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1. Introduction

The paper by Friedman (2012) discusses a general
framework for estimating the vector of coefficients asso-
ciated with a large number of variables at a given point
in time for forecasting a particular target variable one or
more periods ahead. The issue is that the number of vari-
ables available is large relative to the number of observa-
tions available, and therefore standard estimationmethods
are not applicable. The paper then goes on to formulate the
problem as one where standard estimation methods need
to be modified by using appropriate penalty terms in the
optimization criterion.

The use of the penalty terms considered by Friedman
(2012) takes the form of a bridge regression, which
provides a unified paradigm for dealing with the high
dimensional estimation problem being considered. As the
author argues, themain issuewith this type of regression is
the cost of the computations involved in the minimisation
problem needed to carry out a bridge regression, and the
author provides a general suggestion for reducing this
cost via the use of direct search methods, and generalised
path seeking procedures in particular. This direct search
methodology is then analysed and expounded with the
help of a number of examples.

In this discussion,we focus on twomain issues that con-
cern us. The first issue relates to the determination of the
parameter β associated with the specification of the Gen-
eralised Elastic Net of Section 2.3.2 of Friedman (2012). As
he notes, the need for regularisation methods arises from
the difficulty of estimating the expected loss (risk) in his
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eq. (3) using estimators such as those in his eq. (8). Reading
the paper, one wonders about the theoretical properties of
regularisation associatedwith this estimation, especially in
the case of the Generalised Elastic Net, with its dependence
on the data generating mechanism for the vector of xi and
the effect of the choice of an estimator of β on these prop-
erties. It is clear that estimating his eq. (3) for large sets of
predictors is extremely challenging, as one needs to (im-
plicitly or explicitly) integrate over the large dimensional
object xi, with all of the problems associated with such an
integration.

This issue is best exemplified by discussing Example 4.3
of the paper. The example has a very specific generating
mechanism for xi, in the sense that the covariance matrix
for xi has the same value for all non-diagonal elements.
Clearly, this is a rather restricted specification which is es-
sentially a single factormodelwith homogeneous loadings.
One wonders to what extent the choice of the covariance
matrix affects the performance of the Generalised Elastic
Net. Further, given the reported sensitivity of the Gener-
alised Elastic Net to the value of β, it would be nice to have
a clearer feel for the uncertainty associated with a data de-
pendent method for selecting β, such as cross-validation,
particularly if the underlying data generating process turns
out to be non-stationary, which is the second issue that
concerns us.

Friedman (2012) assumes that both the target variable
and the predictor variables are stationary, and that they
all remain stationary during the period over which the
target variable is being forecast. Such an assumption may
be appropriate for biological or other data forms, but it is
almost certainly not satisfied for economic data. Evidence
of this is widespread in applied econometric research, and
it is therefore of paramount importance to delineate the
implications of the failure of the stationarity assumption
for the methods considered by Friedman, if they are to be
applied fruitfully to economic and financial data.
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2. Structural change and its implications for sparse
regression and classification methods

In order to set the scene, we recast the framework
of Friedman (2012) given in his eq. (2) by allowing for
structural change, in principle. We have

F(xi, ai) = a0,i +
n

j=1

aj,ixi,j, (1)

where ai = (a0,i, a1,i, . . . , an,i)′ is a vector of parameters.
a0,i is a constant, whereas aj,i, j = 1, . . . , n, represent slope
coefficients. The distinction between the two is crucial
in the context of structural change. The only difference
between this and eq. (2) of Friedman (2012) is the presence
of the i subscript associated with the parameter vector
a, indicating that the parameters may depend on the
observation considered. Forecasting in this framework is
clearly hopeless unless considerable structure is imposed
on the evolution of the parameter vector, ai, over i. The
parameter change can be modelled assuming that break
points are either discrete or continuous. A prominent
example of the latter is the randomwalk formulation, ai =

ai−1 + εi, where εi is an i.i.d. sequence with a relatively
small variance.

The first approach requires the estimation of both the
points and sizes of the breaks, and, as was argued by
Pesaran and Timmermann (2007) and Pesaran, Pick, and
Pranovich (2011), is likely to involve an important trade-
off between the use of a shorter sample with a smaller
bias and the use of a longer sample which is likely to
yield forecast errors with smaller variances. The second
approach requires the estimation of the coefficient process,
usually by setting up and estimating a state space model.
This approach has been discussed by Cogley and Sargent
(2001) and Cogley and Sargent (2005), among others.
A useful survey is provided by Hyndman, Koehler, Ord,
and Snyder (2008). Under fairly general conditions, both
approaches reduce to the down-weighting of observations
before estimation and forecasting. See, for example,
Eklund, Kapetanios, and Price (2010), Giraitis, Kapetanios,
and Price (2012), and Pesaran et al. (2011). This is only a
very brief description of a vast body of literature whose
impact on forecasting in the presence of large data sets has,
so far, been minimal.

Clearly, when structural change is present, the forecast-
ing problem addressed by Friedman (2012) becomesmuch
more difficult, since, unlike in the stationary case, one
cannot assume that more data will make the forecasting
problem easier to solve. It is important to note that the
above-quoted work on down-weighting past data deals
only with finite (and quite small) sets of regressors. Given
the need to allow for structural change, at least for eco-
nomic and financial data, it is important to consider what
aspects of Friedman’s analysis need to be qualified. In par-
ticular, it would be interesting to see whether the bridge
regression approach can be combined fruitfully with the
down-weighting of observations.

Another important aspect of Friedman’s approach is
the need to orthogonalise the predictors before they are
used for forecasting. This is important, as orthogonality is
a condition for the direct search methods to be equivalent
to the more theoretically justified methods like bridge
regressions. However, the presence of structural change
means that orthogonalising variables appropriately is
not straightforward. This in turn raises important issues
concerning the equivalence of direct search methods and
bridge regressions. Perhaps the starkest way to illustrate
the problem is simply to note that the main aim of the
methods advocated by Friedman (2012) is to efficiently
minimise

Ey,x(yi − a′xi)2 = Ey(yi)2 + a′Ex(xix′

i)a − 2a′Ey,x(xiyi).

However, since, under structural change, neither Ex(xix′

i)
nor Ey,x(xiyi) remain fixed over i during either the estima-
tion or forecasting periods, the minimisation problem will
be much more complicated to implement.

A second issue posed by the presence of structural
change is related to the fact that structural change may
be more problematic when the number of variables is
large, since the stability of the correlation matrix is less
likely to hold. When the number of variables is small and
they have been chosen based on theoretical criteria, one
can provide arguments under which correlation structures
are reasonably stable, or if they are unstable then their
instability may be easier to surmise. However, when the
number of variables is large, such accounts are more
difficult to support.

To conclude, we believe that the question of which
variables to consider and that of the handling of struc-
tural change have to be considered jointly. In certain
cases where structural change is an important factor, one
may wish to use a small data set and sacrifice the ben-
efit of a large set of predictors, given the potential cost
of accommodating them inappropriately in a changing
environment.
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