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ABSTRACT

The presence of cross-sectionally correlated error terms invalidates much inferential theory of panel
data models. Recently, work by Pesaran (2006) has suggested a method which makes use of cross-
sectional averages to provide valid inference in the case of stationary panel regressions with a multifactor
error structure. This paper extends this work and examines the important case where the unobservable
common factors follow unit root processes. The extension to I(1) processes is remarkable on two counts.
First, it is of great interest to note that while intermediate results needed for deriving the asymptotic
distribution of the panel estimators differ between the I(1) and I(0) cases, the final results are surprisingly
similar. This is in direct contrast to the standard distributional results for I(1) processes that radically
differ from those for I1(0) processes. Second, it is worth noting the significant extra technical demands
required to prove the new results. The theoretical findings are further supported for small samples via an
extensive Monte Carlo study. In particular, the results of the Monte Carlo study suggest that the cross-
sectional-average-based method is robust to a wide variety of data generation processes and has lower
biases than the alternative estimation methods considered in the paper.
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Unit roots

Principal components
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1. Introduction

Panel data sets have been increasingly used in economics to
analyze complex economic phenomena. One of their attractions is
the ability to use an extended data set to obtain information about
parameters of interest which are assumed to have common values
across panel units. Most of the work carried out on panel data
has usually assumed some form of cross-sectional independence to
derive the theoretical properties of various inferential procedures.
However, such assumptions are often suspect, and as a result
recent advances in the literature have focused on estimation of
panel data models subject to error cross-sectional dependence.

A number of different approaches have been advanced for this
purpose. In the case of spatial data sets where a natural immutable
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distance measure is available, the dependence is often captured
through “spatial lags” wusing techniques familiar from the time
series literature. In economic applications, spatial techniques are
often adapted using alternative measures of “economic distance”.
This approach is exemplified in work by Lee and Pesaran (1993),
Conley and Dupor (2003), Conley and Topa (2002) and Pesaran
et al. (2004), as well as the literature on spatial econometrics
recently surveyed by Anselin (2001). In the case of panel data
models where the cross-section dimension (N) is small (typically
N < 10) and the time series dimension (T) is large, the standard
approach is to treat the equations from the different cross-section
units as a system of seemingly unrelated regression equations
(SURE) and then estimate the system by generalized least squares
(GLS) techniques.

The SURE approach is not applicable if the errors are correlated
with the regressors and/or if the panels under consideration
have a large cross-sectional dimension. This has led a number
of investigators to consider unobserved factor models, where
the cross-section error correlations are defined in terms of the
factor loadings. The use of unobserved factors also allows for
a certain degree of correlation between the idiosyncratic errors
and the unobserved factors. Use of factor models is not new in
economics, and dates back to the pioneering work of Stone (1947),
who applied the principal component (PC) analysis of Hotelling
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to US macroeconomic time series over the period 1922-1938
and was able to demonstrate that three factors (namely total
income, its rate of change and a time trend) explained over
97% of the total variations of all the 17 macro variables that he
had considered. Until recently, subsequent applications of the PC
approach to economic times series has been primarily in finance.
See, for example, Chamberlain and Rothschild (1983), Connor
and Korajzcyk (1986) and Connor (1988). But more recently the
unobserved factor models have gained popularity for forecasting
with a large number of variables, as advocated by Stock and
Watson (2002). The factor model is used very much in the spirit
of the original work by Stone, in order to summarize the empirical
content of a large number of macroeconomics variables by a small
set of factors which, when estimated using principal components,
is then used for further modelling and/or forecasting. Related
literature on dynamic factor models has also been put forward by
Forni and Reichlin (1998) and Forni et al. (2000).

Recent uses of factor models in forecasting focus on the consis-
tent estimation of unobserved factors and their loadings. Related
theoretical advances by Bai and Ng (2002) and Bai (2003) are also
concerned with the estimation and selection of unobserved fac-
tors and do not consider the estimation and inference problems in
standard panel data models, where the objects of interest are slope
coefficients of the conditioning variables (regressors). In such pan-
els, the unobserved factors are viewed as nuisance variables, in-
troduced primarily to model the cross-section dependences of the
error terms in a parsimonious manner relative to the SURE formu-
lation.

Despite these differences, knowledge of factor models could
still be useful for the analysis of panel data models if it is believed
that the errors might be cross-sectionally correlated. Disregarding
the possible factor structure of the errors in panel data models can
lead to inconsistent parameter estimates and incorrect inference.
Coakley et al. (2002) suggest a possible solution to the problem us-
ing the method of Stock and Watson (2002). But, as Pesaran (2006)
shows, the PC approach proposed by Coakley et al. (2002) can
still yield inconsistent estimates. Pesaran (2006) suggests a new
approach by noting that linear combinations of the unobserved
factors can be well approximated by cross-section averages of the
dependent variable and the observed regressors. This leads to a
new set of estimators, referred to as the Common Correlated Effects
(CCE) estimators, that can be computed by running standard panel
regressions augmented with the cross-section averages of the de-
pendent and independent variables. The CCE procedure is appli-
cable to panels with a single factor or multiple unobserved fac-
tors, and it does not necessarily require the number of unobserved
factors to be smaller than the number of observed cross-section
averages.

In this paper, we extend the analysis of Pesaran (2006) to the
case where the unobserved common factors are integrated of order
1, or I(1). Our analysis does not require an a priori knowledge
of the number of unobserved factors. It is only required that the
number of unobserved factors remains fixed as the sample size is
increased. The extension of the results of Pesaran (2006) to the I(1)
case is far from straightforward, and it involves the development of
new intermediate results that could be of relevance to the analysis
of panels with unit roots. It is also remarkable in the sense that,
whilst the intermediate results needed for deriving the asymptotic
distribution of the panel estimators differ between the I(1) and
1(0) cases, the final results are surprisingly similar. This is in direct
contrast to the usual phenomenon whereby distributional results
for I(1) processes are radically different to those for I(0) processes
and involve functionals of Brownian motion whose use requires
separate tabulations of critical values.

It is very important to appreciate that our primary focus is
on estimating the coefficients of the panel regression model.

We do not wish to investigate the (co-)integration properties
of the unobserved factors. Rather, our focus is robustness to
the properties of the unobserved factors, for the estimation
of the coefficients of the observed regressors that vary over
time as well as over the cross-section units. In this sense, the
extension provided by our work is of great importance in empirical
applications where the integration properties of the unobserved
common factors are typically unknown. In the CCE approach, the
nature of the factors does not matter for inferential analysis of the
coefficients of the observed variables. The theoretical findings of
the paper are further supported for small samples via an extensive
Monte Carlo study. In particular, the results of the Monte Carlo
study clearly show that the CCE estimator is robust to a wide
variety of data generation processes and has lower biases than all
of the alternative estimation methods considered in the paper.
The structure of the paper is as follows. Section 2 provides an
overview of the method suggested by Pesaran (2006) in the case
of stationary factor processes. Section 3 provides the theoretical
framework of the analysis of non-stationarity. In this section, the
theoretical properties of the various estimators are presented.
Section 4 presents an extensive Monte Carlo study, and Section 5
concludes. The Appendices contain proofs of the theoretical results.

Notation: K stands for a finite positive constant, ||A|]] =
[Tr(AA’)]/? is the Frobenius norm of the m x n matrix A, and A*
denotes the Moore-Penrose inverse of A. rk(A) denotes the rank
of A. sup; W; is the supremum of W; over i. a, = O(b,) states
that the deterministic sequence {a,} is at most of order b,, X, =
Op(yy) states that the vector of random variables, x,, is at most
of order y, in probability, and X, = o0,(y,) is of smaller order

in probability than y,; — denotes convergence in quadratic
p . -
mean (or mean square error), — convergence in probability,

d e . .

— convergence in distribution, and L asymptotic equivalence
of probability distributions. All asymptotics are carried out
under N — o0, either with a fixed T, or jointly with T — o0. Joint

convergence of N and T will be denoted by (N,T) —J> 0.
Restrictions (if any) on the relative rates of convergence of N and
T will be specified separately.

2. Panel data models with observed and unobserved common
effects

In this section, we review the methodology introduced in
Pesaran (2006). Let y;: be the observation on the ith cross-section
unit at time t fori = 1,2,...,N;t = 1,2, ..., T, and suppose
thatit is generated according to the following linear heterogeneous
panel data model:

yie = ogd; + Bixic + Yifi + &, (1)

where d; is an n x 1 vector of observed common effects, which
is partitioned as d; = (d;,, d},)’, where dy; is an n; x 1 vector of
deterministic components such as intercepts or seasonal dummies
and dy; is an n, x 1 vector of unit root stochastic observed
common effects, withn = n; + ny, X;; is a k x 1 vector of observed
individual-specific regressors on the ith cross-section unit at time
t, fi is the m x 1 vector of unobserved common effects, and &;
are the individual-specific (idiosyncratic) errors assumed to be
independently distributed of (d;, x;;). The unobserved factors, f;,
could be correlated with (d;, x;;), and to allow for such a possibility
the following specification for the individual specific regressors
will be considered:

X = Ald, + T'if; + v, (2)

where A; and I'; are n x k and m x k factor loading matrices with
fixed and bounded components, and vy = (vjy, . .., Vi)’ are the
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specific components of x;; distributed independently of the com-

mon effects and across i, but assumed to follow general covariance

stationary processes. In our set-up, ¢;; is assumed to be stationary,

which implies that, in the case where f; and/or d; contain unit root

processes, then y;, Xi;, d; and f; must be cointegrated.! Some of the

implications of this property are explored further in Remark 6.
Combining (1) and (2), we now have

Zj :GQ[): B; d: + C,-/ fi + uw o, (3)
(k+1)x1 it (k+Dxn X1 (k+D)xmmx1  (k+1)x1

where

u = <8it tfﬂn) = <(]) ﬁ') <\8rx> ’ (4)
1 0

Bl (g 1)
1 0

G = (yi ri) (ﬂ, Ik) ,

I is an identity matrix of order k, and the rank of C; is determined
by the rank of the m x (k + 1) matrix of the unobserved factor
loadings

ri=y ). (6)

As discussed in Pesaran (2006), the above set-up is sufficiently gen-
eral and renders a variety of panel data models as special cases.
In the panel literature with T small and N large, the primary pa-
rameters of interest are the means of the individual specific slope
coefficients, B;, i = 1,2, ..., N. The common factor loadings, o;
and y;, are generally treated as nuisance parameters. In cases
where both N and T are large, it is also possible to consider con-
sistent estimation of the factor loadings, but this topic will not be
pursued here. The presence of unobserved factors in (1) implies
that estimation of §; and its cross-sectional mean cannot be un-
dertaken using standard methods. Pesaran (2006) has suggested
using cross-section averages of y;; and x; to deal with the effects
of proxies for the unobserved factors in (1). To see why such an ap-
proach could work, consider simple cross-section averages of the
equations in (3):

(5)

2t = B,dr + E,ft + ﬁr, (7)
where
Zt = — Zit, U = — Ui,
N i=1 N i=1
and

=4
=]

B 1 B L
B = ZBi, C = ZQ. (8)
i=1 i=1

We distinguish between two important cases: when the rank
condition

k(C) =m <k+1, forallN, andasN — oo, 9)

1 However, as will be shown later, our results on the estimators of B hold even
if the factor loadings p; and/or I'; are zero (or weak in the sense of Chudik et al.
(forthcoming)), and it is not necessary that x;; and f; are cointegrated. What is
required for our results is that, conditional on d; and f;, the idiosyncratic errors &;
and v;; are stationary.

2 Ppesaran (2006) considers cross-section weighted averages that are more
general. But to simplify the exposition we confine our discussion to simple averages
throughout.

holds, and when it does not. Under the former, the analysis
simplifies considerably, since it is possible to proxy the unobserved
factors by linear combinations of cross-section averages, z;, and
the observed common components, d;. But if the rank condition
is not satisfied, this is not possible, although as we shall see it is
still possible to consistently estimate the mean of the regression
coefficients, B, by the CCE procedure.
In the case where the rank condition is met, we have

f = (CE)'C@E — Bd, — ). (10)

But since

u, q'—m>'0, asN — oo, foreacht, (11)

and

chc=r 10 , asN — oo, (12)
ﬂ Ik

where

I = (E(y).E(I) = (y. 1), (13)

it follows, assuming that Rank (I') = m, that

f— (@) 'cz —Bd) =0, asN — oo.

This suggests that, for sufficiently large N, it is valid to use hy =
(d;, z;) as observable proxies for f;. This result holds irrespective
of whether the unobserved factor loadings, y; and I';, are fixed or
random.

When the rank condition is not satisfied, the use of cross-section
averages alone does not allow consistent estimation of all of the
unobserved factors, and as a result the estimation of the individual
coefficients 8; by means of the cross-section averages alone will
not be possible. But, interestingly enough, consistent estimates
of the mean of the slope coefficients, B, and their asymptotic
distribution can be obtained if it is further assumed that the
factor loadings are distributed independently of the factors and the
individual-specific error processes.

2.1. The CCE estimators

We now discuss the two estimators for the means of the indi-
vidual specific slope coefficients proposed by Pesaran (2006). One
is the Mean Group (MG) estimator proposed in Pesaran and Smith
(1995) and the other is a generalization of the fixed effects esti-
mator that allows for the possibility of cross-section dependence.
The former is referred to as the “Common Correlated Effects Mean
Group” (CCEMG) estimator, and the latter as the “Common Corre-
lated Effects Pooled” (CCEP) estimator.

The CCEMG estimator is a simple average of the individual CCE

estimators, ﬁ,- of B;,

N

by ZN_lZlA’n (14)
pu

where

b, = (X'MX,)"'X/My;, (15)

Xi = (%1, X, ..., X7), ¥i = Vi1, Viz, - - -, Yir)', M is defined by

M=IL —HHHH, (16)

H = (D, Z), D and Z being, respectively,the T x nand T x (k+ 1)
matrices of observations on d; and z;. We also define for later use

M; =I; — G(G'G)"'G, (17)

and



G. Kapetanios et al. / Journal of Econometrics 160 (2011) 326-348 329

M;=I; -QQ'Q)"Q, withQ =GP, (18)
where G = (D,F),D = (dy,d,,...,dr),F = (fi,f,....fr)
are T x nand T x m data matrices on observed and unobserved
common factors, respectively, (A)" denotes the Moore-Penrose
inverse of A, and

p —(’" B), 0" = (0,0). (19)

4myxmtk+)  \0 €

where U* has the same dimensionas H and U = (uiq, U, ..., ug)’
isa T x (k + 1) matrix of observations on u;. Efficiency gains
from pooling of observations over the cross-section units can be
achieved when the individual slope coefficients, f;, are the same.
Such a pooled estimator of 8, denoted by CCEP, is given by

A N -
by = ( x;mx,-)
i=1

which can also be viewed as a generalized fixed effects (GFE)
estimator, and reduces to the standard FE estimator if H = 77 with
Tr beinga T x 1 vector of ones.

,]N

> x/My;, (20)
i=1

3. Theoretical properties of CCE estimators in non-stationary
panel data models

The following assumptions will be used in the derivation of the
asymptotic properties of the CCE estimators.

Assumption 1 (Non-Stationary Common Effects). The (n, +m) x 1

vector of stochastic common effects, g = (d,, f;)’, follows the
multivariate unit root process

O = g1+ 8y,

where &, is an (n; + m) x 1 vector of Lp45,8 > 0, stationary
near epoque dependent (NED) processes of size 1/2, on some «-
mixing process of size —(2 + §) /4, distributed independently of
the individual-specific errors, ;s and v; for all i, t and t'.

Assumption 2 (Individual-Specific Errors). (i) The individual-speci-
fic errors ¢;; and vj; are distributed independently of each other,
for all i,j and t. &; have uniformly bounded positive variance,
sup; oiz < K, for some constant K, and uniformly bounded fourth-
order cumulants. v; have covariance matrices, X,,, which are
non-singular and satisfy sup; || Xy,|| < K < 00, autocovariance
matrices, I'i,(s), such that sup; Z;’ifoo ITi(s)]] < K < oo, and
have uniformly bounded fourth-order cumulants. (ii) For each
i, (i, v}) isan (k+ 1) x 1 vector of ;5,8 > 0, stationary near
epoque dependent (NED) processes of size % on some ¢-mixing
process ¥;; of size —(2 4 §) /8 which is partitioned conformably to
(git, Vi) as (Yeie, Yoy, where ¥ and ¥, are independent for
alliandj.

Assumption 3. The coefficient matrices, B; and C;, are indepen-
dently and identically distributed across i, and independent of the
individual specific errors, & and vj, the common factors, &, for all
i, jand t with fixed means B and C, and uniformly bounded second-
order moments. In particular,

vec(B;) = vec(B) + 1,

. (21)
N~ 1ID(O, 2g,), fori=1,2,...,N,
and
vec(G) = vec(C) + 5. ;,
(&) (©) + ¢, (22)

nc; - DO, 2¢,), fori=1,2,...,N,

where g, and £¢, are (k+1)n x (k+1nand (k+1)m x (k4+1)m
symmetric non-negative definite matrices, ||B| < K, ||C|| < K,
12yl < K and || 2¢, || < K, for some constant K.

Assumption 4 (Random Slope Coefficients). The slope coefficients,
B;, follow the random coefficient model

Bi=B+=x;,

where ||B]| < K, ||£2,]| < K, for some constant K, 2, isa k x k
symmetric non-negative definite matrix, and the random devia-
tions, »;, are distributed independently of y;, I'j, &jt, Vi, and &, for
all i, j and t. »; has finite fourth moments uniformly over i.

% ~1ID(0, 2,), fori=1,2,...,N, (23)

X/ MX;
T

-1
Assumption 5 (Identification of B; and B). ( ) exists for all

. . N . .
iand T, and limy_, o ﬁ Doy X, is non-singular.

/ N\ —1
Assumption 6. (%) exists for all i and T, and

o 112
X!/ MX;
= H <K < o0.

sup; E H

Assumption 7. When rank condition (9)is not satisfied, (i) % Zf’: 1

X!/ MgX; .
'TZ‘” and @ = limy7_o0 (% vazl @,-T), where @ =

E(T‘2X{MqX,-), are non-singular; (ii) if m > 2k + 1, then

2
-1
X/ MgX; X/MgF
T2 T2

, 2
F'F
TZ

!/ s _1
(Xi’;'qu'> exists foralliand T and sup; E ‘

< oo0; and (iii) if m < 2k + 1, then E‘ < o0 and

2
-1
FF
T2

< o0.
Remark 1. Assumption 1 departs from the standard practice in
the analysis of large panels with common factors and specifies
that the factors are non-stationary. Assumption 2 concerns the
individual specific errors and relaxes the assumption that &; are
serially uncorrelated, often adopted in the literature (see, e.g.,
Pesaran (2006)). Assumptions 2-6 are standard in large panels
with random coefficients. But some comments on Assumption 7
seems to be in order. This assumption is only used when the rank
condition (9) is not satisfied. It is made up of three regularity con-
ditions.? The last two are of greater significance and only relate
to the Mean Group estimator presented in the next section. In ef-
fect, these assumptions ensure that the individual slope coefficient
estimators possess second-order moments asymptotically, which
seems plausible in most economic applications.

d

Remark 2. Note that Assumption 3 implies that y; are indepen-
dently and identically distributed across i, and

yi=v+u

24
;- ID(0. 2,). (24)

fori=1,2,...,N,

where £, is an m x m symmetric non-negative definite matrix, and
Iyl <K,and ||£2,]| < K, for some constant K.

For eachiand t = 1,2,..., T, writing the model in matrix
notation, we have
yi =Da; + X;B; + Fy; + ¢i, (25)

where &; = (&1, €i2, . . ., &7). Using (25) in (15), we have

~ X' MX; X'MF
b = () (),

L (XmX, '/ X!Ms; 26)
T T )’

3 E|IT~2F'F||> < oo, which is part of Assumption 7(iii), can be established under
mild regularity conditions (see Lemma 4 of Phillips and Moon (1999)).
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which shows the direct dependence of b; on the unobserved factors
through T‘lx{ MF. To examine the properties of this component,
we first note that (2) and (7) can be written in matrix notation as

X; = GII; + V;, (27)
and
H=(D,Z) = (D,DB+FC + U) = GP + U*, (28)

where IT; = (A, '), V; = (vi1, Via, . . .,
and U* are defined by (19).

Using Lemmas 3 and 4 in Appendix A, and assuming that rank
condition (9) is satisfied, it follows that

vir), G = (D,F),and P

X/MF 1 1 ‘ ‘
7 = O (m) + 0p (ﬁ) , uniformly over i, (29)
M — M =0, <L) uniformly over i (30)
T T JN/’ ’
and
)@ _ X"/Mgsi -0 (1) 40 (1)
T T P\ VNT PAN)”
uniformly over i. (31)

If the rank condition does not hold, then by Lemma 6 in Appendix A
it follows that

XMF _ XMF _ <L> uniformly over i (32)
T T VN’ ,

X/MX; _ XM X; =0, <i> ,  uniformly over i, (33)
T T VN

and

X/Mei  X/Mge; —0 (L) +0 <l>
T T P \/IW PAN/T
uniformly over i. (34)

In the following subsections we discuss our main theoretical
results.

3.1. Results for pooled estimators

We now examine the asymptotic properties of the pooled
estimators. Focusing first on the MG estimator, and using (26), we

have
N
Z”l+ ZAi] <\/_XMF> yi

i=1 i=1

i (fx Me,)’ 3s)

i=1
where If/g = T‘1Xi’1\_/IX,-. In the case where rank condition (9) is
satisfied, by (29), we have

VN(X/MF) _ 1 1
o) o () o

Using this, we can formally show that

VN(byc — B) = \/_Zx,+op<f>+op<\}ﬁ>.

Hence

VN(byc — B) =

. sl

_|_
2\
'S)

VN(bye — B) 5 N(©, Zye), as (N, T) > co. (37)

The variance estimator for X),; suggested by Pesaran (2006) is
given by

e = —— Z(b — buc) (bi — bc), (38)

i=1

which can be used here as well. The following theorem summarizes
the results for the Mean Group estimator. The result is proved in
Appendix C.

Theorem 1. Consider the panel data models (1) and (2). Let Assump-
tions 1-6 and 7(ii), (iii) hold. Then, for the Common Correlated Effects

Mean Group estimator, I3Mc, defined by (14), we have, as (N, T) EN 00,
that

~ d
VN(byc — B) > N(0, Zye),
where

e = £, + A, (39)
1 N
A= 527l w0

and Xigr is defined in (C.67). Xy can be consistently estimated
by (38).

Note that this theorem does not require that the rank condition,
(9), holds for any number, m, of unobserved factors so long as m is
fixed. Also, it does not impose any restrictions on the relative rates
of expansion of N and T. The following theorem summarizes the
results for the second pooled estimator, i;p. The proof is provided
in Appendix C.

Theorem 2. Consider the panel data models (1) and (2), and suppose
that Assumptions 1-6 and 7 (i) hold. Then, for the Common Correlated

Effects Pooled estimator, ﬁp, defined by (20), as (N, T) EN oo, we have
that

~ d

VN(bp — B) > N(0, X3),

where X7 is given by

=0 (E+ )0, (41)

where

=
~
|
3
/)
=z~
=
A4
=
~—
Ix

i=1

1 N
-, (3 2 =0).

En = Var[T‘ZXl/ M,Xix;], and ®1; and Oq; are given by (C.87) and
(C.84), respectively. X} can be estimated consistently by

ok Ak—1 A Ax—1

X, =% R'Y¥ (42)
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N I A
. X'MX;
v =Ny (43)
. 1 N /XMXN .~ . . s X' MX;
R* = 0 (b — bye) (b — bye) | == ).
(N_l);< - )( wo) ( MG>( - )
(44)

Overall we see that, despite a number of differences in the
above analysis, especially in terms of the results given in (29)-(34),
compared to the results in Pesaran (2006), the conclusions are re-
markably similar when the factors are assumed to follow unit root
processes.

Remark 3. The formal analysis in the Appendices focuses on the
case where the factor is an I(1) process and no cointegration is
present among the factors. But, as shown by Johansen (1995, pp.
40), when the factor process is cointegrated and there are | < m
cointegrating vectors, we have that Fy; = F,8;; + F28;, where
F; is an m — I|-dimensional I(1) process with no cointegration,
whereas F, is an [-dimensional 1(0) process. This implies that the
cointegration case is equivalent to a case where the model contains
a mix of non-cointegrated I(1) and I(0) factor processes. Since we
know that the results of the paper hold for both non-cointegrated
I(1) and, by Pesaran (2006), I(0) factor processes, we conjecture
that they hold for the cointegrated case, as well. However, we feel
that a formal proof of this statement is beyond the scope of the
present paper. We consider a case of cointegrated factors in the
Monte Carlo study. The results clearly support the above claim.

Remark 4. In the case of standard linear panel data models with
strictly exogenous regressors and homogeneous slopes, and with-
out unobserved common factors, Pesaran et al. (1996) show that
in general the fixed effect estimator is asymptotically at least as
efficient as the Mean Group estimator. It is reasonable to expect
that this result also applies to the CCE type estimators, namely that,
under f; = B for all i, the CCEP estimator would be at least as ef-
ficient as the CCEMG estimator. Although a formal proof is beyond
the scope of the present paper, the Monte Carlo results reported
below provide some evidence in favour of this conjecture.

As we noted above, the whole analysis does not depend on
whether the rank condition holds or not. But in the case where
the rank condition is satisfied, a number of simplifications arise.
In particular, the technical Assumption 7 is not needed, and
Assumption 3 can be relaxed. Namely the factor loadings, y;, need
not follow the random coefficient model. It would be sufficient that
they are bounded. Also, the expressions for the theoretical covari-
ance matrices of the estimators change, although crucially the esti-
mators of these covariance matrices do not. For completeness, we
present corollaries on the theoretical properties of the pooled esti-
mators when the rank condition holds, below. Proofs are provided
in Appendix D.

Corollary 1. Consider the panel data models (1) and (2). Assume that
the rank condition, (9), is met and suppose that Assumptions 1-6 hold.

Then, for the Common Correlated Effects Mean Group estimator, ﬁMG,
defined by (14), we have, as (N, T) EN 00, that

VN(byc — B) 4 N(0, Xvc),

where X\ is given by £2,,. X can be consistently estimated by (38).

Corollary 2. Consider the panel data models (1) and (2), and suppose
that the rank condition, (9), is met and that Assumptions 1-6 hold.

Then, for the Common Correlated Effects Pooled estimator, 13P, defined

by (20),as (N, T) EN 00, we have that

N(be — B) > N, =),
where

5 = v IR (45)
N
R* = i NNy X0 4
N,Tlgoo ; vQiT | » ( 6)

N
* __1: -1
' = lim (N ;EV,), (47)

X/ MgX; .
=*=x;. X} can be estimated

and X,gir denotes the variance of
consistently by (42).

3.2. Estimation of individual slope coefficients

In panel data models where N is large, the estimation of the
individual slope coefficients is likely to be of secondary importance
as compared to establishing the properties of pooled estimators.
However, it might still be of interest to consider conditions under
which they can be consistently estimated. In the case of our set-up,
the following further assumption is needed.

Assumption 8. For each i, ¢;; is a martingale difference sequence.
For eachi, v;; isak x 1vector of L, 5,6 > 0, stationary near epoque
dependent (NED) processes of size 1/2, on some ¢-mixing process
of size —(2 4 8) /6.

Then, we have the following result. The proof is provided in
Appendix E.
Theorem 3. Consider the panel data models (1) and (2) and suppose
that Assumptions 1, 2(i) and 3-8 hold. Let ﬁ/N — 0,as (N, T)
EN 00, and assume that the rank condition (9) is satisfied. As (N, T)

EN o0, l;i, defined by (15), is a consistent estimator of ;. Further,

A d
VT (b — B) = N(O, Zp). (48)
A consistent estimator of X\, is given by

- -1
. ., ( X/ MX;
Ebi =0; B (49)

T

where

(yi - Xii’i) M(y; — X;b))
62 = . (50)
T—(n+2k+1)

Remark 5. Parts of the above result hold under weaker versions of
Assumption 8. In particular, we note that the central limit theorem
in (E.110) holds if Assumption 2(ii) holds. However, in this case,
the asymptotic variance has a different form, as autocovariances
of &;v; enter the asymptotic variance expression. If, then, a
consistent estimate of the asymptotic variance is required, a
Newey and West type correction (Newey and West, 1987) needs
to be used. Consistency of this variance estimator requires more
stringent assumptions than the NED Assumption 2(ii). It is
sufficient to assume that (g, v},)’ is a strongly mixing process for
this consistency to hold.

Remark 6. It is worth noting that despite the fact that, under our
assumptions, f;, y;r and x;; are I(1) and cointegrated, implying that
& is an I(0) process, in the results of Theorem 3, the rate of

convergence ofI;i toB;as (N, T) EN oo is +/T and not T. It is helpful
to develop some intuition behind this result. Since for N sufficiently
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large f; can be well approximated by the cross-section averages, for
pedagogic purposes we might as well consider the case where f; is
observed. Without loss of generality, we also abstract from d;, and
substitute (2) in (1) to obtain

Yit=ﬂ; (r:ft +Vit)+}’:ft+8it="£ft+§it» (51)

where #; = I';;+y; and & = &ic+B;vie. First, itis clear that, under
our assumptions, and for all values of B, & is I(0) irrespective of
whether f; is 1(0) or I(1). But, if f; is I(1), since ¢;; — I1(0), then
yie will also be I(1) and cointegrated with f;. Hence, it follows that
¥; can be estimated superconsistently. However, the ordinary least
squares (OLS) estimator of 8; need not be superconsistent. To see
this, note that B; can be estimated equivalently by regressing the
residuals from the regressions of y;; on f; on the residuals from the
regressions of x;; on f;. Both these sets of residuals are stationary
processes, and the resulting estimator of $; will be at most JT-
consistent.

Remark 7. An issue related to the above remark concerns the
probability limit of the OLS estimator of the coefficients of x;; in
aregression of y; on x;; alone. In general, such a regression will be
subject to the omitted variable problem and hence misspecified.
Also, the asymptotic properties of such OLS estimators cannot be
derived without further assumptions. However, there is a special
case which illustrates the utility of our method. Abstracting from
d;, assuming that k = m and that I'; is invertible, then, similarly to
(51), write the model for y; as

Yie = B;xit + Y;F;_l(xit — Vi) + & = Q,{Xit =+ Gir, (52)

where ¢/ = B, + ¥, "' and gi = & — Y/I';”'v;. Note that g;
is, by construction, correlated with v;. The question is whether
estimating a regression of the form (52) provides a consistent
estimate of ;. For stationary processes this would not be case, due
to the correlation between ¢;: and v;.. However, in the case of non-
stationary data this is not clear, and consistency would depend on
the exact specification of the model. Under the assumptions we
have made in this remark, the estimator of g; would be consistent.
However, even in this case it is clear that the application of the
least squares method to (52) can only lead to a consistent estimator
of g; and not of B;. To consistently estimate the latter we need
to augment the regressions of y; on X; with their cross-section
averages.

4. Monte Carlo design and evidence

In this section, we provide Monte Carlo evidence on the
small-sample properties of the CCEMG and the CCEP estimators,
which are defined by (14) and (20), respectively. We consider
nine alternative estimators. The first one is the CupBC estimator
proposed by Bai et al. (2009), which is a bias-corrected version of
a continuously updated estimator that estimates both the slope
parameters and the unobserved factors iteratively. The CupBC
estimator, as analyzed by Bai et al. (2009), assumes that the
number of unobserved factors is known and only considers the case
where the slopes are homogeneous.* In addition, we consider two
alternative principal component (PC) augmentation approaches
discussed in Kapetanios and Pesaran (2007). The first PC approach
applies the Bai and Ng (2002) procedure to z; = (yi, X},)" to
obtain consistent estimates of the unobserved factors, and then
uses the estimated factors to augment the regression (1), and
thus produces consistent estimator of 8. We consider both pooled

4 See Baietal. (2009), for more details.

and mean group versions of this estimator, which we refer to
as PC1POOL and PC1MG. The second PC approach begins with
extracting the principal component estimates of the unobserved
factors from y;; and x;; separately. In the second step, y;; and x;;
are regressed on their respective factor estimates, and in the third
step the residuals from these regressions are used to compute
the standard pooled and mean group estimators, with no cross-
sectional dependence adjustments. We refer to the estimators
based on this approach as PC2POOL and PC2MG, respectively. On
top of these principal component estimators, we consider two sets
of benchmark estimators. The first set consists of infeasible mean
group and pooled estimators, which are obtained assuming that
the factors are observable (i.e., z; for the CCE estimators is replaced
by true factor f;). The other set consists of naive mean group and
pooled estimators, which ignore the factor structure. The naive
estimators are expected to illustrate the extent of bias and size
distortions that can occur if the error cross-section dependence
that is induced by the factor structure is ignored.

We report summaries of the performance of the estimators
in the Monte Carlo experiments in terms of average biases, root
mean square errors and rejection probabilities of the t-test for
slope parameters under both the null hypothesis and an alternative
hypothesis. For computing the t-statistics, the standard errors of
mean group and pooled CCE estimators are estimated using (38)
and (42), respectively. The standard errors of PC1, PC2, infeasible
and naive estimators are estimated similarly to those of the
CCE estimators. The standard errors of the CupBC estimator are
computed following Bai et al. (2009).

4.1. Baseline design

The experimental design of the Monte Carlo study closely fol-
lows the one used in Pesaran (2006). Consider the following data
generating process (DGP):

Yir = aindye + BuXuie + BoXaie + vafie + Vofar + éir, (53)
and
Xijt = aijldlt + aijde[ + )’ijlflt + Vij3f3r =+ Vije, ji=12, (54)

fori = 1,2,...,N,andt = 1,2,...,T.This DGP is a restricted
version of the general linear model considered in Pesaran (2006),
and setsn = k = 2,and m = 3, with o = (a;1, 0), B; = (Bi1, Bi),
and y; = (ya, ¥i2, 0), and

0 v

0 vo3/)"

A; _ (%@ G2 i 1—; — (Y

Qg1 Qi Yi21
The observed common factors and the individual-specific errors of
x;; are generated as independent stationary AR(1) processes with
zero means and unit variances:
die =1, dyr = pada t—1 + Var,
var ~ 1IDN(0, 1= p), pa = 0.5, dy 50 =0,
Vit = PoijVije—1 + e, t=-49,...,1,...,T,
i ~1IDN (0, 1= p2;) . Vji—s0 =0,

t=-49,...,1,...,T,

and
pvii ~ 1IDU[0.05, 0.95], forj=1,2.

But the unobserved common factors are generated as non-
stationary processes:

fit = fir—1 + v, forj=1,2,3,t=-49,...,0,...,T, (55)
Vit ™ HDN(O, 1), f}"_50 = O, fOl'j =1,2,3.

The first 50 observations are discarded.
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To illustrate the robustness of the CCE estimators and others
to the dynamics of the individual-specific errors of y;, these
are generated as the (cross-sectional) mixture of stationary
heterogeneous AR(1) and MA(1) errors. Namely,

&it = Pie€it—1 +Gi\/1—,0i2560it,
i=1,2,...,N;, t=-49,...,0,...,T,

and

Oi

J1+62

i=Ny+1,...,N, t=-49,...,0,...,T,

(Wit + Giewi 1),

Eit =

where Nj is the nearest integer to N/2,

wjie ~ 1IDN(0, 1), O‘iz ~ 1IDU[0.5, 1.5],
pie ~ 1IDU[0.05, 0.95], 6; ~ 1IDUJ[O0, 1].

Pwij» Pis, Ui and o; are not changed across replications. The first
49 observations are discarded. The factor loadings of the observed
common effects, aj; and vec(A;) = (aj11, aix1, Gi12, Ajpp)’ are gener-
ated as IIDN(1, 1) and IIDN(0.574, 0.5I;) with T4 = (1,1, 1, 1),
respectively, which are not changed across replications. The pa-
rameters of the unobserved common effects in the x;; equation are
generated independently across replications as

F,{:<;m 0 y,~13>NHD<N(O.5,O.50) 0 N(0,0.SO)>.
21

0 v N(0,0.50) 0 N(0.5,0.50)
For the parameters of the unobserved common effects in the y;
equation, y;, we considered two different sets, which we denote
by 4 and 8. Under set 4, the y; are drawn such that the rank
condition is satisfied, namely

yir ~ 1IDN(1, 0.2), Yiza ~ 1IDN(1, 0.2), vis =0,

1 05 0
E(FJ):(] 0 0).

and

E(Tix) = (Ei):

0 0 05
Under set B,
yin ~ 1IDN(1, 0.2), Yiog ~ 1IDN(O, 1), vz =0,
SO
) 105 0
E(Tig) = (E(yig), EID)=(0 0 0|,
0 0 05

and the rank condition is not satisfied. For each set, we conducted
two different experiments.

e Experiment 1 examines the case of heterogeneous slopes
with B = 1+ n;,j = 1,2, and n; ~ I1IDN(0, 0.04), across
replications.

e Experiment 2 considers the case of homogeneous slopes with

Bi=B8=(,1).

The two versions of experiment 1 will be denoted by 14 and
18, and those of experiment 2 by 24 and 2.8.

Concerning the infeasible pooled estimator, it is important to
note that, although this estimator is unbiased under all four sets
of experiments, it need not be efficient, since in these experiments
the slope coefficients, 8;, and/or error variances, oiz, differ across
i. As a result, the CCE or PC augmented estimators may in fact
dominate the infeasible estimator in terms of root mean square
error (RMSE), particularly in the case of experiments 14 and 13,
where the slopes as well as the error variances are allowed to vary
across i.

Another important consideration worth bearing in mind when
comparing the CCE and the principal component type estimators
is the fact that the computation of the CupBC, PC1 and PC2 estima-
tors assumes that m = 3, namely that the number of unobserved
factors is known. In practice, m might be difficult to estimate accu-
rately, particularly when N or T happen to be smaller than 50. By
contrast, the CCE type estimators are valid for any fixed m and do
not require an a priori estimate for m.

Each experiment was replicated 2000 times for the (N, T) pairs
with N, T = 20, 30, 50, 100, 200. In what follows, we shall focus
on B (the cross-section mean of ;1), and the results for 8,, which
are very similar to those for 87, will not be reported. The results
for all the estimators considered are reported in Table 1. Since
the performance of CCE and CupBC estimators dominates other
feasible estimators in most of the designs considered, to save space
we do not report the results of these estimators for the remaining
experiments.

4.2. Designs for robustness checks

In this subsection, we consider a number of Monte Carlo
experiment designs that aim to check the robustness of the
estimators to a variety of empirical settings.

4.2.1. The number of factors exceeds k + 1

In order to show the effect of a different type of violation of the
rank condition from experiment B, we consider the DGP 14, but
an extra factor term yjfy is added to the right-hand side (RHS)
of the y equation (53), where yi4 ~ IIDN(0.5, 0.2), far = far—1 +
Vra,r, Vrar ~ IIDN(O, 1), f4 _50 = 0. In this case, observe that

1 1 0 05
E(yi,l“i)’:<0.5 0 0 0)

0 0 05 O

whose rank is k + 1 = 3, which is less than the number of un-
observed factors, m = 4. Under this experiment, the number of
factors is treated as unknown and is estimated, using the
information criterion ‘PC,," which is proposed by Bai and Ng
(2002, pp. 201).> The information criterion is applied to the first
differenced variables with the maximum number of factors set to
six. The results are reported in Table 5. However, recall that the CCE
type estimators do not make use of the number of the factors and
are valid irrespective of whether k + 1 is more or less than m.

4.2.2. Cointegrating factors

In this design, the unobserved common factors are generated as
cointegrated non-stationary processes. There are two underlying
stochastic trends, given by
fi=fi_+vf,. forj=1,2t=-49,...,0,....T,  (56)
vge ~1IDNQ, 1), ff =0, forj=1,2.

Then, this experiment uses the same design as 1+, but the I(1)
factors in (53) and (54) are replaced by

fie =ff, + 05, + vy, t=-49,...,0,...,T,

for =0.5fl, + f5, + v, t=—49,...,0,...,T,

fae = 0.75f], + 0.25f;, +vp3,, t=—49,...,0,...,T,
v ~1IDN(0, 1),  fi_s0 =0, forj=1,2,3.

The first 50 observations are discarded. The results are reported in
Table 6.

5 PCp, is one of the information criteria which performed well in the finite sample
investigations reported in Bai and Ng (2002).
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Table 1
Small-sample properties of common correlated effects type estimators in the case of experiment 1.4 (heterogeneous slopes + full rank).
Bias (x 100) Root mean square error Size (5% level, Power (5% level,
(x100) Hp : 1 = 1.00) Hy : 1 = 0.95)
(N,T) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200
CCE type estimators
CCEMG
20 005 —-0.10 -—-0.03 006 —0.07 967 7.89 674 587 554 720 690 7.15 790 755 11.65 13.00 16.10 17.50 20.10
30 009 -0.01 -0.01 -0.13 0.10 769 6.09 511 454 422 695 530 590 625 635 1140 1425 18.05 22.05 26.85
50 —0.19 022 —-0.11 0.14 —-0.04 5.88 461 401 344 313 570 505 6.65 620 595 1510 2040 2560 34.10 36.65
100 0.00 0.04 0.04 0.03 004 425 346 289 233 227 575 585 525 490 620 2335 3430 4440 56.00 63.25
200 —0.05 -0.02 —0.03 0.05 000 3.07 249 201 172 151 440 515 490 560 510 3555 52.65 68.70 83.65 90.50
CCEP
20 0.18 0.00 -0.05 -0.01 -0.13 875 767 685 632 621 770 810 730 805 7.15 1275 1350 16.05 16.80 18.30
30 —-0.17 -0.12 009 -0.15 013 7.10 599 532 478 446 755 625 675 6.65 645 1240 15.00 19.30 20.65 26.90
50 0.00 0.18 —0.07 0.12 -—-0.01 533 451 397 347 322 680 620 590 635 645 1745 22.15 2640 3290 36.25
100 0.00 0.09 0.03 0.00 002 378 325 285 234 228 570 565 560 515 625 28.15 37.40 4480 5520 61.75
200 —0.07 —-0.04 —0.05 0.05 0.00 271 229 195 170 153 510 435 5.05 470 475 4475 56.80 70.30 8355 89.75

Bai, Kao and Ng principal component estimator

CupBC
20 0.62 0.70 0.81 0.77 0.87 11.16 9.86 835 7.46
30 0.35 0.42 0.73 0.59 083 891 7.70 6.51 5.66
50 0.53 0.67 0.33 0.63 054 6.77 6.01 5.05 4.20
100 0.21 0.34 0.35 0.28 033 483 415 339 276
200 0.10 0.10 0.08 0.23 0.17 355 294 245 2.00

6.95 67.25 6440 5790 60.95 6575 72.05 68.75 65.00 68.50 74.60
528 66.80 61.05 5595 5540 63.30 7185 69.95 66.35 70.75 77.60
3.83 6445 58.85 5195 51.35 56.70 77.20 72.65 69.55 76.90 83.45
255 64.60 56.40 47.85 4335 52.65 80.70 80.35 8250 87.90 92.50
169 62.85 52.85 4500 44.50 48.00 86.65 88.70 90.75 96.60 99.10

Infeasible estimators (including f;; and f5¢)

Infeasible MG

20 0.01 -0.19 —0.08 0.15 —008 721 633 562 498
30 0.02 -0.14 0.01 —0.02 0.12 591 495 443 397
50 —0.10 0.07 —0.06 0.14 -—-004 448 375 339 3.09
100 0.01 0.07 0.02 0.00 0.04 3.16 278 249 215
200 —0.07 0.04 —0.07 0.06 0.01 222 193 169 157
Infeasible pooled
20 015 -013 -0.15 -026 —021 730 696 692 7.11
30 —-0.20 -0.15 022 —-0.07 027 623 578 579 589
50 0.12 0.07 —0.08 0.21 0.02 461 440 431 471
100 —0.05 0.07 0.09 0.06 0.00 330 326 3.12 330
200 —0.08 0.06 —0.12 007 —002 235 222 220 245

476 640 6.20 680 595 6.50 1275 1535 16.85 19.70 20.40
387 650 580 6.05 530 590 16.15 18.05 2335 2520 28.80
294 645 525 590 525 520 2170 27.35 3145 3845 40.25
214 550 515 545 470 545 3685 46.15 55.10 62.50 66.65
144 485 500 500 560 470 59.15 72.85 8225 9040 9275

740 640 680 660 7.00 5.10 13.70 1375 1455 14.10 12.65
661 7.05 590 700 525 570 1570 1535 1895 16.70 16.60
502 570 580 550 625 5.00 2220 2255 23.65 2550 21.00
352 525 560 520 520 530 3345 3820 3885 36.75 32.30
249 495 470 450 585 470 56.15 62.10 59.50 59.05 52.20

Naive estimators (excluding fi; and f5;)

Naive MG
20 22.18 2313 26.82 2996 32.62 31.76 3297 37.37 4149
30 2223 25.06 2836 3133 34.01 3051 33.31 37.87 41.46
50 2221 2391 2565 2961 3364 29.75 31.12 32.75 37.73
100 2197 2392 2676 30.04 32.88 2840 30.02 3297 36.39
200 22.15 24.09 2749 30.09 3323 27.87 2944 32.80 35.71

Naive pooled
20 2525 2660 3127 3359 34.84 35.30 37.01 42.66 45.42
30 2576 2939 3245 3537 3546 3548 39.13 42.70 4597
50 26.54 2875 3039 34.01 35.88 35.61 37.39 39.05 44.04
100 2581 2847 3130 33.15 3491 34.39 36.76 39.90 41.79
200 2595 2832 31.89 3365 34.11 3420 36.21 39.63 4239

47.04 32.05 3295 34.85 3545 3150 41.00 42.65 4350 4195 38.05
45.32 4045 44.10 46.65 43.85 3945 51.00 5395 57.45 5220 47.15
42,66 55.80 59.30 58.00 59.25 54.75 68.30 70.85 70.30 69.20 65.05
40.06 71.20 75.25 77.90 78.60 75.25 81.05 84.35 85.95 85.85 83.20
39.34 81.85 86.00 87.85 88.05 87.95 8875 91.95 9230 9290 92.05

47.67 42.15 4365 47.75 4520 44.50 5250 52.65 5595 53.40 51.95
46.81 51.55 56.70 57.65 59.55 56.20 61.05 66.60 66.55 67.75 64.55
4593 64.75 67.15 69.25 7035 69.35 7355 76.25 7825 78.65 77.45
4427 7585 7890 81.35 7930 80.15 85.10 86.55 88.05 86.65 86.40
42.68 83.45 86.25 87.70 87.40 87.20 89.95 9190 93.55 9220 92.20

Principal component estimators, augmented

PCIMG
20 —-12.27 —11.15 —10.30 —8.87 —890 17.09 1481 1324 1151
30 -925 -786 —646 —572 —525 1355 10.84 8.98 7.80
50 —6.84 —-5.05 -3.89 -3.01 -3.12 1010 7.79 586 467
100 —-478 —-321 -2.03 -157 -—-145 744 534 368 287
200 -431 -254 -139 -081 -0.78 639 419 260 193
PC1POOL
20 —-11.97 —-11.04 —-1035 —-9.09 -9.23 1588 14.38 13.07 11.59
30 —-886 —7.66 —634 —573 —537 1248 1045 8.89 7.80
50 —6.20 —4.86 —3.81 —-3.07 -3.19 9.06 752 572 473
100 -436 —-3.00 -201 -160 -149 661 501 361 288
200 -362 -232 -136 -081 -079 539 381 251 191

11.55 2255 25.35 30.05 33.40 37.40 12.15 1295 1330 1270 13.75
7.15 20.60 2090 2165 24.75 2470 1075 825 735 740 6.75
447 1995 17.65 1625 1495 1790 870 820 7.65 1140 975
272 20.10 16.80 1145 9.75 11.10 955 1215 20.25 2885 36.75
1.71 2520 1795 1095 8.15 7.65 13.85 2195 4285 67.65 77.15

12.07 25.50 2835 32.05 3445 3895 12.05 1410 1490 1455 14.90
734 2145 2375 2205 2470 2550 1100 880 755 795 6.35
454 2140 1875 16.00 16.05 1890 855 9.55 8.10 1090 9.65
274 2105 1685 1125 935 10.80 11.25 1455 2085 27.90 36.30
173 25.15 17.60 1050 7.80 7.80 16.35 26.75 4545 68.00 76.15

4.2.3. Semi-strong factor structure

Chudik et al. (forthcoming) introduce the notions of weak, semi-
strong and strong factor structures and prove that these different
factor structures do not affect the consistency of the CCE type
estimators with I(0) factors. Here we consider the effect of having

(continued on next page)

a semi-strong factor structure when the factors are I(1). For this
purpose, the same DGP of the experiment 1.4 is used, but all factor
loadings in (53) and (54) are multiplied by N~'/2. The results are
reported in Table 7. It is easily seen that when the factors are
weak or semi-strong they cannot be consistently estimated by
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Table 1 (continued)
Bias (x 100) Root mean square error Size (5% level, Power (5% level,
(x100) Hp : 1 = 1.00) Hy : g1 =0.95)
(N,T) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200
Principal component estimators, orthogonalized
PC2MG
20  —31.26 —27.06 —24.01 —22.67 —23.11 32.83 28.34 25.00 23.44 23.83 86.50 88.45 91.25 9520 97.40 74.10 73.95 75.80 82.05 88.20
30 —25.50 —21.21 —1827 —16.69 —16.33 26.82 2225 19.13 17.35 16.92 86.85 87.10 89.10 93.35 9595 70.15 67.80 66.10 69.25 74.70
50 —20.65 —16.23 —13.32 —11.41 —10.89 21.68 17.06 1398 11.95 11.37 90.15 88.35 88.80 89.05 91.70 70.80 60.25 52.20 45.80 46.10
100 —16.17 —1244 -969 -7.61 —6.60 16.87 1297 10.18 7.99 7.02 93.65 93.30 89.75 87.50 83.30 72.35 56.20 37.60 19.30 13.60
200 —1461 —1078 —8.12 —5.79 —4.59 15.11 11.19 845 6.08 4.85 9895 97.85 9545 90.75 83.75 79.65 60.20 33.30 10.00 6.75
PC2POOL
20 —31.97 —27.47 —-2427 -—-23.18 —24.19 33.39 28.69 2523 2399 2499 91.00 90.70 93.20 9555 98.50 80.65 78.60 78.80 83.35 90.45
30 —26.32 —21.51 —18.24 —16.83 —16.75 27.53 2248 19.13 17.51 17.37 91.35 9040 89.70 93.35 96.15 78.50 71.80 66.65 70.65 76.90
50 —2122 —1635 —13.17 —11.35 —10.99 22.10 17.15 13.82 1191 1148 95.05 90.90 88.95 88.20 91.70 79.65 63.80 52.95 46.20 48.25
100 —16.77 —1252 —9.62 —755 —6.60 1743 13.06 10.11 7.95 7.03 97.95 95.05 9050 86.45 82.30 80.90 60.80 38.10 18.30 14.25
200 —15.16 —1091 —-8.00 —5.66 —453 1567 1133 834 596 479 99.75 98.45 9595 89.35 8250 88.65 6585 3335 8.40 6.30

Notes: The DGPis yir = atjidie + BirXuie + BiXaie + Vinfie + Viofor + e, With i = piesic—1+0i(1— p2) Pwie, i =1,2,...,[N/2],and & = 0;(1+62) "2 (wie +Oreie—1), i =
[N/2] +1,...,N,w; ~ IIDN(O, 1), a,-z ~ 1IDU[0.5, 1.5], p;z ~ 1IDU[0.05, 0.95], 6z ~ IIDUIO, 1]. Regressors are generated by x;; = ajidi + ajpdy + viifie +

Viisfae + Viie,j = 1,2, fori =

1,2,...,N.dy = 1,dy = 0.5d5,_1 + var, vg ~ DN, 1 — 0.52),dy 50 = 0:f; = fy_1 + vjc, vz ~ IIDN(O, 1), f _so = O, for

J=1,2,3; Vit = pijViie—1 + Vjie, Ujie ~ IIDN(0, 1 — ,ofij), vjj,—so = 0 and p,; ~ IIDU[0.05, 0.95] forj = 1, 2, for t = —49, ..., T, with the first 50 observations discarded;
a;; ~ 1IDN (1, 1) ; @ ~ 1IDN(0.5,0.5) forj = 1,2, € = 1, 2; yj11 and yjp3 ~ 1IDN(0.5, 0.50), ;13 and y;p1 ~ IIDN(0, 0.50); y;; and y;, ~ IIDN(1, 0.2); B = 1+ n;, with
n;j ~ 1IDN(0, 0.04) forj = 1, 2. pyij, pic, e aiz, a1, aj forj = 1,2, £ = 1,2 are fixed across replications. CCEMG and CCEP are defined by (14) and (20). CupBC is the
bias-corrected iterated principal component estimator of Bai et al. (2009). The PC1 and PC2 estimators are from Kapetanios and Pesaran (2007). The variance estimators of
all mean group and pooled estimators (except that of CupBC) are defined by (38) and (42), respectively. The PC type estimators are computed assuming that the number of

unobserved factors, m = 3, is known. All experiments are based on 2000 replications.

Table 2

Small-sample properties of common correlated effects type estimators in the case of experiment 2.4 (homogeneous slopes + full rank).

Bias (x 100) Root mean square error Size (5% level, Hp : B1 = 1.00) Power (5% level, H; : f; = 0.95)
(x100)
(N,T) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200
CCEMG
20 0.05 -0.15 0.02 -0.15 009 845 629 510 378 314 7.15 640 680 675 6.85 1170 13.80 21.75 31.25 47.90
30 —-0.14 012 0.04 0.03 0.00 644 511 380 267 207 605 675 725 640 645 1270 2045 30.70 50.90 71.60
50 0.08 —0.06 0.02 0.05 003 508 379 280 194 139 6.10 590 485 540 535 18.00 26.90 4445 75.65 95.00
100 —0.04 —-0.08 006 —-0.04 —0.01 359 276 202 135 098 455 550 6.05 510 6.10 2830 43.00 7235 9520 99.90
200 0.06 —0.02 003 001 0.00 2.83 205 152 1.00 068 560 445 635 520 570 4420 67.95 9190 99.90 100.00
CCEP
20 0.18 0.00 0.03 —-0.14 0.08 695 556 494 398 374 660 675 730 675 680 1425 1625 2525 33.70 46.25
30 —0.14 0.14 0.07 0.01 0.01 520 450 355 267 226 510 590 725 625 640 1525 2455 3490 5295 70.70
50 005 007 —-0.02 004 0.03 408 329 256 184 139 540 540 545 620 530 24.60 3435 5170 78.65 95.00
100 —0.02 —-0.04 006 —-0.04 -0.01 287 237 178 124 093 560 620 640 525 595 41.65 5835 8185 97.80 100.00
200 0.07 —0.03 0.01 0.02 000 2.17 163 132 092 065 560 395 570 560 535 6525 8440 96.95 100.00 100.00
CupBC
20 0.12 0.10 0.08 -—0.01 001 825 6.13 414 232 129 6400 5240 3820 25.15 18.85 7040 66.65 6590 84.75 98.35
30 0.04 0.08 0.07 0.02 —-0.01 640 473 3.08 172 096 6185 50.00 3540 2325 19.15 7130 7135 7930 95.00 99.90
50 —0.04 022 —-0.06 004 0.03 489 356 231 127 0.70 5990 4925 3445 2190 1540 77.20 81.60 8835 9885 100.00
100 0.03 0.01 0.02 -0.05 0.01 327 243 166 086 048 6030 48.40 3440 20.25 17.15 87.15 91.65 97.40 100.00 100.00
200 0.07  0.01 003 003 000 243 173 1.16 063 033 5995 46.60 32.60 20.70 14.90 9470 97.70 99.80 100.00 100.00

Notes: The DGP is the same as that of Table 1, except that 8 = 1 for alliand j,

the principal components, and this could adversely impact the
estimators of B that rely on the PCs as estimators of the unobserved
factors.

4.2.4. A structural break in the means of the unobserved factors

Finally, the results of recent research by Stock and Watson
(2008) suggest that the possible structural breaks in the means
of the unobserved factors will not affect the consistency of
the CCE type estimators, as well as the principal component
type estimators. In view of this, we considered another set of
experiments, corresponding to the DGPs specified as 1., but
now the unobserved factors are generated subject to mean shifts.
Specifically, under these experiments the unobserved factors
are generated as f;; = ¢; fort < [2T/3]and fy = 1 + ¢; for
t > [2T /3], with [A] being the greatest integer less than or equal
to A, where ¢;r = ¢ ;—1 + &, and g ~ IIDN(O, 1), forj = 1, 2, 3.
Results are reported in Table 8.

i=1,2,...,N,j=1,2.See notes to Table 1.

4.3. Results

The results of experiments 14, 24, 18, 28 are summarized
in Tables 1-4, respectively. We also provide results for the
naive estimator (which excludes the unobserved factors or
their estimates) and the infeasible estimator (which includes
the unobserved factors as additional regressors) for comparison
purposes. But for the sake of brevity we include the simulation
results for these estimators only for experiment 1+4.

As can be seen from Table 1, the naive estimator is substan-
tially biased, performs very poorly, and is subject to large size dis-
tortions: this is an outcome that continues to apply in the case of
other experiments (not reported here). In contrast, the feasible CCE
estimators perform well, have biases that are close to the bias of
the infeasible estimators, show little size distortions even for rela-
tively small values of N and T, and their RMSE falls steadily with in-
creases in N and/or T. These results are quite similar to the results
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Table 3
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Small-sample properties of common correlated effects type estimators in the case of experiment 18 (heterogeneous slopes + rank deficient).

Bias (x 100) Root mean square error Size (5% level, Power (5% level,
(x100) Hp : 81 = 1.00) H; : g1 = 0.95)
(N,T) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200
CCEMG
20 033 —-0.19 020 0.14 023 1502 1390 1261 1335 1378 680 690 675 660 720 940 895 10.15 10.15 10.15
30 030 014 0.09 -0.17 035 1291 12.03 10.70 1007 1059 550 680 525 6.15 480 840 1005 945 1035 11.65
50 —0.15 0.63 —0.20 —0.17 002 982 846 787 742 734 580 510 6.10 575 590 9.75 1290 1340 14.00 15.20
100 025 013 027 000 006 701 655 58 525 501 575 595 545 545 6.10 1450 17.75 21.65 2265 2730
200 0.05 -0.11 -0.17 —-0.07 —0.05 535 465 415 361 331 480 505 475 515 455 1945 2370 29.75 37.25 4345
CCEP
20 048 006 —0.04 0.16 0.10 13.13 1281 1221 1357 1530 675 740 7.00 665 675 9.90 1020 1040 10.35 10.25
30 —023 —-006 0.18 —0.25 043 1148 1070 1039 995 11.04 6.10 690 570 600 550 9.05 995 1055 1025 10.60
50 000 048 -0.18 —-0.17 —-0.02 842 7,57 723 722 722 525 590 625 530 550 1140 1405 14.15 1435 1520
100 0.11 018 024 —-0.06 005 587 572 527 487 498 510 6.00 540 495 6.00 17.25 1960 23.50 2355 27.00
200 004 -0.10 —0.16 —0.04 —0.03 435 399 375 330 315 540 470 525 410 395 2575 2850 3450 41.10 46.05
CupBC
20 134 083 107 112 135 1124 952 824 759 724 6735 6020 56.70 60.85 66.80 70.45 66.05 66.05 7125 76.85
30 051 08 114 086 123 897 752 647 578 560 6740 59.80 5535 56.95 6535 7235 6895 69.15 7295 80.20
50 057 070 062 091 081 677 585 498 432 405 6465 57.35 5240 52.00 59.70 74.90 7225 7040 78.65 8450
100 030 044 045 042 046 486 420 344 276 261 6640 56,55 4820 44.00 53.00 79.35 80.40 83.10 89.40 93.60
200 014 014 013 027 026 353 299 245 200 169 6480 5335 4515 4395 4695 86.90 8845 91.20 96.90 99.35
Notes: The DGP is the same as that of Table 1, except that y;; ~ IIDN(0, 1), so the rank condition is not satisfied. See notes to Table 1.
Table 4
Small-sample properties of common correlated effects type estimators in the case of experiment 28 (homogeneous slopes + rank deficient).
Bias (x 100) Root mean square error Size (5% level, Power (5% level,
(X]OO) Ho Zﬂ] = 100) H;: /31 :095)
(N,T) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200
CCEMG
20 —0.28 —026 041 —031 073 1445 12.85 12.02 1207 1347 735 545 640 670 6.00 935 9.15 1095 1155 10.90
30 -0.11 0.07 009 045 —-0.05 1199 1078 982 952 1033 520 590 595 650 655 7.85 1050 1240 1435 1490
50 000 023 —-0.07 —0.02 000 901 797 762 679 672 505 480 500 545 495 940 1220 1575 1760 21.15
100 0.14 —0.08 —-0.12 —0.03 006 666 592 516 478 456 465 540 560 460 635 1510 18.15 23.95 2850 34.85
200 0.14 0.11 0.01 -0.17 —0.07 513 445 388 327 334 545 510 545 465 515 2235 2880 36.60 44.75 56.70
CCEP
20 —-0.12 -0.19 035 —-026 066 1266 11,53 1156 12.12 1507 745 7.00 755 635 650 985 1000 1260 12.65 1150
30 —009 005 006 039 0.3 1000 957 926 936 1105 555 575 680 670 675 990 1170 1330 15.20 1450
50 —-0.14 039 —-0.08 001 003 729 692 684 658 679 495 525 545 560 485 1125 1560 16.65 19.95 2040
100 020 —0.13 —0.11 —0.05 004 544 497 455 445 439 480 535 540 495 6.05 2060 22.65 2835 3140 36.80
200 0.19 0.11 -0.08 —0.13 —0.07 397 371 335 296 309 525 515 505 500 560 3195 3845 4430 50.70 60.40
CupBC
20 044 033 029 026 020 811 6.02 411 241 133 5965 4825 3440 26.15 19.00 6945 6590 68.15 8585 99.30
30 0.18 022 023 014 009 633 464 304 172 100 60.05 48.75 33.85 21.60 2000 7145 72.15 79.20 95.10 100.00
50 0.12 0.36 0.03 0.13 0.07 490 362 232 1.29 0.70 6090 47.10 32.85 20.00 14.75 77.00 82.25 8835 98.95 100.00
100 0.18 0.02 0.09 —0.01 004 323 248 165 086 048 59.65 48.70 3320 19.80 1690 87.85 91.10 97.85 100.00 100.00
200 0.10 003 006 005 002 239 172 117 063 0.33 5950 45.65 32.15 2150 1580 95.05 98.50 99.65 100.00 100.00

Notes: The DGP is the same as that of Table 1, except that y;; ~ IIDN(O0, 1), so the rank condition is not satisfied, and g = 1foralliandj,i = 1,2,...,N,j = 1, 2. See

notes to Table 1.

presented in Pesaran (2006), and illustrate the robustness of the
CCE estimators to the presence of unit roots in the unobserved
common factors. This is important since it obviates the need for
pretesting of unobserved common factors for the possibility of
non-stationary components.

The CCE estimators perform well, in both heterogeneous and
homogeneous slope cases, and irrespective of whether the rank
condition is satisfied, although the CCE estimators with rank
deficiency have sightly higher RMSEs than those under the full
rank condition. The RMSEs of the CCE estimators of Tables 1 and
3 (heterogeneous case) are higher than those reported in Tables 2
and 4 for the homogeneous case. The sizes of the t-test based on the
CCE estimators are very close to the nominal 5% level. In the case of
full rank, the powers of the tests for the CCE estimators are much
higher than in the rank-deficient case. Finally, not surprisingly, the
power of the tests for the CCE estimators in the homogeneous case
is higher than that in the heterogeneous case.

It is also important to note that the small-sample properties of
the CCE estimator do not seem to be much affected by the residual

serial correlation of the idiosyncratic errors, ¢;. The robustness of
the CCE estimator to the short-run dynamics is particularly help-
ful in practice where typically little is known about such dynam-
ics. In fact, a comparison of the results for the CCEP estimator with
the infeasible counterpart given in Table 1 shows that the former
can even be more efficient (in the RMSE sense). For example, the
RMSE of the CCEP for N = T = 50 is 3.97 whilst the RMSE of
the infeasible pooled estimator is 4.31. This might seem counter-
intuitive at first, but, as indicated above, the infeasible estimator
does not take account of the residual serial correlation of the id-
iosyncratic errors, but the CCE estimator does allow for such pos-
sibilities indirectly through the use of the cross-section averages
that partly embody the serial correlation properties of f; and the
Eit.

Consider now the PC augmented estimators and recall that
they are computed assuming that the true number of common
factors is known. The results in Table 1 bear some resemblance
to those presented in Kapetanios and Pesaran (2007). The biases
and RMSEs of the PC1POOL and PCIMG estimators improve as
both N and T increase, but the t-tests based on these estimators



G. Kapetanios et al. / Journal of Econometrics 160 (2011) 326-348 337

Table 5

Small-sample properties of common correlated effects type estimators, in the case of heterogeneous slopes; the number of factors m = 4 exceeds k + 1 = 3.

Bias (x 100) Root mean square error ( x 100)
(N, T) 20 30 50 100 200 20 30 50 100 200
CCEMG
20 0.23 0.29 0.06 —0.23 —0.16 10.97 9.59 8.29 7.61 7.70
30 0.20 0.08 —0.07 0.14 —0.03 8.98 7.65 6.84 6.42 6.29
50 —0.04 0.00 —0.16 —-0.19 0.14 6.81 6.03 5.12 471 467
100 0.12 —0.06 0.01 —0.01 0.12 4381 425 3.69 3.53 3.46
200 0.01 —0.04 0.03 —0.04 —0.10 3.78 3.08 2.84 2.61 2.53
CCEP
20 0.09 0.50 —0.02 —0.22 —0.11 9.57 8.94 8.07 7.70 7.83
30 0.03 —0.05 —0.08 0.04 —0.09 7.96 7.21 6.60 6.36 6.25
50 —0.04 —0.05 —0.13 —0.14 0.13 6.06 5.59 4.85 454 4.49
100 0.06 —0.07 —0.01 0.01 0.11 421 3.85 351 3.37 3.38
200 —0.04 —0.05 0.00 —0.03 —0.10 3.13 2.74 2.62 242 2.37
CupBC
20 0.49 0.32 0.06 0.11 0.11 11.56 10.26 8.94 7.09 6.30
30 0.01 0.12 0.12 0.21 0.07 9.38 7.98 6.68 5.58 4.62
50 —0.11 0.25 —0.08 —0.02 0.21 7.07 6.29 5.03 4.04 3.54
100 0.06 0.04 0.10 0.04 —0.04 481 4.32 3.58 2.82 2.54
200 0.05 —0.11 0.00 0.00 —0.03 3.55 3.14 2.61 2.00 1.67

Notes: The DGP is the same as that of Table 1, except that an extra term yjsfs is added to the y equation, where y;4 ~ 1IDN(0.5,0.2), fa = far—1 + Vpar, Vrar ~
IIDN(0, 1), fs—s0 = 0. For the CupBC estimator, the number of unobserved factors is treated as an unknown but is estimated by the information criterion PCp;, which
is proposed by Bai and Ng (2002). We set the maximum number of factors to six. See also the notes to Table 1.

substantially over-reject the null hypothesis. The PC2POOL and
PC2MG estimators perform even worse. The biases of the PC
estimators are always larger in absolute value than the respective
biases of the CCE estimators. The size distortion of the PC
augmented estimators is particularly pronounced. Finally, it is
worth noting that the performance of the PC estimators actually
gets worse when N is small and kept small but T rises. This may be
related to the fact that the accuracy of the factor estimates depends
on the minimum of N and T.

Now consider the CupBC estimator, and again recall that it is
computed assuming that the true number of common factors is
known. Let us begin with discussing results in the case in which
the rank condition is satisfied, the results of which are reported
in Tables 1 and 2. As is evident, the average bias and RMSEs
of CupBC estimator are comparable to those of CCE estimators.
Because of this, the results of CCEMG, CCEP and CupBC estimators
only are reported in Table 2 onwards. In the case of heterogeneous
slopes with the rank condition satisfied, the RMSEs of the CCE
estimator are uniformly smaller than those of the CupBC estimator
(as can be seen from Table 1). This might be expected, since the
CupBC estimator is designed for the model with homogeneous
slopes. In the case of homogeneous slopes with the rank condition
satisfied, as can be seen from Table 2, the RMSEs of the CCEP
estimator are smaller than those of the CupBC estimator when
T is relatively small (T = 20 and 30). Turning our attention to
the performance of the t-test, it is apparent that the size of the
test based on the CupBC estimator is far from the nominal level
across all experiments. This is especially so for experiments where
the slopes are heterogeneous. In these cases, increases in N and
T do not seem to help to improve the test performance. Even for
homogeneous slope cases, the best rejection probability result is
14.90% forT = N = 200 in Table 2. In contrast, the size of the t-test
based on the CCE estimators is close to 5% nominal level across all
experiments. Tables 3 and 4 provide the summary of experimental
results in the rank-deficient case. For this design, even though the
size of the t-test based on the CupBC estimator is grossly oversized,
the RMSEs of the estimator are smaller than those of the CCE
estimators. However, note that in these experiments the number of
factors is treated as known, which is rarely expected in a practical
situation. We return to this issue below.

Tables 5-8 report the results of the experiments carried out as
robustness checks.® Table 5 reports the results of the experiments
where the number of unobserved factors is four (m = 4), which
exceeds k + 1 = 3, in the case of heterogeneous slopes. In this
experiment, CupBC estimates are obtained supposing that m is
unknown but estimated using the information criterion PCp,,
which is proposed by Bai and Ng (2002), applied to the first
differences of (yi, X1ir, X2i). We set the maximum number of
factors to six.” First, despite the number of unobserved factors,
m = 4, exceeding the number of regressors and regressand (k +
1 = 3), the RMSEs of the CCE estimators decrease as N and T are
increased, which confirms the consistency of the estimators in the
rank-deficient case. Furthermore, the RMSEs of the CCE estimators
dominate those of the CupBC estimator, except only when T is
very large (>100). We note that, although not reported for brevity,
the size of the t-test based on the CCE estimators is very close
to the nominal 5% level, whilst the size distortion of the CupBC
estimators is acute for all cases considered. Tables 6-8 report the
results of experiments with the same DGP as in Table 1 but where
the unobserved factors are cointegrated, factor structures are semi-
strong, and the unobserved factors are subject to mean shifts,
respectively. In all of these designs the CCE estimators uniformly
dominate the CupBC estimator in terms of both RMSEs and the
size of the t-test (which is not reported in the tables). These are
consistent with the findings of Chudik et al. (forthcoming) and
Stock and Watson (2008).

5. Conclusions

Recently, there has been increased interest in the analysis
of panel data models where the standard assumption that the
errors of the panel regressions are cross-sectionally uncorrelated

6 For brevity, the size and power of t-tests are not reported in Tables 5-8,
since they are qualitatively similar to those in Tables 1-4. For similar reasons, the
results for homogeneous slopes and/or rank-deficient cases (for Tables 6-8) are not
reported. A full set of results is available upon request from the authors.

7 For small N and T, the information criterion tends to overestimate the number
of the factors in the first-differenced data (y;, X1i¢, X2i¢), and the estimates tend to
4 as N and T get larger.
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Table 6
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Small-sample properties of common correlated effects type estimators, heterogeneous slopes and full rank, cointegrated factors, in the case of experiment 1.4 (heterogeneous

slopes + full rank).

Bias (x 100) Root mean square error ( x 100)
(N,T) 20 30 50 100 200 20 30 50 100 200
CCEMG
20 0.05 —0.05 —0.22 0.08 0.00 9.26 7.87 6.58 5.69 5.29
30 —0.14 0.09 0.03 —0.02 0.02 7.35 6.02 5.18 4.54 4.16
50 —0.03 0.14 —0.05 0.11 0.11 5.85 4,70 4.06 3.49 3.14
100 —0.05 —0.01 0.03 —0.05 0.00 4.15 3.40 2.87 2.49 2.19
200 —0.05 0.14 0.03 0.04 —0.04 3.08 2.46 2.02 1.72 1.59
CCEP
20 —0.06 —0.01 —0.23 0.06 —0.01 8.52 7.54 6.65 5.95 5.68
30 —0.06 —0.07 —0.07 —0.02 0.01 6.78 5.90 5.25 4.70 4.29
50 —0.03 0.14 —0.09 0.12 0.13 5.35 4.54 4.05 3.55 3.19
100 —0.02 0.03 0.06 —0.03 —0.02 3.77 3.18 2.84 2.50 2.22
200 —0.04 0.10 —0.01 0.05 —0.04 2.70 2.33 1.99 1.72 1.60
CupBC
20 0.54 0.85 0.61 0.68 0.78 11.01 9.58 8.01 6.94 6.32
30 0.69 0.52 0.54 0.50 0.68 8.65 7.48 6.26 5.39 491
50 0.49 0.54 0.50 0.53 0.58 6.82 5.69 499 424 3.70
100 0.33 0.37 0.38 0.22 0.26 4.61 3.86 3.43 2.834 2.52
200 0.13 0.31 0.13 0.25 0.09 3.39 2.88 241 2.03 1.82

Notes: The DGP of the same as that of Table 1, except that the factors are generated as cointegrated non-stationary processes: fi; = fi, + 0.5f, + vri.r, for = 0.5f], + f3, +
Vra.es far = 0.75ff; + 0.25f3, + vy3., with g ~ IIDN(O, 1), f; —sp = 0, forj = 1,2, 3, where fj, = f}, , +vf, ,, withvf, ., ~IDN(0, 1), for ¢ = 1,2,¢t = —49,...,0,..., T

See also the notes to Table 1.

Table 7

Small-sample properties of common correlated effects type estimators, semi-strong factors, in the case of experiment 1 A (heterogeneous slopes + full rank).

Bias (x 100)

Root mean square error ( x 100)

(N,T) 20 30 50 100 200 20 30 50 100 200
CCEMG
20 —0.09 —0.22 —0.07 0.09 —0.09 9.92 8.01 6.57 5.63 5.17
30 0.02 0.01 0.01 —0.11 0.10 7.74 6.21 5.14 4.43 4.10
50 —0.12 0.16 —0.11 0.14 —0.04 5.96 4.57 3.99 3.42 3.10
100 0.01 0.03 0.05 0.02 0.04 4.23 351 2.87 2.33 2.26
200 —0.06 0.01 —0.01 0.05 0.00 3.06 2.46 2.00 172 151
CCEP
20 0.09 —0.07 —0.06 0.04 —0.12 8.64 7.49 6.34 5.65 5.34
30 —-0.19 —0.10 0.09 —0.08 0.13 7.12 5.90 5.12 4.49 421
50 0.01 0.13 —0.05 0.13 —0.02 5.27 4.46 3.93 3.43 3.16
100 0.04 0.08 0.02 0.00 0.03 3.77 3.28 2.84 2.35 2.28
200 —0.07 —0.03 —0.04 0.05 0.00 2.68 2.30 1.96 1.70 153
CupBC
20 0.23 0.46 0.17 0.43 0.45 12.29 10.55 8.09 6.75 5.80
30 —0.20 0.09 0.38 0.20 0.49 9.53 8.03 6.39 5.14 4.58
50 0.39 0.37 0.06 0.20 0.15 7.34 6.08 5.07 3.99 3.40
100 0.18 0.18 0.06 0.05 0.09 4.99 4.40 3.61 2.69 2.45
200 0.00 0.03 0.03 0.09 0.01 3.77 3.03 2.55 1.98 1.64

Notes: The DGP of the same as that of Table 1, except that the factor loadings matrix I'; is multiplied by N~'/2 for all i. See also the notes to Table 1.

is violated. When the errors of a panel regression are cross-
sectionally correlated, then standard estimation methods do not
necessarily produce consistent estimates of the parameters of
interest. An influential strand of the relevant literature provides
a convenient parameterization of the problem in terms of a factor
model for the error terms.

Pesaran (2006) adopts an error multifactor structure and
suggests new estimators that take into account cross-sectional
dependence, making use of cross-sectional averages of the
dependent and explanatory variables. However, he focuses on the
case of weakly stationary factors that could be restrictive in some
applications. This paper provides a formal extension of the results
of Pesaran (2006) to the case where the unobserved factors are
allowed to follow unit root processes. It is shown that the main
results of Pesaran continue to hold in this more general case. This
is certainly of interest, given the fact that usually there are major
differences between results obtained for unit root and stationary

processes. When we consider the small-sample properties of the
new estimators, we observe that again the results accord with
the conclusions reached in the stationary case, lending further
support to the use of the CCE estimators irrespective of the order
of integration of the data observed. The Monte Carlo experiments
also show that the CCE type estimators are robust to a number of
important departures from the theory developed in this paper, and
in general have better small-sample properties than alternatives
that are available in the literature. Most importantly, the tests
based on CCE estimators have the correct size, whilst the factor-
based estimators (including the one recently proposed by Bai
et al. (2009)) show substantial size distortions even in the case of
relatively large samples.

Appendix A. Lemmas

Proofs of the lemmas are provided in Appendix B.
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Table 8

339

Small-sample properties of common correlated effects type estimators, one break in the means of unobserved factors, in the case of experiment 14 (heterogeneous

slopes + full rank).

Bias (x 100) Root mean square error ( x 100)
(N,T) 20 30 50 100 200 20 30 50 100 200
CCEMG
20 0.01 —0.10 —0.02 0.06 —0.07 9.66 7.82 6.74 5.87 5.54
30 0.14 —0.03 —0.02 —-0.13 0.10 7.68 6.08 5.11 4.54 422
50 —0.21 0.20 —0.11 0.14 —0.04 591 4.64 4.01 343 3.13
100 0.02 0.03 0.05 0.03 0.04 4.26 3.48 2.88 2.33 2.26
200 —0.08 —0.02 —0.02 0.06 0.00 3.08 249 2.01 1.72 1.51
CCEP
20 0.17 0.00 —0.05 0.00 —-0.13 8.73 7.61 6.86 6.30 6.21
30 —0.15 —0.13 0.07 —0.14 0.14 7.10 5.98 5.31 478 4.46
50 —0.03 0.18 —0.06 0.11 —0.01 5.30 4.53 3.97 3.47 3.21
100 0.05 0.09 0.04 0.01 0.02 3.80 3.26 2.85 2.34 2.28
200 —0.06 —0.04 —0.05 0.05 0.00 2.72 229 1.95 1.71 1.53
CupBC
20 0.52 0.77 0.79 0.80 0.89 11.18 9.87 8.39 7.52 6.97
30 0.32 0.58 0.77 0.58 0.84 8.91 7.80 6.55 5.68 5.27
50 0.58 0.75 0.38 0.61 0.54 6.78 6.01 5.03 418 3.82
100 0.28 0.35 0.38 0.29 0.32 4.85 4.22 341 2.75 2.55
200 0.10 0.08 0.08 0.23 0.17 3.57 293 244 2.01 1.69

Notes: The DGP is the same as that of Table 1, except that fy = ¢;; fort <

@it = @jc—1 + e, gie ~ IIDN(O, 1), j = 1, 2, 3. See also the notes to Table 1.

Lemma 1. Under Assumptions 1-4,

u'u 1
— =0, =

T N
V/U

FU 1
ERRA W
N
XU o 1 form )
= —— ), uniformly over i

T PAUN Y
QU 1

=" -0, —

T PN

QQ
? = Op(l)

,X'

Q'Tzl =0, (1), uniformly over i
QG
=0
HH
?:Op(l)
HG
? = Op(l)
I:I/si . .
T = 0p(1), uniformly over i
H'V; . )
T = 0,(1), uniformly over i
H'X; . .
T2 = 0,(1), uniformly over i
H'U —o ( 1 )

T  P\UN/’

(A3)

(A4)

(A.10)

(A11)

(A12)

(A.13)

(A.14)

[2T/3] and fiy = 1+ ¢ fort > |2T /3], with |A| being the greatest integer part of A, where

Lemma 2. Under Assumptions 1-4,
Vi _

1 1
=0,|—)+0,| = uniformly over i.
T <«/TN> g (N )

Lemma 3. Under Assumptions 1-4, and assuming that rank condi-
tion (9) holds,

(A.15)

X(MX; — XM, X =0, <i> , uniformly over i, (A.16)
T T VN

e, _Xither_o (1 )1o,(1)
T T VNT PAN)’
uniformly over i. (A17)

Lemma 4. Assume that the rank condition (9) holds. Then, under As-
sumptions 1-4,

XiMF _ 0 ! +0 ! uniformly over i
T ~— P\N PAXUNT )’ Y ’
Lemma 5. Under Assumptions 1-4,

XMXi (1
T vi — ¥p \/T .

(A.18)

Lemma 6. Under Assumptions 1-4, and assuming that the rank
condition (9) does not hold,

XMX; — XM X; =0, (1) ,  uniformly over i, (A.19)
T T VN

XMF _ X;M(F _ 0, <i> uniformly over i (A.20)
T T VN’ ’

X{Me;  X[Mgei —0 <L>+o (l)
T T P\ VNT PAN )’
uniformly over i. (A.21)

Lemma 7. Under Assumptions 1-4, and assuming that the rank
condition (9) does not hold,
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X;MF e—o (L) io (!
T PN P\ UNT )’
uniformly over i. (A.22)
Appendix B. Proofs of lemmas
Proof of Lemma 1. To prove (A.1), we first show that
Elul*=0 1 and E ||| =0 L (B.23)
t - N ) t = m . .
We recall that
1
_ -
=Ty ; Bivie (B.24)
Ve
where v, = % S B Then, by the cross-sectional indepen-

dence of v and B} specified in Assumptions 2 and 4, E TAlR

= va E| B ? and again by Assumptions 2 and 4, we have
Ellv* < X = O( )- Similarly, E (¢2) = 0 (5 ). Next, note that

T-'0'U = T (Z[:] utut), where the cross-product terms in
u,ut;, being functions of covariance stationary processes with fi-
nite fourth-order cumulants, are themselves stationary with finite
means and variances. Also, E ||T‘1[_I’l_1|| <T 'Y [ Elli? and
by (B23)E || T~'U’ UH = 0 (N™"), which establishes (A.1).

The result for V/ U/T in (A.Z) is established in Lemma 2 below.
The result for egl_I/T in (A.2) is established similarly to that for
V/U/T.

To establish (A.3), first we examine T~! (F’l_l). Consider the
¢th row of T~'(F'U) and note that it can be written as

o (Z i)

dently distributed processes, it easily follows that

. Since by assumption f;; and u, are indepen-

T T

r
Zf[tﬁ[ Z Z E (fﬁtflt’)
var | 2 _0 1 t=1¢'=1
T N T2

But, by standard unit root asymptotic analysis, we know that
> t—1 Y t—1 E (fufur) = 0(T?), and therefore

T
> feeite

=1 1
Var =0(—,
T N

which establishes that T~ ZLI foelly,r converges to its limit at the
desired rate of 0, (l/\/ﬁ). The result for T~! (D'U) is obtained

using the same line of arguments.
To establish (A.4), first note that

XU ,(D,F)U VU 1
=M-—— =0, —

T T T ~N
using (A.2) and (A.3), since the elements of IT; are assumed to be

bounded uniformly over i. _
To establish (A.5), recalling that Q = GP, and using (A.3),

QU (DF)U
U _ pr @B _o,,(

(B.25)

> , uniformly over i

\f) since the elements of P are assumed

to be bounded. (A.6) is established by QT/—ZQ =P GT/ZG P
since G'G/T? = 0,(1).
To establish (A.7), first note that

Q'X; -/<GG

GV:
T2

= =P (5 (B.26)

>m+w
The first termis O, (1) uniformly over i, since the elements of P and
IT; are assumed to be bounded in probability uniformly over i. For
the second term, under Assumptions 1-2, denoting gy, as the £th
element of g; and noting that sup; E (v;¢v/,) = 0 (1), we have that

T T T
D gV > > E(gugw)
t=1 t=1¢=1

sup Var =0(1)
i

TZ

But, by standard unit root asymptotic analysis, we know that
T /
S S E(gugw) =0 (T?),and therefore sup; Var (W)

= 0(1). Hence, G'V;/T = 0,(1) uniformly over i for sufficiently
large T. Therefore, as the elements of P are assumed to be bounded
in probability, the second term is 0, (1) uniformly over i, which es-
tablishes (A.7). (A.8) is straightforwardly proven, using (A.6).

To prove (A.9), recalling H = Q + U*, where U* = (0 U)

ﬁ*/ﬁ* Q/[_]* (]*/Q

T Tt

by (A.1), (A.5) and (A.6). To establish (A.10), & rz = P’Gf + "*’F =
0,(1), since G'F/T?is 0,(1). (A.11) is established because

=0,(1) (B.27)

I'-I/€j
T
since G’e;/T = 0,(1) uniformly over i, using the same line of the
argument as in the proof of (A.7). (A.12) can be proven similarly to

(A.11).
Next,
HX, QX U¥X,
P - T =M
by (A.4) and (A.7), which establishes (A.13). Finally, (A.14) follows
by the boundedness in probability of P and (A.3). O

/e. _*/ .
-+ L= 0,(1) uniformly over i,

=p (B.28)

uniformly over i

Proof of Lemma 2. In order to prove (A.15), we need to examine
more closely Lemma A.2. of Pesaran (2006). So, we have

Vi/l_] —1y//% —1 /N —1ys/v7
—=(T've+ ) V)Y V. TV,
j=1

where & = N~' Y1 ~13° | V;. Denote the tth
elementof e by &, = N~! ZN=1 &jr, and consider the first term on
the right-hand side (RHS) of (B.29). Since, by assumption, v;; and
g, are independently distributed covariance stationary processes
with zero means, it follows that

(B.29)

gandV =

T -
Z Vier €t

t=1 1 t=1t'=1 l -
—— | =0 - )su ,
T (N P T2

where I, (|t - t/|) is the autocovariance function of the station-
ary process, vj. But, by Assumption 2, sup; 2321 Fiye (Is]) < oo.

sup Var
i
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Therefore,
T -
Z Vigt €¢ 1
=1
sup Var =0(—, B.30
P ( NT) (B.30)
which establishes that
1
T-WWe=0 (—) , uniformly over i. (B.31)
i 14 /—TN

To see how (B.31) follows from (B.30), we note that, by the Markov
inequality,

T -
> Vietét
t=1
T

Pr (T_lvi/é > 6) < 672’

Var

for all i.

But, since for any two continuous functions f, g, if f (x) < g(x) for
all x, sup, f (x) < sup, g(x), it follows that

T -
> Vietét
t=1
T

sup Var
i

sup P (3 = ) = ——— -

proving that (B.31) follows from (B.30).
Consider the second term in (B.29), and note that

N / 1y *
V'V; V'v*.
(ND)'V Y Vi =N"" (T) ﬂi+( T )

=1

(B.32)

where V*, = N~! Z]’-V:L#i VjB;. Since B; is bounded, and, by

Assumption 2, plim;_, , (T~'V/V;) = X,; uniformly over i, it
follows that

V'V, 1
N1 (IT') Bi=0, (ﬁ) , uniformly over i.

Also, since the elements of V; and |_/fl- are independently dis-
tributed and covariance stationary, following the same line of anal-
ysis leading to (B.31), we have

(B.33)

% =0, (1) , uniformly over i. (B.34)
T JNT
Using (B.33) and (B.34) in (B.32) now yields
e 1 1
NV ;Vjﬂj =0, (m) +0p (ﬁ) :
uniformly over i. (B.35)

Finally, since the last term of (B.29) can be written as T”Vi’l_/ =
N7! (@) + 5 where V. = N7 > i1 4 Vs it also follows
that

_ 1 1
T*lvifv =0, («/W) + 0, (N) , uniformly over i, (B.36)

which completes the proof of Lemma 2. O

Proof of Lemma 3. We start by proving (A.16). We need to

X!MX; X! MgX; .
— - %‘“H.ButthlSlS

determine the order of probability of H

equal to

x/Q(QQ) ' QX
T

i

XH (H'H) " HX
T

i — xQ) (R) T AX,

<=
T

+ H %X{Q ()" - (@) )X,

|

1 1=
+ H +XQ Q@) (H'X — Q'X) “ (B.37)

We examine each of the above terms. So, noting that H=Q +U*
with U* = (0, U), we have

oA\ X
T2 T2

(B.38)

X/U*
T

(X/H — X/Q) (H'H)

o <]

1
=0, (—) , uniformly over i,

VN

by (A.4), (A.9) and (A.13). Next, we have
1 ’ o) ! A\~ 1\ o/
H X ((A) ' - (@) )HX,-H

TR XQ (HA\™
T? T?

/[_]* l_]*/
n Q Q
T T T
QQ\ ' HX;
x T2 T2

) , uniformly over i, (B.39)

1
=0, —
(&
by (A.1), (A.5), (A7), (A.9), (A.6) and (A.13). Finally,

XiQ <QQ>1
2 \ 12

X/U*
T

1 _ _
H +Xe (QQ) Y(H'X — QX)) H <

1
=0, —= uniformly over i, (B.40)
()
by (A.7), (A.6) and (A.4). Noting that M, = M, when the rank
condition is satisfied, substituting (B.38)-(B.40) into (B.37), we
have

1
=0, — ), uniformly overi,
-o(%)
as required.

Next, we consider (A.17). In particular, by a similar analysis to
that for (A.16), we have

XMX;  XM,X;
T T

X/Me;  X{Mge;
T T

1 - A
< HT (xH = xi) ('R) " H'ey

- H %X{Q ()" - (@) )i

1 1, -
+ H sXie (@) "(He— Qe (B41)

We examine each of the above terms. So, we have

| (i - xi@) (i) i
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<
- T

1| x/U*
T

HA\ 'He
T2 T

1
=0, —— ), uniformlyoveri,
’ (WT)

by (A.4), (A.9) and (A.11). Next, we have

(B.42)

| xe (i) - (@) e

1 -1

- l_]*/l_]* U*/Q Q/[_I*
- T

T T T
QQ\ 'H
T2 T

—) , uniformly over i,
NT

by (A.1), (A.5), (A.7), (A.9), (A.6) and (A.11). Finally,
XiQ (Q’Q>1
T? T?

1 1
=0, —)+0,| =), uniformlyoveri,
"(vm) "(N)

by (A7), (A.6) and (A.2). Noting that M; = M, when the rank
condition is satisfied, substituting (B.42)-(B.44) into (B.41) yields

1 1
=0, — |+0, | = uniformly over i,
g («/NT) ’ (N)

which establishes (A.17). O

XQ (HH
2 \ 12

X

=0, (B.43)

=

[_]*,6‘,'
T

(B.44)

X/Me; X Mge;
T T

Proof of Lemma 4. We start by noting that
MH = M (GP + U").
But MH = 0 and MD = 0, since H = (D, Z). Then

0 = (0, MF) ('3 g) + (0. mMU),

or MFC = —MU. Hence,

(UMF)C = -U'MU. (B.45)
Also, from above,
(X;MF) € = —X;MU. (B.46)
Note, however, that X; = GIT; + V;, and hence
XMU = (TG’ + V/) MU
= I} (¢'MU) + V/MU
D\ - - -
= (A, T <F,> MU + V/MU
/ / 0 IRATI
= (Ai’ Fz‘) F'MU +V;MU
= I''FFMU + V/MU. (B.47)

By the full rank assumption for € and substituting (B.47) in (B.46),
we obtain

1

(X/MF) = —[F'MUC (CC')"' —v/MUC' (CC')™'.  (B48)

Also, from (B.45),

(FMU) = — (CC')~' CU'MU. (B.49)
Then, using this result in (B.48), we have
A T/ N
| < i ey e |2
T T
-
n ’ vimy “ e @) . (B.50)

Since the norms of (CC’)”' € and I} are bounded, we need to
establish the probability orders of H U'MU/T H and H V/MU/T H .For
U'MU/T, using (A.1), (A.9) and (A.14), we have

U'MU 1
—=0,(=).
T N

Similarly, by (A.2) and (A.12),

(B.51)

i/ U =0 l o) 71 uniforml i (B 52)
= + y niror overili, .
T b N b VN1 y

and substituting (B.51) and (B.52) into (B.50) establishes the
result. O

Proof of Lemma 5. Recall that
Xi=GII; + V,, (B.53)

where G = (D, F) is the T x m + n matrix of (1) factors, and V; is
a stationary error matrix. Denote the OLS residuals of the multiple

regression (B.53) as Vi = X; — GIT;, where IT; = (G/G)_1 G'X;.
Observe that \7,- = M_X;. Then, we can write

A A ~ ~ ~ i
V0T = Vv =V (- ) /T + (- Vi) T
— —X'M,G (ﬁ,— - 111-) JT — (ﬁ,— - nl-) (6'vy/T)

A / /
= (f.—m) (c'vyT),

because M,G = 0. But, since (G'V;/T) = 0,(1) and (fli - Hi> =

0,(T™"), it follows that V/V;/T — V/V;/T = 0,(T~"). The required
result now follows since, under Assumption 2, V/V;/T — X,; =
0,(T~1/2), where X,; is a non-singular matrix. O

Proof of Lemma 6. The procedure in Lemma 3 can be used to
prove (A.19) and (A.21), but replacing all inverses with generalized
inverses. This is required since Q'Q has reduced rank when the
rank condition does not hold. We need to show that

RYES

where + denotes the Moore-Penrose inverse. To establish (B.54),
we need to show that

(52) - (%) =o ().

However, because the Moore-Penrose inverse is not a continuous
function, it is not sufficient that

(%)= (%) -0 (57):

Xe[(EA) - (@) A

uniformly over i, (B.54)

(B.55)

(B.56)
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for (B.55) to hold. But, by Theorem 2 of Andrews (1987), (B.56) is
sufficient for (B.55), if additionally, as (N, T) EN 00,

H'H ’
lim Pr (rk( ) = rk(QQ>> =1,
j T2 T2
N, T > o

where rk(A) denotes the rank of A. But,
/H Q/Q l_]*/l_’* Q/l_]* ﬁ*/Q
T2 T2 7 Tt
with

lim Pr( >e> =0
NTS oo

forall € > 0. Also, rk(T~2Q'Q) = n + rk(C), for all N and T, with

k(T™2Q'Q) — n+1k(C) < n+mas (N, T) 4 . Using these
results, it is now easily seen that condition (B.57) in fact holds.
Hence, the desired result follows.

Consider now (A.20). Following a similar line of analysis used to
establish (A.19), we have

n H Ixe ((ER) - (QQ)") ¥ ’

1 _
+ H -XiQ (Q'Q)" (HF - Q'F) H . (B58)

(B.57)

l']*/i,* /l-]* l']*/
— + U, U
T T2 T2

XMF  X/M,F
T T

< |7 (A - x0Q) (i) e

Consider each of the above terms in turn. First,

Y i - x/Q) (R)TEF| =0, (—

T i i - \/N ’

uniformly over i, (B.59)
by (A.4), (A.9) and (A.10). Second, by (B.55) and (B.56),

1 ’ oo\ T / + | o _ i
“Txiq[(ﬂn) - (QQ) ]HF‘ _op< N),

uniformly over i,
if HQ/TQ _ b ” =0, (%) We have

H'H

“ % - — H ( ) uniformly over i (B.60)
by (A.1), A.9), (A.6) and (A.10). Finally,

1 / / + (5 / ]

=X HF —Q'F)|| =0, — |,
HT Q@) (7 - <o, ()

uniformly over i, (B.61)

by (A.7), (A.6) and (A.3). Substituting (B.59)-(B.61) into (B.58)
yields the required result. O

Proof of Lemma 7. The result immediately follows from (B.48),
(B.49),(B.51)and (B.52). O

Appendix C. Proofs of theorems for pooled estimators

Proof of Theorem 1. We know that

- L 1 & _
:<}’+Fﬂ+NZFi%iyr>,

i=1

where ' = 1 "V Ijandy = & 3°) | p;. Substituting this result
in (A.22) now yields

X'MF i} 1
( IT )(}_'+Fﬂ+NZFi”i)
i=1

1 1
=0, (N) + 0, (W) ,  uniformly over i,
X/{MF r=o0 1 +0 ! niformly over i
— — —— ), uni ver i,
AN/ TP UUNT g

which in turn yields

e ( Z“’") =0, <}) +O”<¢1T>’

uniformly over i.

But, under Assumption 4, % Zf’zl Tix; = 0,(N~1/2), and therefore

R (1))

uniformly over i. (C.62)

We next reconsider the second term on the RHS of (35), which is
the only term affected by the fact that the rank condition does not
hold. The second term on the RHS in (35) can be written as

1N /xMx\ " [VNXMF\ ,_ _
XNTENZ< T2 l) ( T2 )(”+’7i_’7)’ (C63)

i=1

where ) = & 3", ;. By (A.19) and (A.20), it follows that

1 (XMX\" [ vVNX/M,F
Xnr = N Z T2 T2

i=1

x (;"+m—ﬁ)+op<ﬁ).

Note that, for the above two expressions, we have changed the
normalization from T to T2. This is because, in the case where the
rank condition does not hold, the use of cross-sectional averages
is not sufficient to remove the effect of the I(1) unobserved
factors, and so X/MX;, X;MF, X_M,X; and X/M,F would involve
VN(X/MF)y
=
O (Tf) + 0, (T3/2) uniformly over i, it is the case that, for N

(C.64)

non-stationary components. Then, since, by (C.62),

and T large,
. 1 & N /XM X
‘/N(bMG_ﬂ)iﬁ;”i Z( >
X'M,F
< 'TZ" ) (m — 7). (C.65)

We next focus on analysing the RHS of (C.65). The first term on
the RHS of (C.65) tends to a Normal density with mean zero and
finite variance. The second term needs further analysis. Letting

O = XM X\ " (X M,F
1T — T2 T2

and Qir = + >, Quir, we have that

N 1 &
Z lzT Z Qur — Q1T
i=1 N i=1

(C.66)



344 G. Kapetanios et al. / Journal of Econometrics 160 (2011) 326-348

We note that »; is i.i.d. with zero mean and finite variance and
independent of all other stochastic quantities in the second term
of the RHS on (C.66). We define

Qs — XM, _X;\" (XM, _F
1iT,—i — T2 T2

and Qir—; = N LS Qi i, where My i = IT - Q(Q,Q-D"
Q1 Q=GP P = (b &)Bi=4 Band C ; =
x C. Then, it is straightforward that

J 1j#i

J 1j#i

_ - 1
(Qur — Qir) — (Quir—i — Qir—i) = 0, <N> ,  uniformly over i,

g
- 2

N 1N .
N Z Quir — QlT N Z Qir,—i — Qir—i) n;
i=1

i=1
1
=% N2 )

Then, it is easy to show that, if z; = x;y5, x; is an i.i.d. sequence
with zero mean and finite variance and yr; is a triangular array
of random variables with finite variance, then zy; is a martingale
difference triangular array for which a central limit theorem holds
(see, e.g., Theorem 24.3 of Davidson (1994)). But this is the case
here, for any ordering over i, setting yr; = (Qur,—i — Qir,—i) and
X; = ;. Using this result, it follows that the second term on the RHS
of (C.65) tends to a Normal density if (Qir — Q1T) y; has variance
with finite norm, uniformly over i, denoted by ¥,r; i.e,,

=

Zigr = Var[(Qur — Qir)n;.

In order to establish the existence of second moments, it
is sufficient to prove that |[(Qir — Qur)|l, or equivalently
| (Quir,—i — Qir,—i)||, has finite second moments. We carry out the

analysis for H Qur — Q1T ” For this, we need to provide further

(C.67)

analysis of ' " ! and ’ q . First, note that X; can be written as

Xi = QB;; + 5B, + Vi, (C.68)

where S is the T x m — k — 1-dimensional complement of Q, i.e.,
Q and S are orthogonal, and

F = QK, + SK>, (C.69)

where K; and K, are full row rank matrices of constants with
bounded norm. Note that, if m < 2k + 1, we assume, without loss
of generality, that B, has full row rank, whereas, if m > 2k+ 1, By
has full column rank. Then,
X{MqX,- = X{Mq (QB;; +SB;; +V;) = X{MqSBiz + X{MqV,-

= B;,S'M,SB;, + V/M,V; + B,,S'M;V; + V/M,SB,.
But it easily follows that

V/M,V; 1 .
! =0p,| =), uniformlyoveri,
T

TZ
and
B, S'"M,V; 1 . .
—~——— =0, =), uniformly overi.

T2 T

Then,
X/ M X; S's 1 . .

2 =B,— T2 B + 0, 7) uniformly over i. (C.70)

Similarly, using (C.69),
X/M,F S's

T2 ~ T2 F
Thus,

XM X\ " [ XM,F LSS \"(. SS
T2 Tz = Biz ?B,‘Z Bi2 FKZ

1
+0p <¥> , uniformly overi.

1
K, + 0, <¥> , uniformly over i.

We need to distinguish between two cases. In the first case m >

2k + 1. Then, it is easy to see that X":'qu’ and B33 72 3B, have
an inverse. Then, by Assumption 7(ii), [|(Qir — Qir)| has finite
second moments. The case where m < 2k 1is more complicated.
Denoting A = T2§’S and B;; = A'/?B;;, we have

. S'S -
Biz FBI'Z = BiZBiz'

Nt -
Then, noting that (B;ZB,‘Z) = B},B;;, and since in this case B;, has
full row rank,

~ -1, _
Bg = Bgz (BiZBéz) A 1/2’

and we obtain

Hence,

XMX\"* /X'M,F 4 1
( szq z) ( szq )=B§z (B:B,) " K; + 0, (;)

uniformly over i,

and the required result now follows by the boundedness assump-
tion for B;; and K,. The assumption that B;, has full row rank if
m < 2k+ 1implies that the whole of S enters the equations for X;.
If that is not the case, then the argument above has to be modified
as follows. We have that

X; = QB;; +S$B, +V,

where S; is a subset of S. Then,

X/M,X; S!S
T2 PRTr2

1
B + 0, <¥> , uniformly over i,

and the analysis proceeds as above until

XMX;\ " ( X/M,F S (Ss\!
( szq 1) ( szq >=B;2 (BizB;Z) ( ;21>
S,S K, +0, ! uniformly over i
X , .
T2 )™ T v

Then, the required result follows by the boundedness assumption
for B, and K> and by Assumption 7(iii), which implies that

s's;\ 7!
£ ()

Thus, in general, we have that

< Q.

VN(buc — B) > N(©, Zye),  as (N, T) > oo,
where

Tuc = 2, + A, (C.72)
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and

A= lim

1 &
i — Yt |-
NT—oco | N ; iqT
To complete the proof, we have to consider two further issues.

First, we note that, in (C.65), we disregard a term involving

XIMgX; \ T [ X!Myge; .
( 7 ’) (IT"E’) In particular, we have to prove that

D ECE (5)-0)

’ N\ T / .
For this, it is enough to show that — PR (Xf’;"qu’) <%>
follows a central limit theorem. This holds under the following
1 ‘71

(C.73)

(C.74)

conditions: (i) for any ordering of the cross-sectional units,

. . X!MgX XM,
is a martingale difference; (ii) (%) (%) has finite second

moments. (ii) follows easily from the above argument about the
M,,xl + xi’MqF)
T

existence of moments of Then, one has to

simply prove (i). We need to show that, for any ordering,

E(Q*IQ* ) =0, (C.75)
where 0* XIMexi\ T Xqu, D e (XIMgXi\ T

Q 2 enote Q" = 2 .
Then Q = Q* (XM"E’ Now % T thl S¢&i¢, where

s is a unit root process (see the definition of § in (C.68) above).

Then, for (C.75) to hold it is sufficient to note that, for all ¢, I,

E(Q;*st€it|Q**s;gi—11) = 0. This completes the proof of (C.74).
Finally, we need to show that the variance estimator given by

. T e o s
Swe = 5 ;(bi — bug) (b — buc), (C.76)
is consistent. To see this, first note that
N 1 1
b — B =i+ hr + 0 N +0p i)
uniformly over i, (C.77)
where
W (XX XE (1, ) + e -
iT — T2 Tz ) ( . )
and so

~ ~ - 1 1
b; — by = (%; — %) + (hiT —hT) +Op (\/ﬁ) +Op (ﬁ) s

uniformly over i, (C.79)

where l_tT = %ZL h;r. Since, by assumption, x; and h;; are
independently distributed across i,

1 N (A A A A !
—— > (b —buc) (b — buc)
N-135

1 1
=Xuc+0| —=)+0,| —= ),
Her (m) ’ (ﬁ)
and the desired result follows. O

Proof of Theorem 2. As before, the pooled estimator, i)p, defined
by (20), can be written as

Noxmx:\
VN(bp — B) = ( > s )

i=1

1 & XM(X,x,+€)

— , C.80

[ N; 2 T} (C.80)
where

N (X/MF

vt = Z ) (C81)

ﬂ\

Assuming random coefficients, we note that y; = y+n;—
- 1 N
= § 2i=1 ;- Hence,

o — NZ<«/_;(2MF> \/_Z(XMF> i),

i=1

n, where

But, by (C.62), the first component of gyr is O, (ﬁ) +0, (ﬂ%)

Substituting this result in (C.80), and making use of (33) and (34),
we have

. 1 xmx
Jﬁ(bp—ﬂ)=<NZ T )

i=1

|: 1 Z ,Mq(X1”1+€1+F(" "))i|

2
i=1 T

) o)

Also, by Assumption 7, when the rank condition is not satisfied,
N ZN XMq ! is non-singular. Further, by (C.70),

7ZXMX 7231”2 lz+op<%>.

We note that, by Assumption 3, B;; is an i.i.d. sequence with fi-
nite second moments. Further, by Assumption 7, it follows that

(C.82)

2
$5| < oo. Hence, T~2B/,S'SB;, forms asymptotically a mar-

tingale difference triangular array with finite mean and variance
and, as aresult, T~2B/,S'SB;, obeys the martingale difference trian-
gular array law of large numbers across i (see, e.g., Theorem 19.7 of
Davidson (1994)) and, therefore, its mean tends to a non-stochastic
limit which we denote by @; i.e.,

1 N
= 1 —_ B )
©= lm (N ; @1r> : (C.83)
where
O =E (T°B;,S'SBy) . (C.84)

But, by similar arguments to those used for the mean group esti-
mator in the case when the rank condition does not hold, we can
show that

1 X/ MqX, d
— Z i—N (O, 2,
ﬁ i=1 Tz
where

(C.85)
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and E; = Var [T72X/M,X;x;]. Further, by independence of &;
across i,

IZXMM: (5):

Further, letting Qur = T~2X/M,F and Q;r = % Zf’zl Quir, we have

fz( 2E) —ﬁ)=jﬁg<qm—éﬂ)n,

Then, similarly to the analysis used above for T*ZX{ M,X;, we have

N
—Z Qir — Q) 1> N (0, ®)

N -
where

1 N
o= lim (N ; qu,-) (C.86)
and
&r; = Var[(Qar — Qr)nil. (C87)

Thus, overall, by the independence of x; and p;, it follows that

VN(by — B) -5 N@©, 22), as(N,T) > oo, (C88)
where
B=0"(E+0)0", (C.89)

proving the result for the pooled estimator. The result for the con-
sistency of the variance estimator follows along similar lines to that
for the mean group estimator. O

Appendix D

Proof of Corollary 1. Using (E.106), we have

V(b ) = ZxHr Zm(«/_XMF)yi
N A—] \/_XMel
N; ( T )

where li/g = Tflxi’MX,». As we assume that the rank condition (9)
is satisfied, we have, by Lemma 4, that

0 ()0 (5)

uniformly over i,

(D.90)

(D.91)

and so, by the uniform boundedness assumption on p;, and by
(A.16), we have that

o (), 0 ()00 ()

uniformly over i,

and so

e (), ()0 ()

By Lemma 3, we have that

o (58 o ()0 ()

uniformly over i,

which implies that

2”: (f X’Me,) 1 XN: (x;ng,-)l VNX'M,e;
i=1 N i=1 T T

+0, <%) +0, (ﬁ) . (D92)

We examine the behaviour of the first term on the RHS of (D.92).
We wish to show that

2 \

Xng,>1XMge, ( 1 )
=0,(—=). (D.93)
N 7 =o (5
’ N =1 g/ .
For this, we have to show that (x,.n:gxl) x"ﬁs’ has mean

zero with bounded variance uniformly over i. We analyze

X/ Mge; X[Mgei XM

v . We have =
(V,-/+(91,i—91,i)5’)(€i+(9z,i—0z,i)5)

ﬁ ~

regression coefficient of X/ on G and 6, ; is the estimated regression

coefficient of &; on G.But (61, —61,;) = O,(T~") and (6>, — 0, =

0,(T™1). So

Mge; . .
2%l This can then be written
JT

, Where 91,11 is the estimated

<V/ + (01— 01,)G’ ( + (8, — 02,:’)G>

VT
_ 01— 0,)Ge;  V/(B,; —0,)G
VT VT VT
n 61— 0:)G'G0y; — 02,1‘).
VT

But the last three terms are O, ( ) So it suffices to show that

NG
fTT’ has mean zero with bounded variance uniformly over i, which
follows from our assumptions. Thus, from (D.92) and (D.93), we

have
o 1
N (buc — B) = Zx,wp( >+op<ﬁ).
Hence,
N (BMG — ﬂ) L N@©, 2,), as(N,T)=> cc. (D.94)
82, can be consistently estimated by
~ 1 N A A A !
Sue = 5= 2 (b = bc) (b — buc) - (D95)

i=1

To show this, from the proof of Theorem 3, we first note that

(Bi - BMG) = (B;— B) + 0, <%> +0, (%) ,

uniformly over i,

B=x)

1 N (A N N N ’
b — bMG) (bi — buc)
N—1 i=1

which yields (noting that §; —



G. Kapetanios et al. / Journal of Econometrics 160 (2011) 326-348 347

_IZJ{,}{ +Op<f>+0p<jﬁ).

But by the assumption that ; has finite fourth moments, and using
the law of large numbers for i.i.d. processes, it readily follows that

Sve — 2as(N,T) b oo. O

Proof of Corollary 2. Assuming that the rank condition is satis-
fied, bp, defined by (20), can be written as

- -1
(o) = (152

X/M (Xix;
L/_ > # - qu} ,  (D.96)

where
1 < VN (X;MF) y
D.97
Ant N; T ( )
By (D.91), qvr = O, (%) +o,,(f) Thus,
. 1L xomx\
(o) = (3 1)
ZXM(X):I+€):|
|:\/— i=1
! >+o < ! ) (D.98)
T PAUN/ '
Further, by (A.17),
(i 13 xmMx;\
N(,, _ ): B W
- B (N; T
[1 Z ’MXx,—l—XMge,]
i=1 T
+O(1>+O<1> (D.99)
p \/T p «/N . .
By (A.16) and, since by Assumption 6 N~' 3" | T~'X/MX; is non-
singular, we have
1 xemx\ 7,
i 1 *—1
_ plat el vt
25
where ¥* = 11m ( 122‘,1). (D.100)

Next, we examine the second component of the first term of the
RHS on (D.98). We first consider f ZN X MX’ #;. We define M_;
as M = Iy — H(H H.) 'H, where H; = (D,Z_),

ZisaT x (k + 1) matrix of observations on d; and z; _; and
Mx,

j 1,j»i Zit- Then, it is straightforward to see that =5—

17" = 0y (). uniformly over i, and so

where the uniformity follows by the assumption that »; has
uniformly finite fourth moments. Since #; is i.i.d. and indepen-
dent of all other stochastic quantities in the model, it follows
that ¥y = T’lxi’M_,-X,-x,- is a martingale difference triangular
array, since, for any ordering of the cross-sectional units,
E(T7'X/M_iXjx;li — 1,...,1) = 0.Then, as long as E[|T~'X/M_;
X;||?> < oo, which is satisfied by Assumption 6, a central limit the-
orem holds for #p;, by Theorem 24.3 of Davidson (1994). Also, by
Assumption 2(ii) of this paper, Theorem 1 of De Jong (1997) and
Example 17.17 of Davidson (1994), it follows that

(D.102)

1 ¢ 1
= Viegir = Op <—> , uniformly over i,
T ; VT

N X Mgé‘l

which implies that f it =0, (\/>> Hence, as (N, T)

EN 00, /N (b — ﬂ) — N(0, X3), where

N
R* = lim N—1§ zvm], (D.103)
N,T—>oo|: P

. X/ Mg X; . .
where X, oir denotes the variance of ’Tg‘}q. The variance esti-
mator for X} suggested by Pesaran (2006) is given by

E;k) — lI/*_lR*lll*_l,

Ak—1A A 1
=0 RV, (D.104)
where
N Y
ok X'MX;
/2 :N—l i ,
> (F)
i=1
1 N/ X/MX;
R — < i z) (BI_I;MG) (D.105)
(N—1) ; T

x (b buc) ("”;”“) .

By a similar argument to that used to show the consistency of the
variance estimator in the MG estimator case, it is easy to show that
this variance estimator is consistent. [

Appendix E

Proof of Theorem 3. Using (25) in (15), we have

- _‘1 -
. X/MX; X/MF
o (X)),
L (XmX, X/ Me;
T T )

Using (A.17) and (A.18), and assuming that the rank condition (9)
is satisfied, we have

- ~1
N X/ MX; X/M,e;
bi a ﬂi - ( 1 T l) ( , Tg 1)

() o (3)

For N and T sufficiently large, the distribution of /T (ﬁ,- — ﬂi)

will be asymptotically normal if the rank condition (9) is satisfied
and if VT/N — 0as N and T — oo. To see why this additional
condition is needed, using (E.107), note that

(E.106)

(E.107)
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(o-n) = () 2

()0 )

and the asymptotic distribution of JT (lA)i — ﬂi> will be free of

(E.108)

nuisance parameters only if ﬁ/N — 0,as (N, T) 2 50. We now
give the necessary arguments for showing that the first term on
the RHS of (E.108) is asymptotically normally distributed. We note
that

X{Mgé‘,'

R 1 1 <
=— n—n»)—E g + —= ) Viegir. (E.109)
ﬁ ( 1 1 ﬁ o tCit ﬁ; iteit

But, it is straightforward to show that the first term of (E.109) is
0,(T~1/2) when g; is I(1). Then, we need to obtain a central limit
theorem for the second term of (E.109). But, by the martingale
difference assumption on &g, it follows that vie; is also a
martingale difference sequence with finite variance given by
a,-z X,. Then, by Theorem 24.3 of Davidson (1994), it follows that

1< d
— Z Vit€it —> N(O, Ol-z Z"i)'

VT 5

Further, by (A.16), and noting that, by Assumptions 5 and 6,
X/MX;/T and X/M,X;/T are non-singular, we also have

XMX\ " XIMgX; (L
T T "\UN/’

and, by Lemma 5, it follows that (XX o > 1=0,(L1
, by : T b ().

vi

(E.110)

finally implying that

ﬁ(& —ﬁ,-)—d>N(0,0i22‘;1), (E111)

and that a consistent estimator of the asymptotic variance can be
obtained by

- -1
_, [ X/MX;
)

(.Vi - Xii’i>/ﬂ-/’ (J’i - Xii’i)
T—(n+2k+1)

where 67 = (E.112)
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