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1 Introduction

The U.S. presidential election of 2016 caught many by surprise. Most models and polls

predicted a victory for the Democratic candidate, Hillary Clinton. She lost to Donald Trump,

the Republican candidate, who won an overwhelming majority of electoral votes (304 out of

538) despite coming short on popular votes by around 2.9 million votes. Not only did many

come to realize the inherent unpredictability of elections, it revealed that investigating the

drivers of election cycles remains an open and important area of research.

The 2016 election highlighted one important reason why popular and electoral vote out-

comes may not align – namely voter heterogeneity potentially related to rising political

polarization (Sides et al. [2017], Gelman and Azari [2017]). In U.S. elections since 1828,

there have been only four (out of forty eight) election cycles where the popular votes did not

align with the electoral college outcomes. These were: 1876 (Rutherford versus Tilden), 1888

(Harrison versus Cleveland), 2000 (Bush versus Gore), 2016 (Trump versus Clinton).1 The

1876 and 1888 elections occurred soon after the American Civil War when the country was

still highly divided politically. It is particularly interesting that two out of four non-aligned

election outcomes have occurred during the past five election cycles, partly reflecting the

heightened divisions in the U.S. political landscape in the 21st century.

In the presence of growing political polarization, incorporating heterogeneity in presiden-

tial election models becomes even more necessary than ever for better understanding regional

disparities in election outcomes, and for more reliable forecasting. This paper studies the

determinants of election outcomes and their predictive content at the level of U.S. counties

in a model which admits such heterogeneity. In doing so, we produce real-time forecasts

made in October 2020 for the November 2020 election and also evaluate the 2016 election.

We rely on high-dimensional statistical modeling and consider many socioeconomic and de-

mographic indicators at national, state and county levels, and in particular do not make

use of polling data that are likely to be volatile and subject to sudden change. We build

upon the earlier work of Fair [1978], and more recent developments of Zandi et al. [2020],

also referred to as Moody’s election model. While an advantage of the polling approach is

that it theoretically elicits current electoral preferences directly, it is subject to a variety

of sampling issues with survey outcomes contributing to significant total survey error (Kou

and Sobel [2004], Biemer [2010], Shirani-Mehr et al. [2018], Graefe [2018]). In the presence

of increased political polarization, polling approaches may become even less reliable due to

increased voter heterogeneity and the added difficulties of eliciting true voter intentions due

to “socially desirable responding”. Hence, forecasting performance based on polls has been

1In all four cases the Republican candidate lost the popular vote but won the electoral college vote.
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mixed.

Most statistical/econometric models of U.S. presidential elections rely on relatively long

time-series data and primarily use aggregate socioeconomic and demographic indicators as

potential predictors. However, time-series models estimated over long time periods may be

subject to structural breaks. Certainly the factors influencing voting behavior and the make-

up of the voting body have changed since the 1950’s and continue to evolve. In this paper we

provide an alternative to time-series national models or state-level panel data models, and

use county level electoral data which allow us to exploit the rich cross-sectional variation

that exists in electoral and socioeconomic outcomes. But it is important to note that data

on county-level election outcomes are only publicly available from 2000, and we are therefore

constrained to four time-series observations – the period November 2000 to October 2020

covers 5 election cycles, but the first cycle is used up as initial values.

Variation at the level of U.S. counties admits an additional novel feature – it allows for

modeling regional heterogeneity. If factors influencing voting behavior differ geographically

across the U.S., then heterogeneity will capture this crucial feature of the data. Surprisingly,

regional heterogeneity has received limited attention in the literature. Zandi et al. [2020] does

allow for fixed effects in a state-level model, but assumes that all time-varying determinants

of election outcomes have equal effects across states. The implicit assumption of such pooled

models is that over time, voters across the U.S. are similarly affected by socioeconomic and

political factors. Recent history suggests that this assumption could be too restrictive.

In view of the above considerations, our model allows for heterogeneity in the effects of

socioeconomic and demographic factors on voter turnout and election outcomes across the

eight U.S. regions, as defined by the Bureau of Economic Analysis (BEA). With county-level

data we could have allowed for a greater degree of heterogeneity, allowing the socioeconomic

indicators to have differential effects even at the individual state level. But such a fully

heterogeneous approach is subject to its own drawbacks. First, some states do not have

enough counties to consistently estimate state-specific models. To compensate, one could

increase the time dimension by collecting historical data on states with a small number of

counties, but this would increase the risk of structural breaks, and require county-level data

to be available further back in time, which is not so in the case of many socioeconomic

factors. Second, counties across state borders tend to share similar features, and pooling

their data into regions is likely to result in more efficient estimates.

In addition to allowing for heterogeneity, we also address the issue of simultaneous de-

termination of voter turnout and election outcomes, by modeling them together at the level

of counties. A large and growing literature on voter turnout tends to study the phenomenon

separately to voting, despite the intimate link that exists between the two choices. Zandi
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et al. [2020] cites that ignoring unexpected voter turnout was a key contributor to their incor-

rect 2016 election prediction. We adopt a recursive approach to deal with this simultaneity

by first modeling voter turnout, and then condition the election outcomes on the fitted (pre-

dicted) values of voter turnout. We generated forecasts for the 2020 election using two sets

of models: a single pooled-county level panel data model, and eight regional models to al-

low for possible regional heterogeneity by estimating separate county-level panel regressions

for the eight BEA regions. We also apply high-dimensional variable selection algorithms to

guide our selection and estimation procedure over a large set of potential covariates. We

consider both penalized regression and high-dimensional variable selection techniques, and

use the ‘Least Absolute Shrinkage and Selection Operator’ (Lasso, Tibshirani [1996]) as an

example of the former, and ‘One Covariate at a time Multiple Testing’ (OCMT, Chudik

et al. [2018]) as an example of the latter. Our collection of socioeconomic and demographic

data across states and counties is largely motivated by the literature on fundamentals-based

election modeling. We consider economic variables such as local unemployment, income,

house prices, government employment and healthcare expenditures. We further distinguish

between the effects of short-term and longer term economic conditions, allowing for the

possibility of voter myopia. There is a sizable literature arguing that changes in economic

conditions closer to the election bear more influence on voting behavior compared to longer-

term economic conditions. See, for example, Kramer [1971], Alesina et al. [1995], Wlezien

and Erikson [1996], Achen and Bartels [2004], and Wlezien [2015]. We also consider de-

mographic and geographic indicators such as population density, urban-rural classification,

poverty rates, education and religiosity. Inspired by recent evidence from Autor et al. [2020]

and Jensen et al. [2017], we also consider the effects of being economically ‘left behind’ and

international competition on voting outcomes. In addition, our model is sufficiently flexible

to allow for interactions intended to capture presidential and party incumbency effects on

voter turnout and election outcomes.

To generate real-time forecasts we begun by estimating the pooled and regional mod-

els over the 2000-2016 training sample. Our analysis corroborated the usefulness of several

variables identified in the literature as important in explaining voting outcomes. At the

same time, we investigated the extent of regional heterogeneity and their effects on forecasts

and associated forecast errors over the training sample. We found that important factors

explaining voting behavior included voter turnout, local economic performance, unemploy-

ment, poverty rates, education, house price changes, and urban-rural mix. Our results also

corroborated evidence supporting incumbency effects and voter myopia. Specifically, we find

that economic fluctuations realized a few months prior to the election are more effective

predictors of voting outcomes than their long-horizon analogues.
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Based on data available at the time of forecasting (October 14, 2020), and following the

variable selection strategy used over 2000-2016 sample, we generated forecasts for the Novem-

ber 2020 U.S. presidential election under different pooled and regional model specifications.

We generated four main forecasts, based on models selected using pooled-OCMT, regional-

OCMT, pooled-Lasso and regional-Lasso procedures. We also consider average Lasso-OCMT

pooled and regional forecasts for a total of 6 forecasts. The final count for the November 2020

Presidential election resulted in a Democratic victory with Democrat Joe Biden winning the

popular vote along with 306 electoral votes, and Donald Trump winning the remaining 232

electoral votes. Interestingly, all models forecasted that the two-party U.S. mainland national

Republican vote share (similar to the popular vote share excluding Hawaii and Alaska and

third party candidates) would be won by the Democratic party. The pooled-OCMT model

produced the most accurate two-party national Republican vote share forecast of 47.6% com-

pared to the realized outcome of 47.7%. Moreover, all but one model predicted less than 270

electoral votes for the Republican party implying a Democrat candidate electoral victory,

although individual models varied substantially in their forecasts of the exact number of

electoral votes. Only one of models predicted a Republican victory with 270 electoral votes,

winning by a razor thin margin of a single electoral vote! These results starkly contrast

forecasts from naive random walk and autoregressive model specifications which predicted a

Republican victory with 329 electoral votes.

In terms of total electoral votes, the pooled-OCMT model forecasts performed best, fore-

casting 236 Republican electoral votes compared to the 232 realized. Statistical analysis of

the forecasts suggest that all pooled and regional models significantly outperformed naive

forecasts for the 2020 election and that the pooled-OCMT forecasts outperformed the other

model forecasts: pooled-Lasso, regional-Lasso, regional-OCMT. The pooled-Lasso specifica-

tion predicted state-level winners best, mis-predicting 2 out of the 48 mainland states plus

D.C. We also provide forecast performance and evaluation of the 2016 election using models

trained over the 2000-2012 sample. Here, we find that regional models would have correctly

predicted a 2016 Republican victory.

The rest of this paper is organized as follows. Section 2 presents our modeling approach

and its relation to the literature. Section 3 characterizes the two-stage model of voter turnout

and election outcomes. Section 4 discusses our identification procedure to consistently esti-

mate the model. Section 5 provides an overview of the data used in the analysis. Section

6 discusses the choice of the variables in ‘active sets’, and Section 7 describes the variable

selection techniques and their application to our forecasting problem. Section 8 describes

the U.S. Electoral College process from which we generate election forecasts using county

level predictions. Section 9 investigates key determinants of U.S. election cycles over the
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2000-2016 period. Section 10 then uses models trained over the 2000-2016 sample to gen-

erate forecasts for the 2020 election along with forecast evaluations. Section 11 concludes.

Detail of data sources, variable selection algorithms, and a weighted version of the Diebold-

Mariano test used in forecast evaluation exercise are provided in the Appendix. In an online

supplement we provide additional results primarily dealing with the 2016 election forecasts

obtained using 2000-2012 period as the training sample. We also report forecast results for

2020 election using an alternative regional classification and an extended set of covariates.

These ex post results are generally in line with our ex ante forecasts.2

2 Our Modeling Approach and its Relation to the Lit-

erature

Generally speaking, two approaches are considered in modeling and predicting U.S. presi-

dential elections: statistical (econometric/machine learning) and polling, or a combination

of the two (Leigh and Wolfers [2006]). Political opinion polls exclusively rely on survey re-

sponses and aim to elicit the voting intentions of respondents (Wang et al. [2015]). Opinion

polls provide timely information on possible election outcomes, but have a number of well

known shortcomings, including sample selection bias which tends to become accentuated

due to voter heterogeneity, and the phenomenon known as socially desirable responding,

which is believed to have biased the polling outcomes in favor of Hillary Clinton during the

2016 election.3 See, for example, Kou and Sobel [2004], Biemer [2010], Shirani-Mehr et al.

[2018], Graefe [2018].4 The statistical approach primarily relies on demographic and socioe-

conomic indicators to predict election outcomes believing that voting intentions are formed

largely by voters’ personal experiences and their counterfactual evaluation of socioeconomic

outcomes under alternative candidates. Among the statistical approach, time-series models

have historically dominated, starting from the seminal work of Kramer [1971], Fair [1978],

Fair [1996], and Arcelus and Meltzer [1975]. More recently, Kahane [2009], Hummel and

Rothschild [2014], Jérôme et al. [2020], Zandi et al. [2020] and Enns and Lagodny [2021]

extend time-series models using panel data, estimating state-level models for U.S. elections.

Zandi et al. [2020] employs fixed effects panel regressions which allow for some state-level

heterogeneity through the intercepts, but otherwise all time-varying determinants of elec-

tion outcomes are assumed to have homogenous effects across all states. The aggregate

2This ex post analyses were carried out on recommendation of one of the reviewers.
3Stratified sampling is required for reliable polling which could be quite costly to implement properly,

especially in a vast country with sizeable political heterogeneity such as the U.S..
4Opinion polls are to be distinguished from exit polls that are a kind of “nowcasting” and are not of

concern in this paper.
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time-series and the state-level panel data models both rely on time-series dimension of the

panel, T , to be sufficiently large to obtain reasonably precise estimates of the relationship

between socioeconomic variables and the election outcomes. This in turn requires model

stability which is unlikely to hold over long time spans, particularly considering that the

socioeconomic determinants of election cycles in the 1950’s are unlikely to apply in the 21st

century.

As already explained in the Introduction, in order to deal with the heterogeneity and

possible model instability, we exploit variations in electoral and socioeconomic outcomes

across the 3,107 mainland U.S. counties instead of using national or state-level models that

rely mainly on long time-series data. But currently there is an important drawback to using

county level election data, since such data are publicly available only from 2000 (Bush-Gore

election). This data limitation also prevents us from state-level modeling that allows the

effects of socioeconomic factors to differ across all the 48 mainland states.5 Some states have

only a few counties, and with the time dimension being quite small (with T = 4, noting

the data for the 2000 election must be used for construction of lagged values), the state

level estimates are unlikely to be reliable and could introduce unexpectedly large sampling

errors into the analysis. While we reduce the risk of structural breaks with the short time

dimension, a limitation of this approach is its inability to take advantage of time-series

variations in the national-level covariates, such as output growth and stock returns. We

partially address this issue by employing several economic indicators which vary at the

county level. Because the variation in these measures can be decomposed into a national

and county-specific component, the model is able to implicitly incorporate national-level

fluctuations in economic conditions. However, our modeling approach imposes the restriction

that the coefficients on national and county-specific variation are equal.

Furthermore, counties across state borders often share similar features such that estima-

tion could be made more efficient by pooling information from such neighboring states. As

noted earlier, we address these challenges by grouping the states into eight regions defined

by the BEA, and estimate eight separate regional panel regressions. In this way we hope

to strike a balance between allowing for heterogeneity and achieving reasonable estimation

precision. A pre-determined regional classification ensures against data mining and provides

a level of heterogeneity suitable for the data.6 We can, therefore, capture possible regional

differences in voting preferences and, more generally, differences in demographic, social, and

economic heterogeneity across the United States.

5We do not model turnout and election outcomes for Alaska and Hawaii, and with some justification
assume that the election results for these states in 2012 carry over to the 2016 and 2020 elections.

6We do not follow the alternative statistical grouping strategy whereby the number and the membership
of the groups are determined by machine learning techniques. This could be the subject of future research.
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The pooled and regional models are used to generate predictions for 3,107 counties for a

given election year. These predictions are aggregated to generate state level and national level

popular vote predictions, as well as electoral college vote predictions. One limitation of our

region-based modeling approach is that while information across counties and states within

a region are pooled, regions themselves are treated as separate (political) entities. However

this assumption may not be satisfied particularly for those counties which are adjacent but

lying in different regions. Alternative modeling approaches could potentially allow further

for dependencies between regions as well, at the cost of imposing further assumptions. To

further address the sensitivity of this issue we examine forecasts generated under a different

regional classification as a robustness check, to be reported in the online supplement.

Several recent papers have studied the geographical determinants of election outcomes,

focusing on cross-county variation. Economic performance linked to international compet-

itiveness has been shown to influence county-level voting preferences in Autor et al. [2020]

and Jensen et al. [2017]. Scala and Johnson [2017] identify large differences in voting pref-

erences across the urban-rural spectrum in elections from 2000 to 2016. In a cross-sectional

study, Kahane [2020] shows that the urban-rural spectrum, poverty rates, education, among

several other demographic factors, shaped 2012 and 2016 election outcomes. Like these

studies, we exploit variation at the U.S. county level while also allowing for regional het-

erogeneity. However, the scope of our work not only allows for ex-post evaluation, it can

also be used for forecasting election outcomes, as we show by reporting predictions for the

2020 U.S. presidential election. Moreover, we rely on recent advances in high-dimensional

data analytic techniques to guide our analysis both for selecting important determinants of

voting outcomes and also for evaluating elections. Modeling elections is a high dimensional,

mixed-frequency problem. Many potential economic and demographic explanatory variables

have been documented in the literature. These variables are observed at different frequen-

cies, and their long-term versus short-term impact on voting outcomes is not necessarily the

same. We consider both penalized regression and variable selection adjusting for multiple

testing. Specifically, we apply Lasso (Tibshirani [1996]) and the OCMT procedure proposed

in Chudik et al. [2018], respectively. See Section S2 of the Appendix for further details.

3 Modeling Turnout and Election Outcomes

3.1 Voter turnout

One novel departure of our modeling strategy from the prevailing literature is the joint

modeling of voter turnout and election outcomes. Voter turnout and election outcomes have
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traditionally been studied separately. Zandi et al. [2020] discusses election scenarios based

on low, medium and high turnouts, but does not explicitly model the turnout process.7

By contrast, we impose a recursive strategy to consistently model the simultaneous voter

turnout and election outcomes.

Understanding voter turnout, like voting behavior itself, is a topic of interest among many

political scientists and economists. Despite its importance, there is no consensus on what

best explains, causes, and/or predicts turnout. As a result, researchers have approached the

question from several different angles. Early research on understanding voter turnout can

be traced back to Campbell et al. [1960], Powell [1986] and Jackman [1987]. The latter two

studies look at cross-country voting patterns and uncover a similar theme where countries

with greater institutional quality also have higher voter turnouts.8 More recent research,

however, argues that the role of institutional quality is much less clear-cut (see Blais [2006]),

highlighting the challenges faced by researchers attempting to understand voter turnout.

Given its long and active history, a wide variety of theories and research approaches have

led to many interesting findings. For example, survey-based approaches – where survey-

takers are simply asked whether they will vote – have been used for predicting voter turnout.

Despite their drawbacks (e.g. social desirability bias) survey data used directly or fed into a

statistical model have both been shown to predict turnouts with mixed results (Rogers and

Aida [2014], Keeter et al. [2016]). Alternatively, several empirical studies show significant

associations between voter turnout and socioeconomic factors, including campaign spending,

voting history, contact with campaign workers, sector of employment, marital status, educa-

tion, gender, age and income. See, for example, Wolfinger and Rosenstone [1980], Matsusaka

[1995], Rogers and Aida [2014].9 The likelihood of voting has even been linked to genetics

(Fowler and Dawes [2008] and Fowler et al. [2008]).

Cancela and Geys [2016] conduct a meta-analysis of 185 articles focused on voter turnout

in the U.S., finding that campaign expenditures, election closeness and registration require-

ments have more explanatory power in national elections, whereas population size and com-

position, concurrent elections, and the electoral system play a more important role for ex-

plaining turnout at subnational elections. More recently, machine learning methods, trained

on individual-level socio-demographic data have been applied by campaigns to micro-target

potential voters (Rusch et al. [2013]). Recent research on voter turnout which is particularly

7Zandi et al. [2020] find that their predictions errors for 2016 are largely explained by unexpected turnout,
and their 2020 election prediction crucially depends on which scenario is adopted for turnout.

8These qualities include: competitive districts, electoral disproportionality, multipartyism, unicameralism,
and compulsory voting.

9In contrast, Matsusaka and Palda [1999] show that, despite statistical significance, explanatory power
for predictive purposes is not much better than if one were to guess randomly.
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relevant to our analysis is the paper by Biesiada [2018], who analyzes county-level voter

turnout and finds that inequality, education, past voter turnout, gender proportion and me-

dian age are significantly associated with turnout at the county-level. We shall make use

of these insights in arriving at the set of potential covariates that we will be using for our

models of voter turnout.

3.2 Log-odds ratio of Republican to Democrat votes

Consider county c located in region r for the election years t = 2004, 2008, 2012, 2016, 2020,

and denote the log-odds ratio of Republican to Democrat votes for this county by LROcr,t.

Specifically, let

LROcr,t = ln

(
Rcr,t

Dcr,t

)
= ln

(
Vcr,t

1− Vcr,t

)
, (1)

where Rcr,t and Dcr,t denote Republican and Democratic votes, respectively, and Vcr,t =

Rcr,t/(Rcr,t +Dcr,t) is the Republican vote share in year t.10 The BEA regional classification

groups the 48 mainland states and the District of Columbia into eight regions: New England,

Mideast, Southeast, Great Lakes, Plains, Rocky Mountain, Southwest, and Far West.

While the literature tends to study the two-party vote share, Vcr,t, we have chosen to

consider the log-odds ratio variable, LROcr,t. Our preference for the log-odds ratio is its

wider range of variations (−∞,+∞) as compared to (0, 1) for Vct,t, and the fact that its use

as the dependent variable universally provides better in-sample fits as compared to using

Vcr,t.
11 The use of LROcr,t is also more likely to support the linearity assumption made in

the panel regressions specified below. Also to deal with the highly persistent nature of the

LRO variable we use the transformation DLROcr,t+4 = LROcr,t+4 − LROcr,t, namely the

change in the log-odds ratio from one election cycle to the next, for county c in region r. For

each region r = 1, 2, ..., 8 we consider the following separate panel regressions

DLROcr,t+4 = aDLRO,r + φ′rzDLRO,cr + βrV Tcr,t+4 + γ′rxDLRO,cr,t+3 + εcr,t+4, (2)

where aDLRO,r are region-specific fixed effects, zDLRO,cr denote the vector of variables that

vary across counties but not over time, and xDLRO,cr,t+3 are the remaining covariates that

vary both across counties and over time, and are dated preceding the election. For the pooled

10The use of the log-odds ratio (LRO) as a measure of election outcome assumes that the effect of third
party independent candidate(s) on the two-party race outcome is negligible. This assumption seems reason-
able for the election cycles 2016 and 2020 that are the focus of this paper.

11We empirically validate our choice of the functional form by comparing model fit across both dependent
variables: the log-odds ratio and the traditional vote share measure. We find that the log-odds ratio improves
the model fit over the vote share, albeit marginally. These tests are done within sample, and details can be
found in Section S1 of the online supplement.
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models the distinction between the time-varying covariates, xDLRO,cr,t+3, and the covariates

that do not vary over our sample (included in zDLRO,cr) is not consequential. But as we

shall see the distinction between the types of variables become important when we consider

regional models. In what follows, without loss of generality, we refer to zDLRO,cr as the

vector of time-invariant covariates, which includes variables such as education, religiosity,

and rural/urban mix.12 In our application, t ∈ {2000, 2004, 2008, 2012, 2016} and therefore

t + 4 denotes the upcoming election, four years after the year t election, and t + 3 denotes

the year preceding the upcoming election.

The voting outcome is also a function of the voter turnout variable, V Tcr,t+4, which is

defined by

V Tcr,t =
Rcr,t +Dcr,t

V APcr,t
, (3)

which is equal to the total two-party votes as a proportion of the voting age population

(V APcr,t) of county c in region r for election year t. V APcr,t is reported as a 5-year average.

Due to data availability, we use 2012-2016 voting age population estimates for 2016, 2008-

2012 estimates for 2012, and 2005-2009 estimates for 2008 and 2004 elections.

In the year of the election, V Tcr,t+4, voter turnout, like DLROcr,t+4, is determined by a

variety of demographic and economic factors:

V Tcr,t+4 = aV T,r + ψ′rzV T,cr + λrV Tcr,t + δrDLROcr,t+4 + θ′rxV T,cr,t+3,+ vcr,t+4, (4)

such that turnout is a function of time-invariant and time-varying variables, along with the

turnout from the previous election, and also the change in the log-odds ratio, DLROcr,t+4. We

allow the innovations to theDLROcr,t+4 and V Tcr,t+4 equations to be correlated, cov(εcr,t+4, vcr,t+4) 6=
0, which reflects the simultaneity of the decision to vote and for which candidate to cast one’s

vote.

In both vote outcome and turnout equations, time-invariant factors can include socioe-

conomic and demographic factors exhibiting little or no time variation over the sample like

education, migration, religiosity, and urban-rural mix. Time-varying factors include local

unemployment rate, poverty rate, household median income, changes in house prices, gov-

ernment and private employment, among others.

Notice that (2) and (4) represent a system of simultaneous equations. Voting outcomes

may depend on voter turnout, and voter turnout is (in general) a function of the voting

outcome. This introduces endogeneity into the voting process and biases the least squares

estimates of βr and δr when εcr,t+4 and vcr,t+4 are correlated. Non-zero correlations between

12Technically speaking all variables are potentially time-varying, but some are either observed only once
during our sample, or vary very slowly such that they can be viewed as time-invaraint.
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εcr,t+4 and vcr,t+4 could arise due to common beliefs about the election outcomes. For ex-

ample, strongly held beliefs about the election outcome in a given state might adversely

impact the decision to vote, whilst the decision to vote clearly does affect election outcomes

no matter which way the voter decides to cast his/her vote.

4 Recursive Identification

The estimation of DLROcr,t+4 and V Tcr,t+4 equations clearly encounters an identification

problem very much akin to the identification of demand and supply shocks in standard

supply-demand models in economics. However, if one is concerned with prediction, a reduced

form model of DLROcr,t+4 can be used where the turnout variable V Tcr,t+4 is solved out and

DLROcr,t+4 is defined only in terms of the union of predetermined variables included in

the two equations. Such an approach ignores the possible contemporaneous effect of voter

turnout on election outcomes and could lead to inefficient predictions. In this paper we

follow the alternative structural approach, and identify the model by imposing a triangular

restriction on the contemporaneous dependence between DLROcr,t+4 and V Tcr,t+4, namely

by setting δr = 0. The intuition behind this restriction is that the individual decision to vote

is not affected by his/her expected state-level collective outcome. This type of restriction is

inspired by the pioneering work of Wold [1960], and is known as recursive causal ordering

and often adopted in empirical macroeconomic analysis of simultaneous equation systems.

But note that we do allow for contemporaneous dependence between the innovations to voter

turnout and election outcomes. In this sense the identification scheme adopted can be viewed

causal with V T causing DLRO and not vice versa.

We believe the recursive ordering, with V Tcr,t+4 included first, is a plausible a priori re-

striction, especially in the U.S. context where presidential elections are held simultaneously

with other local and state-level elections, covering the election for the Senate and all the

House seats. These additional elections influence turnout regardless of expected presidential

ballot outcome. Second, the data and the literature suggest that turnout is highly persis-

tent. Moreover, the existence of ‘blue’ states and ‘red’ states – states which consistently

and predictably vote for one of two parties – suggests that turnout does not collapse when

collectively there are strong expectations for a particular party to win the state. There are,

however, potential caveats. For instance, if election uncertainty is correlated with turnout,

the recursive assumption would be violated. As a robustness check we also report and eval-

uate forecasts obtained (ex post) using a reduced form single equation model of DLROcr,t+4

which considers an extended set of covariates obtained as the union of the covariates used

to model V T and DLRO.
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Subject to the identifying restriction, δr = 0, consistent estimation of the remaining

parameters of the V Tcr,t+4 and DLROcr,t+4 equations can be carried out recursively using a

two-stage estimation procedure. In the first step the turnout equation (V Tcr,t+4) is estimated

by least squares, and then the fitted values of voter turnout (denoted by V̂ T cr,t+4) are used

as a regressor in the election outcome equation (DLROcr,t+4).
13 The estimating equations

can now be written as

V̂ T cr,t+4 = âV T,r + ψ̂′rzV T,cr + λ̂rV Tcr,t + θ̂′rxV T,cr,t+3, (5)

and

D̂LROcr,t+4 = âDLRO,r + φ̂′rzDLRO,cr + β̂rV̂ T cr,t+4 + γ̂′rxDLRO,cr,t+3. (6)

In addition to estimating pooled models, we allow for regional heterogeneity in both equa-

tions – all coefficients are specific to region r by estimating eight separate regional panel

regressions. The pooled model is a restricted version of the heterogeneous model such that

all coefficients in the turnout and voting equations are restricted to be the same across all

the regions, namely aTO,r = aTO, λr = λ, aDLRO,r = aDLRO, βr = β, and so on. The re-

gional and pooled models are estimated by least squares post variable selection, which will

be addressed.

5 Electoral and Socioeconomic Data and their Sources

We use data from county-level presidential votes and turnouts for five U.S. elections: 2000,

2004, 2008, 2012, and 2016. Recall that there are no publicly available presidential voting

outcome data at the county-level before 2000. Because we model the change in the log-odds

ratio of Republican vote, our regression estimates are based on four election cycles: 2000-

2004, 2004-2008, 2008-2012, and 2012-2016. Our data set is composed of a total of 3,107

counties over the mainland 48 states plus Washington D.C., for a total of 12,428 county-

election cycles.14 Each state (and hence county) falls into to one of the eight BEA regions.

The list of states included in these regions is given in Table S.5 of the online supplement.

Figures S.8 and S.9 of the online supplement show the histograms of the voter turnout

variable, V T, and the change in Republican log-odds ratio, DLRO, respectively, both for

the mainland U.S., as well as for the eight BEA regions.15 These histograms provide a visual

account of the degree of regional heterogeneity in V T and DLRO variables which, as we

13A formal proof of consistency is provided in Section S2 of the online supplement.
14The number and composition of some of the counties have undergone some changes over the past two

decades. The procedure we followed to deal with these changes is explained in the Appendix.
15To save space additional result tables and figures are provided in the online supplement Section S6.
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shall see, play an important role in understanding and predicting U.S. presidential election

outcomes.

As predictors of voter turnout and election outcomes we consider two categories of co-

variates: time-invariant and time-varying. Data on time-invariant covariates tend to be

collected at low frequencies and vary across counties or states, but either do not vary or

show very little variation over the four election cycles that we are considering – we treat

all such variables as time-invariant and use their time averages if more than one data point

is available over our sample. These include measures on county demographics, education,

religiosity, migration, population density, urban-rural mix, and vote-by-mail policy of the

state. Time-varying measures vary at state or county levels and over time. These include

economic data on unemployment rates, house prices, poverty rates, and median incomes.

Moreover, we consider data on export-weighted real exchange rates by U.S. state (as a proxy

for international competition), government size, healthcare costs, inflation, and Midterm

elections, that vary across states but do not vary across counties within a given state.

The choice of the covariates is guided by the literature. But we also include a new

covariate that measures relative economic performance to gauge the degree a county has

been ‘left-behind’. This is measured as county c’s annual real gross domestic product (GDP)

growth relative to the national and/or the regional average real GDP growth. We find that

being economically left behind over the past several years is significantly correlated with

changes in the Republican vote share, and we therefore incorporate this novel measure as

a covariate to explore its implications further. See Section S1 of the Appendix for further

details.

To capture spatial effects, we compute and incorporate local average measures of several

county-level covariates. The local variables corresponding to county c are the average of

individual county measures of all counties within 100 miles of county c, inclusive of county

c. We consider both individual and local measures for many county-level variables such as

migration and education. Local variables are denoted with a ‘*’. Hence, “Education” and

“Education*” correspond to individual and local education rates, respectively. County house

prices and unemployment rate variables are always local averages.

The dynamic nature of election cycles admits additional complexity into the prediction

problem. Dynamics matter, and voters may place differential weight on determinants of their

vote depending on not just what was realized, but when it was realized relative to the election.

The literature, for example, documents a strong short-lived memory among voters, referred to

as voter myopia, where voters typically care only about the past year’s economic performance

when evaluating the incumbent party’s overall performance, rather than performance over

the entire term. To embed these features in our model, we take a mixed-frequency approach
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and include both short-term and longer-term measures of our time-varying covariates which

have data reported at high (monthly) frequencies. This includes three variables: county

house price changes, county unemployment rates, and state export-weighted real effective

exchange rates. For example, we include annual average house price changes as well as

house price changes three months in the election year but prior to the election held in

November. We do similarly for unemployment rates and exchange rates, to capture both

shorter-term and longer-term effects of economic conditions on voting behavior. 1-year

(L1) and 3-month average (M3) unemployment rates will be denoted by “Unemployment

(L1)” and “Unemployment (M3)”, respectively. The 1-year average is computed over the 12

months from June in the election year to July of the previous year, and the 3-month average

is computed using data for July, August and September of the election year.

Finally, to capture the incumbency effects on voter turnout and election outcome we

consider two types of indicators, and distinguish between presidential and party incumbency

indicators. The “incumbent party” indicator takes the value of 1 if on the election day the

president in power is Republican and -1 if he/she is a Democrat. The “incumbent president”

indicator takes the value of 1 if the president who is running for re-election is a Republican,

takes the value of -1 if he/she is a Democrat, and takes the value of 0 if neither of the

two candidates are the incumbent. These indicators are considered on their own, as well

as interacted with a number of other covariates. In this way we allow for a wide variety

of incumbency effects (positive or negative) discussed in the literature, without biasing the

results in favor of or against the incumbent president or party.

Additional information on data sources, the transformations used to construct the co-

variates and data cleaning carried out to deal with changes in county boundaries and other

variable definitions, are provided in Section S1 of the Appendix.

6 Active Sets for Voter Turnout (V T ) and Changes in

Log Republican Odds (DLRO) Panel Regressions

As is clear from the above account, there are many covariates that can be considered as

potential predictors of voter turnout (V T ) and changes in the log-odds ratio of Republican-

to-Democrat votes (DLRO) variables, and some variable selection is required to avoid over-

fitting. Variables for the voter turnout regression, zV T,cr and xV T,cr,t+3, are taken from a set

of covariates designated to turnout. Similarly, covariates for the voting odds ratio regression,

zDLRO,cr and xDLRO,cr,t+3, are selected from a different set designated to the voting equation.

We refer to these sets as ‘Active Sets’ for V T and DLRO, respectively.
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First, we construct a single data set which includes many individual and local measures,

temporal lags, incumbency indicators and their interactions. The result is a large set of

potential predictors which reflect changes in social, economic, or demographic conditions

across both space and time. Many of these variables are highly correlated with each other.

Therefore, to discipline our estimation procedure, active sets contain exclusively the set of

covariates to be considered by the model. The choice of potential covariates is largely inspired

by the literature. We also account for temporal effects, again inspired by the literature,

documenting myopia or ‘short-memory’ among voters.

Table 1: Summary Statistics for the Covariates in the Active Set for Voter Turnout (V T )
Panel Regressions over the Period 2000-2016

Covariate Description Mean St. Dev. Regional Coverage

Incumbent party indicator taking 1 if incumbent party is Republican, 0.000 1.000 National
-1 if incumbent party is Democrat

Incumbent president indicator taking 1 if Republican re-election, 0.000 0.707 National
-1 if Democratic re-election, 0 if no re-election

Lagged voter turnout (V T ) voter turnout proportion from the preceding election 0.564 0.097 County
Lagged V T × incumbent party Lagged V T interacted with incumbent party indicator 0.015 0.583 County
Healthcare costs (L1) change in log healthcare expenditures, year preceding election 0.046 0.016 State
Government employment (L1) change in log government employment, year preceding election −0.012 0.015 State
Unemployment (L1) unemployment rate avg., year preceding election 0.061 0.020 County
House price (L1) change in log house prices avg., year preceding election 0.022 0.043 County
Rent price (L1) change in log rental expenditure, year preceding election 0.032 0.012 State
Religiosity religiosity rate 0.511 0.170 County
Religiosity × incumbent party religion interacted with incumbent party indicator 0.000 0.539 County
Migration net migration (time-invariant) 0.005 0.009 County
Migration × incumbent party migrate interacted with incumbent party indicator 0.000 0.010 County
Education proportion with bachelor’s degree or higher (time-invariant) 0.165 0.078 County
Education × incumbent party education interacted with incumbent party indicator 0.000 0.183 County
ln(Median income) log median household income 10.633 0.254 County
ln(Median income) × incumbent party ln(median income) interacted with incumbent party indicator −0.075 10.636 County
Poverty poverty rate 0.155 0.062 County
Poverty × incumbent party poverty interacted with incumbent party indicator −0.013 0.167 County
Rural urban-rural score (-4 to 4, time-invariant) 0.111 2.680 County
Rural × incumbent party rural interacted with incumbent party indicator 0.111 2.680 County
Mail-in voting indicator whether state mandates mail-in voting (1), −0.301 0.564 State

optional (0), no mail-in voting (-1)

Additional detail on variables can be found in Section S1 of the Appendix.

Among time-varying factors (xDLRO,cr,t+3 and xV T,cr,t+3) we include both short-run (the

3-month period before the election) and medium-run (the 1-year period before the election)

changes in those measures which are observed at high frequency, like house price changes and

local unemployment rates. This allows economic changes which occur just prior to an elec-

tion to have a different, potentially more powerful, impact on voting behavior compared to

longer term changes in economic conditions. Time-invariant covariates (zV T,cr and zDLRO,cr)

include socioeconomic and demographic factors like migration, urban-rural mix, education

and religiosity.

Table 1 lists and describes the active set for the voter turnout (V T ) variable. The active

set contains a variety of national, county, and state-varying covariates. Voter turnout is
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a highly persistent process, and as such lagged turnout is also included in the active set.

To account for covariates having effects which are party-agnostic, and rather go in favor or

against incumbent parties, we interact several variables with an incumbent party indicator

which indicates whether the current president is Democratic or Republican.

Table 2: Summary Statistics for the Covariates in the Active Set for Changes in Republican
Log Odds (DLRO) Panel Regressions over the Period 2000-2016

Covariate Description Mean St. Dev. Regional Coverage

Incumbent party indicator taking 1 if incumbent party is Republican, 0.000 1.000 National
-1 if incumbent party is Democrat

House DLRO change in log Republican odds from preceding House election 0.087 0.346 State
Voter turnout (V T ) voter turnout proportion from the first-stage V T regression 0.576 0.090 County
V T × incumbent party V T interacted with incumbent party indicator 0.015 0.583 County
Left-behind (L1) county ‘Left-Behind’ measure, year preceding election −0.005 0.087 County
Left-behind (L1) × incumbent party Left-behind (L1) interacted with incumbent party indicator −0.002 0.087 County
Healthcare costs (L1) change in log healthcare expenditures, year preceding election 0.046 0.016 State
Government employment (L1) change in log government employment, year preceding election −0.012 0.015 State
USD REER (L1) change in log real effective USD, year preceding election 0.009 0.055 State
USD REER (L1) × incumbent party USD REER (L1) interacted with incumbent party indicator −0.047 0.031 State
USD REER (M3) Change in log real effective USD, 3 months preceding election −0.012 0.114 State
USD REER (M3) × incumbent party USD REER (M3) interacted with incumbent party indicator 0.046 0.105 State
Unemployment (L1) unemployment rate avg., year preceding election 0.061 0.020 County
Unemployment (L1) × incumbent party unemployment (L1) interacted with incumbent party indicator −0.007 0.064 County
Unemployment (M3) unemployment rate avg., 3 months preceding election 0.060 0.019 County
Unemployment (M3) × incumbent party unemployment (M3) interacted with incumbent party indicator −0.004 0.063 County
House price (L1) change in log house prices avg., year preceding election 0.022 0.043 County
House price (L1) × inumbent party house price (L1) interacted with incumbent party indicator 0.001 0.048 County
House price (M3) change in log house prices avg., 3 months preceding election 0.025 0.055 County
House price (M3) × incumbent party house price (M3) interacted with incumbent party indicator −0.007 0.060 County
Rent price (L1) change in log rental expenditure, year preceding election 0.032 0.012 State
Inflation (L1) inflation, year preceding election 0.021 0.022 State
Migration net migration (time-invariant) 0.005 0.009 County
Migration* local net migration (time-invariant) 0.010 0.006 County
Education proportion with bachelor’s degree or higher (time-invariant) 0.165 0.078 County
Education* local proportion with bachelor’s degree or higher (time-invariant) 0.165 0.040 County
ln(Population density) log population density (time-invariant) 3.727 1.668 County
ln(Median income) log median household income 10.633 0.254 County
ln(Median income) × incumbent party ln(median income) interacted with incumbent party indicator −0.075 10.636 County
Poverty poverty rate 0.155 0.062 County
Rural urban-rural score (-4 to 4, time-invariant) 0.111 2.680 County

Mean and standard deviation for actual turnout (V T ), not model-fitted voter turnout (V̂ T ) reported. In

actual model estimation the active set for DLRO contains V̂ T , the fitted value of V T obtained from estimat-
ing Equation 5. Because V̂ T is model-specific, the mean and standard deviation of the fitted voter turnout
V̂ T differs from actual V T and also varies across models. Additional detail on variables can be found in
Section S1 of the Appendix.

Table 2 lists and describes the active set for the change in log-odds (DLRO) variable. As

with the model for voter turnout, this active set contains national, state, and county-level

covariates. The number of regressors in the active set exceeds 30. Time-invariant active set

regressors include population density, urban-rural mix, education rates and migration rates.

Covariates which vary over time include house election results, economic ‘left-behind’ variable

(not included in the voter turnout regressions), healthcare costs, government employment

share, export-weighted state-level real exchange rate changes, local unemployment, house

price changes, rent costs and inflation. Notice also that this active set includes the fitted
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values of voter turnout variable, V̂ T , which is obtained from the application of variable

selection algorithms to the V T panel regressions. As a result the particular fitted values, V̂ T ,

included in the active set for the DLRO variable will depend on the outcome of the variable

selection algorithm applied to the panel regressions for the V T variable (which mimic the

recursive nature of our identification scheme). In a sense high-dimensional variable selection

algorithms are applied twice, but recursively. With this in mind the summary statistics given

for the V T variable in Table 2 refer to the realized voter turnout values, and not the fitted

ones used for variable selection in the case of DLRO regressions.

Finally, in the case of the regional models, we exclude state-level covariates (that do not

vary across counties within a given state) listed in the active set because they do not provide

sufficient variation and become collinear. The national or pooled model includes state-level

covariates listed in the active sets as well.

7 Estimation and Variable Selection Algorithms

Given the high-dimensional nature of the problem, we consider two estimation/selection

algorithms that address the over-fitting problem, namely cross-validated Least Absolute

Shrinkage and Selection Operator (Lasso) originally introduced by Tibshirani [1996], and

the One Covariate at a time Multiple Testing (OCMT) procedure recently proposed by

Chudik et al. [2018]. We estimate both nationally pooled and regional models, the latter

allowing for heterogeneity across BEA regions. At the regional level, Lasso and OCMT are

applied to the region-specific covariates, by pooling the observations over the four election

cycles under consideration. The main difference between Lasso and OCMT is in the way

they deal with the over-fitting problem. Lasso introduces a penalty term in the minimand

used for estimation, and calibrates the extent of penalization by cross-validation (typically

10-fold cross-validation). The use of cross-validation is supported by Monte Carlo evidence

for standard models with homoscedastic and cross-sectionally independent errors. But both

of these assumptions are likely to be violated in the case of the panel regressions on U.S.

counties.

By contrast, OCMT is a multi-step algorithm which allows for multiple testing in variable

selection. In the first stage, OCMT runs univariate regressions, one at a time, selecting

significant covariates after adjusting the critical value for multiple testing. In subsequent

stages, OCMT includes all selected variables in the previous stages in a multiple regression,

and then re-tests those covariates which were not selected in the previous stages, and so on.

The critical values adjusted for multiple-testing are given by cp(k, δ) = Φ−1
(
1− p

2kδ

)
, where

Φ−1 (.) is the inverse of the cumulative distribution function of the standard normal, p is
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the nominal size of the individual tests (not allowing for multiple testing), k is the number

of covariates in the active set, and δ captures the degree to which the critical values are

adjusted for multiple testing. Extensive Monte Carlo experiments carried out by Chudik

et al. [2018] suggest setting δ = 1 in the first stage of OCMT and δ = 2 in subsequent stages.

We set p = 0.05 and note that the results are reasonably robust to setting p = 0.01 or 0.10.

We also adjust the standard errors of the individual tests used in the OCMT procedure

for possible error variance heterogeneity and spatial dependence across counties, assuming

that equation errors within the same state are correlated due to political boundaries and the

state-level governing nature of the U.S., but rule out residual serial correlation. Accordingly,

we base our computation of individual t-tests using standard errors clustered by state-year

for the pooled model. This yields a reasonably large number of 196 clusters (48 mainland

states plus D.C. × 4 election cycles). For the regional model, we cluster standard errors by

state.16 Details of the selection and estimation procedures for Lasso and OCMT are provided

in Section S2 of the Appendix.

8 U.S. Electoral College

U.S. elections are determined by the number of Electoral College votes obtained. The Elec-

toral College consists of 538 electors and an absolute majority of 270 electoral votes is re-

quired to win the election. Each state is assigned a fraction of total delegates for the electoral

vote. For example, the share of California in 2016 was 55/538. This share is to be compared

to the share of popular votes by state, given by wst = (Rst +Dst) / (Rt +Dt), where Rst is

the number of Republican votes in state s, and Rt is the total number of Republican votes

across all states (plus Washington D.C.): Rt =
∑51

s=1Rst. Similarly, for Dst and Dt. Let

Vst = Rst/(Rst +Dst) and Vt = Rt/(Rt +Dt), denote state-specific and national level shares

of Republican votes, respectively. Then Vt =
∑51

s=1wstVst, where wst is defined above.

We can distinguish between an aggregate predictor of Vt and then declare the Republican

candidate as the winner if Vt > 0.5. But if we follow the U.S. Electoral College rule, we can

only declare the Republican candidate as the winner if:

51∑
s=1

w(ds)1(Vst − 0.5) > 0.5 (7)

where 1 (a) = 1 if a > 0, and zero otherwise, and w(ds) = ds/d, with ds the number

of delegates allocated to state s, and d = 538 is the total number of delegates. Clearly

16Similar results are obtained if clustering is done at either the state-year or state level.
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∑51
s=1w(ds) = 1. Hence the aggregate (popular) and delegate outcomes need not coincide.

Note that Vt > 0.5 can also be written equivalently as

51∑
s=1

wstVst > 0.5. (8)

Clearly, (8) does not necessarily imply (7). The key assumption here is that all electoral

votes go towards the party that wins the state’s popular vote. Looking at recent history, this

holds generally as many states have implicit commitments to allocate electoral votes to the

candidate who wins the state by the popular vote. In 2016, all but seven electors followed

this rule.17

8.1 Forecasting turnout and election outcomes

From the previous section it is clear that we require state level Republican (Democratic) vote

shares to predict the overall outcome of the election. To this end we first note that V Tcr,t+4 =

(Rcr,t+4 +Dcr,t+4) /V APcr,t+4, where V APcr,t+4 is the citizen voting age population in county

c of region r in the election year t + 4.18 Also recall that LROcr,t+4 = DLROcr,t+4 +

LROcr,t, and ln (Rcr,t+4/Dcr,t+4) = LROcr,t+4. Suppose that we have forecasts for V Tcr,t+4

and LROcr,t+4. Then using these identities we have

Rcr,t+4 =
V APcr,t+4V Tcr,t+4

1 + exp (−LROcr,t+4)
= V APcr,t+4V Tcr,t+4

(
exp (LROcr,t+4)

1 + exp (LROcr,t+4)

)
. (9)

Similarly

Dcr,t+4 = V APcr,t+4V Tcr,t+4

(
1

1 + exp (LROcr,t+4)

)
. (10)

These county-specific votes can now be aggregated to the state level. Let Cs denote the set

of all counties in state s. Then state popular votes are computed as

Rs,t+4 =
∑
cr∈Cs

Rcr,t+4, and Ds,t+4 =
∑
cr∈Cs

Dcr,t+4, (11)

17In Maine, the popular vote was won by the Democratic candidate. Three of the four electoral votes
were given to the Democratic candidate, while one electoral vote was cast for the Republican candidate. In
Washington State, four out of eight electoral votes were cast in favor of candidates other than the popular
vote winner (which was the Democratic candidate). In Texas, despite the popular vote favoring Republicans,
two electoral votes were cast for non-Republican candidates.

18Voting age population may differ from voting eligible population in that the former does not remove
ineligible felons.
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with Rcr,t+4 and Dcr,t+4 given by (9) and (10), respectively. Hence the Republican vote

share for state s is given by

Vs,t+4 =

∑
cr∈Cs Rcr,t+4∑

cr∈Cs (Rcr,t+4 +Dcr,t+4)
=

∑
cr∈Cs V APcr,t+4V Tcr,t+4

(
exp(LROcr,t+4)

1+exp(LROcr,t+4)

)
∑

cr∈Cs V APcr,t+4V Tcr,t+4

. (12)

With state-level Republican vote shares in hand, state-level popular vote outcomes, Electoral

College vote outcomes, and national popular vote outcomes can be predicted.

9 Key Determinants of U.S. Presidential Elections Us-

ing 2000-2016 as the Training Sample

In this section, we present estimates of the model estimated on the 2000-2016 training

sample, presenting both pooled and regional estimates to further understand the key factors

explaining voting outcomes. We begin with pooled estimates. The pooled model estimates

for voter turnout and the Republican log-odds ratio equations are summarized in Tables 8

and 9, respectively.19

Several time-invariant covariates are statistically significant, regardless of whether esti-

mated using OCMT or Lasso algorithms. These include urban-rural mix, migration and the

education covariates. Time-varying covariates are also important. Specifically, short-run eco-

nomic variables exhibit the strongest overall explanatory power relative to their longer term

counterparts. This evidence is consistent with myopic voting behavior. Specifically, changes

in the real effective U.S. Dollar (USD) exchange rate (a barometer for international compe-

tition), unemployment rates, and house prices over the three months preceding the election

are significantly associated with voting outcomes, and their inclusion renders 1-year changes

in these variables mostly insignificant. While 3-month house price appreciation unambigu-

ously favors the Republican candidate, higher unemployment rates preceding the election

somewhat surprisingly favor the incumbent party. By contrast, real export-weighted USD

appreciation 3-months preceding the election significantly punishes the incumbent party. In

case of the pooled model we also find that being economically ‘left behind’ is significantly

associated with voting against the incumbent party in the upcoming election.

We now consider estimates that allow for regional differences and discuss the differences

in selected covariates and their estimates across the eight BEA regions. Tables 10 and

19For the OCMT estimates we provide standard errors clustered at the state-year level. Lasso estimates
that are used for forecasting are computed using cross-validation and there are no associated standard errors
to report. However, for completeness we provide ordinary least squares (OLS) estimates for the covariates
selected by Lasso together with their state-year clustered standard errors.
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11 summarize the estimates for voter turnout V T under the Lasso and OCMT estimation

algorithms, respectively. Similarly, Tables 12 and 13 report estimates for DLRO using the

Lasso and OCMT algorithms. As can be seen, the variation in both the selected covariates

and the magnitude of the estimates vary substantially across the BEA regions, and suggest

pooling might result in different inference. The estimates also show how heterogeneous U.S.

regions can be. Consider Table 12, the regional-Lasso estimates for DLRO. The education

variable (Education) was selected for 8 out of 8 regions, hence this variable was identified as

informative on a national scale. Moreover, coefficient estimates are negative in all regions

suggesting that more educated counties tend to favor the Democratic candidate, regardless of

the region in which the county is located. However, the size of the estimates of this variable

differ quite a bit regionally: a one percentage point increase in the education rate in the

Mideast region (Southwest region) is associated with a change in the Republican odds ratio

of -0.246 (-0.845) percent. Short-run house price appreciation (over the 3 months preceding

the election), denoted by ‘house price (M3)’ is never associated with greater Democrat vote

share across any BEA region (coefficients are either zero or positive across regional panel

regressions).

Most covariates from the active set are not selected across every region. Again, this points

to the existence of substantial cross-regional differences in the U.S. Larger voter turnout is

associated with votes towards Democrats in 5 of the 8 regions (V̂ T ). By contrast, Zandi

et al. [2020] pools information nationally, which implicitly assumes that greater turnout is

unambiguously associated with lower Republican vote share. Being economically left behind

tends to punish the incumbent party in 5 of the 8 regions (the covariate ‘left-behind ×
incumbent party’). Higher local short-run unemployment favors Democrats in 4 of the 8

regions, has no effect on voting in 3 regions, and favors the Republican candidate in the

Plains region.

10 2020 Presidential Election: Forecasts and evalua-

tion

We generate real-time forecasts of the 2020 presidential election using the active sets tab-

ulated above, and the Lasso and OCMT selection algorithms. Training the models using

data from 2000 to 2016, we recursively estimate the panel regressions (4) and (2) subject to

the identifying restriction, δr = 0, applying variable selection at each stage. The estimated

models were then used to generate out-of-sample 2020 election forecasts at the county level

formed on October 14, 2020 using data available as of that date. We consider both a national
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pooled model and a model which allows for heterogeneity across BEA regions. We refer to

these as pooled and regional models/forecasts, respectively.

In addition to our four main models (pooled-OCMT, regional-OCMT, pooled-Lasso,

regional-Lasso), we also consider average Lasso-OCMT pooled and regional forecasts, along

with two naive forecasts that were generated ex post : one forecast from a random walk model

(RW) where the change in log Republican odds ratio is regressed on an intercept and a sec-

ond forecast from an autoregressive model (AR) where the log Republican odds ratio level

is regressed on its value from the previous election.20 We refer to these as naive forecasts or

forecasts from the naive models. Comparing predicted state and national vote shares and

electoral votes against actual outcomes is a natural way to evaluate the forecasting perfor-

mance of our models. In the following subsection we also provide a more formal statistical

analysis of the forecasts across the models.

Perhaps it should be made clear that we only model the 48 U.S. mainland states plus

the District of Columbia. We do not model Hawaii or Alaska. There are multiple reasons

for this. The first reason is because the two states are not in close geographical proximity to

other states, hence they are likely to be comprised of relatively unique characteristics such

that a regional model would be inadequate. Moreover, the two states cannot be modeled

individually because of the relatively small number of counties within each state. Hawaii

has five counties and Alaska has 19 boroughs. Fortunately, both Alaska and Hawaii are non-

swing states, historically voting Republican and Democrat, respectively. Specifically, Hawaii

and Alaska have not changed their party winner in the last 9 and 14 elections, respectively.

Both states received statehood in 1959. Alaska has voted for the Republican candidate in

every election since 1960 except for the 1964 election when the state voted for Lyndon B.

Johnson (Democrat) over Barry Goldwater (Republican). Similarly, Hawaii voted for the

Democratic candidate in every election since 1960 except for two: 1972 and 1984 when the

state voted for the Republican party. Therefore, in our electoral and national predictions we

assumed in October 2020 that Alaska votes Republican and Hawaii votes Democrat.21

Two-party mainland national vote share forecasts

Table 3 provides forecasts for the two-party mainland national vote based on the 48 mainland

states plus D.C. defined earlier as Vt = Rt/(Rt +Dt). The mainland national vote is similar

20The two naive forecasts were generated ex post, after the 2020 election occurred, but these forecasts
would remain unchanged if generated ex ante because they rely solely on data from past elections which
were fully available prior to the 2020 election.

21It is worth noting that we include Utah in our model although large third-party vote shares may poten-
tially induce high prediction error for the state (e.g. in 2016 a third-party candidate (Evan McMullin) won
21.54% of the state vote).
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to the popular vote but excludes Hawaii and Alaska and only calculates the two-party vote

share. All four models predicted a Democratic mainland national victory. Forecasts ranged

from 45.3% (pooled-Lasso) to 49.4% (regional-OCMT). Pooled-OCMT was closest, forecast-

ing 47.6% of the mainland national vote going for the Republican candidate, as compared to

the realized value of 47.7%.22 These results are favorably comparable to the 2020 two-party

Republican popular vote share forecasts from national and state-level models: 44.6% pre-

dicted by Erikson and Wlezien [2020] who consider a national model with a leading economic

indicator plus polling data, 45.6% predicted by the Economist23, 48.31% by Jérôme et al.

[2020], and 45.5% by Enns and Lagodny [2021]. The latter three forecasts are from models

using state-level data.

Table 3: 2020 Two-Party Republican US. Mainland Vote Share and National Electoral
College Forecasts

Pooled Forecasts Regional Forecasts
Realized Lasso OCMT Lasso OCMT

Vote Share (Vs) 0.477 0.453 0.476 0.474 0.494
Electoral College Votes 232 188 236 249 270

Realized U.S. mainland vote refers to 2020 Republican share of two-party votes across mainland U.S. states
plus Washington D.C. To produce U.S. mainland vote share forecasts, Equation 12 is applied to the sum
of predicted Republican and Democrat votes across U.S. mainland states plus Washington D.C. Regional
forecasts are generated using the eight separate panel regressions for the eight BEA regions. Electoral college
votes refer to realized and predicted national Republican electoral college votes, and assumes Hawaii casts
her electoral votes for the Democratic candidate and Alaska casts her electoral votes for the Republican
candidate. Electoral college forecasts determined following Equation 7. Forecasts formed on October 14,
2020.

Electoral college vote and state-level forecasts

Table 14 reports state-by-state pooled and regional forecasts using Lasso, OCMT, and av-

erage Lasso-OCMT, all made in October 2020 before the election. A candidate requires 270

out of 538 electoral votes to win the national election. The final count for the November 2020

presidential election resulted in a Democratic victory with Joe Biden winning 306 electoral

votes, and Donald Trump winning 232 electoral votes. Five out of six of the forecasts that

we released in October 2020 predicted less than 270 electoral votes for the Republican party

implying a Democrat candidate victory, although individual models varied substantially in

the actual number of electoral vote forecasts. One forecast, regional-OCMT was right on

the margin, forecasting 270 electoral votes for the Republican candidate – also reported in

Table 3. These results starkly contrast forecasts from naive random walk and autoregressive

22Note that our forecasts exclude Hawaii and Alaska in the two-party mainland national vote calculation.
23The Economist forecasts are found here: https://projects.economist.com/us-2020-forecast/president.
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model benchmarks which predicted a Republican victory with 329 electoral votes (Table 15).

Meanwhile, the pooled-OCMT model forecasts performed best, forecasting 236 Republican

electoral votes compared to the 232 realized. In comparison, Jérôme et al. [2020] predicted

230 Republican electoral votes, The Economist published a forecast of 182 Republican elec-

toral votes, while 259 Republican electoral votes were predicted in Zandi et al. [2020] and

248 Republican electoral votes were predicted in Enns and Lagodny [2021], all state-level

models.

10.1 Statistical evaluation of real-time 2020 election forecasts

We consider two types of forecast evaluations. The first is based on predictive accuracy of

state-level binary outcomes. However, models may incorrectly predict the binary outcome

by mere chance while forecasting well the state Republican vote share (e.g. cases where the

vote share comes close to 50%). To allow for quantitative differences in forecast accuracy,

we also evaluate forecasts on their ability to forecast Republican vote shares. All forecast

evaluations are based on 49 forecasts for the 48 mainland states plus Washington D.C., and

do not include Alaska and Hawaii since we did not explicitly model their 2020 outcomes.

Table 4: 2020 Republican Vote Share and State Winner Root Mean Square Forecast Errors

Naive Forecasts Pooled Forecasts Regional Forecasts
Coin Flip RW AR Lasso OCMT Lasso OCMT

Vote Share NA 0.037 0.034 0.029 0.015 0.032 0.034
State Winner 0.704 0.427 0.427 0.288 0.342 0.445 0.425

Root mean square forecast errors (RMSFE) computed as in Equation 13 reported for 2020 Republican vote
share forecasts against realized state vote shares for the 48 U.S. mainland states plus Washington D.C.
(S = 49) in the top row, and RMSFE for 2020 state winner forecasts against realized state winners, where
Republican state vote shares greater than 0.50 are assigned a Republican win and state vote shares less than
0.50 assigned a Democrat win. Coin Flip refers to the average RMSFE comparing realized state winners
against a benchmark averaging 1,000 simulations of a random {0,1} draw with probability 0.50. Forecasts
formed on October 14, 2020.

Table 4 reports root mean square forecast errors (RMSFE) across the 48 mainland states

plus D.C. for Republican 2020 vote shares (Vs) computed as:

RMSFE =

√√√√ S∑
s=1

ws(Vs − V̂s)2, (13)

across model generated and naive forecasts. Each state’s squared forecast error is weighted

by electoral vote share as a proportion of the total 531 electoral votes of the 48 mainland

states plus D.C., given by ws, where the weights sum to 1. The second row of Table 4 reports
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the RMSFE of state Republican wins, namely by converting the vote share to a win/loss

indicator. For state winners, we also provide a random benchmark, “coin flip”, which ran-

domly draws a Republican win or loss for each state with probability 0.50.24 Consistent

with the overall presidential forecasts, pooled-OCMT which reported the most precise vote

share and electoral college predictions also exhibited the lowest RMSFE for state vote shares.

Pooled-Lasso, which only mis-predicted 2 states, had the lowest RMSFE for state winners,

and naive forecasts generally had substantially higher RMSFEs.

Skill-based tests for forecasting state-level winners

When it comes to predicting the winning candidates across each state, the models varied

in accuracy with the pooled models, specifically pooled-Lasso performing best. The pooled-

Lasso mis-predicted 2 out of 48 states plus D.C.: Florida and North Carolina, both which

the Republican candidate won and the pooled-OCMT model mis-predicted 4 states. Both

naive models mis-predicted 9 states.25

We evaluate first whether any of the state binary forecasts exhibit significant ‘skill’, mean-

ing whether they predicted the binary state-level outcomes better than random following the

regression approach of Pesaran and Timmermann [1992] referred to as the PT test. Signif-

icant coefficients on the ordinary least squares (OLS) estimate from a linear regression of

the actual binary state election outcomes on the predicted state election outcomes indicate

forecasting ‘skill’ in that the predictive accuracy is significantly better than random.

Table 5: PT Test Statistics

Naive Forecasts Pooled Forecasts Regional Forecasts
RW AR Lasso OCMT Lasso OCMT
6.40 6.40 16.24 10.60 6.42 8.17

Test statistics reported from the PT test of forecasting skill (Pesaran and Timmermann [1992]). Under the
null hypothesis of no forecasting skill, the test statistic follows a standard normal distribution. Forecasts
formed on October 14, 2020.

Table 5 reports PT test statistics, of which all are statistically significant, including

the naive models. The naive models exhibit the least skill in forecasting binary state elec-

24To minimize the effects of sampling errors we average the coin flip results across 1,000 replications. Note
that for each replication the same realized outcomes are used, and only the random outcomes will vary across
replications.

25For the 2016 election, the naive models mis-predicted 5 states, and all 5 predicted a Democratic win
when a Republican win was realized, again suggesting systematic forecast error but this time consistent
with a ‘Trump effect’ which was largely unexpected. 2016 naive model forecasts are omitted for brevity, but
available upon request.
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tion outcomes. The regional-Lasso model performs marginally better than the naive mod-

els, while both pooled forecasts outperform naive models substantially. Pooled-Lasso and

pooled-OCMT having the highest PT statistics, consistent with their favorable forecasting

performance.

Forecast accuracy tests for state Republican vote share

Evaluating the accuracy of Republican vote share, the target variable Vs, is crucial – and

possibly a better gauge of model performance – especially when the prediction results are

close to 50% as it is usually the case for swing states. Then the binary outcome uncertainty

rises and the chance of predicting the actual winning candidate may be due to random chance

despite the model predicting accurately a vote share close to 50%.

We consider Diebold-Mariano (DM) tests of forecast accuracy (Diebold and Mariano

[2002]) modified for a single cross-section (e.g. 2020 forecasts across states) and allowing for

state results to carry different weights. The DM test statistic is computed as,

ZDM(a : b) =

∑S
s=1ws(|esa| − |esb|)
σ̂η(
∑S

s=1w
2
s)

1
2

, σ̂2
η =

1

S

S∑
s=1

(|esa| − |esb|)2, (14)

where |esa|− |esb| defines the absolute loss differential computed as the difference in absolute

forecast errors of model a and model b for state s. We allow for state loss differentials to

be weighted by electoral vote share as a proportion of the total 531 electoral votes of the

48 mainland states plus D.C., given by ws where the weights sum to 1. In addition to

absolute loss differentials, we consider another common criteria, squared loss differentials,

by replacing the expression |esa| − |esb| with e2sa − e2sb. Further detail on the modified DM

test can be found in Section S3 of the Appendix along with the equation for the DM test

with squared loss differentials (S.5).

Table 6 reports DM test statistics between each pair of models under the absolute loss

differential between predicted and realized Republican vote shares Vs. First point to note

is that the naive RW model underperforms all other models including the naive AR model.

Meanwhile pooled-OCMT is the best performing model, significantly forecasting better than

all other models at least at the 5% significance level. Both pooled models also outperformed

regional-Lasso and OCMT models. While the pooled-Lasso model performed best with

binary state election outcomes, pooled-OCMT predicted better realized Republican vote

shares by states. Using squared loss differentials does not alter these conclusions (Table 7).

Forecast errors across models also exhibit different degrees of bias: pooled-Lasso, despite

having the best binary prediction record, had a tendency to under-predict Republican vote
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Table 6: Diebold-Mariano Test Statistics (ZDM) under Absolute Loss Function

Naive AR Pooled Lasso Pooled OCMT Reg. Lasso Reg. OCMT

Naive RW 4.199 1.434 3.514 1.609 1.567
Naive AR 0.825 3.135 0.887 0.723

Pooled Lasso 3.577 -0.008 -0.290
Pooled OCMT -2.261 -2.454

Reg. Lasso -0.386

DM statistics (Equation 14) correspond to absolute loss differential between model on x-axis and model on
y-axis. Predicted outcome variable is state Republican vote share, Vs. Statistics in bold are significant at
least at the 10% level. Negative values indicate that x-axis model outperformed y-axis model, and positive
values indicate x-axis model underperformed y-axis model.

Table 7: Diebold-Mariano Test Statistics (ZDM) under Squared Loss Function

Naive AR Pooled Lasso Pooled OCMT Reg. Lasso Reg. OCMT

Naive RW 2.845 1.308 3.180 0.653 0.554
Naive AR 0.792 2.947 0.155 -0.046

Pooled Lasso 4.461 -0.453 -0.643
Pooled OCMT -1.802 -2.105

Reg. Lasso -0.225

DM statistics (Equation 14) correspond to squared loss differential between model on x-axis and model on
y-axis. Predicted outcome variable is state Republican vote share, Vs. Statistics in bold are significant at
least at the 10% level. Negative values indicate that x-axis model outperformed y-axis model, and positive
values indicate x-axis model underperformed y-axis model.

share on average by 1.4%, especially for middle-ground states. Meanwhile the regional-

OCMT over-predicted Republican vote share on average by 2.2%. Comparatively, the naive

models have the largest bias in forecast errors with the random walk and autoregressive

models over-predicting Republican vote share by 3.9% and 3.6%, respectively.

10.2 The role of voter turnout

A key assumption underlying our forecasting model is the simultaneous nature of turnout and

vote share. We follow a recursive approach, first forecasting turnout and then feeding that

forecast into a second-stage model for vote share prediction. One potential scenario which

would violate our recursive assumption (voter turnout affects voting outcomes but not vice

versa) is when election uncertainty is correlated with voter turnout. This subsection evalu-

ates the robustness of this modeling choice using the 2020 election results. Specifically, we

compare our two-equation systems based forecast to forecasts that would have been produced

by a reduced form approach which did not make the recursive restriction. The reduced form
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approach refers to a model with a single equation for vote share, DLROcr,t+4. The reduced

form model simply takes (2) and replaces voter turnout (V Tcr,t+4) from the right-hand side

with the additional covariates from the voter turnout model in (4). Hence, the reduced form

approach estimates a single equation, regressing the change in log Republican odds (DLRO)

on the union of active set covariates across the turnout and vote share equations found in

Tables 1 and 2. When transforming DLROcr,t+4 to predict Republican 2020 vote shares, the

reduced form approach uses 2016 realized turnout.

A milestone feature of the 2020 election was its record level of voter turnout. We examine

the relationship between 2020 turnout and election uncertainty using our updated 2020

data. We do find that 2020 turnout was significantly higher in states which had close

elections in 2016 (our proxy for 2020 election uncertainty).26 States with close election results

were: Maine, Nevada, Minnesota, New Hampshire, Michigan, Pennsylvania, Wisconsin, and

Florida. 2020 turnout in these states were estimated to be 74.8% on average, compared

to an average of 67.2% across all other states. However, the average 2016-2020 change

in turnout across these states were not significantly different from the average change in

turnout of other states (+11.72 percentage points versus +11.45 percentage points). On

average across all states, voter turnout rose 11.5 percentage points from 2016. The rise in

turnout occurred regardless of political leaning: states which voted Democrat (Republican)

in 2016 saw turnout rise on average 12 (11) percentage points.

In addition to comparing our systems based forecasts to a reduced form alternative, we

conduct a “what-if” analysis using realized 2020 voter turnout data. Specifically we use

our benchmark two-equation model which is estimated on data through October 2020, and

when producing vote share forecasts for 2020, we feed in 2020 realized turnouts instead of

predicted turnouts. This produces forecasts conditional on 2020 realized turnouts, as if ex

post 2020 turnout was predetermined.

In summary, we compare 2020 forecasts from our benchmark two-equation model (“two-

equation forecast”) made in October 2020 with a single-equation model (“reduced form

forecast”) and with the two-equation model feeding in 2020 realized turnouts (“conditional

two-equation”). This analysis allows us to assess several issues, including: the robustness

of our recursive assumption; forecast error variance attributed to turnout prediction; the

importance of turnout for the 2020 election.

Tables 16 and 17 report state level Republican vote share forecasts using Lasso and

OCMT, respectively. The correlations between benchmark forecasts and the reduced form

forecasts are high, ranging from 0.97 to 0.99 in all cases (also see Figures S.10 and S.11 in

Section S6 of the online supplement). Using realized turnouts has little impact on the fore-

26Close elections being defined as those with Republican vote share between 48.5% and 51.5%.
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casts, with the resultant vote shares conditional on knowing realized 2020 turnout hardly

differing from the benchmark forecasts, OCMT or Lasso, pooled or regional. The sim-

ple correlation between the two sets of vote shares (two-equation forecasts and conditional

two-equation forecasts) for all cases lie above 0.99. Overall, varying the voter turnout speci-

fication and even using 2020 realized turnout results in very small changes to the vote share

forecasts, indicating that unsurprisingly, vote share prediction and not turnout prediction

is overwhelmingly responsible for a large majority of forecast error variance in Republican

vote shares.

In the case of pooled two-equation forecasts, Lasso gives lower forecasts of Republican

vote shares relative to the OCMT forecasts for all states, on average 2% lower, with a similar

pattern between pooled reduced form forecasts: the average under Lasso being 2.7% lower

than OCMT. Pooled-Lasso vote shares from the conditional two-equation forecasts (knowing

2020 realized turnout) produces Republican vote shares on average 2% lower than the OCMT

counterpart. In the case of regional forecasts the Lasso-OCMT difference is less pronounced,

with Lasso forecasts of Republican vote share on average being lower by 1.3%, than OCMT,

and the direction is mixed – Lasso forecasts are not below OCMT forecasts for all states.

Similar results hold under the reduced form and conditional formulations.

It seems reasonable to conclude that for forecasting vote shares, the results are broadly

robust to relaxing the recursive assumption imposed in the baseline model, yet at the same

time the relatively low influence of voter turnout in the vote share predictions suggests that

modeling voter turnout explicitly has not been consequential for predicting the 2020 election

outcomes.

11 Concluding Remarks

Exploiting heterogeneity at the U.S. county-level, we develop real-time forecasts for the 2020

U.S. presidential election by augmenting national and region-based models of voter turnout

and voting outcomes trained over the 2000-2016 sample with high-dimensional variable se-

lection techniques. These forecasts were formed in October 2020. Five out of six forecasts

pointed toward a Democratic national victory while the sixth predicted a marginal Repub-

lican victory with 270 electoral votes. These predictions starkly contrast those from naive

random walk and autoregressive models which would have predicted a 2020 Republican

national victory with 329 electoral votes.

While regional heterogeneity may be important for modeling swing states, pooled mod-

els performed relatively well in terms of forecast performance. Variable selection techniques,

such as Lasso and OCMT, further improve model performance. Specifically, all models out-
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performed naive autoregressive benchmarks, with pooled-OCMT performing best on fore-

casting two-party mainland national Republican vote share (47.6% predicted, 47.7% real-

ized) and total Republican electoral votes (236 predicted, 232 realized). The pooled-Lasso

model performed best on forecasting state-by-state candidate winners, mis-predicting 2 out

of 48 mainland states plus D.C. In terms of forecasting Republican vote shares, the pooled-

OCMT model exhibited the lowest prediction error, significantly outperforming all other

models. These results suggest that using fundamental socioeconomic and demographic data

– particularly at the county level – can take us far in understanding presidential election

cycle dynamics.

We also investigate which socioeconomic and demographic factors help explain voting

behavior at the county level over the 2000-2016 election cycles. Significant indicators which

help explain voting behavior at the county level include: which party is the incumbent,

a county’s relative economic performance, local short-run unemployment rate, house price

changes, education, poverty rate, among others. Some determinants exhibit consistently

robust associations with turnout or voting across regions. For example, house price appreci-

ation generally favors the Republican candidate while counties with higher rates of poverty

and educational attainment help the Democratic candidate. Region-based models suggest

that the influence of most other variables on turnout and voting outcomes substantially vary

across regions. Our results also corroborate evidence of voter myopia: economic fluctuations

realized a few months prior to the election are generally more potent predictors of voting

outcomes compared to their long-horizon analogues (e.g. average unemployment rates just

prior to the election versus average unemployment rates over the incumbent’s entire term).

The 2020 election was also accompanied by a historic rise in voter turnout, increasing

by 11.5 percentage points on average across all states. We assess the role of turnout in

generating forecasts, finding that the overall impact was relatively small. This may be due

to the uniform rise in turnout across ‘red’ and ‘blue’ states alike. Overall, we emphasize

that the non-linear nature of the U.S. voting process makes forecasting elections challenging

and subject to a high degree of uncertainty. In addition, unforeseeable events which could

not be modeled adequately using historical data (e.g. nation-wide protests, pandemics) that

were prevalent in 2020 certainly may have influenced the election and our resulting forecast

errors.
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Table 8: Pooled Panel Regression with Variable Selection for Voter Turnout (V T ) as the
Dependent Variable Estimated over the 2000-2016 Election Cycles

Covariate OCMT SE-OCMT Lasso Lasso(OLS) SE-Lasso(OLS)

Intercept 0.0886 (0.1239) 0.1432 0.1412*** (0.0192) )
Incumbent party -0.2179** (0.1085)
Incumbent president 0.0314*** (0.0053) 0.0289 0.0337*** (0.0051)
V T (L1) 0.7977*** (0.0172) 0.7789 0.7973*** (0.0169)
V T (L1) × incumbent party -0.0461*** (0.0166)
Healthcare costs (L1) -0.1294 -0.2453 (0.1844)
Government employment (L1) 0.1557 (0.187) 0.1449 0.1915 (0.2077)
Unemployment (L1) 0.4034*** (0.1044) 0.2964 0.3408*** (0.1132)
House price (L1)
Rent price (L1) -0.0576 -0.1889 (0.1898)
Religiosity -0.005 -0.0096 (0.0071)
Religiosity × incumbent party -0.0116* (0.0066)
Migration -0.3548*** (0.1023) -0.249 -0.4002*** (0.1056)
Migration × incumbent party -0.2233** (0.1025)
Education 0.0978*** (0.0163) 0.0955 0.1067*** (0.014)
Education × incumbent party 0.0907*** (0.0158) 0.0835 0.0818*** (0.0133)
ln(Median income) 0.0026 (0.0109)
ln(Median income) × incumbent party 0.0231** (0.0096)
Poverty -0.1517*** (0.0495) -0.1596 -0.1555*** (0.0329)
Poverty × incumbent party 0.0277 (0.0472)
Rural -4e-04 (4e-04) -4e-04 -7e-04 (4e-04)
Rural × incumbent party -8e-04** (4e-04) -0.0014 -0.002*** (4e-04)
Mail-in voting 0.0065** (0.0032) 0.0063 0.0075** (0.0034)

Observations 12,438 12,438 12,438
Covariates Selected 19 15 15
Adj. R2 0.8058 0.8034 0.8048
Reg SE 0.0397 0.0399 0.0398

Estimates from recursive voter turnout and voting outcome model. First, Equation 5 is estimated, then V̂ T
is used in the active set for estimation of Equation 6. Estimates presented here are for the voter turnout
equation, Equation 5. Reported standard errors are clustered at the State-Year level. For Lasso, 10-fold
cross validation is used for model selection, with the random number generator seed is set to: 123. The
model selected is the one with CV-MSE 1-SD away from the minimum MSE. Lasso-OLS corresponds to
results taking the selected covariates and then subsequently estimating OLS regression in a second-stage.
Adjusted R2 reported for OLS estimates, Deviance ratio reported for Lasso. The list of variables in the
active set for V T is given in Table 1.
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Table 9: Pooled Panel Regression with Variable Selection for Changes in Log Republican
Odds (DLRO) as the Dependent Variable Estimated over the 2000-2016 Election Cycles

Covariate OCMT SE-OCMT Lasso Lasso (OLS) SE-Lasso (OLS)

Intercept 0.6955*** (0.0907) 0.6828 0.6763*** (0.0995)
Incumbent party -0.8364** (0.3566) -0.1478 -0.2725*** (0.0645)
House DLRO 0.025 (0.0281) 0.0186 0.0218 (0.0258)

V̂ T -0.3735*** (0.1069) -0.2839 -0.2894** (0.1126)

V̂ T × incumbent party -0.1786* (0.0938) -0.1094 -0.0166 (0.0921)
Left-behind (L1) 0.0051 0.0235 (0.0375)
Left-behind (L1) × incumbent party -0.1118 -0.1119*** (0.0364)
Healthcare costs (L1)
Government employment (L1) 2.4752 2.7807*** (1.0024)
USD REER (L1) -0.0198 (0.8802)
USD REER (L1) × incumbent party 0.0737 (0.8872)
USD REER (M3) -0.0389 (0.2468)
USD REER (M3) × incumbent party -0.7329*** (0.2311) -0.5045 -0.4768*** (0.1479)
Unemployment (L1) -0.9088 -0.5727 (0.4429)
Unemployment (L1) × incumbent party -2.6836* (1.5928)
Unemployment (M3)
Unemployment (M3) × incumbent party 4.8527*** (1.6454) 0.9323 2.0594*** (0.4623)
House price (L1) -0.3884 (0.405)
House price (L1) × incumbent party
House price (M3) 0.7047** (0.3133) 0.3722 0.4541*** (0.1613)
House price (M3) × incumbent party
Rent price (L1) -0.8429 -1.4238* (0.7286)
Inflation (L1) 1.0148 1.3794*** (0.5128)
Migration -1.7827*** (0.4813) -1.4525 -1.716*** (0.4533)
Migration* 0.79 (1.1803) 0.2324 0.872 (1.1734)
Education -0.6296*** (0.0962) -0.6864 -0.7094*** (0.1029)
Education* -0.7883*** (0.2045) -0.7032 -0.7402*** (0.2108)
ln(Population density) -0.001 (0.0056) 4e-04 0.0058 (0.0054)
ln(Median income)
ln(Median income) × incumbent party 0.0649* (0.0336)
Poverty -0.6909*** (0.1486) -0.5167 -0.5939*** (0.1385)
Rural 0.0089*** (0.0021) 0.005 0.0081*** (0.002)

Observations 12,438 12,438 12,438
Covariates Selected 21 21 21
Adj. R2 0.5071 0.5185 0.5232
Reg SE 0.1788 0.1768 0.1758

Estimates from recursive voter turnout and voting outcome model. First, Equation 5 is estimated, then V̂ T
is used in the active set for estimation of Equation 6. Estimates presented here are for the log Republican
odds equation, Equation 6. Reported standard errors are clustered at the State-Year level. For Lasso, 10-fold
cross validation is used for model selection, with the random number generator seed is set to: 123. The
model selected is the one with CV-MSE 1-SD away from the minimum MSE. Lasso-OLS corresponds to
results taking the selected covariates and then subsequently estimating OLS regression in a second-stage.
Adjusted R2 reported for OLS estimates, Deviance ratio reported for Lasso. The list of variables in the
active set for DLRO is given in Table 2.
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Table 10: Regional Panel Regressions with Dependent Variable as Voter Turnout (V T )
Estimated over the 2000-2016 Election Cycles using Lasso Algorithm

Southeast Southwest Far West Rocky Mountain New England Mideast Great Lakes Plains

Intercept 0.063 0.169 0.454 0.201 0.278 0.277 0.121 0.203
Incumbent party 0.021
Incumbent president 0.010 0.030 0.023 0.002 0.021 0.028 0.020
V T (L1) 0.796 0.714 0.708 0.677 0.606 0.654 0.761 0.676
V T (L1) x r incu pa
Unemployment (L1) 0.100 0.269 -1.081 0.667 0.630
House price (L1) 0.090 0.163 0.268
Religiosity -0.005 -0.041 -0.026 0.034
Religiosity × incumbent party 0.007
Migration -0.175 -0.056
Migration × incumbent party
Education 0.062 0.116 0.103 0.120 0.019 0.069 0.113 0.008
Education × incumbent party 0.093 0.061 0.077 0.069 0.011 0.075 0.075
ln(Median income) 0.008 -0.021
ln(Median income) × incumbent party 0.001 0.001
Poverty -0.125 -0.214 -0.345 -0.167 -0.218 -0.327 -0.269 -0.301
Poverty × incumbent party
Rural -0.001
Rural × incumbent party -0.001 -0.001 -0.001

Observations 4,252 1,516 600 860 268 712 1,748 2,472

Estimates from recursive voter turnout and voting outcome model. First, Equation 5 is estimated, then V̂ T
is used in the active set for estimation of Equation 6. Estimates presented here are for the voter turnout
equation, Equation 5. The list of variables in the active set for V T is given in Table 1.

Table 11: Regional Panel Regressions with Dependent Variable as Voter Turnout (V T )
Estimated over the 2000-2016 Election Cycles using OCMT Algorithm

Southeast Southwest FW RM NE Mideast GL Plains

Intercept -0.254* (0.154) -0.037 (0.236) 0.166*** (0.018) 1.069*** (0.245) 0.072* (0.043) 0.98*** (0.297) 0.903* (0.524) 0.195*** (0.04)
Incumbent party -0.38* (0.196) -0.208 (0.346) 0.963*** (0.314) -0.315***(0.12) 0.842** (0.392) 0.002 (0.179) -0.023 (0.223)
Incumbent president 0.02 (0.013) 0.047*** (0.006) 0.003 (0.006) 0.011 (0.016) 0.026*** (0.009) 0.032*** (0.009)
V T (L1) 0.857***(0.02) 0.775*** (0.024) 0.739*** (0.034) 0.704*** (0.022) 0.887*** (0.058) 0.629*** (0.048) 0.805*** (0.054) 0.739*** (0.054)
V T (L1) × incumbent party -0.024 (0.018) 0.041** (0.018) -0.114***(0.036) -0.026 (0.024) -0.083 (0.101) -0.089** (0.039) -0.152***(0.046)
Unemployment (L1) 0.163 (0.197) 0.482*** (0.155) -1.975***(0.606)
House price (L1) 0.063 (0.107) -0.157***(0.041) 0.117 (0.116)
Religiosity -0.022***(0.006) 0.056** (0.026)
Religiosity × incumbent party -0.007 (0.011) -0.023***(0.007) -0.001 (0.012) 0.013** (0.006) -0.014 (0.011) 0.005 (0.011)
Migration -0.484***(0.087) -1.06*** (0.263) -0.498***(0.126)
Migration × incumbent party -0.181 (0.151) -0.015 (0.094) -0.367 (0.234) -0.108 (0.152) -0.157 (0.169)
Education 0.047** (0.022) 0.132*** (0.029) 0.166*** (0.04) 0.227*** (0.029) 0.15*** (0.055) 0.216*** (0.067)
Education × incumbent party 0.073***(0.02) 0.113*** (0.035) 0.195*** (0.016) 0.062** (0.025) 0.068 (0.055) 0.129*** (0.024) 0.093*** (0.022)
ln(Median income) 0.033** (0.013) 0.016 (0.02) -0.082***(0.023) -0.059** (0.027) -0.071 (0.045)
ln(Median income) × incumbent party 0.038** (0.018) 0.016 (0.031) -0.078***(0.027) 0.031*** (0.011) -0.067** (0.03) 0.006 (0.014) 0.011 (0.02)
Poverty -0.07 (0.051) -0.193***(0.053) -0.306***(0.038) -0.412***(0.061) -0.569***(0.093) -0.428** (0.176) -0.25*** (0.062)
Poverty × incumbent party 0.05 (0.066) 0.089 (0.087) -0.464***(0.168) -0.435***(0.167) -0.013 (0.031) -0.143 (0.096) -0.063 (0.052)
Rural 0.001 (0.001) -0.002** (0.001)
Rural × incumbent party -0.001 (0.001) -0.002** (0.001) (0.001) -0.001 (0.001)

Observations 4,252 1,516 600 860 268 712 1,748 2,472

Estimates from recursive voter turnout and voting outcome model. First, Equation 5 is estimated, then V̂ T is used in the active
set for estimation of Equation 6. Estimates presented here are for the voter turnout equation, Equation 5. The list of variables
in the active set for V T is given in Table 1. Standard errors are clustered at the state level, in parenthesis to the right of the
corresponding column of estimates. FW, NE, RM and GL refer to Far West, New England, Rocky Mountain and Great Lakes
regions, respectively.
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Table 12: Regional Panel Regressions with Dependent Variable as Changes in Log Republican
Odds (DLRO) over the 2000-2016 Election Cycles using Lasso Algorithm

Southeast Southwest Far West Rocky Mountain New England Mideast Great Lakes Plains

Intercept 1.222 3.831 0.454 0.401 -0.272 0.911 0.788 0.436
Incumbent party -0.043 -0.020 -0.902 -0.124 -0.524 -0.332 -0.428 -0.108

V̂ T -0.597 0.312 0.116 -0.318 -0.120 -0.607 -0.002

V̂ T × incumbent party -0.189 -0.147 0.215 0.190 -0.087
Left-behind (L1) 0.008 -0.012 -0.051 -0.309 -0.166 -0.025
Left-behind (L1) × incumbent party -0.089 -0.011 -0.154 0.526 -0.243 0.001 -0.086
Unemployment (L1) -1.770 2.100 3.666 -0.890 -1.649 2.253 -1.061
Unemployment (L1) × incumbent party 0.001 0.263 -2.168 1.613 3.893 0.380
Unemployment (M3) -0.499 -1.536 -4.135 -1.047 4.108
Unemployment (M3) × incumbent party 0.187 3.290 7.901 -1.917
House price (L1) -0.976 -0.104 -2.261 0.500 2.071 4.000
House price (L1) × incumbent party -0.716 -0.696 0.175 -1.306 -2.235 -2.995
House price (M3) 1.689 0.561 0.682 0.128 2.062 1.271
House price (M3) × incumbent party 0.301 0.717 -0.223 0.921 3.176 1.807 1.055
Migration -1.335 -3.022 0.994 -0.043 -3.364 -0.008 -0.998
Migration* 1.078 -0.878 0.169 3.976
Education -0.606 -0.845 -0.646 -0.586 -0.729 -0.295 -0.854 -0.753
Education* -2.301 -0.489 0.204 -0.246 -0.928 -0.442
ln(Population density) -0.010 0.008 -0.009 -0.005 -0.003 0.014 -0.004
ln(Median income) -0.322 -0.032 0.055 -0.028 -0.045 -0.025
ln(Median income) × incumbent party -0.004 -0.008 0.079
Poverty -0.943 -1.656 -0.392 -0.239 -0.599 -0.339 -0.592
Rural 0.009 0.008 -0.001 -0.014 -0.001

Observations 4,252 1,516 600 860 268 712 1,748 2,472

Estimates from recursive voter turnout and voting outcome model. First, Equation 5 is estimated, then V̂ T is used in the active
set for estimation of Equation 6. Estimates presented here are for the log Republican odds equation, Equation 6. The list of
variables in the active set for DLRO is given in Table 2.

Table 13: Regional Panel Regressions with Dependent Variable as Changes in Log Republican
Odds (DLRO) Estimated over the 2000-2016 Election Cycles using OCMT Algorithm

Southeast Southwest FW RM NE Mideast GL Plains

Intercept -2.354***(0.55) 0.438*** (0.01) 0.128** (0.062) 0.533*** (0.071) 0.507*** (0.123) 0.346*** (0.036) 0.543*** (0.083) -0.267 (0.175)
Incumbent party -2.545***(0.392) -1.534** (0.752) -3.68*** (0.235) -1.494***(0.508) -1.539***(0.383) -1.022** (0.409)

V̂ T -0.588***(0.186) 0.115 (0.129) -0.383***(0.098) -0.566*** (0.185) -0.308***(0.11) -0.033 (0.094) 0.453*** (0.118)

V̂ T × incumbent party -0.285 (0.179) -0.207 (0.19) -0.209** (0.098) 0.417*** (0.094) 0.223* (0.132) -0.004 (0.098)
Left-behind (L1) -0.078* (0.042)
Left-behind (L1) × incumbent party 0.055 (0.303) -0.277***(0.066)
Unemployment (L1) 3.932*** (0.341)
Unemployment (L1) × incumbent party -1.845** (0.89) 3.958 (3.645) 14.579*** (4.054) 9.201** (4.627) 1.094 (4.152)
Unemployment (M3) -4.152***(1.069) 4.141*** (0.914)
Unemployment (M3) × incumbent party 3.432*** (1.226) -3.961 (4.949) -10.078***(3.881) 5.528* (3.049) -7.281 (5.613) 2.592 (4.906)
House price (L1) -0.866 (0.724) -0.069 (0.529) 0.85 (0.86) 0.41 (1.416) 4.06*** (0.917)
House price (L1) × incumbent party -1.227***(0.388) -4.248***(1.095)
House price (M3) 2.595*** (0.706) 0.727* (0.387) 0.748* (0.41) 1.264 (0.786) 2.14* (1.158) -0.026 (0.949)
Houes price (M3) × incumbent party 2.708** (1.118)
Migration -1.62*** (0.586) -3.549***(0.649) 1.359* (0.82) -0.812 (1.079) -4.107***(0.308) 0.333 (1.016) -0.807 (0.522)
Migration* -1.001 (1.653) 2.808* (1.609)
Education -0.828***(0.159) -1.023***(0.13) -0.683***(0.102) -0.666***(0.089) -0.295 (0.194) -0.331***(0.11) -0.964***(0.129) -0.809***(0.135)
Education* -1.698***(0.379) 0.041 (0.507) -0.01 (0.136) -0.669** (0.295) -1.467***(0.354) -0.144 (0.48)
ln(Population density) -0.006 (0.005) 0.01 (0.015) -0.011 (0.01) -0.016***(0.003) 0.015*** (0.005)
ln(Median income) 0.299*** (0.057)
ln(Median income) × incumbent party 0.234*** (0.05) 0.136* (0.082) 0.316*** (0.023) 0.075* (0.044) 0.1*** (0.029) 0.065 (0.044)
Poverty -0.902***(0.077) -0.44* (0.237) -0.669***(0.147) -0.331***(0.06)
Rural 0.013*** (0.002) 0.02*** (0.006) -0.001 (0.004) (0.004) -0.001 (0.002) (0.001) -0.001 (0.004)

Observations 4,252 1,516 600 860 268 712 1,748 2,472

Estimates from recursive voter turnout and voting outcome model. First, Equation 5 is estimated, then V̂ T is used in the active
set for estimation of Equation 6. Estimates presented here are for the log Republican odds equation, Equation 6. The list of
variables in the active set for DLRO is given in Table 2. Standard errors are clustered at the state level, in parenthesis to the
right of the corresponding column of estimates. FW, NE, RM and GL refer to Far West, New England, Rocky Mountain and
Great Lakes regions, respectively.
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Table 14: State Level Forecasts of Republican Vote Shares (Vs) and Electoral Votes for 2020
Elections Made in October 2020

Lasso OCMT Lasso-OCMT Average
Total EC 2020 Realized Pooled Forecasts Regional Forecasts Pooled Forecasts Regional Forecasts Pooled Forecasts Regional Forecasts

State (ds) Vs EC Votes V̂s EC Votes V̂s EC Votes V̂s EC Votes V̂s EC Votes V̂s EC Votes V̂s EC Votes

AK 3 0.553 3 N/A 3 N/A 3 N/A 3 N/A 3 N/A 3 N/A 3
AL 9 0.629 9 0.628 9 0.636 9 0.641 9 0.654 9 0.635 9 0.645 9
AR 6 0.642 6 0.629 6 0.650 6 0.646 6 0.665 6 0.638 6 0.658 6
AZ 11 0.498 0 0.489 0 0.549 11 0.521 11 0.570 11 0.505 11 0.560 11
CA 55 0.351 0 0.302 0 0.313 0 0.337 0 0.340 0 0.320 0 0.326 0
CO 9 0.431 0 0.405 0 0.413 0 0.421 0 0.417 0 0.413 0 0.415 0
CT 7 0.398 0 0.369 0 0.498 0 0.398 0 0.479 0 0.384 0 0.488 0
DC 3 0.055 0 0.032 0 0.036 0 0.033 0 0.040 0 0.032 0 0.038 0
DE 3 0.404 0 0.400 0 0.425 0 0.415 0 0.469 0 0.408 0 0.446 0
FL 29 0.517 29 0.464 0 0.462 0 0.488 0 0.482 0 0.476 0 0.472 0
GA 16 0.499 0 0.491 0 0.506 16 0.511 16 0.525 16 0.501 16 0.516 16
HI 4 0.350 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0
IA 6 0.542 6 0.524 6 0.551 6 0.535 6 0.578 6 0.530 6 0.565 6
ID 4 0.659 4 0.665 4 0.648 4 0.677 4 0.655 4 0.671 4 0.652 4
IL 20 0.413 0 0.380 0 0.417 0 0.398 0 0.419 0 0.389 0 0.418 0
IN 11 0.582 11 0.581 11 0.576 11 0.604 11 0.582 11 0.593 11 0.579 11
KS 6 0.576 6 0.577 6 0.576 6 0.585 6 0.592 6 0.581 6 0.584 6
KY 8 0.632 8 0.638 8 0.654 8 0.655 8 0.669 8 0.647 8 0.662 8
LA 8 0.595 8 0.577 8 0.582 8 0.600 8 0.609 8 0.589 8 0.596 8
MA 11 0.329 0 0.292 0 0.408 0 0.318 0 0.391 0 0.305 0 0.400 0
MD 10 0.330 0 0.313 0 0.346 0 0.333 0 0.373 0 0.323 0 0.359 0
ME 4 0.455 0 0.454 0 0.511 4 0.465 0 0.479 0 0.460 0 0.495 0
MI 16 0.486 0 0.474 0 0.508 16 0.497 0 0.500 0 0.486 0 0.504 16
MN 10 0.464 0 0.449 0 0.466 0 0.465 0 0.501 10 0.457 0 0.484 0
MO 10 0.578 10 0.593 10 0.623 10 0.608 10 0.651 10 0.601 10 0.637 10
MS 6 0.584 6 0.581 6 0.582 6 0.602 6 0.610 6 0.591 6 0.596 6
MT 3 0.584 3 0.573 3 0.570 3 0.593 3 0.573 3 0.583 3 0.572 3
NC 15 0.507 15 0.486 0 0.488 0 0.504 15 0.508 15 0.495 0 0.499 0
ND 3 0.672 3 0.661 3 0.693 3 0.688 3 0.734 3 0.674 3 0.713 3
NE 5 0.598 5 0.602 5 0.641 5 0.611 5 0.693 5 0.606 5 0.667 5
NH 4 0.463 0 0.443 0 0.526 4 0.470 0 0.496 0 0.457 0 0.511 4
NJ 14 0.419 0 0.371 0 0.414 0 0.407 0 0.445 0 0.389 0 0.429 0
NM 5 0.445 0 0.410 0 0.465 0 0.442 0 0.479 0 0.426 0 0.472 0
NV 6 0.488 0 0.468 0 0.461 0 0.500 6 0.463 0 0.484 0 0.462 0
NY 29 0.383 0 0.340 0 0.345 0 0.369 0 0.342 0 0.355 0 0.344 0
OH 18 0.541 18 0.520 18 0.542 18 0.540 18 0.541 18 0.530 18 0.542 18
OK 7 0.669 7 0.673 7 0.680 7 0.687 7 0.700 7 0.680 7 0.690 7
OR 7 0.417 0 0.403 0 0.407 0 0.423 0 0.424 0 0.413 0 0.415 0
PA 20 0.494 0 0.468 0 0.497 0 0.499 0 0.555 20 0.484 0 0.524 20
RI 4 0.395 0 0.378 0 0.494 0 0.389 0 0.463 0 0.383 0 0.479 0
SC 9 0.559 9 0.560 9 0.559 9 0.571 9 0.581 9 0.566 9 0.570 9
SD 3 0.634 3 0.641 3 0.632 3 0.652 3 0.640 3 0.647 3 0.636 3
TN 11 0.618 11 0.620 11 0.637 11 0.642 11 0.655 11 0.631 11 0.646 11
TX 38 0.528 38 0.503 38 0.512 38 0.533 38 0.538 38 0.518 38 0.525 38
UT 6 0.607 6 0.603 6 0.598 6 0.615 6 0.606 6 0.609 6 0.602 6
VA 13 0.448 0 0.424 0 0.414 0 0.440 0 0.441 0 0.432 0 0.428 0
VT 3 0.317 0 0.318 0 0.377 0 0.333 0 0.361 0 0.325 0 0.369 0
WA 12 0.401 0 0.370 0 0.384 0 0.399 0 0.411 0 0.385 0 0.397 0
WI 10 0.497 0 0.474 0 0.507 10 0.495 0 0.505 10 0.485 0 0.506 10
WV 5 0.698 5 0.712 5 0.720 5 0.736 5 0.740 5 0.724 5 0.730 5
WY 3 0.725 3 0.726 3 0.728 3 0.750 3 0.736 3 0.738 3 0.732 3

All Votes 538 232 188 249 236 270 215 265

Republican vote shares are calculated as in Equation 12. Column ‘Total EC (ds)’ refers to the total number of electoral votes per
state (Equation 7). EC Votes refer to the predicted number of Republican electoral college votes. All Votes accumulates U.S.
Mainland electoral college votes, and assumes Hawaii casts her electoral votes for the Democratic candidate and Alaska casts
her electoral votes for the Republican candidate. Regional forecasts are generated using the eight separate panel regressions for
the eight BEA regions. Forecasts made on October 14, 2020 using 2000-2016 as the training sample.
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Table 15: State Level Forecasts of Republican Vote Shares (Vs) and Electoral Votes for 2020
using Random Walk and Autoregressive Models

Random Walk Autoregressive–AR(1)

State V̂s EC Votes V̂s EC Votes
AK N/A 3 N/A 3
AL 0.663 9 0.664 9
AR 0.663 6 0.664 6
AZ 0.543 11 0.539 11
CA 0.359 0 0.349 0
CO 0.496 0 0.491 0
CT 0.452 0 0.445 0
DC 0.047 0 0.041 0
DE 0.463 0 0.456 0
FL 0.528 29 0.524 29
GA 0.547 16 0.544 16
HI N/A 0 N/A 0
IA 0.573 6 0.571 6
ID 0.703 4 0.705 4
IL 0.430 0 0.423 0
IN 0.622 11 0.622 11
KS 0.632 6 0.632 6
KY 0.676 8 0.678 8
LA 0.622 8 0.622 8
MA 0.375 0 0.365 0
MD 0.378 0 0.371 0
ME 0.509 4 0.504 4
MI 0.524 16 0.520 16
MN 0.514 10 0.509 10
MO 0.637 10 0.637 10
MS 0.611 6 0.611 6
MT 0.633 3 0.632 3
NC 0.541 15 0.537 15
ND 0.717 3 0.720 3
NE 0.656 5 0.656 5
NH 0.522 4 0.518 4
NJ 0.450 0 0.442 0
NM 0.475 0 0.469 0
NV 0.511 6 0.505 6
NY 0.402 0 0.395 0
OH 0.565 18 0.562 18
OK 0.713 7 0.715 7
OR 0.460 0 0.454 0
PA 0.525 20 0.521 20
RI 0.441 0 0.433 0
SC 0.597 9 0.596 9
SD 0.680 3 0.682 3
TN 0.656 11 0.657 11
TX 0.568 38 0.565 38
UT 0.644 6 0.644 6
VA 0.493 0 0.488 0
VT 0.370 0 0.360 0
WA 0.434 0 0.426 0
WI 0.526 10 0.522 10
WV 0.740 5 0.744 5
WY 0.773 3 0.777 3

All Votes 329 329

Republican vote shares are calculated as in Equation 12. EC Votes refer to the predicted number of Re-
publican electoral college votes. All Votes accumulates U.S. Mainland electoral college votes, and assumes
Hawaii casts her electoral votes for the Democratic candidate and Alaska casts her electoral votes for the
Republican candidate. For the Random Walk (RW) model, the log Republican odds ratio is regressed on
an intercept. For the Autoregressive model, the log Republican odds ratio is regressed on its value from the
previous election. Forecasts are generated ex post only using data available as of October 14, 2020.
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Table 16: State Level Forecasts of Republican Vote Shares (Vs) for 2020 under Alternative
Turnout Specifications using Lasso Algorithm

Pooled Lasso Forecasts Regional Lasso Forecasts
State Two-Equation Reduced Form Conditional Two-Equation Two-Equation Reduced Form Conditional Two-Equation

1 AL 0.628 0.642 0.631 0.636 0.643 0.639
2 AR 0.629 0.639 0.633 0.650 0.655 0.654
3 AZ 0.489 0.503 0.480 0.549 0.565 0.564
4 CA 0.302 0.314 0.301 0.313 0.312 0.315
5 CO 0.405 0.414 0.401 0.413 0.426 0.404
6 CT 0.369 0.388 0.369 0.498 0.540 0.496
7 DC 0.032 0.035 0.032 0.036 0.040 0.033
8 DE 0.400 0.418 0.404 0.425 0.432 0.422
9 FL 0.464 0.483 0.459 0.462 0.468 0.454
10 GA 0.491 0.505 0.492 0.506 0.514 0.504
11 IA 0.524 0.535 0.521 0.551 0.572 0.548
12 ID 0.665 0.674 0.654 0.648 0.656 0.635
13 IL 0.380 0.394 0.383 0.417 0.438 0.413
14 IN 0.581 0.594 0.582 0.576 0.623 0.577
15 KS 0.577 0.589 0.572 0.576 0.613 0.572
16 KY 0.638 0.652 0.638 0.654 0.662 0.653
17 LA 0.577 0.594 0.581 0.582 0.589 0.585
18 MA 0.292 0.312 0.292 0.408 0.458 0.412
19 MD 0.313 0.325 0.316 0.346 0.354 0.341
20 ME 0.454 0.462 0.449 0.511 0.540 0.518
21 MI 0.474 0.488 0.472 0.508 0.512 0.512
22 MN 0.449 0.464 0.446 0.466 0.495 0.464
23 MO 0.593 0.606 0.593 0.623 0.647 0.616
24 MS 0.581 0.590 0.587 0.582 0.586 0.588
25 MT 0.573 0.576 0.563 0.570 0.573 0.558
26 NC 0.486 0.499 0.482 0.488 0.496 0.482
27 ND 0.661 0.666 0.663 0.693 0.709 0.698
28 NE 0.602 0.613 0.597 0.641 0.647 0.636
29 NH 0.443 0.457 0.441 0.526 0.565 0.526
30 NJ 0.371 0.389 0.372 0.414 0.426 0.408
31 NM 0.410 0.421 0.405 0.465 0.475 0.459
32 NV 0.468 0.481 0.460 0.461 0.460 0.461
33 NY 0.340 0.358 0.346 0.345 0.364 0.360
34 OH 0.520 0.533 0.523 0.542 0.561 0.545
35 OK 0.673 0.685 0.676 0.680 0.697 0.680
36 OR 0.403 0.413 0.399 0.407 0.409 0.408
37 PA 0.468 0.480 0.468 0.497 0.502 0.486
38 RI 0.378 0.399 0.379 0.494 0.529 0.494
39 SC 0.560 0.574 0.558 0.559 0.564 0.553
40 SD 0.641 0.645 0.637 0.632 0.668 0.630
41 TN 0.620 0.634 0.621 0.637 0.645 0.636
42 TX 0.503 0.521 0.496 0.512 0.532 0.516
43 UT 0.603 0.609 0.592 0.598 0.610 0.583
44 VA 0.424 0.440 0.425 0.414 0.422 0.414
45 VT 0.318 0.320 0.313 0.377 0.420 0.367
46 WA 0.370 0.378 0.366 0.384 0.385 0.387
47 WI 0.474 0.486 0.474 0.507 0.537 0.509
48 WV 0.712 0.719 0.713 0.720 0.724 0.721
49 WY 0.726 0.726 0.724 0.728 0.733 0.726

Republican vote shares are calculated as in Equation 12. Two-equation forecast refers to real-time baseline
two-equation forecasts. Reduced form forecasts and conditional two-equation are described in Section 10.1.
Reduced form forecasts are from a single vote share equation model which includes the union of covariates
from both the turnout and vote share active sets. Two-equation and Reduced form forecasts use data
available as of October 14, 2020. Conditional two-equation forecasts are from the two-equation baseline
model estimated on data through October 14, 2020, but predicted turnouts are replaced with realized 2020
turnouts when calculating 2020 Republican vote share predictions. Two-equation forecasts were formed on
October 14, 2020 while reduced form and conditional two-equation forecasts are generated ex post only using
data available as of October 14, 2020.
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Table 17: State Level Forecasts of Republican Vote Shares (Vs) for 2020 under Alternative
Turnout Specifications using OCMT Algorithm

Pooled OCMT Forecasts Regional OCMT Forecasts
State Two-Equation Reduced Form Conditional Two-Equation Two-Equation Reduced Form Conditional Two-Equation

1 AL 0.641 0.667 0.645 0.654 0.642 0.660
2 AR 0.646 0.659 0.651 0.665 0.659 0.672
3 AZ 0.521 0.542 0.509 0.570 0.568 0.570
4 CA 0.337 0.360 0.335 0.340 0.323 0.338
5 CO 0.421 0.447 0.416 0.417 0.420 0.404
6 CT 0.398 0.429 0.400 0.479 0.556 0.468
7 DC 0.033 0.041 0.033 0.040 0.051 0.041
8 DE 0.415 0.442 0.419 0.469 0.482 0.477
9 FL 0.488 0.520 0.480 0.482 0.470 0.479
10 GA 0.511 0.535 0.510 0.525 0.514 0.527
11 IA 0.535 0.554 0.531 0.578 0.585 0.587
12 ID 0.677 0.684 0.663 0.655 0.655 0.636
13 IL 0.398 0.421 0.402 0.419 0.440 0.415
14 IN 0.604 0.618 0.606 0.582 0.628 0.583
15 KS 0.585 0.601 0.581 0.592 0.629 0.590
16 KY 0.655 0.676 0.654 0.669 0.665 0.672
17 LA 0.600 0.632 0.605 0.609 0.596 0.616
18 MA 0.318 0.350 0.318 0.391 0.470 0.382
19 MD 0.333 0.352 0.336 0.373 0.390 0.379
20 ME 0.465 0.480 0.460 0.479 0.561 0.474
21 MI 0.497 0.523 0.495 0.500 0.498 0.506
22 MN 0.465 0.491 0.460 0.501 0.520 0.509
23 MO 0.608 0.627 0.609 0.651 0.662 0.653
24 MS 0.602 0.626 0.609 0.610 0.594 0.618
25 MT 0.593 0.602 0.581 0.573 0.569 0.556
26 NC 0.504 0.531 0.499 0.508 0.496 0.506
27 ND 0.688 0.697 0.691 0.734 0.729 0.742
28 NE 0.611 0.627 0.605 0.693 0.674 0.695
29 NH 0.470 0.488 0.468 0.496 0.589 0.479
30 NJ 0.407 0.436 0.409 0.445 0.476 0.456
31 NM 0.442 0.467 0.436 0.479 0.477 0.476
32 NV 0.500 0.515 0.490 0.463 0.459 0.459
33 NY 0.369 0.393 0.375 0.342 0.390 0.361
34 OH 0.540 0.564 0.544 0.541 0.555 0.545
35 OK 0.687 0.706 0.691 0.700 0.696 0.700
36 OR 0.423 0.443 0.417 0.424 0.413 0.420
37 PA 0.499 0.520 0.499 0.555 0.555 0.556
38 RI 0.389 0.422 0.391 0.463 0.539 0.453
39 SC 0.571 0.593 0.568 0.581 0.568 0.581
40 SD 0.652 0.662 0.649 0.640 0.678 0.644
41 TN 0.642 0.659 0.642 0.655 0.647 0.657
42 TX 0.533 0.559 0.524 0.538 0.530 0.537
43 UT 0.615 0.621 0.599 0.606 0.611 0.585
44 VA 0.440 0.466 0.441 0.441 0.428 0.448
45 VT 0.333 0.334 0.327 0.361 0.438 0.333
46 WA 0.399 0.416 0.393 0.411 0.393 0.407
47 WI 0.495 0.515 0.494 0.505 0.533 0.508
48 WV 0.736 0.744 0.739 0.740 0.734 0.743
49 WY 0.750 0.751 0.749 0.736 0.734 0.734

Republican vote shares are calculated as in Equation 12. Two-equation forecast refers to real-time baseline
two-equation forecasts. Reduced form forecasts and conditional two-equation are described in Section 10.1.
Reduced form forecasts are from a single vote share equation model which includes the union of covariates
from both the turnout and vote share active sets. Two-equation and Reduced form forecasts use data
available as of October 14, 2020. Conditional two-equation forecasts are from the two-equation baseline
model estimated on data through October 14, 2020, but predicted turnouts are replaced with realized 2020
turnouts when calculating 2020 Republican vote share predictions. Two-equation forecasts were formed on
October 14, 2020 while reduced form and conditional two-equation forecasts are generated ex post only using
data available as of October 14, 2020.
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Appendix

The Appendix is organized as follows: Section S1 provides detail on relevant data and

sources. Section S2 gives an account of Least Absolute Shrinkage and Selection Operator

(Lasso) and One Covariate at a time Multiple Testing (OCMT) variable selection algorithms.

Section S3 provides details on the Diebold-Mariano (DM) test for forecast evaluation.

S1 Data

Descriptions, frequency, sources

Data has been cleaned and merged from several different publicly available sources. County-

level voting outcomes data are taken from the Massachussetts Institute of Technology (MIT)

Election Data and Science Lab.S1 County gross domestic product (GDP) measures are

obtained from the Bureau of Economic Analysis (BEA). Education, population, migration,

and urban-rural county classifications are from the United States Department of Agriculture

(USDA). For education, we fix values for all years using year 2000 values. We use population

levels in year 2000 for election years up through 2008 and year 2010 population levels for

election years 2012 to 2020. Migration measures total net international migration from

2010 to 2015, and we use this value for all years. Urban-rural classifications are reported

in 2010, and we use these values for all years in our data set. Therefore, data on county

education, migration, and urban-rural mix do not vary over time in our sample. Annual

median household income and poverty estimates are from the U.S. Census and typically

update with a lag ranging from one to two years. Information on religiosity across counties

comes from the 2010 survey provided by the Association of Religion Data Archives, and we

use these values for all years. Hence, religiosity does not vary over time in our sample. Data

on voting age population (VAP) are from the American Community 5-year surveys (ACS).

We use 2012-2016 VAP estimates to compute 2016 voter turnout, 2008-2012 estimates for

2012 voter turnout, and 2005-2009 estimates for 2008 voter turnout. Because we do not have

VAP estimates earlier than 2008, we interpolate 2004 turnout values using 2008 turnouts.

County-level unemployment rates are provided by the Bureau of Labor Statistics (BLS) and

county-level house price indices are taken from Zillow. State-level inflation is computed from

indices reported by the BEA. State level export-weighted real exchange rates are from the

S1The site URL is: https://electionlab.mit.edu/.
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Federal Reserve Bank of Dallas. Government employment growth, healthcare expenditures

and rent expenditures at the state level are taken from the BEA. In total, we analyze 3,107

counties from 48 of the U.S. Mainland states plus Washington D.C. The number of counties

by state is found in Table S.9.

County classifications change over time, and different data sets rely on different vintage

classifications. For these reasons, cleaning and merging the data required manual adjust-

ments for some of the observations. We describe data series and cleaning procedures for the

main variables of interest in more detail below.

County Federal Information Processing Standard (FIPS) code changes: Some

counties changed 5-digit FIPS codes over the period 2000-2016. For these counties, we

made adjustments to ensure different data sets can be merged properly. County 08014

(Colorado) did not exist until 2001 (it was created from 4 other Colorado counties). We add

08014’s post-2000 election votes to county 08059, Jefferson County, the largest of the counties

which contributed to 08014’s creation. The state of Virginia decided to merge county 51515

(“Bedford”) into county 51019 (“Bedford County”) in 2013, therefore county 51515 no longer

existed afterward. 2013. To account for this we allocate votes of county 51515 from 2004,

2008 and 2012 to those of county 51019, effectively combining the two counties over the

entire sample. County 46113 (South Dakota) was renamed to Oglala Lakota county in 2015

and given a new FIPs code: 46102.

County U.S. presidential votes: Data from the MIT Data and Science Lab provides

election results at the county level for years 2000, 2004, 2008, 2012, and 2016. We focus on

two-party vote share, hence rely on Republican and Democrat vote statistics across counties.

We also focus on the 48 mainland states plus Washington D.C., thus excluding Alaska and

Hawaii from our analysis. 2020 election results are taken from results published by Fox

News, Politico, and the New York Times.S2

Annual county GDP: Data from the BEA covers annual real (chained 2012 U.S. Dol-

lars) GDP across over 3,000 counties from 2001 to 2018. This yields annual growth rates

from 2002 to 2018. We interpolate 1999-2000 and 2000-2001 GDP growth rates with the

2001-2002 growth rate, for all counties. County GDP data has historically been updated

with a one-year lag every October. However the 2019 GDP data was not released until

December 2020.

Annual Virginia county GDP: For the State of Virginia, the BEA consolidates real

GDP data for 52 of the smaller counties into 23 groups of two to three counties each. In order

S22020 county election data can be found here: https://github.com/tonmcg/US County Level Election Results 08-
20.
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to match GDP to voting data, these consolidated GDP measures need to be matched back

to individual counties. To do so, for aggregated GDP assigned to a given group of counties,

we assign all counties within that group the GDP values given to the group. Therefore, we

assume counties within a group have the same real GDP growth rate.

County U.S. presidential voter turnout: We estimate voter turnout (V T ) as the

total two-party votes (Republican and Democrat) divided by the VAP, which we take from

the 5-year ACS. To compute V T , we rely on the 90% upper confidence interval of the

VAP estimate to avoid turnouts greater than 100%. The VAP measure is an estimate

over a 5-year period while the number of votes is a single snapshot in time.S3 We use

2012-2016 VAP estimates to compute 2016 voter turnout, 2008-2012 estimates for 2012

voter turnout, and 2005-2009 estimates for 2008 voter turnout. Because we do not have

VAP estimates earlier than 2008, we interpolate 2004 turnout values using 2008 turnouts.

Four county-year observations (from over 12,000) report V T values of greater than 1, likely

because of measurement error. For these cases, we use the average V T of adjacent countiesS4

For counties with a VAP-to-total population ratio larger than 1, we replace VAP for these

counties with the product of the county population with the average of VAP-to-population

ratio of surrounding counties (within 100 miles) which have VAP-to-population ratios less

than 1.

Biennial state U.S. midterm votes: We collect data on U.S. house votes for biennial

House elections by state from the MIT Election Data and Science Election Lab. Because the

House votes every two years, it may be a useful indicator for political momentum running up

to the presidential election, which occurs every four years. For the state of Vermont, where

Bernard Sanders (an Independent) has received consistent and significant vote share, we

consolidate his political affiliation with those of Democrats in order to remain consistent with

the two-party framework of this study. In order to merge with the remaining data, we impute

vote results of Maryland into Washington D.C. because the latter does not have voting

rights during these House elections. We use this data to compute two-party Republican vote

share variables using House election data, in a way that is analogous to county presidential

Republican vote share.

Religiosity: Data on religiosity is taken from the Association of Religion Data Archives.

Religiosity measures the proportion of county population adhering to a religion. Rates of

religious adherence can exceed 1 for some counties because survey participants can report

adherence to multiple religions or denominations. While this does not pose any serious issues,

S3Alternatively, intercensal and postcensal estimates, which the ACS estimates are based on, could be
used which provide snap shots instead of moving average estimates

S4The observations are: Harding County, New Mexico in years 2004, 2008, 2012; and Hanson County,
South Dakota in 2012.
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in order to keep the rate variable bounded between 0 and 1, for counties with greater than

100 percent religiosity rate, we replace county c’s religiosity rate with the local religiosity

rate, taken as the average religiosity rate of neighboring counties within 100 miles of c.

Monthly county house prices: We take monthly house price indices at the county

level from Zillow. These go back to the 90’s, but not for every county or every year-month.

We therefore estimate local county house price returns based on the average of counties

within 100 miles of county c, inclusive of county c. For counties with no data available,

we impute values using the cross-section average of all available local returns over the same

time period. For the election year 2016, logged annual house price changes are computed

as the average monthly change from July 2015 to June 2016. This is then annualized. For

each election year, the annualized return is computed similarly. This guarantees that the

data used are always available prior to the election. Along with annual house price changes,

we also compute short-term averages over the 3-month period of July-September of each

election year. The monthly house price data typically update with a two month lag.

Annual state rent expenditures: We compute annual log growth rates in state-

level rent expenditure using per capita personal consumption expenditures on housing and

utilities. These data are taken from the BEA and are typically updated with a one-year lag

every October.

Monthly county unemployment rates: We take monthly unemployment rates at

the county level from the BLS. We estimate local averages using all counties within 100

miles of county c, inclusive of county c. For election year 2016, we calculate annual average

unemployment based on July 2015 to June 2016. For each election year, the annual average

unemployment rate is computed over July of year t − 1 to June of year t. This guarantees

that the data used are available prior to the actual year t election. Along with annual

unemployment averages, we also compute short-term averages over the 3-month period of

July-September of each election year. The monthly unemployment data typically update

with a two month lag.

Quarterly state inflation: From the BEA, we take quarterly real GDP and nom-

inal GDP by state to compute a state-level quarterly GDP deflator as GDP Deflator =

(Nominal GDP/Real GDP)× 100. Inflation is calculated as the logged change form the pre-

vious quarter’s GDP deflator for each state. Because elections are held every November, we

use state-level inflation rate from year Q3 2015 - Q2 2016 for election year 2016, and so on

to guarantee data availability prior to each election. These data are taken from the BEA

and typically released with a 2-quarter lag.

Monthly state real effective exchange rates: State-level U.S. Dollar (USD) real

effective exchange rates (REER) are taken from the Federal Reserve Bank of Dallas. Monthly
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state-level REERs are computed using a trade-weighted average of USD exchange rates vis-

a-vis the primary export partners of that state. We compute logged monthly changes using

monthly REERs over July of year t − 1 to June of year t, averaging monthly changes to

compute a monthly average over the year, which is then annualized. So for election year

2016, the annualized change in the log REER is calculated from July 2015 to June 2016.

Along with annual average exchange rate changes, we also compute short-term averages over

the 3-month period of July-September of each election year. The monthly exchange rate

data typically updates with a three month lag.

Annual state healthcare expenditures: We compute annual log growth rates of state-

level cost of healthcare using per capita personal consumption expenditures on healthcare

by state. These data are taken from the BEA and are typically updated with a one year lag

every October.

Annual state government employment: We compute annual growth rates in the size

of local government employment by state, by computing the share of the state’s labor force

allocated to the local and state government sector. Annual growth rates are then computed

by taking log-differences. These data are taken from the BEA and are typically with a one

year lag every September or October.

Population density: We compute county population densities using 2000 and 2010

population estimates, divided by the total land area (based on 2000) of the county.

State mail-in vote policy: We also collect data at the state level measuring the ease

with which one can cast a vote by mail. Policies vary at the state level. In fact, some

states, namely Oregon, Utah, Colorado and Hawaii only accept votes by mail. We construct

a state-level indicator variable which takes values of (1,0,-1) depending on whether mail-in

voting is: 1 = the default voting method, 0= optional but open to everyone or -1= an excuse

is required to cast a mail-in vote. Underlying source for these data is FiveThirtyEight.com

and The National Conference of State Legislatures.

National incumbent party and incumbent president: To capture the incumbency

effects on voter turnout and election outcomes we consider two national incumbency indi-

cators, distinguishing between presidential and party incumbency. The “incumbent party

indicator” takes the value of 1 if on election day the president in power is Republican, and

-1 if he/she is a Democrat. The “incumbent president indicator” takes the value of 1 if the

president who is running for re-election is a Republican, takes the value of -1 if he/she is a

Democrat, and takes the value of 0 if neither of the two candidates is incumbent. These in-

dicators are considered on their own, as well as interacted with a number of other covariates.

This way we allow for a wide variety of incumbency effects (positive or negative) consid-

ered in the literature, without biasing the forecast results in favor or against the incumbent
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president or party.

Being economically ‘left-behind’

We take real GDP levels and compute annual log growth rates, denoted by

∆ycr,t = ln
Ycr,t
Ycr,t−1

, (S.1)

where Ycr,t is the real GDP of county c in region r during year t. County-level real GDP

growth is the main source of data used to construct a new measure representing the degree

to which resident of a particular county are, on average, economically ‘left behind’ (LB).

Consider an individual outcome variable of interest, in our case, real GDP Ycr,t for county c

in year t and its “local” (or “regional”) counterpart, defined by:

Y ∗cr,t =
N∑
c′=1

wc,c′Yc′r,t, (S.2)

whereN denotes the number of counties in the country as a whole, wc,c′ ≥ 0, and
∑N

c′=1wc,c′ =

1. Note that Y ∗cr,t is inclusive of c, but we can also compute Y ∗cr,t exclusive of c by setting

wc,c = 0. In practice, wc,c′ could be the neighborhood weights, within a given radius around

the cth location.

To consider a measure of “left-behind”, an obvious reference measure is to compare

Ycr,t or Y ∗cr,t to is the national (“global”) measure where wc,c′ = wc′ ∀ i. In practice the

national measure could be based on population weights. In what follows we denote national

(global) reference measure by Yt, the local/regional measure by Y ∗cr,t, and the individual

county measure by Ycr,t.

The extent to which county c is left behind relative to the nation, Yt, also depends on the

time horizon over which the individual/local measure is compared to the reference (national)

group. For example, county c can be left behind either individually, or locally, relative to

the national group over a period of h years. Accordingly, we consider the change from

ln(Ycr,t−h/Yt−h) to ln(Ycr,t/Yt), for a given horizon h. The extent to which c is individually

”left behind” is measured by

Gcr,t(h) =
1

h
∆h ln(Ycr,t/Yt) =

1

h
∆h ln(Ycr,t)−

1

h
∆h ln(Yt) = (S.3)

ln(Ycr,t)− ln(Ycr,t−h)

h
− ln(Yt)− ln(Yt−h)

h

if Gcr,t(h) < 0. County c is not left behind if Gcr,t(h) > 0. A measure of being left behind
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locally can be similarly defined as

G∗cr,t(h) =
1

h
∆h ln(Y ∗cr,t/Yt). (S.4)

It is clear that c can be left behind relative to the country as a whole, but not at the local

level and vice versa. Moreover, c could be left behind relative to local as well as national

measures.

To study the degree of left-behindedness at a relatively disaggregated level, we consider

annual real economic output across U.S. counties (excluding counties in Alaska and Hawaii)

as our outcome variable, Ycr,t. Our national measure Yt is simply the aggregate national U.S.

real output.S5 To compute local measures Y ∗cr,t, we consider a radius of 100 miles around

each county c (R = 100). In measuring Y ∗cr,t, all counties outside of 100 miles receive a weight

of 0, while the real output measures of all counties within 100 miles are equally weighted,

specifically

wc,c′ =

 1
NR
, if c′ is within 100 miles of c

0, otherwise

where the number of counties within 100 miles of c, inclusive of c, is NR.S6

S2 Variable Selection Algorithms

Least absolute shrinkage and selection operator (Lasso)

Our second set of forecasts are generated using the Lasso algorithm. Because we rely on

cross-validation to calibrate the trade-off between fit and parsimony, it is important to set the

numeric seed before running simulations - this ensures our results from Lasso algorithm are

replicable When running the program, we always set our seed equal to “123”. All covariates

are standardized to mean zero and unit standard deviation prior to estimation. In n-fold

cross-validation, we set n = 10 and our loss criteria is based on mean-squared error. The

model we select is that which has the smallest regularization penalty parameter yet which

still falls within 1-standard deviation of the model yielding the minimum MSE. The online

supplement of Chudik et al. (2020) contains further technical details providing computer

codes for implementation of OCMT and Lasso algorithms used in this paper.

S5We do not compute Yt; rather we take the data directly from the BEA.
S6Between-county distances are taken from the NBER database, specifically these are great-circle distances

calculated using the Haversine formula based on internal points in the geographic area.
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One covariate at a time multiple testing (OCMT)

We apply OCMT on both the pooled sample and on regional sub-samples, in both turnout

and voting regressions on their respective active sets. OCMT selects variables based on

multiple-testing corrected statistical significance. We define the critical value threshold as

cp(k, δ) = Φ−1
(
1− p

2kδ

)
, where k is the number of covariate in the active set, Φ−1(.) is the

inverse of the cumulative distribution of the standard normal variate, p is the nominal; size

of the test, and δ measures the degree to which multiple testing is taken into account. We

set δ = 1 in the first stage, and δ∗ = 2 in subsequent stages, and a p-value p = 0.05. Under

the pooled model, the p-values are derived from state-year clustered standard errors. For the

regional model, p-values are derived from state-clustered standard errors. This approach is

taken for both regressions of turnout and voting. We refer to the original paper for further

technical details.

S3 Diebold-Mariano Test for Cross-Section Forecasts

The classic DM test compares time-series forecasts. To formally evaluate forecasting accuracy

of our models, we adapt the DM test for assessing a single set of cross-sectional forecasts. Let

L(es) denote the loss function, where es is the forecats error for state s. Examples include

L(es) = |es| or L(es) = e2s, absolute or squared loss functions, respectively. Then, based a

cross-sectional sample of forecasts and realizations across 48 states plus D.C., namely with

S = 49, we have DM(a : b) =
∑S

s=1ws[L(esa) − L(esb)]. Considering the squared loss

function, we have DM(a : b) =
∑S

s=1ws(e
2
sa − e2sb). We suppose the loss-differential of the

two forecats follow the simple model e2sa − e2sb = αs + ηs, where αs is a fixed constant, and

ηs is a mean zero random variable distributed indepdently over s. Then averaging over the

s = 1, 2, ..., S states with their electoral college vote shares, ws, we have
∑S

s=1ws(e
2
sa−e2sb) =∑S

s=1wsαs +
∑S

s=1wsηs = ᾱw + η̄w. Under the null hypothesis H0 : ᾱw = 0, to be compared

to the alternative H1 : ᾱw < 0, when forecasts from model a is preferred to forecast from

model b, and vice versa if H1 : ᾱw > 0. Assuming ηs are independently distributed across s,

and
∑S

s=1w
2
s = O (S−1), then under H0, DM(a : b) is approximately normally distributed

with zero means and variance V (DMs) =
∑S

s=1w
2
sV ar(ηs). Since we have a single cross

section we further assume that V ar(ηs) = σ2
η, and note that V (DMs) =

(∑S
s=1w

2
s

)
σ2
η,

where σ2
η = E

(
S−1

∑S
s=1 η

2
s

)
. The DM test statistic can now be written as

ZDM(a : b) =

∑S
s=1ws(e

2
sa − e2sb)

σ̂η(
∑S

s=1w
2
s)

1
2

, σ̂2
η =

1

S

S∑
s=1

(e2sa − e2sb)2, (S.5)
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where (S.5) is the squared loss analog of DM test with absolute loss differential given in (14).

For absolute loss function, we need to replace e2sa and e2sb with |esa| and |esb|, respectively.

We can interpret one-sided tests as follows: If ZDM(a : b) > 0 and H0 is rejected, forecast b

is preferred to a. If ZDM(a : b) < 0 and H0 is rejected, forecast a is preferred to b.
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This online supplement is organized as follows: Section S1 describes selecting the func-

tional form of the election outcome variable. Section S2 derives the proof for consistency

of the two-stage estimation of the model of voter turnout and voting outcomes. Section

S3 provides ex post analysis of forecasts for the 2020 election using a the United States

Department of Agriculture – Agriculture Research Service (USDA) regional classification.

Section S4 provides ex post analysis of forecasts for the 2020 election generated from models

considering an extended, larger active set of covariates. Section S5 reports forecasts and

evaluation of the 2016 Presidential election using 2000-2012 as the training sample. Section

S6 presents additional figures and tables.

S1 Functional Form of the Outcome Variable

The standard two-party voting outcome in the literature is given by party vote share:

Vcr,t =
Rcr,t

Rcr,t +Dcr,t

, (S.1)

where Rcr,t is the number of Republican votes by county c of region r in election year t,

and Dcr,t is the number of Democratic votes. The outcome Vcr,t is equal to the Republican

share of the two-party vote. However, despite Vcr,t being the target variable, whether better

predictions are produced using Vcr,t or a transformation of Vcr,t (which is ultimately re-

transformed back) is an issue that needs to be addressed prior to forecasting. In this context,

we evaluate three different functional forms of the outcome variable summarized by V ′cr,t:
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V ′c,rt =

{
Vc,rt, ln(Vc,rt), ln

(
Vc,rt

1− Vcr,t

)}
, (S.2)

where the latter term is the main dependent variable we chose to use in our analysis – the

Republican log-odds of the two-party vote:

LROcr,t = ln

(
Vcr,t

1− Vcr,t

)
= ln

(
Rc,rt

Dc,rt

)
. (S.3)

Despite using LROcr,t in the regression, the target variable we wish to forecast remains the

Republican vote share over an election cycle, Vcr,t. If we rely on a model with a transformed

dependent variable, then its predictions must be re-transformed to match the units of the

actual target. While the adjusted R2 across models may suggest which specification best

explains the dependent variable, this does not account for re-transforming the prediction

back to the target variable. Therefore, to appropriately compare models under transformed

dependent variables, the prediction error from the transformed regressions must be adjusted

to be comparable across specifications. We follow the likelihood approach discussed in Section

11.7 of Pesaran (2015).

The conventional dependent variable in the political science literature is the (change

in) Republican vote share, Vcr,t, or the dependent variable corresponding to column 2 of

Table S.1. To select the best functional form for the dependent variable, standard errors

from the active set regression on, say, changes in the standard dependent variable Vcs,t can

be compared to the adjusted standard errors from the active set regressions under other

functional forms (columns 1 and 3). Adjustment factors must be applied for comparison.

For the column 1 dependent variable, ∆4

(
Vcr,t

1−Vcr,t

)
, we have the following log adjustment

factor:

ln z̄1 = − 1

NT

T∑
t=1

N∑
i=1

lnVcr,t −
1

NT

T∑
t=1

N∑
i=1

ln(1− Vcr,t), (S.4)

and for the column 3, with ∆4 lnVcr,t, the log adjustment factor is:

ln z̄3 = − 1

NT

T∑
t=1

N∑
i=1

lnVcr,t. (S.5)

The “Adjusted SE” in Table S.1 compares post-adjustment regression standard errors

(SE). The results show that regression performance under the traditional functional form

using simple vote shares (column 2) may be improved by using instead the change in log odds

ratio variable (column 1). The former has a regression standard error of 0.037, compared to

the adjusted standard error of 0.036 under the model where we transform the vote share into
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a log-odds ratio, ∆4 ln
(

Vcs,t
1−Vcr,t

)
. The log vote share, ∆4 lnVcr,t has the largest adjusted SEs.

Motivated by these results, we use changes in log-odds ratios as our dependent variable.

Table S.1: Functional Form of Voting Outcome Variable Regressed on Active Set

Dependent variable:

∆4 ln Vcr,t
1−Vcr,t ∆4Vcr,t ∆4 lnVcr,t

(1) (2) (3)

Adjusted SE 0.036 0.037 0.042
Observations 12,428 12,428 12,428
Adjusted R2 0.537 0.530 0.492

Sample period: 2004-2016. County Republican vote share, Vcr,t is defined as in Equation S.1. Regression fits
under different dependent variable transformations are compared using adjusted regression standard errors
reported in the row named Adjusted SE. Adjustments made based on different functional forms are described
in Section S1.
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S2 Consistency Proof of the Two-Stage Estimation

Here we establish consistency of the two-stage estimation of the recursive model, which we

write compactly as

y1 = X1β1 + u1,

y2 = γy1 + X2β2 + u2,

where X1 and X2 are T × k1 and T × k2 matrices of exogenous variables, coefficients β1 and

β2 are k1 × 1 and k2 × 1 vectors, and u1 and u2 are T × 1 vectors of errors. For instance,

let y1 and y2 represent voter turnout and the log odds ratio, respectively (y1 = V T and

y2 = DLRO). Notice that our recursive structure imposes that y2 does not enter the y1

equation. We assume that X1 and X2 are weakly exogenous such that

X′1u1

T

p→ 0,
X′1u2

T

p→ 0,
X′2u1

T

p→ 0,
X′2u2

T

p→ 0.

It then follows that β1 is consistently estimated by β̂1 = (X′1X1)
−1X′1y1. Using this esti-

mate, we obtained the fitted values, ŷ1 = X1β̂1 which can be used in the second stage to

consistently estimate θ = (γ1,β
′
2)
′ by

θ̂ = (Ẑ′Ẑ)−1Ẑ′y2, Ẑ = (ŷ1,X2).

To establish consistency of θ̂, we note that

y2 = γŷ1 + X2β2 + u2 + γ(y1 − ŷ1)︸ ︷︷ ︸
ξ

y2 = Ẑθ + ξ,

such that θ̂ = (Ẑ′Ẑ)−1Ẑ′(Ẑθ + ξ). Hence

θ̂ − θ =

(
Ẑ′Ẑ

T

)−1
Ẑ′ξ

T
.

But,

Ẑ′ξ

T
=

Ẑ′u2

T
+ γ

Ẑ′e1

T
,

e1 = y1 − ŷ1 = y1 −X1(X
′
1X1)

−1X′1y1,

= M1y1, M1 = I−X1(X
′
1X1)

−1X′1,
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and
Ẑ′e1

T
=

(
ŷ′1e1/T

X′2e1/T

)
.

Also, it readily follows that ŷ′1e1 = β̂
′
1X
′
1[M1y1] = 0, since X′1M1 = 0. Then, we have

T−1X′2e1 = T−1X′2M1(X1β1 + u1),

= T−1X′2M1u1

=
X′2u1

T
− X′2X1

T

(
X′1X1

T

)−1
X′1u1

T
p→ 0 .

Therefore, Ẑ′e1
T

p→ 0. Also,

Ẑ′u2

T
=

(
ŷ′1u2/T

X′2u2/T

)
,

and
ŷ′1u2

T
=

β̂
′
X′1u2

T

p→ 0,
X′1u2

T

p→ 0.

Hence, overall we have ˆT−1Z
′
ξ

p→ 0, and hence θ̂
p→ θ.

S3 Alternative Regional Classification

There are several regional classifications for U.S. states with the Bureau of Economic Analysis

(BEA) 8-region classification being one of them. In this section, as a robustness check,

we re-estimate the regional-based models under an alternative classification. Specifically

we consider the United States Department of Agriculture (USDA) five geographic areas to

generate region-based forecasts for 2020, again using data available as of October 14, 2020.S1

However it should be noted that this is an ex post analysis conducted after the election took

place.

Table S.6 reports vote share and electoral forecasts under the USDA-Lasso and USDA-

OCMT regional models, respectively. The USDA-Lasso model predicted 253 Republican

electoral votes compared to 249 by the baseline BEA regional-Lasso model (Table 3). Differ-

ences in total electoral vote forecasts is attributed to differing winning candidate predictions

for Arizona, Maine, Michigan, North Carolina, and Pennsylvania. The USDA-OCMT model

predicted 284 Republican electoral votes compared to 270 by the BEA regional-Lasso model

S1The five regions are Northeast, Midwest, Southeast, Plains, and Pacific West.
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resulting from differing winning candidate forecasts for Maine, Michigan, Minnesota, and

New Hampshire.

State-level Republican vote share forecasts are overall very similar whether using the

8-region BEA classification or 5-region USDA classification. The correlation between BEA

and USDA regional-based vote share forecasts is 0.986 and 0.987 under Lasso and OCMT

approaches, respectively. Moreover, the differences between BEA and USDA region-based

forecasts are not statistically significant. The electoral-weighted Diebold-Mariano (DM)

statistic is -0.013 for absolute loss differentials between the BEA regional-Lasso forecasts

and USDA regional-Lasso, and 1.53 when comparing BEA regional-OCMT forecasts with

USDA regional-OCMT forecasts.

S4 Extending the Active Set

It is well known that the performance of variable selection algorithms could depend on the

number of covariates in the active set relative to the sample size. Here we investigate the

robustness of our October 2020 forecasts in an ex post exercise where we extend the active

set for the change in log Republican odds (DLRO) equation, by adding two new categories

of covariates to the October 2020 active set.S2

First, we consider an indicator variable which takes the value of +1 ( respectively -

1) for state-year observations which correspond to the running Republican (Democratic)

candidates’ home state, and zero otherwise. For 2016, we do not include such an indicator

because both candidates, Trump and Clinton, had designated home states of New York. We

also consider interactions of this indicator variable with unemployment rates (1-year and

3-month), house price changes (1-year and 3-month), and the median income, yielding a

total of six additional covariates to be added to the active set.S3

Second, we introduce several interactive effects where we interact four covariates with

little to no time-series variation, such as education, migration, urban-rural mix, and pop-

ulation density, with other covariates that exhibit large time-series variation such as house

price changes (1-year and 3-month), unemployment rates (1-year and 3-month), and me-

dian household income. This effectively allows for a greater degree of heterogeneity in the

response of county vote share to changes in house prices, unemployment, and income. We

then included only those interactive variables whose correlations with their underlying vari-

ables were not too high. Specifically, denoting the two types of variables by x and y, we

S2We do not add any new variables to extend the active set for the voter turnout (V T ), which is not the
primary object of interest.

S3Analysis using an extended active set was carried out on recommendation of one of the reviewers.
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then considered the correlations of x× y with x and y, and only kept x× y variables if both

correlations, cor(x × y, y) and cor(x × y, x), were less than 0.50 in absolute value. Due to

the slow-moving nature of x relative to y, many of the interacted variables had very high

correlations with y.

This resulted in three new interacted covariates: migration × house prices (M3); rural ×
house prices (L1); rural × house prices (M3); plus the six new covariates reflecting candidate

home state for a total of nine new covariates to extend the DLRO active set. The list of all

additional covariates is provided in Table S.2. We re-estimate and generate ex post forecasts

Table S.2: New Covariates Added to the Active Set for Changes in Log Republican Odds
(DLRO) ex post Analysis

Covariate Description Mean St. Dev. Regional Coverage

Candidate state indicator taking 1 when for Republican candidate’s home state, 0.005 0.200 State
-1 for Democrat candidate’s home state, 0 otherwise

Candidate state × unemployment (L1) pstate interacted with unemployment (L1) 0.000 0.013 County
Candidate state × umemployment (M3) pstate interacted with unemployment (M3) 0.000 0.013 County
Candidate state × house price (L1) pstate interacted with house price (L1) 0.001 0.009 County
Candidate state × house price (M3) pstate interacted with house price (M3) 0.001 0.012 County
Candidate state × ln(median income) pstate interacted with ln(median income) 0.049 2.123 County
Migration × house price (M3) migration interacted with house price (M3) 0.000 0.001 County
Rural × house price (L1) rural interacted with house price (L1) 0.010 0.134 County
Rural × house price (M3) rural interacted with house price (M3) 0.009 0.168 County

New variables extending the DLRO active set provided in Table 2, with further detail on variables and
descriptions also available in Section S1 of the Appendix.

for the 2020 election using the data available as of October 2020 with the extended DLRO

active set. We consider both the pooled-OCMT and pooled-Lasso forecasts as the pooled

models allow for all variables across different levels of regional coverage to be considered.

The extended active set contains a total of 40 covariates. The number of covariates selected

by OCMT decreases from 21 to 20. No new covariates were selected, and population density

falls out from the selected covariates.S4 The number of selected covariates by Lasso increases,

rising from 21 to 29, selecting seven of the 9 new covariates from the extended set.S5

Table S.7 reports the state-level vote share and electoral college forecasts when using the

extended active set for DLRO. As can be seen, extending the active set does not affect

our October 2020 electoral college forecasts, with 188 Republican by pooled-Lasso, 236 by

pooled-OCMT, despite the differences in selected variables. The Republican vote share

forecasts also do not change in any substantial way, as the October baseline forecasts share

very high correlations with the expost forecasts under the extended active set (correlations of

S4This is due to the fact that as the number of covariates in the active set rises, the critical value threshold
also rises because it depends on the number of covariates k, and could end up selecting fewer covariates from
the original active set. See Section S2 of the Appendix for further details on the OCMT algorithm.

S5Lasso selecting relatively more variables than OCMT is consistent with Monte Carlo studies reported in
Chudik et al. [2018].

S7



0.999 for both pooled-Lasso and pooled-OCMT with their respective October baseline state

vote share forecasts).

Popular vote forecasts also do not change very much, but do improve slightly. The two-

party mainland Republican vote share forecasts with the extended active set are 0.456 and

0.477 using Lasso and OCMT, respectively, as compared to the October baselines of 0.453

and 0.476, respectively, and the 2020 realized share of 0.477.

S5 2016 Presidential Forecasts Based on 2000-2012 as

the Training Sample

This section evaluates ex ante forecasts of the 2016 Presidential Election using the Lasso

and OCMT selection algorithms over the 2000-2012 training sample. We recursively estimate

the panel regressions (4) and (2) subject to the identifying restrictions, δr = 0 and apply

variable selection. These selected regressions are then used to generate out-of-sample 2016

election forecasts at the county level. We consider both a national pooled model and a model

which allows for heterogeneity across BEA regions. We refer to these as pooled and regional

model/forecasts, respectively. We only model the 48 U.S. mainland states plus the District

of Columbia. We do not model Hawaii or Alaska.

S5.1 Pooled and regional forecasts

To produce 2016 out-of-sample forecasts, we the model trained over the 2000-2012 period,

feeding in data up to but preceding the November election of 2016. The contenders were

Democratic candidate Hillary Clinton and Republican candidate Donald Trump. Forecast

results are provided for two-party: state-level votes, electoral votes, and the overall U.S.

Mainland national votes. Tables with electoral outcomes for a subset of notable swing states

are also included.

State level forecast results for 2016 are reported in Table S.8. These include state election

outcomes and forecasts for the Republican vote share, Vs s = 1, 2, ..., 49, along with the

forecasts of Electoral College votes for the Republican candidate. The table reports pooled

and regional forecasts along with pooled and regional forecasts for Lasso-OCMT average

forecasts.

It is clear that, irrespective of which algorithm is used for variable selection, the pri-

mary difference between the forecasts is whether we allow for regional heterogeneity or not.

Pooled forecasts predict a Democratic victory whilst the regional forecasts correctly predict

a Republican victory. For example, the pooled model using Lasso algorithm predicts Re-
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Figure S.1: Absolute Prediction Errors for changes in 2016 Log Republican Odds
(DLROcr,2016) across Counties using the Lasso Estimation Algorithm
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Absolute prediction errors for changes in log Republican odds by county, computed as |DLROcr,2016 −
D̂LROcr,2016|.

Figure S.2: Absolute Prediction Errors for changes in 2016 Log Republican Odds
(DLROcr,2016) across Counties using the OCMT Estimation Algorithm
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Absolute prediction errors for changes in log Republican odds by county, computed as |DLROcr,2016 −
D̂LROcr,2016|.
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publican winning 253 electoral college votes, whilst if we allow for regional heterogeneity the

number of electoral votes won by the Republican candidate is predicted to be 308. Based on

the realized vote shares, Trump would have won 305 electoral college votes - although as it

turned out he received 304 electoral votes since some electors did not follow the state level

popular vote outcomes.S6 A very similar conclusion emerges if we use OCMT algorithm.

Pooled-OCMT would have predicted 265 electoral votes for Trump, as compared to 307 elec-

toral votes under if we allow for regional heterogeneity. These results clearly highlight the

importance of heterogeneity and could explain the failure of many professional forecasters

to correctly predict the outcome of the 2016 election.

Statistical forecast comparisons based on county-level forecasts provide a similar pic-

ture. Figures S.1 and S.2 present the spatial distribution of absolute prediction errors

across mainland U.S. counties for the change in the Republican log-odds ratio, namely

|DLROcr,2016 − D̂LROcr,2016|. Clearly, some counties, regions and states were more diffi-

cult to forecast than others. The Midwest exhibits particularly high prediction errors as

seen by its generally darker shade. However, the reduction in forecast errors is noticeable

when comparing the pooled forecasts against the regional forecasts. On average across coun-

ties, absolute prediction errors are about 10 percent lower under the regional model for both

Lasso and OCMT. It is worth noting, however, that some county predictions fare better

under the pooled model, specifically those located in the southwestern part of the U.S.

S5.2 Swing state forecasts

U.S. presidential elections usually come down to the results from key swing states. Therefore

a model that predicts the swing states well is likely to go a long way in correctly forecasting

the election. We consider the following 12 states as key swing states: Colorado, Florida,

Iowa, Michigan, Minnesota, Nevada, New Hampshire, North Carolina, Ohio, Pennsylvania,

Virginia, and Wisconsin. Figures S.3 and S.4 focus on the county-level prediction errors for

these swing states. Both Lasso and OCMT regional models improve upon Lasso and OCMT

pooled predictions across swing states broadly noted by the visually apparent reduction in

absolute prediction errors.

The improvement in county-level predictions also have important implications for the na-

tional outcomes. Table S.3 shows the realized and predicted electoral college votes among the

key swing states. The Republican candidate won 114 electoral votes from the swing states in

2016 out of the possible number of 156. Comparing the pooled and regional models, the re-

gional models markedly outperform the pooled models in terms of swing state forecasts. The

S6See https://en.wikipedia.org/wiki/2016 United States presidential election

S10



Figure S.3: Absolute Prediction Errors for changes in 2016 Log Republican Odds
(DLROcr,2016) across Counties in Swing States using the Lasso Estimation Algorithm

      Lasso Pooled Model       Lasso Regional Model

Absolute prediction errors for changes in log Republican odds by county, computed as |DLROcr,2016 −
D̂LROcr,2016|.

Figure S.4: Absolute Prediction Errors for changes in 2016 Log Republican Odds
(DLROcr,2016) across Counties in Swing States using the OCMT Estimation Algorithm

      OCMT Pooled Model       OCMT Regional Model

Absolute prediction errors for changes in log Republican odds by county, computed as |DLROcr,2016 −
D̂LROcr,2016|.
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regional-Lasso and regional-OCMT models predicted the Republican candidate winning 117

and 109 electoral votes in the swing states, respectively. By contrast, the pooled-Lasso and

OCMT models predicted 62 and 74 Republican electoral votes, respectively, which resulted

the pooled models to forecast an overall presidential victory for the Democratic candidate

in 2016.

Table S.3: 2016 Swing State Pooled and Regional Republican Electoral College Vote Fore-
casts

Pooled Forecasts Regional Forecasts
State ds Realized Lasso OCMT Lasso OCMT

CO 9 0 0 0 9 9
FL 29 29 29 29 29 29
IA 6 6 0 6 6 6
MI 16 16 0 0 0 16
MN 10 0 0 0 10 0
NC 15 15 15 15 15 15
NH 4 0 0 0 0 0
NV 6 0 0 6 0 6
OH 18 18 18 18 18 18
PA 20 20 0 0 20 0
VA 13 0 0 0 0 0
WI 10 10 0 0 10 10

All Swing Votes 156 114 62 74 117 109

Column ds refers to total number of electoral votes per state (Equation 7). Forecasts are the model implied
number of Republican electoral college votes. Regional forecasts are generated using the eight separate panel
regressions for the eight BEA regions.

Figure S.5 compares swing state predicted Republican vote shares (Vs) obtained using

the Lasso algorithm. The regional-Lasso model correctly predicted 9 of the 12 swing states

outcomes, namely Florida, Iowa, Nevada, New Hampshire, North Carolina, Ohio, Pennsyl-

vania, Virginia and Wisconsin. The regional-OCMT model also correctly predicted 9 of 12

swing states, namely Florida, Iowa, Michigan, Minnesota, New Hampshire, North Carolina,

Ohio, Virginia, Wisconsin (see Figure S.6). One swing state mis-predicted by both Lasso and

OCMT regional models but correctly predicted by both pooled models was Colorado. Mean-

while the most noticeable improvement from using the regional models over pooled models

can be seen with Wisconsin, a Midwest swing state. The state voted Republican in 2016,

allocating 10 electoral votes to the Republican candidate. Both the Lasso and OCMT pooled

models predicted a Democratic winner in Wisconsin. By contrast, both regional-Lasso and

OCMT models predicted a Republican win in Wisconsin.

The pooled models also failed to correctly predict Pennsylvania, a major swing state

S12



Figure S.5: Swing State Forecasts and Realized Republican Vote Share (Vs) for 2016 using
the Lasso Estimation Algorithm
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Figure S.6: Swing State Forecasts and Realized Republican Vote Share (Vs) for 2016 using
the OCMT Estimation Algorithm
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with 20 electoral votes. The regional-Lasso model correctly predicted the Republican win

in Pennsylvania. The Republican victory in Michigan was also mis-predicted under both

pooled model specifications, but correctly predicted by the regional-OCMT model.

S5.3 2016 forecasts for U.S. mainland national vote

The U.S. mainland national Republican vote share forecasts (Vt) are reported in Table S.4.

It is interesting that the pooled forecasts do better than the regional forecasts at predicting

the aggregate outcomes, irrespective of whether the OCMT or the Lasso algorithm is used.

The pooled Lasso (OCMT) model predicted a Republican vote share of 0.494 (0.499)

which are closer to the realized value of 0.489, compared to 0.510 (0.514) predicted using

the regional-Lasso (regional-OCMT) model.
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Table S.4: 2016 Two-Party Republican US. Mainland Vote Share and National Electoral
College Forecasts

Pooled Forecasts Regional Forecasts
Realized Lasso OCMT Lasso OCMT

Vote Share (Vs) 0.489 0.494 0.499 0.510 0.514
Electoral College Votes 304 253 265 308 307

Realized U.S. mainland vote refers to 2016 Republican share of two-party votes across mainland U.S. states
plus Washington D.C. To produce U.S. mainland vote share forecasts, Equation 12 is applied to the sum
of predicted Republican and Democrat votes across U.S. mainland states plus Washington D.C. Regional
forecasts are generated using the eight separate panel regressions for the eight BEA regions. Electoral
college votes refer to realized and predicted national Republican electoral college votes, and assumes Hawaii
casts her electoral votes for the Democratic candidate and Alaska casts her electoral votes for the Republican
candidate. Electoral college forecasts determined following Equation 7. Forecasts are formed using 2000-2012
as the training sample.

To summarize, allowing for parameter heterogeneity across regions considerably improves

2016 ex ante forecasts of both state popular and electoral outcomes when compared to pool-

ing approaches. These results are consistent with regional heterogeneity being an important

feature of the U.S. electoral landscape. Homogeneity within regions but heterogeneity across

regions can arise when people with similar preferences geographically cluster despite the

presence of considerable diversity at the national level. Our findings are consistent with that

idea, as our regional model’s implicit assumption is that parameters vary across U.S. geo-

graphical regions, but are constant within regions. While the regional models help forecast

the electoral college victory of the Republican party in 2016, the pooled models are better at

forecasting the overall U.S. mainland vote. Political polarization across regions coupled with

disproportionate allocation of electoral votes relative to state populations may be one reason

for such deviations. For robustness, we report 2016 forecasts under a Lasso and OCMT

averaged model in table S.8. The averaged model takes Lasso and OCMT county-level pre-

dictions of Republican and Democratic votes and averages them together before aggregating

to state-level results. Averaging the regional models also predicts a Republican victory in

2016. The regional-average prediction of Republican electoral votes was higher than individ-

ual models: 330 (2016 actual was 304). By contrast, individual regional models predicted

308 (Lasso) and 307 (OCMT), for 2016 respectively. The higher vote count of the average

model is driven by switched electoral votes for some swing states. For example, regional-

OCMT predicted 0 republican electoral votes for Minnesota, 7 from Oregon, and 0 from

Pennsylvania. The regional-averaged model flipped these predictions (10 from Minnesota,

0 from Oregon, 20 from Pennsylvania). Hence a difference of 13 electoral votes between

the regional-OCMT prediction and the regional-average prediction. For 2020, the regional-
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averaged model predicts a Democratic electoral victory by a single vote. This reflects the

different forecasts under the individual regional-OCMT (which predicts Republican) and

regional-Lasso (which predicts Democrat) models.
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S6 Additional Figures and Tables

Table S.5: Bureau of Economic Analysis regional classification with Swing States designated
in bold

BEA Region States

1 New England ME, NH, VM, MA, RI, CT
2 Mideast NY, NJ, PA, DE, MD, DC
3 Southeast VA, NC, SC, GA, FL, KY, TN, AL, MS, AR, LA, WV
4 Great Lakes MI, OH, IN, IL, WI
5 Plains MN, MO, KS, NE, IA, SD, ND
6 Rocky Mountains MT, ID, WY, UT, CO
7 Southwest TX, OK, NM, AZ
8 Far West CA, NV, WA, OR, AK, HI
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Figure S.7: Bureau of Economic Analysis Regions
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Figure S.8: Histogram of Voter Turnout (V T ) over the period 2004-2016 at Mainland U.S.
and Regional Levels
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Figure S.9: Histogram of changes in Log Republican Odds Ratio (DLRO) over 2004-2016
at Mainland U.S. and Regional Levels
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Figure S.10: 2020 State Republican Vote Share Forecasts, Two-Equation versus Reduced
Form and Conditional Two-Equation using Lasso Algorithm
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Republican vote shares are calculated as in Equation 12. Two-equation forecast refers to real-time baseline
two-equation forecasts. Reduced form forecasts and conditional two-equation are described in Section 10.1.
Reduced form forecasts are from a single vote share equation model which includes the union of covariates
from both the turnout and vote share active sets. Two-equation and Reduced form forecasts use data
available as of October 14, 2020. Conditional two-equation forecasts are from the two-equation baseline
model estimated on data through October 14, 2020, but predicted turnouts are replaced with realized 2020
turnouts when calculating 2020 Republican vote share predictions. Sample correlations reported as ρ with
corresponding p-value.
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Figure S.11: 2020 State Republican Vote Share Forecasts, Two-Equation versus Reduced
Form and Conditional Two-Equation using OCMT Algorithm
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Republican vote shares are calculated as in Equation 12. Two-equation forecast refers to real-time baseline
two-equation forecasts. Reduced form forecasts and conditional two-equation are described in Section 10.1.
Reduced form forecasts are from a single vote share equation model which includes the union of covariates
from both the turnout and vote share active sets. Two-equation and Reduced form forecasts use data
available as of October 14, 2020. Conditional two-equation forecasts are from the two-equation baseline
model estimated on data through October 14, 2020, but predicted turnouts are replaced with realized 2020
turnouts when calculating 2020 Republican vote share predictions. Sample correlations reported as ρ with
corresponding p-value.
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Table S.6: State Level Region-based Forecasts of Republican Vote Shares (Vs) for 2020 under
the USDA-ARS 5-Region Classification

USDA-Lasso USDA-OCMT

State V̂s EC Votes V̂s EC Votes

AK N/A 3 N/A 3
AL 0.651 9 0.657 9
AR 0.659 6 0.664 6
AZ 0.499 0 0.504 11
CA 0.292 0 0.344 0
CO 0.423 0 0.438 0
CT 0.464 0 0.464 0
DC 0.039 0 0.041 0
DE 0.466 0 0.468 0
FL 0.489 0 0.497 0
GA 0.523 16 0.533 16
HI N/A 0 N/A 0
IA 0.516 6 0.517 6
ID 0.644 4 0.673 4
IL 0.421 0 0.417 0
IN 0.591 11 0.595 11
KS 0.578 6 0.586 6
KY 0.641 8 0.645 8
LA 0.592 8 0.599 8
MA 0.373 0 0.375 0
MD 0.360 0 0.369 0
ME 0.495 0 0.503 4
MI 0.496 0 0.504 16
MN 0.454 0 0.456 0
MO 0.624 10 0.625 10
MS 0.590 6 0.598 6
MT 0.591 3 0.602 3
NC 0.508 15 0.518 15
ND 0.700 3 0.714 3
NE 0.641 5 0.661 5
NH 0.513 4 0.527 4
NJ 0.439 0 0.447 0
NM 0.470 0 0.491 0
NV 0.453 0 0.466 0
NY 0.363 0 0.370 0
OH 0.536 18 0.544 18
OK 0.686 7 0.696 7
OR 0.388 0 0.423 0
PA 0.545 20 0.553 20
RI 0.456 0 0.450 0
SC 0.575 9 0.590 9
SD 0.636 3 0.644 3
TN 0.647 11 0.647 11
TX 0.527 38 0.538 38
UT 0.590 6 0.621 6
VA 0.462 0 0.476 0
VT 0.361 0 0.366 0
WA 0.363 0 0.408 0
WI 0.515 10 0.517 10
WV 0.739 5 0.748 5
WY 0.739 3 0.747 3

All Votes 253 284

Republican vote shares are calculated as in Equation 12. EC Votes refer to the predicted number of Re-
publican electoral college votes. All Votes accumulates U.S. Mainland electoral college votes, and assumes
Hawaii casts her electoral votes for the Democratic candidate and Alaska casts her electoral votes for the
Republican candidate. Regional forecasts are generated using the five separate panel regressions for the five
USDA-ARS regions. Forecasts are generated ex post only using data available as of October 14, 2020.

S22



Table S.7: State Level Forecasts of Republican Vote Shares (Vs) for 2020 under the Extended
Active Set for Changes in Log Republican Odds (DLRO)

Pooled-Lasso Pooled-OCMT

State V̂s EC Votes V̂s EC Votes
AK N/A 3 N/A 3
AL 0.629 9 0.642 9
AR 0.629 6 0.647 6
AZ 0.495 0 0.521 11
CA 0.309 0 0.337 0
CO 0.405 0 0.422 0
CT 0.376 0 0.399 0
DC 0.032 0 0.033 0
DE 0.408 0 0.416 0
FL 0.467 0 0.488 0
GA 0.491 0 0.511 16
HI N/A 0 N/A 0
IA 0.523 6 0.535 6
ID 0.665 4 0.677 4
IL 0.382 0 0.399 0
IN 0.583 11 0.604 11
KS 0.575 6 0.585 6
KY 0.639 8 0.655 8
LA 0.580 8 0.601 8
MA 0.296 0 0.318 0
MD 0.315 0 0.333 0
ME 0.456 0 0.465 0
MI 0.480 0 0.498 0
MN 0.450 0 0.466 0
MO 0.593 10 0.608 10
MS 0.584 6 0.602 6
MT 0.570 3 0.593 3
NC 0.488 0 0.504 15
ND 0.655 3 0.688 3
NE 0.598 5 0.611 5
NH 0.449 0 0.470 0
NJ 0.379 0 0.407 0
NM 0.412 0 0.442 0
NV 0.472 0 0.500 6
NY 0.346 0 0.369 0
OH 0.523 18 0.540 18
OK 0.671 7 0.687 7
OR 0.407 0 0.423 0
PA 0.473 0 0.500 0
RI 0.384 0 0.389 0
SC 0.561 9 0.572 9
SD 0.638 3 0.652 3
TN 0.621 11 0.642 11
TX 0.502 38 0.534 38
UT 0.600 6 0.615 6
VA 0.425 0 0.440 0
VT 0.320 0 0.333 0
WA 0.374 0 0.399 0
WI 0.477 0 0.496 0
WV 0.714 5 0.737 5
WY 0.722 3 0.750 3

All Votes 188 236

Republican vote shares are calculated as in Equation 12. EC Votes refer to the predicted number of Republi-
can electoral college votes. All Votes accumulates U.S. Mainland electoral college votes, and assumes Hawaii
casts her electoral votes for the Democratic candidate and Alaska casts her electoral votes for the Republican
candidate. DLRO equation forecast considers the extended active set which contains the variables found
in Table 2 along with those in Table S.2. Forecasts are generated ex post only using data available as of
October 14, 2020.
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Table S.8: State Level Forecasts of Republican Vote Shares (Vs) and Electoral Votes for 2016
Elections

Lasso OCMT Lasso-OCMT Average
Total EC 2016 Realized Pooled Forecasts Regional Forecasts Pooled Forecasts Regional Forecasts Pooled Forecasts Regional Forecasts

State (ds) Vs EC Votes V̂s EC Votes V̂s EC Votes V̂s EC Votes V̂s EC Votes V̂s EC Votes V̂s EC Votes

AK 3 0.584 3 N/A 3 N/A 3 N/A 3 N/A 3 N/A 3 N/A 3
AL 9 0.644 9 0.635 9 0.649 9 0.635 9 0.642 9 0.635 9 0.646 9
AR 6 0.643 6 0.646 6 0.677 6 0.651 6 0.664 6 0.649 6 0.671 6
AZ 11 0.519 11 0.557 11 0.542 11 0.560 11 0.540 11 0.559 11 0.541 11
CA 55 0.339 0 0.395 0 0.396 0 0.392 0 0.424 0 0.394 0 0.410 0
CO 9 0.474 0 0.469 0 0.536 9 0.482 0 0.516 9 0.475 0 0.526 9
CT 7 0.429 0 0.403 0 0.444 0 0.410 0 0.433 0 0.406 0 0.439 0
DC 3 0.043 0 0.075 0 0.080 0 0.074 0 0.076 0 0.074 0 0.078 0
DE 3 0.440 0 0.392 0 0.434 0 0.410 0 0.413 0 0.401 0 0.424 0
FL 29 0.506 29 0.517 29 0.521 29 0.510 29 0.511 29 0.514 29 0.516 29
GA 16 0.527 16 0.557 16 0.568 16 0.561 16 0.566 16 0.559 16 0.567 16
HI 4 0.326 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0
IA 6 0.551 6 0.498 0 0.514 6 0.505 6 0.507 6 0.502 6 0.510 6
ID 4 0.683 4 0.690 4 0.726 4 0.698 4 0.713 4 0.694 4 0.719 4
IL 20 0.410 0 0.429 0 0.448 0 0.439 0 0.484 0 0.434 0 0.466 0
IN 11 0.601 11 0.576 11 0.594 11 0.584 11 0.621 11 0.580 11 0.608 11
KS 6 0.611 6 0.625 6 0.657 6 0.628 6 0.665 6 0.626 6 0.661 6
KY 8 0.657 8 0.637 8 0.668 8 0.645 8 0.660 8 0.641 8 0.664 8
LA 8 0.602 8 0.605 8 0.621 8 0.607 8 0.615 8 0.606 8 0.618 8
MA 11 0.353 0 0.356 0 0.428 0 0.382 0 0.415 0 0.369 0 0.422 0
MD 10 0.360 0 0.365 0 0.395 0 0.377 0 0.371 0 0.371 0 0.383 0
ME 4 0.486 1 0.429 0 0.426 0 0.445 0 0.440 0 0.437 0 0.433 0
MI 16 0.501 16 0.468 0 0.495 0 0.476 0 0.529 16 0.472 0 0.512 16
MN 10 0.492 0 0.483 0 0.513 10 0.493 0 0.494 0 0.488 0 0.504 10
MO 10 0.617 10 0.584 10 0.622 10 0.591 10 0.622 10 0.588 10 0.622 10
MS 6 0.591 6 0.581 6 0.592 6 0.579 6 0.585 6 0.580 6 0.588 6
MT 3 0.611 3 0.577 3 0.626 3 0.593 3 0.625 3 0.585 3 0.626 3
NC 15 0.519 15 0.527 15 0.535 15 0.531 15 0.523 15 0.529 15 0.529 15
ND 3 0.698 3 0.642 3 0.634 3 0.633 3 0.620 3 0.638 3 0.627 3
NE 5 0.635 5 0.639 5 0.653 5 0.647 5 0.655 5 0.643 5 0.654 5
NH 4 0.498 0 0.471 0 0.499 0 0.488 0 0.493 0 0.480 0 0.496 0
NJ 14 0.427 0 0.400 0 0.448 0 0.413 0 0.414 0 0.406 0 0.431 0
NM 5 0.453 0 0.455 0 0.440 0 0.454 0 0.444 0 0.454 0 0.442 0
NV 6 0.487 0 0.495 0 0.487 0 0.503 6 0.534 6 0.499 0 0.509 6
NY 29 0.382 0 0.339 0 0.368 0 0.346 0 0.347 0 0.342 0 0.358 0
OH 18 0.543 18 0.506 18 0.535 18 0.511 18 0.565 18 0.508 18 0.551 18
OK 7 0.693 7 0.686 7 0.675 7 0.686 7 0.676 7 0.686 7 0.675 7
OR 7 0.438 0 0.461 0 0.459 0 0.464 0 0.506 7 0.463 0 0.482 0
PA 20 0.504 20 0.481 0 0.524 20 0.488 0 0.487 0 0.484 0 0.506 20
RI 4 0.417 0 0.349 0 0.395 0 0.360 0 0.391 0 0.355 0 0.393 0
SC 9 0.575 9 0.575 9 0.587 9 0.576 9 0.582 9 0.576 9 0.584 9
SD 3 0.660 3 0.621 3 0.638 3 0.627 3 0.640 3 0.624 3 0.639 3
TN 11 0.636 11 0.625 11 0.659 11 0.633 11 0.653 11 0.629 11 0.656 11
TX 38 0.547 36 0.600 38 0.564 38 0.601 38 0.574 38 0.601 38 0.569 38
UT 6 0.624 6 0.749 6 0.801 6 0.764 6 0.785 6 0.757 6 0.793 6
VA 13 0.472 0 0.483 0 0.482 0 0.496 0 0.468 0 0.490 0 0.475 0
VT 3 0.348 0 0.321 0 0.288 0 0.333 0 0.321 0 0.327 0 0.304 0
WA 12 0.412 0 0.444 0 0.446 0 0.445 0 0.495 0 0.444 0 0.470 0
WI 10 0.504 10 0.484 0 0.501 10 0.498 0 0.527 10 0.491 0 0.514 10
WV 5 0.722 5 0.668 5 0.684 5 0.661 5 0.682 5 0.664 5 0.683 5
WY 3 0.757 3 0.732 3 0.758 3 0.735 3 0.746 3 0.734 3 0.752 3

All Votes 538 304 253 308 265 307 259 330

Republican vote shares are calculated as in Equation 12. Column ‘Total EC (ds)’ refers to the total number of electoral votes per
state (Equation 7). EC Votes refer to the predicted number of Republican electoral college votes. All Votes accumulates U.S.
Mainland electoral college votes, and assumes Hawaii casts her electoral votes for the Democratic candidate and Alaska casts
her electoral votes for the Republican candidate. Regional forecasts are generated using the eight separate panel regressions for
the eight BEA regions. Models generating 2016 forecasts were trained using the 2000-2012 sample.

S24



Table S.9: State and County Sample

State Counties

1 AK -
2 AL 67
3 AR 75
4 AZ 15
5 CA 58
6 CO 63
7 CT 8
8 DC 1
9 DE 3

10 FL 67
11 GA 159
12 HI -
13 IA 99
14 ID 44
15 IL 102
16 IN 92
17 KS 105
18 KY 120
19 LA 64
20 MA 14
21 MD 24
22 ME 16
23 MI 83
24 MN 87
25 MO 115
26 MS 82
27 MT 56
28 NC 100
29 ND 53
30 NE 93
31 NH 10
32 NJ 21
33 NM 33
34 NV 17
35 NY 62
36 OH 88
37 OK 77
38 OR 36
39 PA 67
40 RI 5
41 SC 46
42 SD 66
43 TN 95
44 TX 254
45 UT 29
46 VA 133
47 VT 14
48 WA 39
49 WI 72
50 WV 55
51 WY 23

Total 3107

We do not consider Alaska and Hawaii, non U.S. mainland states, in our sample. “DC” refers to Washington
D.C.
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