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ARTICLE INFO ABSTRACT

JEL classification: Modelling of conditional volatilities and correlations across asset returns is an integral part of portfolio
C51 decision making and risk management. Over the past three decades there has been a trend towards
€52 increased asset return correlations across markets, a trend which has been accentuated during the recent
Gl financial crisis. We shall examine the nature of asset return correlations using weekly returns on futures
Keywords: markets and investigate the extent to which multivariate volatility models proposed in the literature can be

used to formally characterize and quantify market risk. In particular, we ask how adequate these models are
for modelling market risk at times of financial crisis. In doing so we consider a multivariate t version of the
Gaussian dynamic conditional correlation (DCC) model proposed by Engle (2002), and show that the t-DCC
model passes the usual diagnostic tests based on probability integral transforms, but fails the value at risk

Volatilities and correlations
Weekly returns
Multivariate t

Financial interdependence
VaR diagnostics
2008 stock market crash

(VaR) based diagnostics when applied to the post 2007 period that includes the recent financial crisis.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Modelling of conditional volatilities and correlations across asset
returns is an integral part of portfolio decision making and risk
management. In risk management the value at risk (VaR) of a given
portfolio can be computed using univariate volatility models, but a
multivariate model is needed for portfolio decisions. Even in risk
management the use of a multivariate model would be desirable
when a number of alternative portfolios of the same universe of m
assets are under consideration. By using the same multivariate
volatility model marginal contributions of different assets towards
the overall portfolio risk can be computed in a consistent manner.
Multivariate volatility models are also needed for determination of
hedge ratios and leverage factors.

The literature on multivariate volatility modelling is large and
expanding. Bauwens et al. (2006) provide a recent review. A general
class of such models is the multivariate generalized autoregressive
conditional heteroskedastic (MGARCH) specification (Engle and

* Thisisa substantially revised and updated version of a paper previously distributed
under the title “Modelling Volatilities and Conditional Correlations in Futures Markets
with a Multivariate t Distribution”, 2007, IZA Discussion Papers, No. 2906. We are
grateful to Enrique Sentana and Elisa Tosetti for useful discussions and comments.

* Corresponding author.

E-mail address: mhpl@cam.ac.uk (M.H. Pesaran).

0264-9993/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
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Kroner (1995)). However, the number of unknown parameters of
the unrestricted MGARCH model rises exponentially with m and its
estimation will not be possible even for a modest number of assets.
The diagonal-VEC version of the MGARCH model is more parsimoni-
ous, but still contains too many parameters in most applications. To
deal with the curse of dimensionality the dynamic conditional
correlations (DCC) model is proposed by Engle (2002) which
generalizes an earlier specification by Bollerslev (1990) by allowing
for time variations in the correlation matrix. This is achieved
parsimoniously by separating the specification of the conditional
volatilities from that of the conditional correlations. The latter are
then modelled in terms of a small number of unknown parameters,
which avoid the curse of the dimensionality. With Gaussian
standardized innovations Engle (2002) shows that the log-likelihood
function of the DCC model can be maximized using a two-step
procedure. In the first step, m univariate GARCH models are estimated
separately. In the second step using standardized residuals, computed
from the estimated volatilities from the first stage, the parameters of
the conditional correlations are then estimated. The two-step
procedure can then be iterated if desired for full maximum likelihood
estimation.

DCC is an attractive estimation procedure which is reasonably
flexible in modelling individual volatilities and can be applied to
portfolios with a large number of assets. However, in most applica-
tions in finance the Gaussian assumption that underlies the two-step
procedure is likely to be violated. To capture the fat-tailed nature of
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the distribution of asset returns, it is more appropriate if the DCC
model is combined with a multivariate t distribution, particularly for
risk analysis where the tail properties of return distributions are of
primary concern. But Engle's two-step procedure will no longer be
applicable to such a t-DCC specification and a simultaneous approach
to the estimation of the parameters of the model, including the
degree-of-freedom parameter of the multivariate t distribution,
would be needed. This paper develops such an estimation procedure
and proposes the use of devolatized returns computed as returns
standardized by realized volatilities rather than by GARCH type
volatility estimates. Devolatized returns are likely to be approximately
Gaussian although the same cannot be said about the standardized
returns (Andersen et al. (2001a,b)).

The t-DCC estimation procedure is applied to a portfolio composed
of 6 currencies, four 10 year government bonds, and seven equity
index futures over the period May 27, 1994 to October 30, 2009; split
into an estimation sample (1994 to 2007) and an evaluation sample
(2008 to 2009). To avoid the non-synchronization of daily returns
across markets in different time zones we estimate the volatility
models using weekly rather than daily returns.

Main features of the empirical results are as follows:

» The estimation results strongly reject the normal-DCC model in

favour of a t-DCC specification.

The t-DCC specification passes the non-parametric Kolmogorov-

Smirnov tests, but fails the VaR test due to the extreme events in

September and October of 2008.

Important changes to asset return volatilities have taken place

which are shared across assets and markets.

The 2008 financial crisis resulted in the reversal of the trend

volatilities from its low levels during 2003-2007 to unprecedented

heights in 2008.

» Asset return correlations have been rising historically. The recent
crisis has accentuated this trend rather than leading to it.

« The rise in asset return correlations seems to be more reflective of
underlying trends — globalization and integration of financial
markets, and cannot be attributed to the recent financial crisis.
More research on this topic is clearly needed.

The plan of the paper is as follows. Section 2 introduces the t-DCC
model and discusses the devolatized returns and the rational behind
their construction. Section 3 considers recursive relations for real time
analysis. The maximum likelihood estimation of the t~-DCC model is
set out in Section 4, followed by a review of diagnostic tests in
Section 5. The empirical application to weekly returns is discussed in
Sections 6 and 7. The evolution of asset return volatilities and
correlations is discussed in Section 8, followed by some concluding
remarks in Section 9.

2. Modelling conditional correlation matrix of asset returns

Let r¢ be an mx 1 vector of asset returns at close day t assumed to
have a conditional multivariate t distribution with means, g _ 1, and
the non-singular variance-covariance matrix 3, ;, and v,_{>2
degrees of freedom. Here we are not concerned with how
mean returns are predicted and take y; _ ;1 as given.! For specification

! Although the estimation of U—1 and 3,_; are inter-related, in practice mean
returns are predicted by least squares techniques (such as recursive estimation or
recursive modelling) which do not take account of the conditional volatility. This
might involve some loss in the efficiency of estimating p,_;, but considerably
simplifies the estimation of the return distribution needed in portfolio decisions and
risk management.

of 3, _ 1 we follow Bollerslev (1990) and Engle (2002) to consider the
decomposition

2t—1 =D R Dy, (1)
where
O1¢—1 0
_ 021
thl - 6 )
0m.,t—]
1 P12t—1 P13t—1 Pimt—1
P21t—1 1 0231 Pam,t—1
Ry = : B :
: pmfl,m,tfl
Pm1t—1 Pmm—1,t—1 1

Ri—1 = (Pjjr—1) = (Pjig—1) is the symmetric mxm correlation
matrix, and D;_; is the m xm diagonal matrix with 0; ,—+,i=1,2,...,
m denoting the conditional volatility of the i-th asset return. More
specifically

2
Oir1 = V(| Qr 1),
and pj;, 1 are conditional pair-wise return correlations defined by

Cov (riU Tit | Qt—l)

0it—10j¢—1

Pijt—1 =

where Q;_; is the information set available at close of day t—1.
Clearly, pjj,c—1=1, fori=j.

Bollerslev (1990) considers Eq. (1) with a constant correlation
matrix R,—; = R. Engle (2002) allows for R;_; to be time-varying
and proposes a class of multivariate GARCH models labeled as
dynamic conditional correlation (DCC) models. An alternative
approach would be to use the conditionally heteroskedastic factor
model discussed, for example, in Sentana (2000) where the vector of
unobserved common factors are assumed to be conditionally hetero-
skedastic. Parsimony is achieved by assuming that the number of the
common factors is much less than the number of assets under
consideration.

The decomposition of 3, _ ; in Eq. (1) allows separate specification
of the conditional volatilities and conditional cross-asset returns
correlations. For example, one can utilize the GARCH (1,1) model for
O?;_ 1, namely

2 —2 2 2
V(e[ Q—q1) = 0jp1 = 05 (T=N;=Ny) + NiOjeo + N1, (2)

where G7 is the unconditional variance of the i-th asset return. Under
the restriction Ay; + A,; = 1, the unconditional variance does not exist
and we have the integrated GARCH (IGARCH) model used extensively
in the professional financial community, which is mathematically
equivalent to the “exponential smoother” applied to the 12's?

2 = -12
Oig—1(\) = (1—>\i)5; N s 0N, 3)
or written recursively

2 2 2
Oir1(N) = NG + (T=N)1ie1- (4)

2 See, for example, Litterman and Winkelmann (1998).
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For cross-asset correlations Engle proposes the use of the following
exponential smoother applied to the “standardized returns”

® -1
Zs = 1¢'5 Zi‘t—szj,t—s

Pij—1() = ; (5)
\/Zm: 14)57121'2,[75\/200: 1(1)5712]2'[75
where the standardized returns are defined by
Ti
7, = — it 6
0N ®)

For estimation of the unknown parameters, Ay, Az,....,Am, and ¢,
Engle (2002) proposes a two-step procedure whereby in the first step
individual GARCH(1,1) models are fitted to the m asset returns
separately, and then the coefficient of the conditional correlations, ¢,
is estimated by the Maximum Likelihood method assuming that asset
returns are conditionally Gaussian. This procedure has two main
drawbacks. First, the Gaussianity assumption does not hold for daily
returns and its use can under-estimate the portfolio risk. Second, the
two-stage approach is likely to be inefficient even under Gaussianity.

2.1. Pair-wise correlations based on realized volatilities

In this paper we consider an alternative formulation of py 1 that
makes use of realized volatilities, or their approximations based on
daily or weekly observations when realized volatility measures are
not available. In a series of papers Andersen, Bollerslev and Diebold
show that daily returns on foreign exchange and stock returns
standardized by realized volatility are approximately Gaussian. See,
for example, Andersen et al. (2001a,b). The transformation of returns
to Gaussianity is important since, as recently shown by Embrechts
et al. (2003), the use of correlation as a measure of dependence can be
misdealing in the case of (conditionally) non-Gaussian returns. In
contrast, estimation of correlations based on devolatized returns that
are nearly Gaussian is likely to be more generally meaningful. Denote
the realized volatility of i-th return in day (week) t by off%#*? and
standardize the returns by the realized volatilities to obtain

. T
Tie = O-irtealized' (7)

To avoid confusions we refer to 7;; as the “devolatized returns”, and
refer to z; defined by Eq. (6) as the standardized returns. The
conditional pair-wise return correlations based on 7;; are now given by

o s—1~ ~
s = 1(b ri‘tfsrj,tfs

et () = 7
SV SE S b SN T

8)

where —1<p;;;_1(d)<1 for all values of |p|<1.

As compared to zi, the use of 7 is more data intensive and
requires intradaily observations. Although intradaily observations are
becoming increasingly available across a large number of assets, it
would still be desirable to work with a version of 7;; that does not
require intradaily observations, but is nevertheless capable of
rendering the devolatized returns approximately Gaussian. One of
the main reasons for the non-Gaussian behavior of daily returns is the
presence of jumps in the return process as documented for a number
of markets in the literature (see, for example, Barndorff-Nielsen and
Shephard (2002)). The standardized return, z;, used by Engle does not
deal with such jumps, since the jump process that affects the
numerator of z; in day t does not enter the denominator of z;
which is based on past returns and excludes the current return, r. The
problem is accentuated due to the fact that jumps are typically
independently distributed over time. The use of realized volatility
ensures that the numerator and the denominator of the devolatized
returns, 7, are both affected by the same jumps in day t.

In the absence of intradaily observations the following simple
estimate of 0 based on daily or weekly returns, inclusive of the
contemporaneous value of r;, seems to work well in practice

- 2 ol
Oilp) = =2 9)

The lag order, p, needs to chosen carefully. We have found that for
weekly returns a value of p=13 tends to render the devolatized
returns, 7=ty /Oi(p), nearly Gaussian, with approximately unit
variances, for all asset classes foreign exchange, equities, bonds or
commodities.> Note that Gizt (p) is not the same as the rolling historical
estimate of 0;, defined by

R SPor
Olzt(p) — S p] it S‘
Specifically
2_p2
- n T s
Gi(p) = O(p) = ~— =2

It is the inclusion of the current squared returns, %, in the esti-
mation of G,ZI that seems to be critical in the transformation of r;
(which is non-Gaussian) into 7;; which seems to be approximately
Gaussian.

3. Real time risk analysis and updates

In financial analysis estimation and evaluation are in general
recursive and the unknown parameters need to be updated over time.*
The frequency by which parameters are updated depends on the
processing costs and the expected benefit from the updates. When
processing costs are negligible parameter updates are carried out on
the arrival of new data or shortly thereafter. For daily or weekly
observations (the focus of the present paper) monthly or quarterly
updates are recommended. Daily or weekly updates can be quite time
consuming for large portfolios, and the expected benefit of the more
frequent updates unclear. For model evaluation, however, a weekly
frequency seems desirable. Clearly, model evaluation need not be
carried out at the same frequency with which parameters are updated.

The implementation of the real time analysis is very much
facilitated using recursive formulae in the estimation and the
evaluation process. For computation of pj; . 1, given by Egs. (5) and
(8), as noted by Engle (2002) we have

~ qij‘t—l

L ==t 10
Py1(¢) v/ i t—19j5,t—1 (19)
where

Qij—1 = ¢q,‘j.f—2 + (1_¢)fi,tflfj,t—1~ (11)

The recursive expression for p;,_;(¢) is identical except that
instead of devolatized returns the standardized returns, z;, given by
Eq. (6) are used.

The above models for p;,—1 are non-mean reverting. A more
general mean reverting specification is given by

Qiji—1 = Pi(1—d1—d2) + &1Gy—2 + dali—1Tji—1, (12)

3 Also see Section 6. For daily observations p=20 seems to work well. See the
earlier version of this paper, Pesaran and Pesaran (2007), for further details.

4 A general discussion of real time econometric analysis is provided in Pesaran and
Timmermann (2005).
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where pj is the unconditional correlation of ry; and rj; and ¢1 + ¢ <1.
One would expect ¢1+¢, to be close to unity. The non-mean
reverting case can be obtained as a special case by setting 1 + ¢, =1.
In practice it is impossible to be sure if ¢;+¢,<1 or not. The
unconditional correlations, py, can be estimated using an expanding
window. In the empirical applications we shall consider the mean
reverting as well as the non-mean reverting specifications, and
experiment with the two specifications of the conditional correlations
that are based on standardized and devolatized returns.

3.1. Initialization, estimation and evaluation samples

Suppose daily or weekly observations are available on m returns in
the mx1 vector r; over the period t=1,2,..,T, T+ 1,..,T+ N. The first
To observations are used for the computation of Eq. (9), the
initialization of the recursions (Eq. (12)), and the estimation of
sample variances and correlations, namely 61-2 and Py, used in Egs. (2)
and (12), respectively. Let s denote the starting point of the most
recent sample of observations to be used in estimation. Clearly, we
must have T>s>Ty>p. The size of the estimation window will then be
given by T,=T—s+ 1. The remaining N observations can then be
used for evaluation purposes. More specifically, the initialization
sample will be given by So = {r;, t =1,2,...,Tp}, the estimation
sample by S, = {r¢, t =s,s + 1,...,T}, and the evaluation sample,
Sevat = {rt, t =T+ 1,T + 2,..,T + N}. This decomposition allows
us to vary the size of the estimation window (T.=T—s+1) by
moving the index s along the time axis in order to accommodate
estimation of the unknown parameters using expanding or rolling
observation windows, with different estimation update frequencies.
For example, for an expanding estimation window we set s =Ty + 1.
For a rolling window of size W we need to set s=T+1—W. The
whole estimation process can then be rolled into the future with an
update frequency of h by carrying the estimations at T+ h,T+ 2h, ...,
using either expanding or rolling estimation samples from t=s. Note
that model (risk) evaluation can be carried out using observations
t=T+1,T+2,..., irrespective of the update frequency parameter h.

3.2. Mean reverting conditional correlations

In the mean reverting case we also need the estimates of the
unconditional volatilities and the correlation coefficients. These can
be estimated by

_ >tk
CHEES (13)

PR 1TirTj
OSSN

Pije = : (14)

The index t refers to the end of the available estimation sample
which in real time will be recursively rolling or expanding, namely
t=T,T+h, T+ 2h,..

4. Maximum likelihood estimation of the t-DCC model

In its most general formulation (the non-mean reverting specifica-
tions given by Eqs. (2) and (12)) the DCC(1,1) model contains 2m + 3
unknown parameters; 2m coefficients A;=(A11,A12,...,A1m)’ and
A2 =(A21,A22,...,A2m)" that enter the individual asset returns volati-
lities, the 2 coefficients ¢; and ¢, that enter the conditional
correlations, and the degrees of freedom of the multivariate t
distribution, v. The parameters &7 and Py in Egs. (2) and (12) refer
to the unconditional volatilities and return correlations and can be
estimated using the estimation sample or the estimation plus
initialization sample. See Eqs. (13) and (14). In the non-mean reverting

case these intercept coefficients disappear, but for the initialization of the
recursive relations (2) and (12) it is still advisable to use unconditional
estimates of the correlation matrix and asset return volatilities.

Denote the unknown coefficients by
0= (A, A, 01,,,v) .

Then based on a sample of observations on returns, rq,rs, ..., ¢,
available at time t, the time t log-likelihood function based on the
decomposition (Eq. (1)) is given by

1(0) = > f(6), (15)

where s<t is the start date of the estimation window. Under t-DCC
specification f; (@) refers to the density of the multivariate distribution
with v degrees of freedom which can be written in terms of the
S = D 1Re—1D¢_q as®

£:0) = = Tin(m— S In|R._, (6) | —In|D._, (A, Ay)|

+In {r(mT*") /F(g)}—gln(v—Z)

e:D- (AL AR (0)D2 (A, Ay e,

—(m;‘,)lnl—i- ) )
(16)
where
e =i~y
and
In Dy (A, 00) | = i In |01 (Ngin Nai) | (17)

i=1

It is worth noting that under Engle's specification R;_; depends on A;
and A, as well as on ¢; and ¢,. Under the alternative specification
advanced here (based on devolatized returns) R;_; does not depend on
Aq and A;, but depends on ¢; and ¢,, and p, the lag order used in the
devolatization process.

The ML estimate of @ based on the sample observations,
r1,ra,...,rr, €an now be computed by maximization of [;(8) with
respect to 8, which we denote by 8,. More specifically

6, = Argmaz{L,(0)}, for t =TT+ h,T +2h....T +N, (18)

where h is the (estimation) update frequency, and as before N refers
to the length of the evaluation sample. The standard errors of the ML
estimates are computed using the asymptotic formulae®

~ L [—d%f.(0
VO =1 &, { d0d0 )} ,
0=19,

In comparison with general specifications of multivariate GARCH
model, the model set out in this paper is quite parsimonious. The

5 Typically the multivariate ¢ density is written in terms of a scale matrix. But
assuming v>2 ensures that 3. ; exists and therefore the scale matrix of the
multivariate t distribution can be written in terms of 3, _ ;, which is more convenient
for the analysis of multivariate volatility models. See, for example, Bauwens and
Laurent (2006).

% An analytical expression for the information matrix for the multivariate t-GARCH
model is provided by Florentini et al. (2003). But in the applications considered in this
paper we did not encounter any problems using numerical derivatives to compute the
information matrix.
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number of unknown coefficients of the general MGARCH model rises
as a quadratic function of m, while the parameters of the DCC model
rises linearly with m. Nevertheless, in practice the simultaneous
estimation of all the parameters of the DCC model could be
problematic, namely can encounter convergence problems, or could
lead to a local maxima of the likelihood function. When the returns
are conditionally Gaussian one could simplify (at the expense of some
loss of estimation efficiency) the computations by adopting Engle's
two-stage estimation procedure. But for our preferred distributional
assumption the use of such a two-stage procedure does not seem
possible and can lead to contradictions. For example, estimation of
separate t — GARCH(1,1) models for individual asset returns can lead
to different estimates of v, while the multivariate t distribution
requires v to be the same across all assets.”

5. Simple diagnostic tests of the t-DCC model

Consider a portfolio based on the m assets with the return vector r,
using the mx 1 vector of pre-determined weights, w;_1. The return on
this portfolio is given by

P = Wi_qrp. (19)

Suppose that we are interested in computing the capital Value
at Risk (VaR) of this portfolio expected at the close of business on day
t—1 with probability 1—«, which we denote by VaR(w;_;, o). For
this purpose we require that

Priwi{_r<—=VaR(w;_;,0)[Q_4]<at

Under our assumptions, conditional on Q; _ 1, w;_r, has a Student
t distribution with mean w;_,u;_;, the variance w/_,%_yw;_, and
the degrees of freedom v. Hence

Wt 1= Wi e

wi_ 12t 1We—1

)

conditional on Q;_ 1 will also have a t distribution with v degrees of
freedom. It is easily verified that E(z]Q; 1) =0, and V(z]|Q;_1)=Vv/
(v—2). Denoting the cumulative distribution function of a Student ¢t
with v degrees of freedom by F,(z), VaR(w;_1, o) will be given as the
solution to

—VaR(w,_q,00)—
v—2
v

!
Wi—1te—1

—(wi 12t 1We1)

F, <a.

But since F,(z) is a continuous and monotonic function of z we
have

—VaR(w,_q,00)—
v—2

!
Wi—1H—1

(W[ 12— Wi_1)

=F, (0) = —¢q.

where ¢, is the a% critical value of a Student t distribution with v
degrees of freedom. Therefore,

VaR(wy_1, @) = Co\/ (Wi_1Ze—1We—1) —W{_qle—1, (20)

whereé, = ¢, #

7 Marginal distributions associated with a multivariate ¢ distribution with v degrees
of freedom are also ¢ distributed with the same degrees of freedom.

Following Christoffersen (1998) and Engle and Manganelli (2004),
a simple test of the validity of t-DCC model can be computed
recursively using the VaR indicators

d; = I(wj_yr, + VaR(w,_.a0) (21)

where I(A) is an indicator function which is equal to unity if A>0 and
zero otherwise. These indicator statistics can be computed in-sample
or preferably can be based on recursive out-of-sample one-step ahead
forecast of 3, _ 4 and g _ 4, for a given (pre-determined set of portfolio
weights, w;_1). In such an out-of-sample exercise the parameters of
the mean returns and the volatility variables (B and 6, respectively)
could be either kept fixed at the start of the evaluation sample or
changed with an update frequency of h periods ( for example with
h=5 for weekly updates, or h=20 for monthly updates). For the

evaluation sample, Seyq = {r;, t=T+ 1,T +2,.., T + N}, the

mean hit rate is given by

N 1 T+ N

=5 > d. (22)
(=T + 1

Under the t-DCC specification, fiy will have mean 1—« and
variance (1 —«)/N. The standardized statistic,

a(l—o)
will have a standard normal distribution for a sufficiently large
evaluation sample size, N. This result holds irrespective of whether the
unknown parameters are estimated recursively or fixed at the start of
the evaluation sample. In the case of the latter the validity of the test
procedure requires that N/T— 0 as (N, T) — <. For a proof see Pesaran
et al. (2009).

The z; statistic provides evidence on the performance of 3, _; and
M., in an average (unconditional) sense (Lopez (1998)). An
alternative conditional evaluation procedure, proposed by Berkowitz
(2001), can be based on probability integral transforms®

’ N
Wi 1Tt~ Wit
v—2

—Wr lzt 1We—1

t=T+1,T+2...T+N. (24

Under the null hypothesis of correct specification of the t-DCC
model, the probability transform estimates, Uy, are serially uncorre-
lated and uniformly distributed over the range (0,1). Both of these
properties can be readily tested. The serial correlation property ofU;
can be tested by Lagrange multiplier tests using OLS regressions of U;
on an intercept and the lagged values U, 1,U;_»,...,.U;—s. The
maximum lag length, s, can be selected by the application of the AIC
criteria, for example. The uniformity of the distribution of U; over t can
be tested using the Kolmogorov-Smirnov statistic defined by,
KSy = supx‘F[](x)—U(x)‘, where Fj;(x) is the empirical cumulative

distribution function (CDF) of the Ot, for t=T+1,T+2,..,T+N, and
U(x)=x is the CDF of iid U[0,1]. Large values of the Kolmogorov-
Smirnov statistic, KSy, indicate that the sample CDF is not similar to
the hypothesized uniform CDF.°

8 See also Christoffersen (1998) for a related test that applied to the VaR indicators,
dy, defined by Eq. (21).

9 For details of the Kolmogorov-Smirnov test and its critical values see, for example,
Massey (1951), and Neave and Worthington (1992, pp.89-93).
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Table 1

Summary statistics for raw weekly returns and devolatized weekly returns — 01-Apr-94 to 30-Oct-09.

Asset Returns Devolatilized returns

Mean S.D. Skewness Ex. kurtosis Mean S.D. Skewness Ex. kurtosis
Currencies
Australian dollar 0.044 1.690 —1.163 7.886 0.059 1.005 —0.214 —0.112
British pound 0.019 1.297 —0.831 5.348 0.037 1.013 —0.148 —0.197
Canadian dollar 0.035 1.136 —0.739 7.443 0.031 1.023 —0.040 —0.266
Swiss franc 0.053 1.517 0.210 1.071 0.044 0.994 0.146 —0.299
Euro 0.039 1.381 —0.043 1.424 0.044 1.012 —0.008 —0.281
Yen 0.031 1.669 1.326 9.462 —0.009 1.016 0.328 0.139
Bonds
Euro Bunds 0.070 0.755 —0.378 0.910 0.123 1.000 —0.210 —0.205
UK Gilt 0.051 0.893 —0.013 1.744 0.068 1.008 —0.015 —0.290
Japan JGB 0.072 0.578 —0.436 2.323 0.152 1.007 —0.364 0.022
US TNote 0.077 0.894 —0.359 0.954 0.084 1.004 —0.243 —0.188
Equities
S&P 500 0.094 2.575 —0.749 8.018 0.054 1.011 —0314 —0.124
Nikkei —0.017 3.175 —0.979 9.645 —0.005 0.996 —0.235 —0.147
FTSE 0.060 2.535 —0.858 10.399 0.042 1.002 —0.264 —0.132
CAC 0.107 3.116 —0.656 5473 0.043 1.003 —0.216 —0.478
DAX 0.113 3.398 —0.559 5.673 0.055 1.008 —0.312 —0.220
SM 0.137 2.819 —0.734 10.174 0.077 1.005 —0.349 0.077
AUS 0.083 2.118 —0.670 4.698 0.066 1.001 —0.224 —0.253

6. Volatilities and conditional correlations in weekly returns

We estimated alternative versions of the t-DCC model for a
portfolio composed of weekly returns on

* 6 currencies: British pound (GBP), euro (EU), Japanese yen (JPY),
Swiss franc (CHF), Canadian dollar (CAD), and Australian dollar
(AD).

» 4 government bonds: US TNote 10Y (BU), Europe Euro Bund 10Y (BE),
Japan Government Bond 10Y (B]), and, UK Long Gilts 8.75-13Y (BG).

7 equity index futures S&P 500 (SP), FTSE 100 (FTSE), German DAX
(DAX), French CAC40 (CAC), Swiss Market Index (SM), Australia
SPI200 (AUS), Nikkei 225 (NK).

The weekly returns are computed from daily prices obtained from
Datastream and cover the period from 07-Jan-94 to 30-Oct-2009.

6.1. Devolatized returns and their properties

Table 1 provides summary statistics for the weekly returns (ry, in
percent) and the devolatized weekly returns 7;; = rj; /G (p), where in
the absence of intradaily observations Gi (p) is defined by Eq. (9), with
p =13 weeks. The choice of p=13 was guided by some experimenta-
tion with the aim of transforming r;, into an approximately Gaussian
process. A choice of p well above 13 does not allow the (possible) jumps
in r;; to become adequately reflected in Gy (p), and a value of p well
below 13 transforms r;, to an indicator looking function. In the extreme
case where p=1 we have 7; = 1, if r;,>0, and 7y = —1, if 1;;<0, and
T = 0, if r;;=0. We did not experiment with other values of p for the
sample under consideration and set p =13 for all the 17 assets.

For the non-devolatized returns the results are as to be expected
from previous studies. The returns seem to be symmetrically
distributed with kurtosis in some cases well in excess of 3 (the
value for the Gaussian distribution). The excess kurtosis is particularly
large for equities, mostly around 5 or more. For currencies the kurtosis
coefficient is particularly large for yen, British pound, and Singapore
dollar. In comparison, the weekly returns on government bonds are
less fat-tailed with kurtosis coefficients only marginally above 3. In
contrast, none of the 17 devolatized returns show any evidence of
excess kurtosis. For example, for equities the excess kurtosis of weekly
returns on SP, FTSE and Nikkie falls from 8.01, 10.40, 9.65 to —0.124,
—0.132 and —0.147, respectively after the returns are devolatized.

For currencies the excess kurtosis of the weekly returns on AD, BP, and
JY fall from 7.89,5.35, and 9.46 to —0.112, —0.020, and 0.139,
respectively. Out of the four ten year government bonds only the
weekly returns on Japanese government bond show some degree of
excess kurtosis which is eliminated once the returns are devolatized.
It is also interesting to note that the standard deviations of the
devolatized returns are now all very close to unity, which allows a
more direct comparison of the devolatized returns across assets.

The extent to which the devolatization has been effective in trans-
forming the returns into Gaussian variates can be seen in Figs. 1-17. The
top panel of each figure gives the histograms, a kernel density fitted to
the returns together with the normal density and the normal QQ-plots.
These plots graphically compare the distribution of returns to the normal
distribution (represented by a straight line in the case of the QQ-plots).
The figures on the bottom panel display the same graphs for the
devolatized returns. These figures clearly show that devolatization has
been quite effective in achieving Gaussianity to a high degree of
approximation. This can be seen particularly if one compares QQ-plots
of returns and their devolatized counterparts. For the devolatized returns
the QQ-plots generally lie on the straight line with a few exceptions. But
for the raw returns there are important departures from normality,
particularly in tails of the return distributions.

7. ML estimates of the DCC models

It is well established that daily or weekly returns are approxi-
mately mean zero serially uncorrelated processes and for the purpose
of risk analysis it is reasonable to assume that g, _; = 0. Using the ML
procedure described above, initially we estimate a number of DCC
models on the 17 weekly returns over the period 27-May-94 to 28-
Dec-2007 (710 observations). We then use the post estimation
sample observations from January 4, 2008 to October 30, 2009 for the
evaluation of the estimated volatility models using the VaR and
distribution free diagnostics.'® We also provide separate t-DCC models
for currencies, bonds and equities for purposes of comparisons.

10 The ML estimation and the computation of the diagnostic statistics are carried out
using Microfit 5. See Pesaran and Pesaran (2009).
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Fig. 1. Australian dollar weekly returns (simple and devolatized) 01-Apr-1994 to 30-Oct-2009.
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Fig. 2. British pound weekly returns (simple and devolatized) 01-Apr-1994 to 30-Oct-2009.
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Fig. 3. Canadian dollar weekly returns (simple and devolatized) 01-Apr-1994 to 30-Oct-2009.

We begin with the unrestricted version of the DCC(1,1) model
with asset-specific volatility parameters A = ()\11,)\12,...,)\1,,,)’,
Ay = (N1, Nz, ...7)\2,,,)', and common conditional correlation para-
meters, ¢, and ¢,, and the degrees-of-freedom parameter, v, under
conditionally t distributed returns (note that m=17)). We did not
encounter any convergence problems, and obtained the same ML
estimates when starting from different initial parameter values. But to
achieve convergence in some applications we had to experiment with
different initial values. In particular we found the initial values

A1i=0.95, A2;=0.05, ¢1=0.96, ¢=0.03 and v=12 to work
relatively well. Also the sum of unrestricted estimates of A; and A,
for the Canadian dollar exceeded 1, and to ensure a non-explosive
outcome we estimated its volatility equation subject to the restriction
A,cot+ Az, cp=1.

To evaluate the statistical significance of the multivariate t
distribution for the analysis of return volatilities, in Table 2 we first
provide the maximized log-likelihood values under multivariate normal
and t distributions for currencies, bonds and equities separately, as well
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Fig. 5. Euro weekly returns (simple and devolatized) 01-Apr-1994 to 30-Oct-2009.

as for all the 17 assets jointly. We report these results both for
standardized and devolatized returns. It is firstly clear from these results
that the normal-DCC specifications are strongly rejected relative to the t-
DCC models for all asset categories. The maximized log-likelihood values
for the t-DCC models are significantly larger than the ones for the
normal-DCC models. The estimated degrees of freedom of the
multivariate t distribution for different asset classes are quite close
and range from 8 (for equities) to 11 (for bonds), all well below the
values of 30 and above that one would expect for a multivariate normal

distribution. For the full set of 17 assets the estimate of v is closer to 12.
There seems to be a tendency for the estimate of v to rise as more assets
are included in the t-DCC model.

The above conclusions are robust in the way returns are scaled for
computation of cross asset return correlations. The maximized log-
likelihoods for the standardized and devolatized returns are very
close, although due to the non-nested nature of the two return
transformations no definite conclusions can be reached as to their
relative merits. The specifications where the returns are standardized
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Fig. 6. Yen weekly returns (simple and devolatized) 01-Apr-1994 to 30-Oct-2009.
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by the conditional volatilities tend to fit better (give higher log-
likelihood values). But this is to be expected since the maximization of
the log-likelihood function in this case is carried out with respect to
the parameters of the scaling factor, unlike the case where scaling is
carried out with respect to the realized volatilities which do not
depend on the unknown parameters of the likelihood function. In
what follows we base our correlation analysis on the devolatized

returns on the grounds of their approximate Gaussianity, as argued
above.

7.1. Asset-specific estimates

Table 3 presents the ML estimates of the t~-DCC model including all
the 17 assets computed over the period 27-May-94 to 28-Dec-07 (710
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Fig. 9. Japanese Government bond weekly returns (simple and devolatized) 01-Apr-1994 to 30-Oct-2009.
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Fig. 10. US TNote weekly returns (simple and devolatized) 01-Apr-1994 to 30-Oct-2009.

weekly returns). The asset-specific estimates of the volatility decay
parameters are all highly significant, with the estimates of Ay;
i=1,2,.,17 falling in the range of 0.818 (for Japanese government
bond) to 0.986 (for Canadian dollar).!' The average estimate of A
across assets is 0.924 which is somewhat smaller than the values in
the range of 0.95 to 0.97 recommended by Riskmetrics for
computation of daily volatilities using their exponential smoothing
procedure. This is not surprising, since one would expect the
exponential smoothing parameter for computing the volatility of

1 Recall that for Canadian dollar the volatility model is estimated subject to the
restriction Ay, cp+Ag,cp=1.

weekly returns to be smaller than the one used for computing the
volatility of daily returns.

There are, however, notable differences across asset groups with
A1 estimated to be larger for currencies as compared to the estimates
for equities and bonds. The average estimate of A, across currencies is
0.95 as compared to 0.93 for equities and 0.88 for bonds. The
correlation parameters, ¢ and ¢, are very precisely estimated and
&1 + ¢, = 0.9846(0.0028), and suggest very slow but statistically
significant mean reverting conditional correlations.

The sum of the estimates of Ay; and A,; is very close to unity, but
the hypothesis that Aj;+A;;=1 (the integrated GARCH hypothesis)
against the one-sided alternative Aq; + Ay;<1 is rejected for 10 out of
the 17 assets at the 5% significance level; the exceptions being British
pound, Swiss franc, Nikkei, S&P 500, and Australian SPI200. For
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Fig. 11. S&P 500 weekly returns (simple and devolatized) 01-Apr-1994 to 30-Oct-2009.

Canadian dollar to ensure a non-explosive outcome, as noted earlier,
estimation is carried out subject to the restriction Ay, cp + Az, cp=1.If
the test is carried out at the 1% significance level, the integrated
GARCH hypothesis is rejected only in the case of the JGB (Japanese
Government Bond).

The integrated GARCH (IGARCH) hypothesis is implicit in the
approach advocated by Riskmetrics, but as shown by Zaffaroni (2008)
can lead to inconsistent estimates. However, in the present applica-
tions the unrestricted parameter estimates and those obtained under
IGARCH are very close and one can view the restrictions Aj; + Ay =1
as a first order approximation that avoids explosive outcomes. We
also note that the diagnostic test results, to be reported below, are
not qualitatively affected by the imposition of the restrictions, Ay; +
)\2,‘ =1.

Finally, it is worth noting that there is statistically significant
evidence of parameter heterogeneity across assets, which could lead
to misleading inference if these differences are ignored.

7.2. Post estimation evaluation of the t-DCC model

The evaluation sample, 04-Jan-08 to 30-Oct-09, covers the recent
periods of financial crisis and includes 96 weeks of post estimation
sample of portfolio returns. The parameter values are estimated using
the sample 27-May-04 to 28-Dec-07 and then fixed throughout the
evaluation sample. To evaluate the t-DCC model we first consider the
tests based on probability integral transforms (PIT), U;, defined by
Eq. (24). We have already seen that under the null hypothesis the t-
DCC model is correctly specified, Uy, are serially uncorrelated and
uniformly distributed over the range (0,1). To compute U, we
consider an equal-weighted portfolio, with all elements of w in
Eq. (19) set to 1/17, and use the risk tolerance probability of a=1%,
which is the value typically assumed in practice. We considered two
versions of the t-DCC model: a version with no restrictions on A; and
A2i (except for i=CD), and an integrated version where \y; + Ay =1,
for all i.
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Fig. 12. Nikkei weekly returns (simple and devolatized) 01-Apr-1994 to 30-Oct-2009.
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Fig. 13. FTSE weekly returns (simple and devolatized) 01-Apr-1994 to 30-Oct-2009.

CAC: QQ-Plot

0.000.020.040.060.080.100.12

50 100 150 200

)
0

CAC: Histogram

CAC: Kernel Density

0 20 40 60 80 100120140

o |||I
20  -10 0 10

CAC: (devol) Histogram

-30 -20 -10 0 10 20

CAC: (devol) Kernel Density

0.4

3 2 1 0 1 2 3

a%ll |II-
3 2 1 0 1 2

O;O 071 0‘.2 0;3
A
o
o
~

Fig. 14. CAC weekly returns (simple and devolatized) 01-Apr-1994 to 30-Oct-2009.

Using the Lagrance multiplier statistic to test the null hypothesis
that U,'s are serially uncorrelated we obtained the values of
¥32=4.74 and y3,=5.31 for the unrestricted and the restricted t-
DCC specifications. These statistics are computed assuming a
maximum lag order of 12, and are asymptotically distributed as chi-
squared variates with 12 degrees of freedom. It is clear that both
specifications of the t-DCC model pass this test. R

Next we applied the Kolmogorov-Smirnov statistic to U;'s to test
the null hypothesis that the PIT values are drawn from a uniform
distribution. The KS statistics for the unrestricted and the restricted
versions amounted to 0.0646 and 0.0454, respectively. Both these
statistics are well below the KS critical value of 0.1388 (at the 5%

level).!2 Therefore, the null hypothesis that the sample CDF of U;'s is
similar to the hypothesized uniform CDF cannot be rejected. Fig. 18
provides a graphical display of the KS test for the unrestricted version
of the model, and confirms the close match between the empirical
CDF of the U,'s and the CDF of the uniform distribution (45 degree
line).

It is interesting that neither of the tests based on U,'s are capable of
detecting the effects of the financial turmoils that took place in 2008.
A test based on the violations of the VaR constraint is likely to be more

12 See Table 1 in Massey (1951).
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Fig. 15. DAX weekly returns (simple and devolatized) 01-Apr-1994 to 30-Oct-2009.
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Fig. 16. Swiss weekly equity returns (simple and devolatized) 01-Apr-1994 to 30-Oct-2009.

discriminating, since it focuses on the tail properties of the return
distributions. For a tolerance probability of «=0.01, we would expect
only one violation of the VaR constraint in 100 observations (our
evaluation sample contains 96 observations). The unrestricted
specification results in three violations of the VaR constraint, and
the restricted specification in four violations. Both specifications
violate the VaR constrain in the weeks starting on 5-Sep-08, 3-Oct-08
and 10-Oct-08. The restricted version also violates the VaR in the
week starting 18-Jan-08. The test statistics associated with these
violations are —2.09 and — 3.12 which are normally distributed. Thus

both specifications are rejected by the VaR violation test.'”* Not
surprisingly, the rejection of the test is due to the unprecedented
market volatility during the weeks in September and October of 2008.

13 We also carried out the VaR diagnostic test for the higher risk tolerance value of
«a=>5%, but did not find a statistically significant evidence against the t-DCC
specifications. For both versions of the model the VaR constraint was violated 8
times, 3 more than one would have expected, giving ft = 0.9167 and z,=—1.50
which is not significant at the 5% level. It is, however, interesting that all the eight
violations occurred in 2008 with five of them occurring over the crisis months of 5-
Sep-08 to 21-Nov-08.
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Fig. 17. Australian weekly equity returns (simple and devolatized) 01-Apr-1994 to 30-Oct-2009.

Table 2

Maximized log-likelihood values of DCC models estimated with weekly returns over 27-May-94 to 28-Dec-07.

Assets Standardized returns Devolatized returns

Normal t distribution D.F. Normal t distribution. D.F.
Currencies (6) —5783.7 —5689.8 9.62 (1.098) —5790.6 —5694.1 9.24 (0.94)
Bonds (4) —2268.5 —22435 11.28 (2.00) —2270.7 —2246.9 11.35 (5.53)
Equities (7) —9500.1 —9380.7 7.96 (0.74) —9504.4 —9383.2 7.79 (0.72)
All 17 —17,509.2 —17,244.8 11.84 (0.90) —17,5104 —17,250.4 12.11 (0.92)

Note: D.F. is the estimated degrees of the freedom of the multivariate ¢ distribution.
Standard errors of the estimates are given in round brackets.

Table 3
ML Estimates of t-DCC model estimated with weekly returns over the Period 27-May-
94 to 28-Dec-07.

Asset ML estimates

\ s 1-N—X\y
Currencies
Australian dollar  0.9437 (0.0201)  0.0361 (0.0097)  0.0201 (0.0140)[1.44]
British pound 0.9862 (0.0110)  0.0124 (0.0056)  0.0014 (0.0081)[0.18]
Canadian dollar 09651 (0.0102)  0.0349 (0.0102) 0 (N/A)[N/A]
Swiss franc 0.9365 (0.0517)  0.0303 (0.0157)  0.0332 (0.0378)[0.88]
Euro 0.9222 (0.0264) 0.0487 (0.0133)  0.0291 (0.0154)[1.89]
Yen 0.9215 (0.0235)  0.0586 (0.0151)  0.01992 (0.0107)[1.86]
Bonds
Euro Bunds 0.9031 (0.0237)  0.0703 (0.0149)  0.0266 (0.0118)[2.26]
UK Gilt 0.9062 (0.0304) 0.0774 (0.0224) 0.0164 (0.0091)[1.80]
Japan JGB 0.8179 (0.0369)  0.1444 (0.0268)  0.0377 (0.0141)[2.74]
US TNote 0.9072 (0.0249) 0.0714 (0.0165)  0.0216 (0.0115)[1.87]
Equities
CAC 0.9252 (0.0118)  0.0674 (0.0099)  0.0074 (0.0033)[2.23]
DAX 0.9267 (0.0117)  0.0653 (0.0095)  0.0080 (0.0039)[2.03]
Nikkei 0.9552 (0.0305)  0.0402 (0.0210)  0.0046 (0.0109)[0.42]
S&P 500 0.9326 (0.0194)  0.0582 (0.0150)  0.0091 (0.0060)[1.53]
FTSE 0.9298 (0.0144) 0.0589 (0.0109) 0.0112 (0.0052)[2.16]
SM 0.9066 (0.0225) 0.0774 (0.0165) 0.0160(0.0076)[2.11]
AUS 0.9393 (0.0295) 0.0370 (0.0128)  0.0237(0.0194)[1.22]

v=12.11 (0.9233), ¢, =0.9673 (0.0037), and $, = 0.0172 (0.0012)[5.49].

Note: standard errors of the estimates are given in round brackets, t-statistics are given
is square brackets. A; and Ay; are the asset-specific volatility parameters. ¢, and ¢, are
the common conditional correlation parameters.

This period covers the Federal takeover of Fannie Mae and Freddi Mac,
the collapse of Lehman Brothers, and the downgrading of the AIG's
credit rating. In fact during the two weeks starting on 3-Oct-08, the
S&P 500 dropped by 29.92%, which is larger than the 20% market
decline experienced during the October Crash of 1987.

7.3. Recursive estimates and the VaR diagnostics

We now consider if the excess VaR violations documented above
could have been avoided if the parameter estimates of the t-DCC model
were updated at regular intervals. To simplify the computations we
focused on the IGARCH version of the model and re-estimated all its
parameters (including the degree-of-freedom parameter v) every
13 weeks ( or four times in a year). Using the recursive estimates of the
PIT, U,, and the VaR indicator d, we obtained similar results for the post
2007 period. The KS statistic for the recursive estimates is 0.0518 as
compared to the 5% critical value of 0.1381 and does not reject the null
hypothesis that the recursive PIT values are drawn from a uniform
distribution. We also could not find any evidence of serial correlation
in the PIT values. But as before, the violations of the VaR constraint
were statistically significant with z;= —3.09. The violations occur
exactly on the same dates as when the parameters were fixed at the
end of 2007. Updating of the estimates of the t-DCC model seems to
have little impact on the diagnostic test outcomes.

8. Changing volatilities and correlations

The time series plots of volatilities are displayed in Figs. 19-21 for
returns on currencies, bonds and equities, respectively. Conditional
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Fig. 18. Kolmogorov-Smirnov goodness-of-fit test for the full t-DCC model over the evaluation sample 4-Jan-08 to 30-Oct-09.

correlations of Euro with other currencies, US 10 year bond futures
with other bond futures, and S&P futures with other equity future
indices are shown in Figs. 22-24, respectively. To reduce the impact of
the initialization on the plots of volatilities and conditional correla-
tions initial estimates for 1994 are not shown. These figures clearly
show the declining trends in volatilities over the 2003-2006 period
just before the financial crisis which led to an unprecedented rise in
volatilities, particularly in the currency and equity markets. It is,
however, interesting to note that return correlations have been rising
historically and seem to be only marginally accentuated by the recent
crisis. These trends could reflect the advent of Euro and a closer
integration of the world economy, particularly in the euro area. Return
correlations across asset types have also been rising, although to a
lesser extent. An overall measure of the extent of the correlations
across all the 17 assets under consideration is given by the maximum
eigenvalue of the 17 by 17 matrix of asset return correlations. Fig. 25
displays the conditional estimates of this eigenvalue over time and

clearly show the sharp rise in asset return correlations, particularly
over the past two years.

9. Concluding remarks

This paper applies the t-DCC model to the analysis of asset returns
as a way of dealing with the fat-tailed nature of the underling
distributions. It is shown that the t-DCC model captures some of the
main features of weekly asset returns. It fits the data reasonably well
and seems to be computationally stable even for a moderate number
of returns (17 in our application). Also when tested out of sample, it
passes the serial correlation and Kolmogorov-Smirnov tests applied
to probability integral transforms even over the highly turbulent
weeks of the 2008-2009 period. However, the model fails the VaR
diagnostic test and the weekly returns on an equal-weighted portfolio
violate the VaR constraint three times over the six weeks from 5-
Sep-08 to end 10-Oct-08. Two of these violations occur in two

Conditional Volatilities of Weekly Currency Returns
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Fig. 19. Currency returns volatilities.
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Conditional Volatilities of Weekly Bond Returns
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Fig. 20. Bond returns volatilities.

Conditional Volatilities of Weekly Equity Returns
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Fig. 21. Equity return volatilities.

successive weeks. Conditional on the t-DCC model being valid, such
an event could be expected to occur every 192 years! Of course, it
could be argued that it is the inadequacy of the t-DCC model that has
given rise to such an outcome, and a better model could have done
better and such events are not as rare as suggested by the

application of the t-DCC to the post 2007 observations. This is an
important open question and its resolution is beyond the scope of
the present paper. But it seems doubtful if modifications of the t-
DCC suggested in the literature, such as allowing for asymmetry or
leverage effects, could resolve the DCC's poor performance during

Conditional Correlations of Euro with Other Currencies
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Fig. 22. Conditional correlation of euro.
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Conditional Correlations of US 10 Year Bond with Other Bonds
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Fig. 23. Conditional correlations of US 10 year bond.
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Fig. 24. Conditional correlations of S&P 500.

crisis periods. The use of more fat-tailed distributions, such as
mixtures of multivariate normal distributions as considered in
Pesaran et al. (2009) is likely to be more effective. But the problem
of matching volatility models to the data in normal as well as in
crisis times would be a real challenge. A fat-tailed distribution
suited to the crisis period might yield outcomes that are too
conservative in normal times, whilst a model with satisfactory
performance in normal times generally performs poorly during a

crisis period. Developing a model that switches between the two
states seems a sensible strategy, but it requires a reliable early
warning system that is capable of accurately identifying periods of
crisis ex ante, a goal which might not be attainable.

Our analysis also shows falling conditional volatilities and rising
correlations during the 2003-2007, before the emergence of the
financial crisis in 2008. These trends seem to have been important
contributory factors to the emergence of the crisis. Low levels of

Maximum Eigenvalue of the 17 by 17 Matrix of Asset Return Correlations
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Fig. 25. Maximum eigenvalue of conditional correlation matrix.
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volatilities might have tempted many investors and traders to take more
risks, at times when asset return correlations had been rising. The crisis
led to a reversal of the trend in volatilities and accentuated the rising
correlations, particularly across the equity returns. Although volatilities
have fallen substantially from their heights in 2008, they are still high by
historical standards. Return correlations continue to be high and in some
cases are even rising. Further research is clearly needed for a better
understanding of asset return correlations and their evolution over time.
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