
Pooled Bewley Estimator of Long Run Relationships in Dynamic

Heterogenous Panels

Alexander Chudik
Federal Reserve Bank of Dallas

M. Hashem Pesaran
University of Southern California, USA and Trinity College, Cambridge, UK

Ron P. Smith∗

Birkbeck, University of London, United Kingdom

October 30, 2023

Abstract

Using a transformation of the autoregressive distributed lag model due to Bewley, a novel

pooled Bewley (PB) estimator of long-run coeffi cients for dynamic panels with heterogeneous

short-run dynamics is proposed. The PB estimator is directly comparable to the widely used

Pooled Mean Group (PMG) estimator, and is shown to be consistent and asymptotically nor-

mal. Monte Carlo simulations show good small sample performance of PB compared to the

existing estimators in the literature, namely PMG, panel dynamic OLS (PDOLS), and panel

fully-modified OLS (FMOLS). Application of two bias-correction methods and a bootstrapping

of critical values to conduct inference robust to cross-sectional dependence of errors are also

considered. The utility of the PB estimator is illustrated in an empirical application to the

aggregate consumption function.

Keywords: Heterogeneous dynamic panels; I(1) regressors; pooled mean group estimator

(PMG), Autoregressive-Distributed Lag model (ARDL), Bewley transform, PDOLS, FMOLS,

bias correction, robust inference, cross-sectional dependence.

JEL Classification: C12, C13, C23, C33

∗Corresponding author, email r.smith@bbk.ac.uk.



1 Introduction

Estimation of cointegrating relationships in panels with heterogeneous short-run dynamics is impor-

tant for empirical research in open economy macroeconomics as well as in other fields in economics.

Existing single-equation panel estimators in the literature are panel Fully Modified OLS (FMOLS)

by Pedroni (1996, 2001a, 2001b), panel Dynamic OLS (PDOLS) by Mark and Sul (2003), and the

likelihood based Pooled Mean Group (PMG) estimator by Pesaran, Shin, and Smith (1999). Multi-

equation (system) approach by Breitung (2005), and the related system PMG approach by Chudik,

Pesaran, and Smith (2023) are another contributions in the literature on estimating cointegrating

vectors in a panel context. In this paper, we propose a pooled Bewley (PB) estimator of long-run

relationships, relying on the Bewley transform of an autoregressive distributed lag (ARDL) model

(Bewley, 1979). See also Wickens and Breusch (1988) for a discussion of the Bewley transform.

Our setting is the same as that of Pesaran, Shin, and Smith (1999). Under this setting, any short-

run feedbacks between the outcome variable (y) and regressors (x) are allowed, but the direction

of the long run causality is assumed to go from x to y. Hence, as with the PMG, the PB estimator

allows for heterogeneity in short-run feedbacks, but restricts the direction of long run causality.

The PB estimator is computed analytically, and does not rely on numerical maximization of the

likelihood function that underlies the PMG estimation. We derive the asymptotic distribution of

the PB estimator when the cross-section dimension (n) and the time dimension (T ) diverge to

infinity jointly such that n = Θ
(
T θ
)
, for 0 < θ < 2, where we use the notation Θ (.) to denote the

same order of magnitude asymptotically, namely if {fs}∞s=1 and {gs}
∞
s=1 are both positive sequences

of real numbers, then fs = 	 (gs) if there exists S0 ≥ 1 and positive finite constants C0 and C1,

such that infs≥S0 (fs/gs) ≥ C0, and sups≥S0 (fs/gs) ≤ C1. Our asymptotic analysis is an advance

over the theoretical results currently available for PMG, PDOLS and FMOLS estimators where it

is assumed that n is small relative to T (which corresponds to the case where θ is close to zero).

How well individual estimators work in samples of interest in practice where n and/or T are

often less than 50 is a different matter, which we shed light on using Monte Carlo experiments.

Monte Carlo evidence shows PB estimator can be superior to PMG, PDOLS and FMOLS, in terms

of its overall precision as measured by the Root Mean Square Error (RMSE), and in terms of

accuracy of inference as measured by size distortions. These experiments reveal PB is a useful

addition to the literature.
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Monte Carlo evidence also shows that the time dimension is very important for the performance

of these estimators, and that all of the four estimators under consideration suffer from the same two

drawbacks: small sample bias and size distortion. Although the size distortions are found to be less

serious for the PB estimator in our experiments, all four estimators exhibit notable over-rejections

in sample sizes relevant in practice. In addition, all four estimators (perhaps unsurprisingly) suffer

from bias in finite samples, albeit a rather small one. Both drawbacks diminish as T is increased

relative to n.

To conduct reliable inference regardless of the cross-sectional dependence of errors, we make use

of the sieve wild bootstrap procedure. To accommodate cross-sectional dependence, we resample the

cross-section vectors of residuals, an idea that was originally proposed by Maddala and Wu (1999).

We found the sieve wild bootstrap procedure to be remarkably effective for all four estimators,

regardless of cross-sectional dependence of errors, and we therefore recommend using it in empirical

research.

Regarding the small sample bias, we consider the application of two bias-correction methods

taken from the literature, relying either on split-panel jackknife (Dhaene and Jochmans, 2015) or

sieve wild bootstrap approaches. In contrast to split-panel approaches in panels without stochastic

trends, as, for instance, considered by of Dhaene and Jochmans (2015) or Chudik, Pesaran, and

Yang (2018), in this paper we need to combine the full sample and half-panel subsamples using

different weighting due to the fact that the rate of convergence of the estimators of long run

coeffi cients is faster, at the rate of T
√
n, as compared to the standard rate of

√
nT . We find that

both of these approaches can be helpful in reducing the bias (for all four estimators). However,

given that the bias is small to begin with, the value of bias correction methods is limited.

The relevance of choosing a particular estimation approach is illustrated in the context of

a consumption function application for OECD economies taken from Pesaran, Shin, and Smith

(1999). This application shows that quite a different conclusion would be reached when using

PB estimator, which does not reject the zero long-run coeffi cient on inflation, in line with the

long-run neutrality of monetary policy, whereas the PMG estimator results in a highly statistically

significant negative long-run coeffi cient. Estimates of the long-run coeffi cient on real income are less

diverse across estimators, but the inference on whether a unit long-run coeffi cient on real income

(as suggested by balanced growth path models in the literature) can be rejected or not depends on
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the choice of a particular estimator.

The remainder of this paper is organized as follows. Section 2 presents the model and assump-

tions, introduces the PB estimator, and provides asymptotic results. Application of bias correction

methods and bootstrapping critical values are also discussed in Section 2. Section 3 presents Monte

Carlo evidence. Section 4 revisits the aggregate consumption function empirical application in

Pesaran, Shin, and Smith (1999). Section 5 concludes. Mathematical derivations and proofs are

provided in Appendix A. Details on the implementation of individual estimators and bootstrapping,

and additional Monte Carlo results are provided in Appendix B.

2 Pooled Bewley estimator of long-run relationships

We adopt the same setting as in Pesaran, Shin, and Smith (1999), and consider the following

illustrative model

∆yit = ci − αi (yi,t−1 − βxi,t−1) + uy,it, (1)

∆xit = ux,it, (2)

for i = 1, 2, ..., n, and t = 1, 2, ..., T . For expositional clarity and notational simplicity, we focus

on a single regressor and one lag, but it is understood that our analysis is applicable to multiple

lags of ∆zit = (∆yit,∆xit)
′ entering both equations (1)-(2), and the approach is also applicable to

multiple xit’s with a single long run relationship. We consider the following assumptions:

Assumption 1 (Coeffi cients) supi |1− αi| < 1.

Assumption 2 (shocks) ux,it ∼ IID
(
0, σ2xi

)
, and uy,it is given by

uy,it = δiux,it + vit, (3)

for all i and t, where vit ∼ IID
(
0, σ2vi

)
, and ux,it is independently distributed of vi′t′ for all i,i′, t,

and t′. In addition, supi,tE |vit|16 < K and supi,tE |ux,it|8 < K, and limn→∞ n−1
∑n

i=1 σ
2
xi = σ2x >

0 and lim n→∞n−1
∑n

i=1 σ
2
xiσ

2
vi/
(
6α2i
)

= ω2v > 0 exist.

Assumption 3 (Initial values and deterministic terms) The initial values, zi,0 = (yi,0, xi,0)
′,
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follow the process

zi0 = µi + C∗i (L) u0,

for all i and t, and ci = αiµi,1 − αiβµi,2 for all i, where u0 = (uy,i,0, ux,i,0)
′, µi =

(
µi,1, µi,2

)′,
‖µi‖ < K, and C∗i (L) is defined in Section A.1 in Appendix A.

Remark 1 Assumption 1 requires that αi 6= 0 for all i. In contrast PMG allows αi = 0 for some

(but not all) units. Although the estimator works for αi < 2, empirically, αi < 1 is likely to be the

relevant case.

Remark 2 Assumption 2 allows for ux,it to be correlated with uy,it. Cross-section dependence of

uit is ruled out. Assumption 3 (together with the remaining assumptions) ensure that ∆zit and

(yit − βxit) are covariance stationary.

Remark 3 In comparing our assumptions with the rest of the literature, it should be noted that

the rest of the literature does not consider the case of joint convergence n, T →j ∞, but only the

case where n is fixed as T → ∞. Joint asymptotics typically requires more stringent assumptions

on the errors and restrictions on the relative expansion rates of n and T .

Substituting first (3) for uy,it in (1), and then substituting ux,it = ∆xit, we obtain the following

ARDL representation for yit

∆yit = ci − αi (yi,t−1 − βxi,t−1) + δi∆xit + vit. (4)

The pooled Bewley estimator takes advantage of the Bewley transform (Bewley, 1979). Subtracting

(1− αi) yit from both sides of (4) and re-arranging, we have

αiyit = ci − (1− αi) ∆yit + αiβxit + δi∆xit + vit,

or (noting that αi > 0 for all i and multiplying the equation above by α−1i )

yit = α−1i ci + βxit +ψ′i∆zit + α−1i vit, (5)
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where ∆zit = (∆yit,∆xit)
′, and ψi =

(
−1−αiαi

, δiαi

)′
. Further, stacking (5) for t = 1, 2, ..., T , we

have

yi = α−1i ciτT + xiβ + ∆Ziψi + α−1i vi, (6)

where yi = (yi1, yi2, ..., yiT )′, xi = (xi1, xi2, ..., xiT )′,∆Zi = (∆z′i1,∆z′i2, ...,∆z′iT )′, vi = (vi,1, vi,2, ..., vi,T )′,

and τT is T × 1 vector of ones. Define projection matrix Mτ = IT − T−1τTτ
′
T . This pro-

jection matrix subtracts the period average. Let ỹi = (ỹi1, ỹi2, ..., ỹiT )′ = Mτyi, and similarly

x̃i = (x̃i1, x̃i2, ..., x̃iT )′ = Mτxi, ∆Z̃i = Mτ∆Zi, and ṽi = Mτvi. Multiplying (6) by Mτ , we have

ỹi = x̃iβ + ∆Z̃iψi + α−1i ṽi.

Now consider the matrix of instruments

H̃i = (ỹi,−1, x̃i, x̃i,−1) = MτHi, Hi = (yi,−1,xi,xi,−1) , (7)

where yi,−1 = (yi,1, yi,1, ..., yi,T−1)
′ is the data vector on the first lag of yit, similarly xi,−1 =

(xi,1, xi,1, ..., xi,T−1)
′. The PB estimator of β is given by

β̂ =

(
n∑
i=1

x̃′iMix̃i

)−1( n∑
i=1

x̃′iMiỹi

)
, (8)

where

Mi = Pi −Pi∆Z̃i

(
∆Z̃′iPi∆Z̃i

)−1
∆Z̃′iPi, (9)

and

Pi = H̃i

(
H̃i
′H̃i

)−1
H̃′i, (10)

is the projection matrix associated with H̃i.

In addition to Assumptions 1-3, we also require the following high-level conditions to hold in

the derivations of the asymptotic distribution of the PB estimator under the joint asymptotics

n, T →∞.

Assumption 4 Let Mτ = IT − T−1τTτ ′T , ỹi = Mτyi, x̃i = Mτxi,

∆Z̃i = Mτ∆Zi = Mτ (∆z′i1,∆z′i2, ...,∆z′iT )′, where ∆zit = (∆yit,∆xit)
′. Then there exists T0 ∈ N
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such that the following conditions are satisfied:

(i) supi∈N, T>T0 E
[
λ−2min (BiT )

]
< K, where BiT = ∆Z̃′iPi∆Z̃i/T , Pi is given by (10).

(ii) supi∈N, T>T0 E
[
λ−2min

(
AT H̃∗′i H̃∗iAT

)]
< K, where H∗i =

(
x̃i,∆x̃i, ξ̃i,−1

)
,

AT =


T−1 0 0

0 T−1/2 0

0 0 T−1/2

 ,

ξ̃i,−1 =
(
ξ̃i,0, ξ̃i,1, ..., ξ̃i,T−1

)′
, ξ̃i,t−1 = ỹi,t−1 − βx̃i,t−1.

Remark 4 Under Assumptions 1-3 (and without Assumption 4), we have plimT→∞Bi,T = Bi,

where Bi is nonsingular (see Lemma A.7 in Appendix A). Similarly, it can be shown that Assump-

tions 1-3 are suffi cient for plimT→∞AT H̃∗′i H̃∗iAT to exist and to be nonsingular. However, these

results are not suffi cient for the moments of
∥∥B−1i ∥∥ and ∥∥∥(ATH∗′i H∗iAT )−1

∥∥∥ to exist, which we
require for the derivations of the asymptotic distribution of the PB estimator. This is ensured by

Assumption 4.

2.1 Asymptotic results

Substituting ỹi = x̃iβ + ∆Z̃iψi + α−1i ṽi in (8), and using Mi∆Z̃i = 0, we have

T
√
n
(
β̂ − β

)
=

(
1

n

n∑
i=1

x̃′iMix̃i
T 2

)−1(
1√
n

n∑
i=1

x̃′iMiṽi
Tαi

)
. (11)

Consider the first term on the right side of (11) first. Since Mi is an orthogonal projection matrix,

x̃′iMix̃i/T
2 is bounded by x̃′ix̃i/T

2. The second moments of x̃′ix̃i/T
2 are bounded, and, in addition,

x̃′iMix̃i/T
2 is cross-sectionally independent. It follows that 1

n

∑n
i=1 x̃′iMix̃i/T

2 converges to a

constant, which we denote by ω2x, as n, T → ∞. Lemma A.4 in Appendix A establishes the

expression for ω2x = σ2x/6, where σ
2
x = limn→∞ n−1

∑n
i=1 σ

2
xi, but the specific expression for ω

2
x is

not relevant for the inference approach that we adopt below. Consider the second term of (11)
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next,

1√
n

n∑
i=1

x̃′iMiṽi
αiT

=
1√
n

n∑
i=1

[
x̃′iMiṽi
αiT

− E
(

x̃′iMiṽi
αiT

)]
(12)

+
1√
n

n∑
i=1

E

(
x̃′iMiṽi
αiT

)
,

The term in the square brackets has zero mean and is independently distributed over i. For the

asymptotic distribution to be correctly centered we need

1√
n

n∑
i=1

E

(
x̃′iMiṽi
αiT

)
→ 0, (13)

as n and T →∞. This condition holds so long as n = Θ
(
T θ
)
for some 0 < θ < 2. See Lemma A.10

for a proof. The asymptotic distribution of the first term in (12) is in turn established by Lemma

A.11, see (A.74). The following theorem now follows for the asymptotic distribution of β̂.

Theorem 1 Let (yit, xit) be generated by model (1)-(2), suppose Assumptions 1-4 hold, and n, T →

∞ such that n = Θ
(
T θ
)
, for some 0 < θ < 2. Consider the PB estimator β̂ given by (8). Then,

T
√
n
(
β̂ − β

)
→d N (0,Ω) , Ω = ω−4x ω2v, (14)

where ω2x = σ2x/6, σ
2
x = limn→∞ n−1

∑n
i=1 σ

2
xi and ω

2
v = lim n→∞n−1

∑n
i=1 σ

2
xiσ

2
vi/
(
6α2i
)
.

Remark 5 Like the PMG estimator in Pesaran, Shin, and Smith (1999), the PB estimator will

also work when variables are integrated of order 0 (the I(0) case), which is not pursued in this

paper. In the I(0) case, the PB estimator converges at the standard rate of
√
nT .

To conduct inference, let

ω̂2x = n−1
n∑
i=1

x′iMixi
T 2

, (15)

and ω̂2v = n−1
∑n

i=1

(
x′iMiv̂

∗
i

T

)2
, where v̂∗i = Mi

(
yi − β̂xi

)
, and Mi is defined by (9). Accordingly,

we propose the following estimator of Ω:

Ω̂ = ω̂−4x ω̂2v. (16)
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2.2 Bias mitigation and bootstrapping critical values for robust inference

When n is suffi ciently large relative to T , specifically when
√
n/T → K > 0, then

√
nT
(
β̂ − β

)
is

no longer asymptotically distributed with zero mean. The asymptotic bias is due to the nonzero

mean of T−1x̃′iMiṽi, and it can be of some relevance for finite sample performance, as the Monte

Carlo evidence in Section 3 illustrates. Monte Carlo evidence also reveals that the inference based

on PB and other existing estimators in the literature can suffer from serious size distortions in finite

samples. To deal with these problems, we consider bootstrapping critical values using sieve wild

bootstrap for more accurate and more robust inference that allows for cross-sectional dependence

of errors. In addition, we also consider two bias-correction techniques - a bootstrap one as well as

the split-panel jackknife method. The same bias-correction methods are also applied to the three

other estimators, namely PMG, PDOLS, and FMOLS, considered in the paper. In what follows we

focus on the PB estimator. A description of bias-corrections applied to the other three estimators

are given in Section B.2 of Appendix B.

2.2.1 Bootstrap bias reduction

Once an estimate of the bias of β̂ is available, denoted as b̂, then the bias-corrected PB estimator

is given by

β̃ = β̂ − b̂. (17)

One possibility of estimating the bias in the literature is by bootstrap. We adopt the following

sieve wild bootstrap algorithm for generating simulated data.

1. Given β̂, estimate the remaining unknown coeffi cients in (1)-(2) by least squares, and compute

residuals denoted by ûy,it, ûx,it.

2. For each r = 1, 2, ..., R, generate new draws for û(r)y,it = a
(r)
t ûy,it, and û

(r)
x,it = a

(r)
t ûx,it, where

a
(r)
t is randomly drawn from Rademacher distribution (Liu, 1988),

a
(r)
t =

 −1, with probability 1/2

1, with probability 1/2
.

Given the estimated parameters of (1)-(2) from Step 1, and the initial values {yi1, xi1 for i = 1, 2, ..., n}
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generate the simulated series y(r)it , x
(r)
it for t = 2, 3, ..., T , and i = 1, 2, ..., n, and the bootstrap

estimates β̂
(r)
for r = 1, 2, ..., R.

Using simulated data withR = 10, 000, we compute an estimate of the bias b̂R =
[
R−1

∑R
r=1 β̂

(r) − β̂
]
.

We then compute the α percent critical values using the 1−α percent quantile of
{∣∣t(r)∣∣}R

r=1
, where

t(r) = β̃
(r)
/se

(
β̃
(r)
)
, β̃

(r)
= β̂

(r) − b̂ is the bias-corrected estimate of β using the r-th draw of the

simulated data, se
(
β̃
(r)
)

= T−1n−1/2Ω̂(r) is the corresponding standard error estimate, and Ω̂(r)

is computed in the same way as Ω̂ in (16) but using the simulated data.

2.2.2 Jackknife bias reduction

The split-panel jackknife bias correction method is given by

β̃jk = β̃jk (κ) = β̂ − κ
(
β̂a + β̂b

2
− β̂

)
, (18)

where β̂ is the full sample PB estimator, β̂a and β̂b are the first and the second half sub-sample PB

estimators, and κ is a suitably chosen weighting parameter. In a stationary setting, where the bias

is of order O
(
T−1

)
, κ is chosen to be one, so that KT − κ ·

(
K
T/2 −

K
T

)
= 0, for any arbitrary choice

of K. See, for example, Dhaene and Jochmans (2015) and Chudik, Pesaran, and Yang (2018).

In general, when the bias is of order O (T−ε) for some ε > 0, then κ can be chosen to solve

K
T ε − κ ·

(
K

(T/2)ε
− K

T ε

)
= 0, which yields κ = 1/ (2ε − 1). Under our setup with I(1) variables, we

need to correct β̂ for its O
(
T−2

)
bias, namely ε = 2, which yields κ = 1/3.

Inference using β̃
jk
can be conducted based on (16) but with ω̂2v replaced by

ω̃2v = ω̂2v =
1

n

n∑
i=1


[
(1 + κ) x′iMi − 2κx′ab,iMab,i

]
ṽ∗i

T

2 , (19)

where ṽ∗i = Mi

(
yi − β̃

jk
xi

)
,

x′ab,i =

 x′a,i

x′b,i

 , Mab,i =

 Ma,i

Mb,i

 ,

x′a,i

(
x′b,i

)
and Ma,i (Mb,i) are defined in the same way as xi, and Mi but using only the first
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(second) half of the sample.

We compute bootstrapped critical values to conduct more accurate and robust small sample

inference. Specifically, the α percent critical value is computed as the 1 − α percent quantile of{∣∣∣t(r)jk ∣∣∣}R
r=1
, where t(r)jk = β̃

(r)
jk /se

(
β̃
(r)
jk

)
, β̃

(r)
jk is the jackknife estimate of β using the r-th draw of

the simulated data generated using the algorithm described in Subsection 2.2.1, se
(
β̃
(r)
jk

)
is the

corresponding standard error estimate, namely se
(
β̃
(r)
jk

)
= T−1n−1/2Ω̂

(r)
jk , Ω̂

(r)
jk = ω̂−4x,(r)ω̃

2
v,(r), in

which ω̃v,(r) and ω̂
2
x,(r) are computed using the simulated data, based on expressions (19) and (15),

respectively.

3 Monte Carlo Evidence

3.1 Design

The Data Generating Process (DGP) is given by (1)-(2), for i = 1, 2, ..., n, T = 1, 2, ..., T , with

starting values satisfying Assumption 3 with µi ∼ IIDN (τ 2, I2), and ci = αiµi,1 − αiβµi,2. We

generate αi ∼ IIDU [0.2, 0.3]. We consider two DGPs based on the cross-sectional dependence of

errors. In the cross-sectionally independent DGP, we generate uy,it = σy,iey,it, ux,it = σx,iex,it,

σ2y,i, σ
2
x,i ∼ IIDU [0.8, 1.2],

 ey,it

ex,it

 ∼ IIDN (02,Σe) , Σe ∼

 1 ρi

ρi 1

 , and ρi ∼ IIDU [0.3, 0.7] .

In the DGP with cross-sectionally dependent errors, we generate ey,it to contain a factor structure

including strong, semi-strong and weak factors:

ey,it = κi

(
εy,it +

m∑
`=1

γi`f`t

)
,

where εy,it ∼ IIDN (0, 1), f`,t ∼ IIDN (0, 1), γ` ∼ IIDU
[
0, γmax,`

]
, for ` = 1, 2, ...,m. We choose

m = 5 factors and γmax,` = 2nα`−1 with α` = 1, 0.9, 0.8, 0.7, 0.6, for ` = 1, 2, ..., 5, respectively.

Scaling constant κi is set to ensure E
(
e2y,it

)
= 1, namely κi =

(
1 +

∑m
`=1 γ

2
i`

)−1/2. We generate
ex,it to ensure unit variance and cov (ey,it, ex,it) = ρi. Specifically, ex,it = ρiey,it +

√
1− ρ2i εx,it,

εx,it ∼ IIDN (0, 1). Both designs features heteroskedastic (over i) and correlated (over y & x
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equations) errors, namely E
(
u2y,it

)
= σ2y,i, E

(
u2x,it

)
= σ2x,i, and corr (uy,it, ux,it) = ρi. We consider

n, T = 20, 30, 40, 50 and compute RMC = 2000 Monte Carlo replications.

3.2 Bias, RMSE and inference

We report bias, root mean square error (RMSE), size (H0 : β = 1, 5% nominal level) and power

(H1 : β = 0.9, 5% nominal level) findings for the PB estimator β̂ given by (8), with variance

estimated using (16). Moreover, we also report findings for the two bias corrected versions of

PB estimator as described in Subsection 2.2 with bootstrapped critical values for inference robust

to error cross-sectional dependence. We compare the performance of the PB estimator with the

PMG estimator by Pesaran, Shin, and Smith (1999), panel dynamic OLS (PDOLS) estimator by

Mark and Sul (2003), and the group-mean fully modified OLS (FMOLS) estimator by Pedroni

(1996, 2001b). Similarly to the PB estimator, we also consider jackknife and bootstrap based

bias-corrected versions of the PMG, PDOLS and FMOLS estimators with cross-sectionally robust

bootstrapped critical values, described in Appendix B. We use Rb = 10, 000 bootstrap replications

(within each MC replication) for bootstrap bias correction and for computation of robust and more

accurate bootstrapped critical values.

3.3 Findings

Table 1 report the results for the original (without bias-correction) estimators. PB estimator stands

out as the most precise estimator in terms of having the lowest RMSE values among the four

estimators. The second best is PMG estimator with RMSE values 1 to 21 percent larger compared

with the PB estimator, the third is PDOLS with RMSE values 23 to 66 percent larger compared

with PB, and the FMOLS comes last with RMSE values 95 to 180 percent larger compared with

PB. In terms of the bias alone, the ordering of the estimators is slightly different with PMG and

PB switching their places. For T = 20, the bias of PMG estimator is -0.016 to -0.020, the bias

of PB estimator is in the range -0.034 to -0.037, the bias of the PDOLS estimator is in the range

-0.052 to -0.056 and the bias of the FMOLS estimator is in the range -0.104 to -0.110. For such a

small value of T , the bias is not very large, and, as expected, it declines with an increase in T .

All four estimators suffer from varying degrees of size distortions. The inference based on the

PB estimator is the most accurate. Specifically, the size distortions for the PB estimator are lowest
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among the four estimators - with reported size in the range between 9.9 and 25.2 percent, exceeding

the chosen nominal value of 5 percent. Size distortions diminish with an increase in T .

Table 1: MC findings for the estimation of long-run coeffi cient β in experiments with

cross-sectionally independent errors.

Estimators without bias correction and inference conducted using standard critical values.

Bias (× 100) RMSE (× 100) Size (5% level) Power (5% level)

n\T 20 30 40 50 20 30 40 50 20 30 40 50 20 30 40 50

PB

20 -3.69 -1.75 -1.07 -0.73 6.43 4.12 3.04 2.45 18.40 13.35 11.80 11.40 34.00 68.30 89.95 97.70

30 -3.39 -1.79 -1.04 -0.74 5.55 3.54 2.58 2.03 19.40 14.50 11.95 10.10 43.70 81.50 96.50 99.60

40 -3.56 -1.87 -1.06 -0.74 5.18 3.25 2.33 1.81 21.25 15.55 12.30 10.45 45.90 87.35 99.05 99.95

50 -3.58 -1.90 -1.09 -0.74 4.96 3.05 2.18 1.66 25.20 15.55 13.40 9.95 54.05 93.25 99.65 100.00

PMG

20 -1.97 -0.89 -0.51 -0.32 7.77 4.79 3.40 2.57 39.45 28.15 21.40 17.85 63.40 82.20 93.75 98.95

30 -1.56 -0.97 -0.41 -0.33 6.32 3.99 2.78 2.08 41.10 28.45 22.50 16.55 71.20 89.60 98.10 99.85

40 -1.64 -0.86 -0.44 -0.31 5.71 3.44 2.47 1.85 43.10 29.25 23.05 18.10 77.25 95.15 99.60 100.00

50 -1.70 -0.93 -0.48 -0.31 5.23 3.10 2.26 1.67 42.25 28.60 23.75 16.85 81.00 97.00 99.80 100.00

PDOLS

20 -5.60 -3.64 -2.82 -2.32 7.93 5.28 4.02 3.31 21.75 19.10 17.30 19.30 17.35 43.15 72.95 90.15

30 -5.25 -3.60 -2.75 -2.26 7.05 4.81 3.64 2.96 24.10 23.10 23.10 24.20 21.40 55.90 84.85 97.30

40 -5.47 -3.77 -2.84 -2.31 6.78 4.69 3.53 2.86 29.90 30.60 28.30 30.10 21.70 62.60 91.35 99.10

50 -5.46 -3.78 -2.88 -2.30 6.57 4.52 3.45 2.75 35.10 34.30 34.40 36.45 25.25 72.40 95.85 99.85

FMOLS

20 -11.01 -7.16 -5.45 -4.25 12.56 8.44 6.55 5.18 89.25 78.25 69.90 64.15 45.00 56.60 79.05 92.60

30 -10.44 -7.06 -5.30 -4.17 11.58 7.99 6.09 4.83 93.80 86.15 77.90 71.95 44.90 63.20 88.75 98.20

40 -10.78 -7.31 -5.50 -4.26 11.59 8.00 6.08 4.77 97.45 92.95 85.65 82.20 44.60 67.85 92.70 99.20

50 -10.76 -7.35 -5.50 -4.22 11.44 7.91 5.98 4.65 98.70 96.25 91.35 86.85 46.10 73.70 95.35 99.85

Notes: DGP is given by ∆yit = ci − αi (yi,t−1 − βxi,t−1) + uy,it and ∆xit = ux,it, for i = 1, 2, ..., n, T = 1, 2, ..., T ,

with β = 1 and αi ∼ IIDU [0.2, 0.3]. Errors uy,it, ux,it are cross-sectionally independent, heteroskedastic over i, and

correlated over y & x equations. See Section 3.1 for complete description of the DGP. The pooled Bewley estimator

is given by (8), with variance estimated using (16). PMG is the Pooled Mean Group estimator proposed by

Pesaran, Shin, and Smith (1999). PDOLS is panel dynamic OLS estimator by Mark and Sul (2003). FMOLS is the

group-mean fully modified OLS estimator by Pedroni (1996, 2001b). The size and power findings are computed

using 5% nominal level and the reported power is the rejection frequency for testing the hypothesis β = 0.9.
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Table 2: MC findings for the estimation of long-run coeffi cient β in experiments with

cross-sectionally independent errors.

Bias corrected estimators and inference conducted using bootstrapped critical values.

Bias (× 100) RMSE (× 100) Size (5% level) Power (5% level)
n\T 20 30 40 50 20 30 40 50 20 30 40 50 20 30 40 50

Jackknife bias-corrected estimators
PB

20 -1.60 -0.52 -0.25 -0.14 6.27 4.18 3.10 2.52 5.95 5.15 5.40 5.30 25.10 56.75 82.95 94.30

30 -1.34 -0.55 -0.25 -0.18 5.24 3.45 2.58 2.06 6.70 5.05 5.10 5.00 37.45 73.70 93.10 99.05

40 -1.45 -0.60 -0.24 -0.15 4.59 3.03 2.29 1.81 5.85 5.05 4.50 4.90 42.80 84.10 98.15 99.85

50 -1.53 -0.62 -0.26 -0.15 4.23 2.72 2.07 1.61 6.20 4.60 5.65 4.25 51.10 90.80 99.55 100.00

PMG

20 -0.55 -0.20 -0.05 0.01 9.26 5.59 3.78 2.86 14.90 11.05 9.10 7.20 33.45 57.15 83.05 95.60

30 -0.10 -0.30 0.02 -0.04 7.35 4.48 3.09 2.28 14.00 10.95 8.50 7.35 45.60 72.05 93.10 99.30

40 -0.27 -0.13 -0.01 -0.01 6.73 3.83 2.72 2.06 15.40 9.30 8.90 8.05 48.90 82.95 97.10 99.75

50 -0.42 -0.21 -0.06 0.00 6.13 3.43 2.47 1.83 16.45 9.65 9.40 7.55 57.55 88.55 98.85 100.00

PDOLS

20 -4.22 -2.56 -1.97 -1.59 8.00 5.05 3.77 3.04 8.40 5.80 5.40 4.75 8.70 27.50 55.25 77.90

30 -3.91 -2.55 -1.92 -1.56 6.89 4.42 3.30 2.64 8.70 5.75 5.95 4.70 10.15 37.30 69.75 91.00

40 -4.09 -2.69 -1.98 -1.60 6.35 4.17 3.08 2.47 7.70 5.80 4.90 4.05 10.05 41.10 75.20 94.95

50 -4.11 -2.70 -2.02 -1.58 6.01 3.91 2.93 2.30 7.90 5.90 4.55 3.55 11.30 45.75 83.75 97.60

FMOLS

20 -8.70 -5.07 -3.70 -2.76 11.19 7.19 5.52 4.33 10.85 5.95 4.55 4.00 1.05 1.40 8.10 25.75

30 -8.17 -5.02 -3.60 -2.73 10.02 6.60 4.94 3.86 9.95 5.00 4.65 3.00 0.50 1.65 10.20 35.20

40 -8.49 -5.22 -3.78 -2.78 9.84 6.40 4.79 3.68 9.20 5.00 3.45 3.25 0.15 0.75 8.85 38.70

50 -8.50 -5.28 -3.78 -2.74 9.61 6.26 4.62 3.50 10.65 5.00 3.75 2.85 0.10 0.95 10.55 45.75

Bootstrap bias-corrected estimators
PB

20 -1.28 -0.33 -0.16 -0.11 5.87 3.93 2.93 2.39 7.25 6.20 6.05 5.75 36.20 67.60 88.30 96.95

30 -0.98 -0.39 -0.15 -0.13 4.90 3.24 2.43 1.93 7.75 6.35 6.35 5.80 52.20 84.00 96.90 99.55

40 -1.07 -0.43 -0.13 -0.10 4.24 2.83 2.15 1.70 7.00 6.55 5.95 5.10 59.75 91.35 99.45 99.95

50 -1.09 -0.44 -0.15 -0.10 3.89 2.56 1.96 1.52 8.95 6.25 6.45 5.55 69.40 95.50 99.90 100.00

PMG

20 -1.28 -0.44 -0.21 -0.11 7.88 4.83 3.41 2.57 14.10 10.45 7.90 6.80 35.25 63.40 86.70 97.30

30 -0.88 -0.55 -0.12 -0.13 6.40 3.99 2.79 2.08 13.10 10.75 8.25 6.85 47.45 77.75 95.85 99.65

40 -0.96 -0.44 -0.14 -0.11 5.73 3.42 2.47 1.85 14.95 9.05 7.80 6.90 53.55 87.60 98.40 99.85

50 -1.02 -0.51 -0.19 -0.10 5.20 3.06 2.24 1.66 15.15 9.85 9.05 6.95 60.90 91.65 99.30 100.00

PDOLS

20 -2.19 -0.90 -0.59 -0.42 6.75 4.31 3.12 2.55 10.35 7.80 7.25 7.25 28.70 64.45 86.65 95.85

30 -1.89 -0.96 -0.59 -0.43 5.70 3.62 2.63 2.08 10.75 8.90 7.70 7.15 39.90 77.10 95.35 99.30

40 -2.00 -1.04 -0.59 -0.41 4.98 3.24 2.34 1.84 10.05 8.65 7.05 7.35 46.40 85.75 98.65 99.95

50 -2.00 -1.05 -0.64 -0.40 4.61 2.93 2.14 1.65 10.70 9.40 8.65 6.80 52.85 91.55 99.50 100.00

FMOLS

20 -4.59 -1.97 -1.30 -0.80 8.84 5.62 4.28 3.40 17.10 10.90 9.20 7.40 20.20 41.10 63.20 81.70

30 -4.19 -2.04 -1.28 -0.84 7.54 4.86 3.61 2.83 18.50 10.90 9.15 7.70 24.85 51.60 78.60 93.15

40 -4.36 -2.14 -1.34 -0.81 6.89 4.36 3.22 2.51 20.10 12.05 9.80 7.75 26.10 60.40 86.25 96.80

50 -4.41 -2.22 -1.35 -0.78 6.56 4.10 2.98 2.29 23.80 14.35 10.50 8.90 30.45 69.45 92.05 99.20

Notes: See the notes to Table 1. Bias-corrected versions of the PB estimator are described in Subsection 2.2.

Bias-corrected versions of the PMG, PDOLS and FMOLS estimator are described in Appendix B. Inference is

conducted using bootstrapped critical values.
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We consider next the bias-corrected versions of the four estimators with inference carried out us-

ing robust bootstrap critical values. Upper panel of Table 2 reports findings for estimators corrected

for bias using the jackknife procedure, and the bottom panel reports on bootstrap bias corrected

estimators. Bias correction did not change the overall ranking of estimators —PB continues to be

the most precise (lowest RMSE). Both bias correction approaches are quite effective in reducing

the bias. The bias of PB and PMG estimators for any of the two bias corrections are very low.

In addition to reducing the bias, in many cases the bias-correction also resulted in reduced RMSE

values. In the case of the PB estimator, using bootstrap bias correction resulted in improved RMSE

performance for all choices of n, T - by about 2 to 22 percent. Results in Table 2 also show notable

improvement to inference comes from using bootstrapped critical values - with PB having virtually

no size distortions and size distortions of the remaining estimators are relatively minor.

Last but not least, we consider the DGP with cross-sectionally correlated errors. The corre-

sponding results, reported in Tables B1 and B2 in Appendix B, reveal the same ranking of the

four estimators, and, importantly, the bootstrapped critical values continue to deliver correct size,

despite the error cross-sectional dependence.

The Monte Carlo results show that PB estimator can perform better (in terms of overall precision

as measured by RMSE, and in terms of accuracy of inference) than existing estimators (PMG,

PDOLS, and FMOLS) in finite sample sizes of interest, whether or not bias correction is considered.

Of’course, our results do not imply that PB estimator will always be better, but that it can be a

useful addition to the existing literature as a complement to PMG, PDOLS, and FMOLS estimators.

Bias corrections and bootstrapping critical values are helpful for all four estimators, resulting not

only in reduced bias, but sometimes also in better RMSE. In all cases, they result in more accurate

inference in our experiments.

4 Empirical Application

This section revisits consumption function empirical application undertaken by Pesaran, Shin, and

Smith (1999), hereafter PSS. The long-run consumption function is assumed to be given by

cit = di + β1y
d
it + β2πit + ϑit,
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for country i = 1, 2, ..., n, where cit is the logarithm of real consumption per capita, ydit is the

logarithm of real per capita disposable income, πit is the rate of inflation, and ϑit is an I (0) process.

We take the dataset from PSS, which consists of n = 24 countries and a slightly unbalanced time

period covering 1960-1993. PSS estimate β1 and β2 using an ARDL(1,1,1) specification, which can

be written as error-correcting panel regressions

∆cit = −αi
(
ci,t−1 − di − β1ydi,t−1 − β2πi,t−1

)
+ δi1∆y

d
it + δi2∆πit + vit, (20)

for i = 1, 2, ..., n, where all coeffi cients, except the long-run coeffi cients β1 and β2 are country-

specific.

Table 3 presents alternative estimates of the long-run coeffi cients. The upper panel presents

findings for estimators without bias correction and standard confidence intervals. The middle

and lower panels present jackknife and bootstrap bias-corrected estimates with confidence intervals

based on bootstrapped critical values. Results differ widely across different approaches to estimation

and inference. Depending on which bias correction approach is conducted, the PB estimates of the

long-run coeffi cient on real income (β1) is estimated to be 0.921 or 0.926, and the long-run coeffi cient

on the inflation variable (β2) is estimated to be -0.120 or -0.125. The null hypothesis that the

coeffi cient on ydit is unity cannot be rejected at the 5 percent nominal level, nor is the hypothesis

that the long run coeffi cient on inflation is zero. From an economic perspective, unit long-run

real income elasticity and no long-run effects of inflation on consumption seem both plausible -

the former hypothesis is in line with balanced growth path models, and the latter in line with

monetary policy neutrality in the long-run. A different conclusion would be reached according to

PMG estimates - namely both the unit coeffi cients on the real income variable and zero coeffi cient

on inflation would be rejected at the 5 percent nominal level. The results based on the PDOLS

are in line with the PB estimates and do not reject unit real income and zero inflation long run

coeffi cients. FMOLS estimates of β1 are larger than the other estimates, but the unit coeffi cient

on the income variable still cannot be rejected. The FMOLS estimates of β2 are also quite large.

The choice of estimation method clearly matters in this empirical illustration.
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Table 3: Estimated consumption function coeffi cients for OECD countries

β1: Income 95% Conf. Int. β2: Inflation 95% Conf. Int.

Estimator without bias correction

PB .912 [.845,.980] -.134 [-.260,-.008]

PMG .904 [.889,.919] -.466 [-.566,-.365]

PDOLS .923 [.798,1.047] -.187 [-.407,.033]

FMOLS .951 [.942,.959] -.336 [-.408,-.265]

Jackknife bias-corrected estimators

PB .926 [.835,1.017] -.120 [-.345,.105]

PMG .915 [.880,.949] -.403 [-616.,-.190]

PDOLS .940 [.737,1.143] -.184 [-.530,.161]

FMOLS .983 [.912,1.053] -.397 [-1.370,.576]

Bootstrap bias-corrected estimators

PB .921 [.830,1.012] -.125 [-.314,.065]

PMG .905 [.875,.936] -.477 [-.657,-.297]

PDOLS .932 [.746,1.118] -.183 [-.499,.133]

FMOLS .985 [.941,1.028] -.438 [-1.047,.171]

Notes: This table revisits empirical application in Table 1 of Pesaran, Shin, and Smith (1999), reporting estimates of long-run
income elasticity (β1) and inflation effect (β2) coeffi cients and their 95% confidence intervals in the ARDL(1,1,1) consumption
functions (20) for OECD countries using the dataset from Pesaran, Shin, and Smith (1999). PB stands for pooled Bewley
estimator developed in this paper. PMG is the Pooled Mean Group estimator proposed by Pesaran, Shin, and Smith (1999).
PDOLS is panel dynamic OLS estimator by Mark and Sul (2003). FMOLS is the group-mean fully modified OLS estimator
by Pedroni (1996, 2001b). Description of bias correction methods is provided in Subsection 2.2 for PB estimator and in
Appendix B for PMG, PDOLS and FMOLS estimators. Inference in the case of original estimators uncorrected for bias is
conducted using the standard asymptotic critical values, and it is valid only when errors are not cross-sectionally dependent.
Inference in the case of bias-corrected estimators is conducted using bootstrapped critical values following Chudik, Pesaran,
and Smith (2023), and it is robust to cross-section dependence of errors.

5 Conclusion

This paper proposes the pooled Bewley (PB) estimator of long-run relationships in heterogeneous

dynamic panels. Relative to existing estimators in the literature — namely PMG, PDOLS and

FMOLS —Monte Carlo evidence reveals that PB can perform well in small samples. While we

developed the asymptotic theory of PB estimator under a similar setting to the PMG estima-

tor, notably we assumed cross-sectionally independent errors, we have also shown the benefit of

bootstrapping critical values for inference when errors are cross-sectionally correlated for all four

estimators.

While the asymptotic distribution of the other estimators are derived for the case where n is

fixed and T → ∞, we derive the joint (n, T ) asymptotic distribution of the PB estimator, when

both n and T diverge to infinity jointly such that n = Θ
(
T θ
)
, for 0 < θ < 2. This covers a broader

range of empirical applications where both n and T are large. The small sample and asymptotic
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results suggest that the PB estimator is a useful addition to estimators for long run effects in single

equation dynamic heterogeneous panels, where the direction of long-run causality is known.
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Appendices

A Mathematical derivations

This appendix is organized in four sections. Section A.1 introduces some notations and definitions. Section

A.2 presents lemmas and proofs needed for the proof of Theorem 1 presented in the body of the paper.

A.1 Notations and definitions

Let zit = (yit, xit)
′, and define Ci (L) =

∑∞
`=0 Ci`L

` and C∗i (L) =
∑∞
`=0 C∗i`L

`, where

Ci0 = I2,

Ci` = (Φi − I2) Φ`−1
i , ` = 1, 2, ....,

Φi =

(
1− αi αiβ

0 1

)
, (A.1)

Ci(1) = Ci0 + Ci1 + ..... = lim
`→∞

Φ`
i =

(
0 β

0 1

)
,

and

C∗i0 = Ci0 −Ci(1) =

(
1 −β
0 0

)
,

C∗i` = C∗i,`−1 + Ci` =

(
(1− αi)` − (1− αi)` β

0 0

)
, for ` = 1, 2, ....

Model (1)-(2) can be equivalently written as

Φi (L) zit = ci + uit,

for i = 1, 2, ..., n and t = 1, 2, ..., T , where ci = (ci, 0)
′,

Φi (L) = I2 −ΦiL, (A.2)

and I2 is a 2 × 2 identity matrix. The lag polynomial Φi (L) can be re-written in the following (error

correcting) form

Φi (L) = −ΠiL+ (1− L) I2, (A.3)

where

Πi = − (I2 −Φi) =

(
−αi αiβ

0 0

)
. (A.4)

The VAR model (A.5) can be also rewritten in the following form

Φi (L) (zit − µi) = uit, (A.5)

where ci = −Πiµi = (ci, 0)
′, namely ci = αiµi,1 − αiβµi,2.
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Using Granger representation theorem, the process zit under the assumptions 1-3 has representation

yit = µyi + βsit +

∞∑
`=0

(1− αi)` (uy,i,t−` − βux,i,t−`) , (A.6)

xit = µxi + sit, (A.7)

where

sit =

t∑
`=1

ux,it, (A.8)

is the stochastic trend.

A.2 Lemmas: Statements and proofs

Lemma A.1 Suppose Assumptions 2 and 3 hold, and consider x̃i = (x̃i,1, x̃i,2, ..., x̃i,T )
′, where x̃it = xit−x̄i,

xit =
∑t
s=1 ux,it, and x̄i = T−1

∑T
t=1 xit. Then

n−1
n∑
i=1

x̃′ix̃i
T 2
→p ω

2
x =

σ2x
6
, as n, T →∞, (A.9)

where σ2x = limn→∞ n−1
∑n
i=1 σ

2
xi.

Proof. Recall that Mτ = IT − T−1τT τ ′T , where IT is T × T identity matrix and τT is T × 1 vector of

ones. Since x̃i = Mτxi, and Mτ is symmetric and idempotent (M′
τMτ = Mτ = M′

τ ) we can write x̃′ix̃i as

x̃′ix̃i = x′iM
′
τMτxi = x′iM

′
τxi = x̃′ixi. Denote Si,T = x̃′ixi/T

2. We have

n−1
n∑
i=1

x̃′ix̃i
T 2

= n−1
n∑
i=1

Si,T = n−1
n∑
i=1

E (Si,T ) + n−1
n∑
i=1

[Si,T − E (Si,T )] . (A.10)

Consider E (Si,T ) first. Noting that x̃it =
∑t
s=1 ux,it − x̄i, x̄i = T−1

∑T
s=1 (T − s+ 1)ust, and xit =∑t

s=1 ux,it, Si,T can be written as

Si,T =
1

T 2

T∑
t=1

x̃itxit,

=
1

T 2

T∑
t=1

( t∑
s=1

ux,is

)2
− x̄i

t∑
s=1

ux,is

 ,
=

1

T 2

T∑
t=1

( t∑
s=1

ux,is

)2
−

t∑
s=1

T − s+ 1

T
ux,is ·

t∑
s=1

ux,is

 .
Taking expectations, we obtain

E (Si,T ) =
σ2xi
T 2

T∑
t=1

[
t−

t∑
s=1

T − s+ 1

T

]
.

Using
∑t
s=1

T−s+1
T =

∑t
s=1 (1− s/T + 1/T ) = t− (t+ 1) t/ (2T ) + t/T , we have

E (Si,T ) =
σ2xi
T 2

T∑
t=1

[
t− t+

(t+ 1) t

2T
− t

T

]
=
σ2xi
T 2

T∑
t=1

(t+ 1) t

2T
− t

T
.
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Finally, noting that
∑T
t=1 (t+ 1) t = (T + 2) (T + 1)T/3, and

∑T
t=1 t = (T + 1)T/2, we obtain

E (Si,T ) = σ2xiκT < K <∞, (A.11)

for all T > 0, where

κT =

[
(T + 2) (T + 1)T

6T 3
− (T + 1)T

2T 3

]
. (A.12)

In addition, κT → 1/6, as T →∞, and

1

n

n∑
i=1

E (Si,T ) = κT
1

n

n∑
i=1

σ2xi →
σ2x
6
,

as n, T → ∞. This establishes the limit of the first term on the right side of (A.10). Consider the second

term next. Since E [Si,T − E (Si,T )] = 0, and Si,T is independent over i, we have

E

{
n−1

n∑
i=1

[Si,T − E (Si,T )]

}2
=

1

n2

n∑
i=1

E
(
S2i,T

)
− 1

n2

n∑
i=1

[E (Si,T )]
2 .

But it follows from (A.11) that there exist finite positive constant K1 <∞ (which does not depend on n, T )

such that [E (Si,T )]
2
< K1. In addition, due to existence of uniformly bounded fourth moments of ux,it,

it also can be shown that E
(
S2i,T

)
< K2 < ∞. Hence, E

{
n−1

∑n
i=1 [Si,T − E (Si,T )]

}2
= O

(
n−1

)
, which

implies n−1
∑n
i=1 [Si,T − E (Si,T )]→p 0, as n, T →∞. This completes the proof.

Lemma A.2 Suppose Assumptions 1-2 hold. Then there exists finite positive constant K that does not

depend on i and/or T such that

E

(
1

T

T∑
t=1

ux,itx̃it

)%
< K, (A.13)

and

E

(
1

T

T∑
t=1

∆yitx̃it

)%
< K, (A.14)

for % = 4, where x̃it = xit − x̄i, xit =
∑t
s=1 ux,it, x̄i = T−1

∑T
t=1 xit, and ∆yit = δiux,it + vit −

αi
∑∞
`=1 (1− αi)`−1 [vi,t−` + (δi − β)ux,i,t−`].

Proof. Consider
∑T
t=1 uitx̃it/T and % = 2 first, and note that x̃it =

∑t
s=1 ux,is − x̄i, where x̄i =

T−1
∑T
s=1 (T − s+ 1)ux,is. We have(

1

T

T∑
t=1

ux,itx̃it

)2
=

1

T 2

T∑
t=1

T∑
t′=1

ux,itux,it′ x̃itx̃it′ ,

=
1

T 2

T∑
t=1

T∑
t′=1

ux,itux,it′

(
t∑

s=1

ux,is − x̄i

) t′∑
s=1

ux,is − x̄i

 ,
= Ai,T,1 +Ai,T,2 −Ai,T,3 −Ai,T,4,
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where

Ai,T,1 =
1

T 2

T∑
t=1

T∑
t′=1

ux,itux,it′

(
t∑

s=1

ux,is

) t′∑
s=1

ux,is

 ,
Ai,T,2 =

1

T 2

T∑
t=1

T∑
t′=1

ux,itux,it′ x̄
2
i ,

Ai,T,3 =
1

T 2

T∑
t=1

T∑
t′=1

ux,itux,it′ x̄i

t∑
s=1

ux,is,

Ai,T,4 =
1

T 2

T∑
t=1

T∑
t′=1

ux,itux,it′ x̄i

t′∑
s=1

ux,is.

Taking expectations and noting that ux,it is independent of ux,it′ for any t 6= t′, we have

E (Ai,T,1) =
1

T 2

(
T∑
t=1

t−1∑
t′=1

σ2ix +

T∑
t=1

E
(
u4x,it

)
+

T∑
t=1

t−1∑
t′=1

σ2ix

)
.

Under Assumption 2, there exists a finite constant K that does not depend on i and/or t, such that σ2ix < K

and E
(
u4x,it

)
< K. Hence |E (Ai,T,1)| < K. Similarly, we can bound the remaining elements, |E (Ai,T,j)| <

K, for j = 2, 3, 4. It now follows that E
(
1
T

∑T
t=1 ux,itx̃it

)2
< K, where the upper bound K does not depend

on i or T . This establishes (A.13) hold for % = 2. Suffi cient conditions for (A.13) to hold when % = 4 are:

E
(
A2i,T,j

)
< K for j = 1, 2, 3, 4. These conditions follow from uniformly bounded eights moments of ux,it.

This completes the proof of (A.13). Result (A.14) can be established in the same way by using the first

difference of representation (A.6).

Lemma A.3 Suppose Assumptions 1-4 hold, and consider siT given by

siT = x̃′i∆Z̃i

(
∆Z̃′iPi∆Z̃i

)−1
∆Z̃′ix̃i, (A.15)

where Pi is given by (10), and x̃i and ∆Z̃i are defined below (6). Then,

n−1
n∑
i=1

siT
T 2
→p 0, as n, T →∞. (A.16)

Proof. Consider si,T /T , which can be written as

siT
T
≤ a′iTB−1iT aiT , (A.17)

where

aiT =
∆Z̃′ix̃i
T

=
∆Z′ix̃i
T

, (A.18)

and

BiT =
∆Z̃′iPi∆Z̃i

T
. (A.19)
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Using these notations, we have

E

∣∣∣∣∣ 1n
n∑
i=1

siT
T 2

∣∣∣∣∣ ≤ 1

nT

n∑
i=1

E
∣∣a′iTB−1iT aiT

∣∣ .
Using

∣∣a′iTB−1iT aiT
∣∣ ≤ λ−1min (BiT ) a′iTaiT , and Cauchy-Schwarz inequality, we obtain

E

∣∣∣∣∣ 1n
n∑
i=1

siT
T 2

∣∣∣∣∣ ≤ 1

nT

n∑
i=1

√
E
[
(a′iTaiT )

2
]√

E
[
λ−2min (BiT )

]
.

Lemma A.2 implies the fourth moments of the individual elements of ai,T are uniformly bounded in i and

T , which is suffi cient for E
[
(a′iTaiT )

2
]
< K. In addition, E

[
λ−2min (BiT )

]
< K by Assumption 4. Hence,

there exists K <∞, which does not depend on (n, T ) such that

E

∣∣∣∣∣n−1
n∑
i=1

siT
T 2

∣∣∣∣∣ < K

T
, (A.20)

and result (A.16) follows.

Lemma A.4 Suppose Assumptions 1-4 hold. Then

n−1
n∑
i=1

x̃′iMix̃i
T 2

→p ω
2
x =

σ2x
6
, as n, T →∞, (A.21)

where σ2x = limn→∞ n−1
∑n
i=1 σ

2
xi, Mi is defined in (9) and x̃i is defined below (6).

Proof. Noting that x̃i is one of the column vectors of Hi, we have Pix̃i = x̃i, and x̃′iMix̃i can be written

as

x̃′iMix̃i = x̃′ix̃i − si,T , (A.22)

where si,T is given by (A.15). Suffi cient conditions for result (A.21) are:

n−1
n∑
i=1

x̃′ix̃i
T 2
→p ω

2
x =

σ2x
6
, as n, T →∞, (A.23)

and

n−1
n∑
i=1

si,T
T 2
→p 0, as n, T →∞. (A.24)

Condition (A.23) is established by Lemma A.1, and condition (A.24) is established by Lemma A.3.

Lemma A.5 Let Assumptions 1-3 hold. Then

1√
n

n∑
i=1

x̃′iṽi
Tαi

→d N
(
0, ω2v

)
, as n, T →∞, (A.25)

where ω2v = lim n→∞n
−1∑n

i=1 σ
2
xiσ

2
vi/
(
6α2i

)
, and x̃i and ṽi are defined below (6).

Proof. Recall Mτ = IT − T−1τT τ ′T , where IT is T × T identity matrix and τT is T × 1 vector of ones.

Since M′
τMτ = M′

τ , we have

x̃′iṽi = x′iM
′
τMτvi = x′iM

′
τvi = x̃′ivi.
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Let Ci = σxiσvi
αi

and Qi,T = C−1i
x̃′ivi
Tαi

. We have E (Qi,T ) = 0, and (under independence of vit over t and

independence of vit and ux,it′ for any t, t′)

E

[(
x̃′ivi
Tαi

)2]
=

1

T 2α2i

T∑
t=1

E
(
x̃2it
)
E
(
v2it
)
,

where E
(
v2it
)

= σ2vi. In addition, (A.11) established that
1
T 2

∑T
t=1E

(
x̃2it
)

= σ2xiκT , where κT is given by
(A.12). Hence,

E

[(
x̃′ivi
Tαi

)2]
=
σ2viσ

2
xi

α2i
κT = C2i κT .

It follows that

E
(
Q2i,T

)
= κT ,

where κT → 1/6 < ∞. Finite fourth moments of ux,it and vit imply Q4i,T is uniformly bounded in T , and
therefore Q2i,T is uniformly integrable in T . We can apply Theorem 3 of Phillips and Moon (1999) to obtain

1√
n

n∑
i=1

CiQi,T =
1√
n

n∑
i=1

x̃′ivi
Tαi

→d N
(
0, ω2v

)
, as n, T →∞,

where ω2v = limn→∞ C2i κT = lim n→∞n
−1∑n

i=1 σ
2
xiσ

2
vi/
(
6α2i

)
.

Lemma A.6 Suppose Assumptions 1-4 hold, and consider qiT = α−1i ∆Z̃′iPiṽi/
√
T . Then,

E ‖qiT ‖42 < K, (A.26)

and

|E (qiT )| < K√
T
. (A.27)

Proof. Denote the individual elements of 2× 1 vector qiT as qiT,j , j = 1, 2. Suffi cient conditions for (A.26)

to hold are

E (qiT,j)
4
< K, for j = 1, 2. (A.28)

We establish (A.28) for j = 1 first. We have

qiT,1 =
∆ỹ′iPiṽi

αi
√
T
,

where ∆yi can be written as

∆ỹi = −αiξ̃i,−1 + δi∆x̃i + vi, (A.29)

where ξ̃i,−1 = ỹi,−1 − x̃i,−1. Note that Pi = H̃i

(
H̃′iH̃i

)−1
H̃′i and H̃i = (ỹi,−1, x̃i, x̃i,−1). Hence ∆x̃′iPi =

∆x̃′i and ξ̃
′
i,−1Pi = ξ̃

′
i,−1, since ∆x̃i and ξ̃i,−1 can be both obtained as a linear combinations of the column

vectors of H̃i. Hence

qiT,1 = −
ξ̃
′
i,−1ṽi√
T

+
∆x̃′iṽi

αi
√
T

+
ṽ′iPiṽi

αi
√
T
≡ ςa,iT + ςb,iT + ςc,iT , (A.30)

where we simplified notations by introducing ςa,iT = −ξ̃′i,−1ṽi/
√
T , ςb,iT = α−1i ∆x̃′iṽi/

√
T and ςc,iT =
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α−1i ∆ṽ′iPiṽi/
√
T to denote the individual terms in the expression (A.30) for qiT,1. Suffi cient conditions for

E
(
q4iT,1

)
< K are E

(
ς4s,iT

)
< K for s ∈ {a, b, c}.

For s = a, we have

ςa,iT = −
ξ̃
′
i,−1ṽi√
T

= − 1√
T

T∑
i=1

(
ξi,t−1 − ξ̄i,−1

)
(vit − v̄i) = − 1√

T

T∑
i=1

ξi,t−1vit +
√
T ξ̄i,−1v̄i,

where ξ̄i,−1 = T−1
∑T
t=1 ξi,t−1, and

ξit =

∞∑
`=0

(1− αi)` (uy,i,t−` − βux,i,t−`) ,

=

∞∑
`=0

(1− αi)` (δi − β)ux,i,t−` +

∞∑
`=0

(1− αi)` vit.

Noting that supi |1− αi| < 1 under Assumption 1, and fourth moments of ux,i,t and eights moments of vit
are bounded, we obtain

E

( 1√
T

T∑
i=1

ξi,t−1vit

)4 ≤ K,
and

T 2 · E
(
ξ̄
4
i,−1v̄

4
i

)
≤ K,

which are suffi cient conditions for E
(
ς4a,iT

)
≤ K.

For s = b, we have

ςb,iT =
∆x̃′iṽi

αi
√
T

=
1

αi
√
T

T∑
t=1

(ux,it − ūx,i) (vit − v̄i) =
1

αi
√
T

T∑
t=1

ux,itvit −
√
T

αi
ūx,iv̄i.

Using Assumption 2, we obtain the following upper bound

E
(
ς4b,iT

)
≤
∣∣α−4i ∣∣ 1

T

T∑
t=1

E
(
u4x,it

)
E
(
v4it
)

+
∣∣α−4i ∣∣TE (ū4x,i)E (v̄4i ) ≤ K, (A.31)

where
∣∣α−4i ∣∣ < K, E

(
u4x,it

)
< K, E

(
v4it
)
< K, E

(
ū4x,i

)
< K/T 2, and E

(
v̄4i
)
< K/T 2.

For s = c, we have

ςc,iT =
ṽ′iPiṽi

αi
√
T

=
∆ṽ′iH̃i

(
H̃′iH̃i

)−1
H̃′iṽi

αi
√
T

.

Consider H̃∗i =
(
x̃i,∆x̃i, ξ̃i,−1

)
and note that

H̃i = (ỹi,−1, x̃i, x̃i,−1) = B∗H̃∗i ,

where

B∗ =

 −β β 1

1 0 0

−1 1 0

 ,
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is nonsingular (for any β). Hence Pi = H̃i

(
H̃′iH̃i

)−1
H̃′i = H̃∗i

(
H̃∗′i H̃∗i

)−1
H̃∗′i , and we can write ςc,iT as

ςc,iT =
ṽ′iH̃

∗
i

(
H̃∗′i H̃∗i

)−1
H̃∗′i ṽi

αi
√
T

.

Consider the scaling matrix

AT =

 T−1 0 0

0 T−1/2 0

0 0 T−1/2

 . (A.32)

We have

ςc,iT =
1

αi
√
T

ṽ′iH̃
∗
iAT

(
AT H̃∗′i H̃∗iAT

)−1
AT H̃∗′i ṽi ≥ 0.

Using the inequality x′A−1x ≤ λmin (A) ‖x‖2, we have

0 ≤ ςc,iT ≤
1

αi
√
T
λ−1min

(
AT H̃∗′i H̃∗iAT

)∥∥∥AT H̃∗′i ṽi

∥∥∥2
2
.

Using Cauchy-Schwarz inequality, we obtain

E
(
ς4c,iT

)
≤ 1

α4iT
2

√
E
[
λ−4min

(
AT H̃∗′i H̃∗iAT

)]√
E
∥∥∥AT H̃∗′i ṽi

∥∥∥8
2
.

But α−4i < K under Assumption 1, and E
[
λ−4min

(
AT H̃∗′i H̃∗iAT

)]
< K under Assumption 4. It follows

E
(
ς4c,iT

)
≤ K

T 2

√
E
∥∥∥AT H̃∗′i ṽi

∥∥∥8
2
.

Let AT H̃∗′i ṽi ≡ hviT and consider the individual elements of hviT , denoted as hviT,j for j = 1, 2, 3,

hviT = AT H̃∗′i ṽi =

 hviT,1

hviT,2

hviT,3

 =


1
T

∑T
t=1 x̃itṽit

1√
T

∑T
t=1 ũitṽit

1√
T

∑T
t=1 ξ̄i,t−1ṽit

 .
Under Assumption 2, it can be shown that

E
(
h8viT,j

)
< K, for j = 1, 2, 3,

which is suffi cient for E
∥∥∥AT H̃∗′i ṽi

∥∥∥8
2
< K. It follows that

E
(
ς4c,iT

)
<
K

T 2
. (A.33)

This completes the proof of (A.26) for j = 1. Consider next (A.26) for j = 2, and note qiT,2 is the same as

ςb,iT , namely

qiT,2 =
∆x̃′iPiṽi

αi
√
T

=
∆x̃′iṽi

αi
√
T

= ςb,iT .

But E
(
ς4b,iT

)
< K, see (A.31). This completes the proof of (A.26).

Next we establish (A.27). As before we consider the individual elements of 2× 1 vector qiT , denoted as
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qiT,s for s = 1, 2, separately. For s = 1 we have (using the individual terms in expression (A.30))

|E (qiT,1)| =
∣∣∣∣∣E
(
−
ξ̃
′
i,−1ṽi√
T

+
∆x̃′iṽi

αi
√
T

+
∆ṽ′iPiṽi

αi
√
T

)∣∣∣∣∣ ≤ |E (ςa,iT )|+ |E (ςb,iT )|+ |E (ςc,iT )| . (A.34)

For the first term in (A.34), we obtain

|E (ςa,iT )| =

∣∣∣∣∣E
[
−
ξ̃
′
i,−1ṽi√
T

= − 1√
T

T∑
i=1

(
ξi,t−1 − ξ̄i,−1

)
(vit − v̄i)

]∣∣∣∣∣ ,
≤ 1√

T

T∑
i=1

∣∣E (ξi,t−1vit)∣∣+
√
TE

∣∣ξ̄i,−1v̄i∣∣ .
But E

(
ξi,t−1vit

)
= 0 and E

∣∣ξ̄i,−1v̄i∣∣ < K/T under Assumptions 1-2. Hence,

|E (ςa,iT )| ≤ K√
T
.

For the second term in (A.34), we obtain

|E (ςb,iT )| =

∣∣∣∣∣E
(

1

αi
√
T

T∑
t=1

ux,itvit −
√
T

αi
ūx,iv̄i

)∣∣∣∣∣ ,
≤ K

1√
T

T∑
t=1

|E (ux,itvit)|+K
√
T |E (ūx,iv̄i)| .

But E (ux,itvit) = 0 and E (ūx,iv̄i) = 0 under Assumption 2. Hence

|E (ςb,iT )| = 0.

Finally, for the last term we note that

|E (ςc,iT )| ≤ E |ςc,iT | ≤
√
E
(
ς2c,iT

)
,

and using result (A.33), we obtain

|E (ςc,iT )| < K√
T
.

It now follows that |E (qiT,1)| < K/
√
T , as desired.

Consider |E (qiT,s)| for s = 2 next. We have

|E (qiT,2)| = |E (ςb,iT )| = 0.

This completes the proof of result (A.27).

Lemma A.7 Let Assumptions 1-4 hold, and consider BiT defined by (A.19). Then we have

Tϕ ‖BiT −Bi‖ →p 0 as T →∞, for any ϕ < 1/2, (A.35)
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where

Bi = plim
T→∞

BiT =

(
α2iE

(
ξ2it
)

+ δ2iσ
2
xi δiσ

2
xi

δiσ
2
xi σ2xi

)
, (A.36)

and ξit =
∑∞
`=0 (1− αi)` (uy,i,t−` − βux,i,t−`).

Proof. We have

BiT =
∆Z̃′iPi∆Z̃i

T
=

1

T

(
∆ỹ′iPi∆ỹi ∆ỹ′iPi∆x̃i

∆x̃′iPi∆ỹi ∆x̃′iPi∆x̃i

)
=

(
biT,11 biT,12

biT,21 biT,22

)
.

Consider the element biT,22 first. Since ∆x̃′iPi = ∆x̃′i, and ∆x̃it = ux,it − ūx,i, we have

biT,12 =

(
1

T

T∑
t=1

u2x,it

)
− ū2x,i.

Under Assumption 2, ux,it ∼ IID
(
0, σ2xi

)
with finite fourth order moments, and therefore

Tϕ

(
1

T

T∑
t=1

u2x,it − σ2xi

)
p→ 0, for any ϕ < 1/2.

In addition, E
(
ū2x,i

)
< K/T , which implies Tϕū2x,i

p→ 0, for any ϕ < 1/2. It follows

Tϕ
(
biT,22 − σ2xi

) p→ 0, for any ϕ < 1/2. (A.37)

Consider the element biT,11 next. We will use similar arguments as in the proof of Lemma A.6. In particular,

∆ỹi can be written as in (A.29), and, since Piξ̃i,−1 = ξ̃i,−1 and Pi∆x̃i = ∆x̃i, we have

bi,T,11 =
∆ỹ′iPi∆ỹi

T
= ζaa,iT + ζbb,iT + ζcc,iT + 2ζab,iT + 2ζac,iT + 2ζbc,iT , (A.38)

where

ζaa,iT = α2i
ξ̃
′
i,−1ξ̃i,−1
T

, ζbb,iT = δ2i
∆x̃′i∆x̃i

T
,

ζcc,iT =
ṽ′iPiṽi
T

,

and the cross-product terms are

ζab,iT = αiδi
ξ̃
′
i,−1∆x̃i

T
, ζac,iT = αi

ξ̃
′
i,−1ṽi

T
, ζbc,iT = δi

∆x̃′iṽi
T

.

We consider these individual terms ζ next. Note that

ξit =

∞∑
`=0

(1− αi)` (uy,i,t−` − βux,i,t−`) ,

=

∞∑
`=0

(1− αi)` vi,t−` + (δi − β)

∞∑
`=0

(1− αi)` ux,i,t−`,

where supi |1− αi| < 1 under Assumption 1, and innovations vit and uxit have finite fourth order moments
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under Assumption 2. Hence, Tϕ
[
T−1

∑T
t=1 ξ

2
i,t−1 − E

(
ξ2i,t−1

)]
→p 0, E

(
ξ̄
2
i,−1

)
< K/T , and we obtain

Tϕ
[
ζaa,iT − α2iE

(
ξ̄
2
i,−1

)]
→p 0, for any ϕ < 1/2. (A.39)

Noting that ζbb,iT = δ2i bi,T,12, and using result (A.37), we have

Tϕ
[
ζbb,iT − δ2iσ2xi

]
→p 0, for any ϕ < 1/2. (A.40)

Consider ζcc,iT and note that ζcc,iT = αi√
T
ςc,iT , where ςc,iT = α−1i ∆ṽ′iPiṽi/

√
T was introduced in (A.30) in

proof of Lemma A.6. But E
(
ς2c,iT

)
< K

T by (A.33), and it follows

Tϕζcc,iT →p 0, for any ϕ < 1/2. (A.41)

Using similar arguments, we obtain for the cross-product terms,

Tϕζab,iT →p 0, Tϕζac,iT →p 0, and Tϕζbc,iT →p 0, for any ϕ < 1/2, as T →∞. (A.42)

Using (A.39)-(A.42) in (A.38), we obtain

Tϕ
(
bi,T,11 − α2iE

(
ξ2it
)
− δ2iσ2xi

) p→ 0, for any ϕ < 1/2. (A.43)

Using the same arguments for the last term bi,T,12 = bi,T,21, we obtain

Tϕ
(
bi,T,12 − δiσ2xi

) p→ 0, for any ϕ < 1/2.

This completes the proof of (A.35).

Lemma A.8 Let Assumptions 1-4 hold, and consider BiT defined by (A.19) and Bi = plimT→∞BiT defined

by (A.36). Then we have

Tϕ
∥∥B−1iT −B−1i

∥∥→p 0, as T →∞, for any ϕ < 1/2. (A.44)

Proof. This proof closely follows proof of Lemma A.8 in Chudik and Pesaran (2013). Let p =
∥∥B−1i ∥∥,

q =
∥∥B−1iT −B−1i

∥∥, and r = ‖BiT −Bi‖. We suppressed subscripts i, T to simplify the notations, but it is
understood that the terms p, q, r depend on (i, T ). Using the triangle inequality and the submultiplicative

property of matrix norm ‖.‖, we have

q =
∥∥B−1iT (Bi −BiT ) B−1i

∥∥ ,
≤

∥∥B−1iT ∥∥ rp,
≤

∥∥(B−1iT −B−1i
)

+ B−1i
∥∥ rp,

≤ (p+ q) rp.

Subtracting rpq from both sides and multiplying by Tϕ, we have, for any ϕ < 1/2,

(1− rp) (Tϕq) ≤ p2 (Tϕr) . (A.45)
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Note that Tϕr
p→ 0 by Lemma A.7, and |p| < K since Bi is invertible and λmin (Bi) is bounded away from

zero (this follows from observing that both σ2xi and E
(
ξ2it
)
as well as α2i in (A.36) are bounded away from

zero). Hence,

(1− rp) p→ 1, (A.46)

and

p2 (Tϕr)
p→ 0. (A.47)

(A.45)-(A.47) imply Tϕq
p→ 0. This establishes result (A.44).

Lemma A.9 Let Assumptions 1-4 hold, and consider ξiT defined by

ξiT =
x̃′i∆Z̃i
T

(
∆Z̃′iPi∆Z̃i

T

)−1
∆Z̃′iPiṽi

αi
√
T

. (A.48)

where Pi is given by (10), and x̃i and ∆Z̃i are defined below (6). Then

1√
nT

n∑
i=1

ξiT →p 0, (A.49)

as n, T →∞ such that n = Θ
(
T θ
)
for some 0 < θ < 2.

Proof. Term ξiT can be written as

ξiT = a′iTB−1iT qiT , (A.50)

where aiT is given by (A.18), BiT is given by (A.19), and

qiT =
∆Z̃′iPiṽi

αi
√
T

. (A.51)

We have
1√
nT

n∑
i=1

ξi,T =
1√
nT

n∑
i=1

a′iT
(
B−1iT −B−1i

)
qiT +

1√
nT

n∑
i=1

a′iTB−1i qiT . (A.52)

Consider the two terms on the right side of (A.52) in turn. Lemma A.2 established fourth moments of aiT are

bounded, which is suffi cient for ‖aiT ‖ = Op (1). Result (A.26) of Lemma A.6 established second moments

of individual elements of qiT are bounded, which is suffi cient for ‖qiT ‖ = Op (1). In addition, Lemma A.8

established

Tϕ
∥∥B−1iT −B−1i

∥∥→p 0 as T →∞, for any ϕ < 1/2.

Set ϕ = (θ − 1) /2 < 1/2 . Then we obtain

1√
nT

n∑
i=1

a′iT
(
B−1iT −B−1i

)
qiT =

√
n√
T

1

Tϕ
1

n

n∑
i=1

a′iT
[
Tϕ
(
B−1iT −B−1i

)]
qiT ,

≤
√
n

T θ/2

(
1

n

n∑
i=1

‖aiT ‖
(
Tϕ
∥∥B−1iT −B−1i

∥∥) ‖qiT ‖)→p 0, (A.53)

as n, T →∞ such that θ < 2, where we used
√
TTϕ = T 1/2+ϕ = T θ/2, and

√
n

T θ/2
< K since n = Θ

(
T θ
)
.

Consider next the second term on the right side of (A.52). Let µ∗iT = E
(
a′iTB−1i qiT

)
, and consider the
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variance of (nT )
−1/2∑n

i=1 a′iTB−1i qiT . By independence of a′iTB−1i qiT across i,

V ar

(
1√
nT

n∑
i=1

a′iTB−1i qiT

)
=

1

nT

n∑
i=1

V ar
(
a′iTB−1i qiT

)
,

≤ 1

nT

n∑
i=1

E
(
a′iTB−1i qiT

)2
. (A.54)

Denoting individual elements of B−1i as b−i,sj , individual elements of aiT as aiT,j , and individual elements of

qiT as qiT,s, for s, j = 1, 2, we have

a′iTB−1i qiT =

2∑
s=1

2∑
j=1

b−i,sjaiT,sqiT,j ,

= b−i,11aiT,1qiT,1 + b−i,21aiT,2qiT,1 + b−i,12aiT,1qiT,2 + b−i,22aiT,2qiT,2, (A.55)

where

aiT,1 =
1

T

T∑
t=1

x̃it∆ỹit =
1

T

T∑
t=1

(xit − x̄i) ∆yit, (A.56)

aiT,2 =
1

T

T∑
t=1

x̃it∆x̃it =
1

T

T∑
t=1

(xit − x̄i)ux,it, (A.57)

qiT,1 =
∆ỹ′iPiṽi

αi
√
T
, (A.58)

and

qiT,2 =
1√
T

T∑
t=1

ũx,itṽit
αi

. (A.59)

Note that Bi is invertible and infi λmin (Bi) is bounded away from zero (this follows from observing that

both σ2xi and E
(
ξ2it
)
as well as α2i in (A.36) are bounded away from zero). It follows supi

∥∥B−1i ∥∥ < K, and

therefore
∣∣∣(b−i,sj)2∣∣∣ < K. Using this result and Cauchy-Schwarz inequality for the individual summands on

the right side of (A.55), we obtain

E
(
a′iTB−1i qiT

)2 ≤ K 2∑
s=1

2∑
j=1

√
E
(
a4iT,s

)√
E
(
q4iT,j

)
< K, (A.60)

where E
(
a4iT,s

)
< K by Lemma A.2, and E

(
q4iT,j

)
< K by result (A.26) of Lemma A.6. Using (A.60) in

(A.54), it follows that

V ar

(
1√
nT

n∑
i=1

a′iTB−1i qiT

)
<
K

T
,

and therefore
1√
nT

n∑
i=1

(
a′iTB−1i qiT − µ∗iT

)
→q.m. 0 as n, T →∞. (A.61)

We establish an upper bound for |µ∗iT | next. We have (using (A.55) and noting that
∣∣b−i,sj∣∣ < K)

|µ∗iT | < K ·
2∑
s=1

2∑
j=1

|E (aiT,sqiT,j)| .

31



It follows that if we can show that

|E (aiT,sqiT,j)| <
K√
T
, (A.62)

holds for all s, j = 1, 2, then

|µ∗iT | <
K√
T
, (A.63)

hold. We establish (A.62) for s = j = 2, first, which is the most convenient case to consider. We have

E (aiT,2qiT,2) = E

(
1

T

T∑
t=1

(xit − x̄i)ux,it ·
1√
T

T∑
t=1

ux,itvit
αi

)
= 0, (A.64)

since vit is independently distributed of ux,it′ for any t, t′. Consider next s = 1, j = 2. We have

E (aiT,1qiT,2) = E

(
1

T

T∑
t=1

(xit − x̄i) ∆yit ·
1√
T

T∑
t=1

ux,itvit
αi

)
, (A.65)

where (first-differencing (A.6) and substituting (3))

∆yit = δiux,it + vit − αi
∞∑
`=1

(1− αi)`−1 [vi,t−` + (δi − β)ux,i,t−`] ,

= ηu,it + ηv,it, (A.66)

in which

ηu,it = δiux,it − αi
∞∑
`=1

(1− αi)`−1 (δi − β)ux,i,t−`, (A.67)

and

ηv,it = vit − αi
∞∑
`=1

(1− αi)`−1 vi,t−`. (A.68)

Hence, E (aiT,1qiT,2) can be written as

E (aiT,1qiT,2) = E

(
1

T

T∑
t=1

(xit − x̄i) ηu,it ·
1√
T

T∑
t=1

ux,itvit
αi

)

+E

(
1

T

T∑
t=1

(xit − x̄i) ηv,it ·
1√
T

T∑
t=1

ux,itvit
αi

)
.

The first term is equal to 0, since vit is independently distributed of ux,it′ for any t, t′. Consider the second

term. Noting that E [(xit − x̄i)ux,is] < K and
∣∣α−1i ∣∣ < K for any i, t, s, we obtain

E

(
1

T

T∑
t=1

(xit − x̄i) ηv,it ·
1√
T

T∑
t=1

ux,itvit
αi

)
=

1

T 3/2

T∑
t=1

T∑
s=1

α−1i E [(xit − x̄i)ux,is]E
(
ηv,isvit

)
,

≤ K

T 3/2

T∑
t=1

T∑
s=1

E
(
ηv,isvit

)
.

But

E
(
ηv,isvit

)
=


0, for s < t,

σ2vi < K, for s = t,

≤ Kρs−t, for s > t,
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where ρ ≡ supi |1− αi| < 1 by Assumption 1. Hence
∣∣∣∑T

s=1E
(
ηv,isvit

)∣∣∣ < K for any t = 1, 2, ...T , and

∣∣∣∣∣E
(

1

T

T∑
t=1

(xit − x̄i) ηv,it ·
1√
T

T∑
t=1

ux,itvit
αi

)∣∣∣∣∣ ≤ K√
T
, (A.69)

as desired. This establish (A.62) hold for s = 1, j = 2.

Consider next (A.62) for s ∈ {1, 2} and j = 1. Using expression (A.30), we can write aiT,sqiT,1, for

s = 1, 2, as

aiT,sqiT,1 = aiT,sςa,iT + aiT,sςb,iT + aiT,sςc,iT , (A.70)

where as in the proof of Lemma A.6 ςa,iT = −ξ̃′i,−1ṽi/
√
T , ςb,iT = α−1i ∆x̃′iṽi/

√
T and ςc,iT = α−1i ∆ṽ′iPiṽi/

√
T .

Using similar arguments as in establishing (A.69), we obtain

|E (aiT,sςa,iT )| < K√
T
, for s = 1, 2.

Noting next that ςb,iT = α−1i qi,T,2, it directly follows from results (A.64) and (A.69) that

|E (aiT,sςb,iT )| < K√
T
, for s = 1, 2.

Consider the last term, ai,T,sςc,iT , for s = 1, 2. Using Cauchy-Schwarz inequality we have

|E (aiT,sςc,iT )| ≤
√
E
(
a2iT,s

)√
E
(
ς2c,iT

)
, for s = 1, 2.

But E
(
a2iT,s

)
< K, for s = 1, 2 by Lemma A.2, and E

(
ς2c,iT

)
< K/T is implied by (A.33). Hence

|E (aiT,sςc,iT )| ≤ K√
T
, for s = 1, 2.

This completes the proof of (A.62) for all s, j = 1, 2, and therefore (A.63) holds. Using (A.63), we∣∣∣∣∣ 1√
nT

n∑
i=1

µ∗iT

∣∣∣∣∣ ≤ 1√
nT

n∑
i=1

|µ∗iT | <
1√
nT

n∑
i=1

K√
T

= K

√
n

T
→ 0, (A.71)

as n, T →∞ such that
√
n/T → 0. Results (A.61) and (A.71) imply

1√
nT

n∑
i=1

a′iTB−1i qiT →p 0, (A.72)

as n, T →∞ such that
√
n/T → 0. Finally, using (A.53) and (A.72) in (A.52), we obtain (A.61), as desired.

Lemma A.10 Let Assumptions 1-4 hold. Then

1√
n

n∑
i=1

E

(
x̃′iMiṽi
αiT

)
→ 0,

as n, T → ∞ such that n = Θ
(
T θ
)
for some 0 < θ < 2, where Mi is defined in (9), and x̃i and ṽi are

defined below (6).
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Proof. We have
1√
n

n∑
i=1

x̃′iMiṽi
αiT

=
1√
n

n∑
i=1

x̃′iṽi
αiT

+
1√
nT

n∑
i=1

ξiT , (A.73)

where ξiT is defined by (A.48). For the first term, E (x̃′iṽi) = 0. For the second term, Lemma A.9 established
1√
nT

∑n
i=1 ξiT →p 0, as n, T → ∞ such that n = Θ

(
T θ
)
, for some 0 < θ < 2. Hence it follows that

1√
n

∑n
i=1E

(
x̃′iMiṽi
αiT

)
→ 0, as n,T →∞ such that n = Θ

(
T θ
)
, for some 0 < θ < 2.

Lemma A.11 Suppose conditions of Theorem 1 hold. Then

1√
n

n∑
i=1

[
x̃′iMiṽi
αiT

− E
(

x̃′iMiṽi
αiT

)]
→d N

(
0, ω2v

)
, (A.74)

where ω2v = lim n→∞n
−1∑n

i=1 σ
2
xiσ

2
vi/
(
6α2i

)
, Mi is defined by (9), and x̃i and ṽi are defined below (6).

Proof. It is convenient to use (A.73) in (A.74) to obtain

1√
n

n∑
i=1

[
x̃′iMiṽi
αiT

− E
(

x̃′iMiṽi
αiT

)]
=

1√
n

n∑
i=1

x̃′iṽi
αiT

+
1√
nT

n∑
i=1

[ξiT − E (ξiT )] ,

where E (x̃′iṽi) = 0. It follows from Lemmas A.9 and A.10 that 1√
nT

∑n
i=1 [ξiT − E (ξiT )]→p 0, as n, T →∞

such that n = Θ
(
T θ
)
, for some 0 < θ < 2. Hence, under the conditions of Theorem 1, the asymptotic

distribution of 1√
n

∑n
i=1

[
x̃′iMiṽi
αiT

− E
(
x̃′iMiṽi
αiT

)]
is given by the first term, 1√

n

∑n
i=1

x̃′iṽi
αiT

, alone. Lemma A.5

establishes the asymptotic normality of this term.

1√
n

n∑
i=1

x̃′iMiṽi
αiT

→d N
(
0, ω2v

)
, (A.75)

as n, T →∞. This completes the proof.

B Estimation algorithms

This appendix describes implementation of the Pooled Mean Group (PMG) estimator, which we compute

iteratively, in Section B.1. Section B.2 discusses implementation of bias-correction methods and bootstrap-

ping of critical values for the PMG, PDOLS and FMOLS estimators. Section B.3 provides tables with Monte

Carlo findings for experiments with cross-sectionally dependent errors.

B.1 Computation of PMG estimator

Consider the same illustrative panel ARDL model as in the paper, namely the model given by equations

(1)-(2). PMG estimator of the long-run coeffi cient β, as originally proposed by Pesaran, Shin, and Smith

(1999), is computed by solving the following equations iteratively:

β̂PMG = −
(

n∑
i=1

φ̂
2

i

σ̂2i
x′iHx,ixi

)−1 n∑
i=1

φ̂
2

i

σ̂2i
x′iHx,i

(
∆yi − φ̂iyi,−1

)
, (B.1)

φ̂i =
(
ξ̂
′
iHx,iξ̂i

)−1
ξ̂
′
iHx,i∆yi, i = 1, 2, ..., n, (B.2)
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and

σ̂2i = T−1
(

∆yi − φ̂iξ̂i
)′

Hx,i

(
∆yi − φ̂iξ̂i

)
, i = 1, 2, ..., n, (B.3)

where ξ̂i = yi,−1 − xiβ̂PMG, xi = (xi,1, xi,2, ..., xi,T )
′, ∆yi = yi − yi,−1, yi = (yi,1, yi,2, ..., yi,T )

′, yi,−1 =

(yi,0, yi,1, ..., yi,T−1)
′, Hx,i = IT −∆xi (∆x′i∆xi)

−1
∆x′i, ∆xi = xi−xi,−1, and xi,−1= (xi,0, xi,1, ..., xi,T−1)

′.

To solve (B.1)-(B.3) iteratively, we set β̂PMG,(0) to the pooled Engle-Granger estimator, and given the

initial estimate β̂PMG,(0), we compute ξ̂i,(0) = yi,−1 − xiβ̂PMG,(0), φ̂i,(0) and σ̂
2
i,(0), for i = 1, 2, ..., n using

(B.2)-(B.3). Next we compute β̂PMG,(1) using (B.1) and given values φ̂i,(0) and σ̂
2
i,(0). Then we iterate -

for a given value of β̂PMG,(`) we compute ξ̂i,(`), φ̂i,(`) and σ̂
2
i,(`); and for given values of φ̂i,(`) and σ̂

2
i,(`) we

compute β̂PMG,(`+1). If convergence is not achieved, we increase ` by one and repeat. We define convergence

by
∣∣∣β̂PMG,(`+1) − β̂PMG,(`)

∣∣∣ < 10−4.

Inference is conducted using equation (17) of Pesaran, Shin, and Smith (1999). In particular,

T
√
n
(
β̂PMG − β0

)
∼ N (0,ΩPMG) ,

where

ΩPMG =

(
1

n

n∑
i=1

φi,0
σ2i,0

rxi,xi

)−1
, and rxi,xi = plimT→∞T

−2x′iHx,ixi .

Standard error of β̂PMG, denoted as se
(
β̂PMG

)
, is estimated as

ŝe
(
β̂PMG

)
= T−1n−1/2Ω̂PMG,

where

Ω̂PMG =

(
1

n

n∑
i=1

φ̂i,0

σ̂2i,0
r̂xi,xi

)−1
and r̂xi,xi = T−2x′iHx,ixi. (B.4)

B.2 Bias-corrected PMG, PDOLS and FMOLS estimators, and bootstrapped
critical values

Similarly to the bootstrap bias-corrected PB estimator, we consider the following bootstrap bias-corrected

PMG, PDOLS and FMOLS estimators. Let the original (uncorrected) estimators be denoted as β̂e for

e = PMG,PDOLS, and FMOLS, respectively. Bootstrap bias corrected version of these estimators is

given by

β̃e = β̂e − b̂e, (B.5)

for e = PMG,PDOLS, and FMOLS, where b̂e an estimate of the bias obtained by the following sieve

wild bootstrap algorithm, which resembles the algorithm in Subsection 2.2.1. For e= PMG,PDOLS, and

FMOLS :

1. Compute β̂e. Given β̂e, estimate the remaining unknown coeffi cients of (1)-(2) by least squares, and

compute residuals ûey,it, û
e
x,it.

2. For each r = 1, 2, ..., R, generate new draws for ûe,(r)y,it = a
(r)
t ûey,it, and û

e,(r)
x,it = a

(r)
t ûex,it, where a

(r)
t are

randomly drawn from Rademacher distribution (Liu, 1988) namely

a
(r)
t =

{
−1, with probability 1/2

1, with probability 1/2
.
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Given the estimated parameters of (1)-(2) from Step 1, and initial values yi1, xi1 generate simulated

data ye,(r)it , x
e,(r)
it for t = 2, 3, ..., T and i = 1, 2, ..., n. Using the generated data compute β̂

(r)

e .

3. Compute b̂e =
[
R−1

∑R
r=1 β̂

(r)

e − β̂e
]
.

The possibility of iterating the algorithm above by using the bias-corrected estimate β̃e in Step 1 is not

considered in this paper.

We conduct inference by using the 1 − α confidence interval C1−α
(
β̃e

)
= β̃e ± k̂eŝe

(
β̂e

)
= β̃e ±

T−1n−1/2k̂eΩ̂e, where k̂e is the 1 − α percent quantile of
{∣∣∣t(r)e ∣∣∣}R

r=1
, in which t

(r)
e = β̃

(r)

e /ŝe
(
β̂
(r)

e

)
=

T−1n−1/2β̃
(r)

e /Ω̂
(r)
e , β̃

(r)

e = β̂
(r)

e − b̂e is the bias-corrected PMG estimate of β in the r-th draw of the

bootstrap data in the algorithm above, and Ω̂
(r)
e is estimated standard error using the bootstrap data.

B.2.1 Jackknife bias-corrections

We consider similar jackknife bias correction for PMG, PDOLS and FMOLS estimator as for the PB estimator

in Section 2.2. In particular,

β̃jk,e = β̃jk,e (κ) = β̂e − κ
(
β̂e,a + β̂e,b

2
− β̂e

)
,

for e = PMG,PDOLS, and FMOLS, where β̂e is the full sample estimator, β̂e,a and β̂e,b are the first and

the second half sub-sample estimators, and κ = 1/3 is the same weighting parameter as in Section 2.2.

We conduct inference by using the 1−α confidence interval C1−α
(
β̃jk,e

)
= β̃jk,e±k̂jk,eŝe

(
β̂e

)
= β̃jk,e±

k̂jk,eT
−1n−1/2Ω̂e, where k̂jk is the 1−α percent quantile of

{∣∣∣t(r)jk,e∣∣∣}R
r=1
, in which t(r)jk,e = β̃

(r)

jk,e/ŝe
(
β̂
(r)

e

)
=

T−1n−1/2β̃
(r)

jk,e/Ω̂
(r)
e , β̃

(r)

jk,e is the jackknife bias-corrected estimate of β using the r-th draw of the bootstrap

data generated using the same algorithm as in Subsection B.2, and Ω̂
(r)
e is estimated standard error using

the bootstrap data.

B.3 Monte Carlo results for experiments with cross-sectionally dependent er-
rors
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Table B1: MC findings for the estimation of long-run coeffi cient β in experiments with cross-sectionally
dependent errors.

Estimators without bias correction and inference conducted using standard critical values.

Bias (× 100) RMSE (× 100) Size (5% level) Power (5% level)
n\T 20 30 40 50 20 30 40 50 20 30 40 50 20 30 40 50

PB

20 -3.83 -1.93 -1.01 -0.66 7.58 4.92 3.57 2.78 28.00 21.95 17.55 16.80 37.30 64.50 86.90 96.85

30 -3.57 -1.98 -1.17 -0.69 6.67 4.43 3.32 2.46 28.95 23.55 22.10 18.80 45.10 75.25 92.70 99.00

40 -3.94 -2.04 -1.10 -0.74 6.58 4.20 3.08 2.37 33.60 27.25 23.75 22.90 46.60 82.00 96.70 99.65

50 -3.88 -1.99 -1.10 -0.76 6.35 4.01 2.89 2.23 38.30 29.55 25.30 23.30 50.70 85.60 97.75 99.95

PMG

20 -1.96 -0.90 -0.40 -0.26 9.05 5.49 3.86 3.00 45.75 34.00 26.30 23.90 62.45 78.50 92.45 98.15

30 -1.60 -1.05 -0.56 -0.31 7.76 4.83 3.54 2.58 46.35 37.25 32.75 27.35 70.50 85.25 95.60 99.65

40 -1.79 -1.02 -0.50 -0.32 7.07 4.51 3.27 2.44 49.40 40.80 35.00 29.90 73.05 90.25 97.65 99.85

50 -1.76 -0.89 -0.46 -0.32 6.70 4.21 3.00 2.28 54.30 42.95 34.20 31.55 76.40 93.90 98.90 100.00

PDOLS

20 -6.20 -4.10 -3.08 -2.40 9.50 6.31 4.67 3.67 31.40 27.30 25.70 26.30 22.35 39.95 65.20 85.80

30 -5.76 -4.15 -3.08 -2.37 8.65 5.89 4.39 3.41 34.85 33.45 32.15 33.35 27.95 48.60 77.05 93.55

40 -6.29 -4.24 -3.12 -2.44 8.67 5.82 4.27 3.35 42.95 41.85 38.60 38.80 26.95 52.35 82.15 97.05

50 -6.12 -4.19 -3.09 -2.47 8.46 5.62 4.16 3.27 47.90 45.45 45.15 45.05 31.50 59.55 88.25 98.65

FMOLS

20 -10.89 -7.25 -5.42 -4.20 13.27 9.09 6.79 5.37 85.10 76.30 68.35 63.05 54.40 54.40 73.30 88.35

30 -10.32 -7.26 -5.29 -4.06 12.28 8.70 6.45 5.04 88.60 82.70 76.00 71.35 57.00 60.70 82.20 95.25

40 -10.94 -7.60 -5.45 -4.29 12.57 8.76 6.41 5.10 91.90 88.20 82.85 77.50 60.10 61.75 84.95 96.65

50 -10.72 -7.42 -5.38 -4.30 12.26 8.52 6.28 5.00 93.50 89.15 85.40 82.35 63.55 68.15 89.30 98.80

Notes: DGP is given by ∆yit = ci − αi (yi,t−1 − βxi,t−1) + uy,it and ∆xit = ux,it, for i = 1, 2, ..., n, T = 1, 2, ..., T ,

with β = 1 and αi ∼ IIDU [0.2, 0.3]. Errors uy,it, ux,it are cross-sectionally dependent, heteroskedastic over i, and

also correlated over y & x equations. See Section 3.1 for complete description of the DGP. The pooled Bewley

estimator is given by (8), with variance estimated using (16). PMG is the Pooled Mean Group estimator proposed

by Pesaran, Shin, and Smith (1999). PDOLS is panel dynamic OLS estimator by Mark and Sul (2003). FMOLS is

the group-mean fully modified OLS estimator by Pedroni (1996, 2001b). The size and power findings are computed

using 5% nominal level and the reported power is the rejection frequency for testing the hypothesis β = 0.9.
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Table B2: MC findings for the estimation of long-run coeffi cient β in experiments with cross-sectionally
dependent errors.

Bias corrected estimators and inference conducted using bootstrapped critical values.

Bias (× 100) RMSE (× 100) Size (5% level) Power (5% level)
n\T 20 30 40 50 20 30 40 50 20 30 40 50 20 30 40 50

Jackknife bias-corrected estimators
PB

20 -1.57 -0.54 -0.11 -0.01 7.83 5.24 3.92 3.04 7.65 6.55 5.55 4.65 20.55 41.35 65.35 83.50

30 -1.29 -0.67 -0.34 -0.05 6.76 4.63 3.59 2.72 6.30 6.60 6.40 5.25 25.80 51.35 73.90 91.45

40 -1.67 -0.62 -0.20 -0.06 6.48 4.35 3.36 2.58 6.75 6.15 6.20 5.40 25.55 54.30 80.25 94.45

50 -1.54 -0.58 -0.21 -0.09 6.16 4.12 3.15 2.43 6.80 6.20 5.85 4.65 27.65 59.40 84.95 96.70

PMG

20 -0.54 -0.15 0.02 0.06 10.66 6.26 4.45 3.44 16.05 10.80 8.55 7.90 29.10 45.05 69.15 84.75

30 -0.25 -0.39 -0.19 0.03 9.10 5.50 4.02 2.94 14.80 10.40 9.05 6.90 36.30 53.85 76.40 93.40

40 -0.57 -0.27 -0.08 0.03 8.25 5.13 3.78 2.78 14.10 10.50 9.15 7.80 35.10 59.50 81.25 95.55

50 -0.41 -0.10 -0.06 0.03 7.81 4.81 3.44 2.63 14.85 11.05 8.65 7.65 39.55 64.65 85.90 97.15

PDOLS

20 -4.61 -2.84 -2.06 -1.54 9.89 6.23 4.51 3.51 8.75 7.50 6.45 4.95 10.05 21.55 39.00 63.80

30 -4.09 -2.96 -2.15 -1.55 8.86 5.72 4.21 3.20 8.70 7.30 6.55 5.40 12.20 24.05 46.10 73.10

40 -4.66 -2.94 -2.13 -1.57 8.62 5.53 4.00 3.06 8.80 6.55 6.45 4.55 10.00 23.90 47.70 77.80

50 -4.41 -2.91 -2.11 -1.63 8.30 5.29 3.84 2.95 9.85 6.50 6.25 5.10 11.95 24.40 52.10 80.80

FMOLS

20 -8.65 -5.12 -3.61 -2.69 12.18 7.99 5.79 4.56 11.25 5.65 4.20 3.85 2.00 4.55 9.50 25.50

30 -8.06 -5.27 -3.57 -2.55 11.00 7.43 5.42 4.14 9.65 6.85 5.20 3.35 2.10 3.95 12.65 31.60

40 -8.65 -5.53 -3.70 -2.74 11.08 7.35 5.25 4.08 11.50 6.50 4.55 3.85 1.45 3.35 12.25 32.05

50 -8.44 -5.36 -3.63 -2.78 10.72 7.07 5.07 3.94 12.45 6.70 4.55 3.40 1.75 4.40 13.70 34.30

Bootstrap bias-corrected estimators
PB

20 -1.26 -0.43 -0.05 -0.01 7.34 4.80 3.56 2.78 10.10 7.95 6.45 5.85 29.35 52.15 76.10 90.15

30 -1.04 -0.51 -0.23 -0.05 6.29 4.21 3.24 2.42 10.20 7.35 7.20 5.40 37.20 64.30 85.00 95.90

40 -1.31 -0.51 -0.12 -0.08 5.98 3.93 3.01 2.32 10.15 7.50 6.75 5.80 39.00 69.80 89.80 98.15

50 -1.26 -0.45 -0.12 -0.09 5.78 3.72 2.78 2.17 10.20 7.85 7.05 6.00 42.90 75.25 93.50 99.20

PMG

20 -1.23 -0.44 -0.09 -0.03 9.24 5.54 3.91 3.03 16.00 10.50 7.60 6.70 31.35 51.80 76.10 90.80

30 -0.92 -0.60 -0.27 -0.10 7.89 4.84 3.57 2.59 14.70 9.95 8.45 5.85 38.20 60.85 83.80 97.10

40 -1.10 -0.56 -0.19 -0.11 7.14 4.51 3.30 2.45 14.80 10.00 8.90 7.00 39.35 67.05 88.90 98.10

50 -1.06 -0.45 -0.16 -0.10 6.77 4.23 3.02 2.29 14.90 10.45 8.25 6.00 44.90 71.40 91.75 99.15

PDOLS

20 -2.34 -1.13 -0.66 -0.37 8.73 5.46 3.92 3.05 12.05 10.05 7.75 6.90 22.40 45.25 71.30 87.75

30 -2.03 -1.29 -0.74 -0.41 7.73 4.85 3.53 2.68 12.15 8.60 8.45 7.65 26.95 51.50 79.30 94.15

40 -2.46 -1.28 -0.71 -0.41 7.40 4.68 3.31 2.54 12.65 10.20 9.05 7.75 26.15 55.55 84.05 96.90

50 -2.32 -1.22 -0.68 -0.44 7.28 4.41 3.15 2.39 15.00 9.60 8.40 7.40 30.15 59.85 88.40 98.55

FMOLS

20 -4.39 -2.01 -1.24 -0.77 10.37 6.73 4.85 3.83 18.45 10.90 7.80 6.85 17.80 31.75 50.55 70.75

30 -4.00 -2.25 -1.25 -0.71 9.02 6.02 4.42 3.43 17.25 12.00 9.60 7.70 20.95 37.25 61.40 82.55

40 -4.46 -2.44 -1.27 -0.84 8.82 5.67 4.11 3.21 19.35 12.10 9.60 9.05 20.10 38.50 67.65 85.95

50 -4.30 -2.27 -1.22 -0.86 8.48 5.41 3.92 3.02 21.20 13.90 10.10 7.80 22.85 44.85 72.20 90.40

Notes: See the notes to Table B1. Bias-corrected versions of the PB estimator are described in Subsection 2.2.

Bias-corrected versions of the PMG, PDOLS and FMOLS estimator are described in Appendix B. Inference is

conducted using bootstrapped critical values.
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