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This paper considers the problem of model uncertainty in the case of multi-asset volatility
models and discusses the use of model averaging techniques as away of dealing with the risk of
inadvertently using false models in portfolio management. Evaluation of volatility models is
then considered and a simple Value-at-Risk (VaR) diagnostic test is proposed for individual as
well as ‘average’ models. The asymptotic as well as the exact finite-sample distribution of the
test statistic, dealing with the possibility of parameter uncertainty, are established. The model
averaging idea and the VaR diagnostic tests are illustrated by an application to portfolios of
daily returns on six currencies, four equity indices, four ten year government bonds and four
commodities over the period 1991–2007. The empirical evidence supports the use of ‘thick’
model averaging strategies over single models or Bayesian type model averaging procedures.
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1. Introduction

Multivariate models of conditional volatility are of crucial importance for optimal asset allocation, risk management, derivative
pricing and dynamic hedging. However, their use in practice has been rather limited, particularly in the case of portfolios with a
large number of assets. There are only a few published empirical studies that consider the performance of multivariate volatility
models involving a large number of assets, and for operational reasons most of these studies focus on highly restricted versions of
the multivariate generalized autoregressive conditional heteroscedastic (GARCH) model of Bollerslev (1986). The risk associated
with possible model misspecification could then be sizeable. Also for riskmanagement purposes, the main focus is often on the tail
behavior of the predictive density of the asset returns, and not simply to obtain the ‘best’ approximating volatility model. This in
turn implies that a unified treatment of empirical portfolio analysis requires shifting the focus from a statistical to a decision-
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theoretic framework for model evaluation. This paper provides an integrated econometric approach to the portfolio optimization
subject to the Value at Risk (VaR) constraint in the presence of model uncertainty, and the associated risk monitoring problem.1 In
this paper we focus on uncertainty of multivariate volatility models and abstract from return prediction uncertainty already
addressed extensively in the literature.2 One of the main contributions of the paper is to solve the mean-variance optimization
problem subject to the VaR constraint when a probabilistic average of several models is used to take account of model uncertainty.
This optimization strategy assumes the existence of conditional return volatilities, but allows the conditional distribution of returns
to be non-Gaussian. The various practical issues involved in implementation of such an strategy are discussed and evaluated in the
context of an empirical application.

Many variants of the multivariate GARCH have been proposed in the literature. These include the conditionally constant
correlation (CCC) model of Bollerslev (1990), the Risk-metrics specifications popularized by J.P.Morgan (1996) and used
predominantly by practitioners, the orthogonal GARCHmodel of Alexander (2001), and the dynamic conditional correlation (DCC)
model advanced by Engle (2002).3 Recent surveys are provided in Bauwens et al. (2003) and McAleer (2005). Multivariate
stochastic volatility (SV) models have also been considered in the literature, with reviews by Ghysels et al. (1995) and Shephard
(2005).4 We consider models frequently used by practitioners together with many models recently proposed in academic papers,
and consider their empirical performance within a decision–theoretic framework.

The highly restricted nature of the multivariate volatility models advanced in the literature could present a high degree of
model uncertainty which ought to be recognized at the outset. This is particularly important since due to data limitations and
operational considerations it is not possible to subject these models to rigorous statistical testing. Application of model selection
procedures also involves additional risks that are difficult to assess a priori. This is especially true when the number of assets is
moderately large, and it might well be that no single model choice would be satisfactory in practice.

This paper considers model averaging as a risk diversification strategy in dealing with model uncertainty, and provides a
detailed application of recent developments in model averaging techniques to multi-asset volatility models. Frequently used
model selection criteria are the Akaike Information Criterion (AIC) and the Schwartz Bayesian Information Criterion (SBC).
However, such a two-step procedure is subject to the pre-test (selection) bias problem and tends to under-estimate the uncertainty
that surrounds the forecasts. Of course, the use of model averaging techniques in econometrics is not new and dates back to the
work of Granger and Newbold (1977) on forecast combination.5 However, this literature focusses on combining point forecasts and
does not address the problem of combining forecast probability distribution functions which is relevant in risk management.

Concerning model evaluation, the standard forecast evaluation techniques that focus on metrics such as root mean square
forecast errors (RMSFE), also run into difficulties when considering volatility models. Since volatility is not directly observable, it is
often proxied by the square of daily returns or more recently by the standard error of intra-daily returns, known as realized
volatility (see, for example, Andersen et al. (2003)). In multi-asset contexts the use of standard metrics such as RMSFE is further
complicated by the need to select weights to be attached to errors in forecasts of individual asset volatilities and their cross-
volatility correlations and the choice of such weights is not innocuous in a multivariate framework (see Pesaran and Skouras
(2002)). Here we develop a simple criterion for evaluation of alternative volatility forecasts by examining the Value-at-Risk (VaR)
performance of their associated portfolios. Our test, which can be applied to individual as well as to average models, belongs to a
class of so-called unconditional coverage tests, the most important case of which is the Kupiec (1995) binomial test. In contrast to
the existing literature, though, we formally establish both the asymptotic as well as the exact finite-sample distribution of our test
statistics. Further, we provide formal conditions that ensure that the asymptotic distribution of the familiar VaR diagnostic test
statistics do not depend on the sampling variability associated with parameter estimation. Conditional coverage tests (see
Christoffersen (1998)) and density forecast tests (Crnkovic and Drachman (1997) and Berkowitz (2001)) could also be adapted to
our model averaging framework, although the related distribution theory will need to be established. For a review of existing
approaches to the evaluation of the VaR estimates see Andersen et al. (2006). The VaR based diagnostic tests developed in this
paper can be used both for risk monitoring of a given portfolio as well as for construction of optimal (in the VaR sense) portfolios.

The remainder of the paper is organized as follows: the decision problem that underlies the VaR analysis is set out in Section 2.
Section 3 provides a brief outline of the different types of multivariate volatility models considered in the paper. Several
approaches to model averaging are reviewed and discussed in Section 4. Section 5 introduces the Value-at-Risk (VaR) diagnostic
test and establishes its finite-sample as well as its asymptotic distribution. Section 6 provides a detailed empirical analysis using
daily returns for eighteen futures contracts covering equity indices, government bonds, exchange rates and commodities over the
period 2 January 1991 to 11 July 2007. Section 7 concludes with a summary of the main results and suggestions for future research.
The mathematical proofs and a description of the multivariate volatility models are provided in three appendices.

1 It is also possible to consider measures of down-side risk other than VaR, such as expected short-falls. The VaR has the advantage of being analytically more
tractable and its use in risk management is by far the most popular. For these reasons we shall confine our risk analysis to VaR constraints and leave the use of
other risk measures to future research.

2 See, for example, Pesaran and Timmermann (1995).
3 The DCC model is also related to the VCC model of Tse and Tsui (2002).
4 So far the focus of the SV literature has been on univariate and multivariate models with a small number of assets, with the notable exceptions of Diebold and

Nerlove (1989), Engle et al. (1990), King et al. (1994) and Harvey et al. (1994), that are similar in structure to the class of factor GARCHmodels that we do consider
below.

5 For reviews of the forecast combination literature see Clemen (1989), Granger (1989), Diebold and Lopez (1996) and Hendry and Clements (2002).
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2. The decision problem: active risk management

Here we are concerned with the decision of a portfolio manager who is interested in controlling the risk of a given portfolio
composed of N futures contracts over a given trading day. We refer to this portfolio decision problem as ‘active risk management’,
and distinguish it fromwhatmight be called ‘passive riskmanagement’where the outcome of the portfolio decision is evaluated or
monitored by a risk manager or by an outside supervisory financial institution. This distinction is important since the solution to
the portfolio decision problem requires a complete knowledge of the conditional multivariate probability distribution of the N×1
vector of returns, rt. In contrast, for passive risk management it is clearly possible to work directly with the conditional univariate
distribution of portfolio returns, ρt, with no apparent need for multivariate volatility modelling.

We suppose that the portfolio manager is allowed to hold long and short positions and in futures contracts that could be in
home currency (taken to be US dollar) or in foreign currencies. Denote the price of each contract (in local currency) on close of
business day t by Pjt, and the US dollar exchange rate relevant to the jth contract by Ejt (measured as the units of foreign currency in
one US dollar), and the number of contracts held in the portfolio at yesterday's close by nj,t − 1. Abstracting from transaction costs,
the change in the value of this portfolio in US dollar is given by6

ΔVt ¼ ∑
N

j¼1
nj;t−1

Pjt−Pj;t−1
Ejt

� �
¼ ∑

N

j¼1

nj;t−1Pj;t−1
Ej;t−1

� �
rjt

1þ rejt

 !
; ð1Þ

where njt and rjt=(Pjt − Pj,t−1) / Pj,t−1 are the position size (number of contracts) and the one-day holding return of asset j, and rjt
e=

(Ejt − Ej,t −1) / Ej,t −1 is the daily change in spot currency rate. Note that for US dollar denominated assets rjt
e=0. Since the second

order terms rjte rjt, (rjte)2 rjt, etc. are negligible the daily change in the value function can be simplified as

ΔVt≈ ∑
N

j¼1
ωj;t−1rjtCt−1; ð2Þ

where ωj,t−1=nj,t−1Pj,t −1 / (Ej,t−1Ct−1) is the value of the contracts in US dollar relative to notional capital, Ct−1, on close of day t − 1.
In what follows we suppose that a portfolio manager chooses these position sizes by solving a standard mean-variance problem
subject to a daily value at risk (VaR) constraint. Let pt(ωt−1)=ω′t−1rt be the portfolio return, where ωt−1=(ω1,t−1, ω2,t−2,..., ωN,t−1)′
and rt=(r1t, r2t,..., rNt)′. Then the objective function of the mean-variance problem is given by

Q ωt−1jM;F t−1ð Þ ¼ ωVt−1E rt jM;F t−1ð Þ− δt−1
2

ωVt−1V rt jM;F t−1ð Þωt−1; ð3Þ

where F t−1 is the available information, δt−1N0 is a (possibly time-varying) risk-aversion coefficient, andM denotes the assumed
multivariate model of returns, characterized by the joint probability distribution of rt conditional on F t−1, and denoted by
fM rt jF t−1ð Þ. The VaR constraint is given by

Pr ωVt−1rtb−Lt−1jM;F t−1ð ÞVα; ð4Þ

where Lt − 1N0 is a pre-specified maximum daily loss (as a fraction of notional capital) and α is a probability value (typically taken
to be 1%) which captures the fund manager’s attitude towards risk in the case of large losses.

To obtain a feasible solution to themean-variance problemwe shall assume that conditional on F t−1 returns rt have means μM;t
and finite variance–covariancesΣM;t . The conditional probability distribution of the change in the portfolio value, ρt=ωt − 1′ rt, takes
relatively simple forms when the distribution of returns are closed under linear transformations.7 For example, in the case where
the conditional distribution of rt follows a multivariate t distribution with vt − 1N2 degrees of freedom, ρt will also be t distributed
with the same degree of freedom, and hence

ωVt−1rt−ωVt−1μM;tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vt−1−2
vt−1

ωVt−1∑M;tωt−1

q ftvt−1 ;

and the VaR constraint (4) simplifies to

−Lt−1−ωVt−1μM;tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωVt−1∑M;tωt−1

p V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vt−1−2
vt−1

s
T −1
v αð Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vt−1−2
vt−1

s
cvt−1 ;αu−fcvt−1 ;α ; ð5Þ

where cvt − 1,α (cvt − 1,α N0 for αb0.5) is the α% left tail of the Student t distribution with vt−1 degrees of freedom.

6 Note that since futures contracts are not settled fully in advance the interest rate and exchange rate costs associated with futures transactions are negligible.
7 The probability distribution of rt is said to be closed under linear transformations if all linear combinations of rt have the same distribution as the marginal

distributions of the returns.
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The optimal portfolio weights,ω4
t−1;M, that maximize Q ωt−1jM;F t−1ð Þ subject to the VaR constraint in Eq. (5) are then given by8

ωT
t−1;M ¼

1
δt−1

∑−1
M;tμM;t ; if δt−1zδ4t−1

1
δ4t−1

∑−1
M;tμM;t ; otherwise;

8>><
>>: ð6Þ

with

δTt−1u
sM;t

fcvt−1 ;α−sM;t
� �

Lt−1
;

where sM;t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uVM;t∑−1

M;tμM;t

q
can be viewed as the ex ante daily Sharpe ratio of the portfolio. This solution shows that the VaR

constraint will be binding only if the risk aversion coefficient is relatively small. In the case where the VaR constraint binds, the
level ωT

t−1;M is determined by the level of the risk capital, Lt−1, and the tail property of the underlying return distribution. In
practice, to avoid negative values of δ*t−1, it would be advisable to cap sM;t so that it does not exceed c~vt − 1,α.

The solution to the constrained MV optimization problem is more complicated when the return distribution is constructed as
an average of a number of Gaussian or t-distributed return distributionswith differentmeans and variances.We shall return to this
problem below in Section 4.1.

3. Multivariate models of asset returns

Our primary concern in this paper is on modelling and evaluation of alternative multivariate volatility models in a wider
context that nests both passive and active risk management problems. Typically one would also need to address the uncertainty
that surrounds the conditional mean returns, E rt jF t−1ð Þ ¼ μ t . But given the focus of the present paper we shall abstract from this
problem and throughout assume that mean returns can be characterized by first order autoregressive processes

rit ¼ ai0 þ αi1ri;t−1 þ eit ; ð7Þ

such that µit=ai0+αi1ri,t−1. Therefore, in what follows we shall focus on alternative specifications of the joint probability
distribution of εt=rt − µt, namely fM rt jF t−1ð Þ for the model classM. For this purpose it is convenient to work with the standardized
unexpected returns, zt, defined by zt ¼ ∑−12

t et, where Σt ¼ Var et jF t−1ð Þ.
A complete specification of fM rt jF t−1ð Þ can be achieved by: (i) a non-singular choice of Σt; (ii) specification of the distribution of

standardized values, zt. For the latter, we focus on distributions that are closed under linear transformations. This includes the case
of standard multivariate Gaussian, and the multivariate Student t with v degrees of freedom. These are the two specifications that
are most commonly encountered in practice. In specifying Σt, we focus on parametric volatility models, the classical example of
which is the multivariate generalized autoregressive heteroskedasticity model of order 1,1 (MGARCH(1,1)). In its most general
form it is given by9

vech ΣMGARCH;t
� �

¼ a0 þA0vech ΣMGARCH;t−1
� �

þ B0vech rt−1rVt−1ð Þ; ð8Þ

where vech(·) denotes the column stacking operator of the lower portion of a symmetric matrix, a0 is an N(N+1) / 2×1 vector, and
A0, B0 areN(N+1) / 2×N(N+1) / 2matrices of unknown coefficients. It is evident that even such a low-order model already contains
a large number of parameters even for moderate values of N which renders model (8) effectively unfeasible for practical
applications.

The different multivariate volatility models considered in this paper are special cases of the MGARCH(1,1). These volatility
models are denoted by Mi and the associated conditional covariance matrix by Σit. Altogether we consider 53 different spe-
cifications of Σit that can be grouped into 9 different model types. We consider both econometric specifications advanced in the
academic literature as well as ad hoc data filters more commonly used by practitioners.

Within the first group, we considered the constant conditional correlation (CCC(p,q)) model of Bollerslev (1990) and its more
recent generalizations, namely the dynamic conditional correlation (DCC(p,q,1,1)) of Engle (2002) and the asymmetric dynamic
conditional correlation (ADCC(p,q,1,1)) of Cappiello et al. (2006). We also consider the orthogonal GARCH (O-GARCH(p,q)) of
Alexander (2001), the factor GARCH model of Harvey et al. (1992) (factor GARCH(p,q,1,1)) and the Student t dynamic conditional
correlation model of Pesaran and Pesaran (2007) (TDCC(p,q,1,1)).

Within the second group we consider the equal-weighted moving average model (EQMA(n0)), which is a rolling filter that puts
equal weights on the n0 most recent squared observations. We further consider the exponentially-weighted moving average
(EWMA(n0, λ0)), well known as the Riskmetrics filter (see J.P. Morgan (1996)) and a number of its variants such as the two-
parameter exponential-weighted moving average (EWMA(n0, λ0, ν0)) (see De Santis et al. (2003, p. 14)). We also consider two
hybrid filters: a mixed moving average (MMA(n0, ν0)) specification whereby the conditional variances are computed as in the

8 For the details of the derivations see Appendix A. Also see Sentana (2003) for a graphical analysis.
9 See Bollerslev et al. (1988, Eq. (4)).
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EQMA(n0) model but with the conditional covariances obtained using the Riskmetrics approach; and a generalized exponential-
weighted moving average (EWMA(n0,p,q,ν0)) whereby conditional variances are modelled as univariate GARCH(p,q) with the
conditional covariances specified using the Riskmetrics approach. More detailed accounts are given in Appendix B.

Let θi0 be the ki×1 vector of coefficients characterizing the true unknown parameters of the volatility model Mi, denoted by
Σit=Σit(θi0). For estimation of θi0 we shall be using the Gaussian pseudo maximum likelihood estimator (PMLE), defined by

θ̂iT0 ¼ arg max
θi∈Θi

−
1
2

logj∑it θið Þj þ eVt∑−1
it θið Þet

� �	 

; ð9Þ

where Θi represents a suitable parameter space, τ is the end of the estimation period, T0 is the size of the estimation period.
Correspondingly, let Σ̂ it=Σit(θ̂iT0). We view Gaussian PMLE as a robust method, delivering consistent and asymptotically normal
estimates of θi under the volatility model Mi even for non-Gaussian zt. In particular we shall assume that as TO → ∞,

θ̂iT0 Y
p
θi0 ð10Þ

and

ffiffiffiffiffi
T0

p
θ̂iT0−θi0
� �

jMi Y
d
N 0;Xi θi0ð Þ½ �; ð11Þ

where Ωi (θi0) is a positive definite matrix, Y
p denotes convergence in probability and Yd convergence in distribution. The

asymptotic properties of the Gaussian PMLE have been established for certain classes of multivariate GARCH-type volatility models
(see Ling and McAleer (2002)) and it is reasonable to expect that results such as Eqs. (10) and (11) would hold for the more general
class of models considered in this paper, under suitable regularity conditions.10

An exception is the TDCC model, which is estimated under the assumption of a Student t distribution with ν degrees of
freedom, where ν forms part of the parameter vector θ. More explicitly the log-likelihood function of the TDCC model is given by

LLTDCC;T0 θð Þ ¼ −
NT0
2

ln πð Þ þ T0
2
ln C

N þ v
2

� �
=C

v
2

� �
 �
−
NT0
2

ln v−2ð Þ−1
2

∑
τ

t¼τ−T0þ1
lnjΣt j−

N þ v
2

� �
∑
τ

t¼τ−T0þ1
ln 1þ eVt∑−1

t et
v−2


 �
; ð12Þ

where Σt=DtRtDt, Dt is the diagonal matrix with individual asset return conditional volatilities on its diagonal, and Rt=(rijt) is the
matrix of conditional correlations. Under TDCC the elements of Dt follow GARCH(1,1) specifications and the pair-wise correlations,
rijt (riit=1), are computed from de-volatized returns as described in Pesaran and Pesaran (2007).

In what follows we shall assume that under model Mi,

Mi : rt ¼ μ t þ ∑
1
2
itzit ; zit jF t−1f Fit ;0; INð Þ; ð13Þ

meaning that E zit jF t−1;Mi
� �

¼ 0, E zitz
0

it jF t−1;Mi
� �

¼ IN , where IN is the N×N identity matrix, and Fit(.) is the conditional joint
probability distribution function of zit ¼ ∑−12

it et . Note that the above formulation allows the higher order moments of zit to be time
varying. This would be the case, for example, when zit is distributed as the multivariate Student t with time varying degrees of
freedom, vt−1, conditional on F t−1.

4. Average volatility models

Considering the restrictive nature of the multivariate volatility models in the literature, model averaging techniques that
explicitly allow for parameter and model uncertainty could be particularly important in risk management. Let f rt jF t−1;Mi

� �
be the

predictive density of rt conditional onmodelMi;F t−1 the in-sample available information, andM ¼ [m
i¼1Mi the space of themodels

under consideration. Each model Mi is fully specified by the choice of the volatility model, Σit, and of the conditional probability
distribution, Fit, of devolatilized residuals, zit.

Model averaging implies a predictive density of rt conditional on F t−1 given by

f rt jF t−1;Mð Þ ¼ ∑
m

i¼1
λi;t−1f rt jF t−1;Mið Þ; ð14Þ

where the set of weights λi,t −1 are pre-determined at the time the decision over the positions, ωj,t −1 (j=1, 2,..., N), is taken. This is
possible since it is assumed that there is no feedback from trade decisions to the probabilitymodels under consideration. One could
consider attaching equal weights to all the models belonging to M, yielding λi,t −1=1/m. A further refinement would be to apply
model averaging not to all of the models but only to a given number of top performing models. Therefore, one could pool different
models by taking simple averages, but after ‘trimming’ models with poor past performances. Formally, this implies

10 Some of the models we consider do not require estimation. For instance Zaffaroni (2008) shows that the PMLE estimator of the Riskmetrics model fails even
the consistency property.
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λi;t−1 ¼ 1=nt−1 for i∈N t−1oM, where nt − 1 indicates the cardinality of the sequence of subsets of modelsN t−1. For i∉N t−1, λi,t−1=
0. Such a procedure, often referred to as ‘thick’modelling, has been proposed, among others, by Granger and Jeon (2004) who note
that, standard two-stage procedures, such as selection methods based on the AIC or SBC, might exhibit poor performance simply
because the ‘true’ model does not belong to the set of models under consideration.11 Another example is the Bayesian Model
Averaging (BMA) that combines the models under consideration using their respective posterior probabilities.12 BMA requires
λi;t−1 ¼ Pr MijF t−1ð Þ, where the latter denotes the posterior probability of model Mi. The BMA approach requires specifications of
the prior probability of model Mi and of the prior probability of θi conditional on Mi, for i=1, 2,..., m. BMA can be quite demanding
computationally, particularly in the case of multi-variate volatility models with many unknown parameters. As a result, the
model weights λi,t−1 are often approximated by the Akaike weights or the Schwartz weights. The latter gives a Bayesian
approximation when the estimation sample, T0, is sufficiently large.13 In particular, setting λi,t −1=exp(Δi,t −1)/Σm

j = 1 exp(Δj,t−1), in
the case of AIC and SBC we have Δi,t −1=AICi,t −1 − maxj(AICj,t −1), Δi,t −1=SBCi,t −1 − maxj(SBCj,t−1), where in turn AICi,t−1=LLi,t−1−ki,
SBCi,t−1=LLi,t −1 − ki

2

� �
ln (t − 1), and LLi,t−1 indicates the maximized logarithm of the joint probability distribution, with ki

parameters, of the observations r1, r2,..., rt−1 conditional on the given initial values r0,..., r−si+1.14

In this paper, we implement both the ‘thick’modelling and the (approximate) BMA procedures. The former is carried out by first
ranking the individual models according the AIC or SBC criteria, and then constructing an ‘average’model based on a given number
of top-percentile (say the top 25%) of all themodels under consideration. Therefore, we still make use of the information contained
in AIC and SBC criteria, but only to trim-out the poorly performing models. Under this approach the models that survive will be
given equal weights.

In contrast to applications that focus on point forecasts, in the case of density forecasting the choice of the number of models to
be used in themodel averaging process and the differences in their forecast error variances can have important implications for the
shape of the resulting average model in general and the degree of its fat-tailness, in particular. Therefore, it seems likely that
averaging across a very large number of models could be counter productive for density forecasting, whereas this might not be a
problem for point forecasting. Further analysis of average models and their tail properties will be provided below in Section 5.3.

4.1. MV optimization subject to VaR constraint in the case of average models

Suppose the ‘average’ model is constructed using the probability weights, λi,t−1, applied, for example, to the following m
Gaussian return distributions:

Mi : rt jF t−1fN μ it ;Σitð Þ for i ¼ 1;2; N ;m: ð15Þ

The MV objective function in this case is given by

Q ωt−1ð Þ ¼ ωVt−1μ t−
δt−1
2

ωVt−1Σtωt−1;

where (see, for example, Draper (1995))

μ t ¼ ∑
m

i¼1
λi;t−1μ it ;

Σt ¼ ∑
m

i¼1
λi;t−1Σit þ ∑

m

i¼1
λi;t−1 μ it−μ tð Þ μ it−μ tð ÞV

with the VaR constraint given by

Pr ωVt−1rtb−Lt−1jM;F t−1ð Þ ¼ ∑
m

i¼1
λi;t−1Φ

−ωVt−1μ it−Lt−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωVt−1Σitωt−1

p
 !

V α ð16Þ

where Ф(·) is the distribution function of the standard normal variate.15

11 See Stock and Watson (1999) for an application to macroeconomic time series and Aiolfi et al. (2001) for an application of ‘thick’ modelling to point forecasts
of excess returns across different models.
12 A formal Bayesian solution to the problem of model uncertainty is reviewed, for example, in Draper (1995) and Hoeting et al. (1999). Recent applications to
time series econometrics are provided in Fernandez et al. (2001a,b), Garratt et al. (2003) and Godsill et al. (2004).
13 In the empirical applications to be discussed below T0 is sufficiently large and parameter uncertainty is likely to be of second order importance. Also see
Burnham and Anderson (1998, Chapter 4).
14 We do, however, recognize that for small to moderate sample sizes used in macro-economic applications the choice of priors could be important, particularly
if the object of exercise is the estimation of the marginal probability densities.
15 Alternatively, one could use any other set of return distributions, for example a set of t distribution with νi,t−1 degrees of freedom ({Tvi,t - 1}i= 1

m ). In this case the
VaR constraint would be

Pr ωVt−1rtb−Lt−1jM;F t−1ð Þ ¼ ∑
m

i¼1
λi;t−1Tmi;t−1

−ωVt−1μ i;t−1−Lt−1ffiffiffiffiffiffiffiffiffiffiffi
mi;t−1−2
mi;t−1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωVt−1Σi;t−1ωt−1

q
0
B@

1
CAV α: ð17Þ
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The Lagrangian for the above constrained optimization problem is given by

L ωt−1;ψt−1ð Þ ¼ ωVt−1μ t− δt−1=2ð ÞωVt−1Σtωt−1−ψt−1 ∑
m

i¼1
λi;t−1Φ

−ωVt−1μ it−Lt−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωVt−1Σitωt−1

p
 !

−α

( )
;

where ψt−1 is the Lagrange multiplier which will be non-zero when the VaR constraint binds. The first-order necessary conditions
for this optimization problem are given by

AL ωt−1;ψt−1ð Þ
Aωt−1

¼ μ t−δt−1Σtωt−1 þ ψt−1 gμ ωt−1ð Þ−Gσ ωt−1ð Þωt−1
� �

¼ 0; ð18Þ

AL ωt−1;ψt−1ð Þ
Aψt−1

¼ ∑
m

i¼1
λi;t−1Φi ωt−1ð Þ−α V 0; ð19Þ

and

ψt−1
AL ωt−1;ψt−1ð Þ

Aψt−1
¼ 0; ð20Þ

where

gμ ωt−1ð Þ ¼ ∑
m

i¼1

λi;t−1/i ωt−1ð Þμ it

ωVt−1Σitωt−1ð Þ1=2
;

Gσ ωt−1ð Þ ¼ ∑
M

i¼1

λi;t−1/i ωt−1ð Þ ωVt−1μ it þ Lt−1ð ÞΣit

ωVt−1Σitωt−1ð Þ3=2
;

/i ωt−1ð Þ ¼ /
−ωVt−1μ it−Lt−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωVt−1Σitωt−1

p
 !

;Φi ωt−1ð Þ ¼ Φ
−ωVt−1μ it−Lt−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωVt−1Σitωt−1

p
 !

;

and /(·) is the density of the standard normal variate. The m+1 Eqs. (18) and (19) in ωt − i and ψt − 1 can be solved iteratively. Pre-
multiplying Eq. (18) by ω′t − 1 and solving for ψt − 1 in terms of ωt − 1 we have

ψt−1 ¼ ωVt−1μ t−δt−1ωVt−1Σtωt−1

Lt−1∑m
i¼1λi;t−1/i ωt−1ð Þ ωVt−1Σitωt−1ð Þ−1=2

z0: ð21Þ

Solving for ωt−1 in terms of ψt−1

ωt−1 ¼ δt−1Σt þ ψt−1Gσ ωt−1ð Þ
h i−1

μ t þ ψt−1gμ ωt−1ð Þ
� �

: ð22Þ

One could then check to see if the solution to the unconstrained problem, namely ω~⁎t−1=(δt−1Σ
P

t)−1 μPt , satisfies the VaR
constraint (17). If affirmative, set ω⁎t−1=ω

~⁎t−1. Otherwise, use a standard root-finding algorithm such as the secant method16 to
search over different values of ψt − 1 in order to find a pair (ψ⁎t − 1=ω⁎t − 1), such that ω⁎t − 1 is a function of ψ⁎t −1 (via Eq. (22)) and
satisfies the VaR constraint with equality.

5. Value-at-Risk based diagnostic tests

This section examines the evaluation of multivariate volatility models from the perspective of risk management. First we
consider the problem for a givenmodel,Mi. Next, we describe how the analysis can be extended tomodels obtained by application
of model averaging techniques.

5.1. VaR diagnostics for individual models

In the econometric literature models are often evaluated by their out-of-sample forecast performance using standard metrics
such as the RMSFE but, as noted earlier, the application of this approach to volatility models is subject to a number of difficulties. An
alternative approachwould be to employ decision-based evaluation techniques and compare different volatilitymodels in terms of
their performance in trading and riskmanagement.17 In this sub-sectionwe propose simple examples of such a procedure based on
the VaR problem set out in Section 2.

16 See e.g. Burden and Faires (1997) for a description of the secant method.
17 For a general discussion of decision-based evaluation techniques see Pesaran and Skouras (2002).
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Consider first the VaR constraint (4) associated with the passive version of the risk management problem where the portfolio
exposures, ωt −1, are given, and suppose that the analysis is carried out conditional on model Mi. In this setting the VaR constraint
becomes

Pr ρtb−ρ i;t−1jF t−1;Mi
� �

Vα; ð23Þ

where ρ̄̄i,t − 1 will be a function of α and the assumed volatility model,Mi. To fully specify the model, assume that the standardized
returns, zit, have a joint cumulative distribution function Fit(·) which is closed under linear combinations so that c′zit also has
(univariate) distribution Fit,ρ(·) of the same type for any fixed N-dimensional vector c. A special case of our results is obtained if zit is
assumed to follow the multivariate normal or the Student t distribution. Conditional on F t−1 and modelMi being true, ρt will have
mean µρt = ωt′µt and variance σρt

2 (Mi)=ωt−1′ Σitωt−1. Therefore, under Eq. (13) we have

zρt Mið Þ ¼ ωVt−1 rt−μ tð Þ
σρt Mið Þ jF t−1;Mif Fit ;0;1ð Þ: ð24Þ

This implies that under Mi, zρt(Mi) is a martingale difference sequence with unit variance. Note, however, that zρt(Mi) need not
be independent across time. Temporal dependence in zρt(Mi) could arise not only due to possible higher-order moment
dependence of the underlying innovations zit, but also because of possible serial dependence of portfolio weights and the temporal
dependence of Σit.

Denoting themaximumvalue of ρ̄̄i,t−1 that satisfies Eq. (23) by ρ̄̄i,t−1(ωt−1,α) and assuming that Eq. (24) holds, then Fit ((− ρ̄̄i,t−1(ωt−1,
α) −ω′t−1μt)σρt

−1(Mi))=α. But since Fit(·) is acontinuousandmonotonicallynon-decreasing functionwehave(− ρ̄̄i,t−1(ωt−1,α)−ω′t−1μt)
σρt

−1(Mi)=Fit−1(α)=− cit(α), or

ρi;t−1 ωt−1;αð Þ ¼ −ωVt−1μ t þ cit αð Þσρt Mið Þ; ð25Þ

where − cit(α) is the α% critical value of the distribution of zρt(Mi) conditional onmodelMi andF t−1. Note that cit(α) and σρt(Mi) are
based on observations available at time t − 1, and this is highlighted in the notation used for ρ̄̄i,t −1(ωt−1, α).18

The evaluation of modelMi can now proceed in the followingmanner. Suppose that the evaluation exercise starts on day t=τ+1
with the available sample of T observations split at this date into T=T0+(T − T0) for some 0bT0bT. Further suppose that the first T0
observations before day τ+1 are used for estimation whereas the last T1=T − T0 observations are used for evaluation purposes.
Accordingly, we define the sets of estimation and evaluation dates by T 0={τ − T0+1, τ − T0+2,..., τ}, and T 1={τ+1, τ+2,..., τ+T1},
respectively.

A simple test of the validity of model Mi from the perspective of the VaR can then be based on the proportion of days in the
evaluation sample where the VaR constraint is violated: π̂i=Σt∈T 1dit(θ̂iT0)/T1,where dit(θ̂iTo= I[−ρt+ωt−1′ μt−cit(α)σ̂pt(Mi)] and
σ̂ρt Mið Þ ¼ ω V

t−1Σ̂itωt−1

� �1
2
; Σ̂it ¼ Σit θ̂iTo

� �
. Recall that θ̂iTo is the PMLE of the unknown parameters (if any) of Σit under modelMi (see Eq. (9)),

and I(·) as an indicator function.
We now present two theorems. The first establishes the distribution of T1π̂i under the null hypothesis defined by

Hi0 : Σt ¼ Σit and zit jF t−1;Mif Fit ;0; INð Þ: ð26Þ

for T1b∞ and as T0 → ∞. The second theorem establishes the asymptotic distribution of the following standardized test statistic
based on π̂i

zπ̂i
¼

ffiffiffiffiffi
T1

p
π̂i−α
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α 1−αð Þ

p ð27Þ

under Hi0, and as T1/T0+1/T1 → 0. The proofs of both theorems are provided in Appendix C.

Theorem 1. (finite-T1 distribution) Assume that Σit(θi) is continuous in θi and that Eq. (11) holds. Let Bi(T1,α) define a Binomial
distribution with parameters T1 and α. Then under Hi0,

T1π̂i Y
d
Bi T1;αð Þ; as T0Y∞; ð28Þ

for any finite T1, 0bαb1, and any sequence of portfolio exposures, ωt−1, t=0, ±1..., satisfying ||ωt−1||N0, with ||·|| being the Euclidean
norm.

Remark. This result is important for cases when T1 is small or, alternatively, when one is interested in testing VaR performance of
a given set of portfolios for small values of α. In such cases the asymptotic normal distribution presented belowmight not provide a
sufficiently accurate approximation.

18 The above derivations hold even if the portfolio exposures, ω  t − 1, are derived conditional on model Mi . In that case the portfolio weights could be denoted by
ω i,t − 1 to highlight their dependence on the choice of the volatility model. But to simplify the notations we continue to represent the portfolio weights without the
subscript i.
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Theorem 2. (asymptotic distribution) Assume that (i) fit(·)=F′it(·) exists and f̄it=supx fit(x)b∞ for any t; (ii) condition Eq. (11) holds and θi0
belongs to the interior of the compact set Θi; (iii) Σit(θi) is twice continuously differentiable in θi such that, for some δN1, infθi ∈ Θi

λ_it(θi)N
0, a.s.

E sup
θ∈Θi

jjAλ it θð Þ=Aθjj

Pλ
1
2
it θð ÞPλ

1
2
it θi0ð Þ

8<
:

9=
;

δ

¼ μ it ;
1
T1

∑
T

t∈T1
fitμ

1=δ
it ¼ O 1ð Þ; ð29Þ

where λ̄ it(θi) and λ_it(θi) define, respectively, the maximum and the minimum eigenvalues of Σit(θi), (iv) for T0 sufficiently large

Ejj θ̂iT0− θi0 jj
δ

δ−1 ¼ O T−δ= 2 δ−1ð Þð Þ
0

� �
: ð30Þ

Under Hi0, zπ̂i
Yd N(0,1) as T1/T0+1/T1 → 0, any 0bab1, for any sequence of portfolios ωt−1, t=0, ±1,..., satisfying ||ωt−1||N0.

Remarks.

(i) It is important to note that the null distribution of zπ̂i does not depend on the portfolio exposures, ωt − 1, although the power
of the test typically does depend on ωt−1.

(ii) The mild condition for consistency of the test is that π̂i does not converge in probability to a as T1/T0+1/T1 → 0. This can
happen if either we use thewrong conditional covariancematrix or thewrong innovation distribution, or both. For example,
in the first case, under Mj:Σjt≠Σit we have E π̂i=Mj

� �
¼ 1

T1
∑t∈T 1E Fit −cit αð Þqijt

� �� �
, where qijt=(ω′t − 1Σ̂ itωt − 1 / ω′t −1Σjtωt −1)1/2,

for t ∈ T 1. It is clear that under Mj , qijt does not tend to unity and in general E(π̂i|Mj) will diverge from its hypothesized
value of a, and the power of the test tends to unity with T1.

(iii) Most likely, the assumptions required for Eqs. (10) and (11) will imply Eq. (29) but we felt it is necessary to make the
additional explicit assumptions since the former have been formally established only for a sub-class ofmultivariate volatility
models considered in this paper.

(iv) When model Mi is not subjected to estimation, as is the case for some for some of the models we consider, such as the
Riskmetrics model, then the theorem applies by setting θ̂i=θi0 and the conditions (29) and (30) are no longer needed. In
particular, the nonsingularity condition of the model conditional covariance matrix is not required.

(v) Under the null hypothesis Hi0 :E(zρt(Mi)|F t−1)=0. This is a key property since it implies that I [− zρt(Mi) − cit(a)] − a is also a
martingale difference process. Strict stationarity of the asset returns is not required.

(vi) The importance of the condition T1/T0 → 0 in cross validation of forecasts was put forward by West (1996). McCracken
(2000) extends West’s framework to allow for non-differentiable loss functions in a regression set-up.

5.2. VaR-based diagnostics for average models

Suppose that set of m models is described by rt|F t−1, Mi∼ (Fit, µt, Σit) for (i=1,2,..., m). Therefore, Fit(·) defines the conditional
distribution of the observed return rt, given F t−1 and the volatility model Mi.

The probability distribution function of the portfolio return, ρt, based on the average model obtained with respect to these
models using the weights, λi,t−1, is then given by Pr(ρtba|F t−1, M)=Σi=1

m λi,t −1 Fit a
σρt Mið Þ

� �
. In cases where Pr(ρtba|F t −1, Mi)

does not have a closed form it needs to be computed by stochastic simulations, noting that conditional onmodelMiwehave, J− 1ΣJ
j =1

I (− ω′t − 1r
(i)

jt+a) → Pr(ρtba|F t−1, Mi) almost surely as J → ∞, where J is the number of replications and r(i)jt is the jth draw from the
assumed distribution of rt under Mi. On the other hand, when the probability distribution of rt under Mi is closed under linear
transformations, as with Gaussial or multivariate t distribution, the computations can be simplified considerably by drawing from
the distribution of ρt=ω′t − 1rt under Mi directly or using the closed-form expression when the latter exists.

It is low easy to generalize the diagnostic test statistics given by Eq. (27) for an individual model Mi, to the case of an average
model. For a given α we need to find the maximum value ρ̄b,t−1(ωt−1, α), the VaR associated with the BMA forecast probabilities,
for which Σm

i = 1 λi,t −1Fit[(− ρ̄b,t−1(ωt−1, α)−ω′μit/σρt(Mi)]≤a. To solve for ρ̄b,t−1(ωt−1,α), let

g κð Þ ¼ ∑
m

i¼1
λi;t−1Fit −

κ þωVμ it

σρt Mið Þ

� �
−α ¼ 0; ð31Þ

and note that g(κ)=0 has a unique positive solution under the additional assumptions that a is sufficiently small such that g(0)N0,
and the model densities fit(·)=F′it(·) exist and fit(·) is continuous and strictly positive for some i.19 In this case ρ̄b,t−1(ωt−1,α) can be
easily computed using numerical techniques such as the Newton–Raphson iterative procedure. The VaR diaglostic statistic, given
by Eq. (27), can then be computed for the average model using d̂bt= I[− ρt − ρ̄b,t−1(ωt − 1,α), in place of dit(θ̂iT0).

19 This result follows by noting that under the additional assumptions g′(κ)b0, and limκ→∞ g(κ ) =  − α b 0.
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5.3. Tail behavior of average volatility models

It is well known that linear combinations (mixtures) of normal distributions are not normal, although the moments of the
mixture distribution are effectively linear combinations of the corresponding moments of the individual normal distributions,
with the sameweights. For instance, the pooled volatility forecast of portfolio returns with zero conditional means is given by V (ρt|
Ft−1,M)=Σm

i=1 λit− tσ
2
ρt(Mi). However, tail probabilities using the mixture model and a Gaussian model with the same average

volatility are not the same, namely

∑
m

i¼1
λit−1Φ

a
σρt Mið Þ


 �
≠ Φ

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i¼1λit−1σ2
ρt Mið Þ

q
2
64

3
75; ð32Þ

unless Σit=Σt for all i, where Ф(·) defines the normal cumulative distribution function. The following theorem, whose proof is
reported in Appendix C, characterizes the direction of the bias. In risk management applications where ab0 and one is interested
in tail probabilities, it is easily seen that the correctly combinedmodel, on the left hand side of Eq. (32), will be more fat-tailed than
the associated Gaussian model with the same average volatility measure, on the right hand side of Eq. (32), so long
as a b −

ffiffiffi
3

p
σρt Mið Þ; i ¼ 1; N ;m. As we shall see this result has direct bearing on some of the empirical results that we shall be

reporting below.

Theorem 3. Let f(x) be a differentiable real function, with f′ denoting its first-derivative, with ∫∞− ∞|f(u)|dub∞|. Let F(z)= ∫ z− ∞ f(u)du. Then,
for any constant a and any finite sequence b1,b2,…, bm of strictly positive constants satisfying

a a=b
1
2
i

� �
f V a=b

1
2
i

� �
þ 3f a=b

1
2
i

� �h i
N 0; i ¼ 1;2; N ;m; ð33Þ

it follows that

∑
m

i¼1
λiF a= bið Þ

1
2

h i
NF a= ∑

m

i¼1
λibi

� �1
2

" #
; ð34Þ

for any finite sequence λ1, λ2,..., λm of non-negative constants such that λ1+λ2+ ...+λm=1, λib1, i=1, 2,..., m.

Remarks.

(i) When f(u) is the standard normal density, for ab0 condition (33) is

a=b
1
2
i b −

ffiffiffi
3

p
; i ¼ 1; N ;m: ð35Þ

When aN0 condition (33) is instead 0ba=b
1
2
i

ffiffiffi
3

p
(i=1, 2,…, m), although note that when aN0, Eq. (34) expresses the case

where the tail probability of the average model is smaller than for the model with the average parameter Σm
i=1λibi.

(ii) When f(u) is the standardized Student t distributionwith νN2 degrees of freedom, for ab0 the same condition (35) applies,
independently from ν.

6. An empirical application

6.1. Data and some preliminary analysis

The active and passive risk management procedures in the presence of model uncertainty developed in this paper can be
applied to a variety of problems in finance. Herewe shall consider a global macro portfolio of 18 futures contracts grouped into four
equity futures indices (S&P, FTSE, DAX, NIKKEI), six currencies (GBP, EUR, JPY, CAD, AUD, CHF), four 10 year government bonds (US,
EUR, Gilt, JGB), and four commodities (Gold, Silver, Wheat, Crude), yielding a reasonably diverse global macro portfolio. The overall
portfolio return is measured in US dollar, with currencies defined as the number (fraction) of US dollars per unit of the foreign
currency. The returns are daily and cover the period 2 January 1991 to 11 July 2007 (a total of T=4311 daily observations). The
source of the data is DataStream with returns on the futures contracts appropriately adjusted for rollovers. Since we are
considering markets with different time zones and holidays, the return data are aligned by filling forward the missing asset prices
due to differences in holidays in the US, euro area and Japan.

Daily returns are computed as rjt=100 (Pjt − Pjt−1) / Pjt −1, j=1,..., 18, where Pjt is the jth asset price. Table 1 gives the mean,
standard deviation, skewness and kurtosis of asset returns together with estimates of a t-GARCH(1,1) model fitted to the individual
returns over the full sample. The returns rt=(r1t, r2t,..., r18,t)′ display the familiar stylized features — namely little evidence of
skewness, possibly with the exception of JPY, Silver and Crude, but a substantial degree of fat-tailedness as measured by excess
kurtosis. There are also important differences in the unconditional volatilities across asset classes, with bonds being least volatile
followed by currencies, equities and commodities. The estimates of univariate t-GARCH models show a high degree of volatility
persistence with the sum of the coefficients of r2i,t−1 and σ2

j,t −1 being very close to unity. The estimates are also very similar across
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Table 1
Summary statistics and univariate GARCH Models

Asset Mean
(×100)

S.D. Skewness Kurtosis t-GARCH(1,1)

α̂ j β̂ j v̂ j

Currences
GBP 0.938 0.577 −0.121 6.542 0.031 0.963 5.349
EUR 0.337 0.647 0.052 5.254 0.026 0.971 6.130
JPY −0.715 0.697 0.860 12.504 0.039 0.945 4.535
CAD 0.425 0.376 0.048 4.882 0.038 0.960 7.600
AUD 1.040 0.621 −0.073 6.101 0.026 0.971 6.142
CHF −0.212 0.706 0.151 4.967 0.022 0.974 5.958
Mean 0.302 0.604 0.153 6.708 0.030 0.964 5.952

Equities
SP 3.114 1.005 −0.072 7.843 0.051 0.944 5.846
FTSE 2.137 1.057 −0.023 5.902 0.069 0.923 11.491
DAX 3.526 1.398 −0.285 9.407 0.074 0.919 7.360
NIKKEI −0.047 1.392 0.072 5.051 0.061 0.930 7.214
Mean 2.182 1.213 −0.077 7.051 0.064 0.929 7.978

Bonds
10Y US 1.373 0.364 −0.250 4.824 0.031 0.962 6.624
10Y EUR 1.309 0.313 −0.278 5.099 0.041 0.950 8.193
10Y Gilt 1.009 0.403 0.035 7.489 0.035 0.960 6.592
10Y JGB 1.665 0.279 −0.460 7.295 0.062 0.930 5.163
Mean 1.339 0.340 −0.238 6.177 0.042 0.951 6.643

Commodities
Gold 0.084 0.872 0.108 13.646 0.053 0.944 4.115
Silver 2.099 1.553 −0.523 9.834 0.034 0.961 4.033
Wheat 2.088 1.241 0.267 5.036 0.058 0.919 7.636
Crude 5.067 2.041 −0.870 19.479 0.049 0.942 6.396
Mean 2.334 1.427 −0.254 11.999 0.049 0.941 5.545
Mean (all assets) 1.402 0.863 −0.076 7.842 0.044 0.948 6.465

Notes: Columns 2 to 5 report the sample mean (in per cent), standard deviation (in percentage points), skewness and kurtosis of returns computed as
rjt=100×(Pjt−Pj,t − 1) /Pj,t − 1, where Pjt is the close price of the jth asset. Columns 7 to 9 report the estimated parameters of GARCH(1,1) models with Student t-
innovations:

V rjt jXt−1
� �

¼ σ2
jt ¼ σ 2

j 1−αj−βj

� �
þ αjr

2
j;t−1 þ βjσ

2
j;t−1; where

rjt
σ jt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mj;t−1−2
mj;t−1

s
ftvj;t−1 ;

and σ̄̄ 2
j is the unconditional variance of rjt . All estimated coefficients are significant at the 1% level.

The full sample period is January 2, 1991 to July 11, 2007 (4311 observations). The currencies in order are British pound, Euro, Japanese Yen, Canadian dollar,
Australian dollar, and Swiss Franc.
Source: Datastream.

Table 2
Average pairwise correlations of returns within and across asset classes

Asset Foreign Exchange Equity Indices 10Y Bonds commodities

GBP 0.427 −0.081 0.060 0.106
EUR 0.493 −0.120 0.078 0.119
JPY 0.310 −0.038 0.001 0.094
CAD 0.175 0.091 0.049 0.138
AUD 0.261 0.059 0.016 0.196
CHF 0.486 −0.158 0.077 0.125
SP −0.038 0.322 0.007 −0.038
FTSE −0.076 0.440 0.017 −0.012
DAX −0.083 0.454 −0.026 −0.038
NIKKEI 0.033 0.180 −0.058 0.044
10Y US 0.097 −0.047 0.331 −0.023
10Y EUR 0.059 0.005 0.438 −0.003
10Y Gilt 0.021 0.035 0.388 −0.005
10Y JGB 0.009 −0.053 0.078 −0.019
Gold 0.242 −0.043 0.014 0.306
Silver 0.190 0.012 −0.014 0.299
Wheat 0.053 0.006 −0.014 0.075
Crude 0.034 −0.018 −0.036 0.125

Notes: This table reports the average pairwise correlation of returns of futures contract iwith the returns of all contracts (j≠ i) in each asset class. The sample period
is January 2, 1991 to July 11, 2007 (4311 observations).
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assets. The degrees of freedom of the Student t distribution, v, assumed for the innovations were closely clustered across assets,
and ranged from 4.5 for Japanese Yen to 11.5 for FTSE with an average of 6.5, suggesting a significant degree of departure from
normality, partly reflecting the relatively large estimates obtained for the kurtosis coefficients.

The unconditional return correlations across assets and asset classes are summarized in Table 2. The results show a relatively
high degree of average pairwise correlations for assets within a given asset class and a relatively low average correlation across the
asset classes with a few notable exceptions. Not surprisingly, gold and silver futures have a relatively high correlation with
currencies, and amongst bonds, JGB is only weakly correlated with the returns on other bond futures.

These results further highlight the non-Gaussian nature of asset returns. But estimation of multivariate volatility models with
non-Gaussian distributions present considerable technical difficulties and are unlikely to significantly affect the QMLE estimates
that are computed assuming Gaussian errors. For risk management purposes, it seems justified to combine the QMLE estimates
with multivariate Student t distributions with a low degree of freedom. Therefore, based on the univariate t-GARCH estimates we

Table 3
AIC values for multivariate volatility models under standard normal innovations

Model Type Sample periods Sample periods

25-Jan-94 11-Jul-07 Average 25-Jan-94 11-Jul-07 Average

(1) (2) (3) (4) (5) (6)

EQMA (1,1,0.97) −13653 (22) −10007 (16) −13532 (23)
(n0 ) (1,2,0.97) −13585 (20) −10117 (19) −13510 (20)
(250) −13283 (19) −9533 (14) −13169 (18) (2,1,0.97) −13663 (23) −10025 (17) −13523 (22)
(125) −13131 (18) −9623 (15) −13449 (19) (2,2,0.97) −13614 (21) −10138 (20) −13516 (21)
(75) −13875 (26) −10373 (28) −14243 (28)
(50) −15617 (39) −11966 (42) −15872 (42) OGARCH

(p, q)
EWMA (1,1) −12397 (14) −10148 (21) −13063 (16)
(n0 , λ0 , v0 ) (1,2) −12402 (15) −10157 (22) −13067 (17)
(250,0.95,0.95) −15825 (41) −11762 (39) −15532 (38) (2,1) −12415 (16) −10292 (26) −13020 (15)
(250,0.97,0.95) −15907 (42) −11713 (38) −15537 (39) (2,2) −12419 (17) −10271 (25) −12982 (14)
(250,0.95,0.97) −13877 (27) −10179 (23) −13775 (25)
(250,0.97,0.97) −13908 (28) −10100 (18) −13747 (24) CCC
(125,0.95,0.95) −15626 (40) −11835 (41) −15634 (40) (p, q)
(125,0.97,0.95) −15592 (38) −11782 (40) −15664 (41) (1,1) −12235 (13) −9150 (10) −12456 (11)
(125,0.95,0.97) −13837 (25) −10338 (27) −13992 (27) (1,2) −12207 (11) −9250 (12) −12453 (10)
(125,0.97,0.97) −13766 (24) −10253 (24) −13977 (26) (2,1) −12226 (12) −9167 (11) −12460 (13)
(75,0.95,0.95) −16011 (43) −12306 (45) −16147 (43) (2,2) −12198 (10) −9273 (13) −12457 (12)
(75,0.97,0.95) −16052 (44) −12287 (44) −16212 (44)
(75,0.95,0.97) −14548 (31) −11038 (32) −14760 (31) DCC
(75,0.97,0.97) −14521 (30) −10976 (31) −14765 (32) (p, q)
(50,0.95,0.95) −17995 (51) −13846 (51) −17905 (51) (1,1) −12034 (9) −8956 (6) −12266 (7)
(50,0.97,0.95) −18072 (52) −13872 (52) −18000 (52) (1,2) −12002 (7) −9043 (8) −12261 (6)
(50,0.95,0.97) −16734 (48) −12776 (49) −16688 (47) (2,1) −12030 (8) −8972 (7) −12270 (9)
(50,0.97,0.97) −16733 (47) −12748 (48) −16714 (48) (2,2) −11999 (6) −9065 (9) −12267 (8)

MMA ADCC
(n0 , v0 ) (p, q)
(250,0.95) −16995 (50) −12418 (46) −16566 (46) (1,1) −11962 (2) −8882 (2) −12197 (2)
(250,0.97) −14773 (32) −10643 (30) −14570 (30) (1,2) −11964 (3) −8891 (3) −12224 (3)
(125,0.95) −16336 (45) −12163 (43) −16455 (45) (2,1) −11981 (4) −8908 (4) −12238 (5)
(125,0.97) −14293 (29) −10501 (29) −14553 (29) (2,2) −11982 (5) −8919 (5) −12237 (4)
(75,0.95) −16588 (46) −12539 (47) −16722 (49)
(75,0.97) −14875 (33) −11122 (33) −15120 (37) TDCC
(50,0.95) −18331 (53) −14027 (53) −18310 (53) (p, q)
(50,0.97) −16869 (49) −12818 (50) −16907 (50) (1,1) −11451 (1) −8676 (1) −11860 (1)

GEWMA
(p, q, v0 )
(1,1,0.95) −15365 (36) −11474 (34) −15104 (36)
(1,2,0.95) −15276 (34) −11616 (36) −15074 (33)
(2,1,0.95) −15385 (37) −11495 (35) −15088 (35)
(2,2,0.95) −15312 (35) −11641 (37) −15078 (34)

Notes: This table reports the Akaike Information Criteria (AIC) of the volatility models described in Appendix B under the assumption of standard normal
innovations (with the exception of the TDCC model). The AIC is computed as AICit=LLit−ki , where LLit is the maximized log-likelihood value at time t for model i,
and ki is the number of parameters estimated under model i. All multivariate volatility models (when applicable) were estimated based on one-day ahead forecast
errors, ε̂ it=rit− μ̂ it , using rolling windows of size 800 days every 25 days. The one-step ahead forecasts, µ̂it , were obtained by estimating an AR(1) model also on a
window of size 800 recursively and updated daily. For the TDCC model the distribution is Student twith vt−1 degrees of freedom, where vt−1 is re-estimated every
25 days. Columns 1 and 4 report the AIC values of the first sample (2-Jan-91 to 25-Jan-94, 800 observations). Columns 2 and 5 report the AIC values of the last
sample (17-Jun-04 to 11-Jul-07, 800 observations). Columns 3 and 6 report the average AIC values over all 3512 rolling samples, with 800 observations each,
extracted from the full sample of data (2-Jan-91 to 11-Jul-07). The models’ rank is given in parentheses.
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also consider multi-variate volatility models where the innovations are t distributed with 7 degrees of freedom. This approach is
followed for all the empirical results to be reported below, except for the TDCC model of Pesaran and Pesaran (2007) where the
degrees of freedom of the underlying multivariate t distribution are estimated recursively.

6.2. Recursive estimation of multivariate volatility models

For each of the 9 types of multivariate volatility models listed in Appendix B, a number of variations were considered,
depending on the choice of the window size (n0) when applicable, the pre-specified parameters of the Riskmetrics specifications
(λ0,ν0) and the orders of the multivariate GARCH models (p,q,r,s). In particular, we considered the following parameter values
n0=50,75,125,250, λ0=0.94, 0.95, 0.96, ν0=0.6, 0.8, 0.94, p,q ∈ {1,2} and r=s=1.

To estimate the volatility models, we first obtained recursive forecasts of the individual mean returns using the AR(1)
specification defined by (7), which we denote by µ̂jt, for j=1,2,...,18. These AR specifications were estimated each day using a rolling

Table 4
SBC values for multivariate volatility models under standard normal innovations

Model Type Sample periods Sample periods

25-Jan-94 11-Jul-07 Average 25-Jan-94 11-Jul-07 Average

(1) (2) (3) (4) (5) (6)

EQMA (1,1,0.97) −13779 (22) −10133 (17) −13659 (20)
(n0 ) (1,2,0.97) −13754 (20) −10285 (22) −13679 (21)
(250) −13283 (19) −9533 (10) −13169 (14) (2,1,0.97) −13832 (24) −10194 (19) −13691 (22)
(125) −13131 (18) −9623 (11) −13449 (19) (2,2,0.97) −13825 (23) −10349 (25) −13727 (23)
(75) −13875 (26) −10373 (26) −14243 (28)
(50) −15617 (39) −11966 (42) −15872 (42) OGARCH

(p, q)
EWMA (1,1) −12523 (10) −10275 (21) −13189 (16)
(n0 , λ0 , v0 ) (1,2) −12571 (11) −10325 (23) −13235 (18)
(250,0.95,0.95) −15825 (41) −11762 (37) −15532 (38) (2,1) −12583 (12) −10461 (27) −13189 (15)
(250,0.97,0.95) −15907 (42) −11713 (36) −15537 (39) (2,2) −12629 (13) −10482 (28) −13193 (17)
(250,0.95,0.97) −13877 (27) −10179 (18) −13775 (25)
(250,0.97,0.97) −13908 (28) −10100 (16) −13747 (24) CCC
(125,0.95,0.95) −15626 (40) −11835 (40) −15634 (40) (p, q)
(125,0.97,0.95) −15592 (38) −11782 (38) −15664 (41) (1,1) −12720 (14) −9635 (12) −12941 (10)
(125,0.95,0.97) −13837 (25) −10338 (24) −13992 (27) (1,2) −12734 (15) −9777 (14) −12980 (11)
(125,0.97,0.97) −13766 (21) −10253 (20) −13977 (26) (2,1) −12753 (16) −9694 (13) −12987 (12)
(75,0.95,0.95) −16011 (43) −12306 (45) −16147 (43) (2,2) −12767 (17) −9842 (15) −13026 (13)
(75,0.97,0.95) −16052 (44) −12287 (44) −16212 (44)
(75,0.95,0.97) −14548 (31) −11038 (32) −14760 (31) DCC
(75,0.97,0.97) −14521 (30) −10976 (31) −14765 (32) (p, q)
(50,0.95,0.95) −17995 (51) −13846 (51) −17905 (51) (1,1) −12165 (3) −9087 (3) −12398 (3)
(50,0.97,0.95) −18072 (52) −13872 (52) −18000 (52) (1,2) −12175 (4) −9217 (7) −12434 (4)
(50,0.95,0.97) −16734 (48) −12776 (49) −16688 (47) (2,1) −12203 (6) −9146 (5) −12444 (6)
(50,0.97,0.97) −16733 (47) −12748 (48) −16714 (48) (2,2) −12214 (7) −9281 (9) −12483 (7)

MMA ADCC
(n0 , v0 ) (p, q)
(250,0.95) −16995 (50) −12418 (46) −16566 (46) (1,1) −12138 (2) −9058 (2) −12373 (2)
(250,0.97) −14773 (32) −10643 (30) −14570 (30) (1,2) −12182 (5) −9109 (4) −12442 (5)
(125,0.95) −16336 (45) −12163 (43) −16455 (45) (2,1) −12241 (8) −9168 (6) −12498 (8)
(125,0.97) −14293 (29) −10501 (29) −14553 (29) (2,2) −12284 (9) −9221 (8) −12539 (9)
(75,0.95) −16588 (46) −12539 (47) −16722 (49)
(75,0.97) −14875 (33) −11122 (33) −15120 (33) TDCC
(50,0.95) −18331 (53) −14027 (53) −18310 (53) (p, q)
(50,0.97) −16869 (49) −12818 (50) −16907 (50) (1,1) −11542 (1) −8767 (1) −11952 (1)

GEWMA
(p, q, v0 )
(1,1,0.95) −15491 (35) −11600 (34) −15230 (34)
(1,2,0.95) −15444 (34) −11785 (39) −15243 (35)
(2,1,0.95) −15554 (37) −11663 (35) −15256 (36)
(2,2,0.95) −15523 (36) −11852 (41) −15289 (37)

Notes: This table reports the Schwartz Bayesian Criteria (SBC) of the volatility models described in Appendix B under the assumption of standard normal
innovations (with the exception of the TDCC model). The SBC is computed as SBCit=LLit−0.5ki log(T), where LLit is the maximized log-likelihood at time t for model
i, ki is the number of parameters estimated under model i, and T=800 is the sample size. For the TDCC model the distribution is Student t with vt −1 degrees of
freedom, where vt −1 is re-estimated every 25 days. Columns 1 and 4 report the SBC values of the first sample (2-Jan-91 to 25-Jan-94, 800 observations). Columns 2
and 5 report the SBC values of the last sample (17-Jun-04 to 11-Jul-07, 800 observations). Columns 3 and 6 report the average SBC values over all 3512 rolling
samples, with 800 observations each, extracted from the full sample of data (2-Jan-91 to 11-Jul-07). The models’ rank is given in parentheses.
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window of size 800. The AR(1) autocorrelation coefficients of the individual returns were quantitatively small (ranging from − 0.20
to 0.15 across all the assets and over the whole sample period), and were on average negative, suggesting some degree of market
over-reaction.

The multivariate volatility models were estimated (when applicable) using the one-day ahead forecast errors, ε̂ jt=rjt − µ̂jt, j=1,
2,..., 18, based on rolling samples of size 800 days. The re-estimations were carried out every 25 days. The first rolling sample
covered the period 2 January 1991 to 25 January 1994, and the last estimation sample covered the period 17 June 2004 to 11 July 07;
namely a total of 3512 rolling samples of size 800. Clearly, the parameters of the volatility models could have been also updated
daily. The monthly updates of the parameters can be viewed as a plausible and practical solution to a highly computer intensive
problem. Therefore, the models were estimated 144 times over the evaluation sample. Interestingly enough, the estimation
procedure converged in the case of all volatility models with the exception of the ADCC models where they failed to converge in
one sample period. For this period the parameters of the ADCC models were set equal to the ones obtained in the previous sample
period.

Table 5
AIC values for multivariate volatility models under Student t innovations

Model Type Sample periods Sample periods

25-Jan-94 11-Jul-07 Average 25-Jan-94 11-Jul-07 Average

(1) (2) (3) (4) (5) (6)

EQMA (1,1,0.97) −12823 (30) −9669 (20) −12862 (22)
(n0 ) (1,2,0.97) −12793 (28) −9769 (23) −12856 (20)
(250) −12477 (21) −9184 (14) −12543 (14) (2,1,0.97) −12841 (31) −9674 (21) −12862 (23)
(125) −12175 (18) −9225 (15) −12695 (19) (2,2,0.97) −12811 (29) −9776 (25) −12865 (24)
(75) −12522 (22) −9720 (22) −13163 (28)
(50) −13345 (36) −10627 (41) −13960 (42) OGARCH

(p, q)
EWMA (1,1) −11907 (14) −9911 (27) −12637 (17)
(n0 , λ0 , v0 ) (1,2) −11918 (15) −9923 (28) −12642 (18)
(250,0.95,0.95) −13643 (40) −10471 (37) −13735 (38) (2,1) −11933 (16) −10030 (30) −12628 (16)
(250,0.97,0.95) −13670 (43) −10465 (36) −13752 (39) (2,2) −11939 (17) −10015 (29) −12608 (15)
(250,0.95,0.97) −12765 (24) −9632 (18) −12870 (25)
(250,0.97,0.97) −12766 (25) −9592 (16) −12862 (21) CCC
(125,0.95,0.95) −13250 (33) −10430 (35) −13793 (40) (p, q)
(125,0.97,0.95) −13281 (34) −10424 (34) −13816 (41) (1,1) −11754 (11) −8994 (10) −12144 (10)
(125,0.95,0.97) −12463 (20) −9649 (19) −13000 (27) (1,2) −11749 (10) −9101 (12) −12147 (11)
(125,0.97,0.97) −12461 (19) −9613 (17) −12997 (26) (2,1) −11765 (13) −9007 (11) −12150 (12)
(75,0.95,0.95) −13365 (37) −10678 (44) −14015 (43) (2,2) −11755 (12) −9120 (13) −12156 (13)
(75,0.97,0.95) −13405 (38) −10681 (45) −14045 (44)
(75,0.95,0.97) −12762 (23) −10064 (32) −13402 (31) DCC
(75,0.97,0.97) −12772 (27) −10041 (31) −13407 (32) (p, q)
(50,0.95,0.95) −14123 (50) −11353 (51) −14696 (51) (1,1) −11568 (7) −8806 (6) −11961 (5)
(50,0.97,0.95) −14162 (51) −11365 (52) −14726 (52) (1,2) −11560 (5) −8905 (8) −11964 (7)
(50,0.95,0.97) −13693 (45) −10931 (49) −14258 (48) (2,1) −11580 (9) −8818 (7) −11969 (8)
(50,0.97,0.97) −13706 (47) −10923 (48) −14267 (49) (2,2) −11569 (8) −8924 (9) −11973 (9)

MMA ADCC
(n0 , v0 ) (p, q)
(250,0.95) −14243 (52) −10817 (47) −14257 (47) (1,1) −11526 (2) −8756 (2) −11912 (2)
(250,0.97) −13299 (35) −9897 (26) −13336 (30) (1,2) −11535 (3) −8771 (3) −11941 (3)
(125,0.95) −13641 (39) −10626 (40) −14127 (45) (2,1) −11553 (4) −8783 (4) −11956 (4)
(125,0.97) −12767 (26) −9769 (24) −13270 (29) (2,2) −11560 (6) −8801 (5) −11962 (6)
(75,0.95) −13646 (41) −10813 (46) −14241 (46)
(75,0.97) −12962 (32) −10134 (33) −13566 (33) TDCC
(50,0.95) −14299 (53) −11452 (53) −14843 (53) (p, q)
(50,0.97) −13806 (49) −10978 (50) −14354 (50) (1,1) −11451 (1) −8676 (1) −11860 (1)

GEWMA
(p, q, v0 )
(1,1,0.95) −13697 (46) −10531 (38) −13716 (36)
(1,2,0.95) −13660 (42) −10632 (42) −13709 (34)
(2,1,0.95) −13720 (48) −10534 (39) −13715 (35)
(2,2,0.95) −13680 (44) −10637 (43) −13717 (37)

Notes: This table reports the AIC of the volatility models described in Appendix B and estimated (when applicable) assuming normal innovations as in Table 3 but
evaluated here using a Student t distribution with 7 degrees of freedom (with the exception of the TDCC model). For the TDCC model the distribution is Student t
with vt −1 degrees of freedom, where vt−1 is re-estimated every 25 days. Columns 1 and 4 report the AIC values of the first sample (2-Jan-91 to 25-Jan-94, 800
observations). Columns 2 and 5 report the AIC values of the last sample (17-Jun-04 to 11-Jul-07, 800 observations). Columns 3 and 6 report the average AIC values
over all 3512 rolling samples, with 800 observations each, extracted from the full sample of data (2-Jan-91 to 11-Jul-07). The models’ rank is given in parentheses.
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6.3. Modelling strategies

A number of different modelling strategies may now be considered. One possibility would be to follow the classical approach
and select the ‘best’ model from the set of models under consideration using model selection criteria such as AIC or SBC.
Alternatively, the model uncertainty can be explicitly taken into account by ‘thick’modelling proposed by Granger and Jeon (2004)
or by Bayesian type model averaging procedures. The former is implemented here by averaging the top 10%, 25%, 50% and 75% of
the models selected according to AIC or SBC. We refer to these as ‘best’, ‘thick average’, and ‘Bayesian average’modelling strategies.
As an extreme benchmark we also consider an equal-weighted average model using all the 53 specifications.

In-sample penalized measures of fit, already defined above by AICi,t− i=LLi,t−1−ki and SBCi,t−1=LLi,t −1− (ki2) ln(t−1), for the
various multivariate volatility models (as set out in Appendix B) for a selection of rolling windows are summarized in Tables 3–6.
Tables 3 and 4 gives the AIC and SBC values assuming Gaussian innovations, whilst the results in Tables 5 and 6 report the in-
sample measures assuming Student t innovations with 7 degrees of freedom. Each table gives the AIC (or SBC) values of the
different models together with their rank in parentheses (1 for the best fitting model and 53 for the worst one) for the first sample

Table 6
SBC values for multivariate volatility models under Student t innovations

Model Type Sample periods Sample periods

25-Jan-94 11-Jul-07 Average 25-Jan-94 11-Jul-07 Average

(1) (2) (3) (4) (5) (6)

EQMA (1,1,0.97) −12950 (28) −9795 (22) −12988 (22)
(n0 ) (1,2,0.97) −12961 (29) −9937 (25) −13025 (25)
(250) −12477 (21) −9184 (10) −12543 (10) (2,1,0.97) −13010 (31) −9842 (23) −13031 (26)
(125) −12175 (14) −9225 (11) −12695 (14) (2,2,0.97) −13022 (32) −9987 (26) −13076 (27)
(75) −12522 (22) −9720 (20) −13163 (28)
(50) −13345 (36) −10627 (39) −13960 (42) OGARCH

(p, q)
EWMA (1,1) −12034 (10) −10038 (27) −12764 (16)
(n0 , λ0 , v0 ) (1,2) −12086 (11) −10092 (30) −12811 (18)
(250,0.95,0.95) −13643 (40) −10471 (37) −13735 (34) (2,1) −12102 (12) −10199 (32) −12796 (17)
(250,0.97,0.95) −13670 (42) −10465 (36) −13752 (35) (2,2) −12150 (13) −10226 (33) −12819 (19)
(250,0.95,0.97) −12765 (24) −9632 (17) −12870 (21)
(250,0.97,0.97) −12766 (25) −9592 (14) −12862 (20) CCC
(125,0.95,0.95) −13250 (33) −10430 (35) −13793 (36) (p, q)
(125,0.97,0.95) −13281 (34) −10424 (34) −13816 (37) (1,1) −12239 (15) −9479 (12) −12628 (11)
(125,0.95,0.97) −12463 (20) −9649 (18) −13000 (24) (1,2) −12276 (16) −9628 (16) −12674 (12)
(125,0.97,0.97) −12461 (19) −9613 (15) −12997 (23) (2,1) −12292 (17) −9534 (13) −12677 (13)
(75,0.95,0.95) −13365 (37) −10678 (41) −14015 (43) (2,2) −12325 (18) −9690 (19) −12725 (15)
(75,0.97,0.95) −13405 (38) −10681 (42) −14045 (44)
(75,0.95,0.97) −12762 (23) −10064 (29) −13402 (31) DCC
(75,0.97,0.97) −12772 (27) −10041 (28) −13407 (32) (p, q)
(50,0.95,0.95) −14123 (50) −11353 (51) −14696 (51) (1,1) −11699 (2) −8937 (3) −12093 (3)
(50,0.97,0.95) −14162 (51) −11365 (52) −14726 (52) (1,2) −11734 (4) −9078 (7) −12137 (4)
(50,0.95,0.97) −13693 (43) −10931 (49) −14258 (48) (2,1) −11753 (6) −8992 (5) −12142 (5)
(50,0.97,0.97) −13706 (44) −10923 (48) −14267 (49) (2,2) −11784 (7) −9139 (9) −12189 (7)

MMA ADCC
(n0 , v0 ) (p, q)
(250,0.95) −14243 (52) −10817 (46) −14257 (47) (1,1) −11702 (3) −8931 (2) −12088 (2)
(250,0.97) −13299 (35) −9897 (24) −13336 (30) (1,2) −11753 (5) −8989 (4) −12159 (6)
(125,0.95) −13641 (39) −10626 (38) −14127 (45) (2,1) −11813 (8) −9043 (6) −12216 (8)
(125,0.97) −12767 (26) −9769 (21) −13270 (29) (2,2) −11863 (9) −9103 (8) −12264 (9)
(75,0.95) −13646 (41) −10813 (45) −14241 (46)
(75,0.97) −12962 (30) −10134 (31) −13566 (33) TDCC
(50,0.95) −14299 (53) −11452 (53) −14843 (53) (p, q)
(50,0.97) −13806 (45) −10978 (50) −14354 (50) (1,1) −11542 (1) −8767 (1) −11952 (1)

GEWMA
(p, q, v0 )
(1,1,0.95) −13824 (46) −10658 (40) −13842 (38)
(1,2,0.95) −13829 (47) −10801 (44) −13877 (39)
(2,1,0.95) −13888 (48) −10702 (43) −13884 (40)
(2,2,0.95) −13891 (49) −10847 (47) −13927 (41)

Notes: This table reports the SBC of the volatility models described in Appendix B and estimated (when applicable) assuming normal innovations as in Table 4 but
evaluated here using a Student t distribution with 7 degrees of freedom (with the exception of the TDCC model). For the TDCC model the distribution is Student t
with vt−1 degrees of freedom, where vt−1 is re-estimated every 25 days. Columns 1 and 4 report the SBC values of the first sample (2-Jan-91 to 25-Jan-94, 800
observations). Columns 2 and 5 report the SBC values of the last sample (17-Jun-04 to 11-Jul-07, 800 observations). Columns 3 and 6 report the average SBC values
over all 3512 rolling samples, with 800 observations each, extracted from the full sample of data (2-Jan-91 to 11-Jul-07). The models’ rank is given in parentheses.
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(2-Jan-91 to 25-Jan-94, 800 observations), for the last sample, (17-June-04 to 11-July-07, 800 observations), and for the average AIC
(or SBC) values over all 3,512 rolling samples.

Overall the DCC type models performed best, followed by CCC, and OGARCH specifications. Amongst the Riskmetrics type
specifications, the simplest of the data filters namely the equal weighted moving average specification, EQMA, with n0=125, or
250, do considerably better than the other filters and perform well even when compared to estimated models such as O-GARCH.
Out of all the models considered the TDCC specification performed best irrespective of the penalization criteria, sample period or
assumptions about the innovations. The better performance of the TDCC model could be partly due to the fact that the degrees of
freedom of the underlying t distribution is updated every month rather than being set to 7 as in the case of the other specifications
reported in Tables 5 and 6. However, it is unlikely that the large differences that exist between the AIC (or SBC) values of TDCC(1,1)
and the second best model, ADCC (1,1), could be only due to the differences in the estimates of the degrees of freedom. Note that
the average value of the AIC (across all the 144 rolling samples) for the TDCC model is − 8676 as compared to the value of − 8756
obtained for the ADCC with Student t (7) innovations (see Table 5). The apparent superiority of the TDCC over the other models is
likely to be due to the fact that the degrees of freedom of the underlying multivariate Student t distribution is estimated, as well as
the way conditional correlations are defined in terms of de-volatized returns. As shown in Pesaran and Pesaran (2007)
standardizing returns by realized volatility (estimated using daily returns) yields approximately Gaussian processes with respect to
which correlations are likely to be more meaningful measures of dependence as compared to the standardization of returns by
conditional volatilities as utilized in DCC type models.

The fact that the DCC models, and in particular the TDCC version, dominate the other models in terms of AIC or SBC also means
that in Bayesian type model averaging the best model in the set of models under considerationwill tend to get a weight that could
be very close to unity. In the case of financial applications where the sample sizes are relatively large, the best model could totally
dominate the othermodels. In our applicationwhere the average AIC (or SBC) value of the TDCCmodel exceeds the next bestmodel
by 80, and considering that the computation of posterior model probability weights involve exponentiating these differences, we
typically end up giving a weight of unity to the best model and zero to the other models.20 As a result, as we shall see below,
portfolio outcomes and VaR diagnostics are almost identical for the best model and Bayesian type model averaging strategies.

6.4. Active management: performance of optimal portfolios and VaR diagnostic test results

In this sectionwe provide an out of sample, decision-based comparative analysis of the different multivariate volatility models,
and different averagemodels based on them.We use the same recursively computed one-step aheadmean forecasts, µ̂t=(µ̂1t, µ̂2t,...,
µ̂18,t)′ in the case of all the 53 individual multivariate volatility models and their various averages. In this way we are able to focus
on the uncertainty of multivariate volatility models and abstract from the uncertainty associated with the mean returns. For each
multivariate volatility model, Mi, we estimated the one-day ahead recursive forecasts of Σt denoted by Σ̂it, i=1,..., 53. Using µ̂t and
Σ̂it, and for a given assumption regarding the distribution of innovations (Gaussian or a Student t with 7 degrees of freedom) we
then computed the optimal portfolio weights, ω̂⁎t−1,Mi

using the closed form solution given by Eq. (6) and setting α=1%, δt−1=75,
and Lt−1=1%. Recall that α is the risk tolerance probability of the fund manager and Lt−1 is the maximum permitted daily loss
defined as the fraction of the notional capital, and δt−1 is the coefficient of risk aversion. We calibrated δ in order to achieve a
reasonable fraction of times where the VaR part of the optimization will be binding.

For each set of portfolio weights, we then computed the portfolio returns, ρt,Mi=rt′ω̂⁎t−1,Mi
, and the associated performance

statistics: the mean, standard deviation, the Information Ratio (IR), defined as the ratio of the mean to the standard deviation. All
these statistics were computed recursively over the evaluation sample from 26-Jan-94 to 11-Jul-07, inclusive (3511 data points).

6.4.1. Individual volatility models
Table 7 summarizes the results for the individual volatility models and gives the annualized mean return, the IR and VaR

diagnostic test statistics. These statistics are provided for Gaussian and Student t(7) innovations. The percentage of times the VaR
constraint (5) binds for the optimum solution is also given. This percentage is notably higher under Student t(7) innovations, since
with a fatter tail the probability of large negative outcomes increases as the degrees of freedom of the Student t is reduced.

The results differ markedly across models, which highlights the important role the choice of multivariate volatility model can
play in portfolio management. We also note that the VaR constraint tends to bind more often in the case of the Riskmetric filters
relative to the OGARCH or DCC type models. The VaR constraint also binds more frequently when the innovations are t distributed.

The trading performance of the different volatility models, as measured by IR, vary considerably from a low of 0.61 for theMMA
(250,0.95) specification with Gaussian innovations to a high of 1.51 for the CCC(1,2) specification with t(7) innovations.
Nevertheless, it is interesting that all volatility models generate a positive IR, despite the relatively simple model assumed for the
return processes. Amongst the Riskmetric type specifications the simple EQMA filters performed best, which is in accordance with
the in-sample results discussed above. The IR of the portfolios constructed assuming t-distributed innovations were also generally
higher than those based on Gaussian innovations, although the magnitude of the difference is not that large. The TDCC model,
which had performed best in-sample, continued to perform well in trading. However, the differences between models in trading
turned out to be considerably less pronounced compared to their differences in terms of the statistical measures of penalized in-
sample fit.

20 Notice that the model weights are obtained by exponentiation of the AIC-penalized log-likelihood values and even seemingly small differences in the average
fit of the models can translate into major differences in model weights for sufficiently large sample sizes. See also Garratt et al. (2003).
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Table 7
Information ratios and VaR diagnostic tests for optimal portfolio (individual multivariate models)

Model type Normal Student (7)

Mean return IR π̂ zπ̂ % VaR binds Mean return IR π̂ zπ̂ % VaR binds

EQMA (n0)
(250) 11.66 1.38 2.99 11.85 22 11.43 1.43 2.45 8.63 34
(125) 13.62 1.42 3.73 16.26 28 13.15 1.46 3.33 13.89 42
(75) 13.86 1.24 5.61 27.46 36 13.34 1.29 5.04 24.07 51
(50) 16.52 1.18 9.14 48.49 48 15.67 1.22 8.15 42.55 64

EWMA (n0 , λ0 , v0 )
(250,0.95,0.95) 14.16 1.05 8.74 46.12 48 13.69 1.11 7.72 40.01 63
(250,0.97,0.95) 13.69 0.99 8.94 47.30 47 13.31 1.06 7.97 41.54 62
(250,0.95,0.97) 13.28 1.28 5.33 25.76 35 12.84 1.32 4.67 21.86 51
(250,0.97,0.97) 12.96 1.24 5.24 25.25 34 12.56 1.29 4.24 19.32 49
(125,0.95,0.95) 14.21 1.05 8.86 46.80 48 13.74 1.11 7.80 40.52 63
(125,0.97,0.95) 13.79 0.99 9.09 48.15 47 13.39 1.06 8.15 42.55 62
(125,0.95,0.97) 13.54 1.27 5.72 28.14 36 13.08 1.31 5.04 24.07 52
(125,0.97,0.97) 13.26 1.23 5.64 27.63 36 12.83 1.28 4.87 23.05 51
(75,0.95,0.95) 14.37 1.01 9.97 53.41 51 13.87 1.06 8.54 44.93 66
(75,0.97,0.95) 14.04 0.96 10.08 54.09 51 13.61 1.02 8.86 46.80 65
(75,0.95,0.97) 13.86 1.16 7.35 37.81 41 13.31 1.20 6.44 32.38 58
(75,0.97,0.97) 13.62 1.12 7.46 38.48 41 13.12 1.17 6.41 32.21 57
(50,0.95,0.95) 16.28 0.95 12.70 69.69 60 15.55 1.01 11.51 62.57 73
(50,0.97,0.95) 15.87 0.90 12.76 70.03 60 15.25 0.96 11.28 61.21 73
(50,0.95,0.97) 16.43 1.08 10.97 59.35 53 15.64 1.13 9.46 50.36 69
(50,0.97,0.97) 16.22 1.05 11.02 59.69 53 15.45 1.10 9.60 51.21 69

MMA (n0 , v0)
(250,0.95) 10.39 0.61 9.77 52.22 46 10.45 0.69 8.66 45.61 59
(250,0.97) 11.36 0.95 5.58 27.29 34 11.12 1.00 4.84 22.88 47
(125,0.95) 12.61 0.78 9.85 52.73 48 12.38 0.85 8.54 44.93 61
(125,0.97) 12.96 1.08 6.10 30.34 37 12.67 1.15 5.27 25.42 51
(75,0.95) 12.86 0.79 10.45 56.29 51 12.84 0.88 9.51 50.70 65
(75,0.97) 13.18 1.02 7.92 41.20 42 12.85 1.08 6.95 35.43 57
(50,0.95) 14.36 0.75 13.04 71.73 59 14.29 0.85 11.65 63.42 72
(50,0.97) 15.64 0.97 11.08 60.03 53 15.01 1.03 9.97 53.41 68

GEWMA (p, q, v0 )
(1,1,0.95) 12.54 0.95 8.57 45.10 43 12.17 1.00 7.41 38.14 58
(1,2,0.95) 13.12 1.01 8.54 44.93 43 12.71 1.06 7.32 37.64 57
(2,1,0.95) 12.72 0.94 8.37 43.91 43 12.43 1.00 7.23 37.13 57
(2,2,0.95) 12.94 0.96 8.77 46.29 43 12.61 1.02 7.60 39.33 57
(1,1,0.97) 11.65 1.16 4.90 23.22 31 11.34 1.20 4.10 18.47 45
(1,2,0.97) 12.08 1.21 4.90 23.22 30 11.75 1.26 4.07 18.30 45
(2,1,0.97) 12.08 1.18 5.07 24.24 31 11.77 1.23 4.24 19.32 45
(2,2,0.97) 12.19 1.19 5.10 24.41 32 11.88 1.24 4.50 20.84 45

OGARCH (p, q)
(1,1) 9.70 1.19 2.73 10.33 16 9.59 1.24 2.34 7.95 27
(1,2) 9.34 1.13 2.62 9.65 16 9.22 1.17 2.45 8.63 27
(2,1) 9.29 1.15 2.68 9.99 16 9.16 1.19 2.31 7.78 27
(2,2) 9.63 1.20 2.51 8.97 16 9.48 1.24 2.28 7.61 27

CCC (p, q)
(1,1) 9.95 1.43 1.79 4.73 13 9.82 1.46 1.48 2.86 23
(1,2) 10.23 1.47 1.82 4.90 12 10.10 1.51 1.62 3.71 23
(2,1) 10.13 1.42 2.08 6.43 13 9.98 1.46 1.82 4.90 24
(2,2) 10.21 1.42 1.94 5.58 14 10.05 1.46 1.77 4.56 24

DCC (p, q)
(1,1) 9.41 1.37 1.57 3.37 13 9.31 1.41 1.40 2.36 24
(1,2) 9.65 1.42 1.68 4.05 12 9.55 1.45 1.48 2.86 23
(2,1) 9.65 1.38 1.85 5.07 14 9.54 1.42 1.62 3.71 25
(2,2) 9.69 1.38 1.88 5.24 14 9.57 1.42 1.59 3.54 24

ADCC (p, q)
(1,1) 8.76 1.27 1.74 4.39 14 8.70 1.31 1.57 3.37 25
(1,2) 8.92 1.24 1.99 5.92 14 8.93 1.30 1.74 4.39 25
(2,1) 9.36 1.30 1.91 5.41 15 9.24 1.34 1.57 3.37 27
(2,2) 9.31 1.25 2.05 6.26 16 9.31 1.32 1.77 4.56 27

TDCC (p, q)
(1,1) – – – – – 9.21 1.39 1.57 3.37 21

Nominal tolerance probability α=1%.
Notes: This table reports themean return, information ratio (IR), VaRexceedance ratio (π̂) and its zπ̂-statistic, aswell as thepercentage of times theVaR constraint isbinding
(δt−1bδ⁎t−1 inEq. (6)), ofportfolios thatwereconstructedbasedon theestimatedmeanreturn (µt—generatedbyanAR(1)model) andthecovariancematrix (Σit—generatedby
the individual multivariate volatility models described in Appendix B). The risk-aversion parameter δ is set to 75 and the nominal VaR frequency α is 1%. We assume that
innovations are either normal or Student twith7degrees of freedom. For the TDCCmodel the Student tdistributionhasvt−1 degrees of freedom(insteadof 7),wherevt−1 is re-
estimatedevery25days.Themultivariatemodelswereestimatedusingarollingwindowof800observationsover theperiod2-Jan-91to11-Jul-07,3511rollingsamples in total.
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We next turn to the VaR diagnostics and use the portfolio returns for each volatility model,Mi, to compute (i) π̂i, the percentage
of times the VaR constraint was violated (ρt,Mi

bLt−1=0.01) and (ii) zπ̂i
, the VaR diagnostic statistics defined by

zπ̂i
¼

ffiffiffiffiffiffiffiffiffiffiffi
3511

p
π̂i−:01
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01� 0:99

p :

Under the null hypothesis that the underlying volatility model is correctly specified, zπ̂i
is approximately distributed as a

standard normal variate. Since the parameters are estimated recursively every T1=25 days which is small relative to the estimation
sample of T0=800, the conditions of the Theorem 1 regarding T1 and T0 is likely to hold. The values of π̂i, and zπ̂i

for all the 53
individual volatility models are also summarized in Table 7.

The estimates of πi are all biased upward, and are scattered over a relatively wide range, from a high value of 13.04% for the
MMA(50,0.95) with Gaussian innovations to a low of 1.40 for DCC(1,1) with t(7) innovations. Once again the DCC type models do
considerably better than the Riskmetric filters in controlling the rate of VaR exceedences. The choice of the multivariate t
distribution for the innovations helps reducing the bias of π̂i for all i, but does not eliminate it. The null hypothesis that πi=0.01 is
rejected at the 95% significance level for all individual volatility models under consideration.

Table 8
Information ratios and VaR diagnostic tests for optimal portfolio (multivariate modelling strategies)

Model type Normal Student (7)

Mean return IR π̂ zπ̂ % VaR binds Mean return IR π̂ zπ̂ % VaR binds

Best (AIC) 9.30 1.29 1.91 5.41 15 9.30 1.34 1.59 3.54 26
Best (BIC) 9.24 1.27 2.05 6.26 15 9.39 1.36 1.62 3.71 26
Bayesian Average (AIC) 9.33 1.29 1.91 5.41 15 9.29 1.34 1.59 3.54 26
Bayesian Average (BIC) 9.27 1.28 2.08 6.43 15 9.40 1.36 1.62 3.71 26
Top 10% (AIC) 9.24 1.38 1.59 3.54 13 8.83 1.34 1.40 2.36 24
Top 10% (BIC) 9.05 1.34 1.57 3.37 13 8.74 1.33 1.48 2.86 25
Top 25% (AIC) 8.70 1.34 1.37 2.19 13 8.72 1.37 1.20 1.17 24
Top 25% (BIC) 9.04 1.37 1.51 3.03 13 8.90 1.38 1.31 1.85 24
Top 50% (AIC) 9.18 1.37 1.57 3.37 15 9.08 1.40 1.28 1.68 26
Top 50% (BIC) 9.19 1.38 1.54 3.20 15 9.10 1.41 1.28 1.68 26
Top 75% (AIC) 9.68 1.36 1.82 4.90 20 9.56 1.39 1.40 2.36 32
Top 75% (BIC) 9.68 1.35 1.79 4.73 20 9.56 1.39 1.42 2.53 31
All 10.11 1.32 2.36 8.12 25 9.95 1.36 1.79 4.73 36

Nominal tolerance probability α=1%.
Notes: Table 8 reports the mean return, information ratio (IR), VaR exceedance frequency (π̂) and its zΠ̂-statistic, as well as the percentage of times the VaR
constraint is binding (δt −1bδ⁎t−1 in Eq. (6)), of portfolios that were constructed based on the estimatedmean return (µt— generated by an AR(1) model) and a set of
covariance matrices {Σit} with weights {λit}. The risk-aversion parameter δ is set to 75 and the nominal VaR frequency α is 1%. We assume that innovations are
either normal or Student twith 7 degrees of freedom. Themultivariate models were estimated using a rolling windowof 800 observations over the period 2-Jan-91
to 11-Jul-07, 3511 rolling samples in total.

Fig. 1. Scatter plot of information ratios and VaR exceedance frequencies across models and modelling strategies.
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We obtained similar results for other portfolios, although the extent of over-rejectionwere somewhat lower for the Riskmetric
filters when an equal weighted portfolio was used. This is in line with the results in Theorems 1 and 2 where the distribution of the
VaR diagnostic test is invariant to the choice of the portfolio weights, ωt−1.

6.4.2. Modelling strategies
As has been emphasized in this paper there are many ways inwhich the results from the 53 individual volatility models can be

used/combined. We refer to these as strategies and distinguish between the standard classical strategy where the ‘best’ in-sample
fitting model is selected, and alternative strategies that consist of combinations of the models. In particular we shall consider both
Bayesian type and ‘thick’model averaging procedures discussed in Section 4. In the case of thickmodelling we focus on the top 10%,
20%, 50% and 75% ofmodels ranked by AIC or SBC. The top echelon of selectedmodels are then given equal weights in the averaging
process. Finally, we included all the 53 models in an average ‘All’ group strategy.

For the model averaging strategies the optimal portfolio weights are computed iteratively as set out in Section 4.1, and the VaR
diagnostic statistics are then computed with the help of (31) derived in Section 5.2. All computations are carried out recursively
over the evaluation sample as in the case of the individual volatility models. The results are summarized in Table 8, using Gaussian
and Student t(7) distributions. Given the in-sample dominance of the DCC type models there are no differences in the test results

Table 9
Kuiper and Kolmogorov–Smirnov tests of the validity of the individual multivariate models using an equally weighted portfolio

Model type Normal t7 Model type Normal t7

Ku KS Ku KS Ku KS Ku KS

EQMA (1,1,0.97) 0.000 0.005 0.003 0.052
(n0 ) (1,2,0.97) 0.000 0.006 0.003 0.052
(250) 0.000 0.004 0.012 0.104 (2,1,0.97) 0.000 0.006 0.002 0.048
(125) 0.000 0.006 0.004 0.052 (2,2,0.97) 0.000 0.008 0.002 0.048
(75) 0.000 0.007 0.001 0.030
(50) 0.000 0.007 0.000 0.033 OGARCH

(p, q)
EWMA (1,1) 0.000 0.015 0.000 0.002
(n0 , λ0 , v0 ) (1,2) 0.000 0.015 0.000 0.002
(250,0.95,0.95) 0.000 0.008 0.000 0.022 (2,1) 0.000 0.015 0.000 0.003
(250,0.97,0.95) 0.000 0.005 0.000 0.048 (2,2) 0.000 0.015 0.000 0.001
(250,0.95,0.97) 0.000 0.008 0.000 0.027
(250,0.97,0.97) 0.000 0.004 0.001 0.048 CCC
(125,0.95,0.95) 0.000 0.008 0.000 0.022 (p, q)
(125,0.97,0.95) 0.000 0.006 0.000 0.040 (1,1) 0.000 0.008 0.002 0.036
(125,0.95,0.97) 0.000 0.008 0.000 0.024 (1,2) 0.000 0.008 0.001 0.036
(125,0.97,0.97) 0.000 0.005 0.001 0.043 (2,1) 0.000 0.010 0.001 0.030
(75,0.95,0.95) 0.000 0.009 0.000 0.018 (2,2) 0.000 0.010 0.001 0.022
(75,0.97,0.95) 0.000 0.006 0.000 0.030
(75,0.95,0.97) 0.000 0.010 0.000 0.020 DCC
(75,0.97,0.97) 0.000 0.007 0.000 0.024 (p, q)
(50,0.95,0.95) 0.000 0.012 0.000 0.008 (1,1) 0.000 0.007 0.002 0.043
(50,0.97,0.95) 0.000 0.008 0.000 0.012 (1,2) 0.000 0.008 0.001 0.040
(50,0.95,0.97) 0.000 0.013 0.000 0.009 (2,1) 0.000 0.008 0.002 0.043
(50,0.97,0.97) 0.000 0.010 0.000 0.012 (2,2) 0.000 0.008 0.001 0.030

MMA ADCC
(n0 , v0 ) (p, q)
(250,0.95) 0.000 0.004 0.002 0.075 (1,1) 0.001 0.012 0.000 0.016
(250,0.97) 0.000 0.004 0.010 0.096 (1,2) 0.000 0.009 0.000 0.012
(125,0.95) 0.000 0.005 0.000 0.052 (2,1) 0.000 0.010 0.000 0.016
(125,0.97) 0.000 0.005 0.001 0.075 (2,2) 0.000 0.012 0.000 0.016
(75,0.95) 0.000 0.008 0.000 0.040
(75,0.97) 0.000 0.007 0.000 0.043 TDCC
(50,0.95) 0.000 0.005 0.000 0.040 (p, q)
(50,0.97) 0.000 0.006 0.000 0.036 (1,1) 0.000 0.008 0.012 0.096

GEWMA
(p, q, v0)
(1,1,0.95) 0.000 0.006 0.001 0.043
(1,2,0.95) 0.000 0.005 0.001 0.048
(2,1,0.95) 0.000 0.008 0.001 0.036
(2,2,0.95) 0.000 0.008 0.001 0.043

Notes: This table reports the probability values for the Kuiper and the Kolmogorov–Smirnov tests for the different multivariate volatility models considered in this
paper. We assume that the innovations are either normal or follow a Student t distribution with 7 degrees of freedom. For the TDCC model the Student t
distribution has vt −1 degrees of freedom (instead of 7), where vt −1 is re-estimated every 25 days. The multivariate models were estimated using a rolling window
of 800 observations over the period 2-Jan-91 to 11-Jul-07, 3511 rolling samples in total.
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for the average ‘Bayesian’ and the ‘best’modelling strategies. As noted earlier, this is due to the fact that for almost all periods in the
evaluation sample the ‘best’model happens to totally dominate all other models, and as a result the average ‘Bayesian’ and the best
models end up being the same for all practical purposes. This result suggests that the potential risk diversification benefits of
Bayesian model averaging might be limited in financial applications where the available time series samples are typically rather
large.

A comparison across strategies shows that all procedures yield very similar IRs, with thick strategies doing generally better than
the ‘best’models. The use of Student t innovations also seem to help improve the IRs irrespective of the strategy, although the ‘best’
models benefit more from switching to Student t innovations than to the thick modelling approaches. In terms of VaR exceedences
again the thick modelling strategies tend to have lower rejection frequencies than the ‘best’ or the Bayesian average strategies.
Amongst the various models and model strategies considered, the top 25% AIC thick modelling strategy with Student t(7)
innovations is the only strategy that yields VaR exceedences that are statistically insignificant (π̂=1.20 and zπ̂=1.17) whilst
maintaining an IR that is comparable to that of other strategies (IR=1.37). It seems that in the present application one needs both
model averaging and Student t distributed innovations to deal with the fat tail nature of the underlying asset returns. A useful
visual summary is provided in Fig. 1 where the empirical VaR exceedances (π̂i) from Tables 7 and 8 are plotted against the IR. The
results from the individual models are marked by empty circles, best and Bayesian average strategies are marked by empty
triangles, and the results from the thickmodelling strategies aremarked by filled squares. The vertical line represents the tolerance
probability, α=1%. The results from thick modelling strategies stand out quite clearly, as they are clustered together close to the
vertical line and display reasonably high IRs.

The above findings are in line with the theoretical results discussed in Section 5.3, where it was shown that the average model
will be more fat-tailed than the underlying Gaussian or Student t models with the same average volatility. When the underlying
models are already fat tailedmodel averaging (without any single model dominating) can induce a further degree of fat-tailedness.
This is evident in the case of the top 25% AIC thick modelling strategy with Student t(7) innovations.

6.5. Statistical diagnostic test results

The different volatility models and modelling strategies can also be evaluated using purely statistical techniques. A statistical
procedure, which is close to ours, focuses on the probability density forecasts of a given portfolio return, ρt=ω′t−1rt, and considers
the probability integral transforms v̂it ¼ ∫ρt

−∞ f̂ xjF t−1;Mið Þdx, for t=τ+1,…, τ+T1, where f̂ (x|F t − 1, Mi) is the estimated probability
density of ρt under modelMi and conditional on F t − 1. Making use of a well-known result due to Rosenblatt (1952) it is easily seen
that the sequence {v̂it, t∈ T 1} will be i.i.d. uniformly distributed on the interval [0,1J if f̂ (x|F t − 1, Mi) coincides with the ‘true’ but
unknown conditional predictive density of ρt. For further discussions see Diebold et al. (1998, 1999).

To test the hypothesis that v̂it are random draws from the uniform [0,1] distribution, we consider the standard Kolmogorov–
Smirnov test KS ¼ max1V jVT1 j

j
T1
− v̂4j j as well as the Kuiper test Ku ¼ max1V jVT1

j
T1
− v̂Tj

� �
þmax1V jVT1 v̂Tj −

j
T1

� �
; where v̂Tj V v̂T2V N V v̂TT1 rep-

resent ordered values of v̂iτ +1,...,v̂iτ +T1. The Kuiper test has the added advantage of placing greater emphasis on the tail behavior of
the distribution.

Table 9 reports the p-values of these tests for the 53 individual multivariate models using equally weighted portfolios, defined
by ρt ¼ 1=18ð Þ∑18

j¼1rjt. The KS and Ku tests are rejected for all the individual models when the underlying innovations are assumed
to be Gaussian, which is not surprising considering the known fat-tailed nature of the underlying returns. However, the results are
mixed when the innovations are assumed to follow a Student t distribution. Although all volatility models continue to be rejected
by the Ku test (possibly with the exception of the TDCC), none are rejected by the KS test at the 1% level.

Table 10
Kuiper and Kolmogorov–Smirnov tests of the validity of the multivariate model averaging strategies using an equally weighted portfolio

Strategy type Normal t7

Ku KS Ku KS

Best (AIC) 0.000 0.012 0.000 0.024
Best (BIC) 0.000 0.012 0.000 0.024
Bayesian Average (AIC) 0.000 0.012 0.000 0.024
Bayesian Average (BIC) 0.000 0.012 0.000 0.024
Top 10% (AIC) 0.000 0.009 0.000 0.022
Top 10% (BIC) 0.000 0.012 0.000 0.022
Top 25% (AIC) 0.001 0.013 0.000 0.015
Top 25% (BIC) 0.000 0.009 0.000 0.027
Top 50% (AIC) 0.000 0.010 0.000 0.022
Top 50% (BIC) 0.000 0.010 0.000 0.024
Top 75% (AIC) 0.000 0.010 0.000 0.022
Top 75% (BIC) 0.000 0.010 0.000 0.024
All 0.001 0.010 0.000 0.020

Notes: This table reports the probability values for the Kuiper and the Kolmogorov–Smirnov tests for the average multivariate volatility models considered in this
paper. We assume that the innovations are either normal or follow a Student t distribution with 7 degrees of freedom. The multivariate models were estimated
using a rolling window of 800 observations over the period 2-Jan-91 to 11-Jul-07, 3511 rolling samples in total.
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The test results for the average modelling strategies are summarized in Table 10. The test outcomes are very similar to the ones
obtained for the individual models in the sense that all average models are rejected by the Ku test, but none are rejected by the KS
test at the 1% level of significance when the innovations are Student t distributed.

Overall, the statistical tests support the main conclusions reached using the VaR based diagnostics.

7. Summary and conclusions

This paper considers the problem of model uncertainty in the context of multivariate volatility models and notes that it is
particularly important given the highly restrictive nature of these models that are used in practice. To deal with model uncertainty
we advocate the use of model averaging techniques where an ‘average’model is constructed by combining the predictive densities
of the models under consideration, using a set of weights that reflect the models’ relative in-sample performance. We consider
‘thick’ modelling as well as (approximate) Bayesian modelling frameworks.

Second, the paper proposes a simple decision-based model evaluation technique that compares the volatility models in terms
of their Value-at-Risk performance. The proposed test is applicable to individual as well as to average models, and can be used in
a variety of contexts. Under mild regularity conditions, the test is shown to have a Binomial distribution when evaluation sample
(T1) is finite and T0 (the estimation sample) is sufficiently large. The proposed test converges to a standard Normal variate provided
T1 / T0+1 / T1 → 0, a condition also encountered in the forecast evaluation literature that uses the root mean square error as an
evaluation criterion, as discussed in West (1996). The proposed VaR test is invariant to the portfolio weights and is shown to be
consistent under departures from the null hypothesis. The Binomial version of the VaR test could have important applications in
credit risk literature where the evaluation samples are typically short.

In the empirical applicationwe experimented with AIC and SBC weights and found that, due to the large sample sizes available,
they led to very similar results with the selected models often totally dominating the rest. The model most often selected by both
criteria turned out to be the TDCC model. In out of sample evaluation, only the TDCC model managed to pass the VaR diagnostic
tests. Interesting enough, the simplest of all data filters used in this paper, namely the Equal Weighted Moving Average filter also
performed well; doing better than other data filters as well as the O-GARCH specifications. In general, the ‘thick’ modelling
approach turned out to be the most reliable within the class of models and model average strategies that we considered. Thick
model averaging strategies consistently had low VaR exceedance frequencies (relative tomost singlemodels), whilst retaining high
information ratios. Overall, the only strategy that was not rejected by our VaR diagnostic tests was the equal-weighted average
model based on the top 25 models (ranked by AIC) and assuming Student t innovations with 7 degrees of freedom.

Finally, while model averaging provides a useful alternative to the two-step model selection strategy, it is nevertheless subject
to its own form of uncertainty, namely the choice of the space of models to be considered and their respective weights. It is
therefore important that applications of model averaging techniques are investigated for their robustness to such choices. In the
case of our application it is clearly desirable to consider also other forms of multivariate volatility models, which could be the
subject of future research.

Appendix A. Derivation of the optimal mean-variance portfolio subject to the VaR constraint

Under the assumption of a Student t distributionwith νt −1 degrees of freedom the Lagrangian of the meanvariance problem (3)
subject to the value-at-risk constraint (5) is given by

L ωt−1jM;F t−1ð Þ ¼ ωVt−1μM;t−
δt−1
2

ωVt−1ΣM;tωt−1−ψt−1 c̃mt−1 ;α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωVt−1ΣM;t−1ω

q
−ωVt−1μM;t−1−Lt−1

	 

ðA:1Þ

The first-order conditions with respect to ωt−1 are

AL
Aωt−1

¼ μM;t−δt−1ΣM;tωt−1−ψt−1 − c̃mt−1 ;α ωVt−1ΣM;t−1ω
� �−0:5ΣM;t−1ωt−1−μM;t−1

n o
¼ 0; ðA:2Þ

and the complementary slackness condition is

ψt−1 c̃mt−1 ;α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωVt−1ΣM;t−1ω

q
−ωVt−1μM;t−1−Lt−1

	 

¼ 0: ðA:3Þ

If the VaR constraint does not bind ψt−1=0 and the optimal solution is given by

ω4
t−1 ¼ 1

δt−1
Σ−1
M;t−1μM;t−1: ðA:4Þ

If, on the other hand, the VaR constraint binds ψt−1b0 and the optimal solution is given by

ω4
t−1 ¼ 1

δ4t−1
Σ−1
M;t−1μM;t−1; ðA:5Þ
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where δ4t−1u
δt−1−ψt−1 ω Vt−1ΣM;t−1ωð Þ−0:5

1þψt−1
N δt−1. From the complementary slackness condition (A.3) we also have that

c̃mt−1 ;α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωVt−1ΣM;t−1ω

q
−ωVt−1μM;t−1−Lt−1 ¼ 0: ðA:6Þ

Substituting ωt − 1⁎ from Eq. (A.5) into Eq. (A.6) we get

δ4t−1u
sM;t c̃vt−1 ;α−sM;t

� �
Lt−1

; ðA:7Þ

where sM;t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uVM;tΣ

−1
M;tμM;t

q
:

Appendix B. Description of volatility models

Almost all the multivariate volatility models considered in the literature can be cast in terms of the following decomposition of
the conditional volatility matrix, Σt, originally due to Bollerslev (1990):

Σt ¼ DtRtDt ; ðB:1Þ

where Rt is the one-step-ahead conditional correlation matrix with its (h,j)th element given by ρhj,t, and Dt is a diagonal matrix
with ffiffiffiffiffiffiffiffiffiffi

σhh;t
p on its (h,h)th element. This is a convenient decomposition and allows separate specification of the conditional

volatilities and conditional cross-asset returns correlations. The models used in our empirical applications also belong to the class
of models spanned by different specifications of ffiffiffiffiffiffiffiffiffiffi

σhh;t
p and ρhj,t, which are computationally feasible for estimation and forecasting

in the case of portfolios with a large number of assets (N=15 in our application). In what follows εt denotes the N×1 vector of
residuals from the OLS regressions of returns on a number of predictor variables. In our empirical application N=15 and residuals
are computed from first-order autoregressions of the individual return series. For the computation of the CCC, DCC, and ADCC
models we have benefitted from Matlab code made available by Kevin Sheppard.

B.1. Equal-weighted moving average (EQMA(n0))

In the absence of reliable intra-daily observations on returns, a simple estimate of Σt can be obtained using the following rolling
moment estimates based on the last n0 observations:

Σ1t ¼
1
n0

∑
n0

s¼1
rt−srVt−s:

For Σ1t to be positive definite we must have n0NN. In the empirical applications we consider four variants of Σ1t, using n0=50,
75, 125, and 250. Subject to n0NN, care should be taken so that n0 is not set too high; otherwise Σ1t could behave like the
unconditional variance matrix of the returns.

B.2. One and two-parameter exponential-weighted moving average (EWMA(n0,λ0 ,ν0))

The one-parameter EWMA (setting λ0=ν0) is the popular Riskmetrics estimate of Σt (see J.P. Morgan (1996)) which is defined by
the following recursion

Σ2t ¼ λ0Σ2;t−1 þ
1−λ0ð Þ
1−λn0

0

� � et−1eVt−1− 1−λ0ð Þ
1−λn0

0

� �λn0−1
0 et−n0−1eVt−n0−1; ðB:2Þ

for a constant parameter 0bλ0b1, and a window of size n0. Typically, the initialization of the recursion in Eq. (B.2) is based on
estimates of the unconditional variances using a pre-sample of data. For the (i,j)th entry of Σ2t we have

σ2;ijt ¼
1−λ0ð Þ
1−λn0

0

� � ∑n0
s¼1

λs−1
0 ei;t−sej;t−s:

The Riskmetrics model is characterized by the fact that n0 and λ0 are fixed a priori. Moreover, it has been recently pointed out
that it is not possible to formally estimate the model statistically, due to its asymptotic degenerateness (see Zaffaroni (2008)). The
value of λ0=0.94 is suggested in J.P. Morgan (1996). In our analysis we shall consider the values λ0=0.94, 0.95, and 0.96, and set
n0=250. We only consider one value for the window size since there is an obvious trade-off between λ0 and n0, with a small λ0

yielding similar results to a small n0. Note that for Σ2t to be non singular requires nO≥N. Nevertheless, themodel does admit awell-
defined forecasting function and indeed Σ2,t + 1 represents the one-step ahead forecast of the conditional variance for period t+1,
based on the information available up to time t.

Practitioners and academics have often pointed out that the effects of shocks on conditional variances and conditional
correlations could decay at different rates, with correlations typically responding at a slower pace than volatilities (see De Santis
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and Gerard (1997)). This suggests using two different parameter values for the decay coefficients, one for volatilities and the other
for correlations (see De Santis et al. (2003, p. 14)). This yields the two-parameter Exponential-Weighted Moving Average (EWMA
(n0, λ0, ν0)). Therefore, the diagonal elements of Eq. (B.2) define conditional variances σ3,hht, h=1,..., N the square-roots of which
form the diagonal matrix D3t. The covariances are based on the same recursion as Eq. (B.2) but using a smoothing parameter λ0,
generally different from λ0 (ν0bλ0) yielding

σ3;hjt ¼
1−m0ð Þ
1−mn00
� � ∑

n0

s¼1
ms−10 eh;t−sej;t−s; for h≠j:

We assume that the same window size, n0, applies to variance and covariance recursions. The ratio

σ3;hjt=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ3hh;tσ3jj;t

p
ðB:3Þ

represents the (h,j)th entry of the matrix R3t. Σ3t is obtained by combining terms according to Eq. (B.1). The parameters ν0 and λ0

are not estimated but calibrated a priori, as for the one-parameter EWMA model.

B.3. Mixed moving average (MMA(n0,ν0))

This is a generalization of the equal-weightedMAmodel discussed above. Under this specification, the conditional variances are
computed as in the equal-weighted MA model, the square root of which yields the diagonal matrix D4t. Then we estimate the
conditional covariances using a Riskmetrics type filter: σ4;hjt ¼ 1−m0ð Þ

1−mnoo
∑n0

s¼1m
s−1
0 eh;t−sej;t−s, which after normalization according to

Eq. (B.3) yields R4t. Re-combining the results according to Eq. (B.1) we then obtain Σ4t.

B.4. Generalized exponential-weighted moving average (EWMA(n0,p,q,ν0))

This is a generalization of the two-parameter EWMA. In the first stage N different univariate GARCH(p,q) volatility models are
estimated for each rht by PMLE. The conditional covariances are then obtained using the Riskmetrics filter (B.2), with the
parameters n0 and ν0 fixed a priori. The results are then normalized using (B.3), with the resultant variances and correlations re-
combined according to Eq. (B.1), thus yielding Σ5t. The estimated number of parameters of this model is k5=N(1+p+q), which will
be used in the computation of AIC and SBC.

B.5. Constant conditional correlation (CCC(p,q))

Bollerslev (1990) introduced a multivariate GARCHmodel with the simplifying assumption that the one-step ahead conditional
correlations are constant. Under this model, Eq. (B.1) takes the form Σ6t=D6tR6D6t, where D6t is a diagonal matrix containing the
square-root of the σ6,hht, each of which follow the GARCH(p,q) model of Bollerslev (1986)

σ6;hht ¼ c0h þ ∑
q

k¼1
α0hke

2
h;t−k þ ∑

p

j¼1
β0hjσ6;hht−j;

for constant positive parameters c0h, a0h1,..., a0hq, β0h1,..., β0hp. Positivity of these parameters is sufficient but not necessary to
ensure σ6,hhtN0 a.s. (see Nelson and Cao (1992)). The positive definite matrix R6, made by N(N−1) / 2 constant parameters, contains
the (constant) conditional correlations of the εht,h=1, 2,..., N.

Bollerslev (1990) proposed to estimate the model by the PMLE and noting that (9) simplifies due to the constant correla-
tion assumption. The estimated number of parameters of this model is given by k6=N(p+q+1)+N(N − 1) / 2.

B.6. Orthogonal GARCH (O-GARCH(p,q))

This model is proposed by Alexander (2001) and uses a static principle component decomposition of standardized residuals
defined by

ẽit ¼
eit−eiT
siT

; t ¼ 1;2; N ; T;

where ε̄iT and siT are the sample mean and standard deviations of the returns. Denote the sample covariance matrix of the
standardized returns by

S̃T ¼ ∑T
t¼1ẽt ẽVt
T

; ẽt ¼ ẽ1t ; ; N ; ẽNtð ÞV:

Then

S̃TWT ¼ WTΛT ; ðB:4Þ
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where and WT and ΛT are the corresponding N×N matrices of eigenvectors and eigenvalues, respectively. Then setting (see
Alexander (2001))

Σ7t uð Þ ¼ VW uð ÞCt uð ÞW uð ÞVV ;

where W(u)=(w1,..., wu) denotes the N×u matrix of eigenvectors corresponding to the first largest u eigenvalues, V is a diagonal
matrix with the sample standard deviation of rht on the (h,h)th entry and Γt(u) is a u×u diagonal matrix whose (j,j)th entry, γjt,
j=1,..., u, is assumed to satisfy the following univariate GARCH(p,q) specification

γjt ¼ coj þ αoj1s2jt−1 þ N þ αojps2jt−p þ βoj1γjt−1 þ N þ β0jqγjt−q; j ¼ 1; N ;u;

where sj=(ε1,..., εT )′ wj, j=1,..., N. Note that this method makes use of the fact that the factors are unconditionally orthogonal, but
there is no guarantee that they will also be conditionally orthogonal. Also to ensure that Σ7t(u) is non-singular we must have u=N,
which is the value considered here, yielding Σ7t=Σ7t(N). Hence for the O-GARCH(p,q) specification we have k7=N(p+q+1).

B.7. Dynamic conditional correlation (DCC(p,q,1,1))

Engle (2002) relaxed the assumption of constant conditional correlation of the CCC model of Bollerslev (1990). The conditional
variances of individual returns are estimated as univariate GARCH(p,q) specifications, and the diagonal matrix, D8t, is formed with
their square roots. Unlike the CCC, the conditional correlations are now allowed to be time-varying and are obtained as follows.
Starting with the standardized residuals, ε̃8t=(D8t)− 1 εt, the DCCmodel assumes that the (h,j)th entry of the conditional covariance
matrix of ε̃8t, namely R8t, is given by qhjt=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhhtqjjt

p , where qhjt is the (h,j)th element of matrix Q t defined by

Q t ¼ Q 1−γ01−δ01ð Þ þ γ01ẽ9;t−1ẽV9;t−1 þ δ01Q t−1:

for a fixed positive definite matrix Q̄̄ , and positive parameters satisfying γ01+δ01b1. Finally, Σ8t is obtained re-combining D8t and
R8t based on Eq. (B.1). The estimation of the parameters of the DCC model is carried out using a two-stage Gaussian PMLE
procedure. The log-likelihood function is first optimized with respect to the parameters driving the individual conditional
variances. Conditional on these parameter estimates, in the second step the log-likelihood function is maximized with respect
to the parameters driving conditional correlations. See Engle (2002, Section 4) for details. For this model we have k8=N(p+q+1)+
N(N+1)/2+2.

B.8. Asymmetric dynamic conditional correlation (ADCC(p,q,1,1))

Cappiello et al. (2006) generalized the DCC allowing for the possibility of asymmetric effects on conditional variances and
correlations. The conditional variances of the individual returns are specified using the specification advanced by Glosten et al.
(1993) given by:

σ9;hht ¼ c0h þ ∑
q

k¼1
α0hke

2
h;t−k þ ∑

q

k¼1
ϑ0hkI eh;t−kb0

� �
e2h;t−k þ ∑

p

j¼1
β0hjσ9;hh;t−j;

where I(A) denotes the indicator functionwhich takes the value of unity ifAN0, and zero otherwise. Let ε̃9t=(D9t)−1 εt, where D9t is
the diagonal matrix formed with the square roots of σ9,hht. The ADCC model assumes that the (h,j)th entry of the conditional
covariance matrix of r̃9t, namely R9t, is given by qhjt=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhhtqjjt

p where qhjt is the (h,j)th element of matrix Q t defined by

Q t ¼ Q 1−γ01−δ01−ϑ01ð Þ þ γ01ẽ9;t−1ẽ V9;t−1 þ δ01Q t−1 þ ϑ01ε9; t−1ε′9;t−1

where ε_9t= ε̄9t ⊙I(ε9,t−1b0) (here ⊙ denotes the Hadamard product), Q̄̄ is a fixed positive definite matrix, and γ01, δ01, and ϑ01 are
positive parameters satisfying γ01+δ01+ϑ01b1. Finally, Σ9t is constructed using D9t and R9t as in Eq. (B.1). The estimation of the
parameters of the ADCC model is carried out as for the DCC, where now we have k9=N(p+2q+1)+N(N+1) / 2+3.

B.9. t-Dynamic conditional correlation (TDCC(p,q))

Pesaran and Pesaran (2007) modify the DCC model of Engle (2002) by basing the stochastic process of the conditional
correlation matrix on devolatized residuals ε̌10t rather than standardized residuals ε̃8t. Whereas the standardized residuals are
obtained by dividing ε̃t by the conditional standard deviations from a first-stage GARCH(p,q) model, devolatized residuals are
computed by dividing ε̃t by the square root of a k-day moving average of squared residuals, including the contemporaneous
observation,

eˇ10jt ¼
ejt

qrealizedjt

; ðB:5Þ

σ realized
jt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑k−1

j¼0e
2
j;t−k

k
;

s
ðB:6Þ
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which renders them approximately Gaussian. The conditional correlation matrix of ε̌t, namely R10t, is given by qhjt=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qhhtqjjt

p , where
qhjt is the (h,j)th element of matrix Q t defined by

Q t ¼ Q 1−γ01−δ01ð Þ þ γ01 e
ˇ

10;t−1 e
ˇV10;t−1 þ δ01Q t−1:

for a fixed positive definite matrix Q̄̄, and positive parameters satisfying γ01+δ01b1. Finally, Σ10t is obtained re-combining D8t

and R10t based on Eq. (B.1). As in the DCC model the conditional variances of individual returns are estimated as univariate GARCH
(p,q) specifications, and the diagonal matrix, D10t, is formed with their square roots. The parameters of the TDCC model are
estimated using maximum likelihood based on a Student t-distribution with νt−1 degrees of freedom. The number of parameters
to be estimated is k10=N(p+q+1)+N(N+1)/2+3.

Appendix C. Proofs of the theorems

Proof of Theorem 1. As T0Y∞; π̂i→pπi ¼ 1
T1
∑t∈T 1dit;dit ¼ I −ρt−cit αð Þσρt Mið Þ

� �
. Consider now the moments of T1πi and note that for

any integer n≥1,

E T1πið Þn¼ ∑
t1 ;t2; N ;tn∈T 1

E dit1dit2 N ditn
� �� �

: ðC:1Þ

However, for any δN0 we have E(ditδ|F t−1,Mi=α, or unconditionally E(ditδ|Mi)=α. Hence, all the terms E (dit1 dit2 ...ditn) in (C.1)
coincide with the case when the ditj, j=1,..,n, are i.i.d Bernoulli distributed random variables with parameter α, for any choice of
t1,...,tn. Also, since T1b∞, the support of the distribution of T1πi is bounded and as a consequence its moment generating function
exists and is the same as that of a Binomial distribution with parameters T1 and α. Therefore, by the method of moments (see
Billingsley (1986, Theorem 30.1)), T1πi will also have a Binomial distribution. □

Proof of Theorem 2. AssumeHi0 defined by Eq. (26) holds. Set qit=qit(θ̂iT0,θi0)=(σ̂pt(Mi)/σpt(Mi))=ω′t−1Σ̂itωt−1 /ω′t−1Σitωt−1)1/2. Then

E dit θ̂iT0
� �

jF t−1;Mi

h i
¼ Fit −cit αð Þqitð Þ

and

E π̂ijMi½ � ¼ 1
T1

∑
t∈T 1

E Fit −cit αð Þqitð Þf g:

As T0Y∞; θ̂iT0 →
p
θi0 and since Σit (θi) is a continuous function of θi it also follows that qit θ̂iT0 ; θi0

� �
Y
p
1; for all values of t∈T1.

Hence, for any given finite evaluation sample size, T1, and as T0Y∞; E π̂ijMi

� �
¼ 1

T1
∑t∈T 1E Fit −cit αð Þqitð Þf g→p Fit −cit αð Þð Þ ¼ α. Consider

now the statistic
ffiffiffiffiffi
T1

p
π̂i−α
� �

and write it as

ffiffiffiffiffi
T1

p
π̂i−πi

� �
¼

ffiffiffiffiffi
T1

p
πi−αð Þ þ

ffiffiffiffiffi
T1

p
π̂i−πi

� �
; ðC:2Þ

where πi ¼ 1
T1
∑t∈T 1dit θi0ð Þ. Also note that

ffiffiffiffiffi
T1

p
π̂−πi

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
T1=T0

p
∑t∈T 1Xit;To=T1
� �

, where Xit;T0 ¼
ffiffiffiffiffi
T0

p
dit θ̂iT0
� �

−dit θioð Þ
h i

. But it is easily
seen that,

jXit;T0 j ¼
ffiffiffiffiffi
T0

p
if ρt þ cit αð Þσ̂ρt Mið Þ
� �

ρt þ cit αð Þσρt Mið Þ
� �

b0;
0 otherwise:

	

Hence, for all t∈T 1; Pr jXit;T0 j ¼
ffiffiffiffiffi
T0

p
jF t−1;Mi

� �
VjFit −cit αð Þqit θ̂iT0 ;θio

� �� �
−Fit −cit αð Þð Þj, and consequently E jXit;T0 jjF t−1;Mi

� �
Vffiffiffiffiffi

T0
p

jFit −cit αð Þqit θ̂iT0 ;θio
� �� �

−Fit −cit αð Þð Þj. Using the mean-value expansion of Fit (− cit(α)qit (θ̂iT0,θi0) around θ̂iT0
one gets

Fit −cit αð Þqit θ̂iT0 ; θi0
� �� �

¼ Fit −cit αð Þð Þ−cit αð Þfit −cit αð Þqit θi; θi0
� �� �

Aqit θi; θi0
� �

=Aθ̂ViT0 Þ θ̂iT0−θi0
� �

;

where the elements of θ̄̄i are convex combinations of the corresponding elements of θ̂iT0 and θi0. By Hölder’s inequality for
the norm of matrices, since ||ωt||N0, we have E jXit;T0 jF t−1;Mi

� �
Vcit αð Þfit −cit αð Þqit θi; θi0

� �� �
jjAqit θi; θi0

� �
=Aθ̂iT0 jj

ffiffiffiffiffi
T0

p
jjθ̂iT0−θi0jjV

cit αð Þfit −cit αð Þqit θi; θi0
� �� �

supθ∈Θi
jjAλ it θð Þ=Aθjj=

P
λ

1
2
it θð Þ

P
λ

1
2
it θ0ð Þg

ffiffiffiffiffi
T0

p
jjθ̂iT0−θi0jj

n
. Taking the unconditional mean and using the Hölder

inequality again yields E jXit;T0 jjMi
� �

Vcit αð Þsupxfit xð Þ Ejsupθ∈Θi
jjAλ it θð Þ=Aθjj=

P
λ

1
2
it θð Þ

P
λ

1
2
it θ0ð Þjδ

� �1
δ ffiffiffiffiffi

T0
p

Ejjθ̂iT0−θi0jj
δ

δ−1

� �1−1=δ
:Therefore,

T−1
1 ∑t∈T 1Xit;T0 ¼ Op 1ð Þ and the second term in Eq. (C.2) vanishes as T1/T0+1/T1 → 0. Hence

ffiffiffiffiffi
T1

p
π̂i−α
� �

−
ffiffiffiffiffi
T1

p
π−αð Þ ¼ op 1ð Þ, whereffiffiffiffiffi

T1
p

πi−αð Þ ¼ 1ffiffiffiffi
T1

p ∑t∈T 1git ; git ¼ I −ρt−cit αð Þσρt Mið Þ
� �

−α: Therefore, it remains to establish the asymptotic distribution of
ffiffiffiffiffi
T1

p
πi−αð Þ.

This easily follows by the martingale central limit theorem of Brown (1971, Theorem 2) since the git are a bounded, martingale
difference sequence with the constant variance α(1−α). □
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Proof of Theorem 3. Inequality (34) can be expressed as ∑N
i¼1λig bið ÞNg ∑N

i¼1λibi
� �

, for the function g xð ÞuF a=
ffiffiffi
x

p� �
. Jensen’s

inequality ensures that the latter inequality is satisfied whenever g(·) is strictly convex. Since g(·) is twice differentiable by
construction, we just need to check the conditions such that the second derivative of g(x) satisfies g″(x)N0. Straightforward
calculations yield the required condition (33). □
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