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a b s t r a c t

This paper provides an empirical analysis of changes in real house prices in the USA using State level data.
It examines the extent to which real house prices at the State level are driven by fundamentals such as
real per capita disposable income, as well as by common shocks, and determines the speed of adjustment
of real house prices to macroeconomic and local disturbances. We take explicit account of both cross-
sectional dependence and heterogeneity.This allows us to find a cointegrating relationship between real
house prices and real per capita incomeswith coefficients (1,−1), as predicted by the theory.We are also
able to identify a significant negative effect for a net borrowing cost variable, and a significant positive
effect for the State level population growth on changes in real house prices. Using this model we then
examine the role of spatial factors, in particular, the effect of contiguous states by use of a weighting
matrix. We are able to identify a significant spatial effect, even after controlling for State specific real
incomes, and allowing for a number of unobserved common factors. We do, however, find evidence of
departures from long run equilibrium in the housing markets in a number of States notably California,
NewYork,Massachusetts, and to a lesser extent Connecticut, Rhode Island, Oregon andWashington State.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Recent developments in the housing markets in the USA and
elsewhere have once again highlighted the importance of large
changes in house prices for the functioning of credit and money
markets (International Monetary Fund, 2004). Changes in housing
wealth also play an important role in household behaviour with
real implications for output and employment. There is also the
possibility of bubbles in house priceswith pricesmovingwell away
from their fundamental drivers, such as household disposable
income (Case and Shiller, 2003;McCarthy and Peach, 2004). This in
turn raises the issue ofwhether there is cointegration between real
house prices and real per capita disposable incomes. The evidence
on this is mixed.
Using US national-level data, Meen (2002) and Gallin (2006) do

not find strong evidence of a cointegrating relationship, possibly
because of the short time span of the data they consider. To cope
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E-mail address:mhp1@econ.cam.ac.uk (M.H. Pesaran).

with this problem, other studies use panel data. Malpezzi (1999)
uses panel data on 133 metropolitan areas in the USA over 18
years from 1979 to 1996 and he is able to reject the null of a
unit root in the residuals of the regressions of real house prices
on real per capita incomes, using the panel unit root test of Levin
et al. (2002, LLC). However, the LLC test does not take account of
possible cross-sectional dependence of house prices and this could
bias the test results. Capozza et al. (2002) recognize this problem
and try to control for cross-sectional dependence by adding time
dummies to their error correction specifications. However, as
Gallin (2006) points out, local housing market shocks are likely to
be correlated in ways that are not captured by simple time effects.
To allow for more general error cross-sectional dependence, Gallin
(2006) adopts a bootstrap version of Pedroni’s 1999 residual-based
cointegration test procedure, originally advanced in Maddala and
Wu (1999), but fails to reject the hypothesis of no cointegration.
However, his bootstrap approach is likely to be biased when the
cross section dimension (N) is much larger than the time series
dimension (T ), as in Gallin’s application.
In this paper, using recently developed econometric techniques

for the analysis of heterogeneous dynamic panels subject to cross-
sectional dependence, we study the determination of real house
prices in a panel of 49 US States over 29 years. We examine the
extent to which real house prices at the State level are driven by
fundamentals such as real per capita disposable income, as well as
by common shocks, and determine the speed of adjustment of real
house prices to macroeconomic and local disturbances.

0304-4076/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2010.03.040
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There are considerable differences across US States in both the
level and rates of growth of real incomes.1 This heterogeneity
should in turn be reflected in real house prices. The importance
of heterogeneity in spatially distributed housing markets has been
highlighted by Fratantoni and Schuh (2003). They quantify the
importance of spatial heterogeneity in US housing markets for
the efficacy of monetary policy. Depending on local conditions
monetary policy can have differing effects on particular US
regions (Carlino and DeFina, 1998). However, there are significant
dependences in house prices and real incomes across States
that cannot be captured by spatial effects alone. For example,
Pollakowski and Ray (1997), using vector autoregressive (VAR)
models, show that at the national level (dividing the USA into nine
regions) there are significant non-spatial diffusion patterns.
Real house prices can vary between States because real incomes

differ, but they can also differ because of scarcity of land or other
idiosyncratic factors. The effects of common shocks onhouse prices
whether observed, such as changes in interest rates and oil prices,
or unobserved, such as technological change, could also differ
across States.We take account of these influences bymaking use of
the common correlated effects (CCE) estimator of Pesaran (2006)
which is consistent under heterogeneity and cross-sectional
dependence. The CCE estimator can be computed by ordinary
least squares (OLS), applied to an auxiliary regression where
the observed regressors are augmented by (weighted) cross-
sectional averages of the dependent variable and the individual
specific regressors. Notably, CCE estimation allows for unobserved
common factors to be possibly correlated with exogenously given
State-specific regressors and it is invariant to the (unknown but
fixed) number of unobserved common factors as N and T tend
to infinity (jointly). These features are not shared with other
approaches in Banerjee and Carrion-i-Silvestre (2006), Groen and
Kleibergen (2003), Nelson et al. (2005),Westerlund (2005), Pedroni
and Vogelsang (2005), Chang (2005), and Bai and Kao (2006).
The CCE procedure also copes with the presence of spatial

effects (Pesaran and Tosetti, 2010). This is because spatial
dependence is dominated by the common factor error structure
that underlies the CCE estimators. But once the model parameters
are estimated, the importance of spatial effects can be ascertained
by fitting a spatial model to the residuals from the panel. It is
also worth noting that the CCE procedure is robust to the choice
of the spatial model, although for estimation of spatial effects
some parametric formulation would be needed. In this paper we
estimate a spatial autoregressive (SAR) error model and show
that spatial effects are indeed statistically highly significant in the
analysis of house prices in the USA.
Finally, to test for cointegration between real house prices and

real disposable incomes,we apply the panel unit root tests ofMoon
and Perron (2004) and Pesaran (2007) to the log price–income ratio
which allow for cross-sectional dependence.
The remainder of the paper is organized as follows. Section 2

discusses the theory underlying house price determination.
Section 3 provides a review of the panel datamodel and estimation
methods. Section 4 provides a preliminary data analysis. Section 5
reports the estimation results. Section 6 provides some concluding
remarks.

2. Modelling house prices

It is now standard to see the determination of house prices as
the outcome of a market for the services of the housing stock and
as an asset. Demand for housing can be met either through rental
of a residential property or by owner occupation. The expected net

1 For a recent review of the USA housing market see Green and Malpezzi (2003).

benefit from owner occupation needs to be set against the rental
cost of the same property. Denote the real house price at the start
of period t by Pt , and the real rental cost of the same house over
the period t by Rt . Then the net benefit of owning the house over
the period t to t + 1 is given by Pt+1 − Pt(1 + rt) + St , where
rt > 0 is the real rate of interest, and St is the real value of
housing services. This expression abstracts from transaction costs,
depreciation, and other costs of home ownership. These can be
readily incorporated into the analysis without affecting the long
run relationship between real house prices and incomes that is the
focus of our empirical analysis.
For a risk neutral household the one period arbitrage condition

for the asset market equilibrium in real house prices is given by2

E (Pt+1|Ft)− Pt(1+ rt)+ St = Rt ,

or

Pt =
(

1
1+ rt

)
[E (Pt+1|Ft)+ St − Rt ] ,

where Ft is the information set available at time t .3 To complete
the model we shall assume that Rt cannot exceed household’s real
disposable income, Yt , and represent this relationship by

Rt = αtYt , 0 < αt < 1,

where αt is assumed to follow a stationary process. We shall also
assume that

St = β−1t Rt , 0 < βt < 1,

which ensures positive real house prices in all periods.4 Under
these assumptions

Pt =
(

1
1+ rt

)
[E (Pt+1|Ft)+ θtYt ] , (2.1)

where

θt =
αt(1− βt)

βt
> 0.

It is also reasonable to assume that θt , the fraction of income
allocated to net housing services, St − Rt , is stationary.
Accordingly, under rational expectations and assuming that rt is

sufficiently large relative to the growth of real disposable income,
gt = ∆ ln(Yt), bubble-free real house prices will be given as the
discounted stream of future net housing services, St − Rt = θtYt .
The solution simplifies considerably under rt = r ,

Pt =
∞∑
j=0

(
1
1+ r

)j
E
(
θt+jYt+j|Ft

)
,

which can be written equivalently as

Pt
Yt
=

∞∑
j=0

E

(
θt+j

j∏
s=1

(
1+ gt+s
1+ r

)∣∣∣∣Ft
)
.

Therefore, under fairly general assumptions regarding the pro-
cesses generating gt and θt , the price–income ratio, Pt/Yt , would
also be stationary. In particular, pt = ln(Pt) will be cointegrated
with yt = ln(Yt) with the cointegrating vector given by (1,−1), if
yt is an integrated variable of order 1. For example, if θt and gt are

2 Feldstein et al. (1978), Hendershott and Hu (1981) and Buckley and Ermisch
(1982).
3 Alternatively, expectations can be taken under the risk-neutral measure which
does not necessarily require households to be individually risk neutral, although it
does imply that at the aggregate households are treated as if they are risk neutral.
4 The condition 0 < βt < 1 is sufficient but not necessary for Pt > 0 for all t .
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independently distributed with gt = g + εgt , εgt ∼ i.i.d. (0, σ 2g ),
g < r , and θt = θ + εθ t , εθ t ∼ (0, σ 2θ ), we have

Pt
Yt
=
θ(1+ r)
r − g

. (2.2)

In this simple case, the price–income ratio, also known as the
affordability index, is non-stochastic and rises with θ and g , and
falls with r . However, the elasticity of real house prices to real
income does not depend on these parameters.5
The long run relationship between yt and pt holds more

generally even if rt is time varying, so long as it is sufficiently large
relative to gt such that the possibility of real house price bubbles
can be ruled out a priori. Note that (2.1) can bewritten equivalently
as

Pt
Yt
=

θt

rt − E (∆ ln Pt+1|Ft)
. (2.3)

It is clear that for a meaningful solution, the expected rate of real
house price appreciation, E(∆ ln Pt+1|Ft), must be less than rt . Also
by the Cauchy–Schwarz inequality we have

E
∣∣∣∣PtYt

∣∣∣∣ < [
E(θ2t )

]1/2 {
E
[

1
[rt − E (∆ ln Pt+1|Ft)]2

]}1/2
.

Since θt is a stationary process then E(θ2t ) < K < ∞. Therefore,
Pt/Yt will be uniformly integrable if

E
[

1
[rt − E (∆ ln Pt+1|Ft)]2

]
< K <∞.

Namely, so long as expected real house price inflation is sufficiently
small relative to the real interest rate, the price income ratio cannot
contain a unit root even though Pt and Yt might.
In addition to real incomes and real interest rates, other

factors such as the State level unemployment rate, changes in
demographics, taxation and credit conditions are also likely to
play a role in the determination of real house prices at the State
level. Unfortunately many of these factors are either unobserved
or are rather difficult to measure accurately. Fixed effects for
each State will pick up State specific factors such as climate,
location and culture. In this paper we also attempt to account for
other, often short-term influences, by unobserved factors which
we then proxy by cross State averages of the observables. Amongst
observable short-term factors, we shall also consider the possible
effect of State level population growth rates on real house prices. In
aggregate time series analysis, it is difficult to identify the effects of
slowly moving variables such as population growth on real house
prices. But in a panel context the cross section dimension can be
used to identify such effects. For a given level of real per capita
disposable income, wewould expect real house prices to be higher
in States with a higher rate of population growth.

2.1. The spatial dimension

The model of the previous discussion abstracts from the
spatial dimension. However, it is possible that States that are
contiguous may influence each other’s house prices. High prices
in metropolitan areas may persuade people to commute from
neighbouring States. Labour mobility compared to Europe is much
higher in the USA and lower house pricesmay provide an incentive
to migrate.

5 For some recent evidence on the relationship between real house prices and
real incomes for a wide range of countries, see Almeida et al. (2006).

Thedevelopment of spatial econometrics (Paelinck andKlaasen,
1979; Anselin, 1988; Krugman, 1998) has been spurred by a
new interest in the role of space in economic processes, with
a particular emphasis placed on interactions in space (spatial
autocorrelation) and spatial structures (spatial heterogeneity). In
spatial econometrics, the degree of cross-sectional dependence is
typically calibrated by means of a weighting matrix. For example
the (i, j) elements of a weighting matrix, sij, could take a value
of 1 if the ith and jth areas/regions/countries are contiguous
and zero otherwise.6 Weights can also be based on physical
distance, or even on other types of metrics, such as economic
(Conley, 1999), or social distance (Conley and Topa, 2002). The
class of cross-sectional dependence that typically is assumed in
spatial econometrics, such as spatialmoving average and/or spatial
autoregressive models as introduced by Whittle (1954), Cliff and
Ord (1973, 1981), and Haining (1978), all represent examples of
weak forms of cross-sectional dependence, in the sense that the
degree of dependence decreases sufficiently quickly as the distance
between units increases.
Another possible source of cross-sectional dependence would

be due to economy-wide common shocks that affect all cross
section units. Changes in interest rates, oil prices, and technology
are examples of such common shocks that may affect house prices,
but with different degrees across States. This strong form of cross-
sectional dependence is pervasive and unlike spatial dependence
does not diminish along the space dimension.7
It is clear that for the analysis of house prices across States, we

need a sufficiently general and flexible econometric model where
both forms of cross-sectional dependence can be accommodated.
This issue is considered next.

3. The econometric model and tests

From the model of Section 2 that suggested a cointegrating and
proportional relationship between real house prices and incomes,
as well as a role for the real interest rate and demographic shifts,
we can write a panel model for US States as a long-run relation
compatible with the long run theory in the following log-linear
form:

pit = αi + βi1yit + βi2gi,t−1 + βi3ci,t−1 + uit ,

i = 1, 2, . . . ,N; t = 1, 2, . . . , T , (3.1)

where pit is the logarithmof the real price of housing in the ith State
during year t , and yit is real per capita personal disposable income.
We follow the macroeconomic literature and assume that real per
capita income is best characterized by a unit root process with a
drift, and based on the general theory developed in the previous
section, we would expect pit and yit to be cointegrated with
coefficients (1,−1). The short-run effects, such as price dynamics,
and their adjustments to the long-run equilibrium across States
can be accommodated through the error terms, uit . It is also
possible to augment the real house price equation with observable
short-term effects of variables such as changes in demographic
factors, git , and the net cost of borrowing defined by cit = rit −
∆pit , where rit represents the long-term real interest rate and
git represents the rate of change of population in the ith State.
The net borrowing cost variable can be viewed as a proxy for
the denominator of (2.3), which is included in (3.1) with a lag
to avoid simultaneity. A priori we would expect a rise in cit to

6 SeeMoran (1948), Cliff and Ord (1973, 1981), Anselin (1988, 2001) and Haining
(2003).
7 Different forms of cross-sectional dependence are discussed and formally
defined in Pesaran and Tosetti (2010).
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be associated with a fall in the price–income ratio, and hence
a negative coefficient for ci,t−1 in (3.1). The effect of population
growth on real house prices is expected to be positive (βi3 > 0).
As is clear from Eq. (3.1), the parameter vector of the slope

coefficients, βi = (βi1, βi2, βi3)
′, is allowed to be heterogeneous

across states. In order to assess the overall effects of covariates, in
this paper we shall focus mainly on the estimation of the average
value of βi, namely E(βi) = β, assuming a random coefficient
model, βi = β+$i, where$i ∼ IID(0,V$ ).
We shall assume that uit has the following multi-factor

structure

uit = γ′ift + εit , (3.2)

in which ft is an m × 1 vector of unobserved common shocks (or
factors), and εit are the individual-specific (idiosyncratic) errors
assumed to be distributed independently of yit and ft . However, we
allow εit to be weakly dependent across i, and serially correlated
over time. The pattern of serial correlation in εit could vary across
i, (Pesaran, 2006). The common factors, ft , can also be serially
correlated and possibly correlatedwith yit , cit and git . Furthermore,
ft is allowed to be stationary or nonstationary (Kapetanios et al.,
2009).
Despite its simplicity the above specification is reasonably

general and flexible and allows us to consider a number of different
factors that drive house prices. In particular, some of the supply
factors that are difficult to measure accurately can be captured
through the unobserved common components of uit .8 The spatial
aspect of house price formation can be accommodated through the
assumed weak dependence of the idiosyncratic errors, εit .
In this way we are able to test for cointegration between real

house prices and real disposable income, whilst allowing for both
forms of cross dependence, weak and strong, at the State level.

3.1. The common correlated effects (CCE) estimator

We use the common correlated effects (CCE) type estimator,
which asymptotically eliminates strong as well as weak forms
of cross section dependence in large panels (Pesaran, 2006). To
illustrate, suppose the k×1 (k = 3) vector xit = (yit , ci,t−1, gi,t−1)′
is generated as

xit = ai + 0′ift + vit , (3.3)

where ai is a k × 1 vector of individual effects, 0i are m × k
factor loading matrices with fixed components, vit are the specific
components of xit distributed independently of the common
effects and across i, but assumed to follow general covariance
stationary processes. Combining (3.1)–(3.3), we now have

zit
(k+1)×1

=

(
pit
xit

)
= di

(k+1)×1
+ C′i
(k+1)×m

ft
m×1
+ υit
(k+1)×1

, (3.4)

where

υit =

(
εit + β

′

ivit
vit

)
, (3.5)

di =
(
1 β′i
0 Ik

)(
αi
ai

)
, Ci =

(
γi 0i

) (1 0
βi Ik

)
, (3.6)

8 The supply elasticity of housing units has recently been identified as an
important factor behind house price movements in some US urban markets.
The ease with which regulatory approval for the construction of new houses
can be obtained has been identified by Glaeser and Gyourko (2005) and Glaeser
et al. (2006) as a significant element in real house price increases in California,
Massachusetts, New Hampshire, New Jersey and Washington, DC.

Ik is an identity matrix of order k, and the rank of Ci is determined
by the rank of the m × (k + 1) matrix of the unobserved factor
loadings 0̃i = ( γi 0i ). Pesaran (2006) has suggested using
cross section averages of pit and xit as proxies for the unobserved
factors in (3.1). To see why such an approach could work, consider
simple cross section averages of the equations in (3.4)9

z̄t = d̄+ C̄′ft + ῡt , (3.7)

where z̄t = N−1
∑N
i=1 zit , ῡt = N

−1∑N
i=1 υit , d̄ = N

−1∑N
i=1 di,

and C̄ = N−1
∑N
i=1 Ci. Suppose that Rank(C̄) = m ≤ k + 1 for

all N , so that ft = (C̄C̄′)−1C̄
(
z̄t − d̄− ῡt

)
. Therefore, if C̄

p
→ C and

ῡt → 0 as N →∞,

ft −
(
CC′
)−1 C (z̄t − d̄

) p
→ 0, as N →∞. (3.8)

This suggests using (1, z̄′t)
′ as observable proxies for ft , and is

the basic insight that lies behind the common correlated effects
(CCE) estimators developed in Pesaran (2006). Kapetanios et al.
(2009) prove that the CCE estimators are consistent regardless of
whether the common factors, ft , are stationary or nonstationary.
It is further shown that the CCE estimation procedure in fact
holds even if 0̃ = E(0̃i) turns out to be rank deficient; thus,
the estimator is consistent with any fixed number of m. This
contrasts with the principal component approach, which requires
us to estimate the number of factors (Bai and Ng, 2002; Bai,
2003). In addition, as shown by Pesaran and Tosetti (2010), under
certain regularity conditions,10 CCE estimators are consistent even
when the idiosyncratic errors, εit , are weakly cross-sectionally
dependent.
Following Pesaran (2006), we focus mainly on two estimators

of the mean value of βi, namely E(βi) = β. First, the CCE mean
group estimator (CCEMG) is a simple average of the individual CCE
estimators, b̂i of βi defined by

b̂CCEMG = N−1
N∑
i=1

b̂i, (3.9)

b̂i = (X′iM̄Xi)−1X′iM̄pi, (3.10)

where Xi = (xi1, xi2, . . . , xiT )′, pi = (pi1, pi2, . . . , piT )′, M̄ =

IT − H̄
(
H̄′H̄

)−1 H̄′ with H̄ = (τT , Z̄), where τT is a T × 1 vector
of unity and Z̄ is a T × (k+ 1)matrix of observations z̄t . The (non-
parametric) variance estimator for b̂CCEMG is given by

V̂ar
(
b̂CCEMG

)
=

1
N (N − 1)

N∑
i=1

(
b̂i − b̂CCEMG

) (
b̂i − b̂CCEMG

)′
.

Second, when the individual slope coefficients, βi, are the same,
efficiency gains frompooling of observations over the cross section
units can be achieved. Such a pooled estimator of β, denoted by
CCEP, has been developed by Pesaran (2006) and is given by

b̂CCEP =

(
N∑
i=1

X′iM̄Xi

)−1 N∑
i=1

X′iM̄pi. (3.11)

The variance estimator for b̂CCEP is given by

V̂ar
(
b̂CCEP

)
= N−19̂

∗−1
R̂∗9̂

∗−1
, (3.12)

9 Pesaran (2006) considers cross section weighted averages that are more
general.
10 It is sufficient that the row and column sums of the spatial weight matrix are
suitably bounded in the cross section dimension. See Pesaran and Tosetti (2010).
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where 9̂
∗

= N−1
∑N
i=1 X

′

iM̄Xi/T ,

R̂∗ =
1

N − 1

N∑
i=1

(
X′iM̄Xi
T

)(
b̂i − b̂CCEMG

) (
b̂i − b̂CCEMG

)′
×

(
X′iM̄Xi
T

)
. (3.13)

In this paper we propose goodness of fit statistics based
on CCEMG and CCEP estimators, denoted by R̄2CCEMG and R̄

2
CCEP,

respectively. R̄2CCEMG is given by

R̄2CCEMG = 1− σ̂
2
/σ̂ 2, (3.14)

where σ̂
2
= N−1

∑N
i=1 σ̂

2
i , with σ̂

2
i = (pi−Xib̂i)′M̄(pi−Xib̂i)/(T−

2k−2), and σ̂ 2 is defined by σ̂ 2 = N−1(T −1)−1
∑N
i=1
∑T
t=1(pit −

p̄i)2, with p̄i = T−1
∑T
t=1 pit . Similarly, R̄

2
CCEP is defined as

R̄2CCEP = 1− σ̂
2
CCEP/σ̂

2, (3.15)

where σ̂ 2CCEP is the error variance estimator

σ̂ 2CCEP

=

N∑
i=1

(
pi − Xib̂CCEP

)′
M̄
(
pi − Xib̂CCEP

)
/ [N(T − k− 2)− k] .

3.2. A cross-section dependence test

In this paper we use a CD (cross-section dependence) test
of error cross dependence, which does not require an a priori
specification of a connection (weighting) matrix and is applicable
to a variety of panel data models, including stationary and unit
root dynamic heterogeneous panels with structural breaks, with
short T and large N (Pesaran, 2004).11 The CD test is based on an
average of the pair-wise correlations of the OLS residuals from the
individual regressions in the panel and tends to a standard normal
distribution as N →∞. The CD test statistic is defined as

CD =

√
2T

N(N − 1)

(
N−1∑
i=1

N∑
j=i+1

ρ̂ij

)
a∼N(0, 1), (3.16)

where ρ̂ij is the sample estimate of the pair-wise correlation of the
residuals. Specifically,

ρ̂ij = ρ̂ji =

T∑
t=1
ûit ûjt(

T∑
t=1
û2it

)1/2 ( T∑
t=1
û2jt

)1/2 , (3.17)

where ûit is the OLS estimate of uit defined by

ûit = pit − α̂i − β̂
′

ixit , (3.18)

with α̂i and β̂i being the estimates of αi and βi computed using the
OLS regression of pit on an intercept and the regressors, xit , for each
i, separately.

3.3. Panel unit root tests

One of the most commonly used tests for unit roots in panels
is that of Im et al. (2003), called the IPS test. However, the IPS

11 Frees (1995) also proposes tests based on average pair-wise sample correlations
of the series across the different cross-section units. His RAVE test statistic is based
on Spearman rank correlations, and his CAVE test statistic is based on Pearson rank
correlations. The latter is closely related to the CD test also considered in Pesaran
(2004).

test procedure is not valid when the series are cross-sectionally
dependent, and its use in the case of the house price data can
lead to spurious inference. A number of panel unit root tests that
allow for possible cross-sectional dependence in panels have been
recently proposed in the literature.12 Here we consider the simple
test proposed by Pesaran (2007), which follows the CCE approach
and filters out the cross-sectional dependence by augmenting the
ADF regressions with cross section averages.13The panel unit root
test proposed by Pesaran (known as the CIPS test) is based on cross
section augmented ADF (CADF) regressions, carried out separately
for each State, namely

∆ωit = ai0 + ai1t + ai2ωi,t−1 + ai3ω̄t−1 +
p∑
j=0

dij∆ω̄t−j

+

p∑
j=1

δij∆ωi,t−j + vit , (3.19)

where ω̄t denotes the cross section mean of ωit . The CIPS statistic
is a simple cross section average of t̃i defined by

CIPS = N−1
N∑
i=1

t̃i, (3.20)

where t̃i is the OLS t-ratio of ai2 in the above CADF regression.
The critical values for the CIPS tests are given in TablesII(a)–(c) in
Pesaran (2007).

3.4. Panel cointegration tests

As noted in the introduction recently there has been a debate
in the literature about whether there is cointegration between real
house prices and real per capita disposable incomes. In the absence
of cointegration there is no fundamentals driving real house prices
so the possibility of bubbles is increased (Case and Shiller, 2003).
So far the evidence is mixed.
Malpezzi (1999) uses panel data on 133 metropolitan areas in

the US over 18 years from 1979 to 1996 and applies the panel
unit root test of Levin et al. (2002, LLC) to house price-to-income
ratios, and finds that he cannot reject the presence of a unit root
in these series. But he is able to reject the null of a unit root in
the residuals of the regressions of real house prices on real per
capita incomes, again using the LLC panel unit root test.14 However,
the testing procedure adopted by Malpezzi suffers from two main
shortcomings. The LLC’s critical values are not appropriate when
the panel unit root test is applied to residuals from first step
regressions, and perhaps more importantly, the LLC test does
not take account of possible cross-sectional dependence in the
regression errors and this could bias the test results.
Capozza et al. (2002) recognize this problem and try to control

for cross-sectional dependence by adding time dummies to their
error correction specifications. However, as Gallin (2006) points
out, local housingmarket shocks are likely to be correlated in ways
that are not captured by simple time effects. To allow for more
general error cross-sectional dependence, Gallin (2006) adopts a

12 For a recent survey of the literature see Breitung and Pesaran (2008).
13 We also considered the test proposed by Moon and Perron (2004) which is
based on the t-ratio of a modified pooled OLS estimator using the de-factored panel
data. However, the test is asymptotically valid only when N/T → 0 as both N and
T go to infinity, and this implies that T may have to be much larger than N , which
does not seem appropriate for our application where N = 49 and T = 29.
14 It is not clear if the panel unit root tests reported in Malpezzi are applied
to the levels of price-to-income ratios or to their logarithms. See Eq. (2) and the
discussions on pages 42 and 48 in Malpezzi (1999).
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bootstrap version of Pedroni’s 1999 residual-based cointegration
test procedure and concludes that ‘‘. . . even these more powerful
tests do not reject the hypothesis of no cointegration’’. However,
the bootstrap approach, originally advanced in Maddala and Wu
(1999), is likely to be biased. The bootstrap test statistic is not
pivotal, and the bootstrap test has a finite sample error of the same
order as the asymptotic test. Secondly, as Maddala and Wu (1999)
show, the bootstrap procedure cannot eliminate size distortions
in finite samples, particularly in cases where T is small relative
to N . Also see Smith et al. (2004, p. 161–168) where they find
that the bootstrap panel unit root test tends to under-reject when
N = T = 25. They do not consider any experiments where N > T .
Furthermore, theirMonte Carlo set-up does not deal with common
factor error structures, since they only consider designs where
the maximum eigenvalue of the error variance–covariance matrix
remains bounded in N .15 In Gallin’s application N (=95) is much
larger than T (=23), and due to the presence of common factors
the N × N error variance–covariance matrix is likely to be near
singular. Therefore, the bootstrap panel unit root tests reported by
Gallin can be subject to large size distortions.
Over the past few years a number of panel cointegration tests

have been proposed in the literature that attempt to take account
of error cross section dependence in their test procedures. These
include the tests proposed by Bai and Kao (2006), Banerjee and
Carrion-i-Silvestre (2006), Chang (2005), Gengenbach et al. (2006),
Groen and Kleibergen (2003), Nelson et al. (2005), Pedroni and
Vogelsang (2005) and Westerlund (2005). The tests by Groen and
Kleibergen, Nelson, Ogaki and Sul, and Westerlund are applicable
when N is small and T is large. For example, in their Monte Carlo
experiments Groen and Kleibergen and Nelson, Ogaki, and Sul
consider panels with N ≤ 8 and T ≥ 100. Westerlund considers
panels where N = 10 or at most 20 and T = 50 or 100.
The tests by Banerjee and Carrion-i-Silvestre, Chang, Pedroni and
Vogelsang, in principle, can deal with panelswhereN is reasonably
large, but they do not allow the unobserved common factors to
be correlated with the observed regressors, which is an important
consideration in our application. Bai and Kao allow for cross-
sectional dependence using the factor approach as in (3.2), but they
do not allow cross-sectional heterogeneity in the cointegrating
vector. Gengenbach et al. propose a sequential procedure where in
the first step unit root properties of the (extracted) common factors
and idiosyncratic components are investigated, and depending on
the outcomes non-cointegration of the common factors and/or the
idiosyncratic components are then investigated. To deal with the
joint nature of these tests, Gengenbach et al. suggest using the
Bonferroni procedure, but based on Monte Carlo simulations they
find the joint tests to be undersized. see Gengenbach et al. (2006,
Remark 4).16
Following Banerjee and Carrion-i-Silvestre, Chang, Gengenbach

et al., and Pedroni and Vogelsang, we adopt a two-stage procedure
to assess the possibility of cointegration between the log of
real house price (pit ) and the log of real per capita disposable
income (yit ). But unlike these studies, in both stages we allow for
unobserved common factors that could potentially be correlated
with the observed regressors. In particular, using the pooled CCE
estimatorwe first estimate the residuals, ûit = pit−β̂CCEPyit−α̂i. As
noted earlier, the pooled estimate, β̂CCEP , is consistent for β under
fairly general assumptions about the unobserved common factors,

15 See, for example, Chamberlain and Rothschild (1983) who show that in the
case of factor models in N variables and a fixed number of factors m, the largest
eigenvalue of the covariance matrix of the variables must rise with N . See also
Pesaran and Tosetti (2010).
16 For a more detailed review of this emerging literature, see, for example,
Breitung and Pesaran (2008).

ft (for example, irrespective of whether ft is I(0) or I(1)), and even
if the slope coefficients are heterogenous. We then apply panel
unit root tests to these residuals,17 allowing for cross-sectional
heterogeneity and cross-sectional dependence.18 If the presence of
a unit root in ûit ’s can be rejected, we shall conclude that the log of
real house prices and the log of real per capita disposable incomes
are cointegrated with the pooled cointegrating vector given by
(1,−β̂CCE)′.

4. Preliminary data analysis

We begin our empirical investigation with a preliminary
analysis of spatial dependence at the USA State level, using data
on the growth of real house prices and incomes. Table 1 defines
the variables used. A more detailed description is provided in the
Data Appendix. We use annual data on the US States, excluding
Alaska and Hawaii, from 1975 to 2003. One of the features of the
data in which we are interested is the extent to which real house
prices are driven by fundamentals such as income, net cost of
borrowing and population growth. To explore spatial interactions
we calculate simple correlation coefficients between each State,
within and between correlations for the Bureau of Economic
Analysis (BEA) eight regions and finally the within and between
correlation coefficients for three geographical regions dividing the
USA into broadly the West, the Middle and the East (Table 2
shows the member States in each of these regions). The results are
summarized in Tables 3 and 4.
In Table 3 we tabulate within and between correlation

coefficients for the 8 BEA regions. The diagonal elements show
thewithin region average correlation coefficients. The off-diagonal
elements give the between region correlation coefficients. For
many regions the within region correlation is larger than the
between region correlation. But for some regions this is not so. For
example, the States of the Mid-East region are more correlated on
average with the States of New England than among themselves.
The States of the Great Lakes are more correlated with those of
the South East than they are among themselves. If we look at the
correlations at the level of three geographical areas, the within
correlations are always larger than the between, though the East
tends to be ‘closer’ in some sense to the Middle than the Middle
is to the West. Overall, real income growth is correlated across all
States in the USA.
In Table 4 we tabulate the spatial correlations for real house

prices. A similar picture to that for real incomes emerges.
Within region correlations are generally larger than the between
correlations, with the exception of New England and the Mid-East
and the South West and the Rocky Mountains. In contrast to the
results for real incomes there is a more noticeable spatial pattern.
The growth of real house prices inNewEngland is hardly correlated
at all with States in the Rocky Mountains and the Far West, with
the correlations on average declining with distance. This pattern is
also clear whenwe look at the three broad geographical areas (The
West, the Middle and the East).
The regional groupings also disguise some interesting correla-

tions at the underlying State level. To save space, the State level
correlation coefficients for real income growth and real house price

17 As H0 : β = 1 cannot be rejected, as shown later, the panel unit root test of the
residual will be equivalent to testing for the presence of a unit root in pit − yit with
State specific intercepts.
18 Abstracting from error serial correlation and deterministic components, we
assume that uit = ρiuit−1 + ζit , |ρi| ≤ 1, with ζit = πiψt + ξit , where ψt and
ξit are i.i.d. random variables which are independent of each other and both I(0).
Under the null of no cointegration, ρi = 1 for all i. See Pesaran (2007).
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Table 1
List of variables and their descriptions.

Pit,g US State general price index (1980= 1)
Pit,h US State house price index (1980= 1)
PDit US State disposable income
POP it US State population
RBt US nominal long term interest rate, RBt in percent
pit Natural logarithm of the US State real house price index, pit = log(Pit,h/Pit,g )
yit Natural logarithm of the US State real per capita disposable income, yit = log[PDit/(POP it × Pit,g )]
rit US State real long term interest rate, rit = RBt/100− ln(Pit,g/Pi,t−1,g )
git US State population growth rate, git = log(POP it/POP i,t−1)
cit US State real cost of borrowing net of real house price appreciation/depreciation, cit = rit −∆pit

Notes: Annual data between 1975 and 2003 (T = 29) for 48 States and the District of Columbia. (N = 49). See the Data Appendix for the data sources and a detailed
description of the construction of the US State general price index.

Table 2
Regions and abbreviations.

East Middle West
Regions/States Abbrev. Regions/States Abbrev. Regions/States Abbrev.

New England region Great lakes region South-West region
Connecticut CT Illinois IL Arizona AZ
Maine ME Indiana IN New Mexico NM
Massachusetts MA Michigan MI Oklahoma OK
New Hampshire NH Ohio OH Texas TX
Rhode Island RI Wisconsin WI
Vermont VT Rocky mountain region

Plains region Colorado CO
Mid-East region Iowa IA Idaho ID
Delaware DE Kansas KS Montana MT
District of Columbia DC Minnesota MN Utah UT
Maryland MD Missouri MO Wyoming WY
New Jersey NJ Nebraska NE
New York NY North Dakota ND Far West region
Pennsylvania PA South Dakota SD Alaska AK

California CA
South-East region Hawaii HI
Alabama AL Nevada NV
Arkansas AR Oregon OR
Florida FL Washington WA
Georgia GA
Kentucky KY
Louisiana LA
Mississippi MS
North Carolina NC
South Carolina SC
Tennessee TN
Virginia VA
West Virginia WV

Table 3
Average of correlation coefficients within and between regions first difference of log of real per capita real disposable income.

(i) Three geographical regions
East Middle West

East 0.55 – –
Middle 0.51 0.64 –
West 0.46 0.49 0.48

(ii) Eight BEA regions

New England Mid-East South East Great lakes Plains South West Rocky mountain Far West

New England 0.74 – – – – – – –
Mid-East 0.58 0.57 – – – – – –
South East 0.48 0.50 0.61 – – – – –

Great lakes 0.54 0.56 0.70 0.85 – – – –
Plains 0.33 0.34 0.50 0.59 0.61 – – –

South West 0.38 0.46 0.54 0.60 0.46 0.45 – –
Rocky mountain 0.24 0.38 0.44 0.51 0.39 0.49 0.48 –
Far West 0.51 0.51 0.56 0.66 0.44 0.50 0.41 0.68

Notes: See Table 2 for the regions. The figures are average of sample pair-wise correlation coefficients.

growth are not included in this paper, but are available upon re-
quest. Real income growth in California is more closely correlated
withmany States that are geographically very distant. This reflects
the common factors driving economic development in different

parts of the USA, such as the growth of aerospace, information
technology, etc., that stimulate growth in different States. For real
house prices the average correlation coefficient between States is
0.39 compared to 0.51 for real incomes. There are also some un-
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Table 4
Average of correlation coefficients within and between regions first difference of log of real house prices.

(i) Three geographical regions
East Middle West

East 0.48 – –
Middle 0.42 0.65 –
West 0.19 0.45 0.50

(ii) Eight BEA regions

New England Mid-East South East Great lakes Plains South West Rocky mountain Far West

New England 0.80 – – – – – – –
Mid-East 0.68 0.66 – – – – – –
South East 0.40 0.32 0.52 – – – – –
Great lakes 0.40 0.35 0.57 0.81 – – – –
Plains 0.27 0.20 0.53 0.62 0.61 – – –
South West 0.07 −0.05 0.35 0.28 0.39 0.52 – –
Rocky mountain −0.03 −0.11 0.40 0.52 0.53 0.57 0.70 –
Far West 0.13 0.17 0.29 0.52 0.42 0.31 0.46 0.57

Notes: See Table 2 and the notes to Table 3.

Table 5
Residual cross correlation of ADF(p) regressions.

Average cross correlation coefficients (ρ̂)

ADF(1) ADF(2) ADF(3) ADF(4)

yit 0.411 0.379 0.337 0.317
pit 0.206 0.200 0.208 0.194
git 0.090 0.080 0.081 0.076
cit 0.309 0.295 0.281 0.283

CD test statistics

ADF(1) ADF(2) ADF(3) ADF(4)

yit 68.98 63.73 56.61 53.21
pit 34.62 33.55 35.00 32.52
git 15.16 13.52 13.64 12.71
cit 50.84 48.54 46.22 46.55

Notes: pth-order Augmented Dickey–Fuller test statistics, ADF(p), for yit , pit , git and
cit = rit − ∆pit are computed for each cross section unit separately. For yit and
pit , an intercept and a linear time trend are included in the ADF(p) regressions, but
for git and cit only an intercept is included. The values in ‘average cross correlation
coefficients’ are the simple average of the pair-wise cross section correlation
coefficients of the ADF(p) regression residuals. ρ̂ = [2/N(N − 1)]

∑N−1
i=1

∑N
j=i+1 ρ̂ij

with ρ̂ij being the correlation coefficient of the ADF(p) regression residuals between
ith and jth cross section units. CD =

√
2T/N(N − 1)

∑N−1
i=1

∑N
j=i+1 ρ̂ij , which tends

to N(0, 1) under the null hypothesis of no error cross-sectional dependence.

usual correlations at the individual State level. Real house price
growth in California, for example, is more closely correlated with
Washington DC and Maryland (0.86 and 0.73 respectively) than
with New York (0.16) or Oregon (0.25).
Overall, there is more evidence in the raw data of a possible

spatial pattern in real house prices than in real incomes, but there
are also a number of between-State correlations that appear to be
independent of spatial patterns.
In the next section we discuss the results of statistical tests and

the estimation of the model.

5. Econometric evidence

5.1. Panel unit root tests results

The extent of cross-sectional dependence of the residuals from
ADF(p) regressions of real house prices, real incomes, population
growth and net cost of borrowing across the 49 States over the
period 1975–2003 are summarized in Table 5. For each p = 1, 2, 3
and 4 we computed average sample estimates of the pair-wise
correlations of the residuals, which we denote by ρ̂. To capture the
trended nature of real incomes and real house prices, we run the
ADF regressions with linear trends, but included an intercept only
in the regressions for population growth and net cost of borrowing

variables. The results are reasonably robust to the choice of the
augmentation order, p. For real incomes and net cost of borrowing,
ρ̂ is estimated to be around 40% and 30%, respectively, whilst for
real house prices it is much lower and the estimate stands at 20%.
This largely reflects the national character of changes in incomes
and net cost of borrowing as compared to real house prices that
are likely to be affected by State specific effects such as population
growth. The results are also in line with the pair-wise correlations
of the raw data discussed above and confirm the existence of a
greater degree of cross State correlations in the case of real incomes
as compared to real house prices.
The CD test statistics, also reported in Table 5, clearly show that

the cross-correlations are statistically highly significant, and thus
invalidate the use of panel unit root tests, such as the IPS test, that
do not allow for error cross-sectional dependence. Therefore, in
what follows we shall focus on Pesaran’s CIPS tests.19
The CIPS test results, summarized in Table 6, show that for

population growth and net cost of borrowing the unit root
hypothesis is convincingly rejected. For pit and yit the unit root
hypothesis cannot be rejected if the trended nature of these
variables are taken into account. This conclusion seems robust
to the choice of the augmentation order of the underlying CADF
regressions. We proceed taking yit and pit as I(1), and cit and git as
I(0) variables.

5.2. The income elasticity of real house prices

To test for possible cointegration between pit and yit , we first
estimate the following fairly general model
pit = αi + βiyit + uit , i = 1, 2, . . . ,N; t = 1, 2, . . . , T , (5.1)
where

uit =
m∑
`=1

γi`f`t + εit . (5.2)

19 We also conductedMoon and Perrons’s t∗b . The application of the t
∗

b test requires
an estimate of m, the number of common factors. We tried the various selection
criteria proposed in Bai andNg (2002), all ofwhich require starting froman assumed
maximum value of m, denoted by mmax . But the outcomes did not prove to be
satisfactory, in the sense that the choice of m often coincided with the assumed
maximumnumber of factors,mmax . In view of thiswe computed the t∗b test statistics
for various values of m in the range of 1–4. For changes in real incomes and real
house prices, the t∗b test rejects the unit root hypothesis, but for the levels of these
variables the test results depend on whether linear trends are included or not. In
the case of house prices the test outcomes also depend on the assumed number
of factors. For population growth and the net cost of borrowing, the test results
convincingly reject the unit root hypothesis. As the Moon and Perron test is valid
only when T is much larger than N , we believe that the CIPS test results are more
reliable for our data. Detailed results are available from the authors upon request.
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Table 6
Pesaran’s CIPS panel unit root test results.

With an intercept

CADF(1) CADF(2) CADF(3) CADF(4)

∆yit −2.61a −2.39a −2.42a −2.34a
∆pit −2.28a −1.86 −1.76 −1.81
yit −2.52a −2.44a −2.39a −2.49a
pit −2.56a −2.44a −2.83a −2.84a
git −2.76a −2.29a −2.20a −1.97
cit −2.14a −2.06b −2.00 −1.95

With an intercept and a linear trend

CADF(1) CADF(2) CADF(3) CADF(4)

yit −2.51 −2.22 −2.24 −2.09
pit −2.18 −2.02 −2.27 −2.30
Notes: The reported values are CIPS(p) statistics, which are cross section averages
of Cross-sectionally Augmented Dickey–Fuller (CADF(p)) test statistics (Pesaran,
2007); see Section 3 for more details. The relevant lower 5% (10%) critical values
for the CIPS statistics are−2.11 (−2.03) with an intercept case, and−2.62 (−2.54)
with an intercept and a linear trend case. cit = rit − ∆pit , which is the real cost of
borrowing net of real house price appreciation/depreciation.
a Signifies that the test is significant at the five percent level.
b Signifies that the test is significant at the ten percent level.

In view of discussion in Section 3, the common correlated effect
(CCE) estimators are consistent regardless of f`t being stationary
or non-stationary, so long as εit is stationary and m is a finite
fixed number (see Pesaran, 2006; Kapetanios et al., 2009). To show
the importance of allowing for the unobserved common factors
in this relationship, we also provide naive estimates of βi, i =
1, 2, . . . ,N (and their mean) that do not allow for cross-sectional
dependence by simply running OLS regressions of pit on yit . The
common correlated effects (CCE) estimators are based on the cross
section augmented regressions

pit = αi + βiyit + di0yt + di1pt + eit , (5.3)

where yt and pt denote the simple cross section averages of yit
and pit in year t . The results are reported in Table 7. The first
column gives the naive mean group estimates. These suggest a
small coefficient on income of only 0.30 (0.09), and considerable
cross-sectional dependence.20 The other two columns report the
common correlated effects mean group (CCEMG) and the common
correlated effects pooled (CCEP) estimates. The coefficient on
income is now significantly larger and the residual cross-sectional
dependence has been purged with the average error cross-
correlation coefficient, ρ̂, reduced from 0.38 for the MG estimates
to 0.024 and 0.003 for the CCEMGandCCEP estimates, respectively.
The CCEMG and CCEP estimates of β (the mean of βi) are 1.14
(0.20) and 1.20 (0.21), respectively, and the hypothesis that β = 1
cannot be rejected. Therefore, the long-run relation to be tested for
cointegration is given by

ûit = pit − yit − α̂i,

where α̂i = T−1
∑T
t=1(pit − yit).

5.3. Panel cointegration test results

The residuals ûit defined above can now be used to test the
null of non-cointegration between pit and yit . Note that the CCE
estimates are consistent irrespective of whether ft are I(0), I(1)
and/or cointegrated. The presence of ft also requires that the panel
unit root tests applied to ûit should allow for the cross-sectional
dependence of the residuals. The extent to which these residuals
are cross-sectionally dependent can be seen from the average

20 The figure in bracket is the standard error of the estimate.

Table 7
Estimation result: income elasticity of real house price: 1975–2003.

MG CCEMG CCEP

α̂ 3.85
(0.20)

−0.11
(0.26)

0.00
(0.24)

β̂ 0.30
(0.09)

1.14
(0.20)

1.20
(0.21)

Average cross correlation coefficient (ρ̂) 0.38 0.024 0.003
CD test statistic 71.03 4.45 0.62

Notes: Estimatedmodel is pit = αi+βiyit+uit .MG stands formean group estimates.
CCEMG and CCEP signify the cross correlated effects mean group and pooled
estimates, respectively. α̂ = N−1

∑N
i=1 α̂i for all estimates, and β̂ = N

−1∑N
i=1 β̂i

for MG and CCEMG estimates. Standard errors are given in parentheses; see
Section 3 for more details. The ‘average cross-correlation coefficient’ is computed
as the simple average of the pair-wise cross section correlation coefficients of the
regression residuals, namely ρ̂ = [2/N(N−1)]

∑N−1
i=1

∑N
j=i+1 ρ̂ij , with ρ̂ij being the

correlation coefficient of the regression residuals of the i and j cross section units.
The CD test statistic is [TN(N − 1)/2]1/2 ρ̂, which tends to N(0, 1) under the null
hypothesis of no error cross-sectional dependence.

cross-correlation coefficients of ûit , within and between the eight
BEA regions, which are reported in Table 8.
We computed CIPS(p) panel unit root test statistics for pit − yit ,

including State specific intercepts, for different augmentation and
lag orders, p = 1, 2, 3 and 4, and obtained the results, −2.16,
−2.39, −2.45, and −2.29, respectively. The 5% and 1% critical
values of the CIPS statistic for the intercept case with N = 50
and T = 30 are−2.11 and−2.23, respectively. The results suggest
rejection of a unit root in pit − yit for all the augmentation orders
at 5% level and rejection at 1% level in the case of the augmentation
orders 2 and more.21

5.4. Panel error correction specifications

Having established panel cointegration between pit and yit ,
we now turn our attention to the dynamics of the adjustment of
real house prices to real incomes and estimate the panel error
correction model:

∆pit = αi + φi(pi,t−1 − yi,t−1)+ δ1i∆pi,t−1 + δ2i∆yit + υit . (5.4)

The coefficient φi provides a measure of the speed of adjustment
of house prices to a shock. The half life of a shock to pit is
approximately− ln(2)/ ln(1+ φi).
To allow for possible cross-sectional dependence in the errors,

υit , we computed CCEMG and CCEP estimators of the parameters,
as well as the mean group (MG) estimators that do not take
account of cross-sectional dependence, as a benchmark. The
former estimates as computed by OLS regressions of ∆pit on
1, (pi,t−1 − yi,t−1), ∆pi,t−1, ∆yit , and the associated cross section
averages, (p̄t−1 − ȳt−1), ∆yt , ∆pt , and ∆pt−1. The results are
summarized in Table 9. The coefficients are all correctly signed.
The CCEMG and CCEP estimators are very close and yield error
correction coefficients given by−0.183(0.016) and−0.171(0.015)
that are reasonably large and statistically highly significant. The
average half life estimates are around 3.5 years, much smaller
than the half life estimates of 6.3 years obtained using the MG
estimators. But the MG estimators are likely to be biased, since
the residuals from these estimates show a high degree of cross-
sectional dependence. The same is not true of the CCE-type
estimators.
In a number of experiments we also included the population

and the cost variables, gi,t−1 and ci,t−1 = ri,t−1 − ∆pi,t−1, in the

21 We also conducted Moon and Perrons’s t∗b test for ûit , with an intercept. For the
same reason given in footnote 19, t∗b test statistics are computed for different values
of m = 1, 2, 3, and 4. The corresponding statistics were −3.95, −2.82, −3.50, and
−4.28, respectively. Thus, the Moon–Perron test also strongly reject the null of no
cointegration between pit and yit .
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Table 8
Average residual cross correlation coefficients within and between eight BEA geographical regions — ûit = pit − yit − α̂i .

New England Mid-East South East Great lakes Plains South West Rocky mountain Far West

New England 0.62 – – – – – – –
Mid-East 0.56 0.45 – – – – – –
South East 0.18 0.29 0.95 – – – – –
Great lakes 0.04 0.21 0.75 0.82 – – – –
Plains 0.10 0.24 0.92 0.80 0.93 – – –
South West 0.07 0.17 0.90 0.63 0.87 0.94 – –
Rocky mountain −0.23 −0.08 0.70 0.70 0.77 0.75 0.86 –
Far West −0.12 −0.01 0.03 0.25 0.13 0.06 0.24 0.21

Notes: α̂i = T−1
∑T
t=1(pit − yit ). See also Table 2 for the abbreviations of the regions and notes to Table 3.

Table 9
Panel error correction estimates without net cost of borrowing and population
growth: 1977–2003.

∆pit MG CCEMG CCEP

pi,t−1 − yi,t−1 −0.105
(0.008)

−0.183
(0.016)

−0.171
(0.015)

∆pi,t−1 0.524
(0.030)

0.449
(0.038)

0.518
(0.065)

∆yit 0.500
(0.040)

0.277
(0.059)

0.227
(0.063)

Half life 6.248 3.429 3.696

R̄2 0.54 0.70 0.66
Average cross correlation coefficients (ρ̂) 0.284 −0.005 −0.016

CD test statistics 50.60 −0.84 −2.80

Notes: The State specific intercepts are estimated but not reported. MG stands for
mean group estimates. CCEMG and CCEP signify the cross correlated effects mean
group and pooled estimates, respectively. Standard errors are given in parentheses.
The R̄2 for theMGandCCEP estimators are defined by (3.14) and (3.15), respectively.
The half life of a shock to pit is approximated by− ln(2)/ ln(1+ φ̂) where φ̂ is the
pooled estimates for the coefficient on pi,t−1 − yi,t−1 . Also see the notes to Table 7.

error correction model (see Table 10). As predicted by the theory,
we found a significant negative effect for the ci,t−1 variable, and
a positive significant effect for the population growth variable,
gi,t−1. In factwe could not reject the hypothesis that the short-term
elasticity of changes in real house prices to population growth is
around unity. This is in line with the supposition that State level
population growth acts as a proxy for short run supply factors.
Since all the cross section variations in the real interest rates

are due to the inflation variable (the long run nominal interest rate
being a national variable which does not vary across the States),
the inclusion of ci,t−1 in the error correctionmodel renders∆pi,t−1
statistically insignificant. Nevertheless, judging by the average fit
of the various panel regressions reported in Table 10, ci,t−1 yields
a better fit as compared to∆pi,t−1, and is therefore to be preferred
on theoretical grounds.

5.5. Testing for spatial autocorrelation

The previous analysis provided consistent estimates of the
cointegrating relationship between real house prices and real
incomes. In this section we turn to the estimation of spatial
patterns based on the estimation of a spatial weighting matrix
that is commonly used in the literature. We investigate the error
structure (5.2), based on ûit = pit − yit − α̂i. Our aim is to
distinguish between strong dependence which is captured by the
common factors in (5.2) and the remaining dependence across the
idiosyncratic components, εit , that capture weak dependence in
the overall residuals, uit . These idiosyncratic factors reflect forms
of local dependence that are spatial in nature.22

22 Pesaran and Tosetti (2010) show that most spatial models considered in the
literature represent forms of weak dependence.

To investigate possible spatial patterns in the residuals, a
multi-factor decomposition of ûit is required. We considered the
following specification

ûit =
m∑
`=1

γ̃i` f̃`t + ε̃it , (5.5)

where f̃`t , ` = 1, 2, . . . ,m are the common factors and γ̃i` are
the associated factor loadings. We experimented with different
values of m = 1, 2, 3, and estimated the factors by the principle
components. The idiosyncratic components, ε̃it , are then computed
as residuals from theOLS regressions of ûit on the estimated factors
over the period 1975–2003 for each i.23
To investigate the strength of spatial dependence in the

idiosyncratic components, for each m we estimated the following
standard spatial lag model in ε̃it (Cliff and Ord, 1973)

ε̃it = ψ

N∑
j=1

sijε̃jt + νit , (5.6)

where ψ is a spatial autoregressive parameter, and wij is the
generic element of the N × N spatial weight matrix S, and νit ∼
i.i.d. N(0, σ 2ν ). The log-likelihood function of this model is given
by

L = −
(
NT
2

)
ln
(
σ 2ν
)
+ T ln |IN − ψS|

−
1
2σ 2ν

T∑
t=1

(ε̃t − ψSε̃t)′ (ε̃t − ψSε̃t) ,

where ε̃t = (ε̃1t , ε̃2t , . . . , ε̃Nt)
′, and in our application N = 49

and T = 29.24 For S, following the approach of Anselin, we used a
contiguity criterion and assigned sij = 1 when State i and j share a
common border or vertex, and sij = 0 otherwise.25 The maximum
likelihood (ML) estimates ofψ together with their standard errors
given in brackets form = 1, 2 and3 are 0.653 (0.022), 0.487 (0.027)
and 0.298 (0.033), respectively.26 All the estimates are highly
significant and as is to be expected, the magnitude of the spatial
parameter declines with the number of factors. Nevertheless, even
with 3 factors there is strong evidence that local dependence in the

23 We also tried to estimate the number of factors, m, using the information
criteria (IC) proposed by Bai andNg (2002). But, as in the case of the results reported
in footnote 19, the IC procedure always ended up choosing the assumed maximum
number of factors, even ifmmax was set to 6.
24 For computation details of maximum likelihood estimation, see Anselin et al.
(2008) and references therein.
25 The data on contiguity are obtained from Luc Anselin’s web site at:
http://sal.uiuc.edu/weights/index.html.
26 We also computed generalised method of moments estimates proposed by
Kelejian and Prucha (1999). These yielded very similar results to the maximum
likelihood estimates. We are grateful to Elisa Tosetti for carrying out the
computations of the spatial estimates.
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Table 10
Panel error correction estimates with net cost of borrowing and Population growth: 1977–2003.

∆pit MG CCEMG CCEP

pi,t−1 − yi,t−1 −0.117
(0.013)

−0.114
(0.009)

−0.148
(0.010)

−0.138
(0.009)

−0.275
(0.021)

−0.219
(0.020)

−0.256
(0.019)

−0.215
(0.017)

−0.242
(0.021)

−0.208
(0.017)

−0.242
(0.021)

−0.195
(0.017)

∆pi,t−1 0.481
(0.079)

0.444
(0.071)

– – −0.061
(0.098)

−0.114
(0.126)

– – −0.015
(0.058)

−0.134
(0.125)

– –

∆yit 0.533
(0.045)

0.544
(0.045)

0.669
(0.047)

0.679
(0.047)

0.284
(0.067)

0.272
(0.063)

0.332
(0.057)

0.309
(0.056)

0.272
(0.046)

0.258
(0.052)

0.290
(0.064)

0.272
(0.060)

ci,t−1 0.057
(0.071)

−0.053
(0.056)

−0.375
(0.034)

−0.438
(0.027)

−0.301
(0.116)

−0.524
(0.126)

−0.269
(0.044)

−0.492
(0.036)

−0.308
(0.101)

−0.583
(0.113)

−0.304
(0.080)

−0.553
(0.054)

ηi,t−1 1.189
(0.331)

– 1.211
(0.331)

– 1.312
(0.532)

– 1.709
(0.532)

– 1.020
(0.318)

– 0.931
(0.381)

–

Half Life 5.57 5.73 4.33 4.67 2.16 2.80 2.34 2.86 2.50 2.97 2.50 3.12

R̄2 0.57 0.54 0.53 0.50 0.78 0.73 0.76 0.71 0.72 0.68 0.71 0.67

Average cross correlation coefficients
(ρ̂)

0.286 0.293 0.346 0.339 −0.009 0.002 −0.005 −0.005 −0.017 −0.016 −0.015 −0.015

CD test statistics 50.96 52.21 61.65 60.41 −1.60 0.36 0.89 0.89 −3.03 −2.85 2.67 2.67

See the notes to Table 9. cit = rit −∆pit , which is the real cost of borrowing net of real house price appreciation/depreciation.

formof a spatial dependence between contiguous States in theUSA
is present in the data.
We also checked the spatial estimates to see if they are robust

to possible differences in the error variances across the States, by
estimating the spatial model using standardized residuals defined

by ε∗it = ε̃it/si, where si =
√
ΣTt=1ε̃

2
it/T . We obtained slightly

larger estimates for ψ , namely 0.673 (0.021), 0.513 (0.027) and
0.393 (0.030), for m = 1, 2, and 3, respectively. These estimates
confirm a highly significant and economically important spatial
dependence in real house prices in the USA, even after controlling
for State specific real incomes, and after allowing for a number of
unobserved common factors.

5.6. Factor loading estimates across states

We have shown that the common correlated effects estimators
are quite successful in taking out the cross-sectional dependence
by the use of a multifactor error structure where the unobserved
common factors are proxied by filtering the individual-specific
regressors with cross-section aggregates. However, the sensitivity
of the ith unit, in this case a State, to the factors will vary so the
factor loadings differ over the cross section units. We can obtain
an idea of these differential factor loadings if we regress pit − yit
on pt −yt , and a constant. These regressions are reminiscent of the
Capital Asset Pricing regressions in finance where individual asset
returns are regressed on market (or average) returns.
The results, summarized in Table 11, show an interesting

pattern in the loadings on the factor (pt − yt). The States are
ordered by the BEA’s regions. By construction, the cross section
average of the estimated coefficients on (pt − yt) is unity, and
the cross section average of the intercepts is zero. New England
and the Mid-East States all have loadings of less than one, while
all of the South-East States, with the exception of Virginia, have
factor loadings that are greater than one. This is also true for
the States in the Plains region and the South-West region. The
Far West region States all have loadings less than 1 also. But
strikingly, there are a number of States that have a zero, or even a
negative loading—Massachusetts, Rhode Island, Connecticut, New
Jersey, New York, California, Oregon and Washington. In the case
of Massachusetts, New York, and California, the loadings are
negative, sizeable and statistically significant. These are all States
that in the last 25 years have been particular beneficiaries of new
technologies. These innovations interacting with restrictions on
new residential buildings have resulted in real house prices in
these regions deviating from the average across US States over
a relatively prolonged period. This naturally raises the issue of
whether these exceptional patterns are likely to be sustainable.
Recent evidence on house prices and incomes can shed some light
on this issue.

Table 11
Factor loading estimates.

(pit − yit ) (pt − yt ) (pit − yit ) (pt − yt )

Connecticut 0.35 (0.23) Indiana 1.14∗ (0.05)
Maine 0.29∗ (0.15) Michigan 0.54∗ (0.17)
Massachusetts −0.63∗ (0.24) Ohio 1.01∗ (0.09)
New Hampshire 0.81∗ (0.22) Wisconsin 0.98∗ (0.12)
Rhode Island −0.11 (0.24) Iowa 1.55∗ (0.11)
Vermont 0.78∗ (0.15) Kansas 1.76∗ (0.06)
Delaware 0.32∗ (0.11) Minnesota 1.20∗ (0.09)
District of Columbia 0.54∗ (0.18) Missouri 1.37∗ (0.04)
Maryland 0.62∗ (0.10) Nebraska 1.57∗ (0.10)
New Jersey −0.04 (0.20) North Dakota 2.00∗ (0.15)
New York −0.39∗ (0.20) South Dakota 1.39∗ (0.08)
Pennsylvania 0.65∗ (0.13) Arizona 1.02∗ (0.07)
Alabama 1.72∗ (0.09) NewMexico 0.95∗ (0.12)
Arkansas 1.77∗ (0.10) Oklahoma 2.10∗ (0.17)
Florida 1.44∗ (0.08) Texas 2.12∗ (0.18)
Georgia 1.43∗ (0.08) Colorado 0.80∗ (0.17)
Kentucky 1.21∗ (0.06) Idaho 1.19∗ (0.11)
Louisiana 2.03∗ (0.15) Montana 0.75∗ (0.16)
Mississippi 2.09∗ (0.13) Utah 0.68∗ (0.19)
North Carolina 1.28∗ (0.05) Wyoming 1.62∗ (0.18)
South Carolina 1.39∗ (0.06) California −0.64∗ (0.23)
Tennessee 1.53∗ (0.08) Nevada 0.84∗ (0.11)
Virginia 0.91∗ (0.09) Oregon 0.37 (0.25)
West Virginia 2.08∗ (0.11) Washington −0.12 (0.17)
Illinois 0.71∗ (0.11)

Notes: Reported figures are estimated slope coefficients on (pt − yt ) of regressions
of (pit − yit ) on (pt − yt ). Standard errors are given in parentheses. By construction,
the cross section average of the estimated slope coefficients is unity, and the cross
section average of the intercepts is zero (not reported). The negative slope estimates
are in bold, and statistically significant slopes are denoted by ∗.

5.7. US house prices since 2003

Our analysis suggests that even if house prices deviate from
the equilibrating relationship because of State-specific or common
shocks, they will eventually revert. If house prices are above
equilibrium they will tend to fall relative to income, and vice
versa if they are above equilibrium. Of course, because there is
heterogeneity across States, a particular State need not be in the
same disequilibrium position as other States. But on average the
change in the ratio of house prices to per capita incomes should be
zero, consistent with a cointegrating relationship, for T sufficiently
large.
The process of house price boom that had started in the USA

in early 2000 accelerated during 2003–2006 which some have
interpreted as a bubble. Over the period 2000–2006 the average
(unweighted) rise inUShouse priceswas 46%, as compared to a 25%
rise in income per capita. However, the price increases relative to
per capita incomes have been quite heterogeneous. While house
prices over the period 2000 to 2006 rose by 67% in Virginia, 73%
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Fig. 1. Log ratio of house prices to per capita incomes over the period 1976–2007 for the 49 States of the USA. Note: figures are computed as pit − yit .

Fig. 2. Percent change in house prices to per capita incomes across the US States over 2000–2006 as compared to the corresponding ratios in 2007. Note: Figures are the
average of∆(pit − yit ) over the specified period for each state/district.

in Arizona and 92% in the District of Columbia, they rose by only
20% in Indiana and 21% in Ohio. These differences were much
more pronounced that the rise in income per capita in these States
(respectively 26%, 23%, 40%, 20% and 19%). Individual States can
move about the average because the driving variables are behaving
differently or because the initial disequilibrium is different. The
extent of the heterogeneity in the disequilibrium, as measured by
the time profile of the logarithm of price–income per capita over
the full sample, 1976–2007, for all the 49 States is displayed in
Fig. 1. It is interesting that the excess rise in house prices tends
to be associated with increased dispersion in the log price–income
ratios,which begins to declinewithmoderation of house price rises
relative to incomes. This fits well with the development of house
prices in 2007, where prices rose only by 4% as compared to a rise
in per capita income of 5%. The range of house price changes across
States was also narrowed down substantially. In fact, in the case of
the five Statesmentioned, the price–income ratio declined by 1% in
Virginia, 2% in Arizona, 0% in District of Columbia,−2% in Indiana,
and 4% in Ohio.

If we calculate the average change in the log ratio of house
prices to per capita income for each State over the period
2000–2006, and compare it to the average change in the ratio for
2007, it is to be expected that if a state on average is above its
equilibrium before 2006 that the average change after 2006 should
be negative, and vice versa otherwise. The results are plotted in
Fig. 2. We find that of 49 States, 32 States have an average change
in 2007 that is the opposite sign to the average for 2000–2006.
Moreover, if we look at the correlation between the change in the
ratio in 2007, when the house price boom began to unwind, and
the average change in the ratio of house prices to per capita income
over the preceding price boom period, 2000–2006, the correlation
coefficient is−0.42.

6. Concluding remarks

This paper has considered the determination of real house
prices in a panel made up of 49 US States over 29 years,
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Table A.1
Description of the construction of State level price indices.

State/Region Name of city/Region used Missing data Base of projection

District of Columbia Washington, Washington–Baltimore 1998–2003 Merge of Washington–Baltimore
Alabama Atlanta – –
Arkansas Dallas – –
Arizona San Diego – –
California Los Angeles – –
Colorado Denver – –
Connecticut New York – –
Delaware Philadelphia – –
Florida Miami 1975–1977 US average
Georgia Atlanta – –
Iowa Minneapolis – –
Idaho Seattle – –
Illinois Chicago – –
Indiana Chicago – –
Kansas Kansas city – –
Kentucky Kansas city – –
Louisiana New Orleans 1975–1986, 1998–2003 US average
Massachusetts Boston – –
Maryland Baltimore, Washington–Baltimore 1998–2003 Merge of Washington–Baltimore
Maine Boston – –
Michigan Detroit – –
Minnesota Minneapolis – –
Missouri ST Louise – –
Mississippi New Orleans 1975–1986, 1998–2003 US average
Montana Seattle – –
North Carolina Washington, Washington–Baltimore 1998–2003 Merge of Washington–Baltimore
North Dakota Minneapolis – –
Nebraska Kansas city – –
New Hampshire Boston – –
New Jersey New York – –
New Mexico Denver – –
Nevada San Francisco – –
New York New York – –
Ohio Cleveland – –
Oklahoma Dallas – –
Oregon Portland – –
Pennsylvania Pittsburgh – –
Rhode Island Boston – –
South Carolina Atlanta – –
South Dakota Minneapolis – –
Tennessee Cincinnati – –
Texas Houston – –
Utah Denver – –
Virginia Washington, Washington–Baltimore 1998–2003 Merge of Washington–Baltimore
Vermont Boston – –
Washington Seattle – –
Wisconsin Milwaukee – –
West Virginia Washington, Washington–Baltimore 1998–2003 Merge of Washington–Baltimore
Wyoming Denver – –

where there is a significant spatial dimension. An error correction
model with a cointegrating relationship between real house
prices and real incomes is found once we take proper account
of both heterogeneity and cross-sectional dependence. We do
this using recently proposed estimators that use a multifactor
error structure. This approach has proved useful for modelling
spatial interactions that reflect both geographical proximity and
unobservable common factors. We also provide estimates of
spatial autocorrelation conditional on up to three common factors
and find significant evidence of spatial dependence associatedwith
contiguity.
Overall, our results support the hypothesis that real house

prices have been rising in line with fundamentals (real incomes),
and there seems little evidence of house price bubbles at the
national level. But we also find a number of outlier States:
California, New York, Massachusetts, and to a lesser extent
Connecticut, Rhode Island, Oregon and Washington State, with
their log house price income ratios either unrelated to the national
average or even moving in the opposite direction. It is interesting
that these are the States that over the past 25 years have been
pioneer and major beneficiaries of technological innovations in
media, entertainment, finance, and computers.

Appendix. Data Appendix

The data set are annual data 1975–2003 and cover 48 States
(excluding Alaska and Hawaii), plus the District of Columbia. The
US State level house price index (Pit,h) are obtained from the Office
of Federal Housing Enterprise Oversight. The US State level data
of disposable income (PDit ) and the State population (POP it ) are
obtained from the Bureau of Economic Analysis. When only the
quarterly data are available, annual simple averages of the four
quarters are used.
As there is no US State level consumer price index (CPI), we

constructed State level general price index, Pit,g , based on the
CPIs of the cities/areas. The reasoning is summarized in Table A.1.
Briefly, we choose the large cities/area of the State or next to the
State which have their own CPIs, which are available from the
Bureau of Labor Statistics (BLS). Note that this procedure allows
multiple States to share a common price index. When the State
price index have missing data, they are replaced with the US CPI
average or the average of Washington–Baltimore, according to
their locations.
The long-term interest rates, RBt , which are simple annual

averages of quarterly data, are taken from the FairModel database.
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