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Abstract

This paper considers the estimation and inference of spatial panel data models with heterogeneous

spatial lag coefficients, with and without weakly exogenous regressors, and subject to heteroskedastic

errors. A quasi maximum likelihood (QML) estimation procedure is developed and the conditions for

identification of the spatial coefficients are derived. The QML estimators of individual spatial coeffi-

cients, as well as their mean group estimators, are shown to be consistent and asymptotically normal.

Small sample properties of the proposed estimators are investigated by Monte Carlo simulations and

results are in line with the paper’s key theoretical findings even for panels with moderate time di-

mensions and irrespective of the number of cross section units. A detailed empirical application to

U.S. house price changes during the 1975-2014 period shows a significant degree of heterogeneity in

spatio-temporal dynamics over the 338 Metropolitan Statistical Areas considered.

Keywords: Spatial panel data models, heterogeneous spatial lag coefficients, identification, quasi

maximum likelihood (QML) estimators, house price changes, Metropolitan Statistical Areas.

JEL Codes: C21, C23

∗The authors would like to thank Alex Chudik, Bernard Fingleton, Harry Kelejian, Matt Kahn, Ron Smith, Cynthia
Fan Yang, Herman van Dijk (Co-editor), four anonymous referees and participants at the following conferences: 2015 (EC2)
conference: on Theory and Practice of Spatial Econometrics, Edinburgh, UK, 2015 conference on Endogenous Financial
Networks and Equilibrium Dynamics: Addressing Challenges of Financial Stability and Monetary Policy, Bank of France,
Paris, France, 2016 SEA conference, Rome, Italy, 2018 conference on Housing, Urban Development, and the Macroeconomy,
USC, California, U.S., 2018 Billfest conference, Melbourne, Australia, 2018 ESAM conference, Auckland, New Zealand, 2019
IAAE conference, Nicosia, Cyprus, 2019 XIII World SEA-NARSC conference, Pittsburg, U.S. for valuable comments and
suggestions. Financial support under ESRC Grant ES/I031626/1 is also gratefully acknowledged. All errors and omissions
are our own. The scientific output expressed does not imply a policy position of the European Commission. Neither the
European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made
of this paper.
Correspondence to: Natalia Bailey, Department of Econometrics and Business Statistics, Monash University, Monash Uni-
versity, Clayton, 3800, Melbourne, Australia. E-mail: natalia.bailey@monash.edu.



1 Introduction

This paper considers a heterogeneous version of the standard spatial autoregressive (SAR) panel data

model whereby the spatial lag coefficients are allowed to differ over the cross section units, in addition

to the fixed effects generally allowed for in the literature. We refer to this generalised specification as

the heterogeneous SAR (or HSAR) model. The model also features weakly exogenous regressors, such as

lagged values of the dependent variable, heteroskedastic error variances, and provides a reasonably general

framework for the analysis of heterogeneous interactions, where it is important to distinguish between

the average intensity of spill-over effects as characterised by standard spatial models, and the heterogene-

ity of such effects over different geographical units such as counties, regions or countries. Importantly,

the framework studied in this paper allows for spatial dependence directly through contemporaneous

dependence of individual units on their connections, and indirectly through possible cross-sectional de-

pendence in the regressors. The econometric analysis of HSAR models presents new technical difficulties,

both for identification and estimation of a large set of spatial lag coefficients that must be estimated

simultaneously.

Our analysis builds on the existing literature on SAR models, pioneered by Whittle (1954) and Cliff

and Ord (1973), and further advanced in a number of important directions. The maximum likelihood

approach of Cliff and Ord, which was developed for a pure spatial model, has been extended to cover

panel data models with fixed effects and dynamics. Other estimation and testing techniques, such as the

generalised method of moments (GMM), also have been proposed. Some of the key references to this

literature include Upton and Fingleton (1985), Anselin (1988), Cressie (1993), Kelejian and Robinson

(1993), Ord and Getis (1995), Anselin and Bera (1998), and more recently, Haining (2003), Lee (2004),

Kelejian and Prucha (1999), Kelejian and Prucha (2010), Lin and Lee (2010), Lee and Yu (2010), LeSage

and Pace (2010), Arbia (2010), Cressie and Wikle (2011), and Elhorst (2014). Extensions to dynamic

panels are provided by Anselin (2001), Baltagi et al. (2003), Kapoor et al. (2007), Baltagi et al. (2007),

Yu et al. (2008) and Yu et al. (2012). Spatial techniques also have proved useful when analysing network

effects as can be seen in the pioneering work of Case (1991) and Manski (1993).

Almost all these contributions (whether in the context of spatial or network models) assume that,

apart from possibly fixed effects, spatial spill-over or network effects are homogeneous. However, even if

all units in a network have the exact same number of connections, it can be the case that not all units

are equally important or influential. Therefore, the assumption of a homogeneous spatial coefficient is

likely to be restrictive, and should be relaxed when T is large. As shown in this paper, when T is large

the heterogenous spatial model can be estimated for any N and it is not required that N →∞, which is
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needed for estimation of the traditional SAR model with a single spatial coefficient when T is small.

Examples of panel data sets with T large include panels that cover counties, regions, or countries

in the analysis of economic variables such as house prices, real wages, employment and income. For

instance, in the empirical applications by Baltagi and Levin (1986) on demand for tobacco consumption,

and by Holly et al. (2010) on house price diffusion across states in the U.S., it is interesting to investigate

whether the maintained assumption that spill-over effects from neighbouring states are the same across

all the 48 mainland states in fact holds, particularly considering the large size of the U.S. and the uneven

distribution of economic activity across it.

Whilst estimation of HSAR panel data models can be carried out using MLE and GMM approaches,

in this paper we focus on the former and discuss identification, estimation and inference using the quasi

maximum likelihood (QML) method. We derive conditions under which the QML estimators of the

individual parameters are locally identified, and establish consistency and asymptotic normality of the

estimators under certain regularity conditions. Asymptotic covariance matrices of the QML estimators

are derived under both Gaussian and non-Gaussian errors, and consistent estimators of these covariances

are proposed. Alternative estimation methods based on our HSAR model include the Bayesian Markov

Chain Monte Carlo approach of LeSage and Chih (2018b) and the generalised Yule-Walker estimation

method of Dou et al. (2016).

Although the estimation of individual coefficients of the HSAR model can be carried out for any N

when T is large, the estimation of the mean of the coefficients across the units requires both N and T

to be large. Accordingly, we propose an estimator of the cross section mean of the individual parameters

(also known in the literature as the Mean Group, MG, estimator) assuming a random coefficient model,

and show that the mean group estimators are consistent and asymptotically normal if both N and T tend

to infinity jointly, such that
√
N/T → 0, and the spatial dependence is sufficiently weak. Such estimators

are helpful in two respects. They provide an overall average estimator of the spatial effects that could be

compared to corresponding estimates obtained using standard homogeneous SAR models. They can also

be used to obtain average estimators across sub-spatial groupings such as states or regions, or sub-groups

within a production or financial network, such as industry types.

The small sample performance of the QML estimator is investigated by Monte Carlo simulations for

different values of N and T and alternative choices of the spatial weight matrices. The simulation results

are in line with the paper’s key theoretical findings, and show that the proposed estimators have good

small sample properties for panels with moderate time dimensions and irrespective of the number of

cross section units in the panel, although under non-Gaussian errors, tests based on QML estimators of
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the spatial parameters can be slightly distorted when the time dimension is relatively small. We also

investigate the small sample performance of the MG estimator and find its performance to be satisfactory

with biases that are universally negligible, and RMSEs that decline with T and quite rapidly with N .

Regarding size and power, tests based on the MG estimator exhibit some downward size distortions when

T is small, but such distortions disappear as T rises for all values of N . The small sample bias of the MG

estimator can be reduced using half-Jackknife procedure as discussed in Chudik and Pesaran (2019).

We provide an empirical application by modelling the spatial and temporal dimensions of quarterly

U.S. house prices changes over the period 1975Q1-2014Q4 and across Metropolitan Statistical Areas

(MSAs). Not surprisingly, we find a considerable degree of heterogeneity across the MSA specific esti-

mates. As to be expected, the estimates of net spatial coefficients (contemporaneous and lagged) are

mostly positive and statistically significant, suggesting a high degree of spill-over effects of house price

changes to neighbouring MSAs. There were only 18 MSAs (out of 338 considered in our analysis) with

statistically significant negative net spatial effects, and included Pittsfield (Massachusetts), Minneapolis

(Minnesota) or Memphis (Arkansas). These MSAs tend to be relatively remote with outward migratory

flows to the neighbouring regions.

We also consider mean estimates for six U.S. regions, and find the contemporaneous spatial lag

coefficients to be all positive and statistically significant for all the regions. However, the net spatial

effects, computed as the sum of the coefficients of contemporaneous and lagged spatial variables are

positive in all regions but statistically significant only in the case half of these, namely Great Lakes,

South East and Far West. This result clearly shows the importance of allowing for dynamics in the

analysis of spatial effects, and is to be contrasted with the large (net) spatial effect of around 0.65 found

by Yang (2020) who considers a homogeneous and static SAR specification. We also find positive and

statistically significant effects of population and income growth on own-region house price changes, again

with a high degree of heterogeneity across the regions. Using techniques analogous to the work of LeSage

and Chih (2016), we also report direct and indirect partial effects of changes in population and income

growth on house prices over time. The results continue to exhibit a high degree of heterogeneity across

MSAs and regions with direct effects dominating, and the outcomes decaying quite rapidly.

The rest of the paper is organised as follows: Section 2 introduces the first order spatial autoregres-

sive model with heterogeneous coefficients and some useful generalisations, and derives its log-likelihood

function. Section 3 sets out the assumptions of the model, derives the identification conditions and proves

consistency and asymptotic normality of the QML estimator when the time dimension is large. Section

4 outlines the Mean Group estimator derived from the heterogeneous spatial coefficients of the HSAR
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model. Section 5 presents the Monte Carlo design and reports small sample results (bias, root mean

square errors, size and power) of the QML and MG estimators for different parameter values and sample

size combinations. Section 6 reports the results of our empirical application to the U.S. house price

changes across MSAs. Some concluding remarks are provided in Section 7. Mathematical proofs, data

sources and additional empirical and Monte Carlo results are provided in an the online supplement.

Notations: We denote the largest and the smallest eigenvalues of the N×N matrix A = (aij) by λmax (A) and

λmin (A) , respectively, its trace by tr (A) =
∑N

i=1 aii, its spectral radius by ρ (A) = |λmax (A)|, its spectral norm

by ‖A‖ = λ
1/2
max (A′A), its maximum absolute column sum norm by ‖A‖1 = max1≤j≤N

(∑N
i=1 |aij |

)
, and its

maximum absolute row sum norm by ‖A‖∞ = max1≤i≤N

(∑N
j=1 |aij |

)
. Diag (A) = Diag (a11, a22, . . . , aNN )

represents anN×N diagonal matrix formed by the diagonal elements ofA, while diag (A) = (a11, a22, . . . , aNN )′

denotes an N × 1 vector. We denote the `p-norm of the random variable x by ‖x‖p = E (|x|p)1/p for p ≥ 1,

assuming that E (|x|p) < K. � stands for Hadamard product or element-wise matrix product operator, →p

denotes convergence in probability,
a.s.→ almost sure convergence,→d convergence in distribution, and

a∼ asymptotic

equivalence in distribution. K and c will be used to denote finite large and non-zero small positive numbers,

respectively, that do not depend on N and T .

2 A heterogeneous spatial autoregressive model (HSAR)

2.1 Model specification

We consider the following SAR model with heterogeneous slopes:

yit = ψi0

 N∑
j=1

wijyjt

+ β′i0xit + εit, for i = 1, 2, . . . , N ; t = 1, 2, . . . , T, (1)

where yit is the dependent variable for unit i observed at time t, xit = (xi1,t, xi2,t, . . . , xik,t)
′ is a k × 1

vector of (weakly) exogenous regressors, with the associated k× 1 vector of slope parameters, and βi0 =

(βi1,0, βi2,0, . . . , βik,0)
′. εit is the unexplained component of yit, which we refer to as the error of the ith

cross section unit, or the ‘error’ for short, with variance V ar (εit) = σ2i0. Finally, y∗it =
∑N

j=1wijyjt =

w′iyt is the average effect of other units on unit i at time t, where yt = (y1t,y2t, . . . , yNt)
′ and w′i is the

ith row of the N ×N spatial weight matrix, W = (wij), with wij , for i, j = 1, 2, . . . , N being the spatial

weights. Without loss of generality we set wii = 0, for all i, assume that wij ≥ 0, and normalise the spatial

weights so that
∑N

j=1wij = 1.1 When the weights are not normalised, (1) continues to hold with ψi0

1Strictly speaking, the weights, wij , are N -dependent and should be denoted as wij,N . The same also applies to yit, βi0,
and εit. But we abstract from including the subscript N when denoting wij , yit and εit, to keep the notations simple and
manageable.
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re-defined as ψi0/vi, where
∑N

j=1wij = vi. Consequently, in the heterogeneous case the normalisation of

the weights is innocuous, and can be viewed as an identifying restriction, so that ψi0 can be distinguished

from vi, which is achieved by setting vi = 1. The same is not true in the homogeneous case where

ψi0 = ψ0 for all i, and the use of non-normalised weights is equivalent to setting ψi0 = ψ0/vi, which is

not an innocuous restriction. The HSAR model (1) can also be viewed as a generalisation of the random

coefficient panel data model reviewed, for example, by Hsiao and Pesaran (2008). However, this is not a

straightforward generalisation due to the endogeneity of y∗it = w′iyt in (1).

The assumption of non-negative weights (wij ≥ 0) can be relaxed by replacing W with two weight

matrices: one for positive weights, W+ = (w+
ij), where w+

ij = wij if wij > 0 and zero otherwise, and

one for negative weights, W− = (w−ij), where w−ij = −wij if wij < 0 and zero otherwise. Further, since

regressors are allowed to be weakly exogenous, our analysis covers quite general spatio-temporal models,

such as the following generalisation of (1):

yit =

 hλ∑
q=1

λiq0yi,t−q

+

 h+ψ∑
q=0

ψ+
iq0

 N∑
j=1

w+
ijyj,t−q


+

 h−ψ∑
q=0

ψ−iq0

 N∑
j=1

w−ijyj,t−q


+ β̃

′
i0x̃it + εit, (2)

where hλ, h+ψ and h−ψ are fixed, and the slope coefficients, λik0, ψ
+
ik0 and ψ−ik0 measure the temporal

effects and spatial impact effects for positively and negatively connected units. Such a model is analysed

in Bailey et al. (2016).2

The HSAR model can be generalised further in two important directions. First, the assumption of

zero diagonal elements for the weight matrix can be relaxed, which could be of interest in linking spatial

models more closely to the GVAR approach, as discussed in Elhorst et al. (2018). Consider (1), with

wii 6= 0 and
∑N

j=1wij = vi, where vi are known constants. Then (1) can be repameterised as:

yit = ψ̇i0

 N∑
j=1

ẇijyjt

+ β̇
′
i0xit + ε̇it, for i = 1, 2, . . . , N ; t = 1, 2, . . . , T, (3)

where ψ̇i0 = (1 − ψi0wii)
−1ψi0vi, β̇i0 = (1 − ψi0wii)

−1βi0, and V ar (ε̇it) = σ̇2i0 = (1 − ψi0wii)
−2σ2i0,

respectively.3 Second, the weights, wij , can be estimated so long as each unit has a finite number of

known neighbours. In such a setting the HSAR model can be written as

yit =

N∑
j=1

ψij0I (wij) yjt + β′i0xit + εit, (4)

where I (wij) = 1 if wij 6= 0 and 0 otherwise, and supi
∑N

j=1 |ψij0| I (wij) < K. This specification only

2It is also possible to allow for spatial effects in the errors and the regressors. For example, εit can be replaced by

εit = ϕi0
(∑N

j=1 wε,ijεjt
)

+ νit, and the regressors augmented with spatial effects such as x̃∗i`,t =
∑N
j=1 w`,ij x̃j`,t, for

` = 1, 2, . . . , k′, where wε,ij and w`,ij are the spatial weights. To simplify the exposition in this paper we abstract from
spatial error and regressor processes and focus on the contemporaneous spatial effects in the dependent variable, yit.

3The derivation for this modified HSAR specification can be found in the online supplement D.
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exploits the qualitative information contained in I (wij) which departs from the conventional homogeneous

spatial model. In what follows we focus on the basic HSAR specification given by (1) and note that

estimation and inference for models (2), (3) or (4) can be conducted along the lines set out in this paper.

Stacking the observations by the N individual units for each time period t, (1) can be written more

compactly as
(IN −Ψ0W )y◦t = B0x◦t + ε◦t, t = 1, 2, . . . , T, (5)

where y◦t = (y1t, y2t, . . . , yNt)
′, IN is anN×N identity matrix, Ψ0 = Diag (ψ0) withψ0 = (ψ10, ψ20, . . . , ψN0)

′,

and B0 is the N×kN block diagonal matrix with elements β′i0, i = 1, 2, . . . , N, on the main diagonal and

zeros elsewhere, and x◦t = (x′1t,x
′
2t, . . . ,x

′
Nt)
′ is the kN×1 vector of observations on the exogenous regres-

sors. Finally, V ar (ε◦t) = Σ0 = Diag
(
σ2
0

)
, with σ2

0 = (σ210, σ
2
20, . . . , σ

2
N0)
′. We set S(ψ0) = IN −Ψ0W ,

and assuming that S(ψ0) is invertible, the reduced form of (5) can be expressed as

y◦t = S−1(ψ0) [B0x◦t + ε◦t] , t = 1, 2, . . . , T. (6)

2.2 The log-likelihood function

To estimate the unit-specific coefficients we collect all the parameters of the N units in the N(k+ 2)× 1

vector θ = (ψ′,β′,σ2′)′ where ψ = (ψ1, ψ2, . . . , ψN )′, β = (β′1,β
′
2, . . . ,β

′
N )′ and σ2 = (σ21, σ

2
2, . . . , σ

2
N )′,

and denote the associated vector of true values by θ0 = (ψ′0,β
′
0,σ

2′
0 )′. The log-likelihood function of (6)

can be written as

`T (θ) = lnL(θ) = −NT
2

ln(2π)−T
2

N∑
i=1

lnσ2i +
T

2
ln |S′(ψ)S(ψ)|−1

2

T∑
t=1

[S(ψ)y◦t −Bx◦t]
′Σ−1 [S(ψ)y◦t −Bx◦t] ,

(7)
where Σ = Diag (σ2), Ψ = Diag (ψ), and S(ψ) = IN −ΨW .

The quasi maximum likelihood estimators (QMLE), θ̂, are the extreme value estimators obtained by

maximisation of (7). When the error terms, ε◦t (θ0) = S(ψ0)y◦t−B0x◦t, are normally distributed, then

vector θ̂ is the maximum likelihood estimator (MLE) of θ, while under non-Gaussian errors, θ̂ is the

QMLE of θ.

3 Asymptotic properties of QML estimators

3.1 Assumptions

In order to investigate the conditions under which θ0 is identified, and to establish consistency and the

asymptotic normality of θ̂, we make the following assumptions, using the filtration Ft = (x◦t,x◦t−1,x◦t−2, . . .),

where x◦t = (x′1t,x
′
2t, . . . ,x

′
Nt)
′, which could also contain lagged values of y◦t:
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Assumption 1 The error terms {εit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T} are independently distributed over

i and t; E(εit|Ft) = 0, E(ε2it|Ft) = σ2i0, for i = 1, 2, . . . , N , where infi
(
σ2i0
)
> c > 0, supi

(
σ2i0
)
< K <∞,

and E (|εit|p |Ft) = E (|εit|p) = $ip < K, for all i and t, where $ip is a time-invariant constant,

1 ≤ p ≤ 4 + ε, for some ε > 0.

Assumption 2 (a) x◦t are stationary processes with mean zero, and satisfy the moment condition

supi,`,tE
(
|xi`,t|2+c

)
< K, for some c > 0, i = 1, 2, . . . , N , ` = 1, 2, . . . , k, and t = 1, 2, . . . , T . (b)

E (x◦tx
′
◦t) = Σxx = (Σij) , where Σij = E(xitx

′
jt) exists for all i and j, such that supi,j ‖Σij‖ < K,

and Σii is a k × k non-singular matrix with infi [λmin (Σii)] > c > 0, and supi [λmax (Σii)] < K; (c)

T−1
∑T

t=1 x◦tx
′
◦t
a.s.→ Σxx, as T →∞.

Assumption 3 The N(k + 2)× 1 parameter vector θ = (ψ′,β′,σ2′)′ belongs to Θ = Θψ ×Θβ ×Θσ ⊂

RN × RNk × RN , a sub-set of the N(k + 2) dimensional Euclidean space, RN(k+2). Θ is a closed and

bounded (compact) set and includes the true value of θ, denoted by θ0, which is an interior point of Θ.

Assumption 4 (a) The weight matrix W = (wij) is known and time-invariant with wii = 0, for

i = 1, 2, . . . , N . (b) W has bounded maximum row sum norm, ‖W ‖∞ < K <∞, and

sup
ψi∈Θψ

|ψi| <
1

‖W ‖∞
. (8)

Remark 1 Assumption 1 implies that E(εit) = 0, E(ε2it) = σ2i0, for i = 1, 2, . . . , N, and does not allow

for conditional heteroskedasticity. But it is possible to allow for time variations in E
(
|εit|4+ε |Ft

)
by

relaxing the moment conditions on εit and xi`,t.

Remark 2 The HSAR model, (1), is quite general and encompasses many other models in the literature.

Assumption 2 allows the regressors to be weakly exogenous and cross-sectionally correlated, namely the

model can contain lagged dependent variables and observable common factors, such as time trends. It can

also be modified to include an intercept (fixed effects) by setting one of the elements of xit to unity, at the

expense of complicating the algebra. It applies both when N is small or large, so long as T is sufficiently

large. Small sample evidence on such settings is presented in Section 5.

Remark 3 Assumption 4 is sufficiently general and allows the spatial weights to take negative values.

But, as noted above, in empirical applications one might wish to distinguish between positive and negative

connections as they might have differential effects on the outcomes. This assumption does not require

the weights to be normalised either, so long as condition (8) is met. In the case when a dense inverse

distance matrix is adopted, for example when wij are set in terms of geodesic distance, dij, between the

i and j units such that W =
(

1/dδij

)
, then for Assumption 4 to hold it is necessary that δ > 1 and is

sufficiently large. See Elhorst (2014).
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Remark 4 As shown in Lemma 1, under Assumption 4 we have λmin [S(ψ)] > 0 and |λmax [S(ψ)]| < 2,

and boundedness of ‖W ‖1 is not needed. Condition (8) is required simply to ensure invertibility of matrix

S(ψ).

3.2 Identification

Here we focus on the problem of identification of the individual parameters in N(k+2)×1 vector θ0 for a

given N , and as T →∞. To highlight the main issues involved in the identification of spatial parameters

under the heterogeneous setting, first we consider the HSAR model (5) without the exogenous regressors.

Under Assumption 4(b), with B0 = 0, we have (see (6))

y◦t = S−1(ψ)ε◦t, t = 1, 2, . . . , T.

With a slight abuse of notation let θ = (ψ′,σ2′)′, and note that in this case the log-likelihood function is

given by

`T (θ) = −NT
2

ln(2π)− T

2

N∑
i=1

lnσ2i +
T

2
ln |S′(ψ)S(ψ)| − 1

2

T∑
t=1

y′◦tS
′(ψ)Σ−1S(ψ)y◦t.

It is also helpful to write the associated average log-likelihood function as

¯̀
T (θ) = −N

2
ln(2π)− 1

2

N∑
i=1

lnσ2i +
1

2
ln |V (ψ) | − 1

2

(
1

T

T∑
t=1

y′◦tP (θ)y◦t

)
,

where
V (ψ) = S′(ψ)S(ψ), P (θ) = S′(ψ)Σ−1S(ψ), and S(ψ) = IN −ΨW .

Let QT (θ0,θ) = ¯̀
T (θ0) − ¯̀

T (θ), in which ¯̀
T (θ0) is ¯̀

T (θ) evaluated at θ = θ0. Then, for a given N

and as T → ∞, we have (see Lemma 3 of the online supplement A when setting B = 0 in (A.6))

QT (θ0,θ)− E0 [QT (θ0,θ)]
a.s.→ 0, where

E0 [QT (θ0,θ)] = E0

[
¯̀
T (θ0)− ¯̀

T (θ)
]

= −1

2

N∑
i=1

ln
(
σ2i0/σ

2
i

)
−N

2
+

1

2

[
ln

(
|V (ψ0) |
|V (ψ) |

)]
+

1

2
tr
[
P (θ) P−1 (θ0)

]
.

(9)
Consider now the problem of identification of ψ0, which is the parameter vector of interest. Note that

|V (ψ0) |/|V (ψ) | = |S(ψ0)|
2 / |S(ψ)|2 =

∣∣S(ψ0)S
−1(ψ)

∣∣2 =
∣∣S(ψ)S−1(ψ0)

∣∣−2 ,
tr
[
P (θ) P−1 (θ0)

]
= tr

[
S′(ψ)Σ−1S(ψ)S−1(ψ0)Σ0S

′−1(ψ0)
]

= tr
[
Σ−1/2S(ψ)S−1(ψ0)Σ0S

′−1(ψ0)S
′(ψ)Σ−1/2

]
,

and rewrite (9) as

E0 [QT (θ0,θ)] = −N
2
−1

2

N∑
i=1

ln
(
σ2i0/σ

2
i

)
−
[
ln
(∣∣S(ψ)S−1(ψ0)

∣∣)]+1

2
tr
[
Σ−1/2S(ψ)S−1(ψ0)Σ0S

′−1(ψ0)S
′(ψ)Σ−1/2

]
.

Further, we note that S(ψ)S−1(ψ0) = IN−DG0, whereG0 = W (IN −Ψ0W )−1, andD = Ψ−Ψ0, is a

diagonal matrix with elements di = ψi−ψi0. Using these results, the above expression for E0 [QT (θ0,θ)]

8



can be written equivalently as

E0 [QT (θ0,θ)] = −N
2
− 1

2

N∑
i=1

ln
(
σ2i0/σ

2
i

)
− ln |IN −DG0|+

1

2
tr
[
Σ−1/2 (IN −DG0)

′Σ0 (IN −DG0) Σ−1/2
]

= AN +BN ,

where

AN =
1

2

N∑
i=1

[(
σ2i0/σ

2
i

)
− ln

(
σ2i0/σ

2
i

)
− 1
]
− ln |IN −DG0| − tr

(
Σ−1Σ0DG0

)
, (10)

BN =
1

2
tr
(
Σ−1/2G′0DΣ0DG0Σ

−1/2
)
. (11)

We first note that BN ≥ 0, since we can write BN = (1/2) tr (A′0A0), with A0 = Σ
1/2
0 DG0Σ

−1/2.

Consider now AN , denote the ith eigenvalue ofDG0 by µi, and note that since IN−DG0 = S(ψ)S−1(ψ0),

then the eigenvalues of S(ψ)S−1(ψ0) are also given by 1 − µi, for i = 1, 2, . . . , N . Further, by Lemma

1 of the online supplement A, λmin [S(ψ)] > 0 for all ψi that satisfy condition (8). Hence, we must also

have 1− µi > 0, for all i. Using these results, AN can now be written as

AN =
1

2

N∑
i=1

[
σ2i0
σ2i
− ln

(
σ2i0/σ

2
i

)
− 1

]
−

N∑
i=1

ln(1− µi)−
N∑
i=1

(
σ2i0
σ2i

)
µi.

Let δσi = σ2i0/σ
2
i > 0 and δψi = (1− µi) > 0, for all i. Then, write E0 [QT (θ0,θ)] as

E0 [QT (θ0,θ)] = AN +BN =
1

2

N∑
i=1

[δσi − ln (δσi)− 1]−
N∑
i=1

ln δψi −
N∑
i=1

δσi(1− δψi) +BN

=
1

2

N∑
i=1

[δσi − ln (δσi)− 1] +

[
N∑
i=1

δσi (δψi − ln δψi − 1)

]

+

[
N∑
i=1

(δσi − 1) ln δψi

]
+BN = A1,N +A2,N + (A3,N +BN ) .

Since δσi > 0, and δψi > 0 for all i, then δσi − ln (δσi) − 1 ≥ 0, and δψi − ln δψi − 1 ≥ 0 for all i, with

equalities holding if and only if δσi = 1 and δψi = 1 for all i. Hence, A1,N ≥ 0, and A2,N ≥ 0 for all

values of N , and global identification of σ2i0 will be possible only if we are able to show that A3,N +BN is

non-negative. But it is easily seen that the non-negativity of A3,N +BN can not be guaranteed without

further restrictions. This follows since

A3,N =
N∑
i=1

(δσi − 1) ln δψi,

and there are values of δσi and δψi in Θ = Θψ × Θσ for which A3,N < 0. Considering (A3,N +BN )

somewhat weakens the requirement since BN ≥ 0, but still does not guarantee that (A3,N +BN ) ≥ 0,

for all values of δσi > 0 and δψi > 0. Therefore, global identification of ψ0 can not be guaranteed. To

investigate the possibility of local identification we introduce the following definition:

9



Definition 1 Consider the set Nc(σ2
0) in the closed neighborhood of σ2

0 defined by

Nc(σ2
0) =

{
σ2
0∈ Θσ,

∣∣σ2i0/σ2i − 1
∣∣ < ci, for i = 1, 2, . . . , N

}
,

for some ci > 0, i = 1, 2, . . . , N , where Θσ is a compact subset of RN .

We now show that θ0 = (ψ′0,σ
2′
0 )′ is identified on Θc = Θψ ×Nc(σ2

0). Consider values of δσi within the

local neighborhood of δσi = 1 for all i. Recall that A1,N + A2,N ≥ 0, and the boundary values A1,N = 0

or A2,N = 0 can occur if and only if δσi = 1 and δψi = 1 for all i, respectively. Therefore, AN ≥ 0 if

δσi = 1, otherwise A1,N > 0. Similarly, AN ≥ 0 if δψi = 1, otherwise A2,N > 0. Therefore, there must

exist c = (c1, c2, . . . , cN ) > 0, such that AN = 0 on Θc if and only if θ = θ0, which in turn establishes

that ¯̀
T (θ0)− ¯̀

T (θ)
a.s.→ 0, as T →∞, on the set Θc if and only if θ = θ0.

Next, consider the HSAR model (5) with exogenous regressors. The average log-likelihood in this

case is given by (see (7))

¯̀
T (θ) = −N

2
ln(2π)− 1

2

N∑
i=1

lnσ2i +
1

2
ln |V(ψ)| − 1

2

(
1

T

T∑
t=1

[S(ψ)y◦t −Bx◦t]
′Σ−1 [S(ψ)y◦t −Bx◦t]

)
,

(12)
where θ is now defined by θ = (ψ′,β′,σ2′)′ and B has the same form as that used in (5). Following

a similar line of reasoning as in the case without exogenous regressors (see Lemma 3 of the online

supplement A), we have that QT (θ0,θ) = ¯̀
T (θ0) − ¯̀

T (θ), where ¯̀
T (θ) is now given by (12), and

QT (θ0,θ)− E0 [QT (θ0,θ)]
a.s.→ 0, (as T →∞) where

E0 [QT (θ0,θ)] = AN +BN + CN . (13)

AN and BN are defined as before by (10) and (11), and CN is given by

CN =
1

2

N∑
i=1

[(βi − βi0)
′Σii (βi − βi0)]/σ2i + tr

[
Σ−1/2 (B −B0) ΣxxΞ

′
0

]
+

1

2
tr
(
ΣxxΞ

′
0Ξ0

)
(14)

= C1,N + C2,N + C3,N ,

where Ξ0 = Σ−1/2DG0B0, and as before D = Diag(ψ − ψ0). Consider now C3,N and note that since

Σxx = E (x◦tx
′
◦t) and Ξ′0Ξ0 are both kN × kN positive semi-definite matrices, then by result (9) on p.

44 of Lütkepohl (1996),

1

kN
tr
(
ΣxxΞ

′
0Ξ0

)
≥ [det (Σxx)]1/kN

[
det
(
Ξ′0Ξ0

)]1/kN ≥ 0,

and hence C3,N ≥ 0. Also, as shown above, on the subset Θc = Θψ ×Θβ × Nc(σ2
0), AN + BN = 0 if

and only if D = Diag(ψ − ψ0) = 0, and hence it must also follow that C2,N = 0 on Θc. Thus, overall

¯̀
T (θ0)− ¯̀

T (θ)
a.s.→ 0 on Θc if and only if

10



N∑
i=1

(βi − βi0)
′Σii (βi − βi0) /σ2i = 0. (15)

This equality holds for all N if and only if (βi − βi0)
′Σii (βi − βi0) = 0, for all i, and since under

Assumption 2(b) Σii is a positive definite matrix this can occur if and only if βi = βi0 for all i.

Before we state the identification result for the general model (5), we require the following modification

of Assumption 3:

Assumption 5 The N(k+2)×1 parameter vector θ = (ψ′,β′,σ2′)′ belongs to Θc = Θψ×Θβ×Nc(σ2
0),

where Θψ and Θβ are compact subsets of RN and RNk, respectively, Nc(σ2
0) is given in Definition 1, and

Θc is a sub-set of the N(k + 2) dimensional Euclidean space, RN(k+2).

The main identification result of the paper is summarised in the following proposition:

Proposition 1 Consider the heterogeneous spatial autoregressive (HSAR) model given by (5) with the

associated log-likelihood function given by (7). Suppose that Assumptions 1, 2, 3, 4, and 5 hold. Then

for a fixed N and k, the N(k + 2) dimensional true parameter vector θ0= (ψ′0,β
′
0,σ

2′
0 )′ is almost surely

locally identified on Θc.

3.3 Consistency and asymptotic normality

We are now in a position to consider consistency and asymptotic normality of the QML estimator of θ,

given by θ̂ = arg maxθ ¯̀
T (θ), where θ̂ = (ψ̂

′
, β̂
′
, σ̂2′)′, which is estimated simultaneously. We establish

the results for a given N , and as T →∞. First, we focus on the proof of consistency. Under Assumptions

1, 2, 4 and 5, we have: (i) Θc, being a subset of Θ, is compact, (ii) θ0 is an interior point of Θc, (iii)

QT (θ0,θ)
a.s.→ E0 [QT (θ0,θ)] , with QT (θ0,θ) = ¯̀

T (θ0) − ¯̀
T (θ) and E0 [QT (θ0,θ)] = AN + BN + CN ,

where AN , BN and CN are given by (10), (11) and (14), respectively, and (iv) θ0 is a unique maximum

of E0 [QT (θ0,θ)] on Θc. The last result follows from the identification analysis of Section 3.2. It is

clear that all conditions of Theorem 9.3.1 of Davidson (2000) are satisfied, therefore almost sure local

consistency of θ̂ is ensured, with θ̂
a.s.→ θ0 on Θc, as T →∞. To establish asymptotic normality of θ̂, we

apply the mean value theorem to ¯̀
T (θ) such that

¯̀
T (θ)− ¯̀

T (θ0) = (θ − θ0)′ s̄T (θ0)−
1

2
(θ − θ0)′ H̄T (θ̄) (θ − θ0) , (16)

where s̄T (θ) = ∂ ¯̀
T (θ)/∂θ, H̄T (θ) = −∂2 ¯̀

T (θ)/∂θ∂θ′, and θ̄ lies between θ and θ0. By Lemma

5 of the online supplement A we have s̄T (θ0)
a.s.→ 0, and by the results of Section 3.2 we also have

¯̀
T (θ0)− ¯̀

T (θ)
a.s.→ E0

[
¯̀
T (θ0)− ¯̀

T (θ)
]
≥ 0. Hence, in view of (16) it must also hold that (as T →∞)

(θ − θ0)
′ H̄T (θ̄) (θ − θ0)

a.s.→ E0 [QT (θ0,θ)] ,
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where E0 [QT (θ0,θ)] is given by (13). But we have already established that on Θc, the right hand side of

the above expression can be equal to zero if and only if θ = θ0, and hence it must be that H̄T (θ̄)
a.s.→ H̄(θ0),

where H̄(θ0) must be a positive definite matrix given by H̄(θ0) = limT→∞E0

[
−∂2 ¯̀

T (θ)/∂θ∂θ′
]
. Next,

for a given N we apply the mean value theorem to s̄T (θ) = 1/
√
TsT

(
θ̂
)

so that

0 =
√
T s̄T

(
θ̂
)

=
√
T s̄T (θ0)− H̄T (θ̆)

√
T
(
θ̂ − θ0

)
,

where sT (θ) = ∂`T (θ)/∂θ, HT (θ) = − 1
T ∂

2`T (θ)/∂θ∂θ′, and θ̆ lies between θ̂ and θ0. Therefore,
√
T
(
θ̂ − θ0

)
= H−1T (θ̆)

[√
TsT (θ0)

]
, and since θ̂ is consistent on Θc, then

√
T
(
θ̂ − θ0

)
a∼ H−1(θ0)

[√
TsT (θ0)

]
,

where H (θ0) = limT→∞E0

[
− 1
T ∂

2`T (θ)/∂θ∂θ′
]
, with

E0

[
− 1

T
∂2`T (θ)/∂θ∂θ′

]
=


H11 H12 H13

H ′12 H22 H23

H ′13 H ′23 H33


N(k+2)×N(k+2)

.

The expressions for Hij can be obtained using the partial derivative ∂2`T (θ0)/∂θ∂θ
′ given in the online

supplement B. Specifically we have

H (θ0) =


(G0 �G′0) + Σ−10 Diag (G0Σ0G

′
0) + ∆β0

Eβ0
Σ−10 Diag (G0)

Eβ0
Z0 0

Σ−10 Diag (G0) 0′ 1
2Σ−20

 , (17)

where ∆β0
, Eβ0

, and Z0 are diagonal matrices given by

∆β0
= Diag

[
σ−2i0

N∑
r=1

N∑
s=1

g0,isg0,irβ
′
r0Σrsβs0, i = 1, 2, . . . , N

]
, (18)

Eβ0
= Diag

[
σ−2i0

N∑
s=1

g0,isβ
′
s0Σis, i = 1, 2, . . . , N

]
,

Z0 = Diag
[
σ−2i0 Σii, i = 1, 2, . . . , N

]
.

Again by Lemma 5 of the online supplement A, we have that[
1√
T
sT (θ0)

]
→d N [0,J (θ0, γ)]

where

J (θ0, γ) = lim
T→∞



(G0 �G′0) + Σ−10 Diag (G0Σ0G
′
0) + ∆β0

+ (γ − 2) Diag (G0 �G′0)
Eβ0

γ
2Σ−10 Diag (G0)

Eβ0
Z0 0

γ
2Σ−10 Diag (G0) 0′ γ

4Σ−20


(19)
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and
γ = lim

T→∞
T−1

T∑
t=1

V ar(ζ2it) = lim
T→∞

T−1
T∑
t=1

[
E
(
ζ4it
)
− 1
]

, (20)

with ζit = εit/σi0, for i = 1, 2, . . . , N . Hence,
√
T
(
θ̂ − θ0

)
→d N (0,Vθ), where Vθ has the usual

sandwich formula
Vθ = H−1(θ0)J (θ0, γ) H−1(θ0). (21)

In the case where the errors, εit, are Gaussian, γ = 2 and, as to be expected, H (θ0) = J (θ0, 2). This is

easily verified by referring back to (17) which is equal to J (θ0, γ) defined by (19) for γ = 2, as required.

Remark 5 When no exogenous regressors are included in the HSAR specification (1), then the asymptotic

variance, Vθ = H−1 (θ0) J (θ0, γ)H−1 (θ0) , simplifies so that:

H (θ0) =

 (G0 �G′0) + Σ−10 Diag (G0Σ0G
′
0) Σ−10 Diag (G0)

Σ−10 Diag (G0)
1
2Σ−20


2N×2N

,

and

J (θ0, γ) =


(G0 �G′0) + Σ−10 Diag (G0Σ0G

′
0)

+(γ − 2) Diag (G0 �G′0)
γ
2Σ−10 Diag (G0)

γ
2Σ−10 Diag (G0)

γ
4Σ−20

 .

Again, under Gaussian errors we have J (θ0, 2) = H (θ0).

The main result of this section is summarised in the following proposition:

Proposition 2 Consider the heterogeneous spatial autoregressive (HSAR) model given by (1). Suppose

that Assumptions 1, 2, 3, 4, and 5 hold. Let N and k be fixed constants, and denote the N(k + 2)

dimensional (quasi-) maximum likelihood estimator of θ0 by θ̂ = arg maxθ ¯̀
T (θ), where ¯̀

T (θ) is given

by (12). Then, θ̂ is almost surely locally consistent for θ0 on Θc, and has the following asymptotic

distribution √
T
(
θ̂ − θ0

)
→d N (0,Vθ) ,

where Vθ = H−1(θ0)J (θ0, γ) H−1(θ0), and H (θ0) and J (θ0, γ) are defined by (17) and (19), respec-

tively.

Proof. See the online supplement B.

Focusing on the QML estimators of the spatial lag coefficients, ψ̂, we introduce the following parti-

tioning of H (θ0):

H (θ0) =

 H11 H12

H′12 H22

 ,

where H12 = (H12,H13) is an N × (Nk +N) matrix, and since H23 = H32 = 0, then H22 =

Diag (H22,H33), which is an (Nk +N)× (Nk +N) matrix. Then, the inverse of H (θ0) is given by
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H−1 (θ0) =

 H−111·2 −H−111·2H12H−122

−H−122 H21H−111·2 H−122 +H−122 H21H−111·2H12H−122

 ,

and the inverse of the N ×N information matrix H11·2 corresponds to the asymptotic covariance matrix

of ψ̂. This result is summarised in the following proposition:

Corollary 1 Consider the heterogeneous spatial autoregressive (HSAR) model given by (1).Suppose that

Assumptions 1, 2, 3, 4, and 5 hold. Then for any fixed N and k, the N ×N information matrix

H11·2 =
(
G0 �G′0

)
+ Diag

−g20,ii +
N∑

s=1,s 6=i

(
σ2s0/σ

2
i0

)
g20,is, i = 1, 2, . . . , N

 (22)

+ Diag

[
σ−2i0

N∑
r=1

N∑
s=1

g0,isg0,irβ
′
r0

(
Σrs −ΣriΣ

−1
ii Σis

)
βs0, i = 1, 2, . . . , N

]
,

is full rank, where G0 = W (IN −Ψ0W )−1 = (g0,ij), Ψ0 = Diag(ψ0), ψ0 = (ψ10, ψ20, . . . , ψN0)
′, and

W is the spatial weight matrix, and εit ∼ IIDN(0, σ2i0). Then the maximum likelihood estimator of ψ0,

denoted by ψ̂ and computed by maximizing (A.21), has the following asymptotic distribution,

√
T
(
ψ̂ −ψ0

)
→d N (0,Vψ) , (23)

where Vψ = [H11·2]
−1 .

Proof. See the online supplement B.

Remark 6 When T →∞, estimation of the HSAR model (1) can be conducted for any N , and N →∞

is not required. Proposition 2 describes the asymptotic distribution of each individual parameter in vector

θ̂. Yu et al. (2008) who study a similar panel data model to ours, with fixed effects but with homogeneous

spatial and slope parameters, consider three cases for N : fixed, asymptotically proportional to T , and

asymptotically large relative to T , as T → ∞. The interest in distinguishing between these cases in

their paper arises from the fact that different biases arise in the computation of their proposed QML

estimators depending on the relative size of N and T and due to the homogeneity assumption imposed

on their spatial and slope coefficients. On the other hand, the estimated fixed effects under their model

specification converge to their respective true values at rate
√
T irrespective of N - see Theorem 4 in Yu

et al. (2008).

Remark 7 When the time dimension T is short and fixed, as N rises we are likely to encounter the

well known ‘incidental parameter’ problem since the number of parameters rise with N and the standard

asymptotic results do not hold; an issue originally highlighted by Neyman and Scott (1948). But the

incidental parameter problem will not be present if T is large relatively to N , irrespective of whether N is
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fixed or rises with T . This is because the unit-specific parameters are estimated individually consistently,

and the impact of initial conditions on the parameter estimates becomes negligible as T → ∞. But, as

discussed below in Section 4, if the object of interest is the mean of the individual coefficients, then we

require both N and T to rise together such that N/T → κ, for some strictly positive κ.

Remark 8 In the case where εit are non-Gaussian but E(|εit|4+ε) < K holds for some ε > 0, the quasi

maximum likelihood estimator, ψ̂, continues to be normally distributed but its asymptotic covariance

matrix is given by the upper N ×N partition of H−1 (θ0) J (θ0, γ)H−1 (θ0), where H (θ0) and J (θ0, γ)

are defined by (17) and (19), respectively. Recall that γ is defined by (20), and under Gaussian errors it

takes the value of γ = 2, so that we have J (θ0, 2) = H (θ0).

Remark 9 The conditions that we have derived for local/global identification and consistency of the

QML estimators have parallels in the GMM estimation of spatial models and correspond to the high level

assumptions made under GMM requiring the moment conditions to have a unique solution (which might

not be met and is often difficult to check). In practice, when computing QML and GMM estimators it

is advisable that a number of different initial parameter vectors, θin, are considered in the optimisation

procedure to make sure that the resultant estimates correspond to the global optimum, as far as possible.

3.3.1 Consistent estimation of V θ

The asymptotic covariance matrix of θ̂ can be consistently estimated using the expressions given by (17)

and (19), yielding the following standard and sandwich formulae

V θ = H−1 (θ0) and V θ = H−1 (θ0) J (θ0, γ)H−1 (θ0) ,

with the information matrix equality holding in the case of εit ∼ IIDN(0, σ2i0) and γ = 2. Consistent

estimators of J (θ0, γ) and H (θ0) can be obtained by replacing θ0 with its QML estimator, θ̂, and

estimating γ by γ̂ = (NT )−1
∑T

t=1

∑N
i=1 (ε̂it/σ̂i)

4 − 1, where ε̂it = yit − ψ̂i
∑N

j=1wijyjt − β̂
′
ixit, with σ̂i,

β̂i and ψ̂i being the QML estimators of σi0, βi0 and ψi0, respectively.

Alternatively, one can use the sample counterparts of J (θ0, γ) andH (θ0) and estimate the covariance

matrix of the QML estimators consistently by

V̂ θ̂ = Ĥ
−1
T

(
θ̂
)

and V̂ θ̂ = Ĥ
−1
T

(
θ̂
)

ĴT

(
θ̂, γ̂

)
Ĥ
−1
T

(
θ̂
)
, (24)

where ĴT (θ) = T−1
∑T

t=1 (∂`t (θ) /∂θ) (∂`t (θ) /∂θ)′, `t (θ) is defined by (A.20) and ĤT (θ) =

−T−1[∂2`T (θ) /∂θ∂θ′]. Consistency of Ĵ(θ̂, γ̂) for J (θ0, γ) follows from consistency of θ̂ for θ0, of γ̂ for

γ and the independence of ∂`t (θ0) /∂θ over t, as shown in Lemma 5 of the online supplement A. The

first and second derivatives are provided in the online supplement C.
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4 Mean group estimators

So far we have focussed on estimation of the unit-specific parameters and have derived the asymptotic re-

sults for a given N and as T →∞. But in practice it is often of interest to obtain average estimates across

all the units or a sub-group of the units in the panel, assuming that the individual coefficients follow a

random coefficient model. In the context of the HSAR model (1), suppose that {ψi0, βi0, i = 1, 2, . . . , N}

are randomly distributed around the common means, ψ0 and β0, such that

ψi0 = ψ0 + ηiψ, and βi0 = β0 + ηiβ for i = 1, 2, . . . , N, (25)

where ηi =
(
ηiψ,η

′
iβ

)
∼ IID (0,Ωη) , Ωη > 0 is a positive definite matrix, and it is assumed that

E ‖ηi‖
2+c < K, for some c > 0. The parameters of interest are ψ0 and β0 which are the population

means of spatial lags and slope parameters of the underlying HSAR model. For consistent estimation of

ψ0 and β0 we now need both N and T sufficiently large. Large T is required to consistently estimate the

unit-specific coefficients, and large N is required for estimation of the common means, ψ0 and β0. It is

also possible to apply this procedure to subsets of the units, so long as the number of units in each set is

reasonably large.

Consistent estimators of ψ0 and β0 are given by the mean group (MG) estimators,

ψ̂MG = N−1
N∑
i=1

ψ̂i, and β̂MG = N−1
N∑
i=1

β̂i, (26)

where ψ̂i and β̂i are the underlying unit-specific estimators. The MG estimator was originally developed

by Pesaran and Smith (1995) who show that in the standard case where ψ̂i and β̂i are independently

distributed, then ψ̂MG and β̂MG will be consistent and asymptotically normal. Recently, Chudik and

Pesaran (2019) extend this analysis and consider MG estimators based on possibly cross correlated

estimators and show that the standard MG estimation continues to apply so long as the underlying

unit-specific estimators are weakly cross correlated.

The main result of this section is summarised in the following proposition:

Proposition 3 Consider the heterogeneous spatial autoregressive (HSAR) model given by (1) where the

coefficients {ψi0, βi0, i = 1, 2, . . . , N} are distributed randomly around the common means ψ0 and β0

following (25). Suppose that Assumptions 1, 2, 3, 4, and 5 hold. Then for a fixed k, and as N,T → ∞

jointly such that
√
N/T → 0, the mean group estimators, ψ̂MG and β̂MG, defined by (26) have the

following asymptotic distributions

√
N
(
ψ̂MG − ψ0

)
a∼ N

(
0, ω2

ψ

)
, and

√
N
(
β̂MG − β0

)
a∼ N (0,Ωβ) ,
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with consistent estimators of ω2
ψ and Ωβ given by

ω̂2
ψ =

1

N − 1

N∑
i=1

(
ψ̂i − ψ̂MG

)2
, and Ω̂β =

1

N − 1

N∑
i=1

(
β̂i − β̂MG

)(
β̂i − β̂MG

)′
, (27)

respectively, where ψ̂i and β̂i are the underlying unit-specific estimators.

Proof. See the online supplement B.

Remark 10 The asymptotic distributions of ψ̂MG and β̂MG shown in Proposition 3 are carried out

assuming βi and ψi are heterogeneous, such that V ar(βi) and V ar (ψi) are strictly non-zero, and do

not apply to the case where the slopes are assumed to be homogeneous. For a formal exposition of the

properties of the Mean Group estimators under heterogeneous (
√
N -consistent) and homogeneous slope

coefficients (
√
NT -consistent) see Pesaran and Tosetti (2011).

Remark 11 In principle, it is possible to test the hypothesis of slope homogeneity using Hausman type

tests. However, as shown in Pesaran and Yamagata (2008), such tests are likely to lack power. The

development of more powerful tests of slope homogeneity in the context of HSAR models is beyond the

scope of this paper and would be an interesting topic of further research.

5 Small sample properties of the QMLE

We investigate the small sample properties of the proposed QML estimator and the associated MG

estimator using Monte Carlo simulations. We consider the following data generating process (DGP)

yit = ai + ψi

N∑
j=1

wijyjt + βixit + εit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T. (28)

We include one exogenous regressor, xit, with coefficient βi as well as fixed effects, ai, in unit-specific

regressions. Stacking these regressions we have

y◦t = a+ ΨWy◦t +Bx◦t + ε◦t, t = 1, 2, . . . , T,

where a = (a1, a2, . . . , aN )′, Ψ = Diag (ψ) and ψ = (ψ1, ψ2, . . . , ψN )′, W = (wij), i, j = 1, 2, . . . , N,

B = Diag (β), with β = (β1, β2, . . . , βN )′, x◦t = (x1t, x2t, . . . , xNt)
′, and ε◦t = (ε1t, ε2t, . . . , εNt)

′. Note

that since we explicitly account for fixed effects which we separate out from the remaining regressors

included in x◦t, the unknown parameters are summarised in vector θ, as follows: θ =
(
a′,ψ′,β′,σ2′)′ ,

σ2 = (σ21, σ
2
2, . . . , σ

2
N )′. In total there are 4N unknown parameters.

We allow for spatial dependence in the regressors, xit, and generate them as

x◦t = (IN −ΦW x)−1 v◦t, (29)
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where Φ = Diag(φ1, φ2, . . . , φN ), and v◦t = (v1t, v2t, . . . , vNt)
′, with vit ∼ IIDN(0, σ2v). We set φi = 0.5

(representing a moderate degree of spatial dependence), and set σ2v = N/ tr
[
(IN −ΦW x)−1 (IN −ΦW x)′−1

]
,

which ensures that N−1
∑N

i=1 V ar(xit) = 1. We set W x = W = (wij), i, j = 1, 2, . . . , N , and use the

4-connection spatial matrix described below.

We consider Gaussian errors such that εit/σi0 ∼ IIDN(0, 1), and non-Gaussian errors such that

εit/σi0 ∼ IID
[
χ2(2)− 2

]
/2, for i = 1, 2, . . . , N , and t = 1, 2, . . . , T , where χ2(2) is a chi-squared variate

with 2 degrees of freedom. σ2i0 are generated as independent draws from χ2(2)/4+0.50, for i = 1, 2, . . . , N,

and kept fixed across the replications.

For the weight matrix, W = (wij), first we use contiguity criteria to generate the non-normalised

weights matrices, W 0 = (woij), and then row normalise these to obtain wij . More specifically, we consider

W matrices with 2, 4 and 10 connections.4 Since by construction ‖W ‖∞ = 1, then condition (8) is

satisfied if supi |ψi| < 1, and ensures that IN−ΨW is invertible. We generate the unit-specific coefficients

of the HSAR model as ai0 ∼ IIDN(1, 1), βi0 ∼ IIDU (0, 1) , and ψi0 ∼ IIDU(0, 0.8), for i = 1, 2, . . . , N .5

Given the DGP in (28), values of yit are now generated as y◦t = (IN −ΨW )−1 (a+Bx◦t + ε◦t).

Initially, to illustrate that our proposed estimator applies to both cases where N is small and large,

we considered the two polar cases of N = 5 and N = 100, and set T = 25, 50, 100, 200, thus including

(N,T ) combinations such that N < T , N = T and N > T , respectively. We then considered a more

comprehensive set of N values, namely N = 25, 50, 75, 100. For each experiment we used R = 2, 000

replications. Across the replications, θ0, and the weight matrix, W , are kept fixed, whilst the errors and

the regressors, εit and xit (and hence yit), are re-generated randomly in each replication. Note that, as

N increases, supplementary units are added to the original vector θ0 generated initially for N = 5. Due

to the problem of simultaneity, the degree of time variations in y∗it for each unit i depends on the choice

of W and the number of cross section units, N . Naturally, this is reflected in the performance of the

estimators and the power properties of the tests based on them.

We report bias and RMSE of the QML estimators for individual cross section units, as well as their

corresponding empirical sizes. In addition, we report power functions for three units with true spatial

autoregressive parameters, ψi0, selected to be low, medium and large in magnitude. The experiments are

carried out for spatial weight matrices, W , with two, four and ten connections. The mean of simulated

parameter estimates are computed as ψ̂i(R) = R−1
∑R

r=1 ψ̂i,r, and β̂i(R) = R−1
∑R

r=1 β̂i,r, where ψ̂i,r and

4We generate W 0 = (woij) such that: (i) woij = 1 if j = i − 1, i + 1, and zero otherwise (2 connections), (ii) woij = 1 if
j = i−2, i−1, i+1, i+2, and zero otherwise (4 connections), and (iii) woij = 1 if j = i−5, i−4, . . . , i−1, i+1, i+2, . . . , i+5,
and zero otherwise (10 connections). By construction, the first and last units have fewer neighbours as compared to the
other units.

5We also carried out experiments without exogenous regressors with βi0 = 0, for all i, corresponding to the simplified
version of model (5) discussed in Section 3.2. The results of these experiments are available upon request.
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β̂i,r refer to the QML estimates of ψi and βi in the rth replication. The QML estimators are computed

using the log-likelihood function (7). We also report small sample results for the MG estimators of ψ0

and β0, defined by (26), using the experiment described in Section 5.2 below.

5.1 Results for individual estimates

Since the results based on the Gaussian and non-Gaussian errors are very close, in what follows we only

report the results for the non-Gaussian case where the errors are generated as iid χ2(2) random variables,

and use the sandwich formula (24) to compute standard errors. Also to save space, we focus on results

based on the spatial weight matrix, W , with four connections.6 Initially, to highlight the applicability of

the proposed estimators to small as well as large dimensional HSAR panels, we provide detailed results

for the experiments with N = 5 and N = 100.

5.1.1 Two polar cases: N = 5 and N = 100

Table 1 reports the bias, RMSE, empirical size and power of the individual parameters, ψi0 and βi0,

i = 1, 2, . . . , N , for the experiments with N = 5. The bias of estimating ψi0 tends to be small but

negative when T = 25, whilst estimates of βi0 show an upward bias when T is small (T = 25). But

the biases of both estimators fall quite rapidly with T , for all i. A similar pattern can be seen in the

RMSEs, again declining with T reasonably fast. Turning to size and power of the tests based on the QML

estimates, there is some evidence of over-rejection when T is small (T = 25). But the size distortion gets

eliminated as T is increased, with the tests having the correct size for values of T ≥ 50. This pattern is

shared by both ψi0 and βi0. Similarly, power is low when T = 25 but improves markedly for all 5 units

as T is increased.7 Overall the small sample results are in line with our theoretical findings, and give

satisfactory results for values of T ≥ 50; a property which is repeated for other experiments considered

in this paper.

For N = 100 we report the results only for a selected number of units, namely units with the three

smallest and largest population values for ψi0 and a few in between, and the associated βi0 values. The

small sample results for these experiments are summarised in Table 2, and are qualitatively similar to

those reported in Table 1 for N = 5, indicating that the theoretical framework of Section 3 can be applied

equally to data sets with small and large numbers of cross section units.

6Results for Gaussian errors and other choices of spatial weight matrices are available upon request.
7Clearly, improvements in power can be achieved by reducing the error variances, σ2

i0. Some supporting evidence is
provided in Tables G1 and G2 in the online supplement G.
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5.1.2 RMSE, size and power for all N and T combinations

We now turn to the rest of the results and consider all the combinations of N ∈ {25, 50, 75, 100} and

T ∈ {25, 50, 100, 200}. To save space we use boxplots to summarise the results for RMSE and size, and

use empirical rejection frequency plots for power.8 All results are shown in the online supplement G.

The RMSE boxplots for ψi0 and βi0 are given in Figures G1 and G2, respectively. Overall, the RMSE

values are small for both parameters and fall with T but are not affected by changes in the cross section

dimension, N , which is in line with the theory developed in Section 3.

The boxplots for the size of the tests based on the QML estimates of ψi0 and βi0 are given in Figures

G3 and G7, respectively. These results are based on the sandwich covariance matrix formula given by

(24). As can be seen, in general the tests are correctly sized at 5 per cent for T relatively large, although

for small values of T there are some size distortions. Once again the size estimates are not affected by

N , and tend to 5 per cent as T increases, irrespective of the value of N .

To save space we only report the empirical power functions of the tests for three cross section units

with low, medium and high parameter values. The power plots are computed for different values of ψi and

βi defined by ψi = ψi0+δ, and βi = βi0+δ, for i = 1, 2, . . . , N , where δ = −0.800,−0.791, . . . , 0.791, 0.800.

We only consider values of ψi that satisfy the condition |ψi| < 1.9

The power results for the spatial parameters, ψi0, are displayed in Figures G4-G6, that correspond

to the low value (ψi0 = 0.3374), the medium value (ψi0 = 0.5059) and the high value (ψi0 = 0.7676),

respectively. As to be expected the power depends on the choice of ψi0 and rises with T , but does not

seem to be affected by N . Furthermore, perhaps not surprisingly, empirical power functions for ψi0

become more and more asymmetrical as ψi0’s move closer and closer to the boundary value of 1. The

power functions for the three associated values of βi0 are shown in Figures G8-G10 for the low value of

βi0 (βi0 = 0.0344), the medium value (βi0 = 0.4898), and the high value (βi0 = 0.9649), respectively.

Again the empirical power functions are similar across N and improve with T .

5.2 Small sample properties of the MG estimators

We employ the same data generating process, defined by (28), and set ai0 = a0 + ε1i, with a0 = 1 and

ε1i ∼ IIDN(0, 1), ψi0 = ψ0 + ε2i, with ψ0 = 0.4 and ε2i ∼ IIDU(−0.4, 0.4) and βi0 = β0 + ε3i, with

β0 = 0.5 and ε3i ∼ IIDU (−0.5, 0.5). Parameters a0, ψ0 and β0 are fixed while parameters ai0, ψi0 and

8The boxplots for bias of the estimators are similar to those of RMSE and are available upon request. The corresponding
tables that show bias and RMSE results for the individuals estimates (ψ̂i(R), and β̂i(R), i = 1, 2, . . . , N) are also available
upon request.

9The empirical power functions are computed using the sandwich formula for the covariance matrix of the underlying
estimators.
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βi0 vary across replications, for i = 1, 2, . . . , N , in accordance to the random coefficients model. The MG

estimators and their standard errors are computed using (26) and (27), and the number of replications is

set to R = 2, 000. The small sample properties of the mean group estimators of ψ0 and β0 are summarised

in Table G3 of the online supplement G. The top panel gives the results for Gaussian errors, and the

bottom panel for non-Gaussian errors. As to be expected the bias and RMSE of the MG estimators

decline steadily with both N and T , and it does not matter whether the errors are Gaussian or not.

There are some small size distortions when N = T = 25, but the size rapidly converges to the nominal

value of 5 percent as N and T are increased. For example for T = 25 the size is always within the

simulation standard errors when N ≥ 50.

6 Heterogeneous spatial spill-over effects in U.S. housing market

As an empirical application we estimate HSAR models for quarterly real house price changes in the

United States at Metropolitan Statistical Areas (MSAs) over the period 1975Q1-2014Q4. Modelling and

forecasting of cycles in housing markets are of paramount importance for prospective owners, investors,

and real estate market participants such as insurers and mortgage lenders (Agnello et al., 2015). Some

areas of interest include: (i) land use regulations which affect the elasticity of housing supply and thus the

extent to which population growth translates into greater housing price growth (Saiz (2010)), (ii) REIT

investment, by determining the optimal portfolios of real estate structures across space that have the

highest returns whilst holding risk constant, (iii) equilibrium effects of public policies, such as the knock-

on effects on real estate price growth due to local labour market distortions associated with increased

import competition (Autor et al. (2013)).

Determinants of U.S. house price changes are numerous and well-documented in the literature; two

prominent fundamentals being real per capita disposable income and population - see for example

Malpezzi (1999) and Gallin (2006) among others. Factors such as differences in land use regulations,

construction costs and real wages that vary rather slowly over time can be captured by fixed effects and

slope heterogeneity. An important aspect of the modelling strategy is to account for the existence of co-

movements in house prices within and across MSAs as well. Recently, Bailey et al. (2016) (hereafter BHP)

highlight the importance of distinguishing between types of cross-sectional dependence in the analysis of

U.S. house price changes, which if ignored can lead to biased parameter estimates. See, for example, the

studies by Swoboda et al. (2015) and Munro (2018). BHP distinguish between spatial dependence that

originates from economy-wide common shocks such as changes in interest rates, oil prices and technology,

and the dependence across MSAs due to local spill-over effects arising from differences in house prices,
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incomes and demographics across MSAs.10 Here, we use an extended version of the panel dataset em-

ployed by BHP and further augmented with population and per capita real income data by Yang (2020)

to estimate HSAR models, after filtering out the effects of common factors on house price changes.11 We

provide MSA specific estimates of spill-over effects, temporal dynamics, as well as population and income

elasticities of house prices and corresponding partial effects over time. Further, we report MG estimates

of our individual parameter values both at the national and regional levels. As we shall see, we find

considerable heterogeneity across MSAs and regions.

6.1 Data description and transformations

There exist 381 metropolitan statistical areas (MSAs) which fall under the February 2013 definition

provided by the U.S. Office of Management and Budget (OMB). We consider N = 377 of these from the

contiguous United States. Accordingly, we compile the following variables that are included in our model

over the period 1975Q2-2014Q4 (T = 160 quarters): Πit is the percent quarterly rate of change of real

house prices of MSA i in quarter t (dependent variable), GPOPit is the percent quarterly rate of change

of population (regressor), and GINCit is the percent quarterly rate of change in real per capita income

(regressor). Details on data sources and transformations can be found in the online supplement F.

Our estimation strategy requires real house price changes, Πit, to be cross-sectionally weakly depen-

dent by Assumption 4. We first apply the CD test developed in Pesaran (2004, 2015) to Πit in order to

assess the strength of cross-sectional dependence (CSD) in Πit. The CD statistic turns out to be 1621.22

which is substantially higher than the 1.96 critical value at 5 per cent level. With the null hypothesis

of weak CSD soundly rejected, we then estimated the exponent of cross-sectional dependence, α, due

to Bailey et al. (2016) which measures the degree of cross-sectional dependence of house price changes.

Values of α close to unity are indicative of strong cross-sectional dependence. We obtained α̂ = 1.00

(0.03), where the standard error of the estimate is given in brackets. It is clear that real house price

changes, Πit, are strongly correlated across MSAs, and before estimating local spill-over effects using the

HSAR model, we must first purge Πit of the common sources of their dependence, as suggested in BHP.

Accordingly, we de-seasonalise and de-factor the three variables that we use to estimate the HSAR

specifications which we denote by πit, gpopit and gincit, respectively.12 The CD statistic for the filtered

series, πit, is −3.367, which is substantially lower than the value of 1621.22 obtained for the unfiltered

10For a theoretical analysis of the interactions between regional house prices, migration flows and income shocks, see Cun
and Pesaran (2018).

11In order to decipher the relative importance of common factors and spill-overs in explaining the variation in house prices
by MSA, one can extend Pesaran and Chudik (2014) to the case of heterogeneous spill-overs. This analysis is beyond the
scope of this paper.

12Details of the de-seasonalising and de-factoring of Πit, GPOPit and GINCit can be found in the online supplement F.

22



series, but is nevertheless too large, and could suggest that the filtering has not been effective in removing

the strong sources of cross-sectional dependence. There are two reasons that this might not be the case.

First, as Juodis and Reese (2019) point out, the CD test most likely over-rejects when it is applied to

residuals from a regression on unobserved common factors. Second, as shown in Pesaran (2015), the

implicit null of the CD test depends on the relative expansion rates of N and T , and for T = O (N ε),

0 ≤ ε ≤ 1, such that the exponent of cross-sectional dependence, α, which characterises the degree of

cross-sectional dependence of πit, falls in the range 0 ≤ α ≤ (2− ε) /4. Hence, a mere rejection of the CD

test does not necessarily mean that the de-factored series are not weakly correlated. This view point is

supported by the estimates of spatial effects reported in the next sub-section which satisfy the stability

conditions associated with weakly cross correlated processes.

6.2 Estimation of HSAR model for de-factored house price changes

We now consider the following HSAR specification for πit which allows for spatio-temporal effects in

house price inflation:

πit = ai + ψ0i

N∑
j=1

wijπjt + ψ1i

N∑
j=1

wijπj,t−1 + λiπi,t−1 + βpopi gpopit + βinci gincit + εit, (30)

for i = 1, 2, . . . , N and t = 1, 2, . . . , T . The model incorporates fixed effects and full heterogeneity in

the spatial and temporal autoregressive coefficients of real house price changes (ψ0i, ψ1i, λi), as well as

the slope coefficients for the two regressors (βpopi , βinci ). Innovations are assumed to be distributed as

εit ∼ IID
(
0, σ2iε

)
.13 (30) is in accordance with the theoretical model (1) analysed in Sections 2 and 3.14

6.2.1 Choice of weight matrix W

For the weight matrix W = (wij), we consider the distance based weighting scheme implemented in Yang

(2020), which is common in the spatial econometrics literature. More precisely, we compute the geodesic

distance between each pair of latitude/longitude coordinates for the MSAs included in our sample using

the Haversine formula. These coordinates correspond to the center of the polygon implied by each MSA.

Then, we determine a specific radius threshold, d (miles), within which MSAs are considered to be

neighbours. In this case, the relevant entries in the un-normalised weight matrix W 0 are set to unity.

The MSAs that fall outside this radius are labelled non-neighbours and their corresponding entries in

13In performing the data transformations of Section 6.1, we abstract from the sampling uncertainty related to using defac-
tored series when estimating HSAR models. In principle, one could estimate the common and local effects simultaneously,
instead of the two-stage procedure being followed. However, such an endeavour is beyond the scope of the present paper.

14We have considered alternative models to (30): one that allows time lags in the exogenous variables as well, and another
assuming no spatially and temporaly lagged dependent variable. Overall, the results convey a similar message as that from
running regression (30). For brevity of exposition, these results are not included in the paper, but are available upon request.
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W 0 are set to zero. Finally, we row-normalise W 0 and obtain W which is used in (30).

We consider three versions of W constructed with the radius threshold values of d = 75, 100 and 125,

miles. We name the adjacency matrices W 75,W 100 and W 125, respectively. For brevity of exposition, in

what follows we focus on the version of (30) that uses W 75 which gives a reasonably sparse weight matrix

with 0.88% non-zero elements. Other types of weighting schemes can also be entertained. For example,

one can make use of the inverse of bilateral geodesic distances, dij , between MSAs to construct W.

Another alternative is considered by BHP who use two separate adjacency matrices determined by the

statistically positive and negative pairwise correlations of de-factored real house price changes. A further

scheme is proposed by Zhou et al. (2017) who use a sample-based adjacency matrix to approximate the

true network structure by focusing on an estimation framework that incorporates just the degree (number

of connections) of each unit in the network.

6.2.2 MSA specific estimates

First we present the estimates of individual contemporaneous and net spatial and temporal effects by

MSAs. Note that when using adjacency matrix W 75 in (30) there are 39 out of the total 377 MSAs

that are completely isolated (have no neighbours) and are thus excluded from the analysis. This leaves

us with a reduced sample of N = 338 MSAs. Out of these, 260 estimates (or 77%) of the contempo-

raneous spatial coefficients (ψ̂0i) were positive and statistically significant, with only 19 estimates being

significantly negative. However, these positive ripple effects are negated somewhat after one quarter,

with the coefficients of the lagged spatial effects (ψ̂1i) being largely negative, with 259 being negative

and statistically significant, 14 significant and positive.15 As a result the net spatial effects, computed

as ψ̂0i + ψ̂1i, are smaller with fewer being statistically significant. Figure 1(a) displays the estimates of

net effects. Each net spatial estimate, ψ̂0i + ψ̂1i, is matched to its corresponding MSA on the map of

the U.S.. MSAs colored in blue depict positive net spatial lag coefficients, with different shades of blue

corresponding to differing ranges within which each (ψ̂0i + ψ̂1i) falls: lighter shades refer to ranges closer

to zero while darker shades relate to net spatial lag coefficient estimates closer to the boundary value

of unity. Similarly, red areas are associated with negative net spatial lag coefficient estimates, with the

lighter shade of red indicating (ψ̂0i + ψ̂1i) falling in ranges closer to zero, while darker red areas refer to

more sizable net spatial coefficient estimates. Similarly, Figure 1(b) displays the estimates of the temporal

coefficients, λ̂i, which are generally positive and highly significant.16

15A visual representation of the individual estimates, ψ̂0i and ψ̂1i, is given in Figures F1(a) and F1(b) of the online
supplement F.

1642 MSAs have coefficient estimates that hit the upper or lower bound of 0.994/-0.994 set in our optimisation procedure.

This occurs when
∣∣∣ψ̂0i

∣∣∣ > 0.994 or
∣∣∣ψ̂1i

∣∣∣ > 0.994 or
∣∣∣λ̂i∣∣∣ > 0.994. These MSAs are shown as a separate category in Figures
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Though on average, spatial (contemporaneous and lagged) effects across the U.S. net out at a value

of 0.08 (0.013), it is evident from Figure 1(a) that there are significant differences in these effects across

individual MSAs. Indeed, 263 MSAs have positive net spatial lag coefficients of which 147 are statistically

significant, while 75 MSAs have negative net spatial lag coefficients only 18 of which are significant.

Overall, these net spatial lag coefficients point to the existence of important spill-over effects in the U.S.

housing market even when the influence of national (common) factors are filtered out. It is easy to

show spill-over effects in house price changes across MSAs without de-factoring, but such evidence suffers

from the conjunctions of national and local influences, and can be misleading. The spatial display of the

estimates in Figure 1(a) shows how the strength and sign of local spill-over effects changes as we move

from less economically developed MSAs towards more vibrant neighbouring hubs. A distinction in relative

spatial effects is evident between the sparsely populated areas in the middle of the U.S. (Plains, Rocky

Mountains and South West), and the two coastal areas (South East, Mid East and Far West) which have

a much higher population density - see Table F1 of the online supplement F. Next, Figure 1(b) shows that

the temporal dynamics in house price changes are universally positive with 338 MSAs having positive

temporal lag coefficients of which 328 are statistically significant. In general, these estimates are also

reasonably large considering that de-factoring is likely to have removed most of the common dynamics

in house price fluctuations. Still, heterogeneity across MSAs is evident, with parts of Mid East, South

West and Far West showing stronger temporal feedback effects when compared to other U.S. regions.

Similar differences can also be seen in the estimates of the elasticities of house price changes to

population and real per capita income changes, as shown in Figures 2(a) and 2(b). We observe that in

302 MSAs the contemporaneous population or income variables have a positive impact on house price

changes, although the population effects tend to be more significant and sizable. Of these, more than 70%

tend to coincide with areas also reporting positive estimates for the net spatial lag coefficients. Important

examples of such MSAs include Los Angeles and San Francisco, Kansas City or New York-Newark-

Jersey.17 In contrast, the MSAs with negative estimates spread evenly across the United States and

correspond to economically less active areas, such as Cheyenne (Wyoming), Pocatello (Idaho), Pittsfield

(Massachusetts), Minneapolis (Minnesota) and Memphis (Arkansas). Interestingly, out of these 18 MSAs

around half have in fact experienced relatively muted rise, stagnant or outright decline in population over

our sample period, potentially contributing to their negative (ψ0i + ψ1i) estimates.

1(a) and 1(b).
17Adding lagged population and real per capita income variables in (30) produces estimates that are generally small and

less statistically significant as compared to their contemporaneous effects. Hence, these estimates are omitted.
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6.2.3 Regional estimates

The heterogeneity in the estimates we observe across the MSAs continue to be present at the regional

level. Table 3 reports the mean group estimates of the parameters by six regions. We started with the

standard eight regional classification, but combined New England and the Mid East, and South West and

Rocky Mountains to ensure a reasonable number of MSAs (Nr in Table 3) per each region. As can be

seen, the MG estimates of the contemporaneous and lagged spatial coefficients are quite close for Great

Lakes, South East and Far West, but differ markedly for the other three regions, namely New England

& Mid East, Plains, and South West & Rocky Mountains. These differences largely reflect the different

degrees of population density across the U.S..

Temporal effects are positive and significant across all regions, and cluster within two broad groupings,

namely (i) New England & Mid East, South West & Rocky Mountains and Far West, and (ii) Great Lakes,

Plains and South East. We notice even larger differences in the MG estimates of population and real

income variables across the regions, with much larger estimates for the effects of the population variable

on house price changes as compared to the effects of the income variable. For the U.S. as a whole, the MG

estimate of the net spatial and temporal effects amount to 0.088 (0.013) and 0.667 (0.010) respectively,

where the net spatial effects are decomposed into the contemporaneous MG estimate 0.603 (0.027) and

lagged spatial MG estimate -0.515 (0.020). These estimates point to the existence of non-negligible spatio-

temporal effects in the U.S. even after conditioning on factors that generate strong correlation between

disaggregate house price fluctuations over time and space. These results clearly show the importance

of including dynamics in the analysis of spatial effects, which if omitted can lead to exaggeration of

these effects. For example, Yang (2020) found (net) spatial effects of around 0.65 when considering a

homogeneous and static SAR specification. Finally, the MG estimates of the contemporaneous effects of

population and income variables for the U.S. as a whole are 0.250 (0.029) and 0.050 (0.006), respectively,

both being statistically significant, with sizable long run effects.18

6.2.4 Direct and indirect spatial effects at different horizons

The estimated spatio-temporal model, (30), can also be used for impulse response analysis that focuses

on the effects of MSA specific shocks (εit), and/or can be used to investigate the effects of changes in the

exogenous variables, namely income and population. To save space we focus on the latter exercise. We

closely follow Debarsy et al. (2012) and extend their analysis to our heterogeneous parameter specification.

18We repeated the above empirical analysis using as non-zero elements of the weight matrix W 0 the inverse of the geodesic
pairwise distances between MSAs instead. For brevity of exposition we report the regional MG parameter estimates of model
(30) in Table F3 of the online supplement F.
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Writing (30) in matrix notation and solving for πt+h = (π1,t+h, π2,t+h, ..., πN,t+h)′, we have

πt+h = Φh+1πt−1 +

(
h−1∑
s=0

Φs

)
c+

h−1∑
s=0

ΦsAxt+h−s +

h−1∑
s=0

Φsut+h−s,

where xt = (x′1t,x
′
2t, . . . ,x

′
Nt)
′, xit = (xi1,t, xi2,t)

′ = (gpopit, gincit)
′,

c = (IN −Ψ0W )−1 a, Φ = (IN −Ψ0W )−1 (Ψ1W + Λ) ,

A = (IN −Ψ0W )−1B, and ut = (IN −Ψ0W )−1 εt.

The marginal effect of a unit change in xj`,t on πi,t+h is given by

∂πt+h
∂xj`,t

=
[
Φh (IN −Ψ0W )−1 ej

]
βj`, for i, j = 1, 2, . . . , N ; ` = 1, 2; h = 0, 1, . . . .

The average marginal direct and indirect effects of a unit change in xj`,t are now given by

DN (h, `) =
1

N

N∑
i=1

∂πi,t+h
∂xi`,t

, and IDN (h, `) =
1

N (N − 1)

N∑
i 6=j

∂πi,t+h
∂xj`,t

,

for h = 0, 1, . . ., and ` = 1, 2. Further, the average indirect effects can be decomposed into average

spill-in and spill-out effects. For further details on the derivation and interpretation of these effects see

the online supplement E, and related contributions by LeSage and Chih (2016), LeSage and Chih (2018a)

and LeSage et al. (2019).

The direct and indirect effects (decomposed into spill-in and spill-out effects) at the MSA levels

are displayed in Figures F2, F3 and F4 of the online supplement F. These figures give the estimates

on impact, and at horizons 3 and 6 quarters following a one percent increase in population and real

income growth. The relative importance of these effects across time and space is evident, also when we

compute the equivalent average regional metrics, namely the within-region direct and indirect effects,

and the between-region spill-in and spill-out effects as characterised by equations (E.63), (E.64), (E.65)

and (E.66) of the online supplement E, respectively. Any significant effects on house prices from changes

in either the population and income variables of own or neighbouring MSAs across regions and horizons

are concentrated within-region while the between-region effects are by comparison negligible (universally

less than 0.3% of direct effects). These are shown in Table F2 of the online supplement F. Focusing

on the within-region effects, these are more sizable across the board following a change in population

growth as compared to the real income growth, and decay quite rapidly over time. For both population

and real income variables, direct effects dominate over indirect effects across the six regions but the ratio

of indirect to direct effects remains remarkably similar for the population and income variables in each

region. Nevertheless, there continue to be considerable heterogeneity across the regions. For example,

indirect effects tend to be larger in more densely populated regions of New England & Mid East, Great
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Lakes and Far West, especially on impact (see Table F1).

7 Conclusion

Standard spatial econometric models assume a single parameter to characterise the intensity or strength

of spatial dependence across all units. In the case of pure cross section models or panel data models with

a short time dimension, this assumption is inevitable. However, in a data rich environment where both

the time (T ) and cross section (N) dimensions are large, this can be relaxed. This paper investigates a

spatial autoregressive panel data model with fully heterogeneous spatial parameters (HSAR) where the

spatial dependence can arise directly through contemporaneous dependence of individual units on their

neighbours, and indirectly through possible cross-sectional dependence in the regressors.

The asymptotic properties of the quasi maximum likelihood estimator are analysed assuming a sparse

spatial structure with each individual unit having at least one connection. Conditions under which

the QML estimator of spatial parameters are consistent and asymptotically normal are derived. It is

also shown that under certain conditions on spatial coefficients and the spatial weights, the asymptotic

properties of the individual estimates are not affected by the size of cross section dimension N . An

estimator of the cross section mean of the individual parameters (MG estimators) is also analysed which

can be used for comparisons with outcomes from standard homogeneous SAR models. It is shown that

MG estimators are consistent and asymptotically normal as N and T →∞, jointly, so long as
√
N/T → 0,

and the spatial dependence is sufficiently weak. Monte Carlo simulation results provided are supportive of

the theoretical findings. As an application of the HSAR model we investigate the potential heterogeneity

in ripple effects, and the spatio-temporal direct and indirect effects of changes in population and income

in the U.S. housing market at the MSA level.
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Figure 1: Net spatial (ψ̂0i + ψ̂1i) and temporal (λ̂i) autoregressive parameter estimates for Metropolitan
Statistical Areas in the Unites States

ψ̂0i + ψ̂1i

(-1,-0.75] (-0.75,-0.5] (-0.5,-0.25] (-0.25,0] (0,0.25] (0.25,0.5] (0.5,0.75] (0.75,1) Non-Conv No-Neigh

(a) Net spatial parameter estimates

λ̂ i

(-1,-0.75] (-0.75,-0.5] (-0.5,-0.25] (-0.25,0] (0,0.25] (0.25,0.5] (0.5,0.75] (0.75,1) Non-Conv No-Neigh

(b) Temporal parameter estimates

Notes: Each ψ̂0i+ψ̂1i and λ̂i is mapped to a Metropolitan Statistial Area (MSA) in the U.S.. A total of 338 MSAs
are included in model (30). MSAs coloured in blue correspond to positive net spatial and temporal parameter
estimates while MSAs coloured in red match to negative net spatial and temporal parameter estimates. Darker
shades of blue or red indicate more sizable ψ̂0i + ψ̂1i and λ̂i while lighter shades related to ψ̂0i + ψ̂1i and
λ̂i closer to zero in absolute terms. Category ‘Non-conv’ includes MSAs whose ψ̂0i, ψ̂1i, or λ̂i estimates hit
the upper/lower bound in the optimization procedure, while category ‘No-Neigh’ includes MSAs that have no
neighbours when using W 75.
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Figure 2: Contemporaneous elasticities of house price changes to population growth (β̂popi ) and real

income growth (β̂inci ) for Metropolitan Statistical Areas in the Unites States

β̂ i
p o p

<-1.5 (-1.5,-1] (-1,-0.5] (-0.5,0] (0,0.5] (0.5,1] (1,1.5] >1.5 Non-Conv No-Neigh

(a) Population growth estimates

β̂ i
i n c

<-0.3 (-0.3,-0.2] (-0.2,-0.1] (-0.1,0] (0,0.1] (0.1,0.2] (0.2,0.3] >0.3 Non-Conv No-Neigh

(b) Real income growth estimates

Notes: Each β̂popi and β̂inci is mapped to a Metropolitan Statistial Area (MSA) in the U.S.. A total of 338 MSAs
are included in model (30). MSAs coloured in blue correspond to positive slope parameter estimates while MSAs
coloured in red match to negative slope parameter estimates. Darker shades of blue or red indicate more sizable
β̂popi and β̂inci while lighter shades related to β̂popi and β̂inci closer to zero in absolute terms.Category ‘Non-conv’

includes MSAs whose ψ̂0i, ψ̂1i or λ̂i estimates hit the upper/lower bound in the optimization procedure, while
category ‘No-Neigh’ includes MSAs that have no neighbours when using W 75.
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Table 1: Bias, RMSE, size and power for parameters of individual units in the HSAR(1) model with one
exogenous regressor and non-Gaussian errors for N = 5 and T ∈ {25, 50, 100, 200}.

T 25 50 100 200
Parameter Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ψi0
ψ1,0 = 0.1261 -0.0056 0.1891 0.0005 0.1230 -0.0023 0.0851 0.0010 0.0592
ψ2,0 = 0.3883 -0.0051 0.2495 -0.0058 0.1687 -0.0006 0.1148 -0.0003 0.0803
ψ3,0 = 0.4375 -0.0115 0.2436 -0.0022 0.1499 0.0034 0.1041 -0.0003 0.0743
ψ4,0 = 0.5059 0.0050 0.1769 -0.0040 0.1221 -0.0028 0.0820 -0.0010 0.0571
ψ5,0 = 0.7246 -0.0109 0.2089 -0.0031 0.1502 -0.0009 0.1071 0.0006 0.0721

βi0
β1,0 = 0.9649 0.0125 0.2236 0.0069 0.1472 0.0024 0.1008 -0.0020 0.0717
β2,0 = 0.9572 0.0100 0.2674 0.0068 0.1833 -0.0022 0.1272 -0.0025 0.0892
β3,0 = 0.2785 0.0078 0.2908 -0.0012 0.1806 -0.0026 0.1252 0.0022 0.0907
β4,0 = 0.9134 -0.0020 0.2195 0.0072 0.1461 0.0012 0.1000 0.0000 0.0684
β5,0 = 0.8147 0.0104 0.2842 0.0108 0.1950 0.0081 0.1341 0.0003 0.0911

T 25 50 100 200 25 50 100 200
Parameter Size Power

ψi0
ψ1,0 = 0.1261 0.1040 0.0675 0.0535 0.0515 0.3410 0.4665 0.7060 0.9065
ψ2,0 = 0.3883 0.0950 0.0690 0.0560 0.0580 0.2515 0.3525 0.4900 0.7315
ψ3,0 = 0.4375 0.0935 0.0620 0.0560 0.0510 0.2245 0.3355 0.5115 0.7975
ψ4,0 = 0.5059 0.0835 0.0740 0.0660 0.0485 0.3430 0.5025 0.7355 0.9345
ψ5,0 = 0.7246 0.0660 0.0670 0.0645 0.0530 0.2450 0.3610 0.5410 0.7975

βi0
β1,0 = 0.9649 0.0900 0.0645 0.0525 0.0530 0.2845 0.3825 0.5360 0.8075
β2,0 = 0.9572 0.0930 0.0725 0.0625 0.0570 0.2165 0.2885 0.4380 0.6535
β3,0 = 0.2785 0.0960 0.0710 0.0515 0.0585 0.2585 0.3000 0.4565 0.6375
β4,0 = 0.9134 0.0865 0.0630 0.0565 0.0485 0.3055 0.3845 0.5715 0.8245
β5,0 = 0.8147 0.0890 0.0705 0.0555 0.0510 0.2005 0.2570 0.3700 0.6080

Notes: True parameter values are generated as ψi0 ∼ IIDU (0, 0.8), αi0 ∼ IIDN (1, 1), and βi0 ∼
IIDU (0, 1) for i = 1, 2, . . . , N . Non-Gaussian errors are generated as εi0/σi0 ∼ IID [χ2(2) − 2]/2, with
σ2
i0 ∼ IIDU [χ2(2)/4+0.5] for i = 1, 2, . . . , N . The spatial weight matrix W = (wij) has four connections

so that wij = 1 if j is equal to: i− 2, i− 1, i+ 1, i+ 2, and zero otherwise, for i = 1, 2, . . . , N . Biases

and RMSEs are computed as R−1
∑R

r=1(ψ̂i,r − ψi0) and
√
R−1

∑R
r=1(ψ̂i,r − ψi0)2 for i = 1, 2, . . . , N .

Empirical size and empirical power are based on the sandwich formula given by (24). The nominal size
is set to 5%. Size is computed under Hi0 : ψi = ψi0, using a two-sided alternative, for i = 1, 2, . . . , N .
Power is computed under ψi = ψi0 + 0.2, for i = 1, 2, . . . , N . The number of replications is set to
R = 2, 000. Estimates are sorted in ascending order according to the true values of the spatial autore-
gressive parameters. Biases, RMSEs, sizes and powers for βi, i = 1, 2, . . . , N , are computed similarly,
with power computed under βi = βi0 + 0.2.
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Table 2: Bias, RMSE, size and power for parameters of individual units in the HSAR(1) model with one
exogenous regressor and non-Gaussian errors for N = 100 and T ∈ {25, 50, 100, 200}.

T 25 50 100 200
Parameter Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ψi0
ψ1,0 = 0.0244 -0.0005 0.3152 -0.0049 0.2138 0.0021 0.1415 -0.0001 0.1010
ψ2,0 = 0.0255 -0.0330 0.5189 0.0034 0.3674 -0.0137 0.2641 -0.0033 0.1794
ψ3,0 = 0.0397 0.0129 0.3509 -0.0017 0.2448 -0.0014 0.1681 0.0013 0.1183

...
...

...
...

...
...

...
...

...
ψ51,0 = 0.3927 -0.0027 0.2912 0.0038 0.2056 0.0009 0.1395 0.0005 0.0960
ψ52,0 = 0.3987 0.0001 0.1994 -0.0031 0.1381 0.0029 0.0921 0.0005 0.0638
ψ53,0 = 0.4004 -0.0112 0.3063 0.0075 0.2049 0.0033 0.1392 -0.0015 0.0991

...
...

...
...

...
...

...
...

...
ψ98,0 = 0.7695 -0.0031 0.1621 0.0018 0.1149 0.0055 0.0824 -0.0003 0.0586
ψ99,0 = 0.7705 -0.0530 0.2903 -0.0126 0.1895 0.0002 0.1401 0.0003 0.1041
ψ100,0 = 0.7904 -0.0125 0.1716 -0.0094 0.1275 0.0011 0.0897 0.0008 0.0613

βi0
β1,0 = 0.1978 0.0089 0.2782 0.0017 0.1771 0.0007 0.1192 -0.0073 0.0824
β2,0 = 0.7060 0.0252 0.3699 0.0016 0.2359 -0.0005 0.1608 0.0049 0.1144
β3,0 = 0.4173 0.0107 0.2541 0.0034 0.1733 0.0000 0.1157 0.0028 0.0821

...
...

...
...

...
...

...
...

...
β51,0 = 0.9448 0.0060 0.1924 -0.0024 0.1294 0.0018 0.0896 0.0009 0.0634
β52,0 = 0.1190 0.0046 0.1824 0.0026 0.1259 -0.0005 0.0853 0.0021 0.0578
β53,0 = 0.7127 0.0026 0.2630 -0.0050 0.1654 0.0038 0.1201 0.0012 0.0831

...
...

...
...

...
...

...
...

...
β98,0 = 0.1067 0.0041 0.1688 -0.0031 0.1115 0.0010 0.0762 -0.0002 0.0550
β99,0 = 0.4588 0.0207 0.2643 0.0039 0.1788 0.0033 0.1232 0.0027 0.0888
β100,0 = 0.3674 0.0056 0.1691 0.0032 0.1179 0.0009 0.0830 0.0004 0.0560

T 25 50 100 200 25 50 100 200
Parameter Size Power

ψi0
ψ1,0 = 0.0244 0.0890 0.0810 0.0520 0.0590 0.1820 0.2200 0.3290 0.5480
ψ2,0 = 0.0255 0.0705 0.0595 0.0555 0.0490 0.0945 0.0895 0.1495 0.2140
ψ3,0 = 0.0397 0.0905 0.0745 0.0585 0.0575 0.1555 0.1895 0.2805 0.4450

...
...

...
...

...
...

...
...

...
ψ51,0 = 0.3927 0.0950 0.0645 0.0590 0.0535 0.1785 0.2625 0.3590 0.5810
ψ52,0 = 0.3987 0.0850 0.0620 0.0625 0.0505 0.3050 0.4390 0.6285 0.8660
ψ53,0 = 0.4004 0.0885 0.0785 0.0570 0.0585 0.1995 0.2490 0.3745 0.5800

...
...

...
...

...
...

...
...

...
ψ98,0 = 0.7695 0.0635 0.0630 0.0660 0.0610 0.3340 0.4755 0.6935 0.9145
ψ99,0 = 0.7705 0.0300 0.0285 0.0370 0.0495 0.1455 0.2045 0.3095 0.5205
ψ100,0 = 0.7904 0.0545 0.0570 0.0625 0.0505 0.3120 0.4665 0.6455 0.8845

βi0
β1,0 = 0.1978 0.1160 0.0700 0.0610 0.0505 0.2405 0.3040 0.4380 0.7115
β2,0 = 0.7060 0.1025 0.0580 0.0505 0.0545 0.1725 0.2095 0.2710 0.4510
β3,0 = 0.4173 0.0950 0.0780 0.0550 0.0595 0.2450 0.3160 0.4655 0.7080

...
...

...
...

...
...

...
...

...
β51,0 = 0.9448 0.0910 0.0685 0.0590 0.0570 0.3260 0.4665 0.6500 0.8880
β52,0 = 0.1190 0.0970 0.0800 0.0505 0.0440 0.3500 0.4840 0.7030 0.9150
β53,0 = 0.7127 0.1075 0.0660 0.0665 0.0515 0.2420 0.3150 0.4410 0.6810

...
...

...
...

...
...

...
...

...
β98,0 = 0.1067 0.0960 0.0660 0.0530 0.0545 0.3950 0.5500 0.7605 0.9475
β99,0 = 0.4588 0.0725 0.0615 0.0545 0.0595 0.2015 0.2775 0.4225 0.6415
β100,0 = 0.3674 0.0935 0.0660 0.0695 0.0540 0.3605 0.5025 0.7255 0.9370

Notes: See notes to Table 1.
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Table 3: Mean group estimates (MGE) of spatial and temporal coefficients as well as elasticities of house
price changes to population and real income growth by six major U.S. regions, and the U.S. as a whole

r Name Nr ψ̂MG,r ψ̂MG0,r ψ̂MG1,r λ̂MG,r β̂popMG,r β̂incMG,r

1 & 2 New England & Mideast 35 0.067 0.499‡ -0.432‡ 0.645‡ 0.629‡ 0.085‡

(0.044) (0.087) (0.069) (0.026) (0.172) (0.020)
3 Great Lakes 48 0.115‡ 0.714‡ -0.599‡ 0.629‡ 0.224‡ 0.025‡

(0.030) (0.064) (0.047) (0.026) (0.068) (0.012)
4 Plains 26 0.040 0.525‡ -0.484‡ 0.599‡ 0.252‡ 0.039

(0.058) (0.083) (0.060) (0.046) (0.073) (0.030)
5 Southeast 106 0.105‡ 0.669‡ -0.564‡ 0.655‡ 0.194‡ 0.038‡

(0.024) (0.044) (0.032) (0.019) (0.034) (0.008)
6 & 7 Southwest & Rocky Mountain 40 0.017 0.325‡ -0.308‡ 0.713‡ 0.162‡ 0.072‡

(0.021) (0.078) (0.064) (0.020) (0.038) (0.016)
8 Far West 41 0.126‡ 0.711‡ -0.585‡ 0.759‡ 0.183‡ 0.067‡

(0.017) (0.040) (0.035) (0.012) (0.047) (0.018)

US 296 0.088‡ 0.603‡ -0.515‡ 0.667‡ 0.250‡ 0.050‡

(0.013) (0.027) (0.020) (0.010) (0.029) (0.006)

Notes: ∗ p < 0.1, † p < 0.05, ‡ p < 0.01. Non-parametric robust standard errors in
parentheses (see below). For r = 1, . . . , 6, ψ̂MG,r = N−1r

∑
i∈Ir (ψ̂0i + ψ̂1i), s.e.(ψ̂MG,r) =√

[Nr(Nr − 1)]−1
∑

i∈Ir [(ψ̂0i + ψ̂1i)− ψ̂MG,r]2, ψ̂MGj,r = N−1r

∑
i∈Ir ψ̂ji, and s.e.(ψ̂MGj,r) =√

[Nr(Nr − 1)]−1
∑

i∈Ir (ψ̂ji − ψ̂MGj,r)2, for j = 0, 1. Ir is the set of units belonging to region

r, Ir = {i : i is in region r}, and Nr is the number of units per region, Nr = #(Ir). New
England (9 MSAs) and Mid East (26 MSAs) as well as South West (26 MSAs) and Rocky
Mountains (14 MSAs) have been merged in order to obtain a sufficiently large number of MSAs

in the two broader regions. For the U.S. as a whole: ψ̂MG,US = N−1
∑N

i=1(ψ̂0i + ψ̂1i), and

s.e.(ψ̂MG,US ) =
√

[N(N − 1)]−1
∑N

i=1[(ψ̂0i + ψ̂1i)− ψ̂MG,US ]2. The MGE of coefficient estimates

of lagged house price changes (λ̂MG,r), as well as house price changes to population and real income

changes (β̂pop
MG,r and β̂inc

MG,r) are computed similarly to ψ̂MGj,r, j = 0, 1. The computations of all
MG estimates exclude the MSAs whose spatial lag coefficients hit the upper/lower bound in the
optimisation procedure.
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Introduction

This online supplement is composed of Appendices A-G. Appendix A includes statements and proofs of
lemmas used in the derivations of Sections 3.2, 3.3 and 4 of the paper. Appendix B provides proofs of
Propositions 2 and 3, and Corollary 1 in Sections 3.3 and 4 of the paper, while Appendix C gives the
first and second derivatives of the log likelihood function of the HSAR model with exogenous regressors.
Appendix D derives the HSAR when relaxing Assumption 4(a) in terms of considering non-zero own
weights, while Appendix E derives the expressions for direct and indirect effects implied by the HSAR
model (1) of Section 2. Appendix F describes the data sources and transformations used in Section 6 and
includes additional empirical results produced from running model (30) of Section 6. Finally, Appendix
G displays additional Monte Carlo results based on the designs set out in Section 5 of the paper.

Appendix A Technical lemmas

Lemma 1 Consider a given weight matrix W and suppose that Assumption 4 holds. Then (a) ma-
trix S(ψ) = IN − ΨW is non-singular with positive eigenvalues, namely λmin [S(ψ)] > 0, and (b)
|λmax [S(ψ)]| < 2.

Proof. Let % (ΨW ) be the spectral radius of matrix ΨW . Non-singularity of S(ψ) = IN − ΨW is
ensured if

% (ΨW ) < 1. (A.1)

However, since for any matrix norm ‖A‖, % (A) ≤ ‖A‖, then using the maximum row sum matrix norm
we have

% (ΨW ) ≤ ‖ΨW ‖∞ ≤ ‖Ψ‖∞ ‖W ‖∞ = sup
ψi∈Θψ

|ψi| ‖W ‖∞ < K, (A.2)

and from (A.1) we have
sup

ψi∈Θψ

|ψi| ‖W ‖∞ < 1, (A.3)

where we have used the result ‖Ψ‖∞ = supψi∈Θψ
|ψi|. Therefore, matrix S(ψ) = IN −ΨW is invertible

under condition (8) of Assumption 4(b). Also all eigenvalues of S(ψ) are necessarily positive, since
λmin [S(ψ)] = 1−λmax (ΨW ) ≥ 1− |λmax (ΨW )| = 1− % (ΨW ) > 0. To establish part (b) we note that
|λmax [S(ψ)]| = % [S(ψ)] ≤ ‖S(ψ)‖∞ = ‖IN −ΨW ‖∞ ≤ 1 + supψi∈Θψ

|ψi| ‖W ‖∞, and in view of (A.3),
we have |λmax [S(ψ)]| < 2, as required.

Lemma 2 Let G (ψ) = W (IN −ΨW )−1. (a) Suppose that Assumption 4 holds. Then

‖G (ψ)‖∞ < K, (A.4)

and ∥∥G (ψ)�G′ (ψ)
∥∥
∞ < K , (A.5)

for all values of ψ ∈ Θψ that satisfy condition (8).

Proof. Under condition (8), we have

G (ψ) = W +WΨW +WΨWΨW + . . . ,

and
‖G (ψ)‖∞ ≤ ‖W ‖∞ + ‖W ‖2∞ ‖Ψ‖1 + ‖W ‖3∞ ‖Ψ‖

2
1 + . . . .

But ‖Ψ‖s1 ≤
[
supψi∈Θψ

|ψi|
]s

, and under condition (8) we have supψi∈Θψ
|ψi| ‖W ‖∞ < 1. Hence,

‖G (ψ)‖∞ ≤ ‖W ‖∞

(
1

1− supψi∈Θψ
|ψi| ‖W ‖∞

)
,

A1



and (A.4) follows since under Assumption 4(b) ‖W ‖∞ is bounded, and supψi∈Θψ
|ψi| ‖W ‖∞ < 1. Finally,

∥∥G (ψ)�G′ (ψ)
∥∥
∞ = max

1≤i≤N

 N∑
j=1

|gijgji|

 ≤ max
1≤i≤N

sup
i
|gij |

N∑
j=1

|gji|

 ,

where by (A.4), supi
∑N

j=1 |gji| = ‖G (ψ)‖∞ < K , and supi,j |gij | < K. Hence (A.5) follows as desired.

Lemma 3 Consider the average log-likelihood function of (5):

¯̀
T (θ) = T−1`T (θ) = −N

2
ln(2π)− 1

2

N∑
i=1

lnσ2i +
1

2
ln |V(ψ)| (A.6)

− 1

2T

T∑
t=1

[S(ψ)y◦t −Bx◦t]
′Σ−1 [S(ψ)y◦t −Bx◦t] ,

where θ = (ψ′,β′,σ2′)′, B is the N × kN block diagonal matrix with elements β′i, i = 1, 2, . . . , N, on
the main diagonal and zeros elsewhere, ¯̀

T (θ) = T−1`T (θ) and `T (θ) is defined by (7). Also, V (ψ) =
S′(ψ)S(ψ), where S(ψ) = IN−ΨW . Then, under Assumptions 1 to 4 for a given fixed N and as T →∞
we have

¯̀
T (θ0)− ¯̀

T (θ)
a.s.→ lim

T→∞
E0

[
¯̀
T (θ0)− ¯̀

T (θ)
]
, (A.7)

where E0 represents expectations taken under θ = θ0.

Proof. Let QT (θ0,θ) = ¯̀
T (θ0)− ¯̀

T (θ), and evaluating (A.6) at θ = θ0, note that

QT (θ0,θ) = −1

2

N∑
i=1

ln
(
σ2i0/σ

2
i

)
+

1

2

[
ln

(
|V (ψ0) |
|V (ψ) |

)]
(A.8)

− 1

2

{
1

T

T∑
t=1

[S(ψ0)y◦t −B0x◦t]
′Σ−10 [S(ψ0)y◦t −B0x◦t]

}

+
1

2

{
1

T

T∑
t=1

[S(ψ)y◦t −Bx◦t]
′Σ−1 [S(ψ)y◦t −Bx◦t]

}
,

where |V (ψ) | = |S′(ψ)S(ψ)| = |S(ψ)|2. Also, by first taking conditional expectations with respect to
Ft, and then taking expectations with respect to x◦t, we have

T∑
t=1

E0

{
tr
[
y′◦tS

′(ψ)Σ−1S(ψ)y◦t
]}

= T tr
[
S′(ψ)Σ−1S(ψ)Σy0

]
,

T∑
t=1

E0

{
tr
[
y′◦tS

′(ψ)Σ−1Bx◦t
]}

= T tr
[
Σ−1BΣxxB

′
0S
′−1
0 S′(ψ)

]
,

T∑
t=1

E0

{
tr
[
x′◦tB

′Σ−1Bx◦t
]}

= T tr
[
Σ−1BΣxxB

′] ,
and hence

1

T

T∑
t=1

E0

{
[S(ψ)y◦t −Bx◦t]

′Σ−1 [S(ψ)y◦t −Bx◦t]
}

=


tr
[
S′(ψ)Σ−1S(ψ)Σy0

]
−2 tr

[
Σ−1BΣxxB

′
0S
′−1
0 S′(ψ)

]
+ tr

[
Σ−1/2BΣxxB

′Σ−1/2
]

 .
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Using the above results in (A.8) we now obtain

E0 [QT (θ0,θ)] = E0

[
¯̀
T (θ0)− ¯̀

T (θ)
]

= −1

2

N∑
i=1

ln
(
σ2i0/σ

2
i

)
− N

2
+

1

2

[
ln

(
|V (ψ0) |
|V (ψ) |

)]
+

1

2
tr
[
P(θ)P−1(θ0)

]
+

1

2
tr
{

Σ−1/2
[
S(ψ)S−10 B0 −B

]
Σxx

[
S(ψ)S−10 B0 −B

]′
Σ−1/2

}
,

where P (θ) = S′(ψ)Σ−1S(ψ),

|V (ψ0) |
|V (ψ) |

=
|S(ψ0)|

2

|S(ψ)|2
=
∣∣S(ψ0)S

−1(ψ)
∣∣2 =

∣∣S(ψ)S−1(ψ0)
∣∣−2 ,

and

tr
[
P (θ) P−1 (θ0)

]
= tr

[
S′(ψ)Σ−1S(ψ)S−1(ψ0)Σ0S

′−1(ψ0)
]

= tr
[
Σ−1/2S(ψ)S−1(ψ0)Σ0S

′−1(ψ0)S
′(ψ)Σ−1/2

]
.

To establish (A.7) we show that

QT (θ0,θ)− E0 [QT (θ0,θ)]
a.s.→ 0. (A.9)

To this end we note that under (5),

1

T

T∑
t=1

[S(ψ0)y◦t −B0x◦t]
′Σ−10 [S(ψ0)y◦t −B0x◦t] =

1

T

T∑
t=1

ζ′◦tζ◦t,

where ζ◦t = (ζ1t, ζ2t, . . . , ζNt) ∼ IID(0, IN ), ζit = εit/σi0, for i = 1, 2, . . . , N . Also,

1

2

{
1

T

T∑
t=1

[S(ψ)y◦t −Bx◦t]
′Σ−1 [S(ψ)y◦t −Bx◦t]

}

=
1

2

[
1

T

T∑
t=1

ε′◦tS
′−1(ψ0)P (θ) S−1(ψ0)ε◦t

]

+
1

2

[
1

T

T∑
t=1

{
Σ−1/2

[
S(ψ)S−10 B0 −B

]
x◦t

}′ {
Σ−1/2

[
S(ψ)S−10 B0 −B

]
x◦t

}]

+

[
1

T

T∑
t=1

x′◦t
[
S(ψ)S−10 B0 −B

]′
Σ−1S(ψ)S−10 ε◦t

]
.

Using the above results in (A.8) and after some simplifications we have

QT (θ0,θ)− E0 [QT (θ0,θ)] = −1

2

[
1

T

T∑
t=1

z1t,N (θ0)

]
+

1

2

[
1

T

T∑
t=1

z2t,N (θ)

]
(A.10)

+
1

2

[
1

T

T∑
t=1

z3t,N (θ0,θ)

]
+

1

2

[
1

T

T∑
t=1

z4t,N (θ)

]
,
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where

z1t,N (θ0) = ζ′◦tζ◦t −N =
N∑
i=1

(
ζ2it − 1

)
, (A.11)

z2t,N (θ,ψ0) = ε′◦tS
′−1(ψ0)P (θ) S−1(ψ0)ε◦t − E0

[
ε′◦tS

′−1(ψ0)P (θ) S−1(ψ0)ε◦t
]

(A.12)

= ζ′◦tA (θ0,θ) ζ◦t − tr [A (θ0,θ)] ,

in which A (θ0,θ) = Σ
1/2
0 S′−1(ψ0)P (θ) S−1(ψ0)Σ

1/2
0 ,

z3t,N (θ0,θ) = x′◦tB (θ0,θ)x◦t − tr [B (θ0,θ) Σxx] , (A.13)

in which B (θ0,θ) =
[
S(ψ)S−10 B0 −B

]′
Σ−1

[
S(ψ)S−10 B0 −B

]
, and

z4t,N (θ) = x′◦t
[
S(ψ)S−10 B0 −B

]′
Σ−1S(ψ)S−10 ε◦t. (A.14)

We establish that each zjt,N , j = 1, 2, 3, 4 is a martingale difference process with finite second order
moments. But first we note that

S(ψ)S−10 = S(ψ)S−1(ψ0) = IN −DG0,

where G0 = W (IN −Ψ0W )−1, and D = Ψ −Ψ0, is a diagonal matrix with elements di = ψi − ψi0.
Hence, substituting the P (θ) = S′(ψ)Σ−1S(ψ) in the expression above given forA (θ0,θ) we have (after
some simplifications)

A (θ0,θ) = Σ
1/2
0 (IN −DG0)

′Σ−1 (IN −DG0) Σ
1/2
0 .

Consider the first term of (A.10) and note that under Assumption 1, supitE |ζit|
4+ε < K, for some

ε > 0. Then the elements in (A.11) are L2 bounded, in the sense that supitE
∣∣ζ2it − 1

∣∣2 < K. Hence,

1

T

T∑
t=1

(
ζ2it − 1

) a.s.→ 0,

and for a fixed N , we have (as T →∞)

1

T

T∑
t=1

z1t,N (θ0) =
N∑
i=1

[
1

T

T∑
t=1

(
ζ2it − 1

)] a.s.→ 0. (A.15)

Consider now (A.12), and note that z2t,N (θ) is serially independent (over t), and has mean zero. Further,
note that z2t,N is a de-meaned quadratic form in ζit and Theorem 1 of Kelejian and Prucha (2001) applies
to z2t,N . Denote the (i, j) element ofA (θ0,θ), by aij , and note that aij = aji. Then using (3.2) in Kelejian
and Prucha (2001), we have (recall that E

(
ζ2it
)

= 1)

V ar [z2t,N (θ)] = V ar
[
ζ′◦tA (θ0,θ) ζ◦t

]
= 4

N∑
i=1

i−1∑
j=1

a2ij +
N∑
i=1

a2ii
[
E
(
ζ4it
)
− 1
]
.

But for a fixed N,
∑N

i=1 a
2
ii < K and

∑N
i=1

∑i−1
j=1 a

2
ij < K. Furthermore,∣∣∣∣∣

N∑
i=1

a2ii
[
E
(
ζ4it
)
− 1
]∣∣∣∣∣ < sup

it

∣∣E (ζ4it)− 1
∣∣ N∑
i=1

a2ii,
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and under Assumption 1, supitE
(
ζ4it
)
< K, and hence V ar [z2t,N (θ)] < K. Further, since z2t,N (θ) are

independently distributed over t, then we have (see, for example, White (1984))

1

T

T∑
t=1

z2t,N (θ)
a.s.→ 0. (A.16)

Next, using (A.13),

1

T

T∑
t=1

z3t,N (θ) = tr

[
B (θ0,θ)

(
T−1

T∑
t=1

x◦tx
′
◦t

)]
− tr [B (θ0,θ) Σxx]

= tr

{
B (θ0,θ)

[
T−1

T∑
t=1

(
x◦tx

′
◦t −Σxx

)]}
.

But by Assumption 2(b) and (c) we have that E (x◦tx
′
◦t −Σxx|Ft) = 0, and T−1

∑T
t=1 x◦tx

′
◦t

a.s.→ Σxx,

as T →∞, which establishes that T−1
∑T

t=1 z3t,N (θ)
a.s.→ 0, as required. Finally, using (A.14),

1

T

T∑
t=1

z4t,N (θ) = tr

{[
S(ψ)S−10 B0 −B

]′
Σ−1S(ψ)S−10 T−1

T∑
t=1

ε◦tx
′
◦t

}
.

But by Assumption 2(a), we have that E (ε◦tx
′
◦t|Ft) = 0 and E (|ε◦tx′◦t|

p | Ft) ≤ E (|ε◦t|p |x′◦t|
p | Ft) ,

for p = 2, which is bounded. Hence, T−1
∑T

t=1 ε◦tx
′
◦t

a.s.→ 0, as T → ∞ and 1
T

∑T
t=1 z4t,N (θ)

a.s.→ 0. (see,
for example, White (1984)). Finally, (A.9) and (A.7) follow similarly.

Lemma 4 Let
ηit = σ−1i0 e′i,NG0B0x◦tζit + σ−1i0 e′i,NG0Σ

1/2
0 ζ◦tζit − g0,ii, (A.17)

where G0 = W (IN −Ψ0W )−1 = (g0,ij) and ei,N is an N dimensional vector with its ith element
unity and zeros elsewhere, and ζ◦t = (ζ1t, ζ2t, . . . , ζNt)

′ = (ε1t/σ10, ε2t/σ20, . . . , εNt/σN0)
′. Then under

Assumptions 1, 2, 3, 4, and 5, ηit is a martingale difference process with respect to the filtration, Ft =
(x◦t,x◦t−1,x◦t−2, . . .), namely E (ηit|Ft) = 0, and

sup
i,t
E |ηit|p < K, for 1 ≤ p ≤ 2 + c, and some c > 0. (A.18)

Proof. We first recall that E (ζt|Ft) = 0, and hence E (ζt) = 0. Also E (ζ◦tζit) = ei,N and V ar(ζ◦t) =
IN . Now under Assumption 1 it follows that

E (ηit|Ft) = E
(
σ−1i0 e′i,NG0B0x◦tζit|Ft

)
+ E

(
σ−1i0 e′i,NG0Σ

1/2
0 ζ◦tζit|Ft

)
− g0,ii

= 0 + g0,ii − g0,ii = 0,

and establishes that ηit is a martingale difference process with respect to Ft, as required. To establish
(A.18), since ζit = εit/σi0 then by Minkowski’s inequality for p ≥ 1 we have:

‖ηit‖p ≤ σ
−2
i0

∥∥ϕ′ix◦tεit∥∥p + σ−1i0
∥∥ϑ′iζ◦tζit∥∥p + |g0,ii| , (A.19)

where ϕ′i = e′i,NG0B0, ϑ
′
i = e′i,NG0Σ

1/2
0 = (gi1σ10, gi2σ20, . . . , giNσN0) , and |g0,ii| < K. Consider

now the first term of (A.19), and note that since conditional on Ft, ϕ′ix◦t is given, and noting that by
Assumption 1 E (|εit|p |Ft) = $ip < K, then∥∥ϕ′ix◦tεit∥∥pp = E

[
E
(∣∣ϕ′ix◦tεit∣∣p | Ft)] ≤ E [∣∣ϕ′ix◦t∣∣p |E (|εit|p | Ft)

]
= E

(∣∣ϕ′ix◦t∣∣p)$ip,
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and hence ‖ϕ′ix◦tεit‖p ≤ $
1/p
ip ‖ϕ′ix◦t‖p. Also

∥∥ϕ′ix◦t∥∥p =

∥∥∥∥∥∥
N∑
j=1

gij,0β
′
j0xjt

∥∥∥∥∥∥
p

≤
N∑
j=1

|gij,0|
∥∥β′j0xjt∥∥p

≤

(
sup
j,t

E
∥∥β′j0xjt∥∥p

)
N∑
j=1

|gij,0| .

The first term on the right hand side is bounded by Assumption 2(a), for p ≤ 2+c, and supi
∑N

j=1 |gij,0| is
bounded by Lemma 2. Hence, supi,t ‖ϕ′ix◦t‖p < K , and overall we have supi,t ‖ϕ′ix◦tεit‖p < K. Consider
now the second term of (A.19) and note that

∥∥ϑ′iζ◦tζit∥∥p ≤ N∑
j=1

‖gij,0σj0ζjtζit‖p ≤
1

σi0

N∑
j=1

|gij,0| |εjtεit|p =
1

σi0

N∑
j=1

|gij,0| [E |εjtεit|p]1/p .

But supi (1/σi0) < K by Assumption 1, and using Cauchy–Schwarz inequality we obtain19

∥∥ϑ′iζ◦tζit∥∥p ≤ K N∑
j=1

|gij,0|
[
E
(
ε2pjt

)]1/2p [
E
(
ε2pit

)]1/2p
≤ K

{
sup
i,t

[
E
(
ε2pit

)]1/p} N∑
j=1

|gij,0| .

Again supi
∑N

j=1 |gij,0| < K under Lemma 2 , and E
(
ε2pit

)
< K for 2p = 4 + ε under Assumption 1, and

hence
∥∥ϑ′iζ◦tζit∥∥p < K. Using this result together with supi,t ‖ϕ′ix◦tεit‖p < K (established above) in

(A.19) now yields (A.18) by setting c = 2ε.

Lemma 5 Let

`t(θ) = −N
2

ln(2π)− 1

2

N∑
i=1

lnσ2i +
1

2
ln |V(ψ)| (A.20)

− 1

2
[S(ψ)y◦t −Bx◦t]

′Σ−1 [S(ψ)y◦t −Bx◦t] ,

where V(ψ) = S′(ψ)S(ψ), and note that the log-likelihood function is given by

`T (θ) =

T∑
t=1

`t(θ) = −NT
2

ln(2π)− T

2

N∑
i=1

lnσ2i +
T

2
ln |V(ψ)|

− 1

2

T∑
t=1

[S(ψ)y◦t −Bx◦t]
′Σ−1 [S(ψ)y◦t −Bx◦t] ,

19Note that since by Assumption 1 E (|εit|p |Ft) = $ip < K, then for a given i we also have E (|εit|p) = $ip, uncondition-
ally.
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(see also (7)) which can be written equivalently as

`T (θ) = −NT
2

ln(2π)− T

2

N∑
i=1

lnσ2i +
T

2
ln |V(ψ)| (A.21)

− 1

2

{
N∑
i=1

(yi◦ − ψiy∗i◦ −Xi◦βi)
′ (yi◦ − ψiy∗i◦ −Xi◦βi)

σ2i

}
,

where yi◦ = (yi1, yi2, . . . , yiT )′ and y∗i◦ = (y∗i1, y
∗
i2, . . . , y

∗
iT )′ are T×1 vectors, and Xi◦ = (xi1,xi2, . . . ,xiT )′

is the T × k matrix of observations on regressors specific to the ith cross section unit. Suppose that
Assumptions 1, 2, 3, 4,and 5 hold. Denote the score function by sT (θ) = ∂`T (θ)/∂θ =

∑T
t=1 ∂`t(θ)/∂θ.

Then
T−1sT (θ0)

a.s.→ 0, (A.22)

and
T−1/2sT (θ0)→d N [0,J (θ0, γ)] , (A.23)

where

J (θ0, γ) = (J0,ij) = lim
T→∞

T∑
t=1

E0

[
1

T

(
∂`t(θ)

∂θ

)(
∂`t(θ)

∂θ

)′]
(A.24)

and

γ =

[
lim
T→∞

T−1
T∑
t=1

E
(
ζ4it
)
− 1

]
= lim

T→∞
T−1

T∑
t=1

V ar(ζ2it),

with ζit ∼ IID(0, 1), ζit = εit/σi0, for i = 1, 2, . . . , N . A consistent estimator of J (θ0, γ) is given by

Ĵ(θ̂, γ̂) =
1

T


 T∑
t=1

∂`t

(
θ̂
)

∂θ

 T∑
t=1

∂`t

(
θ̂
)

∂θ

′
 ,

where θ̂ = arg maxθ ¯̀
T (θ) and

γ̂ = (NT )−1
T∑
t=1

N∑
i=1

(
ε̂it
σ̂i

)4

− 1,

with ε̂it = yit − ψ̂i
∑N

j=1wijyjt − β̂
′
ixit. σ̂i, β̂i and ψ̂i are the QML estimators of σi0, βi0 and ψi0,

respectively.

Proof. For a given N , the N (k + 2)× 1 score vector sT (θ0) =
(
∂`T (θ0)
∂ψ′

, ∂`T (θ0)
∂β′

, ∂`T (θ0)
∂σ2′

)′
, where


∂`T (θ0)
∂ψ

∂`T (θ0)
∂β

∂`T (θ0)
∂σ2


N(k+2)×1

=


[
−T Diag (G0) + Diag

(
y∗′i◦εi◦
σ2
i0
, i = 1, 2, . . . , N

)]
τN

Diag
(

X′i◦εi◦
σ2
i0

, i = 1, 2, . . . , N
)
τNk

Diag
[
− T

2σ2
i0

+ 1
2σ4
i0

(ε′i◦εi◦) , i = 1, 2, . . . , N
]
τN

 , (A.25)

y∗i◦ = (y∗i1, y
∗
i2, . . . , y

∗
iT ), εi◦ = (εi1, εi2, . . . , εiT ), εi◦ = yi◦ − ψi0y∗i◦ −Xi◦βi0, and τ κ is a κ × 1 vector of

ones. Consider first the ith component of ∂`T (θ0) /∂ψ, and note that it can be written as

∂`T (θ0)

∂ψi
= −Tg0,ii +

1

σ2i0

T∑
t=1

y∗itεit.

Also y∗it = e′i,NG0 (B0x◦t + ε◦t), where G0 = W (IN −Ψ0W )−1 and ei,N is an N dimensional vector
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with its ith element unity and zeros elsewhere. Then

1

T

∂`T (θ0)

∂ψi
=

1

T

T∑
t=1

ηit, (A.26)

where ηit is already defined by (A.19) which we write as

ηit = σ−1i0 ϕ
′
ix◦tζit + σ−1i0 σ

−1
i0 ϑ

′
iζ◦tζit − g0,ii, (A.27)

and as in proof of Lemma 4, ϕ′i = e′i,NG0B0, ϑ
′
i = e′i,NG0Σ

1/2
0 = (gi1σ10, gi2σ20, . . . , giNσN0), ζ◦t =

(ζ1t, ζ2t, . . . , ζNt)
′, and ζit = εit/σi0. Also recall that by Lemma 4, E (ηit|Ft) = 0, and supi,tE |ηit|

2+c < K,
for some c > 0. Therefore, using (A.26) by the strong law of large numbers for martingales we have (see,
for example, White (1984))

1

T

∂`T (θ0)

∂ψ

a.s.→ 0. (A.28)

Further, since E (ηit|Ft) = 0, then using (A.27)

V ar (ηit) = E [V ar (ηit | Ft)] = σ−2i0 g′0,iB0ΣxxB
′
0g0,i + σ−2i0

N∑
j=1

σ2j0g
2
0,ij + g20,ii

[
E
(
ζ4it
)
− 2
]

= σ−2i0

N∑
r=1

N∑
s=1

g0,isg0,irβ
′
r0Σrsβs0 + σ−2i0

N∑
j=1

σ2j0g
2
0,ij + g20,ii

[
E
(
ζ4it
)
− 2
]
. (A.29)

Consider now the limiting distribution of 1√
T

∂`T (θ0)
∂ψi

= 1√
T

∑T
t=1 ηit, and note that by Lemma 4, supi,tE |ηit|

2+c <

K for some c > 0, and by Corollary 5.25 in White (1984) it follows that

1√
T

∂`T (θ0)

∂ψi
→d N (0, ωii) , as T →∞, (A.30)

where (using (A.29))

ωii = lim
T→∞

T−1
T∑
t=1

V ar (ηit)

= g20,ii

[
lim
T→∞

T−1
T∑
t=1

E
(
ζ4it
)
− 2

]
+ σ−2i0 g′0,iB0ΣxxB

′
0g0,i + σ−2i0

N∑
j=1

σ2j0g
2
0,ij ,

which exists and is finite under Assumptions 1 and 2(b).

Similarly, consider the ith component of ∂`T (θ0)
∂β . Then, write

1

T

∂`T (θ0)

∂βi
=

1

σ2i0

1

T

T∑
t=1

xitεit =
1

σi0

1

T

T∑
t=1

xitζit. (A.31)

But by Assumption 2(a), E (xitζit | Ft) = (1/σi0)xitE (εit |Ft ) = 0, and V ar (xitζit | Ft) = xitx
′
itE
(
ζ2it | Ft

)
=

xitx
′
it. Hence E (xitζit) = 0, and V ar (xitζit) = Σii < K. Therefore, noting that xitζit is a martingale

difference process with finite second-order moments, it follows that

1

T

∂`T (θ0)

∂β

a.s.→ 0, as T →∞. (A.32)

Denote the `th element of xitζit by zi`,t = xi`,tζit for ` = 1, 2, . . . , k, and note that the `th element of
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1√
T

∂`T (θ0)
∂βi

is given 1
σi0

1√
T

∑T
t=1 zi`,t, where zi`,t is a martingale difference process with respect to Ft. Also,

by Assumptions 1 and 2(a),

sup
i,`,t

E |zi`,t|p = sup
i,`,t

E |xi`,tζit|p = sup
i,`,t

E [E (|xi`,tζit|p |Ft )] ≤ sup
i,`,t

E [|xi`,t|pE (|ζit|p |Ft )]

= sup
i,`,t

(E |xi`,t|p)σ−pi0 $ip < K,

for p = 2 + c, c > 0. Hence, by Corollary 5.25 in White (1984) it follows that for each i and ` and as
T →∞, 1

σi0
1√
T

∑T
t=1 zi`,t tends to a normal distribution and as whole we have

1√
T

∂`T (θ0)

∂βi
→d N (0,Ωi) , (A.33)

where

Ωi =
1

σ2i0
lim
T→∞

T−1
T∑
t=1

E
(
xitx

′
it

)
. (A.34)

Finally, consider the ith component of ∂`T (θ0)
∂σ2 , and note that

1

T

∂`T (θ0)

∂σ2i
=

1

2σ2i0

1

T

T∑
t=1

(
ε2it
σ2i0
− 1

)
=

1

2σ2i0

[
1

T

T∑
t=1

(
ζ2it − 1

)]
.

Let ξit = ζ2it − 1,where ζit = εit/σi0. Then

1

T

∂`T (θ0)

∂σ2i
=

1

2σ2i0

[
1

T

T∑
t=1

ξit

]
. (A.35)

We have E (ξit | Ft) = E
(
ζ2it | Ft

)
− 1 = 0, and E

(
ξ2it | Ft

)
= E

(
ζ4it | Ft

)
− 1, so that, since under

Assumption 1 ξit’s are martingale difference processes and E(|εit|4+ε |Ft) < K, for some small positive ε,
then supiE |ξit|

2 < K and by the strong law of large numbers for martingale processes we have

1

T

∂`T (θ0)

∂σ2

a.s.→ 0, as T →∞. (A.36)

Similarly, since supiE |ξit|
2+c < K for some c > 0, then as before

T−1/2
∂`T (θ0)

∂σ2i
→d N(0, vii), (A.37)

where

vii = lim
T→∞

T−1
T∑
t=1

[
1

4σ4i0
V ar(ξit)

]
=

(
1

4σ4i0

)
lim
T→∞

T−1
T∑
t=1

V ar(ζ2it). (A.38)

Now results (A.28), (A.32) and (A.36) establish (A.22), and results (A.30), (A.33) and (A.37) establish

(A.23), as required, with J (θ0, γ) = limT→∞
∑T

t=1E0

[
1
T

(
∂`t(θ)
∂θ

)(
∂`t(θ)
∂θ

)′]
. Consistency of Ĵ(θ̂, γ̂) for

J (θ0, γ) follows from consistency of θ̂ for θ0, and γ̂ for γ, and independence of ∂`t(θ0)
∂θ over t. Further,

since θ̂
a.s.→ θ0 on Θc, as T →∞, as shown in Section 3.3, we have

ε̂it = εit +Op

(
1√
T

)
, and σ̂2i = σ2i +Op

(
1√
T

)
,
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which establishes that

γ̂ = (NT )−1
T∑
t=1

N∑
i=1

(
ε̂it
σ̂i

)4

− 1→p γ, as T →∞, for any N.

Appendix B Proofs of Propositions 2 and 3, and Corollary 1

Proof of Proposition 2. First, we consider the information matrix H (θ0) given by

H (θ0) = lim
T→∞

E0

[
− 1

T

∂2`T (θ)

∂θ∂θ′

]
, (B.39)

where

E0

[
− 1

T

∂2`T (θ)

∂θ∂θ′

]
=

 H11 H12 H13

H ′12 H22 H23

H ′13 H ′23 H33


N(k+2)×N(k+2)

.

We evaluate each partial derivative in (B.39):

H11 = E0

[
− 1
T
∂2`T (θ)
∂ψ∂ψ′

]
is given by the N ×N matrix

H11 =
(
G0 �G′0

)
+ Diag

[
1

σ2i0

1

T

T∑
t=1

E0

(
y∗2it
)

, i = 1, 2, . . . , N

]
,

where G0 = W (IN −Ψ0W )−1 with its ith row denoted by g′0i, and

1

T

T∑
t=1

E0

(
y∗2it
)

= w′i(IN −Ψ0W )−1
[
B0E

(
x◦tx

′
◦t
)
B′0 + Σ0

]
(IN −W ′Ψ0)

−1wi

= g′0i
(
B0ΣxxB

′
0 + Σ0

)
g0i

=
N∑
r=1

N∑
s=1

g0,isg0,irβ
′
r0Σrsβs0 +

N∑
s=1

g20,isσ
2
s0.

Note that as shown in Lemmas 2 and 5,

‖G0‖∞ < K,
∥∥G0 �G′0

∥∥
∞ < K and

∥∥∥∥∥
N∑
r=1

N∑
s=1

g0,isg0,irβ
′
r0Σrsβs0

∥∥∥∥∥
∞

< K.

H12 = E0

[
− 1
T
∂2`T (θ)
∂ψ∂β′

]
is an N × kN matrix with its ith row given by a 1 × kN vector of zeros except

for its ith block which is given by the 1× k vector σ−2i0 E0(T
−1y∗

′
i Xi), namely

H12 =


σ−210 E0(T

−1y∗
′

1 X1) 0 · · · 0

0 σ−220 E0(T
−1y∗

′
2 X2) · · · 0

...
...

. . .
...

0 0 · · · σ−2N0E0(T
−1y∗

′
NXN )

 ,
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where

E0(T
−1y∗′i Xi) = E0

(
T−1

T∑
t=1

y∗itx
′
it

)
= E0

(
T−1

T∑
t=1

w′iy◦tx
′
it

)
= w′i(IN −Ψ0W)−1BE

(
x◦tx

′
it

)
= g′0i (Σi1β10,Σi2β20, . . . ,ΣiNβN0)

′ =
N∑
s=1

g0,isβ
′
s0Σis.

Again by Assumptions 2(b), 3 and 5, sups ‖βs0‖1 and Σis exist and are finite. Also, maxi
∑N

s=1 |g0,is| =
‖G0‖∞ which is bounded under our assumptions. H13 = E0

[
− 1
T
∂2`T (θ)
∂ψ∂σ2′

]
is an N × N diagonal matrix

with its ith element given by σ−2i0 w
′
i(IN − Ψ0W)−1ei,N = σ−2i0 g0,ii, where ei,N is an N dimensional

vector with its ith element unity and zeros elsewhere. H22 = E0

[
− 1
T
∂2`T (θ)
∂β∂β′

]
is an Nk × Nk block

diagonal matrix with its ith block given by σ−2i0 Σii. H23 = 0, and finally H33 = E0

[
− 1
T

∂2`T (θ)
∂(σ2)∂(σ2′)

]
=

Diag(1/2σ410, 1/2σ
4
20, . . . , 1/2σ

4
N0). Collecting all terms, we obtain (B.39).

Next, recalling from Lemma 4 that

ηit = σ−1i0 ϕ
′
ix◦tζit + σ−1i0 ϑ

′
iζ◦tζit − g0,ii,

where ϕ′i = e′i,NG0B0 and ϑ′i = e′i,NG0Σ
1/2
0 , and using (A.26) and (A.29) of Lemma 5, we have the

following cross-products (for i 6= j)

E0

[
1√
T

∂`T (θ)

∂ψi

1√
T

∂`T (θ)

∂ψj

]
=

1

T

T∑
t=1

T∑
t′=1

E0

(
ηitηjt′

)
=

1

T

T∑
t=1

T∑
t′=1

E

{ [
σ−1i0 ϕ

′
ix◦tζit + σ−1i0 ϑ

′
iζ◦tζit − g0,ii

][
σ−1j0 ϕ

′
jx◦t′ζjt′ + σ−1j0 ϑ

′
jζ◦t′ζjt′ − g0,jj

] }

=
1

T

T∑
t=1

E

{ [
σ−1i0 ϕ

′
ix◦tζit + σ−1i0 ϑ

′
iζ◦tζit − g0,ii

][
σ−1j0 ϕ

′
jx◦tζjt + σ−1j0 ϑ

′
jζ◦tζjt − g0,jj

] }

=
1

T

T∑
t=1


σ−1i0 σ

−1
j0 ϕ

′
iE (x◦tx

′
◦tζitζjt)ϕj + σ−1i0 σ

−1
j0 ϑ

′
iE
(
ζitζjtζ◦tζ

′
◦t
)
ϑj

−g0,iig0,jj + σ−1i0 σ
−1
j0 ϕ

′
iE0

(
x◦tζ

′
◦tϑjζitζjt

)
+σ−1j0 σ

−1
i0 ϕ

′
jE0

(
x◦tζ

′
◦tϑjζjtζit

)
=


{
g20,ii

[
1
T

∑T
t=1E

(
ζ4it
)
− 2
]

+ σ−2i0 g′0,iB0ΣxxB
′
0g0,i

+σ−2i0
∑N

j=1 σ
2
j0g

2
0,ij

, for i = j

g0,ijg0,ji, , for i 6= j

.

Further, using (A.31) and (A.34) of Lemma 5 we have

E0

[
1√
T

∂`T (θ)

∂βi

1√
T

∂`T (θ)

∂β′j

]
=

1

σi0σj0

1

T

T∑
t=1

T∑
t′=1

E
(
xitζitζjt′x

′
jt′
)

=

{
1

σ2
i0T

∑T
t=1E (xitx

′
it) , for i = j

0, for i 6= j
,
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and using (A.35) and (A.38) of Lemma 5 we have

E0

[
1√
T

∂`T (θ)

∂σ2i

1√
T

∂`T (θ)

∂σ2j

]
=

1

4σ2i0σ
2
j0

1

T

T∑
t=1

T∑
t′=1

E
(
ξitξjt′

)
=

1

4σ2i0σ
2
j0

1

T

T∑
t=1

T∑
t′=1

E
[(
ζ2it − 1

) (
ζ2jt′ − 1

)]
=

1

4σ2i0σ
2
j0

1

T

T∑
t=1

E
(
ζ2itζ

2
jt − ζ2it − ζ2jt + 1

)
=

{
1

4σ4
i0T

[∑T
t=1E

(
ζ4it
)
− 1
]
, for i = j

0, for i 6= j
.

In addition,

E0

[
1√
T

∂`T (θ)

∂βi

1√
T

∂`T (θ)

∂ψj

]
=

1

σi0T

T∑
t=1

T∑
t′=1

E0

[
(xitζit) ηjt′

]
=

1

σi0T

T∑
t=1

T∑
t′=1

E0

[
xitζit

(
σ−1j0 ϕ

′
jx◦t′ζjt′ + σ−1j0 ϑ

′
jζ◦t′ζjt′ − g0,jj

)]
=

1

σi0T

T∑
t=1

[
σ−1j0 E0

(
xitϕ

′
jx◦tζitζjt

)
+ σ−1j0 E0

(
xitζitϑ

′
jζ◦tζjt

)
−g0,jjE (xitζit)

]

=

{
σ−2i0 g

′
0i (Σi1β10,Σi2β20, . . . ,ΣiNβN0)

′ , for i = j
0, for i 6= j

.

Moreover,

E0

[
1√
T

∂`T (θ)

∂σ2i

1√
T

∂`T (θ)

∂ψj

]
=

1

2σ2i0

1

T

T∑
t=1

T∑
t′=1

E
(
ξitηjt′

)
=

1

2σ2i0

1

T

T∑
t=1

T∑
t′=1

E
[(
ζ2it − 1

) (
σ−1j0 ϕ

′
jx◦t′ζjt′ + σ−1j0 ϑ

′
jζ◦t′ζjt′ − g0,jj

)]
=

1

2σ2i0

1

T

T∑
t=1

E
[
ζ2it

(
σ−1j0 ϕ

′
jx◦tζjt + σ−1j0 ϑ

′
jζ◦tζjt − g0,jj

)]
=

{
g0,ii[ 1

T

∑T
t=1 E(ζ4it)−1]
2σ2
i0

, for i = j

0, for i 6= j
,

and finally,

E0

[
1√
T

∂`T (θ)

∂βi

1√
T

∂`T (θ)

∂σ2j

]
=

1

2σi0σ2j0

1

T

T∑
t=1

T∑
t′=1

E
[
(xitζit) ξjt′

]
=

1

2σi0σ2j0

1

T

T∑
t=1

T∑
t′=1

E
[
(xitζit)

(
ζ2jt′ − 1

)]
= 0, for all i, j = 1, 2, . . . , N.
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Overall, let

γ =

[
lim
T→∞

T−1
T∑
t=1

E
(
ζ4it
)
− 1

]
= lim

T→∞
T−1

T∑
t=1

V ar(ζ2it). (B.40)

We can collect the various terms and construct matrix

J (θ0, γ) = (J0,ij) = lim
T→∞

E0

 1

T

(
T∑
t=1

∂`t (θ)

∂θ

)(
T∑
t=1

∂`t (θ)

∂θ

)′ =

 J11 J12 J13

. J22 J23

. . J33


N(k+2)×N(k+2)

,

(B.41)
where `t (θ) is defined in (A.20) and

J11 =

{
(G0 �G′0) + (γ − 2) Diag (G0 �G′0)

+ Diag
[
σ−2i0 g

′
0i (B0ΣxxB

′
0 + Σ0) g0i, i = 1, 2, . . . , N

] ,

J12 = Diag

[
σ−2i0

N∑
s=1

g0,isβ
′
s0Σis, i = 1, 2, . . . , N

]
,

J13 =
γ

2
Diag

(
σ−2i0 g0,ii, i = 1, 2, . . . , N

)
, J22 = Diag

(
σ−2i0 Σii, i = 1, 2, . . . , N

)
,

J23 = 0, J33 =
γ

4
Diag

(
1/σ4i0, i = 1, 2, . . . , N

)
.

Having established that the score vector is asymptotically normally distributed, it is now easily seen that
as T →∞, √

T
(
θ̂ − θ0

)
→d N (0,V θ) , (B.42)

where V θ = H−1 (θ0) J (θ0, γ)H−1 (θ0).

Proof of Proposition 3. Suppose that {ψi0, βi0, i = 1, 2, . . . , N} are randomly distributed around the
common means, ψ0 and β0, following (25). First, the asymptotic validity of the MG estimator, ψ̂MG,
defined by (26), can be established by first noting that

√
N
(
ψ̂MG − ψ0

)
= N−1/2

N∑
i=1

(
ψ̂i − ψi0

)
+N−1/2

N∑
i=1

(ψi0 − ψ0) , (B.43)

where ψ̂i are the underlying unit-specific estimators. Upon using (25), (B.43) can also be written as

√
N
(
ψ̂MG − ψ0

)
=

√
N

T

[
N−1

N∑
i=1

T
(
ψ̂i − ψi0

)]
+N−1/2

N∑
i=1

ηiψ

= qNT + ξNT . (B.44)

Consider now qNT , the
first term of the above expression, and recall that under the regularity conditions set out in Section

3,
√
T
(
ψ̂i − ψi0

)
a∼ N(0, ω2

ψi
), where supi ω

2
ψi
< K, and E

(
ψ̂i − ψi0

)
= O

(
T−1

)
, for all i. Hence

E (qNT ) = O

(√
N

T

)
. (B.45)

Furthermore we note that qNT can also be written as

qNT = N−1/2
N∑
i=1

(
ψ̂i − ψi0

)
= T−1/2N−1/2τ ′N

[√
T
(
ψ̂ −ψ0

)]
,
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where ψ̂ = (ψ̂1, ψ̂2, . . . , ψ̂N )′, and τN is an N×1 vector of ones. Denote the N×N asymptotic covariance

matrix of ψ̂ by Vψ = AsyV ar
[√

T
(
ψ̂ − ψ0

)]
, then

lim
N,T→∞

V ar (qNT ) = lim
N,T→∞

V ar
[
T−1/2N−1/2τ ′N

√
T
(
ψ̂ −ψ0

)]
= lim

N,T→∞

(
τ ′NVψτN

NT

)
≤ lim

N,T→∞

[
λmax (Vψ)

T

]
. (B.46)

Suppose now that
√
N/T → 0, and λmax (Vψ) < K as N and T →∞. Then using (B.45) and (B.46) it

readily follows that
lim

N,T→∞
E (qNT ) = 0, and lim

N,T→∞
V ar (qNT ) = 0,

and hence as
√
N/T → 0, qNT = op(1), and in view of (B.44)

√
N
(
ψ̂MG − ψ0

)
a∼ ξNT = N−1/2

∑N
i=1 ηiψ.

Finally, under the random coefficient model where {ηiψ, for i = 1, 2, . . . , N} are assumed to be indepen-

dently distributed with zero means and finite variances, ξNT
a∼ N [0, V ar (ηiψ)], and therefore under the

additional conditions,
√
N/T → 0 and λmax (Vψ) < K, we have (as N ,T →∞, jointly):

√
N
(
ψ̂MG − ψ0

)
a∼ N

(
0, ω2

ψ

)
, (B.47)

where ω2
ψ = V ar (ηiψ). It is also easily seen that ω2

ψ can be consistently estimated by

ω̂2
ψ =

1

N − 1

N∑
i=1

(
ψ̂i − ψ̂MG

)2
.

Similarly, for the MG estimator, β̂MG, again defined by (26), we have

√
N
(
β̂MG − β0

)
a∼ N (0,Ωβ) , (B.48)

so long as λmax (Vβ) < K, where Vβ is the kN × kN asymptotic covariance matrix of
√
T β̂ =

(
√
T β̂
′
1,
√
T β̂
′
2, . . . ,

√
T β̂
′
N )′ and β̂i are the underlying unit-specific estimators. A consistent estimator of

Ωβ is given by

Ω̂β =
1

N − 1

N∑
i=1

(
β̂i − β̂MG

)(
β̂i − β̂MG

)′
,

It now remains to establish conditions under which λmax (Vψ) < K and λmax (Vβ) < K hold. We first
note that Vψ and Vβ are sub-matrices of Vθ defined by (21) which we reproduce here for convenience:

Vθ = H−1(θ0)J (θ0, γ) H−1(θ0),

where H (θ0) and J (θ0, γ) are given by (17) and (19), respectively. Hence, it is sufficient to show that
λmax (Vθ) is bounded in N . To this end we first note that

‖Vθ‖ ≤
∥∥H−1(θ0)∥∥2 ‖J (θ0, γ)‖ , (B.49)

where ‖A‖ = λ
1/2
max (A′A) is the spectral norm of A. However, since Vθ ,H−1(θ0) and J (θ0, γ)

are symmetric matrices, then ‖Vθ‖ = λmax (Vθ),
∥∥H−1(θ0)∥∥2 = λ2max

[
H−1 (θ0)

]
, and ‖J (θ0, γ)‖ =

λmax [J (θ0, γ)], and (B.49) can also be written as

λmax (Vθ) ≤ λ2max

[
H−1 (θ0)

]
λmax [J (θ0, γ)] . (B.50)

But λmax

[
H−1 (θ0)

]
= 1/λmin [H (θ0)], and under the identification conditions established in Section
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3.2, we have λmin [H (θ0)] > 0, which ensures that λmax

[
H−1 (θ0)

]
< K is bounded in N . Finally, we

note that by Theorem 5.6.9 of Horn and Johnson (1985),

λmax [J (θ0, γ)] ≤ ‖J (θ0, γ)‖∞ , (B.51)

and using (19) it is easily seen that the column (row) norm of J (θ0, γ) is dominated by matrices
(G0 �G′0) , ∆β0

and Eβ0
, where the latter two matrices are diagonal. The other matrices in J (θ0, γ),

namely Σ0 and Z0, are also diagonal matrices whose elements do not vary with N . Consider ∆β0
defined

by (18) and note that

sup
i

(
N∑
s=1

g20,isσ
2
s0

)
≤ sup

s

(
σ2s0
)

sup
i

(
N∑
s=1

|g0,is|

)
= sup

s

(
σ2s0
)
‖G0‖∞ .

Similarly,

sup
i

∣∣∣∣∣
N∑
r=1

N∑
s=1

g0,isg0,irβ
′
r0Σrsβs0

∣∣∣∣∣ ≤ sup
i

N∑
r=1

N∑
s=1

|g0,is| |g0,ir|
∥∥β′r0Σrsβs0

∥∥
≤ sup

r,s

∥∥β′r0Σrsβs0
∥∥ sup

i

N∑
r=1

N∑
s=1

|g0,is| |g0,ir|

= sup
s
‖βs0‖ sup

r
‖βr0‖ sup

r,s
‖Σrs‖ ‖G0‖2∞ .

However, under Assumptions 2(b) and 3 we have sups ‖βs0‖ < K and supr,s ‖Σrs‖ < K, and under
Assumption 4(b) it follows that ‖G0‖∞ < K (see Lemma 2). Hence,

∥∥∆β0

∥∥ < K. Similarly, it is also
easily established that all elements of Eβ0

are bounded in N . Finally, again under Assumption 4 and
as shown in Lemma 2, ‖G0 �G′0‖∞ < K. Consequently, ‖J (θ0, γ)‖∞ < K, and in view of (B.51) it
follows that λmax [J (θ0, γ)] < K. Using this result in (B.50) and recalling that λmax

[
H−1 (θ0)

]
< K,

then overall we have λmax (Vθ) < K, as required. Note that this result does not need the exogenous
regressors to be weakly cross-correlated; it is sufficient that supr,s ‖Σrs‖ < K.

Proof of Corollary 1. Consider the information matrix H (θ0) given by (17). We partition H (θ0) as
follows:

H (θ0) =

(
H11 H12

H′12 H22

)
,

where H12 = (H12,H13) is an N × (Nk +N) matrix, and since H23 = H32 = 0, then H22 =
Diag (H22,H33), which is an (Nk +N)× (Nk +N) matrix. Then, the inverse of H (θ0) is given by

H−1 (θ0) =

(
H−111·2 −H−111·2H12H−122

−H−122 H21H−111·2 H−122 +H−122 H21H−111·2H12H−122

)
.

We focus on the N ×N information matrix H11·2 which is written as

H11·2 = H11 −H12H−122 H21 = H11 −H12H
−1
22H21 −H13H

−1
33H31

=
(
G0 �G′0

)
+ Diag

−g20,ii +

N∑
s=1,s 6=i

(
σ2s0/σ

2
i0

)
g20,is, i = 1, 2, . . . , N


+ Diag

[
σ−2i0

N∑
r=1

N∑
s=1

g0,isg0,irβ
′
r0

(
Σrs −ΣriΣ

−1
ii Σis

)
βs0, i = 1, 2, . . . , N

]
.

Then, by Assumptions 1, 2, 4, and 5, the matrix H11·2 is full rank, where G0 = W (IN −Ψ0W )−1 =
(g0,ij), Ψ0 = Diag(ψ0), ψ0 = (ψ10, ψ20, . . . , ψN0)

′, and W is the spatial weight matrix, and εit ∼
IIDN(0, σ2i0). Hence, the maximum likelihood estimator of ψ0, denoted by ψ̂ and computed by max-
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imising (A.21), is asymptotically normally distributed with asymptotic covariance matrix Vψ = [H11·2]
−1.

Appendix C Consistent estimation of V
(
θ̂
)

Derivatives of the log-likelihood function

The vector of maximum likelihood estimates, θ̂T , in Section 2 is obtained by maximising the log-likelihood
function (A.21) which we reproduce here for convenience20

`T (θ) = −NT
2

ln(2π)−T
2

N∑
i=1

lnσ2i +T ln |IN−ΨW | −1

2

N∑
i=1

(yi◦ − ψiy∗i◦ −Xi◦βi)
′ (yi◦ − ψiy∗i◦ −Xi◦βi)

σ2i
,

(C.52)
where θ = (ψ′,β′,σ2′)′.

First derivatives

We have

∂`T (θ)

∂ψi
= −T tr[(IN −ΨW )−1EiiW ] +

y∗′i◦ (yi◦ − ψiy∗i◦ −Xi◦βi)

σ2i
, for i = 1, 2, . . . , N,

∂`T (θ)

∂βi
=

X′i◦ (yi◦ − ψiy∗i◦ −Xi◦βi)

σ2i
, for i = 1, 2, . . . , N,

∂`T (θ)

∂σ2i
= − T

2σ2i
+

1

2σ4i
(yi◦ − ψiy∗i◦ −Xi◦βi)

′ (yi◦ − ψiy∗i◦ −Xi◦βi) , for i = 1, 2, . . . , N,

where Eii is the N ×N matrix whose (i, i) element is 1 and zero elsewhere.

Second derivatives

We have

Ĥ (θ) = − 1

T

∂2`T (θ)

∂θ∂θ′
=

 Ĥ11 Ĥ12 Ĥ13

. Ĥ22 Ĥ23

. . Ĥ33

 ,

=


− 1
T
∂2`T (θ)
∂ψ∂ψ′

− 1
T
∂2`T (θ)
∂ψ∂β′

− 1
T
∂2`T (θ)
∂ψ∂σ2′

. − 1
T
∂2`T (θ)
∂β∂β′

− 1
T
∂2`T (θ)
∂β∂σ2′

. . − 1
T

∂2`T (θ)
∂(σ2)∂(σ2′)

 .

With the (i, j) or ith element of associated matrix or vector given in {}, we have

Ĥ11 = − 1

T

∂2`T (θ)

∂ψ∂ψ′
=

{
− 1

T

∂2`NT (θ)

∂ψi∂ψj

}
,

− 1

T

∂2`T (θ)

∂ψi∂ψj
=

{
tr
[
(I −ΨW )−1EiiW (I −ΨW )−1EiiW

]
+ 1

σ2
i

y∗′i◦y
∗
i◦

T if i = j

tr
[
(I −ΨW )−1EjjW (I −ΨW )−1EiiW

]
if i 6= j

,

− 1

T

∂2`T (θ)

∂ψi∂ψj
=

{
g2ii + 1

σ2
i

y∗′i◦y
∗
i◦

T if i = j

gijgji if i 6= j
,

20Note that ln |S′(ψ)S(ψ)| = 2 ln |IN −ΨW |.
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whereEij is theN×N matrix whose (i, j) element is 1 and zero elsewhere and G = (gij) = W (IN −ΨW )−1.
Further,

Ĥ12 = − 1

T

∂2`T (θ)

∂ψ∂β′
=

{
− 1

T

∂2`T (θ)

∂ψi∂β
′
j

}
=

{
1

σ2i

y∗′i◦Xi◦
T

, if i = j, and 0, if i 6= j

}
,

Ĥ13 = − 1

T

∂2`T (θ)

∂ψ∂σ2′ =

{
− 1

T

∂2`T (θ)

∂ψi∂σ2j

}
=

{
1

σ4i

y∗′i◦ (yi◦ − ψiy∗i◦ −Xi◦βi)

T
, if i = j, and 0, if i 6= j

}
,

Ĥ22 = − 1

T

∂2`T (θ)

∂β∂β′
=

{
− 1

T

∂2`T (θ)

∂βi∂β
′
j

}
=

{
1

σ2i

X ′i◦Xi◦
T

, if i = j, and 0, if i 6= j

}
,

Ĥ23 = − 1

T

∂2`T (θ)

∂β∂σ2′ =

{
− 1

T

∂2`T (θ)

∂βi∂σ
2
j

}
=

{
1

σ4i

X′i◦(yi◦ − ψiy∗i◦ −Xi◦βi)

T
, if i = j, and 0, if i 6= j

}
,

Ĥ33 = − 1

T

∂2`T (θ)

∂ (σ2) ∂ (σ2′)
=

{
− 1

T

∂2`T (θ)

∂σ2i ∂σ
2
j

}

=

{
− 1

2σ4i
+

1

σ6i

1

T
(yi◦ − ψiy∗i◦ −Xi◦βi)

′(yi◦ − ψiy∗i◦ −Xi◦βi), if i = j, and 0, if i 6= j

}
.

Finally, from the above results we obtain:

Ĵ (θ) =
1

T


[

T∑
t=1

∂`t (θ)

∂θ

][
T∑
t=1

∂`t (θ)

∂θ

]′ and Ĥ (θ) = − 1

T

∂2`T (θ)

∂θ∂θ′
,

from which the standard and sandwich covariance matrix estimators in (24) are given by

V̂ θ̂ = Ĥ
−1 (

θ̂
)

and V̂ θ̂ = Ĥ
−1 (

θ̂
)
Ĵ
(
θ̂
)
Ĥ
−1 (

θ̂
)
.

Appendix D HSAR model with non-zero diagonal weights

Consider the following HSAR model:

yit = ψi0

 N∑
j=1

wijyjt

+ β′i0xit + εit, for i = 1, 2, . . . , N ; t = 1, 2, . . . , T, (D.53)

where wii 6= 0,
∑N

j=1wij = vi, vi are known constants, and V ar (εit) = σ2i0. This implies that W = (wij)

are non-standardised and need not have zero diagonal elements. Assume that |vi| < K and
∑N

j=1 |wij | <
K. Then, (D.53) can be reparameterised such that:

yit =

(
1

1− ψi0wii

)ψi0
 N∑
j 6=i

wijyjt

+ β′i0xit + εit

 . (D.54)

Let

ẇij =

{
v−1i wij , if i 6= j

0, if i = j
,
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and note that
∑N

j 6=iwijyjt = vi
∑N

j 6==i ẇijyjt, such that
∑N

j 6==i ẇij = 1 and ẇii = 0. Then, (D.54) can be
written equivalently as:

yit = ψ̇i0

 N∑
j=1

ẇijyjt

+ β̇
′
i0xit + ε̇it, for i = 1, 2, . . . , N ; t = 1, 2, . . . , T, (D.55)

where ψ̇i0 = ψi0vi
1−ψi0wii , β̇i0 = βi0

1−ψi0wii and V ar (ε̇it) = σ̇2i0 =
σ2
i0

(1−ψi0wii)2
, respectively. The parameters

in (D.55) can be estimated using the QML approach developed in Section 3 of the main paper, and

parameters in (D.53) can be recovered such that ψi0 = ψ̇i0
vi+ψ̇i0wii

, βi0 = β̇i0 (1− ψi0wii) and σ2i0 =

(1− ψi0wii)2 σ̇2i0, respectively.

Appendix E Direct and indirect effects in HSAR model

Consider the theoretical HSAR model (2) of the main paper where the time dynamics are made explicit.
This specification is used in our empirical application of Section 6:

yit = ai + ψi0

N∑
j=1

wijyjt + ψi1

N∑
j=1

wijyj,t−1 + λiyi,t−1 + β′ixit + εit, for i = 1, 2, . . . , N ; t = 1, 2, . . . , T,

(E.56)
where xit = (xi1,t, xi2,t, . . . , xik,t)

′ is a k × 1 vector of exogenous regressors, with the associated k × 1
vector of slope parameters, βi = (βi1, βi2, . . . , βik)

′. We can re-write (E.56) as

yt = a+ Ψ0Wyt + Ψ1Wyt−1 + Λyt−1 +Bxt + εt, for t = 1, 2, . . . , T,

where a = (a1, a2, . . . , aN )′ , Ψ0 = Diag (ψ0) with ψ0 = (ψ10, ψ20, . . . , ψN0)
′, Ψ1 = Diag (ψ1) with ψ0 =

(ψ11, ψ21, . . . , ψN1)
′, Λ = Diag (λ) with λ = (λ1, λ2, . . . , λN )′ and B is the N×kN block diagonal matrix

with elements β′i, i = 1, 2, . . . , N, on the main diagonal and zeros elsewhere. Also, yt = (y1t, y2t, . . . , yNt)
′

and xt = (x′1t,x
′
2t, . . . ,x

′
Nt)
′. Then, we have

yt = c+ Φyt−1 +Axt + ut, for t = 1, 2, . . . , T, (E.57)

where c = (IN −Ψ0W )−1 a, Φ = (IN −Ψ0W )−1 (Ψ1W + Λ), A = (IN −Ψ0W )−1B and ut =
(IN −Ψ0W )−1 εt. Following LeSage and Chih (2016), we focus on

∂yi,t+h
∂xj`,t

, for i, j = 1, 2, . . . , N ; ` = 1, 2, . . . , k; h = 0, 1, 2, . . .

where xj`,t is the `th regressor of the jth unit, and h = 0, 1, 2, . . . represents the horizon relative to the
partial change of xj`,t at h = 0. Using (E.57) and solving forward from time t, we have

yt+h = Φh+1yt−1 +

(
h−1∑
s=0

Φs

)
c+

h−1∑
s=0

ΦsAxt+h−s +

h−1∑
s=0

Φsut+h−s, (E.58)

Therefore,
∂yt+h
∂xj`,t

=
[
Φh (IN −Ψ0W )−1 ej

]
βj`, (E.59)

where ej is an N × 1 vector of zeros except for its jth element which is unity. The ith element of (E.59)
is given by

∂yi,t+h
∂xj`,t

=
[
e′iΦ

h (IN −Ψ0W )−1 ej

]
βj`, (E.60)
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where ei is an N×1 vector of zeros except for its ith element which is unity. The direct effects are given by
setting i = j, while the indirect effects focus on the off-diagonal elements of the partial derivatives matrix
for each h = 0, 1, . . ., such that i 6= j. The latter can be differentiated into spill-in effects (cumulative
row sums) and spill-out effects (cumulative column sums).

As summary measures, we define the average direct effects to be

DN (h, `) =
1

N

N∑
i=1

∂yi,t+h
∂xi`,t

, for ` = 1, 2, . . . , k; h = 0, 1, . . . . (E.61)

In terms of indirect effects, averaging over spill-in and spill-out effects produces the same result and can
be used interchangeably:

IDN (h, `) =
1

N (N − 1)

N∑
i 6=j

∂yi,t+h
∂xj`,t

, for ` = 1, 2, . . . , k; h = 0, 1, . . . . (E.62)

The same computations can be used to evaluate average direct and indirect effects at regional level. In
this case, the indirect effects can be further decomposed into within-region and between-region indirect
effects. Though the within-region average spill-in and spill-out effects again produce the same result, the
between-region average spill-in and spill-out effects may differ. More specifically, suppose that there are
Nr MSAs in region r (= 1, 2, . . . , R), then we have

DNr (h, `) =
1

Nr

Nr∑
i=1

∂yri,t+h
∂xri`,t

, (E.63)

IDW,Nr (h, `) =
1

Nr (Nr − 1)

Nr∑
i=1

Nr∑
j=1

i 6=j

∂yri,t+h
∂xrj`,t

, (E.64)

IDBin,Nr (h, `) =
1

Nr (N −Nr)

Nr∑
i=1

N−Nr∑
j=1

i 6=j

∂yri,t+h

∂x/∈rj`,t
, (E.65)

and

IDBout,Nr (h, `) =
1

Nr (N −Nr)

N−Nr∑
i=1

Nr∑
j=1

i 6=j

∂y /∈ri,t+h
∂xrj`,t

, (E.66)

for ` = 1, 2, . . . , k; r = 1, 2, . . . R; h = 0, 1, . . . , where IDW,Nr , IDW,Nr and IDBout,Nr stand for within-
region indirect, between-region spill-in and between-region spill-out effects, respectively. A further refine-
ment entails the units that do not belong to region r, x/∈rik,t, to be further categorised into the remainder
regions.

Appendix F Data sources, transformations and additional empirical
results

Data sources

Monthly data for U.S. house prices over the period January 1975 to December 2014 are obtained from
the Freddie Mac House Price Index (FMHPI). These data are available at:
http://www.freddiemac.com/research/.

Annual data on nominal income per capita and population at MSA level are acquired from the Bureau
of Economic Analysis website for the same period. These data are available at: https://www.bea.gov/data/.
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Annual State level Consumer Price Index data are obtained from the Bureau of Labour Statistics:
https://www.bls.gov/cpi/. These are matched to the corresponding MSAs. In some cases where area
data are missing then the U.S. average CPI is used instead.

Data transformations

There exist 381 metropolitan statistical areas (MSAs) which fall under the February 2013 definition
provided by the U.S. Office of Management and Budget (OMB), of which 337 are located in the contiguous
United States.21,22 Accordingly, we compile quarterly nominal house prices (HP ) for these 377 MSAs
over the period 1975Q1-2014Q4. In addition, we obtain nominal income per capita (INC) and population
(POP ) at the MSA level over the same period. Both real house prices and real per capita income for
all MSAs are then computed by deflating their nominal values by State level Consumer Price Index data
(CPI) which are matched to the corresponding MSAs.23

The corresponding percent quarterly rates of change in real house prices (Πit), population (GPOPit)
and real per capita income (GINCit) of MSA i in quarter t are computed as follows:

Πit = 100×
[
ln

(
HPit
CPIit

)
− ln

(
HPi,t−1
CPIi,t−1

)]
,

GPOPit = 100× [ln (POPit)− ln (POPit−1)] ,

GINCit = 100×
[
ln

(
INCit
CPIit

)
− ln

(
INCi,t−1
CPIi,t−1

)]
,

for i = 1, 2, . . . , N , and t = 1975Q1− 2014Q4. In total N = 377 MSAs and T = 160 quarters.
Further, we de-seasonalise and de-factor the three variables that we use to estimate the HSAR spec-

ifications, and use residuals from OLS regressions of Πit, GPOPit and GINCit on: (i) an intercept, (ii)
3 quarterly dummies and (iii) national, regional and local cross-sectional averages of Πit, GPOPit and
GINCit respectively, in line with Yang (2020).24

Additional empirical results

All individual spatial and slope coefficient estimates with their standard errors from model (30) are
available upon request.

Figures F1(a) and F1(b) show the individual contemporaneous (ψ̂0i) and lagged (ψ̂1i) spatial coefficient
estimates for the N = 338 MSAs in our sample, which form the net spatial coefficient estimates (ψ̂0i+ψ̂1i)
depicted in Figure 1(a) of Section 6.

Figures F2, F3 and F4 display the direct, spill-in and spill-out effects on individual MSA house price
changes from a one percent change in population and real income growth at different time horizons,
h = 0, 3, 6. These are produced from empirical model (30) of Section 6. The equivalent average regional
metrics, namely the within-region direct and indirect effects, are shown in Table F2. The between-region
averages have been omitted as they are negligible by comparison and account for less that 0.3% of direct
effects in any one instance.

21The February 2013 delineation states that ‘metropolitan statistical areas have at least one urbanised area of 50,000 or
more population, plus adjacent territory that has a high degree of social and economic integration with the core as measured
by commuting ties’. For further details see:

https://www.whitehouse.gov/sites/whitehouse.gov/files/omb/bulletins/2013/b13-01.pdf
22This excludes the non-contiguous states of Alaska (2 MSAs) and Hawaii (2 MSAs) and all other off-shore insular areas.
23The quarterly figures for nominal house prices (HP ) are arithmetic averages of monthly observations of HP . Further,

per capita income (INC), population (POP ) and consumer price index (CPI) are annual data which are converted into
quarterly observations by following the interpolation method provided in the GVAR Toolbox User Guide which can be found
at: https://sites.google.com/site/gvarmodelling/gvar-toolbox.

24We partition the MSAs into R = 8 regions, following the Bureau of Economic Analysis classification, each region
r = 1, 2, . . . , R, containing a total of Nr MSAs. The eight regions are: New England (15 MSAs), Mid East (41 MSAs),
South East (120 MSAs), Great Lakes (59 MSAs), Plains (33 MSAs), South West (39 MSAs), Rocky Mountains (22 MSAs)
and Far West (48 MSAs).
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Table F1 displays the population densities across six major regions in the U.S.. These are computed
by aggregating MSA-level population and area estimates for the N = 338 MSAs in our sample.

Finally, Table F3 replicates the MGE regional and national results of Table 3 in the main paper when
using as un-normalised sparse weights matrix, P = (pij), where

pij (dij) =

{
1
dij

, if dij ≤ 75 miles

0, otherwise
, (F.67)

and dij stands for geodesic distance between MSAs i, j = 1, 2, . . . , N . Geodesic distances are computed
by applying the Haversine formula. W = (wij) then becomes the row-normalised version of P , namely

wij = pij/
∑N

r=1 pir. We use the same 75 mile radius for distinguishing between neighbours and non-
neighbours as in the main paper. Results are qualitatively very similar to those in Table 3. Similar

results are also obtained when assuming a dense inverse distance matrix such that P = (pij) =
(

1/dδij

)
,

for i, j = 1, 2, . . . , N and δ = 6 in (F.67). These results are available upon request.
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Figure F1: Contemporaneous (ψ̂0i) and lagged (ψ̂1i) spatial autoregressive parameter estimates for
Metropolitan Statistical Areas in the Unites States

ψ̂0i

(-1,-0.75] (-0.75,-0.5] (-0.5,-0.25] (-0.25,0] (0,0.25] (0.25,0.5] (0.5,0.75] (0.75,1) Non-Conv No-Neigh

(a) Contemporaneous spatial parameter estimates

ψ̂1i

(-1,-0.75] (-0.75,-0.5] (-0.5,-0.25] (-0.25,0] (0,0.25] (0.25,0.5] (0.5,0.75] (0.75,1) Non-Conv No-Neigh

(b) Lagged spatial parameter estimates

Notes: Each ψ̂0i and ψ̂1i is mapped to a Metropolitan Statistial Area (MSA) in the U.S.. A total of 338
MSAs are included in model (30). MSAs coloured in blue correspond to positive contemporaneous and lagged
spatial parameter estimates while MSAs coloured in red match to negative contemporaneous and lagged spatial
parameter estimates. Darker shades of blue or red indicate more sizable ψ̂0i and ψ̂1i while lighter shades related
to ψ̂0i and ψ̂1i closer to zero in absolute terms. Category ‘Non-conv’ includes MSAs whose ψ̂0i, ψ̂1i or λ̂i
estimates hit the upper/lower bound in the optimization procedure, while category ‘No-Neigh’ includes MSAs
that have no neighbours when using W 75.
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Figure F2: Direct effects for Metropolitan Statistical Areas in the Unites States at time horizons
h = 0, 3, 6 quarters after a one percent change to own MSA population or real income growth at time t.

Population, Direct, h = 0

<=-0.168 (-0.168,-0.054] (-0.054,-0.014] (-0.014,0] (0,0.014] (0.014,0.054] (0.054,0.168] >0.168 No-Neigh

Income, Direct, h = 0

<=-0.043 (-0.043,-0.014] (-0.014,-0.004] (-0.004,0] (0,0.004] (0.004,0.014] (0.014,0.043] >0.043 No-Neigh

Population, Direct, h = 3

<=-0.168 (-0.168,-0.054] (-0.054,-0.014] (-0.014,0] (0,0.014] (0.014,0.054] (0.054,0.168] >0.168 No-Neigh

Income, Direct, h = 3

<=-0.043 (-0.043,-0.014] (-0.014,-0.004] (-0.004,0] (0,0.004] (0.004,0.014] (0.014,0.043] >0.043 No-Neigh

Population, Direct, h = 6

<=-0.168 (-0.168,-0.054] (-0.054,-0.014] (-0.014,0] (0,0.014] (0.014,0.054] (0.054,0.168] >0.168 No-Neigh

Income, Direct, h = 6

<=-0.043 (-0.043,-0.014] (-0.014,-0.004] (-0.004,0] (0,0.004] (0.004,0.014] (0.014,0.043] >0.043 No-Neigh

Notes: Each direct effect estimate is computed using (E.60) for i = j and mapped to a Metropolitan Statistial
Area (MSA) in the U.S.. A total of 338 MSAs are included in model (30). MSAs coloured in blue correspond
to positive direct effect estimates while MSAs coloured in red match to negative direct effect estimates. Darker
shades of blue or red indicate more sizable effects while lighter shades relate to effects closer to zero in absolute
terms. Category ‘No-Neigh’ includes MSAs that have no neighbours when using W 75.
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Figure F3: Spill-in effects for Metropolitan Statistical Areas in the Unites States at time horizons
h = 0, 3, 6 quarters after a one percent change to neighbouring population or real income growth at time

t.

Population, Cumulative spill-in, h = 0

<=-0.210 (-0.210,-0.047] (-0.047,-0.013] (-0.013,0] (0,0.013] (0.013,0.047] (0.047,0.210] >0.210 No-Neigh

Income, Cumulative spill-in, h = 0

<=-0.046 (-0.046,-0.010] (-0.010,-0.003] (-0.003,0] (0,0.003] (0.003,0.010] (0.010,0.046] >0.046 No-Neigh

Population, Cumulative spill-in, h = 3

<=-0.210 (-0.210,-0.047] (-0.047,-0.013] (-0.013,0] (0,0.013] (0.013,0.047] (0.047,0.210] >0.210 No-Neigh

Income, Cumulative spill-in, h = 3

<=-0.046 (-0.046,-0.010] (-0.010,-0.003] (-0.003,0] (0,0.003] (0.003,0.010] (0.010,0.046] >0.046 No-Neigh

Population, Cumulative spill-in, h = 6

<=-0.210 (-0.210,-0.047] (-0.047,-0.013] (-0.013,0] (0,0.013] (0.013,0.047] (0.047,0.210] >0.210 No-Neigh

Income, Cumulative spill-in, h = 6

<=-0.046 (-0.046,-0.010] (-0.010,-0.003] (-0.003,0] (0,0.003] (0.003,0.010] (0.010,0.046] >0.046 No-Neigh

Notes: Each spill-in effect estimate is computed using sums over j of (E.60) for i 6= j and mapped to a
Metropolitan Statistial Area (MSA) in the U.S.. A total of 338 MSAs are included in model (30). MSAs
coloured in blue correspond to positive spill-in effect estimates while MSAs coloured in red match to negative
spill-in effect estimates. Darker shades of blue or red indicate more sizable effects while lighter shades relate
to effects closer to zero in absolute terms. Category ‘No-Neigh’ includes MSAs that have no neighbours when
using W 75.
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Figure F4: Spill-out effects for Metropolitan Statistical Areas in the Unites States at time horizons
h = 0, 3, 6 quarters after a one percent change to own MSA population or real income growth at time t.

Population, Cumulative spill-out, h = 0

<=-0.160 (-0.160,-0.035] (-0.035,-0.009] (-0.009,0] (0,0.009] (0.009,0.035] (0.035,0.160] >0.160 No-Neigh

Income, Cumulative spill-out, h = 0

<=-0.041 (-0.041,-0.009] (-0.009,-0.002] (-0.002,0] (0,0.002] (0.002,0.009] (0.009,0.041] >0.041 No-Neigh

Population, Cumulative spill-out, h = 3

<=-0.160 (-0.160,-0.035] (-0.035,-0.009] (-0.009,0] (0,0.009] (0.009,0.035] (0.035,0.160] >0.160 No-Neigh

Income, Cumulative spill-out, h = 3

<=-0.041 (-0.041,-0.009] (-0.009,-0.002] (-0.002,0] (0,0.002] (0.002,0.009] (0.009,0.041] >0.041 No-Neigh

Population, Cumulative spill-out, h = 6

<=-0.160 (-0.160,-0.035] (-0.035,-0.009] (-0.009,0] (0,0.009] (0.009,0.035] (0.035,0.160] >0.160 No-Neigh

Income, Cumulative spill-out, h = 6

<=-0.041 (-0.041,-0.009] (-0.009,-0.002] (-0.002,0] (0,0.002] (0.002,0.009] (0.009,0.041] >0.041 No-Neigh

Notes: Each spill-out effect estimate is computed using sums over i of (E.60) for i 6= j and mapped to a
Metropolitan Statistial Area (MSA) in the U.S.. A total of 338 MSAs are included in model (30). MSAs
coloured in blue correspond to positive spill-out effect estimates while MSAs coloured in red match to negative
spill-out effect estimates. Darker shades of blue or red indicate more sizable effects while lighter shades relate
to effects closer to zero in absolute terms. Category ‘No-Neigh’ includes MSAs that have no neighbours when
using W 75.
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Table F1: Population, area and population density estimates by six major U.S. regions

r Name Nr Population Area Density
(sqr miles) (per sqr mile)

1 & 2 New England & Mideast 54 55275714 83111 665.1
3 Great Lakes 57 34050860 77400 439.9
4 Plains 27 9320365 64266 145.0
5 Southeast 116 42770914 215211 198.7

6 & 7 Southwest & Rocky Mountain 41 18339459 145292 126.2
8 Far West 43 35590563 145666 244.3

Notes: Ir is the set of units belonging to region r, Ir = {i : i is in region r}, and Nr is the number
of units per region, Nr = #(Ir). New England (13 MSAs) and Mid East (41 MSAs) as well as
South West (26 MSAs) and Rocky Mountains (15 MSAs) have been merged in order to obtain a
sufficiently large number of MSAs in the two broader regions. MSA-level population estimates are
averages over the sample period 1975Q1-2014Q4. MSA-level area estimates are obtained from the
US Census Bureau. Region-level population and area estimates are sums over the number of MSAs
per region r (Nr). The summary statistics are based on all MSAs included in our analysis (N = 338)
which excludes 39 MSAs that are completely isolated (have no neighbours).
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Table F2: Average within-region partial effects on house price changes at horizons h = 0, 3, 6 quarters
following a one percent change in population or real income growth by six major U.S. regions

Within-region effects

Direct Indirect
(in levels) (as % of Direct)

r Name Nr\h 0 3 6 0 3 6

Population

1 & 2 New England & Mideast 35 0.558 0.112 0.035 2.17 -1.42 -2.33
3 Great Lakes 48 0.232 0.042 0.017 3.66 -0.22 -1.13
4 Plains 26 0.267 0.034 0.012 2.57 -1.71 -2.17
5 Southeast 106 0.224 0.041 0.016 1.51 -0.04 -0.32

6 & 7 Southwest & Rocky Mountain 40 0.176 0.044 0.015 1.76 0.63 -0.67
8 Far West 41 0.223 0.061 0.023 4.70 0.98 -1.24

Income

1 & 2 New England & Mideast 35 0.096 0.021 0.007 2.39 -1.67 -2.21
3 Great Lakes 48 0.035 0.007 0.003 3.28 -0.02 -0.81
4 Plains 26 0.046 0.007 0.003 4.44 -1.71 -2.59
5 Southeast 106 0.045 0.008 0.003 1.64 -0.06 -0.33

6 & 7 Southwest & Rocky Mountain 40 0.082 0.020 0.008 1.83 0.51 -0.75
8 Far West 41 0.083 0.022 0.008 4.12 1.27 -0.08

Notes: Ir is the set of units belonging to region r, Ir = {i : i is in region r}, and Nr is the number
of units per region, Nr = #(Ir). New England (9 MSAs) and Mid East (26 MSAs) as well as
South West (26 MSAs) and Rocky Mountains (14 MSAs) have been merged in order to obtain a
sufficiently large number of MSAs in the two broader regions. The average within-region direct and
indirect effects are computed using equations (E.63) and (E.64), respectively. h = 0, 3, 6 quarters
stand for the horizons relative to the partial change in population or income at time h = 0. The
computations of all effects exclude the MSAs whose spatial lag coefficients hit the upper/lower bound
in the optimisation procedure.
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Table F3: Mean group estimates (MGE) of spatial and temporal coefficients, and elasticities of house
price changes to population and real income growth by six major regions and the U.S. as a whole, using
a sparse inverse of distance adjacency matrix

r Name Nr ψ̂MG,r ψ̂MG0,r ψ̂MG1,r λ̂MG,r β̂popMG,r β̂incMG,r

1 & 2 New England & Mideast 36 0.080 0.537‡ -0.456‡ 0.646‡ 0.628‡ 0.082‡

(0.042) (0.084) (0.068) (0.027) (0.166) (0.019)
3 Great Lakes 48 0.151‡ 0.759‡ -0.609‡ 0.635‡ 0.198‡ 0.029‡

(0.027) (0.050) (0.040) (0.024) (0.060) (0.010)
4 Plains 27 0.009 0.472‡ -0.463‡ 0.608‡ 0.217‡ 0.043

(0.059) (0.097) (0.063) (0.041) (0.084) (0.028)
5 Southeast 106 0.125‡ 0.742‡ -0.617‡ 0.674‡ 0.170‡ 0.032‡

(0.020) (0.033) (0.026) (0.017) (0.031) (0.007)
6 & 7 Southwest & Rocky Mountain 39 0.009 0.313‡ -0.304‡ 0.718‡ 0.158‡ 0.074‡

(0.020) (0.079) (0.066) (0.020) (0.038) (0.015)
8 Far West 42 0.104‡ 0.682‡ -0.578‡ 0.759‡ 0.177‡ 0.066‡

(0.025) (0.048) (0.033) (0.012) (0.047) (0.019)

US 298 0.095‡ 0.631‡ -0.536‡ 0.676‡ 0.234‡ 0.049‡

(0.012) (0.025) (0.019) (0.010) (0.028) (0.006)
Notes: See notes of Table 3 in the main paper. We consider adjacency matrix W = (wij), i.j =
1, 2, . . . , N which is the row-normalised version of matrix P = (pij) = 1/dij , if dij ≤ 75 miles and
zero otherwise. Pairwise geodesic distances, dij , between MSAs are computed using the Haversine
formula, as described in Appendix C of Bailey et al. (2016). The computations of all MG estimates
exclude the MSAs whose spatial lag coefficients hit the upper/lower bound in the optimisation
procedure.

A28



Appendix G Additional Monte Carlo results

The Monte Carlo results provided in the tables and plots below are based on the designs set out in Section
5 of the paper.

Table G1: Bias, RMSE, size and power for parameters of individual units in the HSAR(1) model with
one exogenous regressor and non-Gaussian errors for N = 5 and T ∈ {25, 50, 100, 200}.

T 25 50 100 200
Parameter Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ψi0
ψ1,0 = 0.1261 -0.0063 0.1537 0.0001 0.1012 -0.0023 0.0707 0.0007 0.0490
ψ2,0 = 0.3883 -0.0035 0.2078 -0.0049 0.1392 -0.0006 0.0955 -0.0002 0.0666
ψ3,0 = 0.4375 -0.0096 0.1852 -0.0016 0.1155 0.0020 0.0807 0.0000 0.0578
ψ4,0 = 0.5059 0.0022 0.1478 -0.0039 0.1018 -0.0020 0.0686 -0.0008 0.0481
ψ5,0 = 0.7246 -0.0040 0.1747 -0.0016 0.1248 -0.0008 0.0880 0.0001 0.0597

βi0
β1,0 = 0.9649 0.0097 0.1663 0.0047 0.1102 0.0020 0.0758 -0.0015 0.0540
β2,0 = 0.9572 0.0065 0.1968 0.0048 0.1349 -0.0017 0.0938 -0.0018 0.0657
β3,0 = 0.2785 0.0054 0.2088 -0.0012 0.1316 -0.0017 0.0918 0.0013 0.0666
β4,0 = 0.9134 -0.0011 0.1643 0.0054 0.1098 0.0007 0.0749 0.0000 0.0515
β5,0 = 0.8147 0.0039 0.2079 0.0069 0.1440 0.0056 0.0989 0.0003 0.0674

T 25 50 100 200 25 50 100 200
Parameter Size Power

ψi0
ψ1,0 = 0.1261 0.1025 0.0665 0.0545 0.0505 0.4350 0.6010 0.8260 0.9725
ψ2,0 = 0.3883 0.1000 0.0690 0.0575 0.0555 0.3015 0.4520 0.6205 0.8535
ψ3,0 = 0.4375 0.0990 0.0630 0.0570 0.0520 0.3395 0.4910 0.7365 0.9400
ψ4,0 = 0.5059 0.0795 0.0670 0.0615 0.0460 0.4265 0.6165 0.8475 0.9780
ψ5,0 = 0.7246 0.0770 0.0720 0.0700 0.0560 0.3270 0.4680 0.6765 0.9125

βi0
β1,0 = 0.9649 0.0920 0.0645 0.0535 0.0610 0.3985 0.5485 0.7610 0.9500
β2,0 = 0.9572 0.0965 0.0725 0.0595 0.0545 0.3100 0.4265 0.6445 0.8690
β3,0 = 0.2785 0.0965 0.0695 0.0500 0.0625 0.3370 0.4380 0.6435 0.8525
β4,0 = 0.9134 0.0890 0.0685 0.0550 0.0470 0.4230 0.5305 0.7830 0.9545
β5,0 = 0.8147 0.0940 0.0730 0.0590 0.0525 0.2885 0.3880 0.5590 0.8350

Notes: True parameter values are generated as ψi0 ∼ IIDU (0, 0.8), αi0 ∼ IIDN (1, 1), and βi0 ∼
IIDU (0, 1) for i = 1, 2, . . . , N . Non-Gaussian errors are generated as εi0/σi0 ∼ IID [χ2(2) − 2]/2, with
σ2
i0 ∼ IIDU [χ2(2)/8 + 0.25] for i = 1, 2, . . . , N . The spatial weight matrix W = (wij) has four connec-

tions so that wij = 1 if j is equal to: i−2, i−1, i+1, i+2, and zero otherwise, for i = 1, 2, . . . , N . Biases

and RMSEs are computed as R−1
∑R

r=1(ψ̂i,r − ψi0) and
√
R−1

∑R
r=1(ψ̂i,r − ψi0)2 for i = 1, 2, . . . , N .

Empirical size and empirical power are based on the sandwich formula given by (24). The nominal size
is set to 5%. Size is computed under Hi0 : ψi = ψi0, using a two-sided alternative, for i = 1, 2, . . . , N .
Power is computed under ψi = ψi0 + 0.2, for i = 1, 2, . . . , N . The number of replications is set to
R = 2, 000. Estimates are sorted in ascending order according to the true values of the spatial autore-
gressive parameters. Biases, RMSEs, sizes and powers for βi, i = 1, 2, . . . , N , are computed similarly,
with power computed under βi = βi0 + 0.2.
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Table G2: Bias, RMSE, size and power for parameters of individual units in the HSAR(1) model with
one exogenous regressor and non-Gaussian errors for N = 100 and T ∈ {25, 50, 100, 200}.

T 25 50 100 200
Parameter Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ψi0
ψ1,0 = 0.0244 -0.0021 0.2572 -0.0036 0.1741 0.0009 0.1160 0.0000 0.0828
ψ2,0 = 0.0255 -0.0356 0.4532 0.0022 0.3105 -0.0114 0.2191 -0.0022 0.1499
ψ3,0 = 0.0397 0.0078 0.3029 -0.0032 0.2099 -0.0006 0.1438 0.0011 0.1025

...
...

...
...

...
...

...
...

...
ψ51,0 = 0.3927 -0.0022 0.2698 0.0020 0.1914 -0.0003 0.1305 0.0001 0.0896
ψ52,0 = 0.3987 0.0002 0.1694 -0.0039 0.1166 0.0021 0.0777 0.0004 0.0545
ψ53,0 = 0.4004 -0.0097 0.2691 0.0054 0.1770 0.0025 0.1205 -0.0017 0.0855

...
...

...
...

...
...

...
...

...
ψ98,0 = 0.7695 -0.0012 0.1433 0.0019 0.1013 0.0046 0.0724 -0.0001 0.0510
ψ99,0 = 0.7705 -0.0397 0.2546 -0.0088 0.1692 0.0020 0.1248 0.0007 0.0920
ψ100,0 = 0.7904 -0.0084 0.1514 -0.0070 0.1113 0.0008 0.0771 0.0006 0.0521

βi0
β1,0 = 0.1978 0.0066 0.2012 0.0010 0.1280 0.0006 0.0868 -0.0052 0.0598
β2,0 = 0.7060 0.0202 0.2711 0.0005 0.1720 -0.0001 0.1176 0.0033 0.0837
β3,0 = 0.4173 0.0077 0.1852 0.0027 0.1254 -0.0002 0.0842 0.0019 0.0597

...
...

...
...

...
...

...
...

...
β51,0 = 0.9448 0.0043 0.1415 -0.0015 0.0962 0.0015 0.0665 0.0007 0.0471
β52,0 = 0.1190 0.0030 0.1324 0.0023 0.0913 -0.0004 0.0619 0.0014 0.0421
β53,0 = 0.7127 0.0019 0.1941 -0.0036 0.1226 0.0025 0.0893 0.0010 0.0615

...
...

...
...

...
...

...
...

...
β98,0 = 0.1067 0.0024 0.1221 -0.0024 0.0807 0.0005 0.0553 -0.0002 0.0399
β99,0 = 0.4588 0.0147 0.1909 0.0026 0.1300 0.0017 0.0899 0.0017 0.0650
β100,0 = 0.3674 0.0035 0.1239 0.0022 0.0865 0.0006 0.0607 0.0002 0.0408

T 25 50 100 200 25 50 100 200
Parameter Size Power

ψi0
ψ1,0 = 0.0244 0.0915 0.0805 0.0560 0.0600 0.2255 0.3025 0.4560 0.7070
ψ2,0 = 0.0255 0.0830 0.0645 0.0580 0.0525 0.1225 0.1170 0.1940 0.2890
ψ3,0 = 0.0397 0.0905 0.0785 0.0605 0.0630 0.1815 0.2390 0.3450 0.5405

...
...

...
...

...
...

...
...

...
ψ51,0 = 0.3927 0.0995 0.0640 0.0595 0.0530 0.1975 0.2915 0.4020 0.6325
ψ52,0 = 0.3987 0.0865 0.0660 0.0620 0.0525 0.3785 0.5380 0.7440 0.9395
ψ53,0 = 0.4004 0.0960 0.0810 0.0520 0.0590 0.2400 0.3020 0.4540 0.6760

...
...

...
...

...
...

...
...

...
ψ98,0 = 0.7695 0.0710 0.0665 0.0675 0.0660 0.4015 0.5760 0.7930 0.9650
ψ99,0 = 0.7705 0.0390 0.0320 0.0405 0.0535 0.1750 0.2380 0.3820 0.6095
ψ100,0 = 0.7904 0.0690 0.0655 0.0575 0.0510 0.3845 0.5705 0.7605 0.9500

βi0
β1,0 = 0.1978 0.1085 0.0710 0.0570 0.0485 0.3320 0.4715 0.6715 0.9195
β2,0 = 0.7060 0.1055 0.0580 0.0495 0.0570 0.2315 0.3110 0.4530 0.6680
β3,0 = 0.4173 0.0935 0.0805 0.0520 0.0590 0.3585 0.4815 0.6985 0.9120

...
...

...
...

...
...

...
...

...
β51,0 = 0.9448 0.0940 0.0705 0.0535 0.0545 0.4710 0.6580 0.8445 0.9745
β52,0 = 0.1190 0.0950 0.0845 0.0525 0.0470 0.5250 0.6900 0.8940 0.9920
β53,0 = 0.7127 0.1055 0.0690 0.0685 0.0545 0.3615 0.4800 0.6485 0.8910

...
...

...
...

...
...

...
...

...
β98,0 = 0.1067 0.0945 0.0685 0.0520 0.0570 0.5775 0.7650 0.9320 0.9960
β99,0 = 0.4588 0.0745 0.0625 0.0505 0.0580 0.2845 0.4355 0.6460 0.8600
β100,0 = 0.3674 0.1000 0.0710 0.0680 0.0540 0.5480 0.7205 0.9070 0.9935

Notes: See notes to Table G1.

A30



Figure G1: Boxplots of RMSEs for the individual autoregressive spatial parameter estimates from the
HSAR(1) model with non-Gaussian errors, one exogenous regressor and spatial weight matrix W having
4 connections for different N and T combinations
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Notes: True parameter values are generated as ψi0 ∼ IIDU(0, 0.8), ai0 ∼ IIDN(1, 1) and βi0 ∼
IIDU(0, 1), for i = 1, 2, . . . , N . Non-Gaussian errors are generated as εit/σi0 ∼ IID[χ2(2)− 2]/2, with
σ2
i0 ∼ IID[χ2(2)/4 + 0.5], for i = 1, 2, . . . , N . Exogenous regressors are spatially correlated across i

and generated by (29), with φi = 0.5. The spatial weight matrix W = (wij) has four connections so
that wij = 1 if j is equal to i − 2, i − 1, i + 1, i + 2, and zero otherwise, for i = 1, 2, . . . , N . RMSEs

are computed as
√
R−1

∑R
r=1(ψ̂i,r − ψi0)2 for i = 1, 2, · · · , N . The number of replications is set to

R = 2, 000.
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Figure G2: Boxplots of RMSEs for the individual slope parameter estimates from the HSAR(1) model
with non-Gaussian errors, one exogenous regressor and spatial weight matrix W having 4 connections
for different N and T combinations
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Notes: RMSEs are computed as
√
R−1

∑R
r=1(β̂i,r − βi0)2 for i = 1, 2, · · · , N . See the notes to Figure G1

for details of the data generating process. The number of replications is set to R = 2, 000.
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Figure G3: Boxplots of empirical sizes of tests for individual spatial parameters from HSAR(1) model
with non-Gaussian errors, one exogenous regressor and spatial weight matrix W having 4 connections
for different N and T combinations, using the sandwich formula for the variance
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Notes: Nominal size is set to 5%. The sandwich formula is given by (24). See the notes to Figure G1 for
details of the data generating process. Size is computed under H0: ψi=ψi0, using a two-sided alternative
where ψi0 takes values in the range [0.0, 0.8] for i = 1, 2, . . . , N . The number of replications is set to
R = 2, 000.
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Figure G4: Empirical power functions for different N and T combinations, associated with testing the
spatial parameter value ψi0 = 0.3374 from HSAR(1) model with non-Gaussian errors, one exogenous
regressor and spatial weight matrix W having 4 connections, using the sandwich formula for the variance
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Notes: The power functions are based on the sandwich formula given by (24). See the notes to
Figure G1 for details of the data generating process. Power is computed under ψi=ψi0 + δ, where
δ = −0.8,−0.791, . . . , 0.791, 0.8 or until the parameter space boundaries of -1 and 1 are reached. The
number of replications is set to R = 2, 000.

A34



Figure G5: Empirical power functions for different N and T combinations, associated with testing the
spatial parameter value ψi0 = 0.5059 from HSAR(1) model with non-Gaussian errors, one exogenous
regressor and spatial weight matrix W having 4 connections, using the sandwich formula for the variance
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Notes: See the notes to Figure G4.
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Figure G6: Empirical power functions for different N and T combinations, associated with testing the
spatial parameter value ψi0 = 0.7676 from HSAR(1) model with non-Gaussian errors, one exogenous
regressor and spatial weight matrix W having 4 connections, using the sandwich formula for the variance
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Notes: See the notes to Figure G4.

A36



Figure G7: Boxplots of empirical sizes of tests for individual slope parameters from HSAR(1) model
with non-Gaussian errors, one exogenous regressor and spatial weight matrix W having 4 connections
for different N and T combinations, using the sandwich formula for the variance
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Notes: Nominal size is set to 5%. The sandwich formula is given by (24). See the notes to Figure G1 for
details of the data generating process. Size is computed under H0: βi=βi0, using a two-sided alternative
where βi0 takes values in the range [0.0, 1.0] for i = 1, 2, . . . , N . The number of replications is set to
R = 2, 000.
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Figure G8: Empirical power functions for different N and T combinations, associated with testing the
slope parameter value βi0 = 0.0344 from HSAR(1) model with non-Gaussian errors, one exogenous
regressor and spatial weight matrix W having 4 connections, using the sandwich formula for the variance
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Notes: The power functions are based on the sandwich formula given by (24). See the notes to
Figure G1 for details of the data generating process. Power is computed under βi=βi0 + δ, where
δ = −1.0,−0.991, . . . , 0.991, 1.0. The number of replications is set to R = 2, 000.
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Figure G9: Empirical power functions for different N and T combinations, associated with testing the
slope parameter value βi0 = 0.4898 from HSAR(1) model with non-Gaussian errors, one exogenous
regressor and spatial weight matrix W having 4 connections, using the sandwich formula for the variance
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Notes: See the notes to Figure G8.
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Figure G10: Empirical power functions for different N and T combinations, associated with testing
the slope parameter value βi0 = 0.9649 from HSAR(1) model with non-Gaussian errors, one exogenous
regressor and spatial weight matrix W having 4 connections, using the sandwich formula for the variance
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Notes: See the notes to Figure G8.
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