0.070	-0.078	-0.062			.487 I.	799 I.: 020 0.0	970 102 978 078	39 0.25 03 0.10	2 0.156	-0.032	-0.026	-0.048	-0.041
006		680 1.15 680 1.15	10 0.400 30 0.504	01250	0.000	0.986	00000	-0.001	0.050	0.000	000		0110 011	929 U.S	940 U.4 201 D.2	81.U 0.E8	101.0 8 6 0.461	0.012	-0.020	0.000	-0.00 0.000
7007		1.11 1.000 1.150	260.0 00 000 000	- 0.909	001.0	0.111	060.0-	001.0-	-0.00	00000	7,007		000 5. 140 5.		070 074 00V	560 60		01000	-0.13J	1000	0.000
		004 1.3U 649 1-44	10 0.703 10 0.703	0.323	0.134	01110	-0.060	-0.04	/ TN'N-	0.000	1 1		. 3935 2. 1024 5	200 I. ⁴	311 0.7	U3 U.30 17 D.34	4 U.230 7 D.230	10.00	160.0	CUU.0-	0.000
500		0000 1.26	10 0.192 36 0.677	0.410 0.421	0.11.0	0.140	0.009	0.127	0.017	00000	200		1 507 0.	507 1.4	150 0.1 150 0.0	11 U.04 05 051	9 0 480 G	211.0	0.047 0.110	0.001	0.000
000		988 1.30 097 1.70	10.0 000 000	0.431	0.202	0.304	-0.079	-0.1777	-0.047	0.000	- , nnc		1.021 Z.	201/ T.	0.0 UCE	10.0 02	0 0.400 0 0.001	0.020	-0.119	00000	0.000
		170 1.52 1.52	27 1.U12 10 0 010	0.399	0.104	0.157 0.169	0.079 0.079	100.0	-0.014 0.003	0.000			1.505 2. 1.577 9	505 I.1 640 1	207 0.8 170 0.7	U/ U.4U 70 038	4 0.29/	0.050	0.038	0.000	0.000
E			1000 01			MCF	0.00	0100	00000	0000	Ē		-				PMCF		0000		00000
100	100	<u>870 171</u>	1 035	064.0	0.454	0.220	0 967	0.900	0 111	0.000	100		102 0	530 1 I	242 1.0	81 0.64	1 0 405	0.900	0.943	0.110	0.069
TUU		1.1 U10.1 018 1.64	1911 01	0.721	0.404	0.000	0.201	0.120	0.190	0.119	nnt ,		103 2.	000 I.1 118 I.1	040 I.U 876 I.O	17 0.79	E 0.210	007.0	0.1140	0.086	0.0.0
	007 C	1001 0101		10100 -	000.0	0.950	0.159	0110	0.150	0 1 1 E	10		102 0	1 014	017 1010 1948 101			0.200	0.190	0.000	0107
000		101 1.90	1001 1.001 1.001	0.1.90	180.0	0.420	0.100	0.149	0.077	0.140			-171 7.	000 T.	1.U 1.U 1.U	10.0 00.00	970.0 Q	101.0	0.120	0.070	0.104
200		155 107 155 107	1911 00 1940	0.747	0.450	0.409	0.200	0.076	670.0	0.003	, , 200		י 16ב ס. 14פב ס.	1.25 L.3	201 1.1	30 U./U	0 0.035	0.245	0.105	0/0/0	0.002
	200	-100 1.94 010 1.06	1.040 I.040	200.0	0.402	0.240	0.200	010.0	10.004	0.002		002	171 2.	01/ T	210 T.U	00 0.04 07 0 00	8 U.000	0.100	001.0	0.040	100.0
500		240 1.90 351 1.96	00 1.205 00 1.015	0.50/	0.439 0.419	0.230	0.139 0.176	0 2003 0 2003	0.027	100.0	200		1.407 2. 1839 9	703 I. 003 I.	715 1.1 715 1.1	29 U.59 34 D.68	0 0.32L	0.204	0.128 0 174	0.034 0.064	10000
000	200 3	541 1.04	10.1.278	0.616	0.347	0.294	0 138	0.066	0.032	0.000			1 917 2	913 1.		96 0.56	0 0 424	0.177	0.093	0.037	0.000
	500 3 500 3	704 2.15	1.298	0.660	0.408	0.239	0.128	0.057	0.040	0.000			018 3.	016 1.3	810 0.9	64 0.56	7 0.332	0.179	0.079	0.047	0.000
	2				8	= 1/3						2					5 = 1/3				
E	z					Biac					E	z					Biac				
100	100	750 2 11	17 9105	1 111	0 795	0.624	0 197	0.084	1004	0.018	100		106 E	631 31	301 0 E	01 1 10	0 1 060	0.304	0.052	0.025	0.010
TUU	200 e	24.0 001.0 278 000	107777100 11 97096	11411	0.777	1.00-0 1.0161	0.143	-0.060 0.060	-0.00-0-	-0.091			о.430 J. 2036 Б.	019 30	081 100 181 93	81 1 1.43		0.034 7 0.355	0.000	0.043	-0.013
	200 P	775 435	58 9 488	1 433	0.753	0.401	0.140	0.073 0.073	-0.002	-0.07	4 12.			J12 0.0	900 2.0 013 03	50 130 50 130	4 0.001 3 0.740	798.0 (0.154	0.032	-0.017
006	100 6	304 3.80	01 9 403	1 587	0.000	0 757	0.180	-0.046	0.004	0.000	, UUC		0 000 6	198 4	194 97	05 1 66	1 1 1 9 10	0.000	0.004	0.050	0.000
004	200 6	795 4.37	72 2.873	1.591	0.909	0.543	0.228	0.116	0.027	0.000				541 4.	406 2.6	37 1.57	1 0.920	0.450	0.225	0.067	0.000
	500 7	524 4.84	16 2.983	1.731	0.931	0.527	0.269	0.119	0.033	0.000		009	0.206 6.	939 4.	468 2.6	94 1.51	2 0.841	0.434	0.196	0.061	0.000
500	100 6	747 4.25	2.664	1.727	1.029	0.796	0.210	-0.022	0.012	0.000	200	0	.532 6.	485 4.5	335 2.8	77 1.78	$\frac{1}{7}$ 1.264	0.492	0.128	0.069	0.000
	200 7	390 4.73	31 3.114	1.747	0.980	0.633	0.239	0.128	0.033	0.000		200	0.157 6.	940 4.0	595 2.8 	27 1.66	9 1.045	0.467	0.241	0.075	0.000
	500 8	.304 5.32	26 3.234	1.844	1.007	0.585	0.297	0.127	0.039	0.000	- 2.5	500	0.989 7.	458 4.'	764 2.8	43 1.61	7 0.920	0.472	0.209	0.068	0.000
F	z				LE LE	IMSE					Ĥ	z					RMSE				
100	100 6	.192 3.97	78 2.536	: 1.756	1.054	0.778	0.375	0.220	0.099	0.045	100	8 00	.836 6.	029 4.0	018 2.7	94 1.72	1 1.212	0.588	0.264	0.122	0.029
	200 6	.722 4.24	18 2.892	1.766	1.156	0.603	0.301	0.152	0.066	0.045		000	.320 6.	270 4.:	313 2.7	08 1.73	2 0.974	0.488	0.248	0.090	0.030
	500 7	.321 4.92	22 2.890	1.828	1.028	0.621	0.291	0.154	0.065	0.053	2.7	000	.867 6.	859 4.5	250 2.6	86 1.55	5 0.922	0.455	0.225	0.070	0.035
200	100 6	.652 4.27	77 2.875	1.848	1.149	0.926	0.366	0.189	0.088	0.002	200	001	.321 6.	410 4.	425 2.9	20 1.85	2 1.369	0.607	0.254	0.128	0.001
	200 7	.143 4.76	35 3.207	, 1.839	1.146	0.657	0.389	0.181	0.064	0.001		000	.790 6.	839 4.0	577 2.8	48 1.77	6 1.038	0.592	0.286	0.101	0.001
	500 7	.877 5.18	34 3.325	2.062	1.156	0.631	0.351	0.196	0.060	0.001	27	500 1	0.464 7.	200 4.7	749 2.9	75 1.71	7 0.946	0.516	0.268	0.088	0.001
500	100 6	.988 4.51	18 2.877	, 1.903	1.176	0.924	0.334	0.163	0.080	0.000	500	001	.708 6.	698 4.1	503 3.0	28 1.91	6 1.385	0.593	0.243	0.125	0.000
	200 7	.676 4.98	35 3.316	1.905	1.105	0.746	0.328	0.175	0.063	0.000		200	0.362 7.	130 4.8	861 2.9	63 1.78	0 1.146	0.543	0.285	0.103	0.000
	500 8	.581 5.58	35 3.485	2.007	1.155	0.663	0.352	0.158	0.072	0.000	2.7	500 1	1.189 7.	655 4.9	962 2.9	85 1.74	8 0.996	0.527	0.239	0.099	0.000
Not	es: Pa	rameters	of the s	tatic p	anel da	ta mod	el, (29),	are ger	erated :	as: $a_i \sim$	IID	N(1,	1), ρ_{ix} ~	U(0, 0)	$(.95), \vartheta$	$i = 0 \mathrm{an}$	$d\gamma_i \sim$	IIDN (1, 1), for	i = 1, 2	$,\ldots,N.$
Non-Ga	าเรต่อม	e PTOTS	เอนอง อา	ated a		$\left(\frac{v-2}{v-2}\right)$	1/2 \widetilde{n}_{\cdots}	for <i>i</i> —	6 T	$N = \widetilde{v}$.	~	INNU	0 1) and	ا ا	s a chi	Jerenna	rando	m wariat	ta with .	и– 8 de	orees of
	Trateen		n c gana	rateu a	n tin c	$\left(\frac{\chi^2_{v,t}}{\chi^2_{v,t}} \right)$	ν_{it} ,	- , IOI	L, 2,	11 · 11 · 1	7		<u>и, т) али</u>	[⊥] <i>X</i> _V , <i>t</i> [⊥]	ם מ מ	ha mnhe.	n ranno	ווו גמוומ		on o ^	kree or
freedom	; in (:	$1). Desi_{i}$	gn 1 ass	sumes l	$b_i \sim U($	0.7, 0.9) for th	e first 1	$V_b \ (\leq N)$) eleme	nts o	f vecto	or \mathbf{b}_N , i	= 1, 2	\dots, N	, in the	constru	iction of	f the cor	relation	matrix
of the ei	rrors.	$\mathbf{R}_N = \mathbf{I}_N$	$\frac{1}{V} + \mathbf{b}_{N}\mathbf{b}$	$0'_{N}-\mathbf{B}$	32 give	n by (3	.0). wh∈	ere \mathbf{B}_N	= Diag	(\mathbf{b}_N) . c	$n(n, \delta)$	i) corr	esponds	to the	critica	l value	used in	the mu	ltiple te	sting pr	ocedure
shown ii	1 (93)	The nu	mher of	renlic:	ations i	s set tr	R = 2	000)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		•						•		
	() 1	·		יידיקטיד ו		,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 														

Table A3b: Bias and RMSE ($\times 100$) for the $\tilde{\alpha}$ estimate of the cross-sectional exponent of the errors from a dynamic panel data model with

		2	000	2		C.	OSS COI	relation	are g	enerate	d using	Desi	gn 1 v	vith nor	n-Gaus	sian er	rors	L L	00	2	000	2	00
	5	0.55	0.60	0.65	0.70	0.75	0.80	0.85 1	0.90	0.95	T.00		σ	0.55).60 ().65 (2)	0.70	<u>, '() U</u>	.80	.68.	0.90	0.95	1.00
	T			$c_p(n,$	0) with	n = N($\frac{N-1}{1}$	2 and p	= 0.05							$c_p(n, \delta)$	with n :	N(N) =	- 1)/2 8	and $p =$	0.10		
						= <i>Q</i>	= 1/2						1					$\phi = 1$	7./				
[-1	z						lias					EH	z					Bias					
100	100	2.224	0.770	0.293	0.190	0.027	0.171	-0.178	-0.256	-0.110	-0.054	100	100	3.581 1	.765 0	.966 0	.620 0	.305 0.	347 -0	.067 -(0.188 -	0.073 -	0.035
	200	2.032	0.821	0.589	0.140	-0.032	0.005	-0.128	-0.090	-0.096	-0.077		200	3.308]	(699 1)	.143 0	.495 0	.187 0.	141 -0).042 -(0.037 -	0.059 -	0.051
0	nnc	2.043	0.900	0.483	0.1/1 0	CTU.U	0.01 /	100.0-	-0.083	-0.1U0	-0.1U0	0	000	3.212 I	./13 U	- 404 - 0	.440 U	.0 /91.	0 6TT)- CIU.	J.U30 -	- 100.0	0.072
200	100	2.719	1.159	0.531	0.338	0.149	0.269	-0.085	-0.183	-0.051	0.000	200	100	4.192 2	.239 1	.248 0	.796 0	.437 0.	440 0	- 210.).129 -	0.032	0.000
	200	2.632	1.280	0.894	0.334	0.116	0.122	-0.025	-0.005	-0.016	0.000		500	4.013 2	.247 1	.499 0	.713 0	.340 0.	249 0	.046 0	.029 -	0.003	0000
	500	2.622	1.420	0.791	0.370	0.164	0.136	0.069	0.026	0.001	0.000		200	3.915 2	.254 1	.300 0	.659 0	.326 0.	218 0	.112 0	0.045 (0.008	0000
500	100	2.974	1.350	0.694	0.405	0.203	0.303	-0.076	-0.179	-0.048	0.000	500	100	4.489 2	.487 1	.462 0	.891 0	.511 0.	486 0	.033 -(0.123 -	0.027	0000
	200	2.913	1.474	1.005	0.405	0.170	0.146	-0.013	-0.002	-0.014	0.000		200	4.383 2	.502 1	.652 0	.813 0	.415 0.	284 0	.062 0	0.034 (0000	0.000
	500	3.138	1.674	0.918	0.478	0.198	0.176	0.078	0.029	0.001	0.000		500	4.541 2	.592 1	.482 0	804 0	377 0.	273 0	.125 (0.050 (0.008	0.000
E	Z					B	MSF					E	Z					BMS	Ē				
		0100	1 501	0.001	0.760	71	0 467	0.047	0.901	0.150	0110	- 100		J 116 0	1 050	106	004	OTATAT	100	0.01	020	100	040
TUU	001	010.7	1201	1.000	0.700	0.444	0.407	167.0	100.0	0.01.0	011.0	OOT		4.110 2 2 2 2 2 2 2	T 000	1 045. 701 1	0 180.0	.0 200. 0 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	107	0.62.0	7777	0100
	200	2.730	1.507	1.090	0.080	0.410	0.202	0.213	0.139	0.150	0.130		200	3.917 2	.2.08	0 16C.	0 666. 1	.532 U.	341 0	.194 L).133	J.114	1.097
	500	2.939	1.547	1.055	0.623	0.549	0.314	0.165	0.161	0.170	0.175		200	3.997 2	.246 1	.483 0	.848 0	.652 0.	370 0	.153 (.121 (0.121	0.127
200	100	3.256	1.787	1.042	0.722	0.414	0.404	0.331	0.244	0.071	0.002	200	100	4.645 2	:741 1	.654 1	.111 0	.656 0.	580 0	.361 0	.231 (.071	0.001
	200	3.299	1.992	1.490	0.790	0.423	0.291	0.205	0.099	0.054	0.006		200	4.572 2	.834 2	.004 1	.101 0	599 0.	412 0	.247 0	.123 (0.062	0.005
	500	3.195	1.991	1.386	0.626	0.403	0.229	0.155	0.075	0.040	0.002		200	4.414 5	754 1	828 0	908 0	559 0.	316 0	201 C	1.097	0.047	001
500	1001	3 363	1 8 9 1	1 005	0.623	0.436	0.403	0.180	0.910	0.065	0000	500	100	1 813	851	771 1	0.73 0	606 0	588	J U66	185	1064	
000	001	0.000	170.1	020 F	0.401.0	007-00	004.0	0.100	01770	200.0	00000	000		1 010 1		T T L L L L L L L L L L L L L L L L L L		0.000		014	- TOU	#00.0	0000
		3.257	1.957	1.356	0.704	0.371	0.286	0.237	0.060	0.035	0.000		- 500	4.672 2	1 088.	.952 I	.060	.580 0.	410 0	.274 U	0.080.	0.041	0.000
	500	3.651	1.969	1.287	0.764	0.370	0.331	0.143	0.053	0.015	0.000		500	4.971 2	.860 1	.810 1	.064 0	.536 0.	420 0	.190 C	.075 (0.021	0000
						ε 9	= 1/3											$\delta = 1$	/3				
H	z						lias					(H	z					Bias					
100	100	5.659	3.338	2.058	1.326	0.770	0.632	0.109	-0.090	-0.028	-0.021	100	100	8.377 5	.505 3	.633 2	.386 1	.472 1.	067 0	.373 0	0.053 (0.031 -	0.012
	200	6.008	3.638	2.421	1.324	0.690	0.444	0.138	0.058	-0.008	-0.028		200	8.743 5	.747 3	.890 2	.309 1	.308 0.	816 0	.352 0).165 (.040 -	0.017
	500	6.645	4.087	2.499	1.366	0.740	0.422	0.185	0.065	-0.008	-0.034		200	9.332 6	.129 3	.922 2	.265 1	.285 0.	719 0	.344 0	.147 (0.029 -	0.021
200	100	6.349	3.883	2.405	1.544	0.921	0.730	0.191	-0.037	0.002	0.000	200	100	9.102 6	0600 4	.032 2	.643 1	653 1.	178 0	460 0	1.106 (0.056	000.0
) 	200	6.815	4 303	2,874	1 600	0.879	0.558	0.220	0 112	0.028	0.000		000	0.550 6	462 4	407 9	641 1	534 0	044 0	438	218	0.068	000
	100	1 610	000.F	1906	1 620		0.000	0.96.0	0 117	0.000	0.000			0107 6			1 1103					0000	
000	000	010.7	4.793	2.901	1.002	U.900	0.001/	0.209	111.U	0.004	0.000	0		0 18T-0	1000. 101	7 747	.004 I	.4/1 U.	0 070	J 704.	1.134	700.0	0.000
500	100	6.704	4.202	2.673	1.683	1.021	0.796	0.216	-0.027	0.009	0.000	500	100	9.483 c	.464 4	.330 2	.827 1	.775 1.	265 0	.497 (.119 (0.065	000.0
	200	7.271	4.659	3.089	1.752	0.993	0.612	0.245	0.122	0.033	0.000		200	0.035 6	.857 4	.661 2	.829 1	.683 1.	016 0	.472 0).233 (0.075	0000
	500	8.259	5.286	3.253	1.885	0.993	0.609	0.292	0.128	0.035	0.000		500 1	0.942 7	.418 4	.784 2	.888 1	.598 0.	948 0	.466 0	.209 (0.064	0.000
E	z					E E E	MSE					H	z					RMS	E				
100	100	6.104	3.821	2.481	1.718	1.041	0.848	0.305	0.223	0.106	0.049	100	100	8.724 5	.874 3	.968 2	.707 1	704 1.	259 0	524 0	.261 (0.125	0.032
	200	6 466	4.085	2,794	1 699	0.954	0.613	0.292	0.165	0.084	0.058		200	9 086 F	094 4	201 9	624 1	535 0	974 0	482. C) 253 (100	0.39
	200	7177	1 504	034	1 700	1 105	0.69.0	0.973	0 1/1	0.067	0.067			9 664 0	- C9V	087 9	550 1	600 0.		367	010	0.71	0.046
000	000	- 11- 0		100.1	1 011	1111	0.00	014.0	11110	100.0	100.0	000				1 0 0 0			0 1 1 0 0 1 1 0		7177	101	0100 C
700	TUU	0./12	4.2.14	201.2	110.1	1.111	0.0/1	0.400	0.2.0	0.000	100.0	700	n i	8.0/0 C	4 100. 1001	007	- 000.	.1 070.	0 010 0 010	-009 	100.0	J.124	100.U
	200	7.212	4.731	3.259	1.907	1.090	0.709	0.382	0.192	0.085	0.004		500	9.848 C	.783 4	. 707 2	.894 1	.717 1.	083 0	.578 (.291 (.119	0.004
	500	7.847	5.147	3.348	1.876	1.112	0.620	0.360	0.171	0.072	0.001		500 1	0.444 7	.151 4	. 750 2	.805 1	.0 999.	930 0	.523 0).248 (0.098	0.001
500	1001	6.956	4.478	2.913	1.839	1.174	0.897	0.351	0.177	0.078	0.000	500	100	9.666 f	.666 4	515 2	959 1	908 1.	363 0	.605 0	.250 (121	000.0
0	000	00000	0007	0000	1 0.44	1 100	0.700	1000	0 165	0.067	0.000			0.100	1 DEF 1	0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1 2000.		116 0	2000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	106	
	007	004.1	4.920	070.0	1.344	071.1	0.144	0.402	COT.0	0.001	0.000				4	7 0.10	- 101 T		0 011		1.414	00T.0	0.00.0
	500	8.531	5.484	3.498	2.093	1.130	0.737	0.356	0.155	0.047	0.000		500 1	1.137 7	.573 4	.980 3	.065 1	.722 1.	064 0	.527 (.237 (0.076	0.000
Ň	tes:	Param	eters o	f the d	vnamic	a nanel	data 1	nodel.	(29). ar	e gener	ated as	0.7	UII V	N(1.1)	$0_{ix} \sim$	U(0,0)	(35). b	$h_i \sim U($	0.0.95) and c	$\gamma_i \sim II$	DN (1.	1). for
						- 				1/2		1 m			L w	, , , , , , , , , , , , , , , , , , , ,		2					(/-
i = 1, :	2,	, N. N	on-Gai	ussian	errors .	are gei	erated	as u_{it}	$=$ $\left(\frac{\sqrt{\sqrt{2}}}{\sqrt{2}}\right)$	$\left(\frac{2}{\tilde{\mathcal{V}}_i}\right)^{-\prime} = \tilde{\mathcal{V}}_i$	$_t$, for i	= 1,2	· · · · ·	$N, \tilde{\nu}_{it}$ -	~ IIDI	N(0, 1)	and χ	$\frac{2}{vt}$ is a	chi-sq	uared	randon	ı variat	e with
0	04.00	on of for	andom	.6) u:	1) D ₂₀	1.000	20011000	- 4	TT(0, 7,	$0, 0, f_{n}$	+ ho f.	A NT	V V		- Jo oto	ton	، . کړ	ر م م	N	- + p,	toroo	an of i on	cf + fc
, , , , , ,		H . 5 63	Genorn	, ш (о				ې ۲،۲۰	· · · · · · · · · · · ·	101 (a.u		917 10	- /			VECTOT	, vo		A7 (· · ·	, 111 ULLC		ncuon.	
correla	tion	matrix	of the	errors	$\mathbf{R}_{N} =$	$= \mathbf{I}_N +$	$\mathbf{b}_N \mathbf{b}'_N$	\mathbf{B}_{N}^{r}	given b	y (30),	where]	 2 2 2	Diag	(\mathbf{b}_N) . c	$p_p(n, \delta)$	corres	ponds	to the	critica.	l value	used ii	1 the m	ultiple
testing	proc	sedure :	shown	in (23)). $c_p(n)$	$, \delta)$ col	respon	ds to t	he critio	cal valu	e used	in the	mult	iple test	ting pr	ocedur	e show	n in (2	(3). Th	ie num	ber of 1	replicat	ions is

set to R = 2000.

bdel	
pç	
0	
<u> </u>	
B	
æ	
Ę,	
la	
.0	
Ы	
ň	
g	
д	
U U	
÷5	
g	
\mathbf{x}	
ъ	
B	
0	
Ψ	
S	
)Ľ	
Ľ	
Я	
÷	
le	
ţ	•
ч	
0	
÷	7
n.	5
Л£	
01	
ã	
X	2
e	•
Ъ	
D2	¢
ō	
÷	
S S	•
Š	1
¹	F
ŝ	
9	
5	
c)	_
E E	_
<u> </u>	
t	
of tl	
of th	
te of th	
ate of th	
mate of th	
timate of th	
stimate of th	
estimate of th	
$\tilde{\alpha}$ estimate of th	
e $\tilde{\alpha}$ estimate of th	
he $\tilde{\alpha}$ estimate of th	
the $\tilde{\alpha}$ estimate of the	
or the $\tilde{\alpha}$ estimate of the	
for the $\tilde{\alpha}$ estimate of the	
) for the $\tilde{\alpha}$ estimate of the	
0) for the $\tilde{\alpha}$ estimate of the	
(00) for the $\tilde{\alpha}$ estimate of the	
<100) for the $\tilde{\alpha}$ estimate of th	
$(\times 100)$ for the $\tilde{\alpha}$ estimate of the	
\tilde{c} (×100) for the $\tilde{\alpha}$ estimate of the	
$SE (\times 100)$ for the $\tilde{\alpha}$ estimate of the	
1SE (×100) for the $\tilde{\alpha}$ estimate of the	
MSE (×100) for the $\tilde{\alpha}$ estimate of the	
RMSE (×100) for the $\tilde{\alpha}$ estimate of the the set of	
1 RMSE (×100) for the $\tilde{\alpha}$ estimate of the	
nd RMSE (×100) for the $\tilde{\alpha}$ estimate of the	
and RMSE ($\times 100$) for the $\tilde{\alpha}$ estimate of the	
s and RMSE (×100) for the $\tilde{\alpha}$ estimate of the	
as and RMSE (×100) for the $\tilde{\alpha}$ estimate of the	
3ias and RMSE (×100) for the $\tilde{\alpha}$ estimate of the set of the se	
Bias and RMSE (×100) for the $\tilde{\alpha}$ estimate of the	
\imath : Bias and RMSE (×100) for the $\tilde{\alpha}$ estimate of the	
4a: Bias and RMSE (×100) for the $\tilde{\alpha}$ estimate of the form of the set of t	
A4a: Bias and RMSE (×100) for the $\tilde{\alpha}$ estimate of the	
) A4a: Bias and RMSE (×100) for the $\tilde{\alpha}$ estimate of the	
le A4a: Bias and RMSE (×100) for the $\tilde{\alpha}$ estimate of the	
whe A4a: Bias and RMSE (×100) for the $\tilde{\alpha}$ estimate of the the estimate of	
[able A4a: Bias and RMSE (×100) for the $\tilde{\alpha}$ estimate of the the mathematical set of the estimate of the set of the se	

	F) J	0000	200		CL	DSS COIT	<u>elation:</u>	s are ge	nerated	using J	Jesigr	1 Z MI	ith non-	Gaussi	an erro	Drs	Ì	000		000	200	
	σ	0.00	0.00	0.00 2010	0.70 <u>5):4b</u>	0.70	<u>0.80</u> <u>17 / 17 / 6</u>	0.8.0	0.90	0.95	1.00		σ	0.00	0.00	0.00 2 (m 2	0.70	0.70 	0.80 1) /0	0.8.0	0.90	0.95	T.00
				Cp(11	101 M 101	$\frac{1}{\delta} = \frac{\delta}{\delta}$	$\frac{1}{1/2}$	- d nite 7	- n.u							Cp(16, 0	TINT M ($\left[= \rho \right]$	$\frac{-1}{1/2}$	- d nim	01.0		
E	z						- /-					E	z					Bia					
		1 116	0.040	0.067	0 697	100 6	000 C	9 KK1	9 7AE	9 719	9 7EA	100		0 795 (107	0 707	1 407	0101	0 194	0 645	0.020	9 060	0.021
00T	200	0.933	-0.949 -1.004	-2.030	-2.775	-3.210	-3.357	-3.631	-3.693	-3.777	-3.844	TUU	200	2.503 (. 437 - .356 -	0.758	-1.407	-2.272	-2.134 -2.485	-2.040 -2.792	-2.879 -2.879	-2.979 -2.979	-2.931
	500	0.898	-1.048	-2.261	-3.008	-3.456	-3.615	-3.782	-3.901	-3.998	-4.063		500	2.404 ().238 -	1.163	-2.048	-2.582	-2.795	-2.993	-3.126	-3.229	-3.296
200	100	2.764	1.265	0.642	0.535	0.221	0.270	-0.159	-0.346	-0.318	-0.394	200	100	4.186	2.322	1.376	1.039	0.575	0.530	0.042	-0.187	-0.184	-0.281
	200	2.655	1.332	0.886	0.307	0.020	-0.036	-0.226	-0.283	-0.361	-0.430		200	4.035	2.311	1.535	0.751	0.324	0.185	-0.053	-0.141	-0.235	-0.315
	500	2.623	1.359	0.641	0.190	-0.076	-0.138	-0.258	-0.342	-0.412	-0.460		500	3.925	2.236	1.209	0.558	0.175	0.043	-0.112	-0.215	-0.294	-0.346
500	100	3.337	1.824	1.180	1.096	0.741	0.794	0.349	0.121	0.125	-0.002	500	100	4.715	2.806	1.821	1.481	0.974	0.926	0.424	0.159	0.140	-0.001
	200	3.163	1.851	1.417	0.822	0.525	0.467	0.270	0.187	0.094	-0.002		200	4.521	2.764	1.968	1.155	0.717	0.569	0.324	0.213	0.104	-0.001
	500	3.186	1.896	1.174	0.697	0.431	0.353	0.223	0.135	0.060	-0.002		500	4.510	2.739	1.667	0.971	0.576	0.426	0.258	0.151	0.065	-0.001
H	z					RN	ASE					Ĥ	z					RM	ЭE				
100	100	2.165	1.928	2.631	3.035	3.499	3.576	3.999	4.181	4.162	4.206	100	100	3.413	1.803	1.733	2.023	2.483	2.605	3.053	3.266	3.271	3.336
	200	2.179	1.962	2.499	3.204	3.624	3.796	4.066	4.140	4.227	4.292		200	3.325	1.811	1.675	2.227	2.675	2.893	3.184	3.281	3.384	3.460
	500	2.489	2.230	2.889	3.493	3.905	4.068	4.237	4.357	4.452	4.516		500	3.482	2.058	2.078	2.589	3.020	3.217	3.409	3.540	3.642	3.709
200	100	3.213	1.794	1.131	0.851	0.541	0.478	0.383	0.473	0.451	0.508	200	100	4.560	2.717	1.716	1.255	0.759	0.637	0.289	0.313	0.307	0.373
	200	3.216	1.863	1.231	0.650	0.388	0.317	0.372	0.413	0.472	0.532		200	4.514	2.751	1.828	0.996	0.521	0.334	0.240	0.272	0.334	0.399
	500	3.279	1.932	1.102	0.598	0.394	0.343	0.400	0.467	0.529	0.571		500	4.492	2.735	1.597	0.857	0.434	0.274	0.265	0.330	0.394	0.440
500	100	3.569	2.057	1.360	1.190	0.806	0.821	0.377	0.156	0.144	0.010	500	100	4.926	3.012	1.980	1.573	1.039	0.955	0.452	0.190	0.158	0.009
	200	3.466	2.107	1.556	0.915	0.578	0.486	0.280	0.193	0.100	0.004		200	4.792	3.000	2.114	1.256	0.777	0.594	0.337	0.219	0.109	0.003
	500	3.605	2.250	1.432	0.871	0.530	0.390	0.238	0.140	0.062	0.004		500	4.867	3.055	1.911	1.144	0.680	0.469	0.277	0.157	0.068	0.003
						$\frac{1}{2}$: 1/3											$\delta = 1$	/3				
E	z					B	ias					E	z					Bia	s				
100	100	5.029	2.438	0.805	-0.099	-0.895	-1.169	-1.767	-2.070	-2.101	-2.197	100	100	7.902	1.856	2.736	1.406	0.297	-0.215	-0.957	-1.367	-1.467	-1.611
	200	5.517	2.858	1.224	-0.128	-0.937	-1.333	-1.741	-1.900	-2.040	-2.139)) 	200	8.402	5.243	3.068	1.291	0.150	-0.479	-1.025	-1.275	-1.466	-1.596
	500	6.307	3.401	1.320	-0.089	-0.974	-1.409	-1.729	-1.926	-2.060	-2.141		200	9.147	5.730	3.112	1.241	0.017	-0.644	-1.095	-1.363	-1.534	-1.633
200	100	6.270	3.901	2.479	1.776	1.070	0.858	0.276	-0.022	-0.062	-0.190	200	100	8.911	5.987	3.991	2.793	1.746	1.286	0.558	0.157	0.049	-0.125
	200	6.774	4.318	2.872	1.642	0.902	0.562	0.206	0.044	-0.090	-0.194		200	9.459 (3.401	4.326	2.628	1.534	0.950	0.446	0.192	0.005	-0.131
	500	7.486	4.767	2.869	1.599	0.819	0.447	0.161	-0.009	-0.122	-0.192		200	10.131 (3.809	4.298	2.520	1.378	0.770	0.351	0.108	-0.043	-0.133
500	100	6.772	4.331	2.855	2.129	1.378	1.155	0.555	0.225	0.164	-0.001	500	100	9.412 (3.412	4.345	3.101	2.002	1.517	0.765	0.332	0.204	0.000
	200	7.252	4.723	3.222	1.942	1.179	0.822	0.457	0.274	0.126	0.000		200	9.926 (3.788	4.642	2.883	1.753	1.145	0.628	0.355	0.155	0.000
	500	8.098	5.256	3.260	1.907	1.089	0.687	0.385	0.206	0.084	0.000		200	10.730	7.297	4.680	2.806	1.607	0.960	0.519	0.265	0.104	0.000
H	Z					RN	ASE					Ē	N					RMS	SE				
100	100	5.489	3.043	1.690	1.275	1.493	1.667	2.140	2.409	2.454	2.551	100	100	8.224	5.216	3.119	1.827	1.034	0.949	1.335	1.668	1.775	1.915
	200	6.025	3.453	1.919	1.205	1.439	1.730	2.085	2.242	2.381	2.480		200	8.758	5.623	3.433	1.738	0.952	0.995	1.359	1.581	1.763	1.890
	500	6.886	4.072	2.178	1.368	1.530	1.809	2.082	2.266	2.396	2.478		200	9.551 (3.175	3.594	1.836	1.054	1.131	1.433	1.665	1.827	1.926
200	100	6.571	4.206	2.736	1.945	1.198	0.928	0.375	0.198	0.192	0.263	200	100	9.141 (5.221	4.193	2.934	1.851	1.344	0.614	0.229	0.145	0.182
	200	7.134	4.656	3.121	1.838	1.035	0.635	0.279	0.164	0.183	0.257		200	9.728 (3.666	4.539	2.801	1.653	1.015	0.489	0.229	0.115	0.180
	500	7.867	5.131	3.173	1.828	0.974	0.530	0.234	0.151	0.203	0.258		500]	10.412	7.093	4.552	2.724	1.518	0.844	0.392	0.157	0.125	0.186
500	100	6.952	4.506	2.996	2.219	1.442	1.186	0.583	0.252	0.181	0.008	500	100	9.550 (3.551	4.462	3.182	2.062	1.551	0.793	0.357	0.220	0.007
	200	7.458	4.915	3.361	2.045	1.245	0.853	0.473	0.282	0.132	0.002		200 1	10.081 (3.940	4.764	2.980	1.820	1.181	0.648	0.365	0.160	0.001
	500	8.333	5.484	3.457	2.060	1.192	0.739	0.409	0.215	0.087	0.001		200	10.902	7.473	4.843	2.941	1.704	1.014	0.547	0.276	0.107	0.001
$\ ^{\mathbb{Z}}$	otes:	Param	neters o	f the st	atic pai	nel data	model	. (29). a	tre gene	rated as	$a_i \sim$	NDI	(1.1)). $O_{ix} \sim$	U(0, 0)	$(95), \vartheta_i$	$= 0 \mathrm{ar}$	∕: 7;	NDN	(1.1). f	or $i = 1$	2	N.
Desig	12 as	sumes	a two-f	actor n	nodel w	ith $[N_{\alpha}]$	َ and	$[N_{\alpha_{22}}]_1$	Jon-zer(o loadin	gs for tl	ne firs	t and	second	factor.	respec	tively.	We set:	$\alpha_{B2} =$	$2\alpha_{R}/3$. where	α_{R} rela	tes
)	-	(T T)	د -		(= 0) =		•	1 7 7 7 7		-)	- ^ /	$2^{1/2}$	ر د 2	· ·		, ×			, r ,	•	۱ ۱	-
το α ι	mder	(11) a	nd J_{jt}		v (u, ı).	D-uon	aussiai	l errors	are gei	lerated	as: u_{it}	× ² 3	, t	$ u_{it}, \text{ IOI} $	i = 1	Z, ,	IN, Vit'	~ 11 17	V(U, 1)	and $\chi_{\rm v}^2$,	nı-squa	rea
rando	m vaj	riate w	ith v=	8 degr	ees of f	reedom	, in (31). v_{ii} -	~ IIDU	$(\mu_{v_i} -$	$0.2, \mu_{v_i}$	+0.2), j =	$= 1, 2, \mu$	<i>"</i> = 0.8	$37, \mu_{m_2}$	= 0.71	$\mu_{v_1} =$	$\sqrt{\mu_v^2}$ –	$N^{2(lpha_{eta})}$	$\frac{1}{2-\alpha_{\beta}}\mu_{\eta}^{2}$), in (32)

and (33). The number of replications is set to R = 2000.

Table A4b: Bias and RMSE ($\times 100$) for the $\tilde{\alpha}$ estimate of the cross-sectional exponent of the errors from a dynamic panel data model with exogenous regressors

				1	1	Crc	SS COIT	elations	are ge	nerated	using I	Design	1 2 wi	ith non-	-Gaussi	an errc	DIS	1		1	8	1	6
	σ	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00		σ	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00
				$c_p(n,$	δ with	n = N(1)	V - 1)/2	$2 \mod p =$	= 0.05							$c_p(n, \delta)$) with n	= N(N)	(-1)/2	and $p =$	0.10		
						$\delta =$	1/2											$\delta = 1$	$\lfloor /2$				
H	z					B	as					Ð	z					Bia	S				
100	100	1.016	-1.103	-2.241	-2.771	-3.270	-3.357	-3.838	-4.045	-4.008	-4.036	100	100	2.662 2.662	0.365	-0.939	-1.597	-2.202	-2.358	-2.883	-3.124	-3.111	-3.162
	200 500	0.669	-1.192 -1.297	-2.105 -2.534	-3.009 -3.294	-3.034 -3.752	-3.708 -3.926	-3.909 -4.100	-4.029 -4.216	-4.118 -4.312	-4.184 -4.380		200	2.380 2.163	0.191 -0.004	-0.959 -1.413	-1.989 -2.297	-2.541 -2.832	-2.774 -3.055	-3.072 -3.256	-3.109 -3.387	-3.201 -3.488	-3.337 -3.560
200	100	2.749	1.249	0.619	0.506	0.180	0.235	-0.194	-0.387	-0.359	-0.431	200	100	4.150	2.294	1.352	1.013	0.542	0.501	0.014	-0.217	-0.216	-0.307
	200	2.578	1.267	0.834	0.256	-0.018	-0.070	-0.268	-0.316	-0.397	-0.464		200	3.950	2.241	1.482	0.701	0.292	0.157	-0.086	-0.166	-0.263	-0.340
	500	2.568	1.311	0.610	0.161	-0.098	-0.161	-0.281	-0.366	-0.436	-0.485		500	3.869	2.188	1.178	0.531	0.155	0.025	-0.130	-0.233	-0.312	-0.365
500	100	3.419	1.888	1.222	1.113	0.749	0.792	0.349	0.125	0.124	-0.002	500	100	4.812	2.886	1.868	1.505	0.989	0.927	0.426	0.164	0.139	-0.001
	200	3.202	1.882	1.439	0.839	0.535	0.471	0.272	0.191	0.092	-0.002		200	4.557	2.796	1.992	1.173	0.727	0.575	0.326	0.216	0.102	-0.001
E	500	3.166	1.879	1.158	0.685	0.422	0.348	0.221	0.133	0.059	-0.002	E	200	4.489	2.722	1.651	0.959	0.567	0.420	0.256	0.149	0.065	-0.001
-	z					RN	ISE					H	z					RMS	СE				
100	100	2.117	2.014	2.782	3.266	3.749	3.863	4.306	4.507	4.488	4.515	100	100	3.358	1.765	1.797	2.176	2.676	2.840	3.307	3.537	3.540	3.591 2.591
	200	2.219	2.155	2.744	3.521	3.969	4.155	4.400	4.4.74	4.559	4.620		200	3.285	1.8.1	1.861	2.002	2.967	3.189	3.469	3.562	3.001	3./3/
	500	2.424	2.367	3.104	3.732	4.151	4.331	4.506	4.622	4.717	4.785		200	3.321	2.061	2.232	2.785	3.223	3.432	3.628	3.757	3.858	3.930
200	100	3.191	1.751	1.070	0.792	0.492	0.453	0.407	0.521	0.502	0.555	200	100	4.533	2.687	1.675	1.210	0.707	0.603	0.287	0.347	0.347	0.408
	200	3.135	1.816	1.210	0.658	0.431	0.357	0.424	0.456	0.524	0.579		200	4.421	2.684	1.786	0.970	0.526	0.343	0.275	0.304	0.374	0.436
	500	3.270	1.965	1.181	0.708	0.486	0.394	0.425	0.483	0.545	0.591		500	4.458	2.730	1.632	0.920	0.512	0.328	0.291	0.341	0.406	0.455
500	100	3.674	2.127	1.386	1.183	0.791	0.808	0.366	0.154	0.143	0.006	500	100	5.051	3.105	2.027	1.583	1.037	0.947	0.444	0.189	0.157	0.004
	200	3.618	2.254	1.661	1.001	0.631	0.509	0.291	0.198	0.099	0.006		200	4.914	3.122	2.207	1.335	0.828	0.619	0.349	0.225	0.109	0.005
	500	3.502	2.134	1.319	0.778	0.468	0.362	0.226	0.135	0.061	0.003		500	4.792	2.967	1.819	1.063	0.621	0.439	0.263	0.151	0.067	0.002
						$\delta =$	1/3											$\delta = 1$	1/3				
H	N					B	as					Ē	N					Bia	S				
100	100	4.967	2.337	0.691	-0.247	-1.047	-1.341	-1.960	-2.264	-2.293	-2.378	100	100	7.868	4.785	2.655	1.301	0.186	-0.344	-1.112	-1.516	-1.617	-1.751
	200	5.386	2.703	1.059	-0.320	-1.144	-1.548	-1.952	-2.111	-2.251	-2.349		200	8.272	5.102	2.925	1.133	-0.017	-0.647	-1.190	-1.440	-1.632	-1.760
	500	6.060	3.176	1.110	-0.281	-1.155	-1.589	-1.910	-2.103	-2.234	-2.319		500	8.905	5.513	2.917	1.072	-0.136	-0.790	-1.239	-1.502	-1.669	-1.771
200	100	6.216	3.864	2.456	1.755	1.046	0.840	0.256	-0.043	-0.086	-0.208	200	100	8.879	5.963	3.979	2.784	1.732	1.277	0.545	0.142	0.031	-0.136
	200	6.674	4.238	2.815	1.590	0.872	0.538	0.182	0.028	-0.108	-0.211		200	9.350	6.310	4.262	2.570	1.498	0.925	0.425	0.179	-0.009	-0.142
	500	7.411	4.705	2.828	1.567	0.799	0.433	0.150	-0.020	-0.132	-0.203		500]	10.062	6.749	4.255	2.487	1.356	0.756	0.342	0.100	-0.050	-0.141
500	100	6.882	4.427	2.919	2.162	1.399	1.163	0.559	0.232	0.165	-0.001	500	100	9.532	6.514	4.416	3.144	2.029	1.530	0.772	0.340	0.205	0.000
	200	7.284	4.756	3.250	1.961	1.193	0.830	0.460	0.279	0.125	-0.001		200	9.941	6.805	4.663	2.897	1.765	1.152	0.632	0.360	0.154	0.000
	500	8.073	5.235	3.243	1.895	1.079	0.680	0.381	0.203	0.084	0.000		500	10.705	7.276	4.661	2.793	1.598	0.953	0.515	0.262	0.103	0.000
H	Z					RN	ISE					T	N					RMS	SE				
100	100	5.440	2.965	1.638	1.304	1.618	1.840	2.349	2.627	2.668	2.753	100	100	8.200	5.156	3.058	1.759	1.041	1.045	1.500	1.839	1.944	2.073
	200	5.923	3.366	1.885	1.347	1.660	1.950	2.301	2.456	2.590	2.688		200	8.643	5.511	3.336	1.690	1.036	1.148	1.527	1.750	1.927	2.055
	500	6.655	3.889	2.065	1.402	1.648	1.947	2.225	2.407	2.536	2.622		500	9.316	5.974	3.429	1.730	1.062	1.215	1.540	1.773	1.933	2.036
200	100	6.534	4.180	2.714	1.916	1.163	0.902	0.352	0.211	0.219	0.287	200	100	9.121	6.208	4.186	2.924	1.834	1.330	0.594	0.222	0.153	0.198
	200	7.025	4.571	3.063	1.791	1.016	0.622	0.276	0.175	0.210	0.281		200	9.613	6.569	4.472	2.744	1.622	0.994	0.475	0.225	0.132	0.198
	500	7.799	5.083	3.155	1.831	0.996	0.554	0.255	0.156	0.207	0.266		500]	10.346	7.040	4.522	2.710	1.521	0.855	0.404	0.160	0.126	0.191
500	100	7.080	4.614	3.065	2.246	1.454	1.188	0.579	0.255	0.181	0.003	500	100	9.685	6.665	4.542	3.226	2.085	1.559	0.795	0.361	0.220	0.002
000	000	7 544	5 006	00000	0111	1 204	0.991	0.488	0.000	0 129	0.003	000		0.000	6.006	1 891	0 0 0 0 C	1 860	1 206	0.669	100.0	0.161	0.002
	200	1100 0	0000.5	0.400	7111.2	1 1 4C	100.0	0.904.0	0.000	701.0	0.00			101.01	0.990	1 700	0.000	1 667	0.02.1	0 591	0.000	101.0	0.00 100 0
	nne	0.02.0	0.402	0.400	7.000	1.140	0.11U	0.034	0.700	0.000	T00.0			c00.01	0.4.0	4.133	7.039	1.00/	0.900	100.0	0.200	COLLO	
4	otes:	Paran	neters (of the c	lynamic	c panel	data r	nodel, (29), ar	e genera	ated as:	$a_i $	111	N(1, 1)), ρ_{ix} '	~ U(0,	0.95), i	$y_i \sim U($	(0, 0.95)) and γ	$_{i} \sim III$	JN (1,	[),
for i	= 1,	$2,\ldots, 1$	N. De	sign 2	assume	s a two	o-facto	r model	with [$N_{\alpha_{\beta}}$] a	nd $[N_{\alpha}]$	β_{2} nc	n-zer	o loadi	ngs foi	· the fi	rst and	second	l factor	r, respe	ctively.	We s	et:
į	ç	6/	- 	10			(11)	J P		VI UT	Men	č				10400		-^)	$^{-2})^{1/2}$.,	c	
$\alpha_{\beta 2}$	_ Ξ	$\beta/3, W$	nere α	β relation	es to α	under	3 (11)	and J_{jt}		V (U, T).	-uon	Gauss	lan e	trors a	re gene	erated	as: u_{it}	.[;;; 	$\left(\frac{2}{2}\right)$	$\nu_{it}, \text{ ior}$	i = 1,	Z,,	, S
$\tilde{\nu}_{it} \sim$	IID	N(0, 1)	X pue	$\langle v_{x,t}^2$ is a	chi-sq	uared 1	andom	variate	with	v = 8 dc	egrees (of free	edom,	in (31). v_{ij}	$\sim IID$	$U(\mu_{v_i}$ -	$-0.2, \mu$	$v_{i} + 0.5$	(2), j = 1	1, 2, μ	v = 0.8	37,

 $\mu_{v_2} = 0.71, \ \mu_{v_1} = \sqrt{\mu_v^2 - N^{2(\alpha_{\beta_2} - \alpha_{\beta})} \mu_{v_2}^2}$, in (32) and (33). The number of replications is set to R = 2000.

35

Table B1: Comparison of Bias and RMSE ($\times 100$) for the $\tilde{\alpha}$ and $\hat{\alpha}$ estimates of the cross-sectional exponent of the errors from a static and dynamic panel data model with exogenous regressors

						Crot	ss corre.	lations	are gen	erated 1	ısing L	lesign	1 wit	h Gaus	sian e	rtors							
	σ	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00		α	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00
						ш	3ias											RM	SE				
									-	Static m	odel: ϑ_i	= 0 for	i = 1	$2,\ldots,l$	V								
H	Z						ã					Ĺ	Ν					ã					
100	100	0.204	-0.609	-0.584	-0.355	-0.289	-0.001	-0.259	-0.279	-0.094	-0.016	100	100	0.311 (.633	0.596	0.364	0.296	0.051	0.264	0.282	0.102	0.041
	200	0.066	-0.426	-0.156	-0.302	-0.254	-0.101	-0.165	-0.080	-0.058	-0.025		200	0.145 (118 ((438)	0.174	0.308	0.261	0.124	0.171	0.093	0.070	0.053
006	100	060.0	-0.120	-0.557	-0.144	-0.149	-0.00- 710 0	-0.940	040.0- 076.0-	-0.078	0.000	200	100	01110	1.1.0/ 1.611	0.571	0.338	0.979	670.0	0.949	0.0.0	0.079	0.000
7007	200	0.118	-0.380	-0.120	-0.271	-0.226	-0.074	-0.240	-0.057	-0.035	0.000	007	200	0.183 (.391	0.133	0.274	0.228	0.076	0.140	0.057	0.035	0.000
	500	0.158	-0.064	-0.114	-0.101	-0.106	0.007	-0.001	-0.006	-0.011	0.000		200	0.173 (0.075	0.116	0.102	0.107	0.010	0.004	0.007	0.011	0.000
500	100	0.277	-0.556	-0.549	-0.325	-0.261	0.019	-0.239	-0.262	-0.078	0.000	500	100	0.374 ().584	0.563	0.337	0.268	0.043	0.240	0.263	0.078	0.000
	200	0.157	-0.367	-0.110	-0.265	-0.223	-0.073	-0.138	-0.056	-0.035	0.000		200	0.218 (.379	0.126	0.268	0.225	0.075	0.138	0.057	0.035	0.000
	500	0.189	-0.047	-0.105	-0.097	-0.104	0.009	0.000	-0.006	-0.011	0.000		200	0.203 (0.063	0.108	0.098	0.104	0.011	0.004	0.007	0.011	0.000
H	z						å					Ð	N					å					
100	100	1.220	-0.126	-0.287	-0.090	-0.030	0.216	-0.096	-0.115	0.051	0.105	100	100	2.208	1.607	1.435	1.046	0.786	0.610	0.438	0.324	0.188	0.105
	200	0.463	-0.305	-0.046	-0.191	-0.091	0.040	-0.022	0.056	0.070	0.093		200	1.392	1.292	1.006	0.826	0.589	0.416	0.291	0.206	0.136	0.093
	500	0.162	-0.182	-0.116	-0.010	-0.016	0.091	0.080	0.080	0.070	0.080		500	1.057 (.996	0.762	0.575	0.386	0.295	0.203	0.142	0.097	0.080
200	100	1.916	0.155	-0.208	-0.091	-0.093	0.147	-0.134	-0.168	-0.001	0.050	200	100	2.576	L.473	1.152	0.842	0.605	0.452	0.346	0.275	0.139	0.050
	200	0.530	-0.375	-0.143	-0.221	-0.176	0.003	-0.075	-0.002	0.022	0.045		200	1.123	L.036	0.767	0.615	0.454	0.298	0.222	0.139	0.086	0.045
	500	0.144	-0.244	-0.188	-0.086	-0.081	0.052	0.044	0.036	0.031	0.040		200	0.742 (.759	0.575	0.425	0.291	0.202	0.141	0.094	0.056	0.040
500	100	6.301	2.825	0.928	0.325	0.045	0.186	-0.133	-0.190	-0.030	0.018	500	100	5.675	3.383	1.622	0.932	0.565	0.415	0.291	0.256	0.111	0.018
	200	1.495	0.021	0.033	-0.221	-0.177	-0.037	-0.104	-0.027	-0.012	0.017		200	1.869 ().881	0.607	0.477	0.343	0.212	0.178	0.098	0.057	0.017
	500	0.148	-0.269	-0.216	-0.118	-0.099	0.022	0.017	0.011	0.007	0.015		500	0.547 (.544	0.427	0.280	0.205	0.123	0.089	0.055	0.031	0.015
							Ď	mamic n	10del wit	h exoger	tous regi	essors:	$\vartheta_i \sim$	U(0, 0.9)	5) for i	= 1, 2,	\dots, N						
F	z						ã					£	Z					σ					
100	100	0.198	-0.621	-0.594	-0.363	-0.295	-0.007	-0.261	-0.284	-0.099	-0.021	100	100	0.302 ().644	0.607	0.375	0.305	0.056	0.266	0.289	0.108	0.045
	200	0.064	-0.432	-0.161	-0.309	-0.262	-0.108	-0.173	-0.088	-0.070	-0.033		200	0.153 (.444	0.180	0.316	0.272	0.126	0.183	0.106	0.094	0.064
	500	0.084	-0.123	-0.169	-0.158	-0.158	-0.046	-0.054	-0.059	-0.066	-0.049		200	0.117 ().144	0.185	0.179	0.174	0.102	0.102	0.102	0.107	0.090
200	100	0.255	-0.573	-0.561	-0.330	-0.266	0.018	-0.240	-0.263	-0.078	0.000	200	100	0.354 (0.600	0.573	0.339	0.272	0.043	0.241	0.264	0.079	0.000
	200	0.123	-0.381	-0.118	-0.272	-0.225	-0.074	-0.139	-0.056	-0.035	0.000		200	0.190 ((392)	0.131	0.274	0.226	0.076	0.139	0.057	0.035	0.000
	500	0.156	-0.063	-0.113	-0.101	-0.106	0.007	-0.001	-0.007	-0.011	0.000		200	0.169 (.074	0.116	0.102	0.107	0.010	0.004	0.007	0.011	0.000
500	100	0.281	-0.550	-0.550	-0.322	-0.261	0.020	-0.240	-0.261	-0.078	0.000	500	100	0.375 (0.580	0.563	0.332	0.267	0.045	0.241	0.262	0.079	0.000
	200	0.153	-0.366	-0.108	-0.266	-0.222	-0.072	-0.137	-0.056	-0.035	0.000		200	0.213 ().378 0.065	0.123	0.270	0.224	0.074	0.138	0.057	0.035	0.000
E		COT.U	-0.043	-0.104	-0.091	-0.104	<u>.</u> 0.009	0.000	000.0-	110.0-	0.000	E).130 (con.(101.0	0.030	0.104	TTD'D	0.004	0.001	110.0	0.000
		1 010	0.011	0000	191		α 0.100	0.00	0100		0 100	100		. 0.91 0	004	1 110	1 0.01		0120	277 0	1100	0.100	0100
IUU	0006	0.479	-0.011	-0.080	-0.13/	-0.109	0.100	-0.031	0.057	0.000	0.100	TUU		- 100 1 480	1.122	1.044 1.044	1.U91 0.819	0.608	0.491	0.307	116.0	0.136	001.0
	500	0 152	-0.178	-0.128	-0.053	-0.031	0.092	0.091	0.082	0.073	0.081		500	1 059 (0.986	0.810	0.564	0.407	0 294	0.210	0.146	0.0099	0.081
200	100	1.938	0.167	-0.158	-0.096	-0.083	0.155	-0.119	-0.170	-0.003	0.051	200	100	2.598	.444	1.152	0.863	0.601	0.476	0.346	0.276	0.135	0.051
	200	0.547	-0.363	-0.101	-0.227	-0.149	-0.011	-0.081	0.001	0.018	0.046		200	1.166	1.023	0.765	0.612	0.439	0.294	0.221	0.139	0.085	0.046
	500	0.134	-0.238	-0.200	-0.100	-0.069	0.048	0.042	0.034	0.032	0.040		200	0.741 (.746	0.589	0.403	0.296	0.205	0.138	0.093	0.058	0.040
500	100	6.145	2.677	0.952	0.313	0.043	0.184	-0.142	-0.187	-0.031	0.018	500	100	5.494 :	3.260	1.658	0.900	0.554	0.410	0.292	0.256	0.111	0.018
	200	1.489	0.038	0.024	-0.205	-0.191	-0.031	-0.104	-0.028	-0.010	0.017		200	1.896 (0.881	0.606	0.464	0.354	0.204	0.178	0.097	0.059	0.017
	500	0.165	-0.264	-0.212	-0.124	-0.103	0.020	0.017	0.009	0.005	0.015		500	0.571 (0.561	0.404	0.284	0.206	0.130	0.086	0.056	0.031	0.015
No	es:	Remair	ing par	"ameter	s of the	s na.nel	data n	nodel. (:	2 <u>9)</u> , are	genera	ted as:	, ∼ 	I D N	r (1.1).	ں م:~~ ک	U(0, 0)	.95) a	r % pu	~ 11 D	N (1.1). for i	= 1.2	N
Gaussis	un er	rors ar	e vener	ated as	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	IIDN	(0, 1)	n (31)	Desion	1 assi1	mes h_i	$\sim 11(0$	0 2 0	(-) for	<i>ru</i> the fir	st. $N_{\rm b}$ ($\sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j$	elemei	nts of	vector	\mathbf{h}_{M}	= 1	N
in the	-onst	truction	, action	forrels	ation n	natrix.	of the	errors		$\mathbf{I}_{x} + \mathbf{h}$		B ²	riven.	ы (30 hv (30	m whe	re B		iao (h,	ž V	is con	onnted	usino"	$c_{-}(n, \delta)$
mith m		r/ M 1	- y o/ (- 1/9 6	- a pa	. 0.05	u tho n	ururu, aultinla	+octing		N ~ N	~ .: ^ !!	(00)						v)· ~	timot,	tt to av	9	(o (a) d o d
MILLUSS-SA	 intion	- ۲۰ / ۱۰ / ۲۰	L)/ 4, v endenc	e consic	- <i>q</i> nu Iared ir	- v.v Aaile	uu uuc w et al	ərdmmu (2016)	anneau s Anndal	huver lows for	'ure aur " hoth	UW LL LL. Gerial	(02) J	יטט ער lation	un the	factor	e and an	UL JOU	an usul	ections	יי יט וע hene	ndence	in the
Cross-s(ction	nal dep	endenc	e consic	dered ii	n Baile	ov et al.	. (2016.) and a	OWS TO	r both	serial	corre	ation	in the	factor	s and	weak	Ľ	Cross-s	cross-section	cross-sectional depe	cross-sectional dependence

error terms. We use four principal components when estimating \hat{c}_N in the expression for $\dot{\alpha}$. The number of replications is set to R = 2000.

Table B2: Comparison of Bias and RMSE ($\times 100$) for the $\tilde{\alpha}$ and $\hat{\alpha}$ of the cross-sectional exponent of the errors of a static and dynamic panel data model with exogenous regressors

	Gaussian errors
BUILDING INGI M	Design 2 with
OVO ITALA TODOTT	generated using
0000	ross correlations are
	\cup

						Cro	ss corre	elations	s are ge	nerated	using I	Jesign	2 wit	th Gau	ssian ∈	rrors							
	σ	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00		α	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00
							3ias											RM	SE				
										Static m	odel: ϑ_i	= 0, fc	i r i = 1	$1, 2, \ldots,$	Ν								
H	z						ã					H	Z					õ	~.				
100	100	-0.880	-2.378	-2.922	-3.026	-3.232	-3.13	L -3.50	9 -3.64	3 -3.576	-3.598	100	100	1.252	2.688	3.301	3.469	3.699	3.623	3.974	4.094	4.029	4.051
	200	-1.221 -1.501	-2.480 -2.658	-2.800 -3 266	-3.267 -3.581	-3.464 -3.780	-3.434 -3.779	1 -3.59 -3.85	5 -3.59 0 -3 03	L -3.658 1 -4 011	-3.714 -4 057		200	1.455 1.662	2.748 2.899	3.580 3.580	3.655 3.938	3.868 4 153	3.859 4 176	4.002 4.260	4.009 4.336	4.070 4.411	4.130 4.456
200	100	0.705	-0.090	-0.160	0.120	0.009	0.205	-0.14	5 -0.29	9 -0.242	-0.304	200	100	0.803	0.377	0.369	0.346	0.298	0.354	0.312	0.405	0.359	0.399
) 	200	0.375	-0.068	0.134	-0.086	-0.146	-0.06	3 -0.19	1 -0.20	3 -0.265	-0.326		200	0.457	0.291	0.307	0.274	0.296	0.251	0.315	0.318	0.367	0.415
	500	0.219	-0.024	-0.086	-0.158	-0.206	0.15	3 -0.21	2 -0.26	7 -0.325	-0.368		500	0.303	0.241	0.262	0.299	0.328	0.295	0.326	0.366	0.418	0.456
500	100	1.043	0.295	0.247	0.563	0.433	0.625	0.26^{2}	4 0.084	0.114	-0.001	500	100	1.068	0.337	0.272	0.571	0.442	0.631	0.279	0.116	0.136	0.002
	200	0.683	0.313 0.355	0.550	0.326	0.254	0.329	0.20	3 0.161	0.087	-0.001		200	0.697	0.325	0.553	0.329	0.257	0.332	0.208	0.166	0.093	0.001
E		0000	0.000	TOOO	0.443	0.2.0	0 1 -2-10 ∿	VT.0	111.0 0	000.0	TOO'O-	Ę	N	1.004	100.0	700.0	0.2.0	002.0	0.440	111.0	011.0	100.0	100.0
100	100	1 179	0.453	0.383	767.0	0.531	0 700	0.310	0 142	0 108	0 104	100	100	9 340	1 850	1 543	1 430	1 073	1 009	0.614	0.303	0.301	0 104
001	200	0.250	0.045	0.467	0.320	0.272	0.358	0.22°	4 0.207	0.152	0.093	001	200	1.453	1.314	1.144	0.878	0.672	0.590	0.412	0.312	0.205	0.093
	500	-0.148	-0.003	0.183	0.210	0.204	0.269	0.21	3 0.164	0.120	0.080		500	1.066	0.940	0.755	0.583	0.457	0.400	0.301	0.218	0.144	0.080
200	100	2.806	1.587	1.108	1.329	0.844	0.894	0.428	8 0.181	0.181	0.051	200	100	3.438	2.401	1.862	1.879	1.277	1.157	0.699	0.414	0.288	0.051
	200	0.906	0.459	0.687	0.431	0.301	0.357	0.218	3 0.178	0.117	0.046		200	1.478	1.251	1.179	0.869	0.612	0.540	0.373	0.262	0.164	0.046
	500	0.246	0.109	0.219	0.197	0.172	0.229	0.17_{2}	4 0.127	0.081	0.040		500	0.781	0.714	0.614	0.468	0.363	0.325	0.239	0.166	0.100	0.040
500	100	7.425	4.897	3.572	3.447	2.355	1.976	1.18	4 0.587	0.374	0.019	500	100	7.723	5.218	3.881	3.685	2.633	2.223	1.451	0.825	0.522	0.019
	200	2.637	2.154	2.102	1.495	0.940	0.763	0.49	0.275	0.156	0.018		200	2.956	2.505	2.397	1.811	1.231	0.984	0.670	0.383	0.223	0.018
	500	0.623	0.529	0.652	0.399	0.305	0.281	0.18	5 0.121	0.064	0.016		500	0.948	0.917	0.953	0.625	0.479	0.370	0.242	0.156	0.085	0.016
							D	ynamic	model w	ith exoge	nous reg	ressors	: $\vartheta_i \sim$	U(0, 0.9	5) for i	= 1, 2,	\dots, N						
F	z						ã					H	z					ŷ					
100	100	-1.016	-2.571	-3.183	-3.319	-3.568	3.479	-3.83	8 -3.99	3 -3.922	-3.952	100	100	1.360	2.876	3.549	3.762	4.031	3.981	4.301	4.455	4.378	4.411
	200	-1.320	-2.642	-3.032	-3.558	-3.745	-3.76	3 -3.91	8 -3.92	5 -4.003	-4.057		200	1.536	2.902	3.398	3.954	4.170	4.208	4.358	4.367	4.445	4.497
000	500	-1.610	-2.849	-3.517	-3.890	-4.107	-4.12	1 -4.22	2 -4.30	1 -4.388	-4.439	000	500	1.769	3.101	3.849	4.273	4.512	4.554	4.659	4.740	4.822	4.870
200	100	0.689	-0.109	-0.179	0.088	-0.030	0.166	-0.18	1 -0.32	9 -0.272	-0.336	200	100	0.794	0.393	0.393	0.369	0.326	0.359	0.355	0.440	0.398	0.446
	200	0.357	-0.089	0.115	-0.120	-0.177	-0.09	5 -0.22	7 -0.24	-0.301	-0.360		200	0.448	0.292	0.301	0.306	0.330	0.284	0.354	0.355	0.401	0.453
	500	0.209	-0.033	-0.095	-0.170	-0.215	-0.16	-0.22	5 -0.28	-0.337	-0.380		500	0.295	0.245	0.274	0.306	0.329	0.296	0.335	0.376	0.422	0.463
500	100	1.040	0.294	0.248	0.565	0.436	0.627	0.26	1 0.081	0.115	-0.001	500	100	1.065	0.332	0.272	0.573	0.443	0.634	0.276	0.118	0.135	0.002
	200	0.685	0.313	0.548	0.324	0.253	0.330	0.20	2 0.162	0.086	-0.001		200	0.698	0.326	0.551	0.328	0.257	0.332	0.207	0.166	0.092	0.001
	500	0.527	0.353	0.330	0.249	0.204	0.246	0.17	3 0.117	0.055	-0.001	1	500	0.531	0.355	0.331	0.250	0.205	0.246	0.176	0.118	0.057	0.001
f-	z						å	1			1	EH	z	1									
100	100	1.092	0.325	0.312	0.674	0.496	0.664	0.29	1 0.130	0.187	0.105	100	100	2.274	1.834	1.492	1.393	1.047	0.958	0.597	0.386	0.289	0.105
	200	0.160	-0.003	0.452	0.103	162.0	0.041 0.957	0.22.0	107.0 2	0.140	0.094		200	1 110 1 110	0.078 0.078	01.100 077.0	0.0000	0.007	0.300	0.208	0.015	0 149	0.081
200	100	2.791	1.573	1.132	1.355	0.832	0.878	0.41^{-1}	4 0.168	0.187	0.051	200	100	3.395	2.377	1.890	1.911	1.280	1.161	0.708	0.414	0.305	0.051
	200	0.881	0.432	0.679	0.416	0.290	0.345	0.21	1 0.175	0.114	0.046		200	1.463	1.254	1.197	0.864	0.623	0.542	0.372	0.261	0.162	0.046
	500	0.261	0.128	0.240	0.206	0.181	0.237	0.18	0.13	0.081	0.040		500	0.801	0.733	0.630	0.473	0.369	0.332	0.244	0.174	0.101	0.040
500	100	7.388	4.904	3.529	3.455	2.334	1.980	1.18	8 0.579	0.377	0.019	500	100	7.714	5.231	3.849	3.696	2.620	2.222	1.448	0.829	0.527	0.019
	200	2.603	2.107	2.046	1.437	0.883	0.723	0.459) 0.266	0.143	0.018		200	2.932	2.460	2.343	1.753	1.176	0.939	0.642	0.370	0.209	0.018
	500	0.636	0.531	0.644	0.397	0.292	0.274	0.18	3 0.121	0.063	0.016		500	0.955	0.904	0.935	0.620	0.472	0.363	0.240	0.156	0.084	0.016
No	Les:	Remain	ine nar	ameter	s of the	a nanel	data 1	nodel.	(29) ar	e vener:	ated as:	<i>.</i> 0,;∑	IID	V (1, 1)	, 0: ,	11(0.0	.95) a	v ≋v pu	UID	V (1, 1)). for i	= 1.2.	N
Design	2 as	sumes 5	two-f	actor n	nodel w	rith [N	r] and	$d \left[N_{2,2} \right]$	l non-5	tero loa	dines fc	\tilde{r} the	first	and see	r^{ru}	$\frac{1}{2}$	respect	ivelv.	We set	t: Qas	$= 2\alpha_{i}$	(3. w)	iere <i>Q</i> .a
0 10tolou) 		J (L L,	, , ,	L		1) 1) 2.	11 11		c c	- c		ې ۲	:	10 0		: 1		2 V	12 (N 82 -	a)2		(-
relates	ίoα	Ianin	(11), <i>Jj</i>	t and i	$u_{it} \sim I$.		$1, 1), v_i$	$j \sim 11$	UU (µ _{vj}	- 0.2.1	$u_{v_j} \pm 0$	z), J =	п 1, 4,	$\mu_v =$	J.01, µ	$v_2 \equiv 0$	·ι 1, μυ	$\sum_{i=1}^{1}$	$h = \frac{1}{2} h$		μ_{v_2}), III (G	z) anu
$(33). \hat{c}$	is c	ompute	d using	$c_p(n,$	δ) with	u = u	N(N - N)	1)/2,	$\delta = 1/2$	and p	= 0.05	in the	e mult	tiple te	sting I	roced	ure sho	mi in	(23).	$\overset{\circ}{\alpha}$ corr	espond	s to th	e most
robust	estim	nator of	the ex	ponent	t of cro	ss-sect.	ional d	epende	nce con	sidered	in Baile	ey et a	al. (20)16) an	d allo	vs for	ooth se	erial cc	rrelati	on in t	he fact	ors an	d weak
CLOSS-S(ction	nal depe	endence	e in the	error i	terms.	We us	e four]	principa	l compe	onents v	when e	stime	ating \hat{c}_{\cdot}	v in th	ie expr	ession	for $\check{\alpha}$.	The m	umber	of rep.	ication	s is set
to $R =$	2000	<u>_</u> .																					

	F	1	000	1000		Cros	s correl	ations	are ger	nerated	using	Designs	s 1 and	d 2 wit	ch Gau	ssian e	rrors		ì		à			0
	σ	0.0 	0.00	c0.0	07.0	GV:0	0.8	0.0	25 C	.90	0.95	1.00		∩ v	0 00	00.	0.U	0.70	0.75	0.80	0.8.U	0.90	0.90 C	I.00
							Bias												RM	СE				
										Design	1: Stati	c model -	$\vartheta_i = 0$, for i	= 1, 2,	., N								
F	z				$\alpha \text{ estim}_{\epsilon}$	ate using	s eigenva	lue appr	oach				Ð	z			αe	stimate	using eig	genvalue	approac	Ч		
100	100	-14.080	-12.332	-10.881	-10.088	-9.81	7 -9.4(9.7	705 -9	.782 -	9.700	-9.706	100	00 14	.131 12	.391 10	0.942 1	[0.152]	9.889	9.471	9.771	9.845	9.763	9.772
	200	-11.253	-9.674	-8.509	-8.338	-8.26	7 -8.18	39 -8.3	364 -8	.352 -	8.443	-8.534	(1	200 11	.291 9.	723 8	.564	8.393	8.323	8.245	8.418	8.406	8.496	8.588
	500	-7.719	-6.671	-6.427	-6.469	-6.68	2 -6.75	<u>50</u> -6.9	331 -7	- 690.	7.197	-7.283	ц	00 7.	751 6.	710 6	.471	6.515	6.728	6.796	6.977	7.114	7.239	7.328
200	100	-15.987	-13.479	-11.634	-10.520	-10.07	6 -9.57	72 -9.8	306 -9	- 839	9.650	-9.641	200 1	00 16	.024 13	519 1	1.674 1	10.563	10.117	9.614	9.843	9.874	9.685	9.676
	200	-13.357	-10.916	-9.294	-8.883	-8.60) -8.3(38 -8.4 1	450 -8	.371 -	8.395	-8.375	.1	200 13	.384 10	.946 9	.327	8.915	8.640	8.400	8.479	8.400	8.423	8.402
	500	-10.018	-8.102	-7.384	-7.110	-7.03	2 -6.97	-77.(013 -7	.123 -	7.159	-7.177	ц.)	600 10	.037 8.	125 7	.408	7.135	7.055	7.000	7.038	7.148	7.182	7.199
500	100	-17.221	-14.208	-12.095	-10.830	-10.23	0 -9.67	3.6- 07	326 -9	- 780	9.577	-9.513	500 1	00 17	.248 14	.236 1	2.122 1	0.858	10.256	9.694	9.846	9.800	9.596	9.529
	200	-14.655	-11.707	-9.762	-9.195	-8.79	9 -8.47	74 -8.5	501 -8	.360 -	8.337	-8.320	61	200 14	.675 11	.728 9	.782	9.213	8.816	8.490	8.515	8.373	8.350	8.332
	500	-11.613	-9.002	-7.948	-7.476	-7.30	2 -7.08	35 -7.(74 -7	.095 -	7.106	-7.114	цу	00 11	.626 9.	015 7	.961	7.489	7.314	7.096	7.085	7.105	7.115	7.124
							Ι)esign 1:	Dynam	ic model	with ex	ogenous	regress	ors - ϑ_i	$\sim U(0, 0)$.95) for	i = 1, 2,	\dots, N						
H	Z				$\alpha \text{ estims}$	ate using	; eigenva	lue appr	oach				H	N			αе	stimate	using eig	genvalue	approac	h		
100	100	-14.273	-12.513	-11.143	-10.300	-10.02	2 -9.6(9.6- 80	905 -1(.049 -	9.907	-9.935	100 1	00 14	.323 12	.572 1	1.210 1	10.368	10.094	9.678	9.967	10.112	9.971	9.997
	200	-11.387	-9.744	-8.615	-8.508	-8.45	7 -8.32	28- 2.8-	544 -8	- 536 -	8.669	-8.723	61	200 11	.425 9.	792 8	.669	8.561	8.512	8.384	8.596	8.590	8.725	8.776
	500	-7.782	-6.713	-6.555	-6.633	-6.79	2 -6.85	9.7- 08	159 -7	.231 -	7.380	-7.403	цу	500 7.	813 6.	753 6	.599	6.680	6.836	6.934	7.108	7.277	7.426	7.446
200	100	-16.109	-13.524	-11.717	-10.657	-10.16	9.6- 6	3.6- 10	870 -9	.912 -	9.764	-9.682	200 1	00 16	.144 13	564 1	1.760 1	10.701	10.210	9.733	9.907	9.949	9.798	9.718
	200	-13.395	-10.991	-9.355	-8.997	-8.68	3 -8.45	51 -8.4	196 -8	.453 -	8.470	-8.438	51	200 13	420 11	.022 9	388	9.028	8.712	8.482	8.527	8.481	8.500	8.464
	500	-10.067	-8.154	-7.470	-7.169	-7.12	2 -7.0]	15 -7.1	-7	- 189	7.205	-7.269	ц	00 10	.087 8.	176 7	.493	7.193	7.149	7.039	7.134	7.212	7.227	7.292
500	100	-17.237	-14.217	-12.116	-10.862	-10.27	6 -9.75	36 -9.8	876 -9	- 808	9.632	-9.554	500 1	00 17	266 14	245 1	2.143 1	0.889	10.302	9.759	9.896	9.826	9.650	9.570
	200	-14.701	-11.724	-9.774	-9.242	-8.82	-8.5	2-8.5	8- 803	- 666	8.383	-8.344		200 14	721 11	744 9	794	9.260	8.844	8.528	8.522	8.412	8.395	8.357
	500	-11.622	-9.037	-7.975	-7.525	-7.308	-7.1	0 -7.1	118 -7	.131 -	7.143	-7.145	1 11.5	00 11	.635 9.	051 7	.989	7.537	7.320	7.121	7.129	7.140	7.152	7.154
										Design	2: Stati	c model -	$\vartheta_i = 0$, for i	= 1, 2,	N								
F	z				$\alpha \text{ estim}_{\varepsilon}$	ate using	eigenva	lue appr	oach				E	N			αe	stimate	using eig	genvalue	approac	Ч		
100	100	-20.441	-19.904	-19.231	-18.859	-18.82	8 -18.7	20 -19.	151 - 19).367 -1	9.377	-19.458	100 1	00 20	.494 19	971 19	9.306 1	8.939	18.911	18.804	19.235	19.451	19.461	19.542
	200	-16.689	-16.128	-15.570	-15.791	-15.96	1 -16.0	51 -16.	357 -10	6.489 -1	-6.672	-16.813	64	200 16	.736 16	.185 1	5.636 1	15.859	16.030	16.122	16.427	16.560	16.743	16.885
	500	-12.052	-11.948	-12.233	-12.612	-13.03	8 -13.2	98 -13.	613 -15	3.879 -1	.4.103	-14.260	цу	500 12	.083 11	:1 066.	2.282 1	12.664	13.092	13.355	13.670	13.938	14.162	14.320
200	100	-23.448	-21.789	-20.444	-19.630	-19.33	7 -19.0	24 -19.	310 -19	0.402 -1	-9.314	-19.324	200 1	00 23	.488 21	.833 20	0.491 1	19.678	19.384	19.072	19.356	19.447	19.359	19.369
	200	-19.823	-18.132	-16.909	-16.718	-16.58	6 -16.4	69 -16.	617 -16	6.628 -1	.6.714	-16.780	61	200 19	.853 18	.167 10	5.947 1	16.756	16.624	16.507	16.654	16.665	16.751	16.817
	500	-15.427	-14.141	-13.740	-13.655	-13.74	3 -13.7	50 -13.	888 -14	t.025 -1	4.149	-14.240	цу	500 15 15	.450 14	.168 1:	3.770 1	13.686	13.774	13.781	13.919	14.056	14.180	14.271
500	100	-25.468	-23.006	-21.249	-20.175	-19.70	8 -19.2	58 -19.	452 -19).476 -1	9.322	-19.289	500 1	00 25	.496 23	.034 2	1.277 2	20.201	19.732	19.281	19.475	19.498	19.342	19.309
	200	-21.987	-19.443	-17.732	-17.272	-16.94	6 -16.6	78 -16.	734 -10	6.667 -1	.6.696	-16.715	64	20 22	.008 19	.465 1'	7.753 1	17.292	16.964	16.695	16.751	16.683	16.712	16.731
	500	-17.787	-15.539	-14.644	-14.250	-14.12	4 -13.9	80 -14.	009 -14	1.065 -1	4.127	-14.177	ы,	600 17	.801 15	.553 1	4.657 1	4.263	14.137	13.993	14.022	14.078	14.140	14.189
)esign 2:	Dynam	ic model	with e	ogenous	regress	ors - ϑ_i	$\sim U(0,0)$.95) for	i = 1, 2,	\dots, N						
Ĺ	Z				$\alpha \text{ estim}_{\epsilon}$	ate using	; eigenva	lue appr	oach				Τ	N			αе	stimate	using eig	genvalue	approac	h		
100	100	-20.516	-20.025	-19.395	-19.051	-19.06	3 -18.9	60 -19.	387 -19).614 -1	9.633	-19.726	100	00 20	.568 20	.092 1	9.469 1	19.130	19.144	19.043	19.469	19.696	19.715	19.809
	200	-16.722	-16.214	-15.701	-15.947	-16.11	2 -16.2	36 -16.	543 -1(686 -]	6.880	-17.026		200 16	.765 16	.269 1.	5.765]	[6.015]	16.182	16.307	16.616	16.759	16.955	17.100
000	500	-12.067	-12.003	-12.324	-12.736	-13.17	4 -13.4	52 -13.	782 -14	L.057 -1	4.287	-14.454	(L) 1	$\begin{bmatrix} 00 \\ 12 \end{bmatrix}$.099 12	.047 1: 	2.375]	[2.79]	13.231	13.511	13.842	14.119	14.349	14.516
200	100	-23.502	-21.871	-20.547	-19.757	-19.47	3 -19.1	55 -19.	429 -19).532 -]	9.454	-19.459	200	00 23	.542 21	.917 20	0.596]	9.807	19.522	19.204	19.477	19.578	19.500	19.505
	200	-19.885	-18.203	-16.982	-16.815	-16.67	1 -16.5	62 -16.	722 -1(5.742 -J	6.825	-16.896		200 19	.915 18	.238 1	7.019	[6.853]	16.710	16.600	16.761	16.780	16.863	16.934
00	500	-15.445	-14.156	-13.756	-13.679	-13.76	5 -13.7	86 -13.	930 -14 710 -14	L.068 -]	4.191	-14.277	1 (1 (1)	00 15 00 15	.466 14 701 29	182	3.785]	13.708	13.795 19.705	13.816	13.960	14.098	14.221	14.307
200	100	-25.472	-23.054	-21.306	-20.220	-19.75	9 -19.3	04 -19.	518 -19	0.538 -]	9.386	-19.356 12 77 7	500 I	00 25	.501 23	2 2 2 2	L.336 2	20.249	19.786	19.329	19.541	19.559	19.407	19.376
	200	-21.991	-19.433	-17.726	-17.280	-16.95	0 -16.7	03 -16.	762 -1(6.700 -J	6.729	-16.755		27 000 57	.012 19	.455 I	7.748	17.300	16.968	16.721	16.779	16.716	16.745	16.770
	200	-17.821	-15.585	-14.692	-14.280	-14.15	2 -14.0	10 -14.	044 -14	t.095 -1	4.160	-14.209	E.)	00 17	.835 15	.600 1	4.707]	4.295	14.166	14.024	14.057	14.108	14.173	14.222
N	otes:	Remai	ning pai	ameter	s of the	panel	data m	odel. (29). are	e gener	ated as	<i>a</i> ; <i>C</i>	IIDN	(1.1).	$O_{ix} \sim$	U(0, 0)	95) and	۲ م∵	IIDN	(1.1).	for $i =$	1.2	N.	
Ganss	ian e	rrors ar	e gener	ated as	$I \sim m$	$i_{DN(0)}$	1) in	(31) E	or deta	ils on T	Jesions	1 and '	2 refer	to foc	thotes	of Tah	les A1;	a and ⊿	V 2a T	he niim	her of 1	enlicat	, ions	
is set.	$+ \alpha B$	2000	202		· - 72m	, , , , , , , , , , , , , , , , , , , ,	(- (+ .(+)			0			>				-						
ום שמני	17 01	- 2000																						

Table C: Bias and RMSE ($\times 100$) of α estimates of the cross-sectional exponent of the errors using the maximum eigenvalue of their sample

	σ	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.00	0.95	1.00	þ	α	0.55 0.	0 09	.65	0.70	0.75	0.80	0.85	06.0	0.95	1.00
				$c_p(n,\delta)$	with $n =$	-N(N -	$(1)/2, \delta =$	= 1/2 and	$1 \ p = 0.0$	5					$C_{p}($	(n,δ) w	th n = .	N(N-1)	$(-)/2, \delta =$	= 1/2 and	p = 0.10		
										Static	model:	$\vartheta_i = 0$	for $i =$	= 1, 2,	N								
H	z											H	z										
100	100	0.00	20.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	65.95	100	100 0	0.00 27	.35 10	0.00 1	00.00	00.00	100.00	100.00	100.00	100.00	53.70
	200	00.00	89.30	100.00	100.00	100.00	100.00	100.00	100.00	100.00	92.30		200 C	00.00	.15 10	0.00 1	00.00	00.00	100.00	100.00	100.00	100.00	85.30
	500	00.0	99.70	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.60		500 C	00.00	.70 10	0.00 1	00.00	00.00	100.00	100.00	100.00	100.00	98.90
200	100	0.00	19.80	100.00	100.00	100.00	100.00	100.00	100.00	100.00	0.15	200	100 C	0.00 25	.05 10	0.00 1	00.00	00.00	100.00	100.00	100.00	100.00	0.00
	200	00.00	88.40	100.00	100.00	100.00	100.00	100.00	100.00	100.00	0.65		200 C	88 00.0	.80 10	0.00 1	00.00	00.00	100.00	100.00	100.00	100.00	0.25
	500	00.0	99.90	100.00	100.00	100.00	100.00	100.00	100.00	100.00	6.35		500 C	00.00	.90 10	0.00 1	00.00	00.00	100.00	100.00	100.00	100.00	2.85
500	100	00.0	20.95	100.00	100.00	100.00	100.00	100.00	100.00	100.00	0.00	500	100 C	0.00 28	.20 10	0.00 1	00.00	00.00	100.00	100.00	100.00	100.00	0.00
	200	00.00	88.90	100.00	100.00	100.00	100.00	100.00	100.00	100.00	0.00		200 C	00.00	.20 10	0.00 1	00.00	00.00	100.00	100.00	100.00	100.00	0.00
	500	00.0	99.75	100.00	100.00	100.00	100.00	100.00	100.00	100.00	0.00		500 C	00.00	.90 10	0.00 1	00.00	00.00	100.00	100.00	100.00	100.00	0.00
								Dynamia	c model	with exog	genous re	egresso	$\operatorname{vrs:} \vartheta_i$	$\sim U(0,$	0.95) foi	i = 1, .	$2,\ldots,N$						
H	z											Ð	z										
100	100	0.00	18.30	100.00	100.00	100.00	100.00	100.00	100.00	100.00	69.95	100	100 0	0.00 24	.35 10	0.00 1	00.00	00.00	100.00	100.00	100.00	100.00	58.20
	200	00.00	86.75	100.00	100.00	100.00	100.00	100.00	100.00	100.00	94.60		200 C	88 00.0	.20 10	0.00 1	00.00	00.00	100.00	100.00	100.00	100.00	89.60
	500	0.00	99.65	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.85	~~	500 C	00.00	.70 10	0.00 1	00.00	00.00	100.00	100.00	100.00	100.00	99.65
200	100	0.00	20.70	100.00	100.00	100.00	100.00	100.00	100.00	100.00	0.10	200	100 C	0.00 26	.90 10	0.00 1	00.00	00.00	100.00	100.00	100.00	100.00	0.10
	200	00.0	88.95	100.00	100.00	100.00	100.00	100.00	100.00	100.00	0.70		200 C	00.00	00 10	0.00 1	00.00	00.00	100.00	100.00	100.00	100.00	0.30
	500	00.0	99.75	100.00	100.00	100.00	100.00	100.00	100.00	100.00	7.60		500 C	00.00	.80 10	0.00 1	00.00	00.00	100.00	100.00	100.00	100.00	4.25
500	100	0.00	21.50	100.00	100.00	100.00	100.00	100.00	100.00	100.00	0.00	500	100 C	00.08	.05 10	0.00 1	00.00	00.00	100.00	100.00	100.00	100.00	0.00
	200	00.00	88.20	100.00	100.00	100.00	100.00	100.00	100.00	100.00	0.00		200 C	00.08	.40 10	0.00 1	00.00	00.00	100.00	100.00	100.00	100.00	0.00
	500	0.00	99.70	100.00	100.00	100.00	100.00	100.00	100.00	100.00	0.00		500 C	00.00	.55 10	0.00 1	00.00	00.00	100.00	100.00	100.00	100.00	0.00
	otes:	Remai	ining]	parame	ters of 1	the pan	el data	model,	(29), are	e genera	ted as:	$a_i \sim$	IID	N(1,1)), $\rho_{ix} \sim$	U(0, 0)).95) aı	Id $\gamma_i \sim$	IIDN	(1,1), f	for $i = 1$	$,2,\ldots,$	N.
U or of the		o ou Ouus	102 01	horatod		UTT	VI () 1) ;	- (31)	Doctor	1 0000	- your	. 11/0	0 0 1	1) for +	hor freet	N. (IN NI	monte	of mot	: م	· - 1 - 3	N	

Gaussian errors are generated as $u_{it} \sim IIDN(0, 1)$ in (31). Design 1 assumes $b_i \sim U(0.7, 0.9)$ for the first $N_b (\leq N)$ elements of vector \mathbf{b}_N , i = 1, 2, ..., N, in the construction of the correlation matrix of the errors, $\mathbf{R}_N = \mathbf{I}_N + \mathbf{b}_N \mathbf{b}_N - \mathbf{B}_N^2$ given by (30), where $\mathbf{B}_N = \text{Diag}(\mathbf{b}_N)$. $\tilde{\alpha}$ and its empirical distribution are computed using $c_p(n, \delta)$ with n = N(N-1)/2, $\delta = 1/2$ and p = 0.05, 0.10 in the multiple testing procedure shown in (23). Coverage refers to the frequency at which $\tilde{\alpha}_{0.05}^{(r),B} < \tilde{\alpha}^{(r)} < \tilde{\alpha}_{0.95}^{(r),B}$, where $r = 1, 2, \ldots, R$ and $b = 1, 2, \ldots, B$. The number of replications is set to R = 2000 and the number of bootstraps is set to B = 500.

An Online Supplement for

Exponent of Cross-sectional Dependence for Residuals

Natalia Bailey Department of Econometrics and Business Statistics, Monash University

> George Kapetanios King's Business School, King's College London

M. Hashem Pesaran Department of Economics, University of Southern California and Trinity College, Cambridge

April 4, 2019

This online supplement provides additional Monte Carlo and empirical results.

Appendix A

Additional Monte Carlo results

The Monte Carlo results provided in the tables below are based on the designs set out in Section 6 of the paper.

Table S1a: Bias and RMSE ($\times 100$) for the $\tilde{\alpha}$ estimate of the cross-sectional exponent of the errors from a dynamic panel data model with no exogenous regressors

		errors	2 - 2 2
		TAILSSILET	
		WILD 0	
	٣	F	1
,	۰ ۲) esi o	
	•	lising	
1		oenerateo	
		A're	
		correlations	
	ζ	CTOSS	22)

	6	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.00	0.95	1.00		8	0.55	0.60	0.65	0.70	0.75	0.80	0.85	06.0	0.95	1.00
				$c_p(n,$	δ) with	n = N(N - 1)/3	2 and p =	= 0.05							$c_p(n,$	5) with a	n = N(I)	(V - 1)/2	and $p =$	0.10		
						$\delta =$	1/2											$\delta =$	1/2				
L	N					В	ias					Ĺ	N					Bi	as				
100	100	0.211 -	-0.618	-0.595	-0.357	-0.287	-0.002	-0.259	-0.281	-0.094	-0.017	100	100	.639 -	0.327	-0.415	-0.246	-0.216	0.043	-0.230	-0.262	-0.083	-0.009
	2000 (- 410.0 0.087 -	-0.424 -0.121	-0.164	-0.149	-0.237	-0.102	-0.100	-0.053	-0.051	-0.029		200	- 004.0	0.214	-0.081	-0.096	-0.207	-0.010	-0.144	-0.034	-0.035	-0.025
200	100 (0.267 -	0.579	-0.553	-0.329	-0.270	0.017	-0.241	-0.263	-0.078	0.000	200	100	- 602.0	0.285	-0.366	-0.220	-0.204	0.057	-0.218	-0.251	-0.074	0.000
	200 (0.124 -	0.385	-0.117	-0.271	-0.226	-0.074	-0.139	-0.056	-0.035	0.000		200 (- 171 -	0.163	0.006	-0.197	-0.183	-0.051	-0.127	-0.050	-0.033	0.000
	500 (0.153 -	-0.064	-0.112	-0.101	-0.106	0.007	-0.001	-0.007	-0.011	0.000		500 (.416 (0.081	-0.033	-0.059	-0.084	0.018	0.005	-0.004	-0.010	0.000
500	100 (0.282 -	-0.555	-0.549	-0.323	-0.264	0.020	-0.239	-0.262	-0.078	0.000	500	100	.734 -	0.245	-0.358	-0.208	-0.196	0.060	-0.216	-0.249	-0.073	0.000
	200 (0.154 -	-0.363	-0.107	-0.266	-0.224	-0.072	-0.138	-0.056	-0.035	0.000		200 ().520 -	0.135	0.023	-0.191	-0.181	-0.048	-0.125	-0.050	-0.032	0.000
	500 (0.188 -	-0.048	-0.104	-0.097	-0.103	0.009	0.000	-0.006	-0.011	0.000		500 (.468 (0.109	-0.020	-0.052	-0.079	0.021	0.006	-0.004	-0.010	0.000
L	N					RI	ASE					Ð	N					RN	ISE				
100	100 (0.323	0.640	0.608	0.367	0.296	0.055	0.263	0.284	0.101	0.041	100	100 ().720 (0.403	0.447	0.271	0.232	0.074	0.235	0.264	0.087	0.025
	200 (0.156	0.436	0.174	0.308	0.264	0.117	0.175	0.096	0.088	0.061		200 (.449 (0.251	0.094	0.234	0.214	0.083	0.149	0.074	0.065	0.038
	500 (0.117	0.140	0.180	0.165	0.168	0.085	0.085	0.099	0.084	0.078		500 (.344 (0.070	0.100	0.109	0.127	0.054	0.055	0.067	0.057	0.051
200	100 (0.359	0.602	0.566	0.339	0.275	0.043	0.242	0.263	0.079	0.000	200	100 (0.786 (0.379	0.407	0.252	0.218	0.082	0.222	0.252	0.075	0.000
	200 (0.187	0.396	0.131	0.274	0.227	0.076	0.140	0.057	0.035	0.000		200 (0.510 (0.209	0.088	0.206	0.188	0.058	0.128	0.052	0.033	0.000
	500 (0.168	0.075	0.115	0.102	0.106	0.009	0.004	0.007	0.011	0.000		500 (.427 (0.098	0.049	0.063	0.085	0.021	0.008	0.006	0.011	0.000
500	100 (0.379	0.586	0.562	0.333	0.270	0.044	0.241	0.262	0.078	0.000	500	100 ().813 (0.360	0.399	0.240	0.213	0.084	0.221	0.251	0.075	0.000
	200 (0.210	0.376	0.124	0.269	0.225	0.075	0.138	0.057	0.035	0.000		200 ().556 (0.192	0.092	0.200	0.185	0.056	0.126	0.051	0.033	0.000
	500 (0.202	0.063	0.108	0.098	0.104	0.011	0.004	0.007	0.011	0.000		200 (.479 (0.124	0.042	0.056	0.081	0.023	0.009	0.006	0.010	0.000
						$\delta =$: 1/3											$\delta =$	1/3				
H	z					ш	ias					Ē	Z					B	as				
100	100	1.515	0.274	-0.030	-0.008	-0.068	0.129	-0.177	-0.232	-0.069	-0.005	100	100	3.099	1.393	0.699	0.444	0.215	0.296	-0.079	-0.180	-0.049	-0.002
	200	1.453	0.459	0.363	0.014	-0.065	0.010	-0.098	-0.039	-0.034	-0.007		200	3.005	1.495	0.988	0.398	0.157	0.135	-0.030	-0.004	-0.019	-0.004
	200	1.544	0.723	0.315	0.123	0.007	0.061	0.021	-0.003	-0.015	-0.009		200	3.052	1.650	0.853	0.422	0.169	0.147	0.066	0.020	-0.004	-0.005
200	100	1.604	0.335	0.024	0.022	-0.061	0.142	-0.169	-0.225	-0.065	0.000	200	100	3.163	1.461	0.752	0.480	0.220	0.306	-0.073	-0.176	-0.046	0.000
	200	1.552	0.528	0.408	0.042	-0.045	0.024	-0.086	-0.031	-0.026	0.000		200	3.103	1.570	1.037	0.425	0.180	0.149	-0.019	0.002	-0.014	0.000
	200	1.684	0.816	0.373	0.160	0.032	0.077	0.035	0.009	-0.006	0.000		200	3.217	1.765	0.923	0.464	0.196	0.162	0.077	0.028	0.001	0.000
500	100	1.633	0.378	0.036	0.033	-0.050	0.146	-0.167	-0.224	-0.063	0.000	500	100	3.211	1.498	0.775	0.491	0.234	0.313	-0.071	-0.173	-0.044	0.000
	200	1.621	0.574	0.433	0.054	-0.041	0.029	-0.084	-0.029	-0.025	0.000		200	3.183	1.620	1.068	0.440	0.182	0.155	-0.016	0.004	-0.013	0.000
	500	1.775	0.869	0.400	0.175	0.042	0.082	0.037	0.010	-0.005	0.000		200	3.322	1.833	0.961	0.485	0.210	0.168	0.080	0.030	0.002	0.000
H	Z					RI	ASE					Ē	Z					RN	ISE				
100	100	1.579	0.437	0.239	0.168	0.140	0.156	0.188	0.236	0.074	0.014	100	100	3.148	1.464	0.775	0.509	0.282	0.323	0.122	0.191	0.061	0.008
	200	1.482	0.503	0.387	0.097	0.095	0.049	0.104	0.047	0.042	0.019		200	3.027	1.518	1.006	0.422	0.186	0.151	0.056	0.033	0.028	0.011
	200	1.552	0.730	0.322	0.132	0.037	0.068	0.034	0.029	0.025	0.022		200	3.058	1.656	0.858	0.427	0.175	0.150	0.070	0.029	0.014	0.013
200	100	1.670	0.487	0.255	0.181	0.134	0.168	0.181	0.230	0.069	0.000	200	100	3.214	1.531	0.824	0.543	0.283	0.334	0.122	0.188	0.059	0.000
	200	1.580	0.568	0.431	0.108	0.084	0.053	0.092	0.037	0.029	0.000		200	5.123	1.592	1.055 222	0.449	0.208	0.166	0.054	0.032	0.024	0.000
	200	1.691	0.822	0.379	0.167	0.044	0.080	0.038	0.013	0.007	0.000		200	3.222	1.770	0.928	0.470	0.201	0.165	0.080	0.031	0.008	0.000
500	100	1.701	0.520	0.253	0.180	0.134	0.171	0.180	0.228	0.068	0.000	500	100	3.261	1.568	0.846	0.553	0.298	0.341	0.122	0.186	0.059	0.000
	200	1.647	0.612	0.458	0.114	0.080	0.057	0.090	0.037	0.028	0.000		200	3.203	1.643	1.086	0.464	0.208	0.172	0.053	0.036	0.023	0.000
	200	1.783	0.876	0.407	0.181	0.054	0.085	0.040	0.014	0.007	0.000		200	3.328	1.838	0.966	0.490	0.216	0.171	0.083	0.033	0.008	0.000
Ň	otes:	Param	leters	of the	dynam	ic pan	el data	model	(29),	are gen	erated	as: c	۲. ۱	IIDN	(1, 1),	$\rho_{ix} \sim$	U(0,0	$.95), \vartheta$	$_i \sim U_i$	(0, 0.95)	ρua η	$i_{i} = 0,$	for
i = 1,	$2,\ldots,$, N. G	aussiaı	n error	s are g	enerate	d as u	$_{it} \sim II$.	DN(0,]	-) in (3	1). Des	ign 1	assur	nes b_i	$\sim U(0)$.7, 0.9)	for the	first 1	$V_b \ (\leq N)$	/) eleme	ents of	vector	, N c
i = 1, 1	$2,\ldots,$	N, in	the col	astruct	ion of t	the cori	relation	matrix	of the	errors,	$\mathbf{R}_N = \mathbf{I}$	$\frac{1}{N}$	${}_{N}\mathbf{b}'_{N}$	$- \mathbf{B}_{\lambda}^{2}$	given	by (30)	, where	$\mathbf{B}_N =$	Diag (\mathbf{b}_N). c_p	$(n,\delta) c$	orrespo	ads
to the	critic	al valu	e used	in the	multip	le testi	ng pro	cedure a	shown i	n (23).	The nu	mber	of rel	olicatic	ns is s	et to <i>F</i>	= 200	0.					

RMSE (×100) for the $\tilde{\alpha}$ estimate of the cross-sectional exponent of the errors from a dynamic panel data model with no	exogenous regressors
SE (×100) fo	
Bias and RM	
Table S1b: I	

328 0.257 0.337 0.238 0.167 0.002 0.001 0.003 0.003 0.037 0.141 0.295 0.230 0.205 0.0103 0.003 0.001 $\delta = 1/3$ $I = 1/3$
238 -1.453 -1.871 -2.042 -1.949 -7.0 -1.05 -1.136 -1.367 -1.363 -1.451 348 -1.554 -1.571 -1.949 -2.012 2.041 -0.655 -1.021 -1.144 -1.272 -1.371 -1.451 487 -1.755 -1.771 -1.877 -1.958 -2.012 2.013 2.003 -0.035 -0.035 -0.035 -0.035 -0.038<
663 0.425 0.034 0.046 -0.046 -0.134 200 1014 0.760 0.286 0.045 0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.036 0.0112 0.0112 0.0125 -0.057 -0.133 500 3.425 2.020 1.537 0.220 0.117 0.012 -0.035 -0.035 -0.038 -0.038 -0.036 -0.026 -0.012 -0.036 -0.038 -0.038 -0.038 -0.036 -0.025 -0.025 -0.026 -0.012 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.026 -0.141 -0.122 -0.026 -0.141 -0.122 -0.026
RMSE RMSE <t< td=""></t<>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

(32) and (33). The number of replications is set to R = 2000.

Table S1c: Bias and RMSE ($\times 100$) for the $\tilde{\alpha}$ estimate of the cross-sectional exponent of the errors from a dynamic panel data model with no exogenous regressors

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \mathbf{F}_{222} = (22) - (2$	8	0.55	0.60	$\frac{0.65}{c_p(n,$	0.70 δ with	$\frac{0.75}{n=N(\frac{5}{2})}$	$\frac{0.80}{N-1)/}$	$\frac{0.85}{2 \text{ and } p}$	0.90 = 0.05	0.95	1.00		σ	0.55	0.60	$\frac{0.65}{c_p(n, d)}$	0.70) with	$\overline{0.75}$ $\overline{n = N(l)}$	$\frac{0.80}{1/2}$	0.85 2 and p	0.90 = 0.10	0.95	1.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	216 0341 035 0370 035 036 036 036 036 036 036 036 036 035 035 035 035 035 035 035 035 035 035							= 1/2 lias					E	Z					o Bi⊟	1/2 as				
$ \begin{array}{c} 2.06 & 1.03 & 0.368 & 0.318 & 0.418 & 0.408 & 0.408 & 0.408 & 0.408 & 0.401 & 0.403 & 0.403 & 0.401 & 0.403 & 0.403 & 0.403 & 0.401 & 0.403 & 0.403 & 0.401 & 0.403 & 0.401 & 0.403 & 0.401 & 0.403 & 0.401 & 0.403 & 0.401 & 0.403 & 0.401 & 0.403 & 0.401 & 0.403 & 0.401 & 0.403 & 0.401 & 0.403 & 0.401 & 0.403 & 0.401 & 0.403 & 0.401 & 0.403 & 0.401 & 0.403 & 0.401 & $	$ \begin{array}{c} 2.07 \ 0.061 \ 0.056 \ 0.057 \ 0.016 \ 0.016 \ 0.007 \ 0.006 \ 0.007 \ 0.006 \ 0.007 \ 0.006 \ 0.007 \ 0.006 \ 0.007 \ 0.006 \ 0.007 \ 0.006 \ 0.007 \ 0.006 \ 0.007 \ 0.000 \$	-	2.253	0.812	0.371	0.201	0.044	0.188	-0.164	-0.250	-0.103	-0.050	100	100	3.623	1.816	1.052	0.642	0.327	0.364	-0.053	-0.184	-0.067	-0.032
2267 1161 1675 0556 0457 0456 0405 0406 0406 0406 0406 0406 0406	278 1.38 0.38 0.38 0.414 0.305 0.406 0.405 0.406 0.000 0.00		2.107 2.050	$0.944 \\ 1.043$	$0.664 \\ 0.488$	$0.162 \\ 0.204$	-0.008 0.012	0.030 0.034	-0.108 -0.040	-0.080 -0.072	-0.085 -0.096	-0.066 -0.092		200500	3.396 3.226	1.840 1.802	$1.242 \\ 0.952$	0.523 0.483	$0.214 \\ 0.183$	$0.166 \\ 0.140$	-0.021 0.026	-0.026 -0.027	-0.052 -0.061	-0.044 -0.064
$ \begin{array}{c} 1.22 & 1.13 & 0.12 & 0.101 & 0.017 & 0.011 & 0.010 & 0.000 & 0.01 & 0.000 & 0.013 & 0.011 & 0.013 & 0.001 & 0.000 \\ 2.55 & 1.129 & 1.056 & 0.137 & 0.017 & 0.017 & 0.010 & 0.000 & 0.01 & 0.555 & 0.121 & 0.013 & 0.010 & 0.000 \\ 2.56 & 1.17 & 0.58 & 0.12 & 0.017 & 0.017 & 0.017 & 0.010 & 0.000 & 0.014 & 0.001 & 0.000 & 0.014 & 0.001 & 0.000 \\ 2.55 & 1.129 & 1.056 & 0.128 & 0.017 & 0.017 & 0.017 & 0.011 & 0.010 & 0.01 & 0.103 & 0.011 & 0.010 & 0.001 & 0.000 \\ 2.56 & 1.128 & 1.126 & 0.057 & 0.025 & 0.013 & 0.011 & 0.010 & 0.01 & 0.148 & 2.567 & 1.171 & 0.250 & 0.251 & 0.013 & 0.010 & 0.000 \\ 2.55 & 1.128 & 1.126 & 0.757 & 0.381 & 0.258 & 0.177 & 0.010 & 0.01 & 0.148 & 2.564 & 1.160 & 0.231 & 0.243 & 0.232 & 0.127 & 0.000 & 0.001 $	2.55 113 0 577 0 461 0.17 0.17 0.17 0.01 0.00 70 0.01 4.85 2.57 1.13 0.421 0.531 0.255 0.137 0.503 0.005 0.000 0.00 2.551 1.12 0.12 0.000	-	2.761	1.164	0.575	0.385	0.144	0.269	-0.096	-0.183	-0.049	0.000	200	100	4.226	2.262	1.302	0.854	0.432	0.441 0.935	0.005	-0.130	-0.028	0.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.028 9.650	1.208	0.747	0.337 0.306	0.130	0.109 0.159	-0.028	100.0-	010.0-	0.000		200	4.010 3 961	2.242	1.454	0.602	0.3030.0000000000000000000000000000000	0.235 0.948	0.042	0.027	-0.003	0.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3.035	1.321	0.722	0.444	0.218	0.294	-0.071	-0.174	-0.043	0.000	500	100	4.588	2.462	1.491	0.942	0.531	0.475	0.038	-0.117	-0.021	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} 3.062 \ 1.771 \ 0.860 \ 0.480 \ 0.481 \ 0.246 \ 0.168 \ 0.006 $	~	2.930	1.529	1.049	0.411	0.180	0.146	-0.019	-0.003	-0.013	0.000		200	4.403	2.567	1.713	0.824	0.427	0.286	0.057	0.032	0.001	0.000
2388 1531 1236 0575 0561 0382 0274 0283 0147 0132 0141 2561 1759 1239 01531 0477 0232 0157 0169 0182 235 0159 0159 0150 235 235 0159 0159 0150 235 235 0159 0150 0182 235 135 0159 0159 0150 0182 235 135 0159 0159 0150 0150 235 235 0159 0150 0100 2312 1175 1159 0272 0239 0157 0159 0100 010 2013 2125 2165 1390 0175 0159 0139 0130 010 0100 2003 235 1455 2165 1390 0159 0135 0120 0100 0100 2013 2123 1155 1159 0739 0157 0159 0150 0100 0100 200 4455 276 1381 1177 0720 256 0259 0154 0100 0000 2000 2312 2108 1420 0739 0159 0150 0135 0100 0100 2000 2000 2445 2765 1367 1171 1170 102 023 039 0175 0150 0000 0000 200 2455 2154 1320 0139 0137 0150 0139 0100 0000 2000 2312 2108 1422 0739 0149 0110 075 0150 0139 0100 0000 200 2455 2154 1320 0139 0137 0105 0139 0100 0000 200 2455 2154 1320 0139 0135 0175 0102 0100 0000 200 2455 2154 1320 0139 0137 0105 0139 0137 0102 0100 0000 2312 2365 1346 2110 075 0159 0139 0137 0100 0100 0000 2365 1346 2110 0175 0136 0136 0175 0102 0100 0000 2365 2346 231 025 0139 0137 0102 0100 0000 2455 2154 1320 0139 0137 0105 0139 0137 0102 0100 0000 248 255 0139 0137 0105 0130 0100 0000 200 956 477 316 171 1170 016 0346 0137 0102 0100 0000 250 955 0139 0137 0105 0100 0000 000 956 477 310 171 1170 016 0346 0137 0102 0100 0000 000 956 477 322 2321 1350 0149 0140 0100 000 000 956 477 322 2321 1250 0149 0100 000 000 0125 659 4408 2550 334 0152 0134 0106 0000 000 650 955 0134 0102 0000 000 956 477 432 255 155 930 0139 0139 0130 000 000 0125 656 4418 2774 1452 255 930 0139 0130 000 000 056 858 355 244 1652 1179 0143 0136 0137 0132 0136 0100 000 000 000 000 000 000 000 000 0	238. 1821 1236 055 056 056 058 028 0147 0128 011 000 4182 246 1750 058 057 0551 057 0127 028 0108 008 008 058 057 058 057 058 050 059 014 000 059 058 057 058 057 058 050 014 051 050 058 050 014 051 050 058 050 059 058 057 058 050 014 050 050 058 050 050 050 050 050 058 050 050		3.062	1.717	0.888	0.492	$\frac{0.215}{\text{Rl}}$	0.168 VISE	0.076	0.028	0.001	0.000	E	200 N	4.461	2.648	1.446	0.820	0.396 RN	0.261 ISE	0.123	0.050	0.008	0.000
255 1513 122 077 040 040 0285 0147 0132 0117 201 0445 256 1736 0581 0541 0472 0220 0125 0060 0003 0003 238 158 0589 0570 0580 0591 0517 0130 0518 0120 0003 0003 0003 2312 2004 1100 0759 0438 0357 0281 0281 0280 0039 0001 0703 0338 0270 0409 001 0000 3312 2004 1100 0759 0438 0230 0238 0177 0116 0103 200 0445 256 1581 10.06 0550 0232 0137 0139 0130 0100 0333 0332 2040 100 0003 0001 4782 256 1581 117 0702 0565 0232 0177 0127 0126 0000 0001 0003 3312 2004 1101 0759 0439 0230 0218 0000 0000 0000 3312 2004 1101 0759 0439 0230 0218 0200 0200 0200 0200 000 4781 117 0702 0565 0232 0178 0002 000 0000 0000 3312 2138 0454 0249 0115 0150 0130 0010 0000 0000 0000 0000	255 151 122 077 0.01 0.01 0.255 0.117 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13		2.888	1.621	1.236	0.625	0.561	0.382	0.274	0.283	0.140	0.100	100	100	4,183	2.465	1.734	0.993	0.735	0.551	0.272	0.235	0.107	0.069
23.89 173 1060 0770 0331 0236 0073 0013 0010 101 103 232 246 1749 0351 0180 0131 018 0131 018 0130 0000 0000	2390 1587 1160 056 037 0381 036 0250 0167 001 2010 1475 276 1580 1026 0133 0237 0237 0230 0000 2011 1751 158 078 0238 0173 0238 0170 0000 0000 201 2457 2766 1580 1056 0733 0235 0237 0239 0000 000 2137 2105 158 0739 0239 0138 0175 0035 0000 200 21457 2765 1581 1171 0772 0556 0237 0136 0105 0000 200 2137 2136 158 0739 0240 0236 0230 0100 0000 200 2171 1117 0120 0550 0340 0156 0073 0030 0000 200 2137 2135 158 0739 0240 0136 0157 0035 000 200 200 200 200 200 200 200 200 20	-	2.851	1.818	1.221	0.717	0.401	0.401	0.283	0.147	0.132	0.117		200	4.041	2.563	1.736	0.981	0.541	0.472	0.292	0.125	0.093	0.082
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3173 1908 1260 0373 0380 0175 0460 0360 0175 0160 001 200 10 4782 276 1510 1050 0533 0279 0091 0051 0000 2321 2004 1010 0750 0465 0330 0177 0165 0360 0337 0380 0177 0335 0000 2000 3312 2008 1138 0759 0452 0373 0105 0100 0000 2311 1/151 1180 0759 0453 0320 0115 0105 0000 0000 3312 2008 1138 0759 0453 0320 0115 0005 0100 4777 3315 2018 1102 0529 0391 0145 0075 0022 0000 3312 2008 1138 0759 0453 0320 0115 0025 0000 200 4777 3315 2018 1102 0529 0391 0145 0075 0022 0000 3312 2008 1138 0739 0453 0129 0105 0000 200 1437 3304 1711 1117 0616 0346 0136 0075 0022 0000 200 1437 3312 2008 1132 0419 0145 0075 0122 0000 200 100 4397 3004 1711 1117 0616 0346 0137 0025 0000 200 100 4397 3004 1711 1117 0616 0346 0137 0025 0000 200 100 932 0139 0107 010 9329 2400 1239 0137 0101 008 3322 2554 1380 0776 0473 0107 010 000 200 100 9326 6471 4342 2561 1502 1136 0381 0139 0000 000 200 9354 6471 4342 2561 1369 0378 0435 0109 0000 000 200 9354 6471 4342 2561 1369 0379 0434 0106 0000 000 000 200 9354 6471 4342 2561 1369 0379 0439 0109 0000 000 000 200 9354 6471 4342 2561 1369 0369 0491 0000 0551 4381 2500 0000 000 000 000 000 000 000 000 0	-	2.841	1.783	1.050	0.679	0.331	0.282	0.192	0.166	0.164	0.163		500	3.922	2.464	1.469	0.917	0.449	0.351	0.189	0.131	0.118	0.120
3173 1908 129 0728 0728 0728 0738 0737 016 003 000 500 100 4458 2757 1501 100 0739 0438 0177 0107 0035 0127 0035 0000 331 11171 111 072 025 0349 0145 0000 000 000 000 331 2008 1112 0151 0037 0148 0000 000 000 000 331 2008 1112 0151 0155 0157 0127 0035 0100 000 000 000 000 1457 305 1547 1541 1072 055 0250 0349 0145 0037 0040 000 000 000 000 1487 3015 1056 1547 1111 072 055 0550 0157 0029 0040 000 000 000 000 331 2008 1142 071 055 0250 0349 0145 0007 0040 000 000 000 000 351 2008 1142 072 055 0250 0349 0145 0007 0000 000 000 000 347 3015 2044 1017 0125 0550 036 0155 0027 0029 0040 000 0588 1534 330 254 1119 0758 0457 0109 0757 0023 0009 000 000 000 000 000 000 000 000 0	3172 2000 1100 0776 0.453 0.235 0.0245 0.005 000 500 4453 2.757 1591 1000 000 0448 0.217 0.000 000 000 500 1458 2.757 1591 1008 0.059 0.059 0.059 0.0127 0.026 0.020 0000 000 000 531 220 0.117 0.072 0.55 0.232 0.187 0.029 0.000 000 000 531 220 0.117 0.072 0.55 0.232 0.187 0.029 0.000 000 000 010 000 545 1.817 111 0.072 0.55 0.232 0.187 0.029 0.000 000 000 000 1471 3015 0.052 0.016 0.075 0.020 0.000 000 000 550 1459 0.249 0.150 0.075 0.020 0.000 000 000 1471 3015 0.052 0.016 0.075 0.020 0.000 000 000 550 1457 3.015 0.075 0.020 0.000 000 000 550 1450 0.165 0.075 0.020 0.000 000 565 1.817 111 0.117 0.616 0.346 0.155 0.027 0.001 000 565 1.81 1111 0.117 0.616 0.346 0.155 0.027 0.001 000 565 1.81 1111 0.117 0.616 0.346 0.155 0.027 0.001 000 565 1.81 1111 0.112 0.151 0.073 0.055 0.007 0.000 000 555 0.52 0.001 0.001 565 1.81 1111 0.015 0.073 0.025 0.001 0.001 565 1.83 0.539 0.530 0.53 0.051 0.000 000 000 000 000 000 000 000 000	~	3.399	1.838	1.156	0.836	0.375	0.398	0.206	0.226	0.067	0.001	200	100	4.762	2.789	1.759	1.229	0.623	0.574	0.231	0.207	0.068	0.001
3.212 2004 1.101 0.750 0.453 0.339 0.177 0.105 0.028 0.003 0.000 3.00 4.717 3.015 0.016 0.366 0.232 0.187 0.092 0.000 3.312 2.081 1.182 0.55 0.232 0.187 0.092 0.000 3.312 2.081 1.182 0.55 0.232 0.187 0.092 0.000 3.312 2.081 1.182 0.565 0.232 0.187 0.092 0.000 3.312 2.081 1.182 0.565 0.232 0.187 0.092 0.000 3.312 2.081 1.182 0.59 0.365 0.232 0.187 0.092 0.000 3.312 2.081 1.182 0.59 0.365 0.232 0.012 0.000 0.000 3.312 2.081 1.182 0.59 0.436 0.155 0.012 0.000	321 2004 110 770 0.450 0.389 0.177 0.105 0.005 0.000 500 10 4.55 1.591 1.157 0.702 0.555 0.257 0.157 0.002 0.000 3.311 1.151 0.720 0.551 0.057 0.022 0.000 0.000 3.468 2.131 1.117 0.720 0.555 0.057 0.022 0.000 0.000 0.000 3.468 2.131 1.112 0.720 0.551 0.057 0.022 0.000	-	3.173	1.903	1.249	0.742	0.573	0.215	0.245	0.069	0.044	0.001		200	4.487	2.766	1.810	1.066	0.733	0.335	0.279	0.094	0.051	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_	3.212	2.004	1.101	0.750	0.463	0.339	0.177	0.105	0.028	0.003		500	4.453	2.797	1.594	1.028	0.609	0.428	0.217	0.127	0.035	0.002
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3.312 2.098 1.422 0.749 0.423 0.264 0.105 0.003 0.000 500 4.877 3.015 2.016 0.016 0.055 0.025 0.000 0.000 3.468 2.134 1.187 0.616 0.346 0.155 0.025 0.000 0.000 0.000 3.468 2.136 0.158 0.457 0.029 0.044 0.014 0.015 0.052 0.029 0.044 0.014 0.016 0.358 0.152 0.015 0.010 0.015 0.015 0.010 0.015 0.015 0.010 0.015 0.015 0.010 0.015 0.015 0.010 0.011	_	3.411	1.715	1.186	0.728	0.427	0.380	0.218	0.210	0.087	0.000	500	100	4.904	2.765	1.847	1.171	0.702	0.565	0.252	0.187	0.092	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	~	3.312	2.098	1.432	0.749	0.423	0.264	0.108	0.056	0.033	0.000		200	4.717	3.015	2.048	1.102	0.629	0.394	0.148	0.079	0.040	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} \delta = 1/3 \\ 5.72 & 3.46 & 2.16 & 1.38 & 0.73 & 0.72 & 0.08 & -0.02 & -0.01 & 10 & 10 & 8.46 & 5.59 & 3.74 & 2.451 & 1.502 & 1.053 & 0.334 & 0.059 & 0.037 & -0.011 \\ 6.09 & 3823 & 2.54 & 1390 & 0.728 & 0.473 & 0.10 & 0.072 & -0.003 & -0.003 & -0.03 & -0.033 &$	~	3.468	2.134	1.182	0.818	0.454	0.249	0.115	0.052	0.015	0.000		500	4.807	3.004	1.711	1.117	0.616	0.346	0.165	0.075	0.022	0.000
The second set of the second	The second set of the dynamic part of the second second set of the second set of the set of the second set of the second set of the set of the second set of the second s						ε 9 =	= 1/3											$\delta =$	1/3				
5.722 514 1360 0.752 0.1052 0.103 0.072 0.003 0.002 0.0109 100 100 8467 5593 3741 2451 1502 1056 0.384 0.037 0.004 0.004 0.004 0.004 0.003 0.532 2.564 1360 0.726 0.473 0.150 0.075 0.006 0.730 0.107 0.003 0.000 0.000 0.000 0.006 0.532 0.550 0.550 0.544 0.105 0.006 0.006 0.000 0.000 0.006 0.531 0.177 0.038 0.006 0.542 0.013 0.013 0.003 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000							ш	lias					Е	z					B	ias				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	5.722	3.405	2.160	1.368	0.793	0.652	0.120	-0.086	-0.023	-0.019	100	100	8.467 9.991	5.599	3.744	2.451	1.502	1.085	0.384	0.059	0.037	-0.011
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	0.099 6.683	3.823 4 903	2.334 9.404	1.30U 1.41Q	0.738	0.473	0.100	0.070	-0.003	-0.030		200	0.373 0.373	0.904 6.956	4.001 3 091	2.302 9 390	1.334	0.849 0.763	0.363	0.151	0.044 0.033	-0.014
6818 4315 2816 1609 0.906 0.542 0.213 0.111 0.028 0.000 200 9.564 6.471 4.342 2.652 1.565 0.926 0.431 0.219 0.068 0.000 201 0.569 4.810 2.39 0.507 0.109 0.006 0.000 201 0.551 0.572 0.818 1.323 0.507 0.129 0.076 0.000 201 0.551 1.761 1.007 0.616 0.243 0.119 0.034 0.000 201 0.0161 6.456 4.367 2.893 1.701 1.021 0.593 0.057 0.000 200 10.016 6.444 4.77 4.735 2.843 1.701 1.021 0.593 0.057 0.000 200 10.016 6.545 4.367 2.893 1.701 1.021 0.299 0.076 0.000 200 10.016 6.545 4.375 2.843 1.701 1.021 0.299 0.076 0.000 200 10.016 6.514 7.477 4.735 2.843 1.701 1.021 0.598 0.050 0.000 200 10.016 6.514 7.477 4.752 2.843 1.701 1.021 0.598 0.050 0.000 200 10.016 6.545 4.367 2.893 1.701 1.021 0.299 0.054 0.000 200 1.000 200 1.000 200 1.00 2.55 2.962 1.752 0.469 0.203 0.048 0.000 200 1.277 0.133 0.917 0.047 0.560 0.057 0.266 0.091 0.001 2.710 4.50 2.510 1.761 1.023 0.580 0.050 0.055 0.057 0.266 0.091 0.001 7.100 4.52 2.903 1.778 1.561 1.533 1.566 0.091 0.001 7.110 4.50 2.510 1.259 0.157 0.256 0.557 0.266 0.091 0.001 7.110 4.50 2.301 4.310 0.550 0.557 0.266 0.091 0.001 7.110 4.50 2.310 1.329 1.310 0.550 0.570 0.560 0.001 7.110 4.70 2.117 1.320 1.189 0.102 0.000 200 9.246 6.760 4.580 2.555 1.931 0.560 0.000 7.100 7.55 0.550 0.557 0.266 0.091 0.000 7.100 4.132 2.711 2.646 1.508 0.550 0.273 0.128 0.000 7.100 7.550 2.301 4.311 1.320 0.559 0.271 0.041 0.399 0.170 0.001 9.76 6.554 4.562 2.594 1.789 1.310 0.559 0.271 0.000 7.000 7.000 9.246 6.760 4.580 2.585 1.801 1.023 0.580 0.001 7.100 7.550 0.310 7.552 0.241 7.711 4.900 3.014 1.811 1.112 0.539 0.271 0.008 0.001 7.552 5.049 3.312 0.126 0.000 7.000 7.000 7.000 7.000 7.000 7.500 7.565 4.500 3.307 1.264 1.500 7.530 0.273 0.128 0.000 7.550 7.555 0.266 0.000 7.550 0.553 0.256 0.000 7.550 0.559 0.266 0.000 7.550 0.550 0.559 0.266 0.000 7.550 0.550 0.550 0.550 0.550 0.551 0.250 0.551 0.550 0.551 0.550 0.551 0.550 0.551 0.550 0.551 0.550 0.551 0.550 0.551 0.550 0.551 0.550 0.551 0.550 0.551 0.550 0.551 0.550 0.551 0.550 0.551 0.550 0.551 0.550 0.551 0.550 0.551 0.550 0.551 0.550 0.551 0.550 0.55	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·-	6.361	3.929	2.460	1.621	0.916	0.731	0.177	-0.038	0.008	0.000	200	100	9.129	6.167	4.082	2.744	1.642	1.179	0.444	0.106	0.064	0.000
7569 4881 2.922 1698 0.911 0.561 0.272 0.121 0.033 0.000 500 100 9611 6456 4.87 2.888 1.812 1.239 0.507 0.129 0.076 0.000 7.295 4.739 3.165 1.761 1.007 0.016 0.223 0.007 0.000 500 100 0.016 0.501 0.007 200 0.007 0.000 200 10.007 5.00 10.007 5.00 0.000 200 10.007 5.00 0.000 200 10.007 5.00 0.000 200 0.016 0.021 0.456 4.87 2.888 1.812 1.239 0.507 0.129 0.076 0.000 200 10.007 5.00 10.007 5.00 10.00 500 10.007 5.00 10.00 500 10.00 10.016 0.541 0.552 0.939 0.945 0.571 0.247 0.131 0.000 500 10.001 2.00 200 0.045 0.001 2.00 0.005 0.045 0.001 0.001 2.00 0.005 0.045 0.001 0.001 2.00 0.005 0.001 0.001 0.001 0.001 2.00 0.005 0.004 0.002 0.005 0.001 0.000 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	6.818	4.315	2.816	1.609	0.906	0.542	0.213	0.111	0.028	0.000		200	9.564	6.471	4.342	2.652	1.565	0.926	0.431	0.219	0.068	0.000
6.819 4.181 2.700 1.743 1.045 0.780 0.223 -0.020 0.017 0.000 500 100 9.611 6.456 4.367 2.898 1.812 1.239 0.577 0.129 0.076 0.000 2.228 1.77 1.739 3.155 1.761 1.021 0.433 0.229 0.064 0.000 2.00 2.000 2.00 10.861 7.477 4.752 2.843 1.701 1.021 0.433 0.229 0.064 0.000 2.000 0.000 2.000 0.000 2.000 0.000 2.000 0.000 2.000 0.000 2.00	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	~	7.569	4.881	2.922	1.698	0.911	0.561	0.272	0.121	0.033	0.000		500	10.253	6.974	4.408	2.656	1.488	0.881	0.438	0.198	0.061	0.000
7.295 1.761 1.007 0.616 0.243 0.119 0.034 0.000 500 10.581 7.477 4.752 2.843 1.701 1.021 0.473 0.229 0.064 0.000 500 1.581 7.477 4.736 2.913 1.630 0.293 0.047 0.018 0.004 0.000 0.001 0.012 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	6.819	4.181	2.700	1.743	1.045	0.780	0.223	-0.020	0.017	0.000	500	100	9.611	6.456	4.367	2.898	1.812	1.239	0.507	0.129	0.076	0.000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8.114 5.343 5.207 1.906 1.021 0.335 0.291 0.127 0.035 0.000 501 10.861 7.477 4.736 2.913 1.560 0.529 0.466 0.208 0.0091 0.031 (5.18 0.330 5.358 1.353 1.366 1.557 0.266 0.091 0.031 (5.18 0.330 5.358 1.353 1.366 1.557 0.266 0.091 0.031 (5.16 1.409 2.31 1.56) 1.573 0.256 0.575 0.266 0.091 0.031 (5.16 1.409 2.31 1.56) 1.573 0.256 0.575 0.266 0.091 0.031 (5.16 1.58 1.353 1.910 0.580 0.772 0.314 0.153 0.910 0.031 (5.76 0.346 0.255 4.338 2.661 1.583 1.056 0.575 0.266 0.091 0.031 (5.76 0.346 2.383 2.381 1.53 0.911 0.647 0.3314 0.153 0.001 200 0.065 500 9.473 4.352 2.994 1.789 1.310 0.580 0.273 0.128 0.000 7.170 4.700 3.107 1.889 1.191 0.640 0.399 0.170 0.074 0.000 200 9.439 6.473 4.362 2.994 1.789 1.310 0.580 0.273 0.128 0.000 7.108 7.352 3.300 1.981 1.145 0.732 0.368 0.347 0.206 0.001 500 100 9.439 6.473 4.362 2.994 1.789 1.310 0.580 0.273 0.128 0.000 7.508 5.236 3.300 1.991 0.640 0.399 0.170 0.001 500 100 9.493 6.473 4.362 2.991 1.696 1.043 0.529 0.271 0.088 0.001 7.508 5.236 3.200 1.991 0.640 0.393 0.017 0.007 7.050 4.413 2.974 1.011 0.713 0.312 0.158 0.100 0.000 7.069 4.413 2.974 1.011 0.713 0.312 0.158 0.100 0.000 200 10.977 6.629 4.575 3.307 1.941 1.330 0.631 0.253 0.208 0.000 7.502 5.049 3.427 1.941 1.12 0.713 0.312 0.154 0.049 0.000 200 10.241 7.171 4.960 3.014 1.841 1.112 0.733 0.337 0.154 0.049 0.000 200 10.241 7.171 4.960 3.014 1.841 1.112 0.733 0.531 0.256 0.006 0.000 7.522 5.049 3.427 1.971 1.771 0.713 0.337 0.154 0.049 0.000 700 10.265 4.905 3.014 1.841 1.112 0.733 0.531 0.256 0.078 0.000 7.552 5.049 3.427 1.571 1.4960 3.014 1.841 1.112 0.733 0.337 0.154 0.049 0.000 7.522 5.049 3.427 1.71 0.713 0.337 0.154 0.049 0.000 7.522 4.640 2.901 1.666 1.048 7.5 7 1.015 0.513 0.236 0.078 0.000 7.552 5.504 3.342 1.571 1.500 5.533 0.266 0.000 7.500 7.500 7.550 7.565 4.905 3.410 1.787 1.015 0.513 0.236 0.078 0.000 7.552 5.509 3.411 1.571 1.57 1.51 1.500 7.551 0.556 7.555 7.550 7.560 7.555 7.550 7.560 7.550 7.565 7.555 7.550 7.560 7.555 7.550 7.560 7.555 0.550 7.550 7.550 7.550 7.550 7.550 7.550 7.550 7.550 7.550 7.550	-	7.295	4.739	3.165	1.761	1.007	0.616	0.243	0.119	0.034	0.000		200	10.076	6.945	4.752	2.843	1.701	1.021	0.473	0.229	0.076	0.000
6.180 3.909 2.689 1.670 1.119 0.835 0.235 0.045 10 100 8.816 5.980 4.152 2.713 1.766 1.247 0.118 0.030 0.031 0.011 0.001 0.001 0.001 0.001 0.001 0.001 0.010 0.010 0.0	6.180 3.909 2.689 1.670 1.109 0.835 0.169 1.583 0.0247 0.118 0.030 6.581 4.355 2.962 0.358 0.169 0.069 0.048 200 9.190 6.535 4.388 2.661 1.564 0.571 0.247 0.118 0.031 7.160 4.694 2.915 1.722 0.988 0.113 0.353 0.169 0.065 500 9.139 6.535 4.388 2.661 1.564 0.550 0.266 0.091 0.031 7.160 4.694 2.915 1.782 0.988 0.171 0.017 0.007 2.009 9.065 5.001 2.00 9.439 6.473 4.382 2.894 1.789 1.310 0.273 0.128 0.000 0.000 7.170 4.700 3.107 1.964 0.389 0.178 0.000 2.001 2.001 2.001 2.001 2.001 2.001 2.001 2.001 2.001	<u> </u>	8.1.14	5.343	3.207	1.900	17.021	U.593	0.291	0.127	0.035	0.000	E	000	102.01	1.411	4.730	2.913	1.03U	0.929 fcf	0.400	0.208	0.004	0.000
$ \begin{array}{c} 0.100 & 5.303 & 2.003 & 1.000 & 1.113 & 0.033 & 0.043 & 0.043 & 0.048 & 0.001 & 0.016 & 0.035 & 4.132 & 2.113 & 1.000 & 1.204 & 0.011 & 0.013 \\ 0.581 & 4.355 & 2.962 & 1.722 & 0.988 & 0.713 & 0.334 & 0.153 & 0.069 & 0.065 & 0.091 & 0.001 \\ 0.676 & 4.303 & 2.819 & 1.929 & 1.081 & 0.866 & 0.347 & 0.206 & 0.085 & 0.001 & 200 & 100 & 0.438 & 2.661 & 1.583 & 1.056 & 0.036 & 0.036 \\ 0.730 & 4.703 & 3.107 & 1.889 & 1.191 & 0.732 & 0.386 & 0.193 & 0.007 & 0.000 & 200 & 0.9439 & 6.473 & 4.362 & 2.994 & 1.780 & 1.023 & 0.266 & 0.091 & 0.000 \\ 7.108 & 4.703 & 3.107 & 1.889 & 1.191 & 0.732 & 0.386 & 0.193 & 0.066 & 0.001 & 200 & 1004 & 7.252 & 4.640 & 2.901 & 1.666 & 1.043 & 0.392 & 0.013 & 0.000 \\ 7.069 & 4.413 & 2.974 & 1.931 & 1.194 & 0.873 & 0.380 & 0.185 & 0.112 & 0.000 & 500 & 10.0241 & 7.171 & 4.960 & 3.014 & 1.841 & 1.112 & 0.533 & 0.254 & 0.206 & 0.000 \\ 7.069 & 4.413 & 2.974 & 1.931 & 1.194 & 0.873 & 0.380 & 0.185 & 0.110 & 0.000 & 500 & 10.0241 & 7.171 & 4.960 & 3.014 & 1.841 & 1.112 & 0.533 & 0.266 & 0.106 & 0.000 \\ 7.522 & 5.049 & 3.427 & 1.974 & 1.171 & 0.713 & 0.312 & 0.154 & 0.049 & 0.000 & 500 & 110.26 & 7.655 & 4.955 & 3.101 & 1.787 & 1.015 & 0.513 & 0.256 & 0.000 \\ 7.522 & 5.049 & 3.427 & 1.974 & 1.171 & 0.713 & 0.312 & 0.154 & 0.049 & 0.000 & 500 & 110.26 & 7.665 & 4.955 & 3.101 & 1.787 & 1.015 & 0.513 & 0.266 & 0.106 & 0.000 \\ 8.401 & 5.589 & 3.413 & 2.142 & 1.200 & 0.681 & 0.337 & 0.154 & 0.049 & 0.000 & 500 & 110.26 & 7.665 & 4.955 & 3.101 & 1.787 & 1.015 & 0.513 & 0.236 & 0.078 & 0.000 \\ 8.401 & 5.589 & 3.413 & 2.142 & 1.200 & 0.681 & 0.337 & 0.154 & 0.049 & 0.000 & 500 & 110.26 & 7.655 & 4.955 & 3.101 & 1.787 & 1.015 & 0.513 & 0.236 & 0.078 & 0.000 \\ 8.401 & 5.589 & 3.413 & 2.142 & 1.200 & 0.681 & 0.337 & 0.154 & 0.729 & 0.016 & 0.000 & 0.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.100	0006	062.0	1 670	1 110 T	A OPE	0.960	0000	6000	0.045			0 010	000	1150	0 710	1 766	1 06 1	0 171	1100	0110	060 0
7.160 4.694 2.915 1.783 0.971 0.647 0.314 0.153 0.069 0.065 500 9.426 6.639 4.271 2.646 1.508 0.950 0.469 0.222 0.076 0.046 6.730 3.107 1.889 1.191 0.640 0.399 0.170 0.074 0.000 200 9.439 6.473 4.362 2.994 1.789 1.310 0.580 0.273 0.128 0.000 7.10 4.700 3.107 1.889 1.191 0.640 0.399 0.170 0.074 0.000 200 9.824 6.760 4.580 2.885 1.800 1.023 0.584 0.275 0.110 0.000 7.908 5.236 3.200 1.981 1.145 0.732 0.368 0.198 0.066 0.001 500 100 9.797 6.629 4.575 3.057 1.941 1.330 0.531 0.529 0.001 7.008 7.152 5.049 3.427 1.931 1.194 0.873 0.380 0.185 0.112 0.000 500 100 9.797 6.659 4.575 3.057 1.941 1.330 0.631 0.263 0.0155 0.000 7.000 7.000 100 9.797 6.659 4.575 3.057 1.941 1.312 0.533 0.256 0.000 7.050 7.552 5.049 3.427 1.974 1.112 0.713 0.377 0.154 0.049 0.000 500 11.026 7.665 4.905 3.110 1.787 1.015 0.513 0.256 0.000 8.401 5.589 3.413 2.942 1.200 0.681 0.337 0.154 0.049 0.000 500 11.026 7.665 4.905 3.110 1.787 1.015 0.513 0.256 0.000 7.550 7.552 5.049 3.427 1.941 1.312 0.533 0.261 0.000 7.550 7.553 3.400 7.550 7.565 4.905 3.110 1.787 1.015 0.513 0.256 0.000 7.550 7.553 3.400 7.559 3.410 1.787 1.015 0.513 0.256 0.000 7.550 7.550 7.565 4.905 3.110 1.787 1.015 0.513 0.256 0.000 7.550 7.550 7.565 4.905 3.110 1.787 1.015 0.513 0.256 0.000 7.500 7.550 7.550 3.400 7.57 1.015 0.513 0.256 0.000 7.500 7.550 7.550 7.550 3.110 1.787 1.015 0.513 0.256 0.000 7.550 7.550 7.550 7.550 3.110 1.787 1.015 0.513 0.256 0.000 7.500 7.550 7.550 7.550 7.550 7.550 7.500 7.550 7.550 7.550 7.550 7.550 7.550 7.550 7.550 7.550 7.550 7.550 7.550 7.500 7.550	7.160 4.694 2.915 1.783 0.971 0.647 0.314 0.153 0.069 0.065 500 9.726 6.639 4.271 2.646 1.508 0.950 0.469 0.222 0.076 0.046 0.046 0.223 0.076 0.046 0.027 0.046 0.027 0.046 0.027 0.046 0.027 0.046 0.027 0.026 0.085 0.001 200 100 9.439 6.473 4.362 2.994 1.789 1.310 0.580 0.273 0.128 0.000 7.100 4.700 3.107 1.889 1.191 0.640 0.399 0.170 0.001 200 9.439 6.473 4.362 2.994 1.789 1.310 0.580 0.277 0.010 0.000 7.908 5.236 3.200 1.981 1.145 0.732 0.368 0.198 0.060 0.001 500 9.624 6.760 4.580 2.885 1.800 1.023 0.584 0.275 0.110 0.000 7.908 5.236 3.200 1.991 1.145 0.732 0.388 0.198 0.060 0.001 500 9.797 6.629 4.575 3.057 1.941 1.330 0.631 0.263 0.015 7.000 7.00 9.797 6.529 4.413 2.974 1.171 0.713 0.312 0.158 0.006 0.000 200 100 9.797 6.529 4.575 3.057 1.941 1.330 0.631 0.263 0.007 8 0.000 7.522 5.049 3.427 1.974 1.171 0.713 0.312 0.154 0.049 0.000 200 100 10.241 7.171 4.960 3.014 1.841 1.112 0.535 0.266 0.106 0.000 8.401 5.589 3.413 2.142 1.200 0.681 0.337 0.154 0.049 0.000 500 11.026 7.665 4.905 3.110 1.787 1.015 0.533 0.263 0.078 0.000 8.401 5.589 3.413 2.142 1.200 0.681 0.337 0.154 0.049 0.000 500 11.026 7.665 4.905 3.110 1.787 1.015 0.533 0.266 0.106 0.000 8.401 1.5589 3.413 2.142 1.200 0.681 0.337 0.154 0.049 0.000 500 11.026 7.665 4.905 3.110 1.787 1.015 0.533 0.266 0.007 8 0.000 8.401 1.5589 3.410 1.787 1.015 0.531 0.236 0.078 0.000 8.401 1.5589 3.410 1.787 1.015 0.531 0.236 0.078 0.000 8.400 1.000 1.000 1.026 7.665 4.905 3.110 1.787 1.015 0.553 0.266 0.106 0.000 8.400 1.000 1.000 1.026 7.665 4.905 3.110 1.787 1.015 0.531 0.236 0.078 0.000 8.400 1.0	-	0.100	0.909 4.355	2.962	1.722	0.988	0.713	0.395	0.169	0.069	0.043	TUU	200	0.190 9.190	0.355 6.355	4.388	2.661	1.583	1.056	0.575	0.266	0.091	0.031
6.786 4.339 2.819 1.929 1.081 0.866 0.347 0.206 0.085 0.001 200 100 9.439 6.473 4.362 2.994 1.789 1.310 0.580 0.273 0.128 0.000 7.170 4.700 3.107 1.889 1.191 0.640 0.399 0.170 0.074 0.000 200 9.824 6.760 4.580 2.885 1.800 1.023 0.584 0.275 0.110 0.000 7.988 5.236 3.200 1.981 1.145 0.732 0.368 0.198 0.060 0.001 500 10.504 7.252 4.640 2.901 1.696 1.043 0.529 0.271 0.088 0.001 7.069 4.413 2.974 1.171 0.713 0.312 0.158 0.016 0.000 500 100 9.797 6.629 4.575 3.057 1.941 1.330 0.631 0.263 0.155 0.000 7.522 5.049 3.427 1.974 1.171 0.713 0.312 0.158 0.006 500 100 9.797 6.629 4.575 3.057 1.941 1.330 0.631 0.268 0.000 200 10.026 7.665 4.963 3.014 1.841 1.112 0.535 0.266 0.106 0.000 8.401 5.589 3.413 2.142 1.200 0.681 0.337 0.154 0.049 0.000 500 11.026 7.665 4.905 3.014 1.841 1.112 0.535 0.266 0.106 0.000 8.401 5.589 3.413 2.142 1.200 0.681 0.337 0.154 0.049 0.000 500 11.026 7.665 4.905 3.014 1.841 1.112 0.535 0.266 0.106 0.000 8.401 5.589 3.413 2.142 1.200 0.681 0.337 0.154 0.049 0.000 500 11.026 7.665 4.905 3.014 1.841 1.112 0.535 0.266 0.106 0.000 8.401 5.589 3.413 2.142 1.200 0.681 0.337 0.154 0.049 0.000 500 11.026 7.665 4.905 3.014 1.841 1.112 0.535 0.266 0.106 0.000 8.401 5.589 3.413 2.142 1.200 0.681 0.337 0.154 0.049 0.000 500 11.026 7.665 4.905 3.014 1.841 1.112 0.535 0.266 0.106 0.000 8.401 5.589 3.410 1.787 1.015 0.513 0.253 0.266 0.106 0.000 7.558 7.665 7.665 7.665 7.965 7.665 7.905 7.665 7.905 7.665 7.905 7.665 7.905 7.665 7.905 7.665 7.905 7.665 7.905 7.665 7.905 7.665 7.905 7.665 7.905 7.665 7.905 7.665 7.665 7.905 7.665 7.665 7.905 7.665 7.905 7.665 7.665 7.905 7.665 7.905 7.665 7.665 7.905 7.665 7.665 7.905 7.665 7.955 7.905 7.665 7.665 7.905 7.665 7.665 7.905 7.665 7.955 7.905 7.665 7.955 7.900 7.70 7.955 7.555 7.5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	7.160	4.694	2.915	1.783	0.971	0.647	0.314	0.153	0.069	0.065		500	9.726	6.639	4.271	2.646	1.508	0.950	0.469	0.222	0.076	0.046
7.170 4.700 3.107 1.889 1.191 0.640 0.399 0.170 0.074 0.000 200 9.824 6.760 4.580 2.885 1.800 1.023 0.584 0.275 0.110 0.000 7.908 5.236 3.200 1.981 1.145 0.732 0.368 0.198 0.060 0.001 500 10.504 7.252 4.640 2.901 1.696 1.043 0.529 0.271 0.088 0.001 7.069 4.413 2.974 1.931 1.194 0.873 0.380 0.185 0.112 0.000 500 100 9.797 6.629 4.575 3.057 1.941 1.330 0.631 0.263 0.165 0.000 7.552 5.049 3.427 1.974 1.171 0.713 0.312 0.158 0.066 0.000 200 10.241 7.171 4.960 3.014 1.841 1.112 0.535 0.266 0.106 0.000 8.401 5.589 3.413 2.142 1.200 0.681 0.337 0.154 0.049 0.000 200 10.241 7.171 4.960 3.014 1.841 1.112 0.535 0.266 0.106 0.000 7.550 1.558 3.410 1.787 1.015 0.513 0.236 0.000 7.558 3.400 1.5589 3.410 1.787 1.015 0.513 0.236 0.000 7.500 1.000 7.500 1.0026 7.665 4.905 3.110 1.787 1.015 0.513 0.236 0.000 7.500 1.0026 7.665 4.905 3.110 1.787 1.015 0.513 0.236 0.000 7.500 1.0026 7.665 4.905 3.110 1.787 1.015 0.513 0.236 0.000 7.500 1.0026 7.665 4.905 3.110 1.787 1.015 0.513 0.236 0.000 7.500 7.500 7.500 1.000 7.500 1.000 7.500 1.000 7.500 1.0026 7.665 4.905 3.110 1.787 1.015 0.513 0.236 0.000 7.500 7.	7.170 4.700 3.107 1.889 1.191 0.640 0.399 0.170 0.074 0.000 200 9.824 6.760 4.580 2.885 1.800 1.023 0.584 0.275 0.110 0.000 7.908 5.236 3.200 1.981 1.145 0.732 0.368 0.198 0.060 0.001 500 10.504 7.252 4.640 2.901 1.696 1.043 0.529 0.271 0.088 0.001 7.695 4.413 2.974 1.931 1.194 0.873 0.380 0.185 0.112 0.000 500 100 9.797 6.629 4.575 3.057 1.941 1.330 0.631 0.263 0.155 0.000 7.558 5.049 3.427 1.974 1.171 0.713 0.312 0.158 0.066 0.000 200 10.241 7.171 4.960 3.014 1.841 1.112 0.535 0.266 0.106 0.000 7.558 3.401 5.589 3.413 2.142 1.200 0.681 0.337 0.154 0.049 0.000 500 11.026 7.665 4.905 3.110 1.787 1.015 0.513 0.236 0.078 0.000 7.558 3.401 5.589 3.413 2.142 1.200 0.681 0.337 0.154 0.049 0.000 500 11.026 7.665 4.905 3.110 1.787 1.015 0.513 0.236 0.078 0.000 7.500 10.026 7.665 4.905 3.110 1.787 1.015 0.513 0.236 0.000 7.500 1.000 7.500 10.026 7.665 4.905 3.110 1.787 1.015 0.513 0.236 0.000 7.500 7.500 7.500 7.500 7.500 7.505 4.905 3.110 1.787 1.015 0.513 0.236 0.000 7.500 7.500 7.500 7.500 7.500 7.505 4.905 7.500 7	-	6.786	4.339	2.819	1.929	1.081	0.866	0.347	0.206	0.085	0.001	200	100	9.439	6.473	4.362	2.994	1.789	1.310	0.580	0.273	0.128	0.000
7.908 5.236 3.200 1.981 1.145 0.732 0.368 0.198 0.060 0.001 500 100 9.797 6.629 4.575 3.057 1.941 1.330 0.531 0.263 0.155 0.000 7.522 5.049 3.427 1.974 1.171 0.713 0.312 0.158 0.066 0.000 200 10.241 7.171 4.960 3.014 1.841 1.112 0.535 0.266 0.106 0.000 8.401 5.589 3.413 2.142 1.200 0.681 0.337 0.154 0.049 0.000 500 10.241 7.171 4.960 3.014 1.841 1.112 0.535 0.266 0.106 0.000 8.401 5.589 3.413 2.142 1.200 0.681 0.337 0.154 0.049 0.000 500 11.026 7.665 4.905 3.110 1.787 1.015 0.513 0.236 0.078 0.000 9.797 6.5.94 5.589 3.413 2.142 1.200 0.681 0.337 0.154 0.049 0.000 500 11.026 7.665 4.905 3.110 1.787 1.015 0.513 0.236 0.078 0.000 9.797 6.5.94 5.589 3.413 2.142 1.200 0.681 0.337 0.154 0.049 0.000 500 11.026 7.665 4.905 3.110 1.787 1.015 0.513 0.236 0.078 0.000 9.797 6.5.94 5.589 3.413 2.142 1.200 0.681 0.337 0.154 0.049 0.000 500 11.026 7.665 4.905 3.110 1.787 1.015 0.513 0.236 0.078 0.000 9.701 9.78 7 0.000 9.791 0.787 1.015 0.513 0.236 0.078 0.000 9.701 9.78 7 0.000 9.791 0.787 0.000 9.791 0.78 0.000 9.791 0.78 7 0.000 9.791 0.78 1.015 0.513 0.236 0.078 0.000 9.701 9.78 7 0.000 9.791 0.78 1.015 0.513 0.236 0.078 0.000 9.701 9.78 7 0.000 9.791 0.78 1.015 0.513 0.236 0.078 0.000 9.791 0.78 10.000 9.791 0.78 1.010 0.551	7.908 5.236 3.200 1.981 1.145 0.732 0.368 0.198 0.060 0.001 500 100 9.797 6.629 4.575 3.057 1.941 1.330 0.531 0.263 0.155 0.000 7.069 4.413 2.974 1.931 1.194 0.873 0.380 0.185 0.112 0.000 500 100 9.797 6.629 4.575 3.057 1.941 1.330 0.631 0.263 0.155 0.000 7.522 5.049 3.427 1.974 1.171 0.713 0.312 0.158 0.066 0.000 200 10.241 7.171 4.960 3.014 1.841 1.112 0.535 0.266 0.106 0.000 8.401 5.589 3.413 2.142 1.200 0.681 0.337 0.154 0.049 0.000 500 11.026 7.665 4.905 3.110 1.787 1.015 0.513 0.236 0.078 0.000 8.401 5.589 3.413 2.142 1.200 0.681 0.337 0.154 0.049 0.000 500 11.026 7.665 4.905 3.110 1.787 1.015 0.513 0.236 0.078 0.000 7.78 7.10 0.79 0.000 7.10 1.787 1.015 0.513 0.236 0.078 0.000 7.78 7.10 0.000 7.78 7.10 1.787 1.015 0.513 0.236 0.078 0.000 7.78 7.10 7.11 0.712 0.551 0.000 7.500 1.1026 7.665 4.905 3.110 1.787 1.015 0.513 0.236 0.078 0.000 7.7 1.75 7.10 7.551 7.1015 0.513 0.236 0.078 0.000 7.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	~	7.170	4.700	3.107	1.889	1.191	0.640	0.399	0.170	0.074	0.000		200	9.824	6.760	4.580	2.885	1.800	1.023	0.584	0.275	0.110	0.000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	~	7.908	5.236	3.200	1.981	1.145	0.732	0.368	0.198	0.060	0.001		500	10.504	7.252	4.640	2.901	1.696	1.043	0.529	0.271	0.088	0.001
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	7.069	4.413	2.974	1.931	1.194	0.873	0.380	0.185	0.112	0.000	500	100	9.797	6.629	4.575	3.057	1.941	1.330	0.631	0.263	0.155	0.000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8.401 5.589 3.413 2.142 1.200 0.681 0.337 0.154 0.049 0.000 500 11.026 7.665 4.905 3.110 1.787 1.015 0.513 0.236 0.078 0.000 Parameters of the dynamic panel data model, (29), are generated as: $a_i \sim IIDN(1,1)$, $\rho_{ix} \sim U(0,0.95)$, $\vartheta_i \sim U(0,0.95)$ and $\gamma_i = 0$, for $\lambda_{i,i}$. Non-Gaussian errors are generated as $u_{it} = \left(\frac{\chi^{-2}}{\chi^{2}_{v,i}}\right)^{1/2} \tilde{\nu}_{it}$, for $i = 1, 2, \dots, N$, $\tilde{\nu}_{it} \sim IIDN(0, 1)$ and $\chi^2_{v,t}$ is a chi-squared random variate with est of freedom, in (31). Design 1 assumes $b_i \sim U(0.7, 0.9)$ for the first $N_b (\leq N)$ elements of vector \mathbf{b}_N , $i = 1, 2, \dots, N$, in the construction of the dynamic panel as $b_i \sim U(0.7, 0.9)$ for the first $N_b (\leq N)$ elements of vector \mathbf{b}_N , $i = 1, 2, \dots, N$, in the construction of the dynamic panel as $b_i \sim U(0.7, 0.9)$.	~	7.522	5.049	3.427	1.974	1.171	0.713	0.312	0.158	0.066	0.000		200	10.241	7.171	4.960	3.014	1.841	1.112	0.535	0.266	0.106	0.000
Parameters of the dynamic panel data model, (29), are generated as: $a_i \sim IIDN(1,1)$, $\rho_{ix} \sim U(0,0.95)$, $\vartheta_i \sim U(0,0.95)$ and $\gamma_i = 0$, fo N . Non-Gaussian errors are generated as $u_{it} = \left(\frac{\chi^{-2}}{\chi^{2,i}_{V,t}}\right)^{1/2} \tilde{\nu}_{it}$, for $i = 1, 2, \dots, N$, $\tilde{\nu}_{it} \sim IIDN(0,1)$ and $\chi^2_{V,t}$ is a chi-squared random variate with $\tilde{\chi}_{it}$ for $i = 1, 2, \dots, N$, $\tilde{\nu}_{it} \sim IIDN(0,1)$ and $\chi^2_{V,t}$ is a chi-squared random variate with $\tilde{\chi}_{it}$ for $i = 1, 2, \dots, N$, $\tilde{\nu}_{it} \sim IIDN(0,1)$ and $\chi^2_{V,t}$ is a chi-squared random variate with $\tilde{\chi}_{it}$ for $i = 1, 2, \dots, N$, $\tilde{\nu}_{it} \sim IIDN(0,1)$ and $\chi^2_{V,t}$ is a chi-squared random variate with $\tilde{\chi}_{it}$ for $\tilde{\chi}_{it} \sim IIDN(0,1)$ and $\tilde{\chi}_{it} \sim IDN(0,1)$ and $\tilde{\chi}$	Parameters of the dynamic panel data model, (29), are generated as: $a_i \sim IIDN(1,1)$, $\rho_{ix} \sim U(0,0.95)$, $\vartheta_i \sim U(0,0.95)$ and $\gamma_i = 0$, fo , N. Non-Gaussian errors are generated as $u_{it} = \left(\frac{v-2}{\chi_{v,t}^2}\right)^{1/2} \tilde{\nu}_{it}$, for $i = 1, 2, \dots, N$, $\tilde{\nu}_{it} \sim IIDN(0,1)$ and $\chi_{v,t}^2$ is a chi-squared random variate with es of freedom, in (31). Design 1 assumes $b_i \sim U(0.7, 0.9)$ for the first $N_b (\leq N)$ elements of vector \mathbf{b}_N , $i = 1, 2, \dots, N$, in the construction of the		8.401	5.589	3.413	2.142	1.200	0.681	0.337	0.154	0.049	0.000		500	11.026	7.665	4.905	3.110	1.787	1.015	0.513	0.236	0.078	0.000
, N. Non-Gaussian errors are generated as $u_{it} = \left(\frac{v-2}{\chi_{v,t}^2}\right)^{1/2} \tilde{\nu}_{it}$, for $i = 1, 2, \dots, N$, $\tilde{\nu}_{it} \sim IIDN(0, 1)$ and $\chi^2_{v,t}$ is a chi-squared random variate with	, N. Non-Gaussian errors are generated as $u_{it} = \left(\frac{v-2}{\chi_{v,t}^2}\right)^{1/2} \tilde{\nu}_{it}$, for $i = 1, 2, \dots, N$, $\tilde{\nu}_{it} \sim IIDN(0, 1)$ and $\chi_{v,t}^2$ is a chi-squared random variate with es of freedom, in (31). Design 1 assumes $b_i \sim U(0.7, 0.9)$ for the first $N_b (\leq N)$ elements of vector \mathbf{b}_N , $i = 1, 2, \dots, N$, in the construction of the		Paran	neters	of the	dynan	nic par	el data	a mode	1, (29)	are ge	merated	l as:	a_i ,	$\sim IID$	N(1, 1)	$, \rho_{ix}$	~ U(((0.95)	$\vartheta_i \sim$	U(0, 0)	95) ar	$d \gamma_i =$	= 0, foi
$\sum_{i=1}^{N} f_{i} = 1.91$ During 1 common k = 1700 km the flact N. (< N) aloments of motor k = 0.0 in the construction of the	ses of freedom, in (31). Design 1 assumes $b_i \sim U(0.7, 0.9)$ for the first $N_b (\leq N)$ elements of vector \mathbf{b}_N , $i = 1, 2, \ldots, N$, in the construction of the	•	, N. N	on-Ga	ussian	errors	are ger	nerated	as u_{it}	$=\left(\frac{v-2}{\sqrt{2}}\right)$	$\left(\frac{1}{\tilde{\nu}}\right)^{1/2}$	i, for i	= 1,	2,	, $N, \tilde{\nu}_{it}$	$\sim III$	N(0,	1) and	$\chi^2_{\mathrm{v},t}$ is	a chi-s	squared	l rando	m varia	te with
	Set of ite doubly in (01). Design 1 assumes $v_1 \sim v(v_1, v_2)$ for the first $v_1(-x, v_1)$ elements of vector \mathbf{U}_N , $i = 1, 2, \dots, x^1$, in the volus of vector \mathbf{U}_N and		h fo soc	mober	in (3	1) Da	ei an 1	o m noo o	ы. р. с	11(0.7)	() 0) for	+ha fire	4+ N.	$\sum_{i=1}^{n}$	W alam	ionte of	. monto	4	- - -	~	V in +]	onos od	بمنامينيه	of the

testing procedure shown in (23). The number of replications is set to R = 2000.

Table S1d: Bias and RMSE ($\times 100$) for the $\tilde{\alpha}$ estimate of the cross-sectional exponent of the errors from a dynamic panel data model with no exogenous regressors

	•
	τ
	:
n CTN C	¢
D D D	
50 D	۴
n n	
IT O	
20 20	
ž	
	•
	-

						Crc	SS COL	elations	are gei	nerated	using I	Design	ı 2 wi	th non-	Gaussi	an erro	STG						
	σ	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00		σ	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00
				$c_p(n)$	(δ) with	n = N(1)	V - 1)/2	2 and p =	: 0.05							$c_p(n,\delta)$) with <i>n</i>	= N(N)	(-1)/2	and $p =$	0.10		
						$\delta = \delta$	1/2											$\delta = \delta$	1/2				
Ð	z					B	ias						_					Bi	IS				
100	100	1.186	-0.898	-2.047	-2.570	-3.052	-3.125	-3.605	-3.814	-3.780	-3.820	100	100	2.840	0.564 -	0.764	-1.430	-2.018	-2.163	-2.693	-2.935	-2.926	-2.989 3.160
	200	0.712	-1.004 -1.198	-1.983 -2.406	-2.805 -3.140	-3.320 -3.569	-3.493 -3.722	-3.734 -3.886	-4.008	-3.909 -4.101	-3.970 -4.159		200	2.201 (2.201 (J.308 - J.073 -	0.797 1.310	-1.811 -2.173	-2.301 -2.686	-2.393 -2.889	-2.894 -3.081	-2.973 -3.215	-3.08/ -3.314	-3.10U -3.375
200	100	2.816	1.279	0.648	0.531	0.198	0.241	-0.187	-0.370	-0.345	-0.424	200	100	4.235	2.349	1.391	1.043	0.563	0.508	0.021	-0.205	-0.205	-0.304
	200	2.495	1.215	0.809	0.255	-0.007	-0.049	-0.242	-0.291	-0.368	-0.434		200	3.846	2.171	1.441	0.686	0.290	0.168	-0.070	-0.149	-0.241	-0.317
1	500	2.592	1.330	0.625	0.174	-0.084	-0.147	-0.266	-0.350	-0.419	-0.469	-	500	3.906	2.212	1.194	0.544	0.168	0.036	-0.118	-0.220	-0.299	-0.352
500	100	3.405	1.873	1.221	1.125	0.752	0.798	0.355	0.124	0.127	-0.002	200	100	4.805	2.872 797	1.872	1.520	0.993	0.933	0.432	0.163	0.142	-0.001
	200	3.125	1.824	1.398	0.686	0.425	0.403 0.350	0.200	0.130	0.094 0.059	-0.002		200	4.487	2.730 2.713	1.948 1.649	1.143 0.958	0.708 0.569	0.305 0.422	0.320	0.212	0.104 0.065	-0.001
F	z					RN	ISE					H	z					RM	SE				1000
100	100	2.409	2.073	2.718	3.131	3.556	3.628	4.059	4.266	4.243	4.287	100	100	3.644	2.010	1.860	2.119	2.539	2.647	3.107	3.338	3.341	3.408
	200	2.287	2.057	2.599	3.322	3.753	3.940	4.197	4.254	4.358	4.418		200	3.404	1.901	1.771	2.336	2.786	3.011	3.296	3.377	3.492	3.564
	500	2.169	2.100	2.899	3.554	3.972	4.144	4.319	4.442	4.538	4.595	-	500	3.160	1.817	2.021	2.622	3.071	3.278	3.476	3.611	3.712	3.773
200	100	3.281	1.792	1.110	0.820	0.509	0.451	0.401	0.507	0.487	0.548	200	100	4.637	2.751	1.728	1.249	0.737	0.609	0.289	0.339	0.337	0.406
	200	2.867	1.563	1.026	0.508	0.349	0.321	0.404	0.434	0.493	0.549		200	4.179	2.465	1.623	0.842	0.441	0.309	0.262	0.291	0.352	0.413
	500	3.184	1.857	1.057	0.575	0.378	0.334	0.392	0.459	0.520	0.566	-	200	4.412	2.662	1.548	0.824	0.415	0.263	0.257	0.320	0.385	0.434
500	100	3.764	2.240	1.498	1.264	0.840	0.829	0.385	0.159	0.146	0.009	500	100	5.119	3.185	2.118	1.660	1.084	0.970	0.465	0.196	0.161	0.008
	200	3.402	2.053	1.517	0.892	0.561	0.477	0.275	0.192	0.100	0.004		200	4.736	2.948	2.075	1.231	0.757	0.584	0.330	0.217	0.110	0.003
	500	3.518	2.167	1.357	0.815	0.500	0.378	0.233	0.138	0.061	0.005	-	200	4.792	2.983	1.844	1.089	0.648	0.454	0.270	0.154	0.067	0.004
						$\delta =$	1/3											$\delta = \zeta$	1/3				
H	Z					B	las					Ð	Z					Bi	1S				
100	100	5.161	2.533	0.852	-0.095	-0.901	-1.189	-1.810	-2.115	-2.149	-2.246	100	100	8.034	1.962	2.799	1.420	0.299	-0.228	-0.993	-1.402	-1.505	-1.651
	200	5.538	2.858	1.192	-0.184	-1.004	-1.417	-1.820	-1.972	-2.122	-2.218		200	8.408	5.235	3.039	1.248	0.099	-0.543	-1.085	-1.330	-1.531	-1.658
	500	6.093	3.222	1.169	-0.209	-1.067	-1.483	-1.794	-1.989	-2.117	-2.193	-	500	8.928	5.545	2.958	1.121	-0.073	-0.712	-1.151	-1.415	-1.578	-1.672
200	100	6.311	3.936	2.505	1.789	1.068	0.846	0.263	-0.033	-0.078	-0.206	200	100	8.966	5.036	4.030	2.820	1.755	1.287	0.550	0.151	0.037	-0.136
	200	6.569	4.157	2.760	1.563	0.856	0.535	0.187	0.036	-0.095	-0.195		200	9.248	5.224	4.195	2.534	1.474	0.914	0.424	0.182	0.000	-0.131
	500	7.481	4.754	2.859	1.586	0.812	0.442	0.159	-0.012	-0.124	-0.195	-	500 - 1	10.137	3.805	4.295	2.513	1.372	0.766	0.350	0.107	-0.043	-0.135
500	100	6.848	4.402	2.908	2.167	1.397	1.164	0.563	0.229	0.167	-0.001	500	100	9.485	3.474	4.392	3.140	2.019	1.528	0.775	0.337	0.207	0.000
	200	7.225	4.701	3.206	1.933	1.170	0.818	0.453	0.274	0.126	0.000		200	9.885	3.757	4.617	2.867	1.741	1.140	0.625	0.355	0.156	0.000
E	500	8.051	5.221	3.235	1.890	1.079	0.681	0.381	0.204	0.084	-0.001	E	200	0.685	7.261	4.654	2.787	1.596	0.953	0.515	0.262	0.103	0.000
		7 1 1	0100	000	1 004	VIVI	1 100	001.0	0170	0140	1 10 0			1	100	0.00%	1 000	TATAT		100	101	1 00 1	1000
100	000	0.711 6.071	3.240	1 050	1 200	1.534	1 895	2.192	2.410 9.317	2.013 9.464	2.014	TUU	001	8 785 8 785	0.094 5.643	0.200 3.441	1.750 1	1.143	110.1	1.30 <i>1</i> 1.431	1.640 1.640	1.024 1.898	1.907 1.950
	500	6.602	3.810	1.944	1.247	1.526	1.840	2.125	2.313	2.441	2.517		200	9.285	5.935	3.376	1.651	0.956	1.127	1.463	1.702	1.861	1.955
200	100	6.638	4.256	2.771	1.960	1.195	0.911	0.363	0.211	0.214	0.286	200	100	9.217	3.285	4.244	2.967	1.863	1.342	0.605	0.231	0.155	0.197
	200	6.831	4.394	2.923	1.685	0.941	0.585	0.264	0.173	0.198	0.266		200	9.449	3.415	4.341	2.647	1.551	0.954	0.459	0.223	0.127	0.186
	500	7.822	5.079	3.131	1.793	0.953	0.521	0.229	0.139	0.193	0.252	-	500 1	0.389	2.060	4.522	2.695	1.499	0.836	0.390	0.150	0.115	0.179
500	100	7.100	4.652	3.115	2.299	1.489	1.206	0.598	0.260	0.185	0.007	500	100	9.675	3.665	4.560	3.259	2.107	1.574	0.812	0.366	0.224	0.006
	200	7.419	4.878	3.331	2.026	1.227	0.844	0.467	0.281	0.132	0.001		200 1	10.032	5.900	4.730	2.956	1.800	1.171	0.642	0.363	0.161	0.001
	500	8.267	5.427	3.405	2.015	1.160	0.721	0.400	0.211	0.086	0.002	-	500 1	0.845	7.423	4.798	2.902	1.675	0.996	0.537	0.271	0.107	0.002
$\ ^{\mathrm{Z}}$	otes:	Parat	neters	of the	dvnam	ic pane	el data	model.	(29).	are gen	erated	as: a	2	IIDN (1,1).	0 _{ir} <	U(0, 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;	$(35), \vartheta_i$	~ U(0, 0.95	and γ_i	-0 -	for
i = 1.	2	N. D	esign 2	assum	es a two	>-factor	model	with $[N]$	$\left[\int_{\alpha_{s}} \right]$ and	$\frac{1}{N_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_$	non-ze	ro loa	dings	for the	first a	nd secc	nd fact	or, rest	sectivel	ly. We s	set: α_{RS}	$=2lpha_{eta}$	/3.
-	~) -	-	(ر -		- f	ر مي د		_			-		$\left(\frac{1}{v-2} \right)^{-1}$	l/2 _	۰ ب	c -		~		Ţ
wnere	α_{β}]	relates	toαι	mder (11) and	1 J_{jt}	NALL	U, 1). I	von-Ga	ussian (errors a	re ge	nerate	ed as:	$u_{it} =$	$\left(\frac{\overline{\chi_{v,t}^2}}{\chi_{v,t}^2}\right)$	$\nu_{it},$	IOF $i =$	= 1, Z, .	, ^I V, 1	$v_{it} \sim I$	n) NITI	, 1)
and λ	$\sum_{v,t}^{2}$ is	s a chi	-squar(3d ranc	lom vai	riate w.	ith v=	8 degr	ees of	freedom	n, in (3	1).	$v_{ij} \sim$	IIDU	$(\mu_{v_j} -$	$0.2, \mu_v$	$_{j} + 0.2$	(j), j = j	1, 2, 1	$\mu_v = 0$	$.87, \mu_{n}$	$^{2} = 0.$	71,

 $\mu_{v_1} = \sqrt{\mu_v^2 - N^{2(\alpha_{\beta_2} - \alpha_{\beta})}\mu_{v_2}^2}$, in (32) and (33). The number of replications is set to R = 2000.

Table S2a: Bias and RMSE ($\times 100$) for the $\tilde{\alpha}$ estimate of the cross-sectional exponent of the errors from a static panel data model

					С,	Ó OSS COI	relatio	ns are g	generate	guisu be	5 Desig	gn 1 v	vith Ga	ussian a	and no	n-Gaus	ssian er	rors				
5	۲ 0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00		σ	0.55	0.60	0.65	0.70	0.75 ().80 ().85 () 06.().95	1.00
		c_p	(n,δ) wi	th n =	N(N -	$1)/2, \delta$	= 1/4 a	p = 0 nd $p = 0$.05			_		$c_p(n,$	δ) with	n = N(N-1)/	$2, \delta = 1$	-/4 and	p = 0.10		
					Gaussi	an error	S									Ĝ	aussian	errors				
Ē					ш	ias											Bias					
100 1(0 3.11	7 1.451	0.736	0.466	0.220	0.294	-0.075	-0.179	-0.049	-0.002	100	100	5.785	3.470	2.112	.356 (0 627.0	.627 0	.124 -0)- 920.0	- 010.0	0.001
20	0 3.36	7 1.750	1.145	0.496	0.219	0.171	-0.009	0.006	-0.013	-0.003		200	5.148 :	3.757	2.441]	321 ().716 0 608 0	.453 0 455 0	.145 0	.082 0	- 016	0.001
10 11 006	10 0.914	2.214	161.1	0 E O E	017.0	202.0	0,070	0.000		-0.004			. 114 2016	1771 1771	L 014.2		0.090 0	0 074.	0 007.	0000 n	- 170.	2000
1007	10 3.20 10 3.401	0 1.493 1 851	1 203 1 203	0.508	0.220	0.312	-0.012	010.0	-0.040	0.000	700		0.040 6.931	0.400 845	- 100 C	25.0	0.734 0	.044 U 165 D	.123 -U 153 O	0.010.0	0100 018	000
7 V	10 0.49. 10 1 100		1 264	0.461	0 304	0.918	-0.104	010.0	010.01	0.000	• -		107.0 8 049	, 040. 1 2 2 8	2.439 J	116 (0 401.0	.400 143 0	0 001-20		010.	000
500 10	NU 1 4.1UN	1 2.009	1.204 0 803	0 500	0.950	0.210	101.04 0.069	0.174 0.174	0.011	0.000	200		0.942 ' 2 062 '	1.000 1.546	2.009 L	201 0	0 071.0	644 0 0 644 0	195 0 195 0		1 006	000
	07-0 01	1.001	1 000	0.209	0.62.0	0100	-0.000	-0.114 -0.114	-0.044	0.000	000		0.000	. 040.	701.2	1 196	0.000.0	0 440.	0- 171. 0- 171.	- 010.0	000.0	000
	00 3.000 1 3.000) 1.893	1.238	0.548	0.247	0.189	0.003	0.042	-0.006	0.000		002	0.299 7.000	5.884 1 106	2.033	208	0.741 0	471 U	0 /GT.	080. 0 100	0 7 10 10 10 10 10 10 10 10 10 10 10 10 10	0000
ñ ľ	JU 4.2U	2.400	100.1	100.0	CTC-D	0.440	001.0	0.040	0.000	0.000		000	, 020.1	t.400 .	100.2	1 604.	1.142 U	0 064.	0 777.	n 080.	.024	000.
T					Ч	4SE					1						KMS	า				
100 10	0 3.16	1.525	0.812	0.527	0.287	0.322	0.121	0.190	0.061	0.008	100	100	0.822	3.515	2.160	.398	.823 0	.657 0	.190 0	.125 0	.056	0.004
2(0 3.38	3 1.771	1.163	0.518	0.243	0.187	0.051	0.035	0.025	0.008		200	5.160	3.772	2.456]	.338	.733 0	.466 0	.164 0	.097 0	.036	0.004
20	0 3.918	3 2.220	1.196	0.619	0.281	0.205	0.098	0.039	0.012	0.011		200	3.778	1.224	2.473	.369 (.703 0	.429 0	.211 0	.091 0	.026 (000.
200 1(0 3.258	3 1.564	0.848	0.568	0.293	0.340	0.121	0.187	0.058	0.000	200	100	5.882	3.530	2.185]	.442 (.831 0	.675 0	.191 0	.124 0	.056 (000.
2(0 3.510) 1.875	1.221	0.550	0.262	0.198	0.053	0.036	0.021	0.000		200	5.244	3.861	2.514]	.368 (0.751 0	.478 0	.173 0	.100 0	.035 (000.
5	0 4.10	5 2.344	1.269	0.665	0.308	0.222	0.107	0.044	0.010	0.000		200	5.945	1.341	2.542]	.420 (.732 0	.446 0	.220 0	0 960.	.027 (000.
500 10	0 3.29	1.622	0.876	0.575	0.314	0.344	0.120	0.186	0.059	0.000	500	100	5.902	3.594	2.210]	.438 (.851 0	.675 0	.193 0	.125 0	.059 (000
2(0 3.58	1.916	1.255	0.570	0.270	0.206	0.055	0.039	0.022	0.000		200	5.312 ;	3.899	2.547	.385 (0.757 0	.486 0	.177 0	.103 0	.036 (000)
5	0 4.212	2.411	1.312	0.685	0.320	0.228	0.112	0.046	0.011	0.000		200	7.031	1.410	2.591	.443 (0.746 0	.454 0	226 0	0 860.	.028	000
				Z	on-Gau	ssian er	rors									Non-	-Gaussia	n errors				
Ľ					Г	ias					F	z					Bias					
100 1(0 8.568	5.689	3.724	2.532	1.512	1.081	0.402	0.062	0.036	-0.010	100	100	2.070 8	3.641	5.993	1.153 2	.608 1	0 622.	831 0	291 0	.127 -	0.006
2(0 9.530	6.389	4.333	2.622	1.569	0.929	0.408	0.203	0.054	-0.012		200 1	2.998).290 (3.524 ¢	1.199 2	2.621 1	.572 0	.777 0	.390 0	.127	0.007
5(0 10.72	4 7.428	4.649	2.841	1.607	0.920	0.459	0.198	0.050	-0.014		500 1	4.084 1	0.250 (3.836 4	1.378 2	2.595 1	.492 0	.770 0	.348 0	- 107	0.008
200 1(0 9.130) 6.188	4.168	2.735	1.680	1.223	0.470	0.098	0.061	0.000	200	100	2.583).125 (3.437	1.381 2	2.801 1	.935 0	0 606.	.331 0	.152 (000.
2(0 10.12	0 7.023	4.759	2.884	1.731	1.024	0.505	0.252	0.077	0.000		200 1	3.532	.905 (5.968 ¢	1.496 2	2.807 1	679 0	890 0	.444 0	.150 (000.
5(0 11.43	9 7.948	5.220	3.202	1.829	1.017	0.528	0.239	0.077	0.000		500 1	4.702 1	0.742	7.413 4	1.766 2	2.848 1	.606 0	.847 0	.390 0	.132 (000.
500 10	309.6 00	§ 6.544	4.379	2.909	1.809	1.277	0.500	0.132	0.071	0.000	500	100 1	3.054	.478 (3.676 4	1.564 2	2.959 2	0 200.	.948 0	.375 0	.166 (000.
2(0 10.73	9 7.425	5.053	3.082	1.833	1.144	0.523	0.269	0.086	0.000		200 1	4.108 1	0.304 '	7.279	1.715 2	2.934 1	.827 0	.914 0	.468 0	.161 (000)
5(0 12.20	6 8.470	5.529	3.365	1.947	1.106	0.570	0.255	0.085	0.000		500 1	5.404 1	1.243	7.734 4	1.956 2	2.993 1	.719 0	.902 0	.412 0	.142 (000)
E	-				RI	ASE											RMSI	Б				
100 1(00 8.90	6.084	4.058	2.823	1.740	1.224	0.595	0.266	0.123	0.029	100	100	2.305 8	3.914 (3.238 4	1.387 2	2.799 1	.917 0	.991 0	.436 0	.197 (0.018
2(0 9.88) 6.726	4.647	2.937	1.875	1.066	0.537	0.273	0.098	0.027		200 1	3.240).528 (3.764	1.449 2	2.867 1	.701 0	.891 0	.457 0	.166 (0.018
20	0 11.06	7 7.813	4.955	3.152	1.849	1.089	0.548	0.268	0.082	0.029		500 1	4.313 1	0.519	2.066	l.624 2	2.805 1	.649 0	.860 0	.414 0	.134 (0.018
200 1(0 9.390	0.467	4.466	2.949	1.871	1.381	0.614	0.257	0.129	0.001	200	100	2.760).319 (3.658	L552 2	2.961 2	.076 1	.033 0	.447 0	.210 (001
2(0 10.36	1 7.303	5.017	3.088	1.930	1.132	0.644	0.313	0.111	0.001		200 1	3.694 1	0.100	7.162 4	L.658 2	070 1	.778 1	.010 0	.503 0	.183 (000.
5(0 11.66	2 8.179	5.474	3.460	2.025	1.121	0.610	0.309	0.103	0.001		500 1	4.852 1	0.903	7.602 4	1.968 E	3.015 1	.705 0	.926 0	.454 0	.158 (000.
500 10	377.6 00	3 6.756	4.547	3.059	1.937	1.396	0.600	0.246	0.127	0.000	500	100	3.174).623 (3.800 4	1.685 3	3.068 2	.114 1	.035 0	.458 0	.215 (000)
2(0 10.93	1 7.603	5.212	3.213	1.941	1.245	0.598	0.313	0.113	0.000		200 1	4.235 1	0.427	2.399 4	1.820 5	0.026 1	.917 0	080 0	510 0	.188 (000
2(0 12.37	8 8.643	5.706	3.498	2.070	1.180	0.625	0.286	0.114	0.000		500	5.519 1	1.362	7.862	062	0.96 1	787 0	955 0	443 0	.169	000
						,											,					
$Not\epsilon$	s: Paraı	neters o	${ m f} \ { m the st}_{8}$	atic pa	nel dat	a mode	$^{\mathrm{el},(29)}$	are ger	lerated	as: $a_i \sim$	UII ,	N(1,	1), ρ_{ix}	~ U(0, ($(0.95), v_{1,0}$	$i_{i} = 0.8$	$nd \gamma_i $	~ IID	N(1, 1)	, for $i =$	= 1, 2, .	\ldots, N .
Gaussiar	errors	are gene	rated a	s u_{it} >	IIDI	V(0,1)	in (31)	. Non-	Gaussia	n errors	s are g	genera	ted as a	$t_{it} = \left($	$\left(\frac{v-2}{\sqrt{2}}\right)^{1/2}$	$\tilde{ u}_{it}$, fi	i = i	$1, 2, \dots$	$,N, ilde{ u}_i$	$_t \sim III$	ON(0, 1)) and
,2 is o	orio ida	non bon	dom m	rioto -	···+h ···	с 2 2 2	0 000400	f frondr	mi m	31) D	autoriou	1 9991	moe h.	• <i>11(</i> 0	700	for th	6 frot	N. (<	M ALA	nonte c	f worte	; P
$\chi_{v,t} \stackrel{\text{d}}{\to} a$	י: יN mhe-mo	י דףי יט. זרבת ומחו			-א דוחוא			17 ⁵ 57 71				וככיים ד ר			(90,1,90) 			$r = \frac{1}{2}$		$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	TACCIC	1 U N;
i = 1, 2,	· · , ¹ · , 1	u the cu	nstruct	10 101	the cut	relatio	n mau	11 01 101 .	e errurs	 	+, ~ 1	n N n	2 9 - 2 - 2	glven .	(ne) Ka	, WILLEL	е р и С	= LJIAB	· ·(N0)	$c_p(n, v)$	corres	ponus
to the cr	itical va	lue used	in the	multip	ole test	ing pre	ocedure	shown	in (23)	. The r	numbe	r of r	eplicatio	ons is s	et to <i>h</i>	$\xi = 200$	0.					

Table S2b: Bias and RMSE (×100) for the $\tilde{\alpha}$ estimate of the cross-sectional exponent of the errors from a static panel data model C_{max} commission and consistent of manual miner present of mith Conservation and non-Conservation arrays

	6	0.55	0.60	0.65	0.70	$\frac{\text{Cr}}{0.75}$	DSS COL	relations 0.85	s are ge 0.90	nerated 0.95	using L	Jesigr		th Gaus	Sian ar	0.65	-Gauss 0.70	ian err 0.75	OrS 0.80	0.85	0.90	0.95	1.00
	3		0	$\frac{\delta(n,\delta)}{\delta}$	$\operatorname{vith} n =$	-N(N -	$\frac{1}{2}, \delta =$	= 1/4 an	d p = 0.0	5			3		$c_p(n)$	δ with	n = N	(N-1)	$2, \delta =$	1/4 and	p = 0.1	0	
						Gaussi	an errors											aussian	errors				
F	N						ias					L	N					Bia	s				
100	100	3.000	1.154	0.241	-0.109	-0.553	-0.591	-1.078	-1.309	-1.300	-1.389 1 905	1001	00	.848 3	.447 1 690 5	1.981	.212 ().465 (0.211	-0.407	-0.735	-0.792	-0.931
	200	0.109 3.662	1.735 1.735	0.529	-0.212	-0.0555	-0.771	-1.028	-1.117	-1.215	-1.279	ч с.		.695 4	020 2	2.156 (.921 (1.210 - 1.159 -	0.206	-0.430 -0.493	-0.077 10.077	-0.808	-0.890
200	100	3.693	2.102	1.360	1.182	0.768	0.769	0.297	0.049	0.041	-0.079	200	00	.255 4	032 2	2.697 2	2.056	346	u.132	0.530	0.191	0.120	-0.046
	200	3.826	2.305	1.683	0.973	0.589	0.471	0.231	0.131	0.020	-0.075	. 1	000	.517 4	.250 2	2.952 j	.801	.105 (0.781	0.420	0.241	0.083	-0.044
	500	4.262	2.571	1.549	0.889	0.506	0.361	0.194	0.080	-0.00	-0.073	22	2 00	.065 4	.539 2	2.811	.654 (.951 (0.612	0.337	0.163	0.040	-0.044
500	100	3.829	2.241	1.509	1.335	0.914	0.908	0.432	0.172	0.150	0.000	000	00	.320 4	105	2.786 2	2.152	435	L.216	0.615	0.269	0.188	0.000
	200 200	3.934 4.410	2.440 2.707	1.679	1.002	0.614	0.461	0.287	0.170	011.0	0.000	4 6.7			. 53U 634 2	5.033 . 2.902 1	.731	.025 (0.679 0.679	0.398	0.221	0.094	0.000
H	z					RI	MSE					H	z					RMS	Έ				
100	100	3.080	1.365	0.835	0.847	1.033	1.059	1.414	1.596	1.590	1.672	100	00 5	.886 3	.501 2	2.076 I	.363 (.789 (0.675	0.786	0.996	1.040	1.158
	200	3.227	1.519	0.899	0.752	0.997	1.100	1.294	1.370	1.463	1.548		000	.133 3	.716 2	2.305	144 (.619 (0.572	0.730	0.855	0.978	1.086
0	500	3.675	1.789	0.771	0.676	0.948	1.092	1.240	1.348	1.439	1.499		000	.700	0.031	2.188	.022 (0.514 (0.564	0.736	0.881	0.993	1.068
200	100	3.732	2.143	1.393	1.205	0.790	0.785	0.329	0.140	0.120	0.120	200	00	.285 4	.061 2 260 2	2.721 2	0.075	362	L.144	0.548	0.226	0.153	0.074
	200	3.841 4 966	2.319 9 575	1.093 1.550	0.983	0.511	0.481	0.201	0.105	0.020	0.109	. 4 12		4 820. 1068 4	2 002.	2.901	. 808 656	054 0)./8/).615	0.429	0.170	0.103 0.063	0.065
500	100	3.867	2.277	1.535	1.349	0.925	0.916	0.203	0.194	0.168	0.000	200	, 9 00	.350 4	134 2	5 608 2	168	448 448	1.225	0.627	0.170	0.204	0.000
	200	3.968	2.452	1.824	1.106	0.716	0.590	0.351	0.237	0.121	0.000		000	.599 4	339 3	3.041 1	.886	.188	0.860	0.500	0.310	0.148	0.000
	500	4.414	2.710	1.681	1.003	0.615	0.462	0.287	0.171	0.077	0.000	2.5	2 00	.172 4	.636 2	2.904]	.732	.026 (0.680	0.399	0.222	0.095	0.000
						Von-Gau	ssian err	ors									Nor	-Gaussi	an erroi	s			
μ	Z					μ	ias					F	z					Bia	s				
100	100	7.973	4.917	2.785	1.443	0.326	-0.192	-0.939	-1.352	-1.454	-1.599	100 1	00	1.565 7	3 266.	5.259 5	3.336	. 756 (.878	-0.101	-0.684	-0.901	-1.123
	200	9.015	5.756	3.468	1.595	0.376	-0.308	-0.889	-1.162	-1.366	-1.504	. 1	200 1.	2.573 8	804 5	3.879	.441	737 (0.678	-0.143	-0.580	-0.880	-1.073
	500	10.440	6.818	3.962	1.870	0.471	-0.313	-0.837	-1.146	-1.338	-1.448	2.7	500 1:	3.866 9	9 062.	3.357 5	3.666	.752 ().582	-0.186	-0.638	-0.907	-1.056
200	100	8.979	6.043	4.031	2.821	1.765	1.298	0.565	0.161	0.052	-0.123	200	00	2.354 8	.843 6	3.165 4	1.314	. 785	1.939	0.970	0.395	0.172	-0.077
	200	10.036	6.865	4.660	2.858	1.683	1.041	0.501	0.224	0.023	-0.121		300 1:	3.395 9	.656 6	3.761 4	L.363 2	.676	l.648	0.860	0.421	0.124	-0.077
0 0 1	500	11.352	7.797	5.022	3.004	1.676	0.941	0.447	0.162	-0.011	-0.113	0	000 1 2	4.596 10	0.544 7	7.146	L.495	.625	1.491	0.749	0.320	0.069	-0.074
500	100	9.483	6.468 7.946	4.386	3.128	2.019	1.528	0.771	0.335	0.205	0.000	000	00	2.825 9	246	5.494 <u>-</u>	L.590	1001	2.122	1.124	0.517	0.273	0.000
	200	11 033	8 978	4.970 5.400	3.107 3.984	1.894	1.226 1.115	0.672	0.376 0.900	0.162	0.000	. 4 12	200 TC	3.810 I(000.0	- 1440 - 1 2 500 - 1	. 282. 766	. 855 896	L.790	0.983 0.867	0.420	0.216 0.156	0.000
E		DOC'TT	0.4.0	001-00	F07.0	B	MSE.	100.0	007-0	011.0	0,000	E		17 111	400.	000.		BMG	E	0000	077-0	0.100	0000
1001	100	8,292	5.272	3,162	1.856	1.039	0.938	1.318	1.652	1.761	1.901	100		8 6221	225	181	535	026	143	0.699	0.982	1.173	1.375
	200	9.347	6.109	3.800	1.975	0.995	0.889	1.228	1.463	1.655	1.789		00	2.794 9	037 6	3.097 5	.649	.949	0.962	0.653	0.882	1.132	1.310
	500	10.786	7.197	4.361	2.315	1.128	0.915	1.184	1.437	1.615	1.723	2.5	500 1 ⁻	4.095 10	0.043 6	3.620 2	3.929 2	.023 (0.944	0.676	0.918	1.146	1.288
200	100	9.208	6.276	4.232	2.961	1.870	1.356	0.621	0.232	0.146	0.181	200	00	2.515 9	.010 6	3.317 4	l.430 2	.875	1.993	1.014	0.430	0.205	0.121
	200	10.289	7.114	4.865	3.027	1.800	1.105	0.541	0.255	0.111	0.168	. 1	000	3.569 9	.836 6	3.923 4	1.504	. 781	l.712	0.896	0.439	0.147	0.112
	500	11.595	8.048	5.255	3.196	1.811	1.014	0.485	0.193	0.103	0.161	2.5	00 1	4.760 10	.721 7	7.323 4	L.653	. 746	l.563	0.787	0.338	0.099	0.1111
500	100	9.621	6.606	4.503	3.210	2.080	1.561	0.799	0.360	0.221	0.007	200	00	2.922 9	.346 6	j.586 4	r.660	.056	2.155	1.151	0.539	0.287	0.006
	200	10.642	7.390	5.088	3.202	1.961	1.262	0.692	0.385	0.168	0.001		00	3.910 10	0.110 7	7.139	l.664	.916	l.828	1.005	0.536	0.222	0.001
	200	12.082	8.434	5.548	3.410	1.986	1.169	0.625	0.311	0.119	0.001		00	5.213 11	.101 7	7.619 4	.867	. 906	1.691	0.896	0.434	0.161	0.001
	lotes:	Param	eters o	f the st	atic pa	nel data	a model	$(29), \varepsilon$	re gene	rated as	$a_i \sim I$	IDN	(1,1)	, $\rho_{ix} \sim 0$	U(0, 0.9	$95), \vartheta_i$	= 0 ar	$\gamma_i \sim \gamma_i$	IIDN	$^{r}(1,1),$	for $i =$	$1, 2, \ldots$,N.
Desi£	п 2 ⁸	assumes	a two	-factor	model	with [.	$N_{\alpha_{\beta}}$ at	nd $[N_{\alpha_{\beta}}]$	²] non-2	cero loa	dings fo	r the	first	and sec	ond fac	ctor, re	specti	vely. V	Ve set:	$\alpha_{\beta 2} =$	$= 2 \alpha_{eta}/3$	3, where	α_{β}
relat	s to e	α under	; (11) ;	and f_{j_i}	$\sim IID$	N(0,1)	. Gaus	sian eri	ors are	given b	y: u _{it} c	S IIL	N(0,	1) and	non Ga	aussian	error:	s are g	enerate	ed as: 1	$u_{it} = ($	$\left(\frac{v-2}{v^2}\right)^{1/2}$	$ ilde{ u}_{it},$
for i	= 1, 2	\dots, N	, $\tilde{\nu}_{it} \sim$	IIDN	$^{r}(0,1)$ $arepsilon$	and $\chi^2_{\mathrm{v},t}$	is a ch	ii-square	ed rand	om vari	ate with		degr	ees of fr	eedom	$\sin (3)$	$[]. v_{ij}$	$\sim IID$	$U(\mu_{v_i}$	$-0.2, \mu$	$u_{v_i} + 0$.	(2), j = 2	1, 2,
	0.87		11 LZ C		/	$T2(\alpha_{B2} -$	αβ),2	in (39	, pue (14) Th	ներոնեն	م	ومزامد	tione ie	+	c - a	, UUU		3 ;		s		
$\mu_v -$	0.01,	$\mu_{v_2} = 0$	μ, μ	$v_1 = \sqrt{1}$	$\mu \bar{v} = 1$	11-1-1	$^{-\mu}$, $\mu \bar{v}_{2}$)	, III (J 2) anu (лтт .(ee		I OI I	ennda	er stintn	ser ro	P = 1	nuu.						

Table S2c: Bias and RMSE ($\times 100$) for the $\tilde{\alpha}$ estimate of the cross-sectional exponent of the errors from a dynamic panel data model with exogenous regressors

						C_{r}	oss co	rrelatio	ns are a	generate	ed using	Desi	gn 1 v	vith Ga	ussian	and nc	n-Gau	ssian e	rrors				
	α	.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00		α	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00
			$c_p(r$	(δ) wit	h n = 1	N(N -	$1)/2, \delta$	= 1/4 a	p = 0	.05					$c_p(n,$	δ) with	n = N	(N-1)	$/2, \delta =$	1/4 and	$1 \ p = 0.$	10	
						Gaussi	an erroi	s										aussian	errors				
H	z					ш	ias					H	z					Bia	s				
100	100 3	.118	1.431	0.731	0.469	0.217	0.295	-0.074	-0.179	-0.048	-0.003	100	100	5.795	3.451	2.105	1.357	0.780	0.631	0.123	-0.075	-0.008	-0.001
	200 500 3. 3	$378 \\ 916 $	1.759 2.212	1.154 1.190	$0.494 \\ 0.611$	0.218 0.275	$0.170 \\ 0.201$	-0.010	0.005 0.034	-0.015	-0.004 -0.005		200	5.150 5.783	$3.770 \\ 4.218$	2.457 2.466	1.321 1.363	0.717 0.697	0.453 0.424	$0.146 \\ 0.208$	$0.082 \\ 0.087$	$0.014 \\ 0.020$	-0.002 -0.002
200	100 3.	169	1.506	0.773	0.502	0.238	0.312	-0.069	-0.176	-0.046	0.000	200	100	5.829	3.494	2.147	1.388	0.795	0.640	0.125	-0.075	-0.008	0.000
	200 3.	510	1.847	1.206	0.533	0.240	0.186	0.002	0.012	-0.010	0.000		200	5.257	3.845	2.503	1.364	0.736	0.468	0.157	0.087	0.018	0.000
	500 4.	; 260.	2.342	1.265	0.658	0.303	0.219	0.104	0.042	0.005	0.000	-	200	5.937	4.342	2.540	1.413	0.727	0.444	0.217	0.094	0.024	0.000
500	100 3.	242	1.546	0.801	0.516	0.250	0.315	-0.069	-0.172	-0.045	0.000	500	100	5.851	3.528	2.170	1.398	0.806	0.642	0.125	-0.072	-0.007	0.000
	200 3.	568	1.889	1.240	0.549	0.252	0.187	0.005	0.012	-0.010	0.000		200	5.308	3.885	2.529	1.375	0.747	0.468	0.159	0.086	0.017	0.000
	500 4	:201	2.401	1.309	0.681	0.317	0.224	0.107	0.043	0.006	0.000		200	7.024	4.399	2.589	1.440	0.745	0.449	0.221	0.096	0.025	0.000
H	z					RI	ИSE					H	z					RMS	E				
100	100 3	.171	1.500	0.809	0.528	0.282	0.321	0.121	0.191	0.062	0.008	100	100	5.833 6.163	3.494 2.765	2.152	1.399	0.825	0.659 167	0.188	0.124	0.058	0.004
	5 00 5 00 5	, 160 160	10/-1	1.1.05 1.105	0.010	0.980	0.205	200.0	0.040	0.015	0.019	-		0.105 8 787	0.100 1991	2.471 9.470	1.00.1	0.701	1.407 1.498	0.100	0.001	0.035	0.006
006	000 100	. 126. 990	1 577	1.190 0.845	01010	0.200	0.270	0.110	0.040	0.050	0000	006		0.101 5.865	4.441 2 538	2.4(U 9 109	1 490	0.830	0.420 0.670	0.100	0.199 0.199	0.056	0.000
007	200 3	.529	1.869	1.224	0.555	0.264	0.201	0.055	0.038	0.022	0.000	007	500	6.270	3.860	2.517	1.380	0.753	0.0.0	0.178	0.103	0.035	0.000
	500 4.	102	2.347	1.270	0.663	0.308	0.222	0.107	0.045	0.010	0.000		000	5.940	4.345	2.545	1.417	0.731	0.447	0.221	0.097	0.027	0.000
500	100 3.	291	1.615	0.877	0.578	0.313	0.343	0.120	0.186	0.058	0.000	500	100	5.884	3.573	2.219	1.444	0.850	0.671	0.194	0.126	0.057	0.000
	200 3.	588	1.911	1.257	0.570	0.276	0.202	0.056	0.039	0.023	0.000		200	5.321	3.901	2.543	1.391	0.764	0.481	0.180	0.103	0.035	0.000
	500 4.	:207	2.406	1.313	0.686	0.322	0.228	0.111	0.046	0.011	0.000	-	200	7.027	4.403	2.593	1.444	0.749	0.452	0.225	0.099	0.028	0.000
					Ž	on-Gau	ssian er	rors									Nor	-Gaussi	an erro	S			
H	z						ias					H	z					Bia	0				
100	100 8.	.447	5.562	3.677	2.417	1.491	1.079	0.381	0.057	0.032	-0.012	100	100	1.973	8.498	5.932	4.013	2.585	1.768	0.805	0.286	0.124	-0.007
	200 9.	.340 (5.220	4.231	2.548	1.460	0.907	0.405	0.192	0.051	-0.015		200 1	2.809	9.116	6.417	4.116	2.496	1.543	0.778	0.375	0.126	-0.009
	500 10	.588 `	7.135	4.657	2.749	1.587	0.886	0.433	0.191	0.047	-0.017	-	500 1	3.950	9.966	6.836	4.270	2.569	1.448	0.736	0.340	0.105	-0.010
200	100 9.	.172 (3.148	4.076	2.673	1.674	1.191	0.468	0.110	0.058	0.000	200	100	2.636	9.066	6.349	4.291	2.795	1.901	0.900	0.343	0.146	0.000
	200 10).146 (3.941	4.761	2.886	1.692	1.040	0.493	0.245	0.078	0.000		200	3.554	9.818	6.965	4.486	2.761	1.695	0.874	0.435	0.151	0.000
	500 11	.429	7.889	5.192	3.109	1.784	1.002	0.526	0.238	0.078	0.000	-	500 1	4.698	0.680	7.381	4.666	2.792	1.586	0.843	0.389	0.133	0.000
500	100 9.	.551 (5.522	4.375	2.858	1.797	1.278	0.505	0.124	0.067	0.000	500	100	3.003	9.468	6.681	4.519	2.939	2.009	0.950	0.362	0.160	0.000
	200 10	.626	7.339	5.016	3.082	1.849	1.115	0.529	0.261	0.086	0.000		200 1	4.002	0.220	7.242	4.716	2.952	1.790	0.921	0.457	0.161	0.000
	500 12	0.160	3.434	5.549	3.413	1.926	1.135	0.564	0.255	0.080	0.000		500	5.355]	1.209	7.757	5.006	2.970	1.751	0.894	0.413	0.137	0.000
H	z					R	ИSE					H	z					RMS	E				
100	100 8	.793	5.928	4.009	2.737	1.723	1.271	0.531	0.263	0.126	0.031	100	100	2.213	8.756	6.182	4.264	2.780	1.936	0.932	0.431	0.198	0.019
	200 9	. 661	5.547	4.530	2.851	1.680	1.063	0.532	0.277	0.107	0.037		200	3.029	9.348	6.646 1.001	4.355	2.680	1.687	0.891	0.453	0.171	0.024
006		0767	1.431 2.449	4.990	3.U23 9.07	1.001	1 226	010.0	0.202	0.195	0.0059	006		4.1/0 1.4.1	0/T/0	1.001 6 597	4.492 4.460	110.2	1.009 0.050	0.010 1 069	0.496	0.134	0.020
700		.442	0. 11 .0 7 9.4.4	±.000 5 0.47	3 190	1.870	1 177	0.0.0	0.304 0.316	0.1250	0.003	007		2 7 2 5 7 1	9.271 0.090	7 173	4.403 1.675	2.341 9 010	2.020	1.001 0 001	0.400 0.400	0.200	100.0
	200 11	643 S	8 1 9 8	2767	3 208	1 070	110/	0.615	0.909	0.114	0.000			001.0	0.846	C82 2	1 890	9 059	1.681	0.098	0.479	0 167	0.000
500	100 10	0±0 733 (5.120 5.723	4.559	9.480 2.980	1 929	1.377	0.612	0.252	0.122	10000	200		3.125	0.607 0.607	6.815 6.815	±.020 4 624	3.049	1001	1 042	0.455	0.200	0.000
200	200 10	773	7 524	5 191	3 233	1 965	1 212	0.650	0.301	0 116	0.000	2		4 101 1	0.346	7 371	4 834	3.051	1 875	1 018	0.495	0.189	0.000
	500 12	.328	8.570	5.726	3.576	2.044	1.246	0.624	0.284	0.093	0.000		200	5.468	1.304	7.885	5.133	3.070	1.847	0.951	0.442	0.150	0.000
Noi	es: P ₆	tamet	ers of	the d	ynamie	c pane	l data	model	(29),	are gen	erated a	S: a_i	$\sim II$	DN(1,	$1), \rho_{ix}$	$\sim U(0$	(0.95)	, $\vartheta_i \sim$	U(0,0	.95) aı	$\gamma_i \gamma_i$	UIID	V(1,1)
for $i =$	$1, 2, \ldots$., N.	Gauss	ian en	tors at	e gene	rated	as u_{it} ,	$\sim IID$	V(0, 1)	in (31).	Non-	-Gaus	sian erı	ors are	gener	ated a	$u_{it} =$	$\left(\frac{v-2}{2\sqrt{2}}\right)$	$ ight)^{1/2} ilde{ u}_{i_i}$	$_t$, for i	= 1, 2,	\dots, N
ĩT	IDMUT	(1 (од 2,2 2		rbi ear	porer		oirer v	to with	0	Journon	of fro	mobo	in <i>1</i> 31		- L	0001100	, p	11007	/ 0 0) f.	tho	Greet M.	
$\nu_{it} \sim I$		л, ⊥) а. Т	. χ _ν ,	t 10 α	uru-adi		Innin	TT A0110			1021601		Inone			ын та 1 - 1 - 1		? . 0 0 0	1.0/0.	1 (0.0)			
element	s of ve	ctor b	N, i = 1	1, 2, .	\ldots, N	in the	constr	uction	of the c	orrelati	on matr	IX OI 1	she en	rors, H	$v = \mathbf{I}_N$	$\mathbf{p}_N \mathbf{q}$	n – 12	N give	ם by (כ	0), wn	ere b _N	, = Ліа	$g(\mathbf{p}_N)$
$c_p(n,\delta)$	corres	ponds	to the	critic	al valı	le use	l in th	e multi	ple test	ing pro	cedure	shown	in (2	3). The	amun e	er of re	eplicat	ions is	set to	R = 2	000.		

Table S2d: Bias and RMSE ($\times 100$) for the $\tilde{\alpha}$ estimate of the cross-sectional exponent of the errors from a dynamic panel data model with evogenous regressors

	ě
	,
	ě
	1
CID	,
000	,
	1
D	,
20	
Ð	
	1

	ç	и С	0.60	0.65	0.70	O 7E	COSS COL	relation	is are g	enerate	d using	Desig	– ¤ 5 – ₹	rith Gau	usian a	nd noi	n-Gaus	sian er 0 75	rors	0 87 2	00.0	0.05	1 00
	3	0000		$\frac{0.00}{n}$	$\frac{0.00}{\text{with }n}$	= N(N -	$\frac{0.00}{1}$	= 1/4 ar	b = 0	05	T.00		3	00.0	$c_{p}(1)$	$\frac{0.00}{n}$ wit	h n = N	V(N-1)	$\frac{0.00}{1/2, \delta} =$	1/4 and	p = 0.1	0	1.00
				x v		Gaussi	ian error	s										Gaussia	n errors				
H	z						3ias					н	z					Bi	as				
100	100	2.937	1.072	0.123	-0.244	-0.710	-0.755	-1.231	-1.471	-1.460	-1.555	100	100	5.779	3.382	1.900	1.113	0.353	0.095	-0.515	-0.850	-0.907	-1.050
	200	3.160	1.347	0.512	-0.315	-0.740	-0.908	-1.162	-1.250	-1.366	-1.452		200	6.113	3.655	2.200	0.947	0.210	-0.163	-0.545	-0.716	-0.880	-0.997
000	500	3.620	1.662	0.436	-0.331	-0.784	-0.957	-1.142	-1.268	-1.368	-1.435	000	500	6.666	3.972	2.092	0.837	0.066	-0.306	-0.603	-0.790	-0.922	-1.008
200	100	3.709	2.103	1.308 1.600	1.185 0.070	0.759	0.755	0.280	0.042	0.032	-0.090	200	100	0.270	4.043	2.7.08	2.003	1.341	1.124	0.100	0.188	0.115	-0.052
	200	3.807 1 961	2.290	1 540	0.950	0.504	0.459	0.1217	0.1.20	0.010	-0.084		200	0.494 7.057	4.229 1 533	2.939 9 808	1.783 1.640	1.094 0.048	0.600	0.409	0.232	0.077 0.030	-0.050
500	100	4.204 3 840	21012 9 950	1 510	0.000	0.004 0.091	0.014	0.431	0.179	0.159	0000	500		6 358	4.000 A 135	2.000 9 809	9 163	0.340 1 AA7	0.00 <i>9</i> 1 226	0.004 0.615	101-0	0.101 0	0.000
000	200	3.955	2.440	1.818	1.099	0.709	0.587	0.345	0.233	0.114	0.000	000	200	6.603	4.333	3.042	1.881	1.183	0.856	0.494	0.306	0.142	0.000
	500	4.407	2.704	1.675	1.001	0.614	0.461	0.287	0.170	0.075	0.000		200	7.166	4.630	2.898	1.729	1.024	0.679	0.398	0.222	0.094	0.000
F	z					R	MSE					H	z					RM	SE				
100	100	3.023	1.327	0.863	0.947	1.187	1.223	1.567	1.769	1.758	1.847	100	100	5.820	3.447	2.011	1.305	0.777	0.712	0.880	1.119	1.162	1.287
	200	3.200	1.471	0.874	0.844	1.110	1.247	1.450	1.523	1.632	1.711		200	6.129	3.683	2.259	1.100	0.629	0.644	0.841	0.964	1.103	1.205
	500	3.635	1.730	0.757	0.787	1.094	1.248	1.412	1.524	1.616	1.681		500	6.671	3.984	2.133	0.974	0.552	0.663	0.864	1.015	1.130	1.209
200	100	3.747	2.142	1.403	1.210	0.783	0.774	0.320	0.141	0.126	0.138	200	100	6.305	4.072	2.733	2.082	1.358	1.137	0.539	0.222	0.152	0.085
	200	3.823	2.305	1.679	0.967	0.589	0.471	0.240	0.150	0.088	0.120		200	6.505	4.239	2.946	1.791	1.101	0.778	0.418	0.243	0.100	0.074
	500	4.268	2.575	1.552	0.890	0.510	0.364	0.202	0.103	0.068	0.103		500	7.059	4.536	2.810	1.651	0.951	0.612	0.338	0.168	0.060	0.065
500	100	3.877	2.283	1.535	1.354	0.932	0.921	0.443	0.196	0.170	0.000	500	100	6.386	4.162	2.825	2.178	1.460	1.235	0.627	0.289	0.206	0.000
	200	3.969	2.453	1.826	1.105	0.714	0.590	0.349	0.237	0.120	0.000		200	6.613	4.343	3.049	1.887	1.188	0.860	0.498	0.310	0.147	0.000
	500	4.411	2.707	1.677	1.002	0.615	0.462	0.287	0.171	0.077	0.000		200	7.168	4.632	2.900	1.731	1.025	0.680	0.399	0.223	0.095	0.000
						Non-Gat	ıssian erı	rors									No	n-Gauss	ian erro	\mathbf{rs}			
H	z						3 ias					H	z					Bi	as				
100	100	7.943	4.850	2.707	1.341	0.217	-0.321	-1.092	-1.499	-1.603	-1.738	100	100	11.542	7.952	5.212	3.270	1.685	0.788	-0.211	-0.790	-1.015	-1.228
	200	8.884	5.619	3.330	1.443	0.217	-0.469	-1.046	-1.320	-1.524	-1.660		200	12.449	8.683	5.761	3.318	1.609	0.552	-0.265	-0.700	-0.998	-1.191
	500	10.209	6.610	3.777	1.710	0.329	-0.446	-0.967	-1.272	-1.459	-1.571		500	13.651	9.595	6.184	3.520	1.628	0.472	-0.288	-0.733	-0.995	-1.147
200	100	8.946	6.018	4.020	2.811	1.750	1.289	0.553	0.147	0.033	-0.135	200	100	12.328	8.823	6.154	4.304	2.769	1.932	0.961	0.386	0.157	-0.085
	200	9.923	6.769	4.592	2.799	1.646	1.015	0.479	0.211	0.010	-0.131		200	13.282	9.557	6.685	4.302	2.635	1.622	0.840	0.410	0.114	-0.084
	500	11.279	7.734	4.975	2.969	1.652	0.926	0.437	0.154	-0.018	-0.120		500	14.528	10.481	7.097	4.456	2.599	1.475	0.740	0.314	0.065	-0.079
500	100	9.601	6.570	4.457	3.173	2.047	1.540	0.778	0.343	0.206	0.000	500	100	12.946	9.356	6.579	4.646	3.034	2.138	1.133	0.527	0.275	0.000
	200	10.511	7.264	4.991	3.122	1.907	1.233	0.676	0.381	0.162	0.000		200	13.820	10.018	7.060	4.596	2.864	1.799	0.986	0.531	0.217	0.000
	500	11.910	8.257	5.382	3.272	1.884	1.108	0.593	0.296	0.115	0.000		500	15.094	10.975	7.494	4.755	2.816	1.632	0.862	0.417	0.156	0.000
H	Z					R	MSE					H	z					RM	SE				
100	100	8.273	5.217	3.104	1.788	1.044	1.032	1.482	1.822	1.928	2.059	100	100	11.763	8.187	5.442	3.474	1.917	1.104	0.780	1.106	1.301	1.495
	200	9.230	5.995	3.701	1.910	1.037	1.023	1.387	1.625	1.812	1.946		200	12.676	8.927	5.993	3.555	1.869	0.927	0.741	1.002	1.249	1.432
	500	10.559	7.000	4.194	2.191	1.077	0.965	1.273	1.531	1.709	1.821		500	13.881	9.852	6.453	3.794	1.917	0.878	0.706	0.981	1.212	1.358
200	100	9.187	6.261	4.226	2.951	1.852	1.342	0.602	0.225	0.152	0.196	200	100	12.495	8.996	6.310	4.422	2.858	1.983	0.999	0.421	0.196	0.130
	200	10.170	7.014	4.794	2.967	1.767	1.083	0.526	0.249	0.124	0.184		200	13.450	9.732	6.842	4.440	2.741	1.686	0.880	0.432	0.146	0.124
	500	11.526	7.991	5.217	3.175	1.807	1.020	0.493	0.195	0.101	0.166		500	14.694	10.662	7.278	4.621	2.730	1.559	0.789	0.337	0.095	0.114
500	100	9.753	6.720	4.583	3.254	2.104	1.569	0.801	0.364	0.221	0.002	500	100	13.053	9.466	6.678	4.719	3.088	2.170	1.158	0.547	0.290	0.002
	200	10.689	7.444	5.143	3.251	2.000	1.287	0.706	0.395	0.169	0.003		200	13.940	10.145	7.177	4.700	2.946	1.851	1.018	0.546	0.224	0.002
	500	12.047	8.398	5.510	3.374	1.954	1.145	0.610	0.303	0.117	0.001		500	15.187	11.076	7.592	4.842	2.881	1.670	0.882	0.426	0.159	0.000
$\Big ^{\mathbf{Z}}$	otes:	Param	eters c	of the	dvnam	ic pane	el data	model,	(29), a	re gene	rated as	a_i	$\sim II_{-}$	DN(1, 1)	$(), \rho_{ix}$	$\sim U(0$	(0.95)	$\vartheta_i \sim l$	7(0, 0.9	- 5) and	, ~ <i>1</i> ~ .∕	DN	[.1),
for i	 	$2, \ldots N$	7. Dei	sign 2	assum	les a tv	vo-facto	or mode	el with	$[N_{\alpha_2}]$	and $[N]$, l', n'	on-ze	ro load	ings for	the f	irst an	d seco	nd fact	or. res	pective	v. We	set:
$\alpha_{\beta 2} =$	$= 2\alpha_{f}$	$^{3/3}$, wh	here α_i	ر relat	tes to	α und	er (11)	and f_i	$t \sim III$	$\sum_{N(0,1)}$). Gau	ssian	errol	rs are g	jven b	V: u_{it}	$\sim III$	DN(0, 1)	1) and	non	aussiar	l errors	are
l	-		- ^ /	$(2)^{1/2}$	د.		ć				2			-	-					ر	-	(10)	
Seller	area	$ds: u_{it}$	$= \sqrt{\frac{\chi_v^2}{\chi_v^2}}$	$\left(\frac{1}{t}\right)$	$ u_{it}, 101 $	T == 1	r (, 7	IV, Vit		v (U, L)	and χ_{v} ,	t IS a	CIII-S	duareu	ranuon	I VALIA	n win	0	aalgan	s of fre	euom,	(10) III	v_{ij}
$\sim III$	$DU(\mu$	$v_{i} - 0.2$	$, \mu_{v_{j}} +$	-0.2),	j = 1, '	2, $\mu_v =$	$0.87, \mu$	$u_{2} = 0.$	71, μ_{v_1}	$= \sqrt{\mu_v^2}$	$- N^{2(o)}$	$\beta_2 - \alpha_\beta$	$(\mu_{v_{2}}^{2})$, in (32) and (33). T	ne num	ber of	replica	tions is	set to	R = 20	.00

$\frac{\sqrt{1/2}}{\frac{20}{20}}$	-1)/2 and $p = 0.10$	/2		124 0.037 -0.137 -0.100 -0.184 33 -0.015 -0.049 -0.125 -0.193	100 - 0.016 - 0.084 - 0.152 - 0.204	559 0.280 0.091 0.114 -0.002	346 0.210 0.163 0.083 -0.002	251 0.177 0.115 0.052 -0.003	0.4 0.290 0.103 0.124 0.000 0.69 0.995 0.175 0.007 0.000	362 0.225 0.175 0.094 0.000 365 0.189 0.126 0.061 0.000	E	<u>186 0.254 0.275 0.261 0.309</u>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[7] 0.167 0.196 0.247 0.293 366 0.306 0.137 0.135 0.000	500 0.215 0.168 0.090 0.008	252 0.178 0.116 0.054 0.007	380 0.310 0.133 0.145 0.000	365 0.230 0.179 0.100 0.000 366 0.190 0.197 0.069 0.000	/3 0.1120 0.1121 0.002 0.000	,	785 0.305 0.063 0.054 -0.071	145 0.219 0.130 0.023 -0.069	317 0.178 0.079 -0.003 -0.065	002 0.425 0.109 0.140 -0.001 347 0.393 0.991 0.108 -0.001	198 0.254 0.153 0.069 -0.001	905 0.431 0.173 0.151 0.000	556 0.331 0.227 0.113 0.00008 0.261 0.159 0.072 0.000	E	<u>305 0.349 0.161 0.145 0.143</u>	459 0.244 0.165 0.104 0.123 255 0.101 0.108 0.080 0.108	13 0.441 0.198 0.166 0.004	551 0.329 0.226 0.114 0.003	399 0.255 0.154 0.070 0.002	916 0.447 0.199 0.170 0.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$IIDN(1,1), \text{ for } i = 1, 2, \dots, N.$	
with Gaussian errors scaled by $\zeta = \frac{1}{2}$	$\frac{1}{c_v(n,\delta)} \underbrace{\begin{array}{c} 0.00 \\$	$\delta = 1/2$	Bias	0.253 0.359 0.203 0.423 0.256 0.4 0.802 0.298 0.449 0.179 0.076 0.1		1.426 0.558 0.406 0.660 0.487 0.6		0.748 0.474 0.393 0.281 0.219 0.2	1.405 U.587 U.432 U.082 U.509 U.C 1.035 0.535 0.680 0.408 0.304 0.3	1.035 0.535 0.680 0.408 0.304 0.501 0.508 0.418 0.299 0.235 0.2	RMS	1.304 0.470 0.331 0.495 0.353 0.4	0.832 0.362 0.489 0.259 0.201 0.2	0.591 0.329 0.251 0.179 0.152 0.1	0.999 0.510 0.655 0.390 0.291 0.3	0.753 0.477 0.395 0.283 0.221 0.2	1.498 0.630 0.460 0.693 0.518 0.6	0.53 0.550 0.685 0.413 0.308 0.5 0.807 0.511 0.419 0.300 0.336 0.5	$\delta = \frac{1}{1}$	Bias	3.603 2.048 1.338 1.180 0.776 0.7	3.338 1.987 1.502 0.869 0.530 0.4	3.255 1.936 1.186 0.692 0.408 0.5 3.255 3.124 1.477 1.306 0.602 0.5	3.735 2.174 1.457 1.308 0.897 0.5 3.504 2.131 1.627 0.983 0.640 0.5	3.450 2.084 1.304 0.787 0.495 0.3	3.780 2.208 1.489 1.325 0.906 0.5	$ \begin{vmatrix} 3.575 & 2.182 & 1.657 & 1.004 & 0.653 & 0.5 \\ 3.555 & 2.152 & 1.348 & 0.813 & 0.512 & 0.4 \end{vmatrix} $	RMSI	3.643 2.090 1.373 1.206 0.801 0.8	3.355 2.004 1.514 0.882 0.545 0.4 3.360 1.940 1.190 0.697 0.414 0.3	3.774 2.214 1.488 1.327 0.913 0.9	3.521 2.147 1.637 0.992 0.647 0.5	3.454 2.088 1.307 0.790 0.497 0.3	3.819 2.250 1.521 1.344 0.922 0.6	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1), $\rho_{ix} \sim U(0, 0.95), \vartheta_i = 0 \text{ and } \gamma_i \sim \sim$	d second factor, respectively. We set
Cross correlations are generated using Design $\frac{2}{2}$	$\frac{0.09}{c_p(n,\delta)} \text{with } n = N(N-1)/2 \text{ and } p = 0.05$	$\delta = 1/2$	Bias T N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.070 -0.003 -0.061 -0.023 -0.096 -0.164 -0.234 -0.288 500	0.233 0.550 0.416 0.616 0.252 0.073 0.105 -0.003 200 100	0.530 0.311 0.241 0.319 0.192 0.153 0.077 -0.004 200	0.317 0.239 0.195 0.236 0.168 0.109 0.048 -0.004 50 0.354 0.574 0.444 0.526 0.375 0.009 0.190 0.004 500 100	U.254 U.574 U.444 U.030 U.275 U.U92 U.12U U.UUU 5UU IU 0.556 0.335 0.369 0.338 0.313 0.168 0.000 0.000	0.558 0.335 0.262 0.338 0.213 0.168 0.092 0.000 200 0.339 0.256 0.213 0.253 0.183 0.123 0.060 0.000 500	RMSE T N	0.302 0.388 0.319 0.417 0.325 0.390 0.372 0.428 100 100	0.358 0.238 0.243 0.242 0.270 0.292 0.343 0.405 200	0.202 0.197 0.209 0.214 0.240 0.286 0.346 0.397 50 0.262 0.561 0.427 0.622 0.260 0.115 0.127 0.013 200 100	0.203 0.301 0.427 0.023 0.203 0.120 0.127 0.013 200 100 0.534 0.316 0.246 0.323 0.198 0.158 0.085 0.012 200	0.318 0.240 0.196 0.237 0.169 0.110 0.051 0.010 500	0.279 0.582 0.451 0.642 0.289 0.123 0.141 0.000 500 100	0.561 0.339 0.266 0.341 0.217 0.173 0.098 0.000 20 0.340 0.257 0.213 0.254 0.184 0.124 0.061 0.000 5.00	$\delta = 0.000$ 0.001 0.001 0.101 0.101 0.001 0.000	Blas T N	0.617 0.712 0.461 0.578 0.159 -0.038 -0.016 -0.116 100 100	0.880 0.472 0.280 0.284 0.110 0.055 -0.032 -0.109 200	0.650 0.381 0.224 0.205 0.104 0.025 -0.045 -0.101 500	U.714 U.880 U.028 U.743 U.351 U.119 U.120 -U.001 20U 101 1 030 0 617 0 423 0 424 0 255 0 187 0 094 -0 001	0.782 0.495 0.336 0.314 0.211 0.133 0.061 -0.001 500	0.798 0.903 0.644 0.752 0.341 0.126 0.133 0.000 500 100	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	RMSE T N	0.671 0.750 0.505 0.610 0.255 0.186 0.180 0.212 100 100	0.897 0.496 0.312 0.314 0.173 0.145 0.142 0.182 20 0.657 0.301 0.240 0.255 0.141 0.105 0.131 0.158 500	0.805 0.901 0.641 0.752 0.347 0.152 0.146 0.006 200 100	1.038 0.624 0.429 0.428 0.261 0.192 0.101 0.004 200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.830 0.919 0.656 0.759 0.356 0.154 0.153 0.000 500 100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	f the static panel data model, (29), are generated as: $a_i \sim IIDN$ (factor model with $[N_{\alpha_{\beta}}]$ and $[N_{\alpha_{\beta,2}}]$ non-zero loadings for the first i
0.055 0.60	n n		T	100 100 0.812 0.027 200 0.446 0.046	500 0.303 0.114	200 100 1.013 0.278	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	500 0.497 0.335	000 100 1.040 0.301	200 0.688 0.321 0.534 0.361	T	100 100 0.875 0.315	200 0.496 0.235	500 0.341 0.210	200 100 1.000 0.663 0.303	500 0.501 0.338	$500 \ 100 \ 1.071 \ 0.343$	200 0.702 0.333	000-0 000-0 000	T	100 100 2.104 0.973	200 1.826 0.977	500 1.784 1.026	200 100 2.201 1.131 200 2 010 1 144	500 1.969 1.175	500 100 2.304 1.161	$200 2.073 1.190 \\ 500 2.062 1.233 \\ 0.02 0.023 0.033 \\ 0.05 0.033 0.050 0.033 \\ 0.05 0.050 0.0$	T N	$100 \ 100 \ 2.148 \ 1.029$	200 1.848 1.002 500 1.701 1.033	200 100 2.300 1.173	200 2.029 1.159	500 1.975 1.179 200 2.640 2.640 2.600	500 100 2.346 1.205	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Notes: Parameters of	Design 2 assumes a two-

Table S3: Bias and RMSE ($\times 100$) for the $\tilde{\alpha}$ estimate of the cross-sectional exponent of the errors from a static panel data model

Table S4a: Comparison of Bias and RMSE ($\times 100$) for the $\tilde{\alpha}$ and $\hat{\alpha}$ estimates of the cross-sectional exponent of the errors from a static and

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		σ	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.90	T-UU		σ	U.55	0.60	0.65	0.70	0.10	0.00	0.00	0.90	0.90	1.0(
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								3ias											RM	SE				
$ \frac{\Gamma}{1} \times \frac{\Gamma}{3} \times \Gamma$											Static n	nodel: ϑ_i	= 0, f	or $i =$	$1, 2, \ldots$,N								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H	Z						ã					Ð	Z					⁽)	ĸ				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	200	2.272 2.184	0.837	0.313 0.630	0.221	0.042	0.176	-0.159	-0.243	-0.103	-0.047	100	200	2.870 3.018	1.712	1.032	0.720	0.454 0.586	0.330	0.287 0.214	0.282 0.130	0.144	0.098
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		500	2.138	1 153	0.485	0.213	0.030	0.025	-0.036	-0.067	-0.090	-0.086		500	3.066	1 984	1.031	0 793	0.397	0.250	0.153	0 149	0 159	0 14:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200	100	2.680	1.150	0.594	0.359	0.156	0.286	-0.090	-0.188	-0.050	0.000	200	100	3.191	1.765	1.190	0.747	0.456	0.459	0.211	0.217	0.075	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		200	2.604	1.309	0.890	0.323	0.134	0.111	-0.022	-0.004	-0.017	0.000		200	3.155	1.943	1.349	0.662	0.462	0.240	0.200	0.076	0.034	0.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		500	2.642	1.440	0.792	0.418	0.178	0.140	0.069	0.027	0.000	0.000		200	3.240	1.965	1.265	0.867	0.439	0.230	0.139	0.108	0.027	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	500	100	2.988	1.366	0.677	0.431	0.202	0.304	-0.079	-0.177	-0.047	0.000	500	100	3.351	1.900	1.015	0.680	0.412	0.445	0.176	0.202	0.064	0.00
$ \frac{1}{10} $		200	3.035	1.522	1.012	0.399	0.164	0.157	-0.019	0.001	-0.014	0.000		200	3.541	1.946	1.278	0.616	0.347	0.294	0.138	0.066	0.032	0.00(
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6		3.170	1.719	0.910	0.449	0.203	0.102	0.079	0.029	0.003	0.000	6	nne	3.704	2.155	1.298	0.000	0.408	0.239	0.128	10.00	0.040	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	EH	z	,		1		0 1 1	ă	0				<u>ا</u>	z				1		, , ,		1		1
200 1.456 0.176 0.105 0.012 0.010 0.114 0.025 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.014 0.017 0.016 0.015 0.014 0.025 0.011 0.025 0.013 0.038 0.037 0.0145 0.013 0.025 0.014 0.021 0.231 0.134 0.031 0.235 0.134 0.031 0.235 0.134 0.013 0.013 0.015 0.014 0.017 0.000 0.006 0.017 0.001 2010 0.257 0.145 0.231 0.231 0.231 0.134 0.014 0.014 0.017 0.000 0.007 0.013 0.001 2.013 0.55 0.147 0.031 0.231 0.134 0.014 0.017 0.000 0.006 0.017 0.001 0.005 0.015 0.015 0.016 0.750 0.451 0.230 0.241 0.201 0.104 0.014 0.017 0.000 0.006 0.017 0.001 0.005 0.015 0.001 2.001 2.000 0.757 0.451 0.230 0.241 0.201 0.104 0.014 0.014 0.017 0.000 0.027 0.013 0.025 0.011 2.00 0.234 0.119 0.025 0.011 2.00 0.234 0.119 0.026 0.011 2.000 0.241 0.025 0.011 2.000 0.241 0.025 0.011 2.000 0.241 0.025 0.011 2.000 0.241 0.025 0.011 2.000 0.241 0.025 0.011 2.000 0.241 0.025 0.011 2.000 0.241 0.025 0.011 2.000 0.241 0.025 0.011 2.000 0.241 0.025 0.011 2.000 0.241 0.025 0.011 2.000 0.241 0.025 0.011 0.001 0.2221 1.020 0.023 0.020 0.001 0.000 0.0	100	100	2.181	0.661	0.217	0.273	0.178	0.399	0.058	-0.009	0.098	0.104	100	100	3.497	2.601	2.036	1.541	1.166	0.901	0.639	0.451	0.272	0.10^{4}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		200	1.145	0.159	0.306	0.023	0.100	0.174	0.068	0.105	0.108	0.093		200	2.499	1.945	1.624	1.164	0.946	0.615	0.419	0.286	0.190	0.09:
2000 3.353 1.333 0.615 0.014 0.177 0.005 0.057 0.055 0.056 0.057 0.068 0.077 0.055 0.471 0.252 0.350 0.531 0.247 0.300 0.194 0.117 0.075 0.052 0.132 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.001 0.273 0.310 0.351 0.351 0.310 0.104 0.103 0.019 0.014 0.017 0.010 0.056 0.137 0.006 0.137 0.006 0.137 0.006 0.137 0.006 0.137 0.004 0.040 0.007 0.017 0.017 0.010 0.019 0.014 0.015 0.013 0.014 0.017 0.010 0.066 0.137 0.006 0.137 0.004 0.040 0.007 0.017 0.017 0.010 0.018 0.017 0.010 0.209 0.0155 0.014 0.030 0.014 0.010 0.006 0.137 0.014 0.017 0.017 0.010 0.017 0.017 0.010 0.010 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.013 0.016 0.013 0.014 0.012 0.014 0.013 0.014 0.013 0.014 0.015 0.011 0.005 0.011 0.022 0.014 0.015 0.011 0.005 0.011 0.005 0.011 0.002 0.013 0.015 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.015 0.011 0.005 0.010 0.023 0.014 0.013 0.015 0.014 0.013 0.014 0.014		500	0.485	0.174	0.038	0.073	0.092	0.156	0.143	0.116	0.094	0.080		500	1.862	1.757	1.117	0.943	0.648	0.468	0.311	0.223	0.134	0.08(
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	100	3.293	1.318	0.615	0.402	0.221	0.372	0.016	-0.075	0.050	0.050	200	100	4.217	2.571	2.022	1.392	0.988	0.825	0.514	0.342	0.216	0.050
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		200	1.446	0.283	0.274	0.061	0.014	0.117	0.010	0.066	0.057	0.045		200	2.318	1.734	1.220	0.906	0.655	0.474	0.381	0.233	0.139	0.045
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		200	0.601	0.104	0.071	0.075	0.042	0.121	0.097	0.074	0.052	0.040		200	1.528	1.103	1.040	0.757	0.464	0.330	0.241	0.210	0.094	0.040
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	500	100	8.330	4.834	2.300	1.191	0.594	0.484	0.051	-0.078	0.033	0.018	500	100	8.775	5.465	2.960	1.806	1.127	0.815	0.447	0.300	0.194	0.018
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		200	3.326	1.257	0.733	0.201	0.066	0.137	-0.004	0.040	0.027	0.017		200	3.905	1.988	1.372	0.775	0.529	0.408	0.254	0.179	0.104	0.01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		200	0.979	0.238	0.111	0.061	0.026	0.097	0.067	0.043	0.029	0.015		200	1.525	0.917	0.810	0.485	0.410	0.250	0.158	0.104	0.085	0.01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	E							۹ إ	ynamic 1	model wi	ith exoge	enous reg	ressor	$s: v_i $	U(0, 0)	.95) foi	$i \ i = 1,$	$2, \ldots, N$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	z						σ						z										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	100	2.224	0.770	0.293	0.190	0.027	0.171	-0.178	-0.256	-0.110	-0.054	100	100	2.818	1.527	0.981	0.768	0.444	0.457	0.257	0.301	0.156	0.11(
200 10 2.7191 0.350 0.350 0.350 0.350 0.055 0.085 0.085 0.005 0.001 0.000 200 3.299 1.991 1.366 0.750 0.449 0.331 0.244 0.071 0.007 0.000 200 2.652 1.280 0.894 0.337 0.358 0.190 0.256 0.099 0.054 0.000 0.005 0.000 0.000 500 3.299 1.991 1.366 0.760 0.423 0.291 0.205 0.099 0.051 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.000 500 3.511 1.957 1.356 0.764 0.331 0.143 0.053 0.001 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.001 0.345 0.156 0.007 0.000 0.005 0.000 0.001 0.2913 1.471 1.005 0.465 0.170 0.166 0.072 0.002 0.001 0.000 500 3.511 1.969 1.287 0.764 0.371 0.286 0.237 0.030 0.035 0.000 0.001 0.0 3.138 1.674 0.918 0.176 0.018 0.013 0.002 0.001 0.000 500 3.511 1.969 1.287 0.764 0.371 0.286 0.237 0.030 0.035 0.000 0.001 0.033 0.001 0.003 2.001 0.003 2.001 0.003 2.001 0.003 2.001 0.003 2.001 0.003 2.001 0.003 2.001 0.033 0.014 0.158 0.159 0.138 0.159 0.319 0.139 0.339 0.319 0.319 0.331 0.143 0.053 0.013 0.001 0.013 1.000 500 1.003 2.001 0.003 2.001 0.033 2.255 1.551 1.145 0.387 0.586 0.429 0.309 0.304 0.005 0.001 10.011 0.121 0.025 0.004 0.003 0.001 0.033 2.251 1.145 0.388 0.256 0.387 0.319 0.331 0.133 0.015 0.001 10.331 1.35 0.019 0.303 0.319 0.319 0.332 0.319 0.332 0.319 0.332 0.319 0.332 0.319 0.055 0.004 0.055 0.001 10.331 1.35 0.010 0.053 0.011 0.121 0.025 0.041 0.332 0.1176 0.048 0.318 0.202 0.319 0.055 0.013 0.001 10.331 0.341 0.255 0.357 0.388 0.256 0.053 0.013 0.331 0.341 0.055 0.013 0.331 0.341 0.055 0.013 0.331 0.341 0.055 0.014 0.331 0.312 0.005 0.000 0.055 0.000 0.055 0.005 0.001 0.055 0.001 0.055 0.001 0.055 0.001 0.332 0.315 0.013 0.032 0.001 0.333 0.3176 0.388 0.256 0.552 0.152 0.014 0.055 0.014 0.033 0.015 0.001 0.055 0.001 0.332 0.315 0.015 0.001 0.055 0.001 0.332 0.315 0.015 0.001 0.332 0.315 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.055 0.001 0.332 0.315 0.035 0.031 0.001 0.055 0.001 0.000 0.005 0.000 0.005 0.		200	2.032	0.066	0.589	0.140	-0.032	0.00 7100	-0.128	-0.090	-0.090	-0.077		200	2.730	1.507 1 5.47	1.096 1.055	0.080	0.410	0.202	0.213	0.159	0.150	0.130
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	006	100	017 6	1 150	0.400	111.0	01110	0.960	100.0-	0.183	0.051	0000	006		2.303 2.956	1 787	1 049	070-0	0.011 0.114	10707	0.100 0.331	101.0	0.071	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	007	001	9 639	1 980	100.00	0.334	0 116	0.209	-0.095	-0.103	-0.016	0.000	007	001	0.2.0 3 900	1 000	1.490	0.790	0.414 0.493	0.901 0.901	0.905	0.000	0.054	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		500	2.622	1.420	0.791	0.370	0.164	0.136	0.069	0.026	0.001	0.000		200	3.195	1.991	1.386	0.626	0.403	0.229	0.155	0.075	0.040	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	500	100	2.974	1.350	0.694	0.405	0.203	0.303	-0.076	-0.179	-0.048	0.000	500	100	3.363	1.821	1.095	0.623	0.436	0.403	0.189	0.210	0.065	0.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		200	2.913	1.474	1.005	0.405	0.170	0.146	-0.013	-0.002	-0.014	0.000		200	3.257	1.957	1.356	0.704	0.371	0.286	0.237	0.060	0.035	0.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		500	3.138	1.674	0.918	0.478	0.198	0.176	0.078	0.029	0.001	0.000		500	3.651	1.969	1.287	0.764	0.370	0.331	0.143	0.053	0.015	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Η	z						ά					(H	z					.0	بد				
200 100 0.120 0.255 0.033 0.094 0.165 0.063 0.123 0.109 0.093 0.081 500 1.878 1.414 1.235 0.914 0.688 0.487 0.538 0.204 0.09 0.204 0.005 0.05 0.051 200 100 1.878 1.414 1.235 0.914 0.688 0.487 0.302 0.218 0.134 0.08 0.05 200 100 3.371 1.310 0.534 0.356 0.214 0.347 0.053 0.055 0.057 0.040 500 1.451 0.322 2.617 1.822 1.382 0.955 0.694 0.499 0.372 0.255 0.067 0.04 0.05 0.067 0.040 500 1.724 1.229 1.126 0.660 0.466 0.318 0.272 0.162 0.00 0.015 0.011 0.121 0.057 0.040 500 1.724 1.229 1.126 0.660 0.466 0.318 0.272 0.155 0.107 0.04 0.01 0.04 0.015 0.005 0.017 0.04 0.05 0.017 0.04 0.05 0.017 0.04 0.057 0.040 500 1.724 1.229 1.126 0.660 0.466 0.318 0.272 0.155 0.107 0.04 0.01 0.01 0.013 0.011 0.011 0.057 0.040 500 1.126 0.012 0.025 0.017 0.04 0.051 0.005 0.017 0.04 0.051 0.007 0.04 0.057 0.040 500 1.126 0.01 0.252 0.107 0.04 0.015 0.001 1.724 1.229 1.126 0.050 0.466 0.318 0.272 0.155 0.107 0.04 0.01 2.00 100 8.194 4.656 2.335 1.190 0.557 0.499 0.051 -0.072 0.035 0.017 200 100 8.624 5.271 3.003 1.796 1.088 0.819 0.457 0.335 0.116 0.01 2.00 100 3.275 1.278 0.706 0.0195 0.0059 0.0117 0.006 0.036 0.025 0.015 5.00 110 8.624 5.271 3.003 1.796 1.088 0.819 0.457 0.335 0.116 0.01 2.00 100 1.025 0.076 0.019 0.015 0.005 0.0051 -0.072 0.035 0.015 5.00 110 8.624 5.271 3.003 1.796 1.088 0.819 0.457 0.332 0.173 0.116 0.01 2.00 100 2.325 1.278 0.706 0.031 0.1113 0.069 0.015 0.005 0.015 5.00 110 8.624 5.271 3.003 1.796 1.088 0.819 0.457 0.332 0.173 0.116 0.01 2.00 1.096 0.055 0.0051 0.0072 0.015 0.092 0.017 1.520 0.920 0.005 0.024 0.010 1.550 0.005 0.000 1.550 0.920 0.000 0.020 0.000 0.000 1.550 0.000	100	100	2.104	0.586	0.255	0.282	0.173	0.365	0.063	-0.034	0.105	0.105	100	100	3.368	2.626	1.986	1.530	1.176	0.983	0.610	0.434	0.273	0.10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		200	1.096	0.120	0.255	0.033	0.094	0.165	0.063	0.123	0.109	0.093		200	2.415	1.888	1.551	1.145	0.847	0.638	0.429	0.309	0.204	0.09
200 100 3.571 1.310 0.534 0.536 0.514 0.347 0.016 -0.008 0.055 0.067 0.059 0.046 200 2.459 1.627 1.459 0.955 0.694 0.499 0.372 0.555 0.162 0.04 500 1.451 0.234 0.336 0.056 0.011 0.121 0.025 0.067 0.057 0.040 500 11.724 1.229 1.126 0.660 0.466 0.318 0.272 0.155 0.107 0.04 500 3.194 4.656 2.335 1.190 0.557 0.499 0.051 -0.072 0.035 0.017 200 100 8.624 5.271 3.003 1.796 1.088 0.819 0.457 0.335 0.183 0.01 200 3.275 1.278 0.706 0.195 0.069 0.117 0.006 0.036 0.025 0.017 200 3852 2.096 1.352 0.771 0.552 0.407 0.332 0.173 0.116 0.01 3.275 1.278 0.706 0.195 0.069 0.117 0.006 0.036 0.025 0.017 200 3852 2.096 1.352 0.771 0.552 0.407 0.332 0.173 0.116 0.01 500 0.976 0.245 0.122 0.076 0.031 0.113 0.069 0.045 0.025 0.015 500 1.637 0.827 0.572 0.386 0.204 0.104 0.058 0.01 500 0.976 0.245 0.122 0.076 0.031 0.113 0.069 0.045 0.025 0.015 500 1.630 0.927 0.827 0.572 0.388 0.204 0.104 0.058 0.01 500 1.630 0.976 0.245 0.122 0.076 0.031 0.113 0.069 0.045 0.025 0.015 500 1.630 0.927 0.827 0.572 0.386 0.204 0.104 0.058 0.01 500 1.630 0.976 0.245 0.122 0.076 0.031 0.113 0.069 0.045 0.025 0.015 500 1.630 0.927 0.827 0.572 0.380 0.368 0.204 0.104 0.058 0.01 500 1.630 0.976 0.245 0.122 0.076 0.031 0.113 0.069 0.045 0.025 0.015 500 1.630 0.927 0.827 0.572 0.380 0.368 0.204 0.104 0.058 0.01 500 1.630 0.957 0.827 0.572 0.380 0.368 0.204 0.104 0.058 0.01 500 1.630 0.927 0.827 0.572 0.380 0.368 0.204 0.104 0.058 0.01 500 1.630 0.957 0.827 0.572 0.380 0.368 0.204 0.104 0.058 0.01 500 1.630 0.927 0.827 0.572 0.380 0.368 0.204 0.104 0.058 0.01 500 0.976 0.245 0.122 0.076 0.031 0.114 0.058 0.01 500 0.976 0.245 0.122 0.076 0.031 0.113 0.069 0.045 0.025 0.015 5.00 1.630 0.927 0.827 0.572 0.380 0.368 0.204 0.104 0.058 0.01 500 0.976 0.245 0.122 0.076 0.031 0.113 0.006 0.045 0.025 0.015 5.00 1.630 0.927 0.827 0.572 0.380 0.304 7.01 0.104 0.058 0.01 500 0.976 0.928 0.998 0.999 0.906 0.017 0.005 0.001 0.000 0.045 0.005 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	000	0.00	0.401	0.000	070.0	0.138	0.120	0.103	0.137	0.118	0.093	180.0	000	500	8/8/T	1.414	1.235	0.914	0.088	0.487	0.302	0.218	0.134	20.0 20.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.200	001	3.371	1.310	0.534	0.356	0.214	0.347	0.016	-0.067	0.055	0.046	200	100	4.322 0.460	2.617	1.822	1.382 0.055	0.955	0.765	0.575	0.388	0.226	GU.U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		200	0.609	1.204	00000	0.00.0	110.0	171.0	0.006	100.0	0.0057	0.040		2007	2.409 1 704	1 2000	1.40 <i>8</i>	0.900	0.034	0.910	710.0	0.155	0.102	10.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	500	100	600.0 8 104	0.09/ 1.656	0.049 9 325	100.0	0.044 0 557	00100	0.051	0.079 1.10.0	0.035	0.040	200		1.124 2.604	1.229 5 971	3 003	0.000 1 706	0.400 1 088	01010	0.457	0.100 0.335	0.183	40.0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	000	001	3 975	4.000 1 978	0.706	0 105 0 105	0.069	0 117	100.0	-0.012	0.00 800.0	0.017	2000	001	3,859	9.006	J. 359	0.771	0.559	0.407	0.337	0.173	0.116	10.0
Notes: Remaining parameters of the panel data model, (29), are generated as: $a_i \sim IIDN(1,1)$, $\rho_{ix} \sim U(0,0.95)$ and $\gamma_i \sim IIDN(1,1)$, for $i = 1, 2,$ on-Gaussian errors are generated as $u_{it} = \left(\frac{v-2}{\chi_{i,t}^2}\right)^{1/2} \tilde{\nu}_{it}$, for $i = 1, 2,, N$, $\tilde{\nu}_{it} \sim IIDN(0,1)$ and $\chi_{i,t}^2$ is a chi-squared random variate with $v = 8$ degree		500	0.976	0.245	0.122	0.076	0.031	0.113	0.069	0.045	0.025	0.015		200	1.630	0.927	0.827	0.572	0.380	0.368	0.204	0.104	0.058	0.01
on-Gaussian errors are generated as $u_{it} = \left(\frac{v-2}{\chi_{v,t}^2}\right)^{1/2} \tilde{\nu}_{it}$, for $i = 1, 2, \dots, N$, $\tilde{\nu}_{it} \sim HDN(0, 1)$ and $\chi_{v,t}^2$ is a chi-squared random variate with $v = 8$ degree	Note	\mathbb{R}	emaini	ng par	ameter	s of th	te pane	l data 1	model, ((29), ar	e gener	ated as:	$a_i \sim$	IID	N(1, 1)), ρ_{ix}	$\sim U(0$, 0.95)	and γ_i	$\sim III \sim$	DN(1,	1), for	i = 1,	$2, \ldots$
on density the second as $a_{1} = \begin{pmatrix} \chi_{2}^{2} \\ \chi_{2}^{2} \end{pmatrix} = \mu_{1}$, for $i = 1, 2, \dots, n$, $\mu_{n} = 1, \dots = \{0, 1\}$ and Λ_{1}, μ_{2} is an equation variable with $Y = 0$ under	nn-Gai	reciar	Prore (s are c	anerat	ed as i		$\frac{v-2}{2}$	2 fc	r - 1	¢	$N = \tilde{v}$		UN C	1) an	م 22	د م 12	suos-ig	red ra	աօրս	variate	with	x 	Paret
		meen					$\int - t r r$	$\chi^2_{v,t}$	ν_{ut} , IC		, t , ,	· 11 / 11 /			, т) ан	u $\Lambda_{\mathrm{V},t}$	200	onhe_m	ת כת זמ	TIODIT	א מיד דמי הב	TTOT M	ר ס 	5.02

(2016) and allows for both serial correlation in the factors and weak cross-sectional dependence in the error terms. We use four principal components when estimating \hat{c}_N in the expression for $\hat{\alpha}$. The number of replications is set to R = 2000.

Table S4b: Comparison of Bias and RMSE (×100) for the $\tilde{\alpha}$ and $\hat{\alpha}$ of the cross-sectional exponent of the errors of a static and dynamic panel

	Prore
	neiser
	Б С
SSOIS	-000
Ð	
Ee 60	wit
~	ç
snoue	noise
50	Č
un exo	nsino
M	Po-
odel	herat
Ξ	0.0
ara	976
đ	lions
	9
	-

						Cro	SS COLLE	lations	are gen	erated	using L	esign	2 wit	h non-(Gaussi	an erro	\mathbf{rs}						
	σ	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00		σ	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00
	T						Bias											Bia	s				
										Static m	odel: ϑ_i	= 0, fo:	r i = 1	$\frac{1}{2}, \ldots, \frac{1}{2}$	N								
-	z						ũ											σ					
100	100	1.116	-0.949	-2.057	-2.527	-3.024	l -3.083	-3.551	-3.745	-3.713	-3.754	100	100	2.165	1.928	2.631	3.035	3.499	3.576	3.999	4.181	4.162	4.206
	200	0.933	-1.004	-1.930	-2.775	-3.210) -3.357	-3.631	-3.693	-3.777	-3.844		200	2.179	1.962	2.499 : 	\$.204	3.624 2.005	3.796 1.069	4.066	4.140	4.227	4.292 4 516
200	100	0.090 2.764	-1.040	-2.201 0.642	-0.000 0.535	-3.430 0.221	010.6- (-0.762 -0.159	-0.346	-0.990 -0.318	-4.003 -0.394	200	000	2.409 . 3.213 1	- 707 -	2.009 C	.430 . 1851 (0.541 (4.000 0.478	4.237 0.383	4.337 0.473	4.432 0.451	4.310 0.508
001	200	2.655	1.332	0.886	0.307	0.020	-0.036	-0.226	-0.283	-0.361	-0.430	000	200	3.216 1	1.863	1.231 0	1.650 (0.388 (0.317	0.372	0.413	0.472	0.532
	500	2.623	1.359	0.641	0.190	-0.076	0.138	-0.258	-0.342	-0.412	-0.460		200	3.279]	1.932	$(.102 \ 0$.598 (0.394 (0.343	0.400	0.467	0.529	0.571
500	100	3.337	1.824	1.180	1.096	0.741	0.794	0.349	0.121	0.125	-0.002	500	100	3.569 2	2.057	1.360 1	190 (0.806	0.821	0.377	0.156	0.144	0.010
	200	3.163	1.851	1.417	0.822	0.525	0.467	0.270	0.187	0.094	-0.002		200	3.466 2	2.107	1.556 (.915 (0.578	0.486	0.280	0.193	0.100	0.004
	500	3.186	1.896	1.174	0.697	0.431	0.353	0.223	0.135	0.060	-0.002		500	3.605 2	2.250	1.432 ().871 (0.530	0.390	0.238	0.140	0.062	0.004
Τ	Ν						å					T	Ν					å					
100	100	2.007	0.792	0.564	0.800	0.580	0.729	0.327	0.146	0.199	0.104	100	100	3.303 2	2.266	1.724 1	516	1.114	1.016	0.625	0.395	0.301	0.104
	200	0.645	0.087	0.437	0.268	0.241	0.330	0.214	0.199	0.149	0.092		200	2.034	1.611	1.259 (.928 () 007.C	0.580	0.417	0.308	0.202	0.092
	500	0.006	-0.107	0.057	0.124	0.151	0.237	0.195	0.154	0.110	0.080		500	1.649	1.307 ().946 ().667 (0.480 u	0.400	0.298	0.216	0.137	0.080
200	100	3.804	2.191	1.416	1.521	0.963	0.939	0.459	0.196	0.197	0.051	200	100	4.589 5	3.065 2	2.155 2	0.028	1.400	1.209	0.731	0.422	0.305	0.051
	200	1.493	0.719	0.816	0.501	0.342	0.382	0.232	0.190	0.121	0.046		200	2.260	1.570	1.335 (.929 (0.651	0.560	0.386	0.271	0.169	0.046
	500	0.447	0.118	0.214	0.199	0.183	0.238	0.178	0.129	0.081	0.040		200	1.258 ().876 ().678 (.493 (0.375	0.337	0.243	0.170	0.101	0.040
500	100	9.139	5.921	3.981	3.658	2.478	2.109	1.245	0.613	0.393	0.019	500	100	9.496 (3.288 4	1.312 5	3.896	2.762	2.355	1.493	0.836	0.535	0.019
	200	3.786	2.622	2.230	1.557	0.963	0.765	0.487	0.280	0.153	0.018		200	4.224	3.014	2.535 1	.877	1.248	0.976	0.672	0.394	0.221	0.018
	500	0.993	0.664	0.720	0.436	0.315	0.290	0.185	0.122	0.066	0.016		500	1.412	1.062	1.019 (.667 (0.492	0.382	0.242	0.158	0.086	0.016
							D	vnamic n	nodel wit	ch exogei	10US reg.	ressors:	$\vartheta_i \sim 1$	U(0, 0.9)	5) for i	= 1, 2, .	\dots, N						
H	z						ã					Ð	z					ũ					
100	100	1.016	-1.103	-2.241	-2.771	-3.270	-3.357	-3.838	-4.045	-4.008	-4.036	100	100	2.117	2.014	2.782	3.266	3.749	3.863	4.306	4.507	4.488	4.515
	200	0.813	-1.192	-2.165	-3.069	-3.534	-3.708	-3.969	-4.029	-4.118	-4.184		200	2.219	2.155	2.744 5	3.521 	3.969	4.155	4.406	4.474	4.559	4.626
000	000	0.669	-1.297	-2.534	-3.294	-3.752	-3.926	-4.100	-4.216	-4.312	-4.380	000	000	2.424 2	2.367	3.104 S	5.732	4.151 160	4.331	4.506	4.622	4.717 0.700	4.785
200	100	2.749	1.249	0.619	0.506	0.180	0.235	-0.194	-0.387	-0.359	-0.431	200	100	3.191	1.751 . 2222 .	1.070 C	1.792 (0.492	0.453	0.407	0.521	0.502	0.555 0.750
	200	2.578	1.267	0.834	0.256	-0.018	5 -0.070	-0.268	-0.316	-0.397	-0.464		200	3.135	1.816	1.210 (.658	0.431	0.357	0.424	0.456	0.524	0.579
001	500	2.568	1.311	0.610	0.161	-0.098	5 -0.161	-0.281	-0.366	-0.436	-0.485	000	200	3.270	1.965	1.181 (1 08 1	0.486	0.394	0.425	0.483	0.545	0.591
500	100	3.419	1.888	1.222	1.113	0.749	0.792	0.349	0.125	0.124	-0.002	500	100	3.674 2	2.127	L.386	.183	0.791	0.808	0.366	0.154	0.143	0.006
	200	3.202 3.166	1.882 1.879	1.439 1 158	0.839 0.685	0.535	0.471 0.348	0.272 0.221	0.191 0.133	0.092	-0.002		200	3.618 2	2.254 2.134	1.661 J 1.319 G	1001	0.631	0.509	0.291 0.226	0.198 0.135	0.099	0.006
H	2 2						å					F						å				-	
100	100	1.854	0.704	0.481	0.745	0.542	0.707	0.305	0.139	0.186	0.105	100	100	3.177 2	2.262	1.725 1	472	1.089	1.006	0.614	0.388	0.287	0.105
	200	0.609	0.031	0.385	0.237	0.215	0.316	0.202	0.192	0.144	0.093		200	2.042 j	1.618	1.244 0	.914 (J.690	0.574	0.412	0.303	0.199	0.093
	500	0.010	-0.106	0.060	0.124	0.151	0.242	0.197	0.156	0.112	0.080		500	1.522	1.155 ().862 ().636 (0.476	0.402	0.297	0.215	0.139	0.080
200	100	3.816	2.133	1.371	1.412	0.901	0.891	0.424	0.181	0.182	0.051	200	100	4.636	3.039 2	2.152 1	.945	1.344	1.159	0.697	0.422	0.294	0.051
	200	1.464	0.701	0.811	0.496	0.352	0.379	0.228	0.185	0.118	0.046		200	2.273	1.579	1.351 ().952 (0.682	0.575	0.386	0.274	0.169	0.046
	500	0.441	0.101	0.204	0.190	0.178	0.237	0.178	0.128	0.081	0.040		200	1.404	1.045 ().813 ().565 (0.410	0.343	0.245	0.169	0.102	0.040
500	100	9.059	5.866	3.980	3.556	2.417	1.994	1.202	0.591	0.370	0.019	500	100	9.450 (3.268	1.333 5	3.831	2.719	2.248	1.465	0.843	0.515	0.019
	200	3.747	2.521	2.193	1.494	0.925	0.732	0.478	0.272	0.148	0.018		200	4.201 2	2.926	2.502]	.816	1.233	0.955	0.669	0.387	0.218	0.018
	500	1.030	0.646	0.705	0.433	0.321	0.286	0.191	0.125	0.066	0.016		500	1.456	1.044	1.006 ().661 (0.496	0.375	0.250	0.161	0.086	0.016
Not	Ses: F	temain	ing pai	ameter	rs of th	e pane.	l data n	nodel, (.	$\overline{29}$, are	genera	ted as:	$a_i \sim \frac{1}{2}$	IIDN	I(1,1),	$\rho_{ix} \sim$	U(0, 0.	95) an	$\gamma_i \sim 1$	IID	V(1,1)	i, for i	= 1, 2	\dots, N
Design	2 ass	umes ¿	a two-f.	actor r	nodel w	vith $[\Lambda]$	$V_{\alpha_{\beta}}$] and	$1 \left[N_{\alpha_{\beta_2}} \right]$	non-ze	ero load	lings fo	r the	first a	und sec	ond fa	ctor, re	sspecti	vely.	We set	$\alpha_{\beta 2}$	$=2lpha_{eta}$	$^{3/3, w]}$	here α_{eta}
relates 1	to α	under	(11) ar	$f_{it} \sim f_{it}$, IIDN	$^{T}(0,1).$	Gaussi	ian erro	rs are g	riven by	$r: u_{it} \sim$	UID.	N(0, 1)	() and	non G	aussiar	error.	s are g	renerat	ted as:	$u_{it} =$	$\left(\frac{v-2}{2}\right)$	$\Big)^{1/2} \tilde{ u}_{it.}$
	с ,	AT AT	· √									а і ;										$\langle \chi_{v,t}^{z}, t \rangle$; c -
for $i = 1$	L, Z, .	\ldots, ν	$\nu_{it} \sim I$	NAT	U, I) an	d $\chi^{\tilde{v},t}_{v,t}$	is a cni-	-squared	l rando.	m varia	te with	$\delta \equiv v$	degre	Ses of II	eedom.	, IN (J.	1). v_{ij}	$111 \sim$	$\nu (\mu_{v_{s}})$	^j – U.2	$, \mu_{v_j} +$	ر (2.0	= 1, 2

 $\mu_v = 0.87, \ \mu_{v_2} = 0.71, \ \mu_{v_1} = \sqrt{\mu_v^2 - N^{2(\alpha_{\beta_2} - \alpha_{\beta})}\mu_{v_2}^2}$, in (32) and (33). The number of replications is set to R = 2000.

Appendix B

Additional Empirical results

The figures below provide the estimates displayed in Figures 1 and 2 but using the shorter 5-year rolling samples.

Figure 3: 5-year rolling estimates of the exponent of cross-sectional correlation ($\tilde{\alpha}_t$) of S&P 500 securities' excess returns

Figure 4: 5-year rolling estimates of the exponent of cross-sectional correlation $(\tilde{\alpha}_t)$ of residuals from CAPM and its two Fama-French extensions

Notes: CAPM model includes excess market returns, CAPM model augmented by SMB includes excess market returns and small minus big (SMB) firm returns, and CAPM model augmented by SMB and HML includes excess market returns, small minus big (SMB) firm returns and high minus low (HML) firm returns as regressors in (35), (36) and (37), respectively.

The figures below provide the estimates displayed in Figures 1 and 2 including their 95% confidence bands.

Figure 5: 10-year rolling estimates of the exponent of cross-sectional correlation ($\tilde{\alpha}_t$) of S&P 500 securities' excess returns, with 90% confidence intervals

Notes: In the critical value, $c_p(n, \delta)$ we set p = 0.05 and $\delta = 1/2$.

Figure 6: 10-year rolling estimates of the exponent of cross-sectional correlation $(\tilde{\alpha}_t)$ of S&P 500 securities' excess returns, with 90% confidence intervals

Figure 7: 10-year rolling estimates of the exponent of cross-sectional correlation ($\tilde{\alpha}_t$) of residuals from CAPM model, with 90% confidence intervals

Notes: CAPM model includes excess market returns as regressor in (35). In the critical value, $c_p(n, \delta)$ we set p = 0.05 and $\delta = 1/2$. Confidence intervals are computed using the boostrap procedure described in Section 6.

Figure 8: 10-year rolling estimates of the exponent of cross-sectional correlation ($\tilde{\alpha}_t$) of residuals from CAPM model augmented by SMB, with 90% confidence intervals

Notes: CAPM model augmented by SMB includes excess market returns and small minus big (SMB) firm returns as regressors in (36). In the critical value, $c_p(n, \delta)$ we set p = 0.05 and $\delta = 1/2$. Confidence intervals are computed using the boostrap procedure described in Section 6.

Figure 9: 10-year rolling estimates of the exponent of cross-sectional correlation ($\tilde{\alpha}_t$) of residuals from CAPM model augmented by SMB and HML, with 90% confidence intervals

Notes: CAPM model augmented by SMB and HML includes excess market returns, small minus big (SMB) firm returns and high minus low (HML) firm returns as regressors in (37). In the critical value, $c_p(n, \delta)$ we set p = 0.05 and $\delta = 1/2$. Confidence intervals are computed using the boostrap procedure described in Section 6.