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a b s t r a c t

The presence of cross-sectionally correlated error terms invalidates much inferential theory of panel
data models. Recently, work by Pesaran (2006) has suggested a method which makes use of cross-
sectional averages to provide valid inference in the case of stationary panel regressions with amultifactor
error structure. This paper extends this work and examines the important case where the unobservable
common factors follow unit root processes. The extension to I(1) processes is remarkable on two counts.
First, it is of great interest to note that while intermediate results needed for deriving the asymptotic
distribution of the panel estimators differ between the I(1) and I(0) cases, the final results are surprisingly
similar. This is in direct contrast to the standard distributional results for I(1) processes that radically
differ from those for I(0) processes. Second, it is worth noting the significant extra technical demands
required to prove the new results. The theoretical findings are further supported for small samples via an
extensive Monte Carlo study. In particular, the results of the Monte Carlo study suggest that the cross-
sectional-average-based method is robust to a wide variety of data generation processes and has lower
biases than the alternative estimation methods considered in the paper.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Panel data sets have been increasingly used in economics to
analyze complex economic phenomena. One of their attractions is
the ability to use an extended data set to obtain information about
parameters of interest which are assumed to have common values
across panel units. Most of the work carried out on panel data
has usually assumed some formof cross-sectional independence to
derive the theoretical properties of various inferential procedures.
However, such assumptions are often suspect, and as a result
recent advances in the literature have focused on estimation of
panel data models subject to error cross-sectional dependence.

A number of different approaches have been advanced for this
purpose. In the case of spatial data sets where a natural immutable
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distance measure is available, the dependence is often captured
through ‘‘spatial lags’’ using techniques familiar from the time
series literature. In economic applications, spatial techniques are
often adapted using alternative measures of ‘‘economic distance’’.
This approach is exemplified in work by Lee and Pesaran (1993),
Conley and Dupor (2003), Conley and Topa (2002) and Pesaran
et al. (2004), as well as the literature on spatial econometrics
recently surveyed by Anselin (2001). In the case of panel data
models where the cross-section dimension (N) is small (typically
N < 10) and the time series dimension (T ) is large, the standard
approach is to treat the equations from the different cross-section
units as a system of seemingly unrelated regression equations
(SURE) and then estimate the system by generalized least squares
(GLS) techniques.

The SURE approach is not applicable if the errors are correlated
with the regressors and/or if the panels under consideration
have a large cross-sectional dimension. This has led a number
of investigators to consider unobserved factor models, where
the cross-section error correlations are defined in terms of the
factor loadings. The use of unobserved factors also allows for
a certain degree of correlation between the idiosyncratic errors
and the unobserved factors. Use of factor models is not new in
economics, and dates back to the pioneering work of Stone (1947),
who applied the principal component (PC) analysis of Hotelling
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to US macroeconomic time series over the period 1922–1938
and was able to demonstrate that three factors (namely total
income, its rate of change and a time trend) explained over
97% of the total variations of all the 17 macro variables that he
had considered. Until recently, subsequent applications of the PC
approach to economic times series has been primarily in finance.
See, for example, Chamberlain and Rothschild (1983), Connor
and Korajzcyk (1986) and Connor (1988). But more recently the
unobserved factor models have gained popularity for forecasting
with a large number of variables, as advocated by Stock and
Watson (2002). The factor model is used very much in the spirit
of the original work by Stone, in order to summarize the empirical
content of a large number of macroeconomics variables by a small
set of factors which, when estimated using principal components,
is then used for further modelling and/or forecasting. Related
literature on dynamic factor models has also been put forward by
Forni and Reichlin (1998) and Forni et al. (2000).

Recent uses of factor models in forecasting focus on the consis-
tent estimation of unobserved factors and their loadings. Related
theoretical advances by Bai and Ng (2002) and Bai (2003) are also
concerned with the estimation and selection of unobserved fac-
tors and do not consider the estimation and inference problems in
standard panel datamodels, where the objects of interest are slope
coefficients of the conditioning variables (regressors). In such pan-
els, the unobserved factors are viewed as nuisance variables, in-
troduced primarily to model the cross-section dependences of the
error terms in a parsimonious manner relative to the SURE formu-
lation.

Despite these differences, knowledge of factor models could
still be useful for the analysis of panel data models if it is believed
that the errors might be cross-sectionally correlated. Disregarding
the possible factor structure of the errors in panel data models can
lead to inconsistent parameter estimates and incorrect inference.
Coakley et al. (2002) suggest a possible solution to the problem us-
ing themethod of Stock andWatson (2002). But, as Pesaran (2006)
shows, the PC approach proposed by Coakley et al. (2002) can
still yield inconsistent estimates. Pesaran (2006) suggests a new
approach by noting that linear combinations of the unobserved
factors can be well approximated by cross-section averages of the
dependent variable and the observed regressors. This leads to a
newset of estimators, referred to as the CommonCorrelated Effects
(CCE) estimators, that can be computed by running standard panel
regressions augmented with the cross-section averages of the de-
pendent and independent variables. The CCE procedure is appli-
cable to panels with a single factor or multiple unobserved fac-
tors, and it does not necessarily require the number of unobserved
factors to be smaller than the number of observed cross-section
averages.

In this paper, we extend the analysis of Pesaran (2006) to the
casewhere the unobserved common factors are integrated of order
1, or I(1). Our analysis does not require an a priori knowledge
of the number of unobserved factors. It is only required that the
number of unobserved factors remains fixed as the sample size is
increased. The extension of the results of Pesaran (2006) to the I(1)
case is far from straightforward, and it involves the development of
new intermediate results that could be of relevance to the analysis
of panels with unit roots. It is also remarkable in the sense that,
whilst the intermediate results needed for deriving the asymptotic
distribution of the panel estimators differ between the I(1) and
I(0) cases, the final results are surprisingly similar. This is in direct
contrast to the usual phenomenon whereby distributional results
for I(1) processes are radically different to those for I(0) processes
and involve functionals of Brownian motion whose use requires
separate tabulations of critical values.

It is very important to appreciate that our primary focus is
on estimating the coefficients of the panel regression model.

We do not wish to investigate the (co-)integration properties
of the unobserved factors. Rather, our focus is robustness to
the properties of the unobserved factors, for the estimation
of the coefficients of the observed regressors that vary over
time as well as over the cross-section units. In this sense, the
extension provided by ourwork is of great importance in empirical
applications where the integration properties of the unobserved
common factors are typically unknown. In the CCE approach, the
nature of the factors does not matter for inferential analysis of the
coefficients of the observed variables. The theoretical findings of
the paper are further supported for small samples via an extensive
Monte Carlo study. In particular, the results of the Monte Carlo
study clearly show that the CCE estimator is robust to a wide
variety of data generation processes and has lower biases than all
of the alternative estimation methods considered in the paper.

The structure of the paper is as follows. Section 2 provides an
overview of the method suggested by Pesaran (2006) in the case
of stationary factor processes. Section 3 provides the theoretical
framework of the analysis of non-stationarity. In this section, the
theoretical properties of the various estimators are presented.
Section 4 presents an extensive Monte Carlo study, and Section 5
concludes. TheAppendices contain proofs of the theoretical results.
Notation: K stands for a finite positive constant, ‖A‖ =

[Tr(AA′)]1/2 is the Frobenius norm of the m × n matrix A, and A+

denotes the Moore–Penrose inverse of A. rk(A) denotes the rank
of A. supi Wi is the supremum of Wi over i. an = O(bn) states
that the deterministic sequence {an} is at most of order bn, xn =

Op(yn) states that the vector of random variables, xn, is at most
of order yn in probability, and xn = op(yn) is of smaller order
in probability than yn;

q.m.
→ denotes convergence in quadratic

mean (or mean square error),
p

→ convergence in probability,
d

→ convergence in distribution, and d∼ asymptotic equivalence
of probability distributions. All asymptotics are carried out
under N → ∞, either with a fixed T , or jointly with T → ∞. Joint

convergence of N and T will be denoted by (N, T )
j

→ ∞.
Restrictions (if any) on the relative rates of convergence of N and
T will be specified separately.

2. Panel data models with observed and unobserved common
effects

In this section, we review the methodology introduced in
Pesaran (2006). Let yit be the observation on the ith cross-section
unit at time t for i = 1, 2, . . . ,N; t = 1, 2, . . . , T , and suppose
that it is generated according to the following linear heterogeneous
panel data model:

yit = α′

idt + β′

ixit + γ ′

ift + εit , (1)

where dt is an n × 1 vector of observed common effects, which
is partitioned as dt = (d ′

1t , d
′

2t)
′, where d1t is an n1 × 1 vector of

deterministic components such as intercepts or seasonal dummies
and d2t is an n2 × 1 vector of unit root stochastic observed
common effects, with n = n1 + n2, xit is a k× 1 vector of observed
individual-specific regressors on the ith cross-section unit at time
t , ft is the m × 1 vector of unobserved common effects, and εit
are the individual-specific (idiosyncratic) errors assumed to be
independently distributed of (dt , xit). The unobserved factors, ft ,
could be correlatedwith (dt , xit), and to allow for such a possibility
the following specification for the individual specific regressors
will be considered:

xit = A′

idt + Γ ′

ift + vit , (2)

where Ai and Γ i are n × k and m × k factor loading matrices with
fixed and bounded components, and vit = (vi1t , . . . , vikt)

′ are the
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specific components of xit distributed independently of the com-
mon effects and across i, but assumed to follow general covariance
stationary processes. In our set-up, εit is assumed to be stationary,
which implies that, in the case where ft and/or dt contain unit root
processes, then yit , xit , dt and ft must be cointegrated.1 Some of the
implications of this property are explored further in Remark 6.

Combining (1) and (2), we now have

zit
(k+1)×1

=


yit
xit


= B′

i
(k+1)×n

dt
n×1

+ C ′

i
(k+1)×m

ft
m×1

+ uit
(k+1)×1

, (3)

where

uit =


εit + β′

ivit
vit


=


1 β′

i
0 Ik


εit
vit


, (4)

Bi =

αi Ai

  1 0
βi Ik


,

Ci =

γ i Γ i

  1 0
βi Ik


,

(5)

Ik is an identity matrix of order k, and the rank of Ci is determined
by the rank of the m × (k + 1) matrix of the unobserved factor
loadings

Γ̃ i =

γ i Γ i


. (6)

As discussed in Pesaran (2006), the above set-up is sufficiently gen-
eral and renders a variety of panel data models as special cases.
In the panel literature with T small and N large, the primary pa-
rameters of interest are the means of the individual specific slope
coefficients, βi, i = 1, 2, . . . ,N . The common factor loadings, αi
and γ i, are generally treated as nuisance parameters. In cases
where both N and T are large, it is also possible to consider con-
sistent estimation of the factor loadings, but this topic will not be
pursued here. The presence of unobserved factors in (1) implies
that estimation of βi and its cross-sectional mean cannot be un-
dertaken using standard methods. Pesaran (2006) has suggested
using cross-section averages of yit and xit to deal with the effects
of proxies for the unobserved factors in (1). To see why such an ap-
proach could work, consider simple cross-section averages of the
equations in (3)2:

z̄t = B̄′dt + C̄ ′ft + ūt , (7)

where

z̄t =
1
N

N−
i=1

zit , ūt =
1
N

N−
i=1

uit ,

and

B̄ =
1
N

N−
i=1

Bi, C̄ =
1
N

N−
i=1

Ci. (8)

We distinguish between two important cases: when the rank
condition

rk(C̄) = m ≤ k + 1, for all N, and as N → ∞, (9)

1 However, as will be shown later, our results on the estimators of β hold even
if the factor loadings γ i and/or Γ i are zero (or weak in the sense of Chudik et al.
(forthcoming)), and it is not necessary that xit and ft are cointegrated. What is
required for our results is that, conditional on dt and ft , the idiosyncratic errors εit
and vit are stationary.
2 Pesaran (2006) considers cross-section weighted averages that are more

general. But to simplify the expositionwe confine our discussion to simple averages
throughout.

holds, and when it does not. Under the former, the analysis
simplifies considerably, since it is possible to proxy the unobserved
factors by linear combinations of cross-section averages, z̄t , and
the observed common components, dt . But if the rank condition
is not satisfied, this is not possible, although as we shall see it is
still possible to consistently estimate the mean of the regression
coefficients, β, by the CCE procedure.

In the case where the rank condition is met, we have

ft = ( ¯CC̄
′

)−1C̄(z̄t − B̄′dt − ūt). (10)

But since

ūt
q.m.
→ 0, as N → ∞, for each t, (11)

and

C̄
p

→ C = Γ̃


1 0
β Ik


, as N → ∞, (12)

where

Γ̃ = (E(γ i), E(Γ i)) = (γ,Γ ), (13)

it follows, assuming that Rank (Γ̃ ) = m, that

ft − (CC ′)−1C(z̄t − B̄′dt)
q.m.
→ 0, as N → ∞.

This suggests that, for sufficiently large N , it is valid to use h̄t =

(d ′
t , z̄

′
t)

′ as observable proxies for ft . This result holds irrespective
of whether the unobserved factor loadings, γ i and Γ i, are fixed or
random.

When the rank condition is not satisfied, the use of cross-section
averages alone does not allow consistent estimation of all of the
unobserved factors, and as a result the estimation of the individual
coefficients βi by means of the cross-section averages alone will
not be possible. But, interestingly enough, consistent estimates
of the mean of the slope coefficients, β, and their asymptotic
distribution can be obtained if it is further assumed that the
factor loadings are distributed independently of the factors and the
individual-specific error processes.

2.1. The CCE estimators

We now discuss the two estimators for the means of the indi-
vidual specific slope coefficients proposed by Pesaran (2006). One
is the Mean Group (MG) estimator proposed in Pesaran and Smith
(1995) and the other is a generalization of the fixed effects esti-
mator that allows for the possibility of cross-section dependence.
The former is referred to as the ‘‘Common Correlated Effects Mean
Group’’ (CCEMG) estimator, and the latter as the ‘‘Common Corre-
lated Effects Pooled’’ (CCEP) estimator.

The CCEMG estimator is a simple average of the individual CCE
estimators, b̂i of βi,

b̂MG = N−1
N−
i=1

b̂i, (14)

where

b̂i = (X ′

i M̄Xi)
−1X ′

i M̄y i, (15)

Xi = (xi1, xi2, . . . , xiT )′, yi = (yi1, yi2, . . . , yiT )′, M̄ is defined by

M̄ = IT − H̄(H̄ ′H̄)−1H̄ ′, (16)

H̄ = (D, Z̄),D and Z̄ being, respectively, the T × n and T × (k+ 1)
matrices of observations on dt and z̄t . We also define for later use

Mg = IT − G(G ′G)−1G ′, (17)

and
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Mq = IT − Q (Q ′Q )+Q ′, with Q = GP̄, (18)
where G = (D, F),D = (d1, d2, . . . , dT )

′, F = (f1, f2, . . . , fT )′
are T × n and T × m data matrices on observed and unobserved
common factors, respectively, (A)+ denotes the Moore–Penrose
inverse of A, and

P̄
(n+m)×(n+k+1)

=


In B̄
0 C̄


, Ū∗

= (0, Ū), (19)

where Ū∗ has the same dimension as H̄ and Ū = (ū1, ū2, . . . , ūT )
′

is a T × (k + 1) matrix of observations on ūt . Efficiency gains
from pooling of observations over the cross-section units can be
achieved when the individual slope coefficients, βi, are the same.
Such a pooled estimator of β, denoted by CCEP, is given by

b̂P =


N−
i=1

X ′

i M̄Xi

−1 N−
i=1

X ′

i M̄y i, (20)

which can also be viewed as a generalized fixed effects (GFE)
estimator, and reduces to the standard FE estimator if H̄ = τT with
τT being a T × 1 vector of ones.

3. Theoretical properties of CCE estimators in non-stationary
panel data models

The following assumptions will be used in the derivation of the
asymptotic properties of the CCE estimators.

Assumption 1 (Non-Stationary Common Effects). The (n2 +m)× 1
vector of stochastic common effects, gt = (d ′

2t , f
′
t )

′, follows the
multivariate unit root process

gt = gt−1 + ζgt ,

where ζgt is an (n2 + m) × 1 vector of L2+δ, δ > 0, stationary
near epoque dependent (NED) processes of size 1/2, on some α-
mixing process of size −(2 + δ)/δ, distributed independently of
the individual-specific errors, εit ′ and vit ′ for all i, t and t ′.

Assumption 2 (Individual-Specific Errors). (i) The individual-speci-
fic errors εit and vjt are distributed independently of each other,
for all i, j and t . εit have uniformly bounded positive variance,
supi σ

2
i < K , for some constant K , and uniformly bounded fourth-

order cumulants. vit have covariance matrices, Σvi , which are
non-singular and satisfy supi ‖Σvi‖ < K < ∞, autocovariance
matrices, Γ iv(s), such that supi

∑
∞

s=−∞
‖Γ iv(s)‖ < K < ∞, and

have uniformly bounded fourth-order cumulants. (ii) For each
i, (εit , v ′

it)
′ is an (k + 1) × 1 vector of L2+δ, δ > 0, stationary near

epoque dependent (NED) processes of size 2δ
2δ−4 on some α-mixing

processψit of size −(2+ δ)/δ which is partitioned conformably to
(εit , v ′

it)
′ as (ψεit ,ψ′

vit)
′, where ψεit and ψvjt are independent for

all i and j.

Assumption 3. The coefficient matrices, Bi and Ci, are indepen-
dently and identically distributed across i, and independent of the
individual specific errors, εjt and vjt , the common factors, ζgt , for all
i, j and t with fixedmeansB and C , and uniformly bounded second-
order moments. In particular,

vec(Bi) = vec(B)+ ηB,i,

ηB,i v IID(0,ΩBη), for i = 1, 2, . . . ,N,
(21)

and

vec(Ci) = vec(C)+ ηC,i,

ηC,i v IID(0,ΩCη), for i = 1, 2, . . . ,N,
(22)

whereΩBη andΩCη are (k+1)n×(k+1)n and (k+1)m×(k+1)m
symmetric non-negative definite matrices, ‖B‖ < K , ‖C‖ < K ,
‖ΩBη‖ < K and ‖ΩCη‖ < K , for some constant K .

Assumption 4 (Random Slope Coefficients). The slope coefficients,
βi, follow the random coefficient model

βi = β + ~i, ~i v IID(0,Ω~), for i = 1, 2, . . . ,N, (23)

where ‖β‖ < K , ‖Ω~‖ < K , for some constant K ,Ω~ is a k × k
symmetric non-negative definite matrix, and the random devia-
tions, ~i, are distributed independently of γ j,Γ j, εjt , vjt , and ζgt for
all i, j and t . ~i has finite fourth moments uniformly over i.

Assumption 5 (Identification of βi and β).


X ′
i M̄Xi
T

−1
exists for all

i and T , and limN→∞
1
N

∑N
i=1Σvi is non-singular.

Assumption 6.


X ′
iMgXi
T

−1
exists for all i and T , and

supi E
 X ′

i M̄Xi
T

2 < K < ∞.

Assumption 7. When rank condition (9) is not satisfied, (i) 1
N

∑N
i=1

X ′
iMqXi
T2

and Θ = limN,T→∞


1
N

∑N
i=1ΘiT


, where ΘiT =

E(T−2X ′

iMqXi), are non-singular; (ii) if m ≥ 2k + 1, then
X ′
iMqXi
T2

−1
exists for all i and T and supi E

 X ′
iMqXi
T2

−1  X ′
iMqF
T2

2
< ∞; and (iii) if m < 2k + 1, then E

 F ′F
T2

2 < ∞ and

E
 F ′F

T2

−1
2 < ∞.

Remark 1. Assumption 1 departs from the standard practice in
the analysis of large panels with common factors and specifies
that the factors are non-stationary. Assumption 2 concerns the
individual specific errors and relaxes the assumption that εit are
serially uncorrelated, often adopted in the literature (see, e.g.,
Pesaran (2006)). Assumptions 2–6 are standard in large panels
with random coefficients. But some comments on Assumption 7
seems to be in order. This assumption is only used when the rank
condition (9) is not satisfied. It is made up of three regularity con-
ditions.3 The last two are of greater significance and only relate
to the Mean Group estimator presented in the next section. In ef-
fect, these assumptions ensure that the individual slope coefficient
estimators possess second-order moments asymptotically, which
seems plausible in most economic applications.

Remark 2. Note that Assumption 3 implies that γ i are indepen-
dently and identically distributed across i, and

γ i = γ + ηi,

ηi v IID(0,Ωη), for i = 1, 2, . . . ,N,
(24)

whereΩη is anm×m symmetric non-negative definitematrix, and
‖γ‖ < K , and ‖Ωη‖ < K , for some constant K .

For each i and t = 1, 2, . . . , T , writing the model in matrix
notation, we have
yi = Dαi + Xiβi + Fγ i + εi, (25)
where εi = (εi1, εi2, . . . , εiT )

′. Using (25) in (15), we have

b̂i − βi =


X ′

i M̄Xi

T

−1 X ′

i M̄F
T


γ i

+


X ′

i M̄Xi

T

−1 X ′

i M̄εi
T


, (26)

3 E‖T−2F ′F‖
2 < ∞, which is part of Assumption 7(iii), can be established under

mild regularity conditions (see Lemma 4 of Phillips and Moon (1999)).
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which shows the direct dependence of b̂i on the unobserved factors
through T−1X ′

i M̄F . To examine the properties of this component,
we first note that (2) and (7) can be written in matrix notation as

Xi = GΠi + Vi, (27)

and

H̄ = (D, Z̄) = (D,DB̄ + F C̄ + Ū) = GP̄ + Ū∗, (28)

where Πi = (A′

i,Γ
′

i)
′,Vi = (vi1, vi2, . . . , viT )′,G = (D, F), and P̄

and Ū∗ are defined by (19).
Using Lemmas 3 and 4 in Appendix A, and assuming that rank

condition (9) is satisfied, it follows that

X ′

i M̄F
T

= Op


1

√
NT


+ Op


1
N


, uniformly over i, (29)

X ′

i M̄Xi

T
−

X ′

iMgXi

T
= Op


1

√
N


, uniformly over i, (30)

and

X ′

i M̄εi
T

−
X ′

iMgεi

T
= Op


1

√
NT


+ Op


1
N


,

uniformly over i. (31)

If the rank condition does not hold, then by Lemma 6 in Appendix A
it follows that

X ′

i M̄F
T

−
X ′

iMqF
T

= Op


1

√
N


, uniformly over i, (32)

X ′

i M̄Xi

T
−

X ′

iMqXi

T
= Op


1

√
N


, uniformly over i, (33)

and

X ′

i M̄εi
T

−
X ′

iMqεi

T
= Op


1

√
NT


+ Op


1
N


,

uniformly over i. (34)

In the following subsections we discuss our main theoretical
results.

3.1. Results for pooled estimators

We now examine the asymptotic properties of the pooled
estimators. Focusing first on the MG estimator, and using (26), we
have

√
N(b̂MG − β) =

1
√
N

N−
i=1

~i +
1
N

N−
i=1

Ψ̂
−1
iT

√
NX ′

i M̄F
T


γ i

+
1
N

N−
i=1

Ψ̂
−1
iT

√
NX ′

i M̄εi
T


, (35)

where Ψ̂ iT = T−1X ′

i M̄Xi. In the case where rank condition (9) is
satisfied, by (29), we have
√
N(X ′

i M̄F)
T

= Op


1

√
T


+ Op


1

√
N


. (36)

Using this, we can formally show that

√
N(b̂MG − β) =

1
√
N

N−
i=1

~i + Op


1

√
T


+ Op


1

√
N


.

Hence
√
N(b̂MG − β)

d
→N(0,ΣMG), as (N, T )

j
→ ∞. (37)

The variance estimator for ΣMG suggested by Pesaran (2006) is
given by

Σ̂MG =
1

N − 1

N−
i=1

(b̂i − b̂MG)(b̂i − b̂MG)
′, (38)

which can beusedhere aswell. The following theoremsummarizes
the results for the Mean Group estimator. The result is proved in
Appendix C.

Theorem 1. Consider the panel data models (1) and (2). Let Assump-
tions 1–6 and 7(ii), (iii) hold. Then, for the Common Correlated Effects

MeanGroup estimator, b̂MG, defined by (14), we have, as (N, T )
j

→ ∞,
that
√
N(b̂MG − β)

d
→N(0,ΣMG),

where

ΣMG = Ω~ + Λ, (39)

Λ = lim
N,T→∞


1
N

N−
i=1

ΣiqT


(40)

and ΣiqT is defined in (C.67). ΣMG can be consistently estimated
by (38).

Note that this theorem does not require that the rank condition,
(9), holds for any number,m, of unobserved factors so long asm is
fixed. Also, it does not impose any restrictions on the relative rates
of expansion of N and T . The following theorem summarizes the
results for the second pooled estimator, b̂P . The proof is provided
in Appendix C.

Theorem 2. Consider the panel data models (1) and (2), and suppose
that Assumptions 1–6 and 7(i) hold. Then, for the Common Correlated

Effects Pooled estimator, b̂P , defined by (20), as (N, T )
j

→ ∞, we have
that
√
N(b̂P − β)

d
→N(0,Σ∗

P),

whereΣ∗

P is given by

Σ∗

P = Θ−1(Ξ + Φ)Θ−1, (41)

where

Φ = lim
N,T→∞


1
N

N−
i=1

ΦTi


, Ξ = lim

N,T→∞


1
N

N−
i=1

ΞTi


,

Θ = lim
N,T→∞


1
N

N−
i=1

ΘTi



ΞTi = Var[T−2X ′

iMqXi~i], and ΦTi and ΘTi are given by (C.87) and
(C.84) , respectively.Σ∗

P can be estimated consistently by

Σ̂
∗

P = Ψ̂
∗−1

R̂∗Ψ̂
∗−1
, (42)

where
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Ψ̂
∗

= N−1
N−
i=1

X ′

i M̄Xi

T
, (43)

R̂∗
=

1
(N − 1)

N−
i=1


X ′

i M̄Xi

T


(b̂i − b̂MG)(b̂i − b̂MG)

′


X ′

i M̄Xi

T


.

(44)

Overall we see that, despite a number of differences in the
above analysis, especially in terms of the results given in (29)–(34),
compared to the results in Pesaran (2006), the conclusions are re-
markably similar when the factors are assumed to follow unit root
processes.

Remark 3. The formal analysis in the Appendices focuses on the
case where the factor is an I(1) process and no cointegration is
present among the factors. But, as shown by Johansen (1995, pp.
40), when the factor process is cointegrated and there are l < m
cointegrating vectors, we have that Fγ i = F1δ1i + F2δ2i, where
F1 is an m − l-dimensional I(1) process with no cointegration,
whereas F2 is an l-dimensional I(0) process. This implies that the
cointegration case is equivalent to a casewhere themodel contains
a mix of non-cointegrated I(1) and I(0) factor processes. Since we
know that the results of the paper hold for both non-cointegrated
I(1) and, by Pesaran (2006), I(0) factor processes, we conjecture
that they hold for the cointegrated case, as well. However, we feel
that a formal proof of this statement is beyond the scope of the
present paper. We consider a case of cointegrated factors in the
Monte Carlo study. The results clearly support the above claim.

Remark 4. In the case of standard linear panel data models with
strictly exogenous regressors and homogeneous slopes, and with-
out unobserved common factors, Pesaran et al. (1996) show that
in general the fixed effect estimator is asymptotically at least as
efficient as the Mean Group estimator. It is reasonable to expect
that this result also applies to the CCE type estimators, namely that,
under βi = β for all i, the CCEP estimator would be at least as ef-
ficient as the CCEMG estimator. Although a formal proof is beyond
the scope of the present paper, the Monte Carlo results reported
below provide some evidence in favour of this conjecture.

As we noted above, the whole analysis does not depend on
whether the rank condition holds or not. But in the case where
the rank condition is satisfied, a number of simplifications arise.
In particular, the technical Assumption 7 is not needed, and
Assumption 3 can be relaxed. Namely the factor loadings, γ i, need
not follow the randomcoefficientmodel. It would be sufficient that
they are bounded. Also, the expressions for the theoretical covari-
ancematrices of the estimators change, although crucially the esti-
mators of these covariance matrices do not. For completeness, we
present corollaries on the theoretical properties of the pooled esti-
mators when the rank condition holds, below. Proofs are provided
in Appendix D.

Corollary 1. Consider the panel data models (1) and (2). Assume that
the rank condition, (9), is met and suppose that Assumptions 1–6 hold.
Then, for the Common Correlated Effects Mean Group estimator, b̂MG,

defined by (14), we have, as (N, T )
j

→ ∞, that
√
N(b̂MG − β)

d
→N(0,ΣMG),

whereΣMG is given byΩ~ .ΣMG can be consistently estimated by (38).

Corollary 2. Consider the panel data models (1) and (2), and suppose
that the rank condition, (9), is met and that Assumptions 1–6 hold.
Then, for the Common Correlated Effects Pooled estimator, b̂P , defined

by (20), as (N, T )
j

→ ∞, we have that

√
N(b̂P − β)

d
→N(0,Σ∗

P),

where

Σ∗

P = Ψ∗−1R∗Ψ∗−1, (45)

R∗
= lim

N,T→∞


N−1

N−
i=1

ΣvΩiT


, (46)

Ψ∗
= lim

N→∞


N−1

N−
i=1

Σvi


, (47)

and ΣvΩiT denotes the variance of X ′
iMgXi
T ~i. Σ∗

P can be estimated
consistently by (42).

3.2. Estimation of individual slope coefficients

In panel data models where N is large, the estimation of the
individual slope coefficients is likely to be of secondary importance
as compared to establishing the properties of pooled estimators.
However, it might still be of interest to consider conditions under
which they can be consistently estimated. In the case of our set-up,
the following further assumption is needed.

Assumption 8. For each i, εit is a martingale difference sequence.
For each i, vit is a k×1 vector of L2+δ , δ > 0, stationary near epoque
dependent (NED) processes of size 1/2, on some α-mixing process
of size −(2 + δ)/δ.

Then, we have the following result. The proof is provided in
Appendix E.

Theorem 3. Consider the panel data models (1) and (2) and suppose
that Assumptions 1, 2(i) and 3–8 hold. Let

√
T/N → 0, as (N, T )

j
→ ∞, and assume that the rank condition (9) is satisfied. As (N, T )
j

→ ∞, b̂i, defined by (15), is a consistent estimator of βi. Further,
√
T (b̂i − βi)

d
→N(0,Σbi). (48)

A consistent estimator of Σbi is given by

Σ̂bi = σ̊ 2
i


X ′

i M̄Xi

T

−1

, (49)

where

σ̊ 2
i =


yi − Xib̂i

′

M̄(yi − Xib̂i)

T − (n + 2k + 1)
. (50)

Remark 5. Parts of the above result hold under weaker versions of
Assumption 8. In particular, we note that the central limit theorem
in (E.110) holds if Assumption 2(ii) holds. However, in this case,
the asymptotic variance has a different form, as autocovariances
of εitvit enter the asymptotic variance expression. If, then, a
consistent estimate of the asymptotic variance is required, a
Newey and West type correction (Newey and West, 1987) needs
to be used. Consistency of this variance estimator requires more
stringent assumptions than the NED Assumption 2(ii). It is
sufficient to assume that (εit , v ′

it)
′ is a strongly mixing process for

this consistency to hold.

Remark 6. It is worth noting that despite the fact that, under our
assumptions, ft , yit and xit are I(1) and cointegrated, implying that
εit is an I(0) process, in the results of Theorem 3, the rate of

convergence of b̂i to βi as (N, T )
j

→ ∞ is
√
T and not T . It is helpful

to develop some intuition behind this result. Since forN sufficiently
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large ft can bewell approximated by the cross-section averages, for
pedagogic purposes we might as well consider the case where ft is
observed. Without loss of generality, we also abstract from dt , and
substitute (2) in (1) to obtain

yit = β′

i


Γ ′

ift + vit

+ γ ′

ift + εit = ϑ′

ift + ζit , (51)

whereϑi = Γ iβi+γ i and ζit = εit+β
′

ivit . First, it is clear that, under
our assumptions, and for all values of βi, ζit is I(0) irrespective of
whether ft is I(0) or I(1). But, if ft is I(1), since ζit v I(0), then
yit will also be I(1) and cointegrated with ft . Hence, it follows that
ϑi can be estimated superconsistently. However, the ordinary least
squares (OLS) estimator of βi need not be superconsistent. To see
this, note that βi can be estimated equivalently by regressing the
residuals from the regressions of yit on ft on the residuals from the
regressions of xit on ft . Both these sets of residuals are stationary
processes, and the resulting estimator of βi will be at most

√
T -

consistent.

Remark 7. An issue related to the above remark concerns the
probability limit of the OLS estimator of the coefficients of xit in
a regression of yit on xit alone. In general, such a regression will be
subject to the omitted variable problem and hence misspecified.
Also, the asymptotic properties of such OLS estimators cannot be
derived without further assumptions. However, there is a special
case which illustrates the utility of our method. Abstracting from
dt , assuming that k = m and that Γ i is invertible, then, similarly to
(51), write the model for yit as

yit = β′

ixit + γ ′

iΓ
′−1
i (xit − vit)+ εit = ϱ′

ixit + ςit , (52)

where ϱ′

i = β′

i + γ ′

iΓ
′−1
i and ςit = εit − γ ′

iΓ
′−1
i vit . Note that ςit

is, by construction, correlated with vit . The question is whether
estimating a regression of the form (52) provides a consistent
estimate of ϱi. For stationary processes this would not be case, due
to the correlation between ςit and vit . However, in the case of non-
stationary data this is not clear, and consistency would depend on
the exact specification of the model. Under the assumptions we
have made in this remark, the estimator of ϱi would be consistent.
However, even in this case it is clear that the application of the
least squaresmethod to (52) can only lead to a consistent estimator
of ϱi and not of βi. To consistently estimate the latter we need
to augment the regressions of yit on xit with their cross-section
averages.

4. Monte Carlo design and evidence

In this section, we provide Monte Carlo evidence on the
small-sample properties of the CCEMG and the CCEP estimators,
which are defined by (14) and (20), respectively. We consider
nine alternative estimators. The first one is the CupBC estimator
proposed by Bai et al. (2009), which is a bias-corrected version of
a continuously updated estimator that estimates both the slope
parameters and the unobserved factors iteratively. The CupBC
estimator, as analyzed by Bai et al. (2009), assumes that the
number of unobserved factors is knownandonly considers the case
where the slopes are homogeneous.4 In addition, we consider two
alternative principal component (PC) augmentation approaches
discussed in Kapetanios and Pesaran (2007). The first PC approach
applies the Bai and Ng (2002) procedure to zit = (yit , x′

it)
′ to

obtain consistent estimates of the unobserved factors, and then
uses the estimated factors to augment the regression (1), and
thus produces consistent estimator of β. We consider both pooled

4 See Bai et al. (2009), for more details.

and mean group versions of this estimator, which we refer to
as PC1POOL and PC1MG. The second PC approach begins with
extracting the principal component estimates of the unobserved
factors from yit and xit separately. In the second step, yit and xit
are regressed on their respective factor estimates, and in the third
step the residuals from these regressions are used to compute
the standard pooled and mean group estimators, with no cross-
sectional dependence adjustments. We refer to the estimators
based on this approach as PC2POOL and PC2MG, respectively. On
top of these principal component estimators, we consider two sets
of benchmark estimators. The first set consists of infeasible mean
group and pooled estimators, which are obtained assuming that
the factors are observable (i.e., z̄t for the CCE estimators is replaced
by true factor ft ). The other set consists of naive mean group and
pooled estimators, which ignore the factor structure. The naive
estimators are expected to illustrate the extent of bias and size
distortions that can occur if the error cross-section dependence
that is induced by the factor structure is ignored.

We report summaries of the performance of the estimators
in the Monte Carlo experiments in terms of average biases, root
mean square errors and rejection probabilities of the t-test for
slope parameters under both the null hypothesis and an alternative
hypothesis. For computing the t-statistics, the standard errors of
mean group and pooled CCE estimators are estimated using (38)
and (42), respectively. The standard errors of PC1, PC2, infeasible
and naive estimators are estimated similarly to those of the
CCE estimators. The standard errors of the CupBC estimator are
computed following Bai et al. (2009).

4.1. Baseline design

The experimental design of the Monte Carlo study closely fol-
lows the one used in Pesaran (2006). Consider the following data
generating process (DGP):

yit = αi1d1t + βi1x1it + βi2x2it + γi1f1t + γi2f2t + εit , (53)

and

xijt = aij1d1t + aij2d2t + γij1f1t + γij3f3t + vijt , j = 1, 2, (54)

for i = 1, 2, . . . ,N , and t = 1, 2, . . . , T . This DGP is a restricted
version of the general linear model considered in Pesaran (2006),
and sets n = k = 2, andm = 3, with α′

i = (αi1, 0),β′

i = (βi1, βi2),
and γ ′

i = (γi1, γi2, 0), and

A′

i =


ai11 ai12
ai21 ai22


, Γ ′

i =


γi11 0 γi13
γi21 0 γi23


.

The observed common factors and the individual-specific errors of
xit are generated as independent stationary AR(1) processes with
zero means and unit variances:

d1t = 1, d2t = ρdd2,t−1 + vdt , t = −49, . . . , 1, . . . , T ,

vdt ∼ IIDN(0, 1 − ρ2
d ), ρd = 0.5, d2,−50 = 0,

vijt = ρvijvijt−1 + ~ijt , t = −49, . . . , 1, . . . , T ,

~ijt ∼ IIDN

0, 1 − ρ2

vij


, vji,−50 = 0,

and

ρvij ∼ IIDU[0.05, 0.95], for j = 1, 2.

But the unobserved common factors are generated as non-
stationary processes:

fjt = fjt−1 + vfj,t , for j = 1, 2, 3, t = −49, . . . , 0, . . . , T , (55)
vfj,t ∼ IIDN(0, 1), fj,−50 = 0, for j = 1, 2, 3.

The first 50 observations are discarded.
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To illustrate the robustness of the CCE estimators and others
to the dynamics of the individual-specific errors of yit , these
are generated as the (cross-sectional) mixture of stationary
heterogeneous AR(1) and MA(1) errors. Namely,

εit = ρiεεi,t−1 + σi


1 − ρ2

iεωit ,

i = 1, 2, . . . ,N1, t = −49, . . . , 0, . . . , T ,

and

εit =
σi

1 + θ2iε

(ωit + θiεωi,t−1),

i = N1 + 1, . . . ,N, t = −49, . . . , 0, . . . , T ,

where N1 is the nearest integer to N/2,

ωit ∼ IIDN(0, 1), σ 2
i ∼ IIDU[0.5, 1.5],

ρiε ∼ IIDU[0.05, 0.95], θiε ∼ IIDU[0, 1].

ρvij, ρiε, θiε and σi are not changed across replications. The first
49 observations are discarded. The factor loadings of the observed
common effects, αi1 and vec(Ai) = (ai11, ai21, ai12, ai22)′ are gener-
ated as IIDN(1, 1) and IIDN(0.5τ4, 0.5I4) with τ4 = (1, 1, 1, 1)′,
respectively, which are not changed across replications. The pa-
rameters of the unobserved common effects in the xit equation are
generated independently across replications as

Γ ′

i =


γi11 0 γi13
γi21 0 γi23


∼ IID


N(0.5, 0.50) 0 N(0, 0.50)
N(0, 0.50) 0 N(0.5, 0.50)


.

For the parameters of the unobserved common effects in the yit
equation, γ i, we considered two different sets, which we denote
by A and B. Under set A, the γ i are drawn such that the rank
condition is satisfied, namely

γi1 ∼ IIDN(1, 0.2), γi2A ∼ IIDN(1, 0.2), γi3 = 0,

and

E

Γ̃ iA


=

E(γ iA), E(Γ i)


=

1 0.5 0
1 0 0
0 0 0.5


.

Under set B,

γi1 ∼ IIDN(1, 0.2), γi2B ∼ IIDN(0, 1), γi3 = 0,

so

E

Γ̃ iB


=

E(γ iB), E(Γ i)


=

1 0.5 0
0 0 0
0 0 0.5


,

and the rank condition is not satisfied. For each set, we conducted
two different experiments.

• Experiment 1 examines the case of heterogeneous slopes
with βij = 1 + ηij, j = 1, 2, and ηij ∼ IIDN(0, 0.04), across
replications.

• Experiment 2 considers the case of homogeneous slopes with
βi = β = (1, 1)′.

The two versions of experiment 1 will be denoted by 1A and
1B, and those of experiment 2 by 2A and 2B.

Concerning the infeasible pooled estimator, it is important to
note that, although this estimator is unbiased under all four sets
of experiments, it need not be efficient, since in these experiments
the slope coefficients, βi, and/or error variances, σ

2
i , differ across

i. As a result, the CCE or PC augmented estimators may in fact
dominate the infeasible estimator in terms of root mean square
error (RMSE), particularly in the case of experiments 1A and 1B,
where the slopes as well as the error variances are allowed to vary
across i.

Another important consideration worth bearing in mind when
comparing the CCE and the principal component type estimators
is the fact that the computation of the CupBC, PC1 and PC2 estima-
tors assumes that m = 3, namely that the number of unobserved
factors is known. In practice,mmight be difficult to estimate accu-
rately, particularly when N or T happen to be smaller than 50. By
contrast, the CCE type estimators are valid for any fixed m and do
not require an a priori estimate form.

Each experiment was replicated 2000 times for the (N, T ) pairs
with N, T = 20, 30, 50, 100, 200. In what follows, we shall focus
on β1 (the cross-section mean of βi1), and the results for β2, which
are very similar to those for β1, will not be reported. The results
for all the estimators considered are reported in Table 1. Since
the performance of CCE and CupBC estimators dominates other
feasible estimators inmost of the designs considered, to save space
we do not report the results of these estimators for the remaining
experiments.

4.2. Designs for robustness checks

In this subsection, we consider a number of Monte Carlo
experiment designs that aim to check the robustness of the
estimators to a variety of empirical settings.

4.2.1. The number of factors exceeds k + 1
In order to show the effect of a different type of violation of the

rank condition from experiment B, we consider the DGP 1A, but
an extra factor term γi4f4t is added to the right-hand side (RHS)
of the y equation (53), where γi4 ∼ IIDN(0.5, 0.2), f4t = f4t−1 +

vf 4,t , vf 4,t ∼ IIDN(0, 1), f4,−50 = 0. In this case, observe that

E(γ i,Γ i)
′
=

 1 1 0 0.5
0.5 0 0 0
0 0 0.5 0


whose rank is k + 1 = 3, which is less than the number of un-
observed factors, m = 4. Under this experiment, the number of
factors is treated as unknown and is estimated, using the
information criterion ‘PCp2’ which is proposed by Bai and Ng
(2002, pp. 201).5 The information criterion is applied to the first
differenced variables with the maximum number of factors set to
six. The results are reported in Table 5. However, recall that the CCE
type estimators do not make use of the number of the factors and
are valid irrespective of whether k + 1 is more or less than m.

4.2.2. Cointegrating factors
In this design, the unobserved common factors are generated as

cointegrated non-stationary processes. There are two underlying
stochastic trends, given by

f tjt = f tjt−1 + vtfj,t , for j = 1, 2, t = −49, . . . , 0, . . . , T , (56)

vtfj,t ∼ IIDN(0, 1), f tj,−50 = 0, for j = 1, 2.

Then, this experiment uses the same design as 1A, but the I(1)
factors in (53) and (54) are replaced by

f1t = f t1t + 0.5f t2t + vf 1,t , t = −49, . . . , 0, . . . , T ,

f2t = 0.5f t1t + f t2t + vf 2,t , t = −49, . . . , 0, . . . , T ,

f3t = 0.75f t1t + 0.25f t2t + vf 3,t , t = −49, . . . , 0, . . . , T ,
vfj,t ∼ IIDN(0, 1), fj,−50 = 0, for j = 1, 2, 3.

The first 50 observations are discarded. The results are reported in
Table 6.

5 PCp2 is one of the information criteriawhich performedwell in the finite sample
investigations reported in Bai and Ng (2002).
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Table 1
Small-sample properties of common correlated effects type estimators in the case of experiment 1A (heterogeneous slopes + full rank).

Bias (×100) Root mean square error
(×100)

Size (5% level,
H0 : β1 = 1.00)

Power (5% level,
H1 : β1 = 0.95)

(N, T ) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200

CCE type estimators

CCEMG
20 0.05 −0.10 −0.03 0.06 −0.07 9.67 7.89 6.74 5.87 5.54 7.20 6.90 7.15 7.90 7.55 11.65 13.00 16.10 17.50 20.10
30 0.09 −0.01 −0.01 −0.13 0.10 7.69 6.09 5.11 4.54 4.22 6.95 5.30 5.90 6.25 6.35 11.40 14.25 18.05 22.05 26.85
50 −0.19 0.22 −0.11 0.14 −0.04 5.88 4.61 4.01 3.44 3.13 5.70 5.05 6.65 6.20 5.95 15.10 20.40 25.60 34.10 36.65

100 0.00 0.04 0.04 0.03 0.04 4.25 3.46 2.89 2.33 2.27 5.75 5.85 5.25 4.90 6.20 23.35 34.30 44.40 56.00 63.25
200 −0.05 −0.02 −0.03 0.05 0.00 3.07 2.49 2.01 1.72 1.51 4.40 5.15 4.90 5.60 5.10 35.55 52.65 68.70 83.65 90.50

CCEP
20 0.18 0.00 −0.05 −0.01 −0.13 8.75 7.67 6.85 6.32 6.21 7.70 8.10 7.30 8.05 7.15 12.75 13.50 16.05 16.80 18.30
30 −0.17 −0.12 0.09 −0.15 0.13 7.10 5.99 5.32 4.78 4.46 7.55 6.25 6.75 6.65 6.45 12.40 15.00 19.30 20.65 26.90
50 0.00 0.18 −0.07 0.12 −0.01 5.33 4.51 3.97 3.47 3.22 6.80 6.20 5.90 6.35 6.45 17.45 22.15 26.40 32.90 36.25

100 0.00 0.09 0.03 0.00 0.02 3.78 3.25 2.85 2.34 2.28 5.70 5.65 5.60 5.15 6.25 28.15 37.40 44.80 55.20 61.75
200 −0.07 −0.04 −0.05 0.05 0.00 2.71 2.29 1.95 1.70 1.53 5.10 4.35 5.05 4.70 4.75 44.75 56.80 70.30 83.55 89.75

Bai, Kao and Ng principal component estimator

CupBC
20 0.62 0.70 0.81 0.77 0.87 11.16 9.86 8.35 7.46 6.95 67.25 64.40 57.90 60.95 65.75 72.05 68.75 65.00 68.50 74.60
30 0.35 0.42 0.73 0.59 0.83 8.91 7.70 6.51 5.66 5.28 66.80 61.05 55.95 55.40 63.30 71.85 69.95 66.35 70.75 77.60
50 0.53 0.67 0.33 0.63 0.54 6.77 6.01 5.05 4.20 3.83 64.45 58.85 51.95 51.35 56.70 77.20 72.65 69.55 76.90 83.45

100 0.21 0.34 0.35 0.28 0.33 4.83 4.15 3.39 2.76 2.55 64.60 56.40 47.85 43.35 52.65 80.70 80.35 82.50 87.90 92.50
200 0.10 0.10 0.08 0.23 0.17 3.55 2.94 2.45 2.00 1.69 62.85 52.85 45.00 44.50 48.00 86.65 88.70 90.75 96.60 99.10

Infeasible estimators (including f1t and f2t )

Infeasible MG
20 0.01 −0.19 −0.08 0.15 −0.08 7.21 6.33 5.62 4.98 4.76 6.40 6.20 6.80 5.95 6.50 12.75 15.35 16.85 19.70 20.40
30 0.02 −0.14 0.01 −0.02 0.12 5.91 4.95 4.43 3.97 3.87 6.50 5.80 6.05 5.30 5.90 16.15 18.05 23.35 25.20 28.80
50 −0.10 0.07 −0.06 0.14 −0.04 4.48 3.75 3.39 3.09 2.94 6.45 5.25 5.90 5.25 5.20 21.70 27.35 31.45 38.45 40.25

100 0.01 0.07 0.02 0.00 0.04 3.16 2.78 2.49 2.15 2.14 5.50 5.15 5.45 4.70 5.45 36.85 46.15 55.10 62.50 66.65
200 −0.07 0.04 −0.07 0.06 0.01 2.22 1.93 1.69 1.57 1.44 4.85 5.00 5.00 5.60 4.70 59.15 72.85 82.25 90.40 92.75

Infeasible pooled
20 0.15 −0.13 −0.15 −0.26 −0.21 7.30 6.96 6.92 7.11 7.40 6.40 6.80 6.60 7.00 5.10 13.70 13.75 14.55 14.10 12.65
30 −0.20 −0.15 0.22 −0.07 0.27 6.23 5.78 5.79 5.89 6.61 7.05 5.90 7.00 5.25 5.70 15.70 15.35 18.95 16.70 16.60
50 0.12 0.07 −0.08 0.21 0.02 4.61 4.40 4.31 4.71 5.02 5.70 5.80 5.50 6.25 5.00 22.20 22.55 23.65 25.50 21.00

100 −0.05 0.07 0.09 0.06 0.00 3.30 3.26 3.12 3.30 3.52 5.25 5.60 5.20 5.20 5.30 33.45 38.20 38.85 36.75 32.30
200 −0.08 0.06 −0.12 0.07 −0.02 2.35 2.22 2.20 2.45 2.49 4.95 4.70 4.50 5.85 4.70 56.15 62.10 59.50 59.05 52.20

Naive estimators (excluding f1t and f2t )

Naive MG
20 22.18 23.13 26.82 29.96 32.62 31.76 32.97 37.37 41.49 47.04 32.05 32.95 34.85 35.45 31.50 41.00 42.65 43.50 41.95 38.05
30 22.23 25.06 28.36 31.33 34.01 30.51 33.31 37.87 41.46 45.32 40.45 44.10 46.65 43.85 39.45 51.00 53.95 57.45 52.20 47.15
50 22.21 23.91 25.65 29.61 33.64 29.75 31.12 32.75 37.73 42.66 55.80 59.30 58.00 59.25 54.75 68.30 70.85 70.30 69.20 65.05

100 21.97 23.92 26.76 30.04 32.88 28.40 30.02 32.97 36.39 40.06 71.20 75.25 77.90 78.60 75.25 81.05 84.35 85.95 85.85 83.20
200 22.15 24.09 27.49 30.09 33.23 27.87 29.44 32.80 35.71 39.34 81.85 86.00 87.85 88.05 87.95 88.75 91.95 92.30 92.90 92.05

Naive pooled
20 25.25 26.60 31.27 33.59 34.84 35.30 37.01 42.66 45.42 47.67 42.15 43.65 47.75 45.20 44.50 52.50 52.65 55.95 53.40 51.95
30 25.76 29.39 32.45 35.37 35.46 35.48 39.13 42.70 45.97 46.81 51.55 56.70 57.65 59.55 56.20 61.05 66.60 66.55 67.75 64.55
50 26.54 28.75 30.39 34.01 35.88 35.61 37.39 39.05 44.04 45.93 64.75 67.15 69.25 70.35 69.35 73.55 76.25 78.25 78.65 77.45

100 25.81 28.47 31.30 33.15 34.91 34.39 36.76 39.90 41.79 44.27 75.85 78.90 81.35 79.30 80.15 85.10 86.55 88.05 86.65 86.40
200 25.95 28.32 31.89 33.65 34.11 34.20 36.21 39.63 42.39 42.68 83.45 86.25 87.70 87.40 87.20 89.95 91.90 93.55 92.20 92.20

Principal component estimators, augmented

PC1MG
20 −12.27 −11.15 −10.30 −8.87 −8.90 17.09 14.81 13.24 11.51 11.55 22.55 25.35 30.05 33.40 37.40 12.15 12.95 13.30 12.70 13.75
30 −9.25 −7.86 −6.46 −5.72 −5.25 13.55 10.84 8.98 7.80 7.15 20.60 20.90 21.65 24.75 24.70 10.75 8.25 7.35 7.40 6.75
50 −6.84 −5.05 −3.89 −3.01 −3.12 10.10 7.79 5.86 4.67 4.47 19.95 17.65 16.25 14.95 17.90 8.70 8.20 7.65 11.40 9.75

100 −4.78 −3.21 −2.03 −1.57 −1.45 7.44 5.34 3.68 2.87 2.72 20.10 16.80 11.45 9.75 11.10 9.55 12.15 20.25 28.85 36.75
200 −4.31 −2.54 −1.39 −0.81 −0.78 6.39 4.19 2.60 1.93 1.71 25.20 17.95 10.95 8.15 7.65 13.85 21.95 42.85 67.65 77.15

PC1POOL
20 −11.97 −11.04 −10.35 −9.09 −9.23 15.88 14.38 13.07 11.59 12.07 25.50 28.35 32.05 34.45 38.95 12.05 14.10 14.90 14.55 14.90
30 −8.86 −7.66 −6.34 −5.73 −5.37 12.48 10.45 8.89 7.80 7.34 21.45 23.75 22.05 24.70 25.50 11.00 8.80 7.55 7.95 6.35
50 −6.20 −4.86 −3.81 −3.07 −3.19 9.06 7.52 5.72 4.73 4.54 21.40 18.75 16.00 16.05 18.90 8.55 9.55 8.10 10.90 9.65

100 −4.36 −3.00 −2.01 −1.60 −1.49 6.61 5.01 3.61 2.88 2.74 21.05 16.85 11.25 9.35 10.80 11.25 14.55 20.85 27.90 36.30
200 −3.62 −2.32 −1.36 −0.81 −0.79 5.39 3.81 2.51 1.91 1.73 25.15 17.60 10.50 7.80 7.80 16.35 26.75 45.45 68.00 76.15

(continued on next page)

4.2.3. Semi-strong factor structure
Chudik et al. (forthcoming) introduce the notions ofweak, semi-

strong and strong factor structures and prove that these different
factor structures do not affect the consistency of the CCE type
estimators with I(0) factors. Here we consider the effect of having

a semi-strong factor structure when the factors are I(1). For this
purpose, the same DGP of the experiment 1A is used, but all factor
loadings in (53) and (54) are multiplied by N−1/2. The results are
reported in Table 7. It is easily seen that when the factors are
weak or semi-strong they cannot be consistently estimated by



Author's personal copy

G. Kapetanios et al. / Journal of Econometrics 160 (2011) 326–348 335

Table 1 (continued)

Bias (×100) Root mean square error
(×100)

Size (5% level,
H0 : β1 = 1.00)

Power (5% level,
H1 : β1 = 0.95)

(N, T ) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200

Principal component estimators, orthogonalized

PC2MG
20 −31.26 −27.06 −24.01 −22.67 −23.11 32.83 28.34 25.00 23.44 23.83 86.50 88.45 91.25 95.20 97.40 74.10 73.95 75.80 82.05 88.20
30 −25.50 −21.21 −18.27 −16.69 −16.33 26.82 22.25 19.13 17.35 16.92 86.85 87.10 89.10 93.35 95.95 70.15 67.80 66.10 69.25 74.70
50 −20.65 −16.23 −13.32 −11.41 −10.89 21.68 17.06 13.98 11.95 11.37 90.15 88.35 88.80 89.05 91.70 70.80 60.25 52.20 45.80 46.10

100 −16.17 −12.44 −9.69 −7.61 −6.60 16.87 12.97 10.18 7.99 7.02 93.65 93.30 89.75 87.50 83.30 72.35 56.20 37.60 19.30 13.60
200 −14.61 −10.78 −8.12 −5.79 −4.59 15.11 11.19 8.45 6.08 4.85 98.95 97.85 95.45 90.75 83.75 79.65 60.20 33.30 10.00 6.75

PC2POOL
20 −31.97 −27.47 −24.27 −23.18 −24.19 33.39 28.69 25.23 23.99 24.99 91.00 90.70 93.20 95.55 98.50 80.65 78.60 78.80 83.35 90.45
30 −26.32 −21.51 −18.24 −16.83 −16.75 27.53 22.48 19.13 17.51 17.37 91.35 90.40 89.70 93.35 96.15 78.50 71.80 66.65 70.65 76.90
50 −21.22 −16.35 −13.17 −11.35 −10.99 22.10 17.15 13.82 11.91 11.48 95.05 90.90 88.95 88.20 91.70 79.65 63.80 52.95 46.20 48.25

100 −16.77 −12.52 −9.62 −7.55 −6.60 17.43 13.06 10.11 7.95 7.03 97.95 95.05 90.50 86.45 82.30 80.90 60.80 38.10 18.30 14.25
200 −15.16 −10.91 −8.00 −5.66 −4.53 15.67 11.33 8.34 5.96 4.79 99.75 98.45 95.95 89.35 82.50 88.65 65.85 33.35 8.40 6.30

Notes: The DGP is yit = αi1d1t +βi1x1it +βi2x2it +γi1f1t +γi2f2t +εit , with εit = ρiεεi,t−1+σi(1−ρ2
iε)

1/2ωit , i = 1, 2, . . . , [N/2], and εit = σi(1+θ2iε)
−1/2(ωit +θiεωi,t−1), i =

[N/2] + 1, . . . ,N, ωit ∼ IIDN(0, 1), σ 2
i ∼ IIDU[0.5, 1.5], ρiε ∼ IIDU[0.05, 0.95], θiε ∼ IIDU[0, 1]. Regressors are generated by xijt = aij1d1t + aij2d2t + γij1f1t +

γij3f3t + vijt , j = 1, 2, for i = 1, 2, . . . ,N . d1t = 1, d2t = 0.5d2,t−1 + vdt , vdt ∼ IIDN(0, 1 − 0.52), d2,−50 = 0; fjt = fjt−1 + vfj,t , vfj,t ∼ IIDN(0, 1), fj,−50 = 0, for
j = 1, 2, 3; vijt = ρvijvijt−1 + υijt , υijt ∼ IIDN(0, 1 − ρ2

vij), vij,−50 = 0 and ρvij ∼ IIDU[0.05, 0.95] for j = 1, 2, for t = −49, . . . , T , with the first 50 observations discarded;
αi1 ∼ IIDN (1, 1) ; aijℓ ∼ IIDN(0.5, 0.5) for j = 1, 2, ℓ = 1, 2; γi11 and γi23 ∼ IIDN(0.5, 0.50), γi13 and γi21 ∼ IIDN(0, 0.50); γi1 and γi2 ∼ IIDN(1, 0.2);βij = 1 + ηij , with
ηij ∼ IIDN(0, 0.04) for j = 1, 2. ρvij, ρiε, θiε, σ 2

i , αi1, aijℓ for j = 1, 2, ℓ = 1, 2 are fixed across replications. CCEMG and CCEP are defined by (14) and (20). CupBC is the
bias-corrected iterated principal component estimator of Bai et al. (2009). The PC1 and PC2 estimators are from Kapetanios and Pesaran (2007). The variance estimators of
all mean group and pooled estimators (except that of CupBC) are defined by (38) and (42), respectively. The PC type estimators are computed assuming that the number of
unobserved factors,m = 3, is known. All experiments are based on 2000 replications.

Table 2
Small-sample properties of common correlated effects type estimators in the case of experiment 2A (homogeneous slopes + full rank).

Bias (×100) Root mean square error
(×100)

Size (5% level, H0 : β1 = 1.00) Power (5% level, H1 : β1 = 0.95)

(N, T ) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200

CCEMG
20 0.05 −0.15 0.02 −0.15 0.09 8.45 6.29 5.10 3.78 3.14 7.15 6.40 6.80 6.75 6.85 11.70 13.80 21.75 31.25 47.90
30 −0.14 0.12 0.04 0.03 0.00 6.44 5.11 3.80 2.67 2.07 6.05 6.75 7.25 6.40 6.45 12.70 20.45 30.70 50.90 71.60
50 0.08 −0.06 0.02 0.05 0.03 5.08 3.79 2.80 1.94 1.39 6.10 5.90 4.85 5.40 5.35 18.00 26.90 44.45 75.65 95.00

100 −0.04 −0.08 0.06 −0.04 −0.01 3.59 2.76 2.02 1.35 0.98 4.55 5.50 6.05 5.10 6.10 28.30 43.00 72.35 95.20 99.90
200 0.06 −0.02 0.03 0.01 0.00 2.83 2.05 1.52 1.00 0.68 5.60 4.45 6.35 5.20 5.70 44.20 67.95 91.90 99.90 100.00

CCEP
20 0.18 0.00 0.03 −0.14 0.08 6.95 5.56 4.94 3.98 3.74 6.60 6.75 7.30 6.75 6.80 14.25 16.25 25.25 33.70 46.25
30 −0.14 0.14 0.07 0.01 0.01 5.20 4.50 3.55 2.67 2.26 5.10 5.90 7.25 6.25 6.40 15.25 24.55 34.90 52.95 70.70
50 0.05 0.07 −0.02 0.04 0.03 4.08 3.29 2.56 1.84 1.39 5.40 5.40 5.45 6.20 5.30 24.60 34.35 51.70 78.65 95.00

100 −0.02 −0.04 0.06 −0.04 −0.01 2.87 2.37 1.78 1.24 0.93 5.60 6.20 6.40 5.25 5.95 41.65 58.35 81.85 97.80 100.00
200 0.07 −0.03 0.01 0.02 0.00 2.17 1.63 1.32 0.92 0.65 5.60 3.95 5.70 5.60 5.35 65.25 84.40 96.95 100.00 100.00

CupBC
20 0.12 0.10 0.08 −0.01 0.01 8.25 6.13 4.14 2.32 1.29 64.00 52.40 38.20 25.15 18.85 70.40 66.65 65.90 84.75 98.35
30 0.04 0.08 0.07 0.02 −0.01 6.40 4.73 3.08 1.72 0.96 61.85 50.00 35.40 23.25 19.15 71.30 71.35 79.30 95.00 99.90
50 −0.04 0.22 −0.06 0.04 0.03 4.89 3.56 2.31 1.27 0.70 59.90 49.25 34.45 21.90 15.40 77.20 81.60 88.35 98.85 100.00

100 0.03 0.01 0.02 −0.05 0.01 3.27 2.43 1.66 0.86 0.48 60.30 48.40 34.40 20.25 17.15 87.15 91.65 97.40 100.00 100.00
200 0.07 0.01 0.03 0.03 0.00 2.43 1.73 1.16 0.63 0.33 59.95 46.60 32.60 20.70 14.90 94.70 97.70 99.80 100.00 100.00

Notes: The DGP is the same as that of Table 1, except that βij = 1 for all i and j, i = 1, 2, . . . ,N, j = 1, 2. See notes to Table 1.

the principal components, and this could adversely impact the
estimators ofβ that rely on the PCs as estimators of the unobserved
factors.

4.2.4. A structural break in the means of the unobserved factors
Finally, the results of recent research by Stock and Watson

(2008) suggest that the possible structural breaks in the means
of the unobserved factors will not affect the consistency of
the CCE type estimators, as well as the principal component
type estimators. In view of this, we considered another set of
experiments, corresponding to the DGPs specified as 1A, but
now the unobserved factors are generated subject to mean shifts.
Specifically, under these experiments the unobserved factors
are generated as fjt = ϕjt for t < [2T/3] and fjt = 1 + ϕjt for
t ≥ [2T/3], with [A] being the greatest integer less than or equal
to A, where ϕjt = ϕj,t−1 + ζjt , and ζjt ∼ IIDN(0, 1), for j = 1, 2, 3.
Results are reported in Table 8.

4.3. Results

The results of experiments 1A, 2A, 1B, 2B are summarized
in Tables 1–4, respectively. We also provide results for the
naive estimator (which excludes the unobserved factors or
their estimates) and the infeasible estimator (which includes
the unobserved factors as additional regressors) for comparison
purposes. But for the sake of brevity we include the simulation
results for these estimators only for experiment 1A.

As can be seen from Table 1, the naive estimator is substan-
tially biased, performs very poorly, and is subject to large size dis-
tortions: this is an outcome that continues to apply in the case of
other experiments (not reported here). In contrast, the feasible CCE
estimators perform well, have biases that are close to the bias of
the infeasible estimators, show little size distortions even for rela-
tively small values ofN and T , and their RMSE falls steadilywith in-
creases in N and/or T . These results are quite similar to the results
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Table 3
Small-sample properties of common correlated effects type estimators in the case of experiment 1B (heterogeneous slopes + rank deficient).

Bias (×100) Root mean square error
(×100)

Size (5% level,
H0 : β1 = 1.00)

Power (5% level,
H1 : β1 = 0.95)

(N, T ) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200

CCEMG
20 0.33 −0.19 0.20 0.14 0.23 15.02 13.90 12.61 13.35 13.78 6.80 6.90 6.75 6.60 7.20 9.40 8.95 10.15 10.15 10.15
30 0.30 0.14 0.09 −0.17 0.35 12.91 12.03 10.70 10.07 10.59 5.50 6.80 5.25 6.15 4.80 8.40 10.05 9.45 10.35 11.65
50 −0.15 0.63 −0.20 −0.17 0.02 9.82 8.46 7.87 7.42 7.34 5.80 5.10 6.10 5.75 5.90 9.75 12.90 13.40 14.00 15.20

100 0.25 0.13 0.27 0.00 0.06 7.01 6.55 5.85 5.25 5.01 5.75 5.95 5.45 5.45 6.10 14.50 17.75 21.65 22.65 27.30
200 0.05 −0.11 −0.17 −0.07 −0.05 5.35 4.65 4.15 3.61 3.31 4.80 5.05 4.75 5.15 4.55 19.45 23.70 29.75 37.25 43.45

CCEP
20 0.48 0.06 −0.04 0.16 0.10 13.13 12.81 12.21 13.57 15.30 6.75 7.40 7.00 6.65 6.75 9.90 10.20 10.40 10.35 10.25
30 −0.23 −0.06 0.18 −0.25 0.43 11.48 10.70 10.39 9.95 11.04 6.10 6.90 5.70 6.00 5.50 9.05 9.95 10.55 10.25 10.60
50 0.00 0.48 −0.18 −0.17 −0.02 8.42 7.57 7.23 7.22 7.22 5.25 5.90 6.25 5.30 5.50 11.40 14.05 14.15 14.35 15.20

100 0.11 0.18 0.24 −0.06 0.05 5.87 5.72 5.27 4.87 4.98 5.10 6.00 5.40 4.95 6.00 17.25 19.60 23.50 23.55 27.00
200 0.04 −0.10 −0.16 −0.04 −0.03 4.35 3.99 3.75 3.30 3.15 5.40 4.70 5.25 4.10 3.95 25.75 28.50 34.50 41.10 46.05

CupBC
20 1.34 0.83 1.07 1.12 1.35 11.24 9.52 8.24 7.59 7.24 67.35 60.20 56.70 60.85 66.80 70.45 66.05 66.05 71.25 76.85
30 0.51 0.85 1.14 0.86 1.23 8.97 7.52 6.47 5.78 5.60 67.40 59.80 55.35 56.95 65.35 72.35 68.95 69.15 72.95 80.20
50 0.57 0.70 0.62 0.91 0.81 6.77 5.85 4.98 4.32 4.05 64.65 57.35 52.40 52.00 59.70 74.90 72.25 70.40 78.65 84.50

100 0.30 0.44 0.45 0.42 0.46 4.86 4.20 3.44 2.76 2.61 66.40 56.55 48.20 44.00 53.00 79.35 80.40 83.10 89.40 93.60
200 0.14 0.14 0.13 0.27 0.26 3.53 2.99 2.45 2.00 1.69 64.80 53.35 45.15 43.95 46.95 86.90 88.45 91.20 96.90 99.35

Notes: The DGP is the same as that of Table 1, except that γi2 ∼ IIDN(0, 1), so the rank condition is not satisfied. See notes to Table 1.

Table 4
Small-sample properties of common correlated effects type estimators in the case of experiment 2B (homogeneous slopes + rank deficient).

Bias (×100) Root mean square error
(×100)

Size (5% level,
H0 : β1 = 1.00)

Power (5% level,
H1 : β1 = 0.95)

(N, T ) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200

CCEMG
20 −0.28 −0.26 0.41 −0.31 0.73 14.45 12.85 12.02 12.07 13.47 7.35 5.45 6.40 6.70 6.00 9.35 9.15 10.95 11.55 10.90
30 −0.11 0.07 0.09 0.45 −0.05 11.99 10.78 9.82 9.52 10.33 5.20 5.90 5.95 6.50 6.55 7.85 10.50 12.40 14.35 14.90
50 0.00 0.23 −0.07 −0.02 0.00 9.01 7.97 7.62 6.79 6.72 5.05 4.80 5.00 5.45 4.95 9.40 12.20 15.75 17.60 21.15

100 0.14 −0.08 −0.12 −0.03 0.06 6.66 5.92 5.16 4.78 4.56 4.65 5.40 5.60 4.60 6.35 15.10 18.15 23.95 28.50 34.85
200 0.14 0.11 0.01 −0.17 −0.07 5.13 4.45 3.88 3.27 3.34 5.45 5.10 5.45 4.65 5.15 22.35 28.80 36.60 44.75 56.70

CCEP
20 −0.12 −0.19 0.35 −0.26 0.66 12.66 11.53 11.56 12.12 15.07 7.45 7.00 7.55 6.35 6.50 9.85 10.00 12.60 12.65 11.50
30 −0.09 0.05 0.06 0.39 0.03 10.00 9.57 9.26 9.36 11.05 5.55 5.75 6.80 6.70 6.75 9.90 11.70 13.30 15.20 14.50
50 −0.14 0.39 −0.08 0.01 0.03 7.29 6.92 6.84 6.58 6.79 4.95 5.25 5.45 5.60 4.85 11.25 15.60 16.65 19.95 20.40

100 0.20 −0.13 −0.11 −0.05 0.04 5.44 4.97 4.55 4.45 4.39 4.80 5.35 5.40 4.95 6.05 20.60 22.65 28.35 31.40 36.80
200 0.19 0.11 −0.08 −0.13 −0.07 3.97 3.71 3.35 2.96 3.09 5.25 5.15 5.05 5.00 5.60 31.95 38.45 44.30 50.70 60.40

CupBC
20 0.44 0.33 0.29 0.26 0.20 8.11 6.02 4.11 2.41 1.33 59.65 48.25 34.40 26.15 19.00 69.45 65.90 68.15 85.85 99.30
30 0.18 0.22 0.23 0.14 0.09 6.33 4.64 3.04 1.72 1.00 60.05 48.75 33.85 21.60 20.00 71.45 72.15 79.20 95.10 100.00
50 0.12 0.36 0.03 0.13 0.07 4.90 3.62 2.32 1.29 0.70 60.90 47.10 32.85 20.00 14.75 77.00 82.25 88.35 98.95 100.00

100 0.18 0.02 0.09 −0.01 0.04 3.23 2.48 1.65 0.86 0.48 59.65 48.70 33.20 19.80 16.90 87.85 91.10 97.85 100.00 100.00
200 0.10 0.03 0.06 0.05 0.02 2.39 1.72 1.17 0.63 0.33 59.50 45.65 32.15 21.50 15.80 95.05 98.50 99.65 100.00 100.00

Notes: The DGP is the same as that of Table 1, except that γi2 ∼ IIDN(0, 1), so the rank condition is not satisfied, and βij = 1 for all i and j, i = 1, 2, . . . ,N, j = 1, 2. See
notes to Table 1.

presented in Pesaran (2006), and illustrate the robustness of the
CCE estimators to the presence of unit roots in the unobserved
common factors. This is important since it obviates the need for
pretesting of unobserved common factors for the possibility of
non-stationary components.

The CCE estimators perform well, in both heterogeneous and
homogeneous slope cases, and irrespective of whether the rank
condition is satisfied, although the CCE estimators with rank
deficiency have sightly higher RMSEs than those under the full
rank condition. The RMSEs of the CCE estimators of Tables 1 and
3 (heterogeneous case) are higher than those reported in Tables 2
and 4 for the homogeneous case. The sizes of the t-test based on the
CCE estimators are very close to the nominal 5% level. In the case of
full rank, the powers of the tests for the CCE estimators are much
higher than in the rank-deficient case. Finally, not surprisingly, the
power of the tests for the CCE estimators in the homogeneous case
is higher than that in the heterogeneous case.

It is also important to note that the small-sample properties of
the CCE estimator do not seem to be much affected by the residual

serial correlation of the idiosyncratic errors, εit . The robustness of
the CCE estimator to the short-run dynamics is particularly help-
ful in practice where typically little is known about such dynam-
ics. In fact, a comparison of the results for the CCEP estimator with
the infeasible counterpart given in Table 1 shows that the former
can even be more efficient (in the RMSE sense). For example, the
RMSE of the CCEP for N = T = 50 is 3.97 whilst the RMSE of
the infeasible pooled estimator is 4.31. This might seem counter-
intuitive at first, but, as indicated above, the infeasible estimator
does not take account of the residual serial correlation of the id-
iosyncratic errors, but the CCE estimator does allow for such pos-
sibilities indirectly through the use of the cross-section averages
that partly embody the serial correlation properties of ft and the
εit .

Consider now the PC augmented estimators and recall that
they are computed assuming that the true number of common
factors is known. The results in Table 1 bear some resemblance
to those presented in Kapetanios and Pesaran (2007). The biases
and RMSEs of the PC1POOL and PC1MG estimators improve as
both N and T increase, but the t-tests based on these estimators
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Table 5
Small-sample properties of common correlated effects type estimators, in the case of heterogeneous slopes; the number of factorsm = 4 exceeds k + 1 = 3.

Bias (×100) Root mean square error (×100)
(N, T ) 20 30 50 100 200 20 30 50 100 200

CCEMG
20 0.23 0.29 0.06 −0.23 −0.16 10.97 9.59 8.29 7.61 7.70
30 0.20 0.08 −0.07 0.14 −0.03 8.98 7.65 6.84 6.42 6.29
50 −0.04 0.00 −0.16 −0.19 0.14 6.81 6.03 5.12 4.71 4.67

100 0.12 −0.06 0.01 −0.01 0.12 4.81 4.25 3.69 3.53 3.46
200 0.01 −0.04 0.03 −0.04 −0.10 3.78 3.08 2.84 2.61 2.53

CCEP
20 0.09 0.50 −0.02 −0.22 −0.11 9.57 8.94 8.07 7.70 7.83
30 0.03 −0.05 −0.08 0.04 −0.09 7.96 7.21 6.60 6.36 6.25
50 −0.04 −0.05 −0.13 −0.14 0.13 6.06 5.59 4.85 4.54 4.49

100 0.06 −0.07 −0.01 0.01 0.11 4.21 3.85 3.51 3.37 3.38
200 −0.04 −0.05 0.00 −0.03 −0.10 3.13 2.74 2.62 2.42 2.37

CupBC
20 0.49 0.32 0.06 0.11 0.11 11.56 10.26 8.94 7.09 6.30
30 0.01 0.12 0.12 0.21 0.07 9.38 7.98 6.68 5.58 4.62
50 −0.11 0.25 −0.08 −0.02 0.21 7.07 6.29 5.03 4.04 3.54

100 0.06 0.04 0.10 0.04 −0.04 4.81 4.32 3.58 2.82 2.54
200 0.05 −0.11 0.00 0.00 −0.03 3.55 3.14 2.61 2.00 1.67

Notes: The DGP is the same as that of Table 1, except that an extra term γi4f4t is added to the y equation, where γi4 ∼ IIDN(0.5, 0.2), f4t = f4t−1 + vf 4,t , vf 4,t ∼

IIDN(0, 1), f4,−50 = 0. For the CupBC estimator, the number of unobserved factors is treated as an unknown but is estimated by the information criterion PCP2 , which
is proposed by Bai and Ng (2002). We set the maximum number of factors to six. See also the notes to Table 1.

substantially over-reject the null hypothesis. The PC2POOL and
PC2MG estimators perform even worse. The biases of the PC
estimators are always larger in absolute value than the respective
biases of the CCE estimators. The size distortion of the PC
augmented estimators is particularly pronounced. Finally, it is
worth noting that the performance of the PC estimators actually
gets worse when N is small and kept small but T rises. This may be
related to the fact that the accuracy of the factor estimates depends
on the minimum of N and T .

Now consider the CupBC estimator, and again recall that it is
computed assuming that the true number of common factors is
known. Let us begin with discussing results in the case in which
the rank condition is satisfied, the results of which are reported
in Tables 1 and 2. As is evident, the average bias and RMSEs
of CupBC estimator are comparable to those of CCE estimators.
Because of this, the results of CCEMG, CCEP and CupBC estimators
only are reported in Table 2 onwards. In the case of heterogeneous
slopes with the rank condition satisfied, the RMSEs of the CCE
estimator are uniformly smaller than those of the CupBC estimator
(as can be seen from Table 1). This might be expected, since the
CupBC estimator is designed for the model with homogeneous
slopes. In the case of homogeneous slopes with the rank condition
satisfied, as can be seen from Table 2, the RMSEs of the CCEP
estimator are smaller than those of the CupBC estimator when
T is relatively small (T = 20 and 30). Turning our attention to
the performance of the t-test, it is apparent that the size of the
test based on the CupBC estimator is far from the nominal level
across all experiments. This is especially so for experiments where
the slopes are heterogeneous. In these cases, increases in N and
T do not seem to help to improve the test performance. Even for
homogeneous slope cases, the best rejection probability result is
14.90% for T = N = 200 in Table 2. In contrast, the size of the t-test
based on the CCE estimators is close to 5% nominal level across all
experiments. Tables 3 and 4 provide the summary of experimental
results in the rank-deficient case. For this design, even though the
size of the t-test based on the CupBC estimator is grossly oversized,
the RMSEs of the estimator are smaller than those of the CCE
estimators. However, note that in these experiments the number of
factors is treated as known, which is rarely expected in a practical
situation. We return to this issue below.

Tables 5–8 report the results of the experiments carried out as
robustness checks.6 Table 5 reports the results of the experiments
where the number of unobserved factors is four (m = 4), which
exceeds k + 1 = 3, in the case of heterogeneous slopes. In this
experiment, CupBC estimates are obtained supposing that m is
unknown but estimated using the information criterion PCP2,
which is proposed by Bai and Ng (2002), applied to the first
differences of (yit , x1it , x2it). We set the maximum number of
factors to six.7 First, despite the number of unobserved factors,
m = 4, exceeding the number of regressors and regressand (k +

1 = 3), the RMSEs of the CCE estimators decrease as N and T are
increased, which confirms the consistency of the estimators in the
rank-deficient case. Furthermore, the RMSEs of the CCE estimators
dominate those of the CupBC estimator, except only when T is
very large (≥100). We note that, although not reported for brevity,
the size of the t-test based on the CCE estimators is very close
to the nominal 5% level, whilst the size distortion of the CupBC
estimators is acute for all cases considered. Tables 6–8 report the
results of experiments with the same DGP as in Table 1 but where
theunobserved factors are cointegrated, factor structures are semi-
strong, and the unobserved factors are subject to mean shifts,
respectively. In all of these designs the CCE estimators uniformly
dominate the CupBC estimator in terms of both RMSEs and the
size of the t-test (which is not reported in the tables). These are
consistent with the findings of Chudik et al. (forthcoming) and
Stock and Watson (2008).

5. Conclusions

Recently, there has been increased interest in the analysis
of panel data models where the standard assumption that the
errors of the panel regressions are cross-sectionally uncorrelated

6 For brevity, the size and power of t-tests are not reported in Tables 5–8,
since they are qualitatively similar to those in Tables 1–4. For similar reasons, the
results for homogeneous slopes and/or rank-deficient cases (for Tables 6–8) are not
reported. A full set of results is available upon request from the authors.
7 For small N and T , the information criterion tends to overestimate the number

of the factors in the first-differenced data (yit , x1it , x2it ), and the estimates tend to
4 as N and T get larger.
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Table 6
Small-sample properties of common correlated effects type estimators, heterogeneous slopes and full rank, cointegrated factors, in the case of experiment 1A (heterogeneous
slopes + full rank).

Bias (×100) Root mean square error (×100)
(N, T ) 20 30 50 100 200 20 30 50 100 200

CCEMG
20 0.05 −0.05 −0.22 0.08 0.00 9.26 7.87 6.58 5.69 5.29
30 −0.14 0.09 0.03 −0.02 0.02 7.35 6.02 5.18 4.54 4.16
50 −0.03 0.14 −0.05 0.11 0.11 5.85 4.70 4.06 3.49 3.14

100 −0.05 −0.01 0.03 −0.05 0.00 4.15 3.40 2.87 2.49 2.19
200 −0.05 0.14 0.03 0.04 −0.04 3.08 2.46 2.02 1.72 1.59

CCEP
20 −0.06 −0.01 −0.23 0.06 −0.01 8.52 7.54 6.65 5.95 5.68
30 −0.06 −0.07 −0.07 −0.02 0.01 6.78 5.90 5.25 4.70 4.29
50 −0.03 0.14 −0.09 0.12 0.13 5.35 4.54 4.05 3.55 3.19

100 −0.02 0.03 0.06 −0.03 −0.02 3.77 3.18 2.84 2.50 2.22
200 −0.04 0.10 −0.01 0.05 −0.04 2.70 2.33 1.99 1.72 1.60

CupBC
20 0.54 0.85 0.61 0.68 0.78 11.01 9.58 8.01 6.94 6.32
30 0.69 0.52 0.54 0.50 0.68 8.65 7.48 6.26 5.39 4.91
50 0.49 0.54 0.50 0.53 0.58 6.82 5.69 4.99 4.24 3.70

100 0.33 0.37 0.38 0.22 0.26 4.61 3.86 3.43 2.84 2.52
200 0.13 0.31 0.13 0.25 0.09 3.39 2.88 2.41 2.03 1.82

Notes: The DGP of the same as that of Table 1, except that the factors are generated as cointegrated non-stationary processes: f1t = f t1t + 0.5f t2t + vf 1,t , f2t = 0.5f t1t + f t2t +

vf 2,t , f3t = 0.75f t1t + 0.25f t2t + vf 3,t , with vfj,t ∼ IIDN(0, 1), fj,−50 = 0, for j = 1, 2, 3, where f tℓt = f tℓt−1 + vtf ℓ,t , with vtf ℓ,t ∼ IIDN(0, 1), for ℓ = 1, 2, t = −49, . . . , 0, . . . , T .
See also the notes to Table 1.

Table 7
Small-sample properties of common correlated effects type estimators, semi-strong factors, in the case of experiment 1 A (heterogeneous slopes + full rank).

Bias (×100) Root mean square error (×100)
(N, T ) 20 30 50 100 200 20 30 50 100 200

CCEMG
20 −0.09 −0.22 −0.07 0.09 −0.09 9.92 8.01 6.57 5.63 5.17
30 0.02 0.01 0.01 −0.11 0.10 7.74 6.21 5.14 4.43 4.10
50 −0.12 0.16 −0.11 0.14 −0.04 5.96 4.57 3.99 3.42 3.10

100 0.01 0.03 0.05 0.02 0.04 4.23 3.51 2.87 2.33 2.26
200 −0.06 0.01 −0.01 0.05 0.00 3.06 2.46 2.00 1.72 1.51

CCEP
20 0.09 −0.07 −0.06 0.04 −0.12 8.64 7.49 6.34 5.65 5.34
30 −0.19 −0.10 0.09 −0.08 0.13 7.12 5.90 5.12 4.49 4.21
50 0.01 0.13 −0.05 0.13 −0.02 5.27 4.46 3.93 3.43 3.16

100 0.04 0.08 0.02 0.00 0.03 3.77 3.28 2.84 2.35 2.28
200 −0.07 −0.03 −0.04 0.05 0.00 2.68 2.30 1.96 1.70 1.53

CupBC
20 0.23 0.46 0.17 0.43 0.45 12.29 10.55 8.09 6.75 5.80
30 −0.20 0.09 0.38 0.20 0.49 9.53 8.03 6.39 5.14 4.58
50 0.39 0.37 0.06 0.20 0.15 7.34 6.08 5.07 3.99 3.40

100 0.18 0.18 0.06 0.05 0.09 4.99 4.40 3.61 2.69 2.45
200 0.00 0.03 0.03 0.09 0.01 3.77 3.03 2.55 1.98 1.64

Notes: The DGP of the same as that of Table 1, except that the factor loadings matrix Γ ′

i is multiplied by N−1/2 for all i. See also the notes to Table 1.

is violated. When the errors of a panel regression are cross-
sectionally correlated, then standard estimation methods do not
necessarily produce consistent estimates of the parameters of
interest. An influential strand of the relevant literature provides
a convenient parameterization of the problem in terms of a factor
model for the error terms.

Pesaran (2006) adopts an error multifactor structure and
suggests new estimators that take into account cross-sectional
dependence, making use of cross-sectional averages of the
dependent and explanatory variables. However, he focuses on the
case of weakly stationary factors that could be restrictive in some
applications. This paper provides a formal extension of the results
of Pesaran (2006) to the case where the unobserved factors are
allowed to follow unit root processes. It is shown that the main
results of Pesaran continue to hold in this more general case. This
is certainly of interest, given the fact that usually there are major
differences between results obtained for unit root and stationary

processes. When we consider the small-sample properties of the
new estimators, we observe that again the results accord with
the conclusions reached in the stationary case, lending further
support to the use of the CCE estimators irrespective of the order
of integration of the data observed. The Monte Carlo experiments
also show that the CCE type estimators are robust to a number of
important departures from the theory developed in this paper, and
in general have better small-sample properties than alternatives
that are available in the literature. Most importantly, the tests
based on CCE estimators have the correct size, whilst the factor-
based estimators (including the one recently proposed by Bai
et al. (2009)) show substantial size distortions even in the case of
relatively large samples.

Appendix A. Lemmas

Proofs of the lemmas are provided in Appendix B.
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Table 8
Small-sample properties of common correlated effects type estimators, one break in the means of unobserved factors, in the case of experiment 1A (heterogeneous
slopes + full rank).

Bias (×100) Root mean square error (×100)
(N, T ) 20 30 50 100 200 20 30 50 100 200

CCEMG
20 0.01 −0.10 −0.02 0.06 −0.07 9.66 7.82 6.74 5.87 5.54
30 0.14 −0.03 −0.02 −0.13 0.10 7.68 6.08 5.11 4.54 4.22
50 −0.21 0.20 −0.11 0.14 −0.04 5.91 4.64 4.01 3.43 3.13

100 0.02 0.03 0.05 0.03 0.04 4.26 3.48 2.88 2.33 2.26
200 −0.08 −0.02 −0.02 0.06 0.00 3.08 2.49 2.01 1.72 1.51

CCEP
20 0.17 0.00 −0.05 0.00 −0.13 8.73 7.61 6.86 6.30 6.21
30 −0.15 −0.13 0.07 −0.14 0.14 7.10 5.98 5.31 4.78 4.46
50 −0.03 0.18 −0.06 0.11 −0.01 5.30 4.53 3.97 3.47 3.21

100 0.05 0.09 0.04 0.01 0.02 3.80 3.26 2.85 2.34 2.28
200 −0.06 −0.04 −0.05 0.05 0.00 2.72 2.29 1.95 1.71 1.53

CupBC
20 0.52 0.77 0.79 0.80 0.89 11.18 9.87 8.39 7.52 6.97
30 0.32 0.58 0.77 0.58 0.84 8.91 7.80 6.55 5.68 5.27
50 0.58 0.75 0.38 0.61 0.54 6.78 6.01 5.03 4.18 3.82

100 0.28 0.35 0.38 0.29 0.32 4.85 4.22 3.41 2.75 2.55
200 0.10 0.08 0.08 0.23 0.17 3.57 2.93 2.44 2.01 1.69

Notes: The DGP is the same as that of Table 1, except that fjt = ϕjt for t < ⌊2T/3⌋ and fjt = 1 + ϕjt for t ≥ ⌊2T/3⌋, with ⌊A⌋ being the greatest integer part of A, where
ϕjt = ϕj,t−1 + ζjt , ζjt ∼ IIDN(0, 1), j = 1, 2, 3. See also the notes to Table 1.
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Lemma 2. Under Assumptions 1–4,
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Lemma 3. Under Assumptions 1–4, and assuming that rank condi-
tion (9) holds,
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Lemma 4. Assume that the rank condition (9) holds. Then, under As-
sumptions 1–4,
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Lemma 5. Under Assumptions 1–4,
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Lemma 6. Under Assumptions 1–4, and assuming that the rank
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Lemma 7. Under Assumptions 1–4, and assuming that the rank
condition (9) does not hold,
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Appendix B. Proofs of lemmas

Proof of Lemma 1. To prove (A.1), we first show that
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Var


T∑

t=1
fℓt ūt

T

 = O


1
N


, (B.25)

which establishes that T−1∑T
t=1 fℓt ūwt converges to its limit at the

desired rate of Op


1/

√
N

. The result for T−1


D′Ū


is obtained

using the same line of arguments.
To establish (A.4), first note that

X ′

i Ū
T

= Π′

i
(D, F)′ Ū

T
+

V ′

i Ū
T

= Op


1

√
N


, uniformly over i

using (A.2) and (A.3), since the elements of Πi are assumed to be
bounded uniformly over i.

To establish (A.5), recalling that Q = GP̄ , and using (A.3),
Q ′Ū
T = P̄ ′ (D,F)′Ū

T = Op


1

√
N


, since the elements of P̄ are assumed

to be bounded. (A.6) is established by Q ′Q
T2

= P̄ ′ G′G
T2

P̄ = Op(1),
since G ′G/T 2

= Op(1).
To establish (A.7), first note that

Q ′Xi

T 2
= P̄ ′


G ′G
T 2


Πi + P̄ ′

G ′Vi

T 2
. (B.26)

The first term isOp(1) uniformly over i, since the elements of P̄ and
Πi are assumed to be bounded in probability uniformly over i. For
the second term, under Assumptions 1–2, denoting gℓt as the ℓth
element of gt and noting that supi E


vitv ′

it ′


= O (1), we have that

sup
i

Var


T∑

t=1
gℓtv ′

it

T

 = O (1)


T∑

t=1

T∑
t ′=1

E (gℓtgℓt ′)

T 2

 .
But, by standard unit root asymptotic analysis, we know that∑T

t=1
∑T

t ′=1 E (gℓtgℓt ′) = O

T 2

, and therefore supi Var

∑T
t=1 gℓtv′

it
T


= O (1). Hence, G ′Vi/T = Op(1) uniformly over i for sufficiently
large T . Therefore, as the elements of P̄ are assumed to be bounded
in probability, the second term is Op(1) uniformly over i, which es-
tablishes (A.7). (A.8) is straightforwardly proven, using (A.6).

To prove (A.9), recalling H̄ = Q + Ū∗,where Ū∗
=

0, Ū


,

H̄ ′H̄
T 2

=
Q ′Q
T 2

+
Ū∗′Ū∗

T 2
+

Q ′Ū∗

T 2
+

Ū∗′Q
T 2

= Op(1) (B.27)

by (A.1), (A.5) and (A.6). To establish (A.10), H̄ ′F
T2

= P̄ ′ G′F
T2

+
Ū∗′F
T2

=

Op(1), since G ′F/T 2 is Op(1). (A.11) is established because

H̄ ′εi

T
= P̄ ′

G ′εi

T
+

Ū∗′εi

T
= Op(1) uniformly over i, (B.28)

since G ′εi/T = Op(1) uniformly over i, using the same line of the
argument as in the proof of (A.7). (A.12) can be proven similarly to
(A.11).

Next,

H̄ ′Xi

T 2
=

Q ′Xi

T 2
+

Ū∗′Xi

T 2
= Op(1) uniformly over i

by (A.4) and (A.7), which establishes (A.13). Finally, (A.14) follows
by the boundedness in probability of P̄ and (A.3). �

Proof of Lemma 2. In order to prove (A.15), we need to examine
more closely Lemma A.2. of Pesaran (2006). So, we have

V ′

i Ū
T

=


T−1V ′

i ε̄+ (NT )−1 V ′

i

N−
j=1

Vjβj, T
−1V ′

i V̄


, (B.29)

where ε̄ = N−1∑N
j=1 εj and V̄ = N−1∑N

j=1 Vj. Denote the tth
element of ε̄ by ε̄t = N−1∑N

j=1 εjt , and consider the first term on
the right-hand side (RHS) of (B.29). Since, by assumption, vit and
ε̄t are independently distributed covariance stationary processes
with zero means, it follows that

sup
i

Var


T∑

t=1
viℓt ε̄t

T

 = O


1
N


sup

i


T∑

t=1

T∑
t ′=1

Γivℓ
t − t ′


T 2

 ,
where Γivℓ

t − t ′
 is the autocovariance function of the station-

ary process, viℓt . But, by Assumption 2, supi
∑

∞

s=1 Γivℓ (|s|) < ∞.
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Therefore,

sup
i

Var


T∑

t=1
viℓt ε̄t

T

 = O


1
NT


, (B.30)

which establishes that

T−1V ′

i ε̄ = Op


1

√
TN


, uniformly over i. (B.31)

To see how (B.31) follows from (B.30), we note that, by theMarkov
inequality,

Pr

T−1V ′

i ε̄ ≥ ϵ


≤

Var

 T∑
t=1

viℓt ε̄t

T


ϵ2

, for all i.

But, since for any two continuous functions f , g , if f (x) ≤ g(x) for
all x, supx f (x) ≤ supx g(x), it follows that

sup
i

Pr

T−1V ′

i ε̄ ≥ ϵ


≤

sup
i

Var

 T∑
t=1

viℓt ε̄t

T


ϵ2

,

proving that (B.31) follows from (B.30).
Consider the second term in (B.29), and note that

(NT )−1 V ′

i

N−
j=1

Vjβj = N−1

V ′

i Vi

T


βi +


V ′

i V̄
∗

−i

T


, (B.32)

where V̄ ∗

−i = N−1∑N
j=1,j≠i Vjβj. Since βi is bounded, and, by

Assumption 2, plimT→∞


T−1V ′

i Vi


= Σvi uniformly over i, it
follows that

N−1

V ′

i Vi

T


βi = Op


1
N


, uniformly over i. (B.33)

Also, since the elements of Vi and V̄ ∗

−i are independently dis-
tributed and covariance stationary, following the same line of anal-
ysis leading to (B.31), we have

V ′

i V̄
∗

−i

T
= Op


1

√
NT


, uniformly over i. (B.34)

Using (B.33) and (B.34) in (B.32) now yields

(NT )−1 V ′

i

N−
j=1

Vjβj = Op


1

√
NT


+ Op


1
N


,

uniformly over i. (B.35)

Finally, since the last term of (B.29) can be written as T−1V ′

i V̄ =

N−1


V ′
i Vi
T


+

V ′
i V̄−i
T , where V̄−i = N−1∑N

j=1,j≠i Vj, it also follows
that

T−1V ′

i V̄ = Op


1

√
NT


+ Op


1
N


, uniformly over i, (B.36)

which completes the proof of Lemma 2. �

Proof of Lemma 3. We start by proving (A.16). We need to

determine the order of probability of
 X ′

i M̄X i
T −

X ′
iMqXi
T

. But this is

equal toX ′

i H̄

H̄ ′H̄

−1 H̄ ′Xi

T
−

X ′

iQ

Q ′Q

−1 Q ′Xi

T


≤

 1T X ′

i H̄ − X ′

iQ
 

H̄ ′H̄
−1 H̄ ′Xi


+

 1T X ′

iQ


H̄ ′H̄
−1

−

Q ′Q

−1

H̄ ′Xi


+

 1T X ′

iQ

Q ′Q

−1 H̄ ′Xi − Q ′Xi
 . (B.37)

We examine each of the above terms. So, noting that H̄ = Q + Ū∗,
with Ū∗

=

0, Ū


, we have 1T X ′

i H̄ − X ′

iQ
 

H̄ ′H̄
−1 H̄ ′Xi

 ≤

X ′

i Ū
∗

T




H̄ ′H̄
T 2

−1 H̄ ′Xi

T 2


= Op


1

√
N


, uniformly over i, (B.38)

by (A.4), (A.9) and (A.13). Next, we have 1T X ′

iQ


H̄ ′H̄
−1

−

Q ′Q

−1

H̄ ′Xi


≤

 Ū∗′Ū∗

T
+

Q ′Ū∗

T
+

Ū∗′Q
T


X ′

iQ
T 2


H̄ ′H̄
T 2

−1


×



Q ′Q
T 2

−1 H̄ ′Xi

T 2


= Op


1

√
N


, uniformly over i, (B.39)

by (A.1), (A.5), (A.7), (A.9), (A.6) and (A.13). Finally, 1T X ′

iQ

Q ′Q

−1 H̄ ′Xi − Q ′Xi
 ≤

X ′

iQ
T 2


Q ′Q
T 2

−1

X ′

i Ū
∗

T


= Op


1

√
N


uniformly over i, (B.40)

by (A.7), (A.6) and (A.4). Noting that Mg = Mq when the rank
condition is satisfied, substituting (B.38)–(B.40) into (B.37), we
haveX ′

i M̄Xi

T
−

X ′

iMgXi

T

 = Op


1

√
N


, uniformly over i,

as required.
Next, we consider (A.17). In particular, by a similar analysis to

that for (A.16), we haveX ′

i M̄εi
T

−
X ′

iMqεi

T

 ≤

 1T X ′

i
¯H − X

′

iQ
 

H̄ ′H̄
−1 H̄ ′εi


+

 1T X ′

iQ


H̄ ′H̄
−1

−

Q ′Q

−1

H̄ ′εi


+

 1T X ′

iQ

Q ′Q

−1 H̄ ′εi − Q ′εi
 . (B.41)

We examine each of the above terms. So, we have 1T X ′

i H̄ − X ′

iQ
 

H̄ ′H̄
−1 H̄ ′εi


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≤
1
T

X ′

i Ū
∗

T




H̄ ′H̄
T 2

−1 H̄ ′εi

T


= Op


1

√
NT


, uniformly over i, (B.42)

by (A.4), (A.9) and (A.11). Next, we have 1T X ′

iQ


H̄ ′H̄
−1

−

Q ′Q

−1

H̄ ′εi


≤

1
T

− Ū∗′Ū∗

T
−

Ū∗′Q
T

−
Q ′Ū∗

T


X ′

iQ
T 2


H̄ ′H̄
T 2

−1


×



Q ′Q
T 2

−1 H̄ ′εi

T


= Op


1

√
NT


, uniformly over i, (B.43)

by (A.1), (A.5), (A.7), (A.9), (A.6) and (A.11). Finally, 1T X ′

iQ

Q ′Q

−1 H̄ ′εi − Q ′εi
 ≤

X ′

iQ
T 2


Q ′Q
T 2

−1

 Ū∗′εi

T


= Op


1

√
NT


+ Op


1
N


, uniformly over i, (B.44)

by (A.7), (A.6) and (A.2). Noting that Mg = Mq when the rank
condition is satisfied, substituting (B.42)–(B.44) into (B.41) yieldsX ′

i M̄εi
T

−
X ′

iMgεi

T

=Op


1

√
NT


+Op


1
N


uniformly over i,

which establishes (A.17). �

Proof of Lemma 4. We start by noting that

M̄H̄ = M̄

GP̄ + Ū∗


.

But M̄H̄ = 0 and M̄D = 0, since H̄ =

D, Z̄


. Then

0 =

0, M̄F

 In B̄
0 C̄


+

0, M̄Ū


,

or M̄F C̄ = −M̄Ū . Hence,
Ū ′M̄F


C̄ = −Ū ′M̄Ū . (B.45)

Also, from above,
X ′

i M̄F


¯C = −X ′

iM̄Ū . (B.46)

Note, however, that Xi = GΠi + Vi, and hence

X ′

i M̄Ū =

Π′

iG
′
+ V ′

i


M̄Ū

= Π′

i


G ′M̄Ū


+ V ′

i M̄Ū

=

A′

i,Γ
′

i

 D′

F ′


M̄Ū + V ′

i
¯MŪ

=

A′

i,Γ
′

i

  0
F ′M̄Ū


+ V ′

i M̄Ū

= Γ ′

iF
′M̄Ū + V ′

i M̄Ū . (B.47)

By the full rank assumption for C̄ and substituting (B.47) in (B.46),
we obtain
X ′

i M̄F


= −Γ ′

iF
′M̄Ū C̄ ′


C̄ C̄ ′

−1
− V ′

i M̄Ū C̄ ′

C̄ C̄ ′

−1
. (B.48)

Also, from (B.45),
F ′M̄Ū


= −


C̄ C̄ ′

−1 C̄ Ū ′M̄Ū . (B.49)

Then, using this result in (B.48), we haveX ′

i M̄F
T

 ≤
Γ ′

i

 C̄ C̄ ′
−1 C̄

2  Ū ′M̄Ū
T


+

V ′

i M̄Ū
T

 C̄ ′

C̄ C̄ ′

−1
 . (B.50)

Since the norms of

C̄ C̄ ′

−1 C̄ and Γ ′

i are bounded, we need to
establish the probability orders of

Ū ′M̄Ū/T
 and V ′

i M̄Ū/T
. For

Ū ′M̄Ū/T , using (A.1), (A.9) and (A.14), we have

Ū ′M̄Ū
T

= Op


1
N


. (B.51)

Similarly, by (A.2) and (A.12),

V ′

i M̄Ū
T

= Op


1
N


+ Op


1

√
NT


, uniformly over i, (B.52)

and substituting (B.51) and (B.52) into (B.50) establishes the
result. �

Proof of Lemma 5. Recall that

Xi = GΠi + Vi, (B.53)

where G = (D, F) is the T × m + nmatrix of I(1) factors, and Vi is
a stationary error matrix. Denote the OLS residuals of the multiple
regression (B.53) as V̂i = Xi − GΠ̂i, where Π̂i =


G ′G

−1 G ′Xi.
Observe that V̂i = MgXi. Then, we can write

V̂ ′

i V̂i/T − V ′

i Vi/T = V̂ ′

i


V̂i − Vi


/T +


V̂i − Vi

′

Vi/T

= −X ′

iMgG

Π̂i −Πi


/T −


Π̂i −Πi

′ 
G ′Vi/T


= −


Π̂i −Πi

′ 
G ′Vi/T


,

because MgG = 0. But, since

G ′Vi/T


= Op(1) and


Π̂i −Πi


=

Op(T−1), it follows that V̂ ′

i V̂i/T − V ′

i Vi/T = Op(T−1). The required
result now follows since, under Assumption 2, V ′

i Vi/T − Σvi =

Op(T−1/2), whereΣvi is a non-singular matrix. �

Proof of Lemma 6. The procedure in Lemma 3 can be used to
prove (A.19) and (A.21), but replacing all inverses with generalized
inverses. This is required since Q ′Q has reduced rank when the
rank condition does not hold. We need to show that 1T X ′

iQ


H̄ ′H̄
+

−

Q ′Q

+ H̄ ′Xi

 = Op


1

√
N


uniformly over i, (B.54)

where + denotes the Moore–Penrose inverse. To establish (B.54),
we need to show that

Q ′Q
T 2

+

−


H̄ ′H̄
T 2

+

= Op


1

T
√
N


. (B.55)

However, because the Moore–Penrose inverse is not a continuous
function, it is not sufficient that

Q ′Q
T 2


−


H̄ ′H̄
T 2


= Op


1

T
√
N


, (B.56)
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for (B.55) to hold. But, by Theorem 2 of Andrews (1987), (B.56) is

sufficient for (B.55), if additionally, as (N, T )
j

→ ∞,

lim
N,T

j
→ ∞

Pr

rk

H̄ ′H̄
T 2


= rk


Q ′Q
T 2


= 1, (B.57)

where rk(A) denotes the rank of A. But,

H̄ ′H̄
T 2

=
Q ′Q
T 2

+
Ū∗′Ū∗

T 2
+

Q ′Ū∗

T 2
+

Ū∗′Q
T 2

,

with

lim
N,T

j
→ ∞

Pr

 Ū∗′Ū∗

T 2
+

Q ′Ū∗

T 2
+

Ū∗′Q
T 2

 > ϵ


= 0

for all ϵ > 0. Also, rk(T−2Q ′Q ) = n + rk(C̄), for all N and T , with

rk(T−2Q ′Q ) → n + rk(C) < n + m as (N, T )
j

→ ∞. Using these
results, it is now easily seen that condition (B.57) in fact holds.
Hence, the desired result follows.

Consider now (A.20). Following a similar line of analysis used to
establish (A.19), we haveX ′

i M̄F
T

−
X ′

iMqF
T

 ≤

 1T X ′

i H̄ − X ′

iQ
 

H̄ ′H̄
+ H̄ ′F


+

 1T X ′

iQ


H̄ ′H̄
+

−

Q ′Q

+ H̄ ′F


+

 1T X ′

iQ

Q ′Q

+ H̄ ′F − Q ′F
 . (B.58)

Consider each of the above terms in turn. First, 1T X ′

i H̄ − X ′

iQ
 

H̄ ′H̄
+ H̄ ′F

 = Op


1

√
N


,

uniformly over i, (B.59)

by (A.4), (A.9) and (A.10). Second, by (B.55) and (B.56), 1T X ′

iQ


H̄ ′H̄
+

−

Q ′Q

+ H̄ ′F
 = Op


1

√
N


,

uniformly over i,

if
Q ′Q

T −
H̄ ′H̄
T

 = Op


1

√
N


. We haveQ ′Q

T
−

H̄ ′H̄
T

 = Op


1

√
N


uniformly over i (B.60)

by (A.1), (A.5), (A.7), (A.9), (A.6) and (A.10). Finally, 1T X ′

iQ

Q ′Q

+ H̄ ′F − Q ′F
 = Op


1

√
N


,

uniformly over i, (B.61)

by (A.7), (A.6) and (A.3). Substituting (B.59)–(B.61) into (B.58)
yields the required result. �

Proof of Lemma 7. The result immediately follows from (B.48),
(B.49), (B.51) and (B.52). �

Appendix C. Proofs of theorems for pooled estimators

Proof of Theorem 1. We know that

C̄ =


γ̄ + Γ̄β +

1
N

N−
i=1

Γ i~i, Γ̄


,

where Γ̄ =
1
N

∑N
i=1 Γ i and γ̄ =

1
N

∑N
i=1 γ i. Substituting this result

in (A.22) now yields
X ′

i M̄F
T


γ̄ + Γ̄β +

1
N

N−
i=1

Γ i~i



= Op


1
N


+ Op


1

√
NT


, uniformly over i,

X ′

i M̄F
T


Γ̄ = Op


1
N


+ Op


1

√
NT


, uniformly over i,

which in turn yields
√
NX ′

i M̄F
T


γ̄ +

1
N

N−
i=1

Γ i~i


= Op


1

√
N


+ Op


1

√
T


,

uniformly over i.

But, under Assumption 4, 1
N

∑N
i=1 Γ i~i = Op(N−1/2), and therefore

√
N(X ′

i M̄F)γ̄
T

= Op


1

√
N


+ Op


1

√
T


,

uniformly over i. (C.62)

We next reconsider the second term on the RHS of (35), which is
the only term affected by the fact that the rank condition does not
hold. The second term on the RHS in (35) can be written as

χNT ≡
1
N

N−
i=1


X ′

i M̄Xi

T 2

+
√

NX ′

i M̄F
T 2

 
γ̄ + ηi − η̄


, (C.63)

where η̄ =
1
N

∑N
i=1 ηi. By (A.19) and (A.20), it follows that

χNT ≡
1
N

N−
i=1


X ′

iMqXi

T 2

+
√

NX ′

iMqF
T 2



×

γ̄ + ηi − η̄


+ Op


1

√
N


. (C.64)

Note that, for the above two expressions, we have changed the
normalization from T to T 2. This is because, in the case where the
rank condition does not hold, the use of cross-sectional averages
is not sufficient to remove the effect of the I(1) unobserved
factors, and so X ′

i M̄Xi,X ′

i M̄F ,X ′

iMqXi and X ′

iMqF would involve

non-stationary components. Then, since, by (C.62),
√
N(X ′

i M̄F)γ̄
T2

=

Op


1

T
√
N


+ Op


1

T3/2


, uniformly over i, it is the case that, for N

and T large,

√
N(b̂MG − β)

d
∼

1
√
N

N−
i=1

~i +
1

√
N

N−
i=1


X ′

iMqXi

T 2

+

×


X ′

iMqF
T 2

 
ηi − η̄


. (C.65)

We next focus on analysing the RHS of (C.65). The first term on
the RHS of (C.65) tends to a Normal density with mean zero and
finite variance. The second term needs further analysis. Letting

Q1iT =


X ′

iMqXi

T 2

+ X ′

iMqF
T 2


and Q̄1T =

1
N

∑N
i=1 Q1iT , we have that

1
√
N

N−
i=1

Q1iT

ηi − η̄


=

1
√
N

N−
i=1


Q1iT − Q̄1T


ηi. (C.66)
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We note that ηi is i.i.d. with zero mean and finite variance and
independent of all other stochastic quantities in the second term
of the RHS on (C.66). We define

Q1iT ,−i =


X ′

iMq,−iXi

T 2

+ X ′

iMq,−iF
T 2


and Q̄1T ,−i =

1
N

∑N
i=1 Q1iT ,−i, where Mq,−i = IT − Q−i(Q ′

−iQ−i)
+

Q ′

−i,Q−i = GP̄−i, P̄−i =


In B̄−i
0 C̄−i


B̄−i =

1
N

∑N
j=1,j≠i Bj and C̄−i =

1
N

∑N
j=1,j≠i Cj. Then, it is straightforward that

Q1iT − Q̄1T

−

Q1iT ,−i − Q̄1T ,−i


= Op


1
N


, uniformly over i,

and

1
√
N

N−
i=1


Q1iT − Q̄1T


ηi −

1
√
N

N−
i=1


Q1iT ,−i − Q̄1T ,−i


ηi

= Op


1

N1/2


.

Then, it is easy to show that, if zTi = xiyTi, xi is an i.i.d. sequence
with zero mean and finite variance and yTi is a triangular array
of random variables with finite variance, then zTi is a martingale
difference triangular array for which a central limit theorem holds
(see, e.g., Theorem 24.3 of Davidson (1994)). But this is the case
here, for any ordering over i, setting yTi =


Q1iT ,−i − Q̄1T ,−i


and

xi = ηi. Using this result, it follows that the second termon the RHS
of (C.65) tends to a Normal density if


Q1iT − Q̄1T


ηi has variance

with finite norm, uniformly over i, denoted byΣiqT ; i.e.,

ΣiqT = Var[(Q1iT − Q̄1T )ηi]. (C.67)

In order to establish the existence of second moments, it
is sufficient to prove that ‖(Q1iT − Q̄1T )‖, or equivalentlyQ1iT ,−i − Q̄1T ,−i

, has finite second moments. We carry out the
analysis for

Q1iT − Q̄1T
. For this, we need to provide further

analysis of X ′
iMqXi
T2

and X ′
iMqF
T2

. First, note that Xi can be written as

Xi = QBi1 + SBi2 + Vi, (C.68)

where S is the T × m − k − 1-dimensional complement of Q , i.e.,
Q and S are orthogonal, and

F = QK 1 + SK 2, (C.69)

where K1 and K2 are full row rank matrices of constants with
bounded norm. Note that, if m < 2k + 1, we assume, without loss
of generality, that Bi2 has full row rank, whereas, ifm ≥ 2k+ 1, Bi2
has full column rank. Then,

X ′

iMqXi = X ′

iMq (QBi1 + SBi2 + Vi) = X ′

iMqSBi2 + X ′

iMqVi

= B′

i2S
′MqSBi2 + V ′

i MqVi + B′

i2S
′MqVi + V ′

i MqSBi2.

But it easily follows that

V ′

i MqVi

T 2
= Op


1
T


, uniformly over i,

and

B′

i2S
′MqVi

T 2
= Op


1
T


, uniformly over i.

Then,

X ′

iMqXi

T 2
= B′

i2
S ′S
T 2

Bi2 + Op


1
T


, uniformly over i. (C.70)

Similarly, using (C.69),

X ′

iMqF
T 2

= B′

i2
S ′S
T 2

K2 + Op


1
T


, uniformly over i.

Thus,
X ′

iMqXi

T 2

+ X ′

iMqF
T 2


=


B′

i2
S ′S
T 2

Bi2

+ 
B′

i2
S ′S
T 2

K2


+Op


1
T


, uniformly over i.

We need to distinguish between two cases. In the first case, m ≥

2k + 1. Then, it is easy to see that X ′
iMqXi
T2

and B′

i2
S ′S
T2

Bi2 have
an inverse. Then, by Assumption 7(ii),

Q1iT − Q̄1T
 has finite

secondmoments. The casewherem < 2k+1 ismore complicated.
Denoting∆ = T−2S ′S and B̃i2 = ∆1/2Bi2, we have

B′

i2
S ′S
T 2

Bi2 = B̃′

i2B̃i2.

Then, noting that

B̃′

i2B̃i2

+

= B̃+

i2B̃
′
+

i2 , and since in this case Bi2 has
full row rank,

B̃+

i2 = B′

i2


Bi2B′

i2

−1
∆−1/2,

and we obtain
B′

i2
S ′S
T 2

Bi2

+

= B′

i2


Bi2B′

i2

−1

S ′S
T 2

−1 
Bi2B′

i2

−1 Bi2. (C.71)

Hence,
X ′

iMqXi

T 2

+ X ′

iMqF
T 2


= B′

i2


Bi2B′

i2

−1 K2 + Op


1
T


,

uniformly over i,

and the required result now follows by the boundedness assump-
tion for Bi2 and K2. The assumption that Bi2 has full row rank if
m < 2k+1 implies that the whole of S enters the equations for Xi.
If that is not the case, then the argument above has to be modified
as follows. We have that

Xi = QBi1 + S1Bi2 + Vi,

where S1 is a subset of S . Then,

X ′

iMqXi

T 2
= B′

i2
S ′

1S1
T 2

Bi2 + Op


1
T


, uniformly over i,

and the analysis proceeds as above until
X ′

iMqXi

T 2

+ X ′

iMqF
T 2


= B′

i2


Bi2B′

i2

−1

S ′

1S1
T 2

−1

×


S ′

1S
T 2


K2 + Op


1
T


, uniformly over i.

Then, the required result follows by the boundedness assumption
for Bi2 and K2 and by Assumption 7(iii), which implies that

E
 S ′

1S1
T2

−1
 < ∞ and E

 S ′
1S
T2

 < ∞.

Thus, in general, we have that
√
N(b̂MG − β)

d
→N(0,ΣMG), as (N, T )

j
→ ∞,

where

ΣMG = Ω~ + Λ, (C.72)
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and

Λ = lim
N,T→∞


1
N

N−
i=1

ΣiqT


. (C.73)

To complete the proof, we have to consider two further issues.
First, we note that, in (C.65), we disregard a term involving

X ′
iMqXi
T2

+  X ′
iMqεi
T


. In particular, we have to prove that


1
T


1

√
N

N−
i=1


X ′

iMqXi

T 2

+ X ′

iMqεi

T


= Op


1
T


. (C.74)

For this, it is enough to show that 1
√
N

∑N
i=1


X ′
iMqXi
T2

+  X ′
iMqεi
T


follows a central limit theorem. This holds under the following
conditions: (i) for any ordering of the cross-sectional units, X ′

iMqεi
T

is amartingale difference; (ii)


X ′
iMqXi
T2

+  X ′
iMqεi
T


has finite second

moments. (ii) follows easily from the above argument about the

existence of moments of


X ′
iMqXi
T2

+  X ′
iMqF
T


. Then, one has to

simply prove (i). We need to show that, for any ordering,

E(Q ∗

i |Q ∗

i−1) = 0, (C.75)

where Q ∗

i =


X ′
iMqXi
T2

+  X ′
iMqεi
T


. Denote Q ∗∗

i =


X ′
iMqXi
T2

+

.

Then Q ∗

i = Q ∗∗

i


X ′
iMqεi
T


. Now X ′

iMqεi
T =

1
T

∑T
t=1 stεit , where

st is a unit root process (see the definition of S in (C.68) above).
Then, for (C.75) to hold it is sufficient to note that, for all t, l,
E(Q ∗∗

i stεit |Q ∗∗

i slεi−1l) = 0. This completes the proof of (C.74).
Finally, we need to show that the variance estimator given by

Σ̂MG =
1

N − 1

N−
i=1

(b̂i − b̂MG)(b̂i − b̂MG)
′, (C.76)

is consistent. To see this, first note that

b̂i − β = ~i + hiT + Op


1

√
N


+ Op


1

√
T


,

uniformly over i, (C.77)

where

hiT =


X ′

i M̄Xi

T 2

+ X ′

i M̄

F

ηi − η̄


+ εi


T 2

, (C.78)

and so

b̂i − b̂MG = (~i − ~̄)+

hiT − h̄T


+ Op


1

√
N


+ Op


1

√
T


,

uniformly over i, (C.79)

where h̄T =
1
N

∑N
i=1 hiT . Since, by assumption, ~i and hiT are

independently distributed across i,

1
N − 1

N−
i=1


b̂i − b̂MG

 
b̂i − b̂MG

′

= ΣMG + Op


1

√
N


+ Op


1

√
T


,

and the desired result follows. �

Proof of Theorem 2. As before, the pooled estimator, b̂P , defined
by (20), can be written as

√
N(b̂P − β) =


1
N

N−
i=1

X ′

i M̄Xi

T 2

−1

×


1

√
N

N−
i=1

X ′

i M̄(Xi~i + εi)

T 2
+ qNT


, (C.80)

where

qNT =
1

√
N

N−
i=1


X ′

i M̄F

γ i

T 2
. (C.81)

Assuming random coefficients, we note that γ i = γ̄+ηi−η̄, where
η̄ =

1
N

∑N
i=1 ηi. Hence,

qNT =
1
N

N−
i=1

√
NX ′

i M̄F
T 2


γ̄ +

1
√
N

N−
i=1


X ′

i M̄F
T 2

 
ηi − η̄


.

But, by (C.62), the first component of qNT is Op


1

T
√
N


+Op


1

T3/2


.

Substituting this result in (C.80), and making use of (33) and (34),
we have

√
N(b̂P − β) =


1
N

N−
i=1

X ′

iMqXi

T 2

−1

×


1

√
N

N−
i=1

X ′

iMq(Xi~i + εi + F

ηi − η̄


)

T 2



+Op


1

T
√
N


+ Op


1

T 3/2


. (C.82)

Also, by Assumption 7, when the rank condition is not satisfied,
1
N

∑N
i=1

X ′
iMqXi
T2

is non-singular. Further, by (C.70),

1
N

N−
i=1

X ′

iMqXi

T 2
=

1
N

N−
i=1

B′

i2
S ′S
T 2

Bi2 + Op


1
T


.

We note that, by Assumption 3, Bi2 is an i.i.d. sequence with fi-
nite second moments. Further, by Assumption 7, it follows that

E
 S ′S

T2

2 < ∞. Hence, T−2B′

i2S
′SBi2 forms asymptotically a mar-

tingale difference triangular array with finite mean and variance
and, as a result, T−2B′

i2S
′SBi2 obeys themartingale difference trian-

gular array law of large numbers across i (see, e.g., Theorem 19.7 of
Davidson (1994)) and, therefore, itsmean tends to a non-stochastic
limit which we denote byΘ; i.e.,

Θ = lim
N,T→∞


1
N

N−
i=1

ΘiT


, (C.83)

where

ΘiT = E

T−2B′

i2S
′SBi2


. (C.84)

But, by similar arguments to those used for the mean group esti-
mator in the case when the rank condition does not hold, we can
show that

1
√
N

N−
i=1

X ′

iMqXi

T 2
~i

d
→N (0,Ξ) ,

where

Ξ = lim
N,T→∞


1
N

N−
i=1

ΞTi


, (C.85)
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and ΞTi = Var

T−2X ′

iMqXi~i

. Further, by independence of εi

across i,

1
√
N

N−
i=1

X ′

iMqεi

T 2
= Op


1
T


.

Further, lettingQ2iT = T−2X ′

iMqF and Q̄2T =
1
N

∑N
i=1 Q2iT , we have

1
√
N

N−
i=1


X ′

iMqF
T 2

 
ηi − η̄


=

1
√
N

N−
i=1


Q2iT − Q̄2T


ηi.

Then, similarly to the analysis used above for T−2X ′

iMqXi, we have

1
√
N

N−
i=1


Q2iT − Q̄2T


ηi

d
→N (0,Φ) ,

where

Φ = lim
N,T→∞


1
N

N−
i=1

ΦTi


(C.86)

and

ΦTi = Var[(Q2iT − Q̄2T )ηi]. (C.87)

Thus, overall, by the independence of ~i and ηi, it follows that

√
N(b̂P − β)

d
→N(0,Σ∗

P), as (N, T )
j

→ ∞, (C.88)

where

Σ∗

P = Θ−1 (Ξ + Φ)Θ−1, (C.89)

proving the result for the pooled estimator. The result for the con-
sistency of the variance estimator follows along similar lines to that
for the mean group estimator. �

Appendix D

Proof of Corollary 1. Using (E.106), we have

√
N

b̂MG − β


=

1
√
N

N−
i=1

~i +
1
N

N−
i=1

Ψ̂
−1
iT

√
NX ′

i M̄F
T


γ i

+
1
N

N−
i=1

Ψ̂
−1
iT

√
NX ′

i M̄εi
T


, (D.90)

where Ψ̂ iT = T−1X ′

i M̄Xi. As we assume that the rank condition (9)
is satisfied, we have, by Lemma 4, that
√
N

X ′

i M̄F


T
= Op


1

√
T


+ Op


1

√
N


,

uniformly over i, (D.91)

and so, by the uniform boundedness assumption on γ i, and by
(A.16), we have that

Ψ̂
−1
iT

√
NX ′

i M̄F
T


γ i = Op


1

√
T


+ Op


1

√
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
,

uniformly over i,

and so

1
N
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i=1
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−1
iT

√
NX ′

i M̄F
T


γ i = Op


1

√
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
+ Op


1

√
N
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.

By Lemma 3, we have that

Ψ̂
−1
iT

√
NX ′

i M̄εi
T


= Op


1

√
T


+ Op


1
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,

uniformly over i,

which implies that

1
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i=1

Ψ̂
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√
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1
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. (D.92)

We examine the behaviour of the first term on the RHS of (D.92).
We wish to show that

1
√
NT

N−
i=1


X ′

iMgXi

T

−1 X ′

iMgεi
√
T

= Op


1

√
T


. (D.93)

For this, we have to show that


X ′
iMgXi
T

−1 X ′
iMgεi
√
T

has mean
zero with bounded variance uniformly over i. We analyze
X ′
iMgεi
√
T

. We have X ′
iMgεi
√
T

=
X ′
iMgMgεi

√
T

. This can then be written

as


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i +(θ̂1,i−θ1,i)G
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√
T

, where θ̂1,i is the estimated

regression coefficient ofX ′

i onG and θ̂2,i is the estimated regression
coefficient of εi on G . But (θ̂1,i −θ1,i) = Op(T−1) and (θ̂2,i −θ2,i) =

Op(T−1). So
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√
T

.

But the last three terms are Op


1

√
T


. So it suffices to show that

V ′
i εi√
T
has mean zero with bounded variance uniformly over i, which

follows from our assumptions. Thus, from (D.92) and (D.93), we
have

√
N

b̂MG − β


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Hence,
√
N

b̂MG − β


d

→N(0,Ω~), as (N, T )
j

→ ∞. (D.94)

Ω~ can be consistently estimated by

Σ̂MG =
1

N − 1

N−
i=1


b̂i − b̂MG

 
b̂i − b̂MG

′

. (D.95)

To show this, from the proof of Theorem 3, we first note that
b̂i − b̂MG


= (βi − β)+ Op


1

√
T


+ Op


1

√
N


,

uniformly over i,

which yields (noting that βi − β = ~i)

1
N − 1

N−
i=1


b̂i − b̂MG

 
b̂i − b̂MG
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=
1

N − 1

N−
i=1

~i~
′

i + Op


1

√
T


+ Op


1

√
N


.

But by the assumption that ~i has finite fourthmoments, and using
the law of large numbers for i.i.d. processes, it readily follows that

Σ̂MG → Ω~ , as (N, T )
j

→ ∞. �

Proof of Corollary 2. Assuming that the rank condition is satis-
fied, b̂P , defined by (20), can be written as

√
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where

qNT =
1
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By (D.91), qNT = Op
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Further, by (A.17),
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By (A.16) and, since by Assumption 6 N−1∑N
i=1 T

−1X ′

i M̄X i is non-
singular, we have
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where Ψ∗
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. (D.100)

Next, we examine the second component of the first term of the

RHS on (D.98). We first consider 1
√
N

∑N
i=1

X ′
i M̄X i
T ~i. We define M̄−i

as M̄−i = IT − H̄−i

H̄ ′

−iH̄−i
−1 H̄ ′

−i, where H̄−i = (D, Z̄−i),
Z̄−i is a T × (k + 1) matrix of observations on dt and z̄t,−i and

z̄t,−i =
1
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∑N
j=1,j≠i zjt . Then, it is straightforward to see that X ′
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, (D.101)

where the uniformity follows by the assumption that ~i has
uniformly finite fourth moments. Since ~i is i.i.d. and indepen-
dent of all other stochastic quantities in the model, it follows
that ~̃Ti = T−1X ′

i M̄−iXi~i is a martingale difference triangular
array, since, for any ordering of the cross-sectional units,
E

T−1X ′

i M̄−iXi~i|i − 1, . . . , 1


= 0. Then, as long as E‖T−1X ′

i M̄−i

Xi‖
2 < ∞, which is satisfied by Assumption 6, a central limit the-

orem holds for ~̃Ti, by Theorem 24.3 of Davidson (1994). Also, by
Assumption 2(ii) of this paper, Theorem 1 of De Jong (1997) and
Example 17.17 of Davidson (1994), it follows that

1
T

T−
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vitεit = Op


1

√
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
, uniformly over i, (D.102)

which implies that 1
√
N

∑N
i=1

X ′
iMgεi
T = Op
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√
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
. Hence, as (N, T )

j
→ ∞,
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
, (D.103)

where ΣvΩiT denotes the variance of X ′
iMgXi
T ~i. The variance esti-

mator forΣ∗

P suggested by Pesaran (2006) is given by

Σ̂
∗

P = Ψ̂
∗−1

R̂∗Ψ̂
∗−1
, (D.104)

where
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
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
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(D.105)

By a similar argument to that used to show the consistency of the
variance estimator in theMG estimator case, it is easy to show that
this variance estimator is consistent. �

Appendix E

Proof of Theorem 3. Using (25) in (15), we have

b̂i − βi =
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+
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
. (E.106)

Using (A.17) and (A.18), and assuming that the rank condition (9)
is satisfied, we have

b̂i − βi =


X ′

i M̄Xi

T

−1 X ′

iMgεi
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
+Op


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
1
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
. (E.107)

For N and T sufficiently large, the distribution of
√
T

b̂i − βi


will be asymptotically normal if the rank condition (9) is satisfied
and if

√
T/N → 0 as N and T → ∞. To see why this additional

condition is needed, using (E.107), note that
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√
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, (E.108)

and the asymptotic distribution of
√
T

b̂i − βi


will be free of

nuisance parameters only if
√
T/N → 0, as (N, T )

j
→ ∞. We now

give the necessary arguments for showing that the first term on
the RHS of (E.108) is asymptotically normally distributed. We note
that

X ′

iMgεi
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= −
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Π̂i −Πi

′ 1
√
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gtεit +
1
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vitεit . (E.109)

But, it is straightforward to show that the first term of (E.109) is
Op(T−1/2) when gt is I(1). Then, we need to obtain a central limit
theorem for the second term of (E.109). But, by the martingale
difference assumption on εit , it follows that vitεit is also a
martingale difference sequence with finite variance given by
σ 2
i Σvi . Then, by Theorem 24.3 of Davidson (1994), it follows that

1
√
T

T−
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vitεit
d

→N(0, σ 2
i Σvi). (E.110)

Further, by (A.16), and noting that, by Assumptions 5 and 6,
X ′

i M̄X i/T and X ′

iMgXi/T are non-singular, we also have
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and, by Lemma 5, it follows that
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,

finally implying that
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vi ), (E.111)

and that a consistent estimator of the asymptotic variance can be
obtained by

σ̊ 2
i
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i M̄Xi
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,

where σ̊ 2
i =


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. � (E.112)
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