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This online theory supplement is organised as follows: Section A provides lemmas for the
Appendix of the main paper. Section B provides a proof of Theorem 3. Section C provides a
discussion of various results related to the case where both signal and noise variables are mixing
processes. Section D presents lemmas for regressions with covariates that are mixing processors.
Section E provides lemmas for the case where the regressors are deterministic, while Section F

provides some further supplementary lemmas needed for Sections B and C of this supplement.

A. Lemmas

Before presenting the lemmas and their proofs we give an outline of their use. Lemmas A1l and
A2 are technical auxiliary lemmas. Lemmas A3-Ab provide extensions to existing results in the
literature that form the building blocks for our exponential probability inequalities. Lemmas
A6 and A7 provide exponential probability inequalities for squares and cross-products of sums
of random variables. Lemmas A8 and A9 provide results that help handle the denominator of a
t-statistic in the context of exponential inequalities. Lemma A10 is a key lemma that provides

exponential inequalities for t-statistics. Lemmas A11-A21 are further auxiliary lemmas.

Lemma A1l Lety,, fort =1,2,...T, be given by DGP (6) and define x; = (21, Ti2, ..., Ti)
fori=1,2,...k, and Xy = (&1, 3, ..., T), and suppose that Assumption 1 holds. Moreover,
let di. = (v, Giay ooy i)' fori = 1,2, .., 1y, Q = (qu., 2., .., Qi) , and assume M, = Ip —
Q (Q’Q)_1 Q' ewists. Further, assume that 77 = (1,1,...,1)" is included in Q, a (0 < a < k)
column vectors of Xy belong to Q, and the remaining b = k — 1 > 0 columns of Xy that do
not belong in Q are collected in the T x b matrix X,. The slope coefficients that correspond
to regressors in Xy are collected in the b x 1 wvector B, . Define Oy = 1B, where
Qr = E(T'X,M,X,). If Q1 is nonsingular, and Brr = (Bir, B, ey Ber) # 0, then at

least one element of the b x 1 vector @, is nonzero.

Proof. Since €2, 7 is nonsingular and B3, # 0, it follows that 8,7 # 0; otherwise B, =
Q. 7057 = 0, which contradicts the assumption that 3, # 0. m
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Lemma A2 Consider the critical value function c,(n,0) defined by (15), with 0 < p < 1
and f (n,0) = cn’, for some c¢,6 > 0. Moreover, let a > 0 and 0 < b < 1. Then: (i)
¢ (n,0) =0 ([5 In (n)]1/2>, (ii) n" exp [—bc2 (n,8)] = & (n*72).

Proof. Results follow from Lemma 3 of the Supplementary Appendix A of Bailey et al. (2018).
n

Lemma A3 Let 2, be a martingale difference sequence with respect to the filtration F7 | =
o ({zs}i;ll), and suppose that there exist finite positive constants Cy and Cy, and s > 0 such that
sup, Pr (|z] > @) < Coexp (—C1a®), for all a > 0. Let 0% = E(22 |F7,) and 02 = L 3/ o2,
Suppose that (z = S(T?), for some 0 < X\ < (s+1)/(s +2). Then, for any 7 in the range
0 <m<1, we have

Pr(|3,_y 21l > ¢r) < exp[— (1 —m)* (3T '0%/2). (B.1)
If A > (s+1)/(s+2), then for some finite positive constant Cs,
Pr(| izl > Gr) < exp[=Ci/ 7, (B.2)

Proof. We proceed to prove (B.1) first and then prove (B.2). Decompose z; as z; = w; + vy,
where w; = 2,1(]z¢| < Dr) and v, = 2,1(|2¢| > Dr), and note that

Pr{S0, [z — Bz > G} <PR{ISL, [w, — Bw)] | > (1 - ) ¢r)
P, [~ E(w)]| > 7}, (B.3)

for any 0 < 7 < 1.! Further, it is easily verified that w; — F (w;) is a martingale difference
process, and since |w;| < Dyp then by setting b = T'o? and a = (1 — 7) {r in Proposition 2.1 of
Freedman (1975), for the first term on the RHS of (B.3) we obtain

Pr{|>, [we — B (w)]| > (1= 7) r} < exp{—¢} [To? + (1—7) Dr¢r] (1 7)° /2.
Consider now the second term on the RHS of (B.3) and first note that
Pr{|3_; [v: — E(v)]| > n(r} < Pr[_ |vr — Ev)| > w¢rl, (B4)
and by Markov’s inequality,

Pr{}>,_y o = B(u)]| > nér} < 7' Bl — Bv)| < 207G 0 Elul . (B.5)

"Let Ap = 1, [zt — E(2:)] = Bio+ Bar, where By p = S\ [wi — E(w;)] and Bop = o1, [vr — E(uvy))].
We have |[Ap| < |By,r|+ |Be,r| and, therefore, Pr (|Ar| > ¢r) < Pr(|B1,r|+ |B2,r| > {r). Equation (B.3) now
readily follows using the same steps as in the proof of (B.59).




But by Holder’s inequality, for any finite p,q > 1 such that p™' + ¢! = 1 we have F |v;| =
E (|l [|2| > Drl)) < (Elaf")""{E[ (|| > Do)I"}"* = (E|al") " {E[I (2| > Dr)]}"",
and therefore

Elv| < (B |2")" [Pr(jz| > Dr)]'". (B.6)

Also, for any finite p > 1 there exists a finite positive constant Cy such that F |z[" < Cy <
00, by Lemma A15. Further, by assumption sup, Pr(|z;| > Dr) < Cyexp (—C1D%). Using
this upper bound in (B.6) together with the upper bound on F |z|", we have sup, F |v]
Cy/PC/ [exp (—C1 D3], Therefore, using (B.4)-(B.5), Pr{| S o= E(w)]| > 7}
(2/7) C3PCYCT [exp (—C1D3)]Y. We need to determine Dy such that

<
<

(2/m) C’Ql/pCé/qulT lexp (—Cy D3]V < exp{—(2 [To? + (1 — ) Drr] - (1—m)*/2}. (B.7)

Taking logs, we have In[(2/m) Czl/pCol/q] +In(¢'T) = (Ch/q) Dy < —(1— ™) 2 /{2[To? +
(1= m) Drérl}, or Crg™ Dy > nf(2/m) Gy PGy *Jotn (G T)+(1 = m)° B/ {2[T°02 + (1= m) Daorl}
Post-multiplying by 2 [To? + (1 — 7) Dr(r] > 0 we have

(202C1q7 ") TD; + (2C1qg ") (1 — 7)) D' ¢ — 2(1 — ) Dplr{In ((7'T) + In[(2/7) cyPey
> 20°T In[(2/7) Cy/"Cy/*) + 20°T In (¢;'T) + (1 — m)* (2. (B.8)

The above expression can now be simplified for values of 7' — oo, by dropping the constants and
terms that are asymptotically dominated by other terms on the same side of the inequality.?
Since (r = © (T’\), for some 0 < A < (s +1)/(s + 2), and considering values of Dy such
that Dr = © (T¢), for some ¢ > 0, implies that the third and fourth term on the LHS of
(B.8), which have the orders © [ln(T)T’\“Z’] and © (T )‘“”), respectively, are dominated by the
second term on the LHS of (B.8) which is of order © (T*T¥¥). Further the first term on
the RHS of (B.8) is dominated by the second term. Note that for (; = © (T’\), we have
Thn(('T) = ©[TIn(T)], whilst the order of the first term on the RHS of (B.8) is ©(T)).
Result (B.7) follows if we show that there exists Dy such that

(Ciq7") [202TD5 + 2 (1 — 7) D ¢r] > 202T In (G'T) + (1 — ™) 2. (B.9)

Set (C1g™1) Dyt = (1=7)(p/2, or D = (Crlq(1—m)¢r/2)" Y, and note that (B.9)
can be written as 202 (Ci¢™") T (Cy'q (1 — ) CT/Z)S/(SH) +(1-7m)2¢ > 202TIn ((F'T) +
(1 — m)* ¢2. Hence, the required condition is met if limz— o [(Cig™") (Cy g (1 — 7) (T/Q)S/(SH)—
In (C; T )] > 0. This condition is clearly satisfied noting that for values of (;y = © (T ’\) ,q>0,
Ci>0and 0 <7 <1,

(Crg™) (Cq (1 =) ¢r/2)" Y —n (G'T) = o(TT) — & I (T))],

2A term A is said to be asymptotically dominant compared to a term B if both tend to infinity and A/B — oo.



since s > 0 and A > 0, the first term on the RHS, which is positive, dominates the sec-
ond term. Finally, we require that Dyr(r = o(T), since then the denominator of the frac-
tion inside the exponential on the RHS of (B.7) is dominated by 7" which takes us back
to the Exponential inequality with bounded random variables and proves (B.1). Consider
T 'Dr¢r = [Cilq (1 —7) /2]1/(5+1)T*1CZ(F2+8)/(1+8), and since (; = ©(T?) then Dy = o(T),
as long as A < (s +1)/(s + 2), as required.

IfA> (s+1)/(s+2), it follows that Dr(r dominates 7' in the denominator of the frac-
tion inside the exponential on the RHS of (B.7). So the bound takes the form exp[—(1 —
7)(2/ (CyD7(r)], for some finite positive constant Cy. Noting that Dr = 9((%/(5“)), gives a
bound of the form exp[—C5¢/ ] proving (B.2). m

Lemma A4 Let x; and u; be sequences of random wvariables and suppose that there exist
Co,C1 > 0, and s > 0 such that Supt Pr(|xt| > a) < Cyexp (—Cia®) and sup, Pr(|ut| > a) <
Coexp (—Cha®), for all > 0. Let ft = o({u Y o)z} D) and F @) — o({us )20z,
Then, assume either that (i) E(u|F2) =0 or (ii) E(zu — | FL) = 0, where iy = E(xuy).
Let ¢ = © (T*), for some X such that 0 < X\ < (s/2+1)/(s/2 + 2). Then, for any « in the

range 0 < m < 1 we have

Pr(|i, (weue — ) | > (r) < exp[—(1 = 7)°¢E/ (2T ol (B.10)
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where o7 =T ST 62 and 02 = El(zuy — ) |FU). IFA > (s/2+1)/(s/2 + 2), then for

some finite positive constant Cs,

Pr(|S0, (wou — ) | > Cr) < exp[—Cagy/®?). (B.11)

Proof. Let Fi_; = o({z,u,}'"}) and note that under (i), E(zyu| Fy_1) = E[E(ug| F)a| Fooy) =
0. Therefore, z;u; is a martingale difference process. Under (ii) we simply note that z,u; — 1

is a martingale difference process by assumption. Next, for any o > 0 we have (using (B.60)

with Cj set equal to o and C} set equal to /)

Pr (|| > o] < Pr |z, > 041/2] + Pr [|u,| > 041/2] (B.12)

But, under the assumptions of the lemma, sup, Pr [|z;| > a'/?] < Coe=Cr*? and
sup, Pr [Ju,] > o!/?] < Coe= @1 Hence sup, Pr [|zu] > a] < 2Coe~"*. Therefore, the

process x;u,; satisfies the conditions of Lemma A3 and the results of the lemma apply. =

Lemma A5 Let © = (11,29, ..., x7)" and q, = (q1.4, oty - Qi) e sequences of random vari-
ables and suppose that there exist finite positive constants Cy and Cy, and s > 0 such that
sup, Pr (|7;| > a) < Cyoexp (=C1a?) and sup;, Pr(|gi;| > a) < Coexp (=Chra?), for all a > 0.
Consider the linear projection x; = Zéilﬁijt + Uy, and assume that only a finite number of
slope coefficients (3's are nonzero and bounded, and the remaining [5’s are zero. Then, there

exist finite positive constants Cy and Cs, such that sup, Pr (|u,:| > ) < Cyexp (—Csa).
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Proof. We assume without any loss of generality that the |5;| < Cy for i = 1,2,..., M,

M is a finite positive integer and 5; = 0 for ¢« = M + 1, M + 2,...,lp. Note that for some

0 <7 <1, sup, Pr(Juz | > ) < sup, Pr(|z; — ij‘ilﬁjqﬁ| > «a) < sup, Pr(|z] > (1 —7m)a) +
sup, Pr(|S°Y, g0l > ma) < sup, Pr(jai] > (1= m)a) + sup, X1, Pr (|| > ma/M), and
since |3;| > 0, then sup; Pr (|uz| > a) < sup, Pr (2] > (1 — m)a)+M sup;, Pr{|g;| > ma/(M |5;])].
But sup; ; Pr([q;| > ma/(M |B;])] < sup;, Pr{|g;e| > ma/(M Brmax)] < Coexp{—Ci[ra/(M Buax)]*},
and, for fixed M, the probability bound condition is clearly met. m

Lemma A6 Let xy, i = 1,2,...n, t = 1,2,....,T, and n; be processes that satisfy exponen-
tial tail probability bounds of the form (9) and (10), with tail exponents s, and s,, where
s = min(s,,s,) > 0. Further, let xyn;, i = 1,2,...,n, be martingale difference processes.
Let q, = (1.t 2, ...,qlT’t)' contain a constant and a subset of T, = (14, Tog, ..., Tpe)'. Let
X,=T" Z;‘le E(q.q,) and ﬁ)qq = Q'Q/T be both invertible, where Q = (qy., qy.,-.., q,.)
and q;. = (g1, Qizy s i)', for i = 1,2,....1p. Suppose that Assumption 5 holds for x; and
q. t=1,2,...n, and for n, and q,, and denote the corresponding projection residuals de-
fined by (11) as Uzt = Tt — Yogu, 794 and Upy = T — Vo, 79y, Tespectively. Let @, =
(Tay 1, Ugy 2y ooy Ugy 7)) = Myzi, T = (Ti1, Tigy oo, Tir), Uy = (Uy1, U2y o, Upr) = Mym, m =
(1, o)y My = T = Q(QQ) ™ Q, o = FIUFE, frage = B (gt [Fir ), w210 =
LS E [(wame — E (zame |Fier))], and wanr = L3 B (e, tine — pame)’]. Let Cp =
o(T?*). Then, for any 7 in the range 0 < ™ < 1, we have,

Pr(|32yzien — B (e | Fior) | > ] < expl— (1= 7)° 3/ (2Tw2 1)), (B.13)
if0 <A< (s/241)/(s/2+2). Further, if \ > (s/2+1)/(s/2 + 2), we have,
Prl| i am — B (zam | Fia) | > o) < expl[=CoG ™) (B.14)

for some finite positive constant Cy. If it is further assumed that lp = © (Td), such that
0<d<1/3, then, if3d/2 < X< (s/2+4+1)/(s/2+2),

Pr(|32 2 (G, s — Hama) | > Gr) < Coexpl— (1= m)* (7/(2T w3, 7)] +exp [~C1T] . (B.15)
for some finite positive constants Cy, Cy and Cy, and, if A > (s/2+1)/(s/2 + 2) we have
Pr300 (e sfins = prans) | > Gr] < Coexp[=CaG/ ™) texp [-CT], (B.16)
for some finite positive constants Cy, C7, Cy and Cs.

Proof. Note that all the results in the proofs below hold both for sequences and for triangular
arrays of random variables. If g, contains z;, all results follow trivially, so, without loss of
generality, we assume that, if this is the case, the relevant column of Q is removed. (B.13) and

(B.14) follow immediately given our assumptions and Lemma A4. We proceed to prove the rest
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of the lemma. Let w,, = (uy; 1, Uz, 2, -, Uz, 1) a0d Uy = (Up1,Up 2, ..., up 7). We first note that
T s s AR T T
D i (U 4l g — floipt) = “’fpl Uy — D 4y Mt = ulxiMqun_ > i1 Haymt, and
T s s T - e
thl (s Ut — Pzipt) = thl (U Ut — Maimt) — (T 1'“';,(’2) qul (Q,un) ) (B.17)

where 2qq =T71(Q'Q). The second term of the above expression can now be decomposed as

(T74,Q) £, (Quy) = (T7'4,Q) (5, - 2,) (Qwy) + (T4, Q) =, (Qwy) . (B1S)

By (B.59) and for any 0 < 7y, 79, 73 < 1such that 327 7, = 1, we have Pr[| 327, (tia, sty s — flass) | >

Gr] < Prl| 30, (tay stin g = pane) | > mr] +
Prl| (T7'), Q) (3.} — 2.1 (Q'uy) | > maolr] + Pr[| (T7'u), Q) .1 (Q'u,) | > m3¢r]. Also ap-
plying (B.60) to the last two terms of the above we obtain

Prl| (T4, Q) (£~ (Q'uy) | > matr] < Pr (|85} = 2 e |77, Q| Qg o > mar) <

Pr(||2 =2 r > Cr/or)+Pr (T7 | ul, Q|| 1Q wyll > madr) < Pr (|83} — S M|p > Cr/or)+

Pr [HUQQHF > (ma07T)?) + Pr Q]| > (w87 T) %], where 67 > 0 is a deterministic se-

quence. In what follows, we set é7 = S (¢%), for some a > 0. Similarly,

Pr ([ (T, Q) . (Quy) | > ms¢r] < Pr (|2 ]|, T4, Q| 1Quyl p > ms¢r) <
Pr| H%QHFHQ’unHF>7T3CTT/I|E H | < Pr (||, Qfl, > = G T 55 +
Pr (Q |l > 3¢ * T2 | 21|, Overall

Pr(|S00 (it — frane) | > Gr) < PRI (gt — prens) | > i)
+Pr (|8 =2 > G/or) + Pr(1Quylp > (re2T)?) + Pr (e, Qllp > (202 T)?)

qq
+ Pr(| Q| > w222 |31 )

+ Pr(| Q|| > 2GPT S (B.19)

First, since uy 4, —tzn, is @ martingale difference process with respect to a({ns}s 1 {335}5 1 {qs}

by Lemma A4, we have, for any 7 in the range 0 < 7 < 1,

Pr{|So0 (e ting — fhogn) | > miCr] < exp[—(1 — m)2C2/(2Tw2, 1)), (B.20)
if0< A< (s/24+1)/(s/2+2), and
Pr{| S0 (U st — i) | > miCr] < exp[—Cogi/ 1Y), (B.21)

if A > (s/2+1)/(s/2 + 2), for some finite positive constant Cy. We now show that the last
five terms on the RHS of (B.19) are of order exp [—C’lTCQ] , for some finite positive constants
C1 and C,. We will make use of Lemma A4 since by assumption {g;u,} and {gyu,, .} are
martingale difference sequences. We note that some of the bounds of the last five terms exceed,
in order, 7"/2. Since we do not know the value of s, we need to consider the possibility that
either (B.10) or (B.11) of Lemma A4, apply. We start with (B.10). Then, for some finite

positive constant Cj, we have?

sup; Pr]||qiu,|| > (m207T)"?] < exp (—Cody) . (B.22)

3The required probability bound on u,; follows from the probability bound assumptions on z; and on gy,
for i =1,2,...,1lp, even if [ — oco. See also Lemma A5.
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Also, using [| Qw5 = 277, (3, gjewe)” and (B.59), Pr[[|Qu, |- > (ma07T)"] = Pr(||Quy|I7. >
ma0rT) < S P qjeuns)? > me0rT/lr] = S Pr(| 00 qietne] > (m200T/lr)"?),
which upon using (B.22) yields (for some finite positive constant Cj)

Pr||Qu, || » > (m267T)?] < Ipexp (—Codr/lr), Pr[|Qus|| > (m0rT)"?] < lpexp (—Codr/lr) .
(B.23)
Similarly,

Pr(|Quy |l > 2G|S0 %) < b expl—Colr/ (| S5 1 1) (B.24)

Pr([| Q|| > w3 ¢/ *TV? || = HF”2 ) < lpexp=Colr /(|| 20 || - 10)]-

Turning to the second term of (B.19), since for all ¢ and j, {¢iq; — E(¢iq;i)} is a martingale
difference process and ¢;; satisfy the required probability bound then

supy; Pr{|T ">, [auqje — Eaieqje)] | > m2lr/0r} < exp(—CoT'(3/63). (B.25)

Therefore, by Lemma A16, for some finite positive constant Cy, we have

Pr(|2,) — || >Cr/or) < Bexp[—CoT (o727 |2, HF N0 |l 5 + 07 ¢r) ]
+H2 exp(—CoT || 21| 172): (B.26)
Further by Lemma Al4, HE HF o (Z;ﬂ), and T'¢26,%1 2 ||§J H (1= HF +0:1¢r) 2 =

T2 HE H » (677" HE H » 1)~2. Consider now the different terms in the above expression
and let Py = 0r/lr, Pio = Gr/(|Z1| 0 1r), Pis = T2 (|20 0G|S0 - + 172, and
Py = THE HF lTQ. Under 67 = © (¢2), Ir = ©(T?), and (r = &(T?), we have Py = dp/lr =
e (T°7),

Py = ¢r/( ||23 HF Ir) =6 (T*34?), (B.27)
P13 _ l 2 HZ || 5T<T1 HE HF 1]—2 =0 (Tmax{1+2)\—4d—2a,1+)\—7d/2—a,1—3d})’ and Py, =
T HE HF ZT2 = © (T"*"). Suppose that d < 1/3, and by (B.27) note that A > 3d/2. Then,
setting &« = 1/3, ensures that all the above four terms tend to infinity polynomially with

T. Therefore, it also follows that they can be represented as terms of order exp [—C’chﬂ ,

for some finite positive constants C; and Cy, and (B.15) follows. The same analysis can be



repeated under (B.11). In this case, (B.23), (B.24), (B.25) and (B.26) are replaced by

(
C 63/2(s+2 Ts/2(s+2) [ 5T 5/2(s4+2)]
Pr <||Q,'“'n||p > (7r25TT)1/2> < lrexp 3/2 Ty = lrexp |[—Cp <T—) ,

Iy

5T s/2(s+2)7]
= lT exp —CO (T—) s
It

C 58/2(S+2 Ts/2(s+2)

Pr <||Q’ux|] > (m267T) ) < Iy exp TeaE

_C Cs/2(s+2)TS/2(S+2) T s/2(s+2):
<trew |t e ) e | <O \g )|

1/2 1/2T1/2 _C 5/2(s42) s /2(s+2) T 5/2(s+2)]
ety > =, u”?>§l“"p o ) =rew 6t

[ K I

1/2 1/2T1/2
(ucz 4> B :
(e i r _

supy, Pr{{T 5, [0 — Blauay]| > malr/br) < expl=C: e/, and, us-

ing Lemma A17, Pr[||(%] > Y. =B > malr/or] <

12 exp|— CTS/(S+2)CS/(S+2)(5 S/ s+2 lfs/ (s+2) HE ”FS/ (s+2) HE “F+5 Lep) s/ s+2)]+

enpl=Co 2 [ 74 = b (= Co Tt 5 25+ o7 o) +
12 exp[—Co(T HE H P lr 71)%/ 542 respectively. Once again, we need to derive conditions that

imply that Py = 67T /Iy, Py = (T || 2, HF I, Pos = TCrorlr || B3| o (120 | o+ 071 ¢r)] ™

and Poy = T||S. 1|

then, as before, the relevant terms are of order exp [—C’l TCZ} , for some finite positive constants

I7! are terms that tend to infinity polynomially with 7. If that is the case

(4 and Cy, and (B.16) follows, completing the proof of the lemma. Py dominates Pa3 so we focus
on Py1, Pa3 and Pay. We have 07T /Iy = (T1+a W2), Trlorlr |2 |, (|Zgd | p+67 ¢ =
O [Imax(ttr=a=2d1=3d/2)] and T ||, H i = © (T"3%2). It immediately follows that under
the conditions set when using (B.10), Whlch were that o« = 1/3, d < 1/3 and A > 3d/2, and as
long as s > 0, Py to Py tend to infinity polynomially with 7', proving the lemma.? m

Lemma AT Letxy,i=1,2,....,n, be processes that satisfy exponential tail probability bounds of
the form (9), with positive tail exponent s. Let q, = (q1.4,Gays -, Qipz) contain a constant and a
subset of Ty = (T14, oty ooy Ty) . Suppose that Assumption 5 holds for zy and q,, i =1,2,...,n

and denote the corresponding projection residuals defined by (11) as uy,; = xy — Vou, 7D Let
Y,=T" Zle (q.4,) and qu Q'Q/T be both invertible, where Q = (q,., qs., ..., q;,..) and
q;. = (¢, G, - qir)', fori = 1,2, .. lp. Let Uy, = (Ug, 1, Ugy 25 oy Uy, ) = Myz;, where x; =
(Ti1, Tigy -y Tir) and M, = Ip—Q (Q’Q)_1 Q. Moreover, suppose that E (u%zt — agit|.7:t_1) =0,

Tt is important to highlight one particular feature of the above proof. In (B.23), Qituz+ needs to be a
martingale difference process. Note that if g;; is a martingale difference process distributed independently of
Ug.t, then g u, 4 is also a martingale difference process irrespective of the nature of u, ;. This implies that one
may not need to impose a martingale difference assumption on u,, if ;; is a noise variable. Unfortunately,
a leading case for which this lemma is used is one where ¢;; = 1. It is then clear that one needs to impose
a martingale difference assumption on u,, to deal with covariates that cannot be represented as martingale
difference processes. We relax this assumption in Section C of the online theory supplement where we allow
noise variables to be mixing processes.



where Fy = F{ and o2, = E(u2 ,). Let (r = &(T*). Then, if 0 <X < (s/241)/(s/2+2), for
any  in the range 0 < w < 1, and some finite positive constant Cy, we have,

T
D1 (%21; - Uit)
Otherwise, if A > (s/2+1)/(s/2 + 2), for some finite positive constant Cy, we have

T
D1 (IzZt - Uit)
If it is further assumed that lp = © (Td), such that 0 < d < 1/3, then, if 3d/2 < \ <
(s/241)/(s/2+2),

Pr [ T= (aii,t B 0'9231'15)
for some finite positive constants Cy, Cy and Cy, and, if X > (s/2+1)/(s/2 + 2),

Pr HZtT=1 (a?&lt Oy, t)

for some finite positive constants Cy, C1, Cy and Cs, where wi%l,T =T Zthl E [(xzt — Ugit)g]
and wi%T - T_l Zf:l E [(uii,t - Ugit) 2] :

Proof. If g, contains x;, all results follow trivially, so, without loss of generality, we assume
that, if this is the case, the relevant column of Q is removed. (B.28) and (B.29) follow sim-
ilarly to (B.13) and (B.14). For (B.30) and (B.31), we first note that |>",_, (a2, — 02,)| <
[Ci (=2 [+ (T, Q) (T7'QQ) ™ (Qua) |

difference process and for a > 0 and s > 0, sup, Pr (|u2 ,| > a?) = sup, Pr (|u, .

|

| < Coexp [~ (1= 7 GTwi20/2] (B.28)

|

> CT} < exp [ C CS/ S+2] (B.29)

] < Coexp [— (1 —m)? GT 'wi7/2] + exp [-C1T<?],  (B.30)

> CT} < Cyexp [ C Cs/ 8+2] + exp [—ClTCQ} , (B.31)

Since {u2 , — 02} is a martingale
>a) <
Coexp (—C1a®), by Lemma A5, then the conditions of Lemma A3 are met and we have
PrTT, (12,0~ 02) | > Grl < expl— (1 — m BT wi2/2), i 0 < A < (/2 + 1)/(s/2 +2),
and Pr[| S, (u2,, —02,) | > ¢r] < exp[~CoGy/ ™), if A > (s/2 +1)/(s/2 + 2). Then, using
the same line of reasoning as in the proof of Lemma A6 we establish the desired result. =

Lemma A8 Let vy, fort=1,2,....,T, be given by the data generating process (6) and suppose
that uy and Tpy = (T14, Toty -y Tny)' Satisfy Assumptions 2-4, with s = min(s,, s,) > 0. Let g, =
(q1.45 G2ty -, Q) contain a constant and a subset of ;. Assume that B, = %Zle E(q.4q,)
and fqu = Q'Q/T are both invertible, where Q = (qy., q., ..., q;,.) and q; = (¢i1, Gi2, ---, i)’
for i = 1,2 ....lp. Moreover, suppose that Assumption 5 holds for x; and q,, where x; is
a generic element of {1, Tat, ..., T} that does not belong to q,. Denote the corresponding
projection residuals defined by (11) as uy: = x4 — Voe1 1> and the projection residuals of y; on
(@, w) as er = yr — Vypur (@, ). Define x = (21, 22,...,;27)", and My = Iy — QQQ'qQ,
and let ap = © (T)‘_l). Then, for any m in the range 0 < w < 1, and as long as lp = © (Td),
such that 0 < d < 1/3, we have, that, if 3d/2 < X < (s/2+4+1)/(s/2 +2),

(‘T 1 72 /M T — 1‘ > CLT) < exp[ (T )(1 —7T) TCLTCU (T)/2:| +6Xp[ COTCI} 9 and
(B.32)



Pr(|(T™ o, (' Myz)” Y2 —1] > ar] < exp[—0 gy (1 —7)° Tazw, {ry /2] + exp [-CoT],
(B.33)
where
Uch,(T) = T7123:1E (uit) ] %2:,(T) = TﬁthTzlE |:(u926t - Uazct) 2] . (B.34)
IfA> (s/2+1)/(s/2 +2),
Pr(|T "o, 22 Moz — 1| > ar) < exp[—Co (Tar)” ] + exp [-C1T] (B.35)

and
Pr(|(T "0, 2py 2 Mym) /% = 1] > ar] < exp[~Co (Tar)”**?) + exp [-C1T] . (B.36)
Also, if 3d/2 < A < (s/2+1)/(s/2+2),

Pr(]T’lo;%T)e’e —1] >ar) < exp[—af;m (1—m)° Ta%w;?T)/Q] +exp [-CoT“"],  (B.37)

Pr[|(a;?T) ee/T) Y2 — 1| > ay] < exp|—0o ( ) (1= )2 Tajw, 7/2] + exp [— CoT“], (B.38)
where e = (e, €3, ...,e7),
Ou(T) = T_IZLUE, and W?L,T = T‘TLE[(U? - 03)2]‘ (B.39)

IfA>(s/2+1)/(s/2+2),

PI“(|T_1O';?T) de—1|>ar) < exp[—Cy (Tar)” ] + exp [-CiT%], and (B.40)
Pr(|(o, 57 €e/T)"? = 1| > a] < exp[—Co (Tar)* "] + exp [-C1T] (B.41)
Proof. First note that T-'z'Myz — 02 ) = T Sy (@2, — 0%), where d,,, for t =

1,2,...,T,. is the t-th element of &1, = M,z. Now applying Lemma A7 to 3, (a2, — o2,) with
(r = Tap wehave Pr(| S/, (42, — 0%) | > ¢r) < exp[— (1 —7)* C%w;?T)/(ZT)]jLeXp [—CoT™],
if 3d/2 < A < (s/2+1)/(s/2 +2), and Pr(| 21, (a2, — 02) | > ¢r) < exp[-Coy/ ] +
exp [~C1T9], if A > (3/2 +1)/(s/2 +2), where w?  is defined by (B.34). Also

Pr(|T~o ¢ Zt (@ —0%) | > T o 7 Cr) < exp[— (1 - )’ G i T /2] +exp [-CoT],
if 3d/2 < /\ < (s/2 + )/(3/2 +2), and Pr(|T "o, ¢ S (a2, —0%)| > T o i) <
exp[—C CS/ 2] Lexp [—CiT ], if X > (s/2+1)/(s/242). Therefore, setting ar = CT/TO'i(T) =
o (T*1), we have

(|a_2 T'2’M,z — 1| > ar) < exp[—ai,(T) (1— W)zTa%w;?T)/ﬂ +exp [-CoT"], (B.42)

(T)
if 3d/2 < A< (s/2+1)/(s/2+2), and
Pr(|a;?T)T_1m’qu — 1| > ar) < exp[— C’OCS/ (s+2) ] +exp [-C1T],
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if A > (s/2+41)/(s/2+2), as required. Now setting wy = J;%T)Tflm’Mqa:, and using Lemma
A13, we have Pr(|(o, (T~ 2'M,2)"? —1| > ar] < Pr(lo, {1 T~ &'Myz—1| > ar), and hence

Pr(|(0, 1T &' M)~ /*=1| > ar] < expl=0} () (1 — )" Tajw, iy | +exp [~CoT] , (B.43)
if 3d/2 < A < (s/2+41)/(s/2 4+ 2), and
Pr[\(a;%T)Tflw'qu)’l/Q — 1] > ar] < exp[—Co/ )] + exp [-Ci 7],
if A > (s/2+1)/(s/2+ 2). Furthermore

|(0;%T)T*1:c’qu) — 1|

(0rin T e Myz)/2 + 1

Pr|(0 2, T ''M,x)"/? — 1| > ar] = Pr

x:(T) > aT Y

and using Lemma A11 for some finite positive constant C, we have Pr{|(o, ¢, T~ &'Myz)"/? —

1| > ar] < Prllo, ¢ T e’ Mz —1| > arC '+ Pr[(o, (T ' Myz)/? +1 < C7']. Let O = 1,

and note that for this choice of C, Pr[(o ?T)T le'M,z)/2+1 < C71] = Pr|(o me)T le'M,z)'? <
0] = 0. Hence Pr[|(a;?T)T*1m’Mqa:)1/2 — 1] > ar] < Prf|(0, 2, T '2'M,z) — 1| > ar], and

,(T)
using (B.42),

Pr[|(a;?T)T_1w’Mq:c)1/2 — 1| > ag] < exp[—0y ) (1 — ™)? TaQTw;?T)/2] +exp [~CoT],
(B.44)
if 3d/2 < A< (s/2+1)/(s/2+2), and

Pr[|(a;?T)T_1m’qu)1/2 —1] >ar] < exp[—C’oCS/ 2] 4 exp [-Ci T,

if \ > (s/2+1)/(s/2 + 2). Consider now €'e = 3,_, ¢? and note that |3, (2 — 0?)| <
ST (W2 = 0?) |+ | (T'W/'W) (T 'W'W) ™ (W) |, where W = (Q, z). As before, applying

Lemma A7 to Zthl (€2 — 0?), and following similar lines of reasoning we have
Pr{Ci (e = 0f) | > Grl < expl— (1= m)* GT ey By /2] 4 exp [~ CoT ]
if 3d/2 < A < (s/2+1)/(s/2 + 2), and
Pr[30s (¢ = 0f) | > Gr] < expl=Cogy/ ™) + exp [~ 7]

if A > (s/2+1)/(s/2 + 2), which yield (B.37) and (B.40). Result (B.38) also follows along
similar lines as used above to prove (B.33). m

Lemma A9 Let vy, fort=1,2,...,T, be given by the data generating process (6) and suppose
that uy and @,y = (T14, Top, ..., Tnt)' satisfy Assumptions 2-4. Let q, = (qu1t, @a.t, -, qlTﬂg)' contain
a constant and a subset of Tn; = (T14, Tog, .oy Tur)'s and Iy = o(TY?). Assume that X,, =
%Zthl E(q.q,) and f]qq = Q'Q/T are both invertible, where Q = (q,., qy., ..., q;,..) and q; =
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(Gi1, Qio, -, qir)’, fori =1,2, ... lp. Suppose that Assumption 5 holds for x; and q.,, where x; is a
generic element of {x1y, Ty, ..., Tpt} that does not belong to q,. Denote the projection residuals
of yr on (@, x1)" as er = Yo — Vo (@, v)'. Define ¢ = (21, 72,...,27)", e = (e1,¢e2,...,er),
and My = Ir — Q(Q'Q)™'Q’". Moreover, let E(e'e/T) = 02 ) and E(x'M,z/T) = 02 .
Then

ar ar

Pr
V(Ttee) (T '2'M,x)

> @ ("’5)) (B.45)

<
>cp(n,5)]_Pr< 1 d

+ exp [—COTcl]

Oe,(T)0,(T)

for any random wvariable ar, some finite positive constants Cy and Cy, and some bounded se-

quence dp > 0, where ¢, (n,0) is defined in (15). Similarly,

== v

Proof. We prove (B.45). (B.46) follows similarly. Define

¢ (n,0)
1+dr

ar
Pr

> ¢, (n,0)

) + exp [—C’OTQ} (B.46)

Te,(T)

gr = (02 0/ (T € e)'? =1, hy = [07 () /(T &' Myz)]'/? — 1.
Using results in Lemma A11, note that for any d; > 0 bounded in T,

ar ar

Pr
‘ V(Tee) (T '2'M,x)

¢ (n,0)
= < p ’
> ¢ (n,0) |0 o]_m( > 1+dT>+

Pr([(14gr) (14 hy)| > 1+dy).

Oe,(T)0x,(T)

Since (1 + gr) (1 + hy) > 0, then
PI‘(|(1 +gT) (1 + hT)| >1 +dT) =Pr [(]. +gT) (1 + hT) >1 +dT] = PI‘(gThT +gT+ ]’LT) > dT) .
Using (B.33), (B.36), (B.38) and (B.41),

Pr(|hr| > dr] < exp [-CoT'], Pr[lhr| > c] <exp [-CoT“'],
Pr||lgr| > dr] < exp [—COTcl] , Prllgr| > dr/c] <exp [—C’OTQ} ,

for some finite positive constants Cy and C;. Using the above results, for some finite positive

constants Cy and C', we have,
ar ar

Pr
V(Ttee) (T '2'M,x)

> @2 (z, 6))+6Xp [—CoT™ ],

Oe(T)0z,(T) 1+dp

>cp(n,5)|0:0] §Pr(

which establishes the desired result. m
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Lemma A10 Lety;, fort =1,2,...,T, be given by the data generating process (6) and suppose
that u; and Tny = (T14, Tog, ..., Tpy)' satisfy Assumptions 2-4, with s = min(s,, s,) > 0. Let
q, = (Q1,t,Q2,t7~-~,QZT,t), contain a constant and a subset of T, and let n, = =z By + uy,
where x,; 1s ky X 1 dimensional vector of signal variables that do not belong to q.,, with the
associated coefficients, 3,. Assume that X, = %ZtT:l E(q.q,) and 3, = QQ/T are both
invertible, where Q = (q,., q., ..., q;,..) and q;. = (¢i1, Qi -, @ir)’, for i =1,2,...,lp. Moreover,
let Iy = o(T"/3) and suppose that Assumption 5 holds for x and q,, i = 1,2,...,n, where x,
is a generic element of {x1y, Ty, ..., Tn} that does not belong to q,. Denote the corresponding
projection residuals defined by (11) as u,; = x; — Yoe1 s and the projection residuals of
Ye on (@4, ) as e = Yo — Yypur(dy, ). Define ¢ = (11,29, ..., 27), y = (Y1, Y2, - Y1)
e = (e, e9,..er), M, = Ir — Q(Q'Q)'Q/, and Oy = E (T '2'M,X,) B,, where X, is T
xky, matriz of observations on xp;. Finally, ¢, (n,d) is given by (15) with 0 < p < 1 and
f(n,68) = cn®, for some ¢, 6 > 0, and there exists k, > 0 such that T = © (n**). Then, for any
7w in the range 0 < 7w < 1, any dr > 0 and bounded in T, and for some finite positive constants
Cy and C1,

2

Prllt,| > ¢, (n,0)|0r =0] <ex
] > ¢y () 0 = 0] < exp | —— o=

+exp [-CoT"], (B.AT)

where )
t, = T PaM,y (B.48)
T /([T tee) (T l2Myz)
ooy =E(T7'ee), oy =E (T2’ Mz), (B.49)
and
w?ye,T = T_lzf:lE [(Ux,tﬁt)2] . (B.50)

Under o? = 0% and/or E (uit) =02, =02, foralt=1,2,..T,
Pr(|t;| > ¢, (n,0) |07 = 0] < exp [— (1 — )2 2 (n,6) (1+ dr) ™ /2] + exp (—CoT“") . (B.51)

In the case where O # 0, let O = G(T_ﬂ), for some 0 < ¥ < 1/2, where ¢, (n,d) =
O (Tl/Q_ﬂ_CS), for some positive Cy. Then, for some bounded positive sequence dr, and for

some Cy,C3 > 0, we have
Pr(|t,| > ¢, (n,0) |07 # 0] > 1 — exp (—CoT). (B.52)

Proof. The DGP, given by (7), can be written as y = atr + XyB+u = atr + X0, +

X8, + u, where X, is a subset of Q. Let Q, = (Q,z), M, = Ir — Q(QQ 'qQ, M, =

Ir — Q.(Q.Q.)'Q.. Then, M,X, = 0, and let M, X}, = (Zpg.1, T2, - Tpqr)- Then,
T-122'M,y T-122'M,X,3, T-122'M,u

- _ . (B.53
' V(Tteel) (T eMyz) /(T 'ee) (T 'a'Mx) - V(T'ee) (T '2’'M,x) (B.53)
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Let Oy = E (T '2'M,X,) B,, n = X8, + u, n = (71, m2, ...,nr)", and write (B.53) as

_ \/T@T ﬁ (T71$/qu — QT) B.54
te V([Ttee/) (T 1M, x) " V(T tee)) (T z'M,z) (B:54)

First, consider the case where 67 = 0 and note that in this case
ty = (T 'a'M,z) "/ (T-'22'M,n) (T-'e'e) "*. Now by Lemma A9, we have

(T'x'M,z)""/* (T2’ M,n)
(T—le’e)l/2
T122'Mmn| ¢, (n,9)
>
1+ dr

Pr(|ty| > ¢, (n,0) |0y =0] =Pr

§Pr<

where o2 ; and o2 ;) are defined by (B.49). Hence, noting that c, (n,d) = o(T), for all

> ¢, (n,0) |0r = 0]

) + exp (—C’OTcl) .
Oe,(T)0x,(T)
Co > 0, under Assumption 3, and by Lemma A6, we have

2
—(1—m) agﬁ(T)ai(T)c% (n,d)

2 (1 + dT)2 wiej

Pr(|t.] > ¢, (n,0) |07 = 0] < exp +exp (—CoT™),

where w2, = TS El(upym)’] = TflzLE[u;t (.8, + ut)z], and u,, being the er-
ror in the regression of z; on Q, is defined by (11). Since by assumption u, are distributed

independently of u,; and x;,, then

wie,T = T_thTzlE[Ui,t(wéq,tﬁb)2} + T_lthzlE (ugzct) E (U?) )

where x}, 3, is the {-th element of M X,8,. Furthermore, E[u? ,(z},,53,)] = E (u2,) E(x},,3,)* =

E (u2,) ByE (@1}, ,) By, noting that under 0 = 0, u,; and x;,; are independently distributed.

Hence

w:%e,T = T_IZthlE (uit) ﬂQ,E(:qu,tiB;,q’t),Bb + T_IZthlE (uit) E (uf) . (B.55)
Similarly

O'i(T) =F (Tﬁle’e) =F (Tﬁln’qun) = E[T*1 (Xu0, + u)/ M. (X8, + u)]
= BB (T X)M.Xy) By, + T E (u?),

and since under # = 0, x being a noise variable will be distributed independently of X,, then
E(T'X|M,,X,) = E(T7'X;M,X}), and we have

oty = B E (T XM X) BT Y E (uf) = T LBy (ag0hy,) Byt Ty B () -
(B.56)

Using (B.55) and (B.56), it is now easily seen that if either E (u2,) = o2, or E (uf) = o?, for

2

€,

all ¢, then we have w7, 7 = 07 1,03 1y, and hence
Pr(|t,| > ¢, (n,6) |07 = 0] < exp [— (1 — m)° 012) (n,6) (1 +dp)~? /2] + exp (—CoT“) ,
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giving a rate that does not depend on error variances. Next, we consider 67 # 0. By (B.45) of
Lemma A9, for dr > 0 and bounded in T,

1/2 ,qu

T-122'M,y
V(T 1e’e/ ) (T tz’'M,x)

Oe,(T)0,(T)

- cp (n,0)
1+drp

> ¢ (n,é)] <Pr (

)+eXp (—OoTcl) .

We then have

T-'2g'Myy  TY? (T 'a'M, X8, — 0r) N T-122'M,u N TV20;

Oe (T) 0, (T) Te (T) 0, (T) Oe(T)0u/(T)  Oe(T)0a(T)
_ T2 (T 'a'Myn — Or) N V201
Oe ()0 (T) Oe (T)0u,(T)

Then Pr(|T"?0 (ot (T 2 Myn — 0r) + TV?0_1pyo, ipbr| > ¢, (n,0) /(1 +dr)] = 1 —
Pr HTl ’1 ) ;%T) (T'z'Mn — 07) + T2 7(1 ) x(T)HT‘ < ¢, (n,d) /(1 + dT)]. Note that since
¢p (n,8) is given by (15), then, TV 07| /(0c (1)0x 1)) — ¢p (0, 8) / (1 4 d7) > 0. Then by Lemma

Al12,
Pr [

gPr[

But, setting (7 = T2 [T |07 /[0, (1)041)] — ¢ (n,6) / (1 + dr)] and noting that 67 = O(T~?),
0 < ¥ < 1/2, implies that this choice of (r satisfies (v = © (T)‘) with A =1 -4, (B.16) of

Lemma A6 applies regardless of s > 0, which gives us

o

T1/2 s/(s+2)
< Cyexp {—05 {TW ( brl & 5))} +exp (—CeT") (B.57)

V(T *x'M,n — 0r) N T'20; < O (n, (5)}
Oe(T)0x,(T) Oe(1)0z)| — 1+drp
TV (T *z'M,n — Or) T2 07| e (n, 5)}

Oe (T)Tx,(T) Oe(T)0x(T) 1+dp

TV (T *x'M,n — 0r)

Te,(T)T,(T)

R G (n,é)]
Oe(T)0xyT) 1+ dr

Oe(T)0x,(T) 1+ dp

for some Cy, C5, Cs and C7 > 0. Hence, as long as the assumption that ¢, (n,d) = O (Tl/Q_ﬁ_CS)

holds, for some positive Cy, there must exist positive finite constants Cy and (5, such that

o

for any s > 0. So overall

TV (T-'x'M,n — 0) ‘ . TV 07 ¢, (n,9)
Oe(T)0,(T) 1+ dyp

} < exp (—CoT) (B.58)

Oe,(1)0,(T)

T- 1/2 M WY
V(T tee/) (T z'M,x)

> ¢, (n, 6)] >1—exp (—CQTC?’) .
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Lemma A1l Let X;7, fori = 1,2,...,lp, Yr and Zy be random variables. Then, for some
finite positive constants Cy, C7 and Cy, and any constants 7;, for 1 = 1,2,....lp, satisfying
0<m<1and 1" =1, we have

lT lT
Pr (Z |XZT| > O()) < ZPI‘ (|X’LT| > WiCO) , (B59)
=1 =1

P1"<|XT| X |YT| > 00) < Pl"<|XT| > 00/01) + PI‘(lYT| > 01>, (B60)
and
Pr(\XT| X |YT’ X |ZT| > CO) < Pl“(|XT| > Co/ (ClCQ)) +P1"<|YT| > C1)+ (B61)
Pr(|Zr| > Cy).

Proof. Without loss of generality we consider the case Iy = 2. Consider the two random

variables X7 and Xs7. Then, for some finite positive constants Cy and C7, we have

PI‘(|X1T| + |X2T| > O()) < Pr ({|X1T| > (1 — W)Oo} U {|X2T| > 7TC()})
< PI‘(|X1T| > (]_ — 7T)C()) + Pr (|X2T| > 7TO()) ,

proving the first result of the lemma.

Define events $ = {|Xr| x |Yr| > Co}, B={|Xr| > Co/C1} and € = {|Yr| > C;}. Then
$H C (BUCL), namely H must be contained in B U €. Hence P($H) < P(BUC). But
P(BUC) < P(B) + P(€). Therefore, P(H) < P(B) + P (<), proving the second result
of the lemma. The third result follows by a repeated application of the second result. m

Lemma A12 Consider the scalar random variable X, and the constants B and C. Then, if
|B| > C >0,
Pr(|X+B|<C)<Pr(|X|>|Bl-0C). (B.62)

Proof. We note that the event we are concerned with is of the form A = {|X + B| < C}.
Consider two cases: (i) B > 0. Then, A can occur only if X <0 and |X| > B —-C = |B|—C.
(ii) B < 0. Then, A can occur only if X > 0 and X = |X| > |B| — C. It therefore follows that
the event {|X| > |B| — C} implies A proving (B.62). =

Lemma A13 Consider the scalar random variable, wr, and the deterministic sequence, ar >

0, such that ar — 0 as T — oo. Then there exists Ty > 0 such that for all T > Ty we have

1
PI‘( \/w_T—l‘ >CkT> SPr(‘WT_l‘ >OéT). (B63)
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Proof. We first note that for ar < 1/2

=

Also, since ar — 0 then there must exist a Ty > 0 such that ar < 1/2, for all ' > Tj, and hence

if event A : |wr — 1| < ar is satisfied, then it must be the case that event B : |2 — 1’ < ar

Jor
is also satisfied for all T" > Ty. Further, since A = B, then B® = A, where A° denotes the

1
Zor 1

— 1‘ > aT> < Pr(lwr — 1| > ar), as required. m

—1‘<|wT—1| for any wr € [1 —ar, 1 + ar].

complement of A. Therefore, > ap implies |wr — 1| > ap, for all T > T, and we

have Pr <

_1_
Jor
Lemma Al14 Let Ap = (a;jr) be a symmetric lp x lp matriz with eigenvalues py < pg < ... <

gy Let gy = S (Ir), i = lp =M +1,lp —M+2, ..., I, for some finite M, and sup,<;<;,._ s fi <

Cy < 00, for some finite positive Cy. Then,
[Az|p =& (). (B.64)
If, in addition, infy1<;<, p; > C1 > 0, for some finite positive Cy, then
|Az'], = (Vir) - (B.65)
Proof. We have W
|Arll} = Tr (ArAy) = Tr (A%) =D 4.
i=1

where p;, for i = 1,2,...,lp, are the eigenvalues of Ar. But by assumption p; = © (Ir),
for i = lp — M + 1,lp — M + 2,...,lp, and supy<;«;,_p i < Cop < 00, then ZiL u: = M
S (2) +O(ly — M) = © (1), and since M is fixed then (B.64) follows. Note that A" is also

symmetric, and using similar arguments as above, we have

I
IAZH 5 = Tr (A7%) = > i,
=1

but all eigenvalues of A are bounded away from zero under the assumptions of the lemma,
which implies y;> = & (1) and therefore ||AZ'|, = © (VIr), which establishes (B.65). m

Lemma A15 Let z be a random variable and suppose there exists finite positive constants Cy,
Ci and s > 0 such that

Pr(|z| > a) < Cyexp (—C1a®), for all a > 0. (B.66)
Then for any finite p > 0 and p/s finite, there exists Cy > 0 such that
E|z|P < Cs. (B.67)
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Proof. We have that -
E|zlP = / aPdPr(|z] < a).
0

Using integration by parts, we get

/ aPdPr(|z] < «) :p/ a1 Pr(|z| > a)da.
0 0

But, using (B.66), and a change of variables, implies

_poooo
_50

E|zf < pC’o/ o’ Lexp (—Craf) da u" exp (—Chu) du = CoCy P (£> r (£> :
0 s

S

where I' () is a gamma function. But for a finite positive p/s, I" (p/s) is bounded and (B.67)
follows. m

Lemma A16 Let Ar = (a;jr) be an lp X lp matriz and A = (Gijr) be an estimator of Ar.

Suppose that Ar is invertible and there exists a finite positive Cy, such that

sup Pr (|ayjr — aijr| > br) < exp (—CoTh7) , (B.68)
1,]
for all by > 0. Then
2
Pr (HAT - ATH > bT) < Zexp (—COT—gT> , (B.69)
F I3
and
~—1 _ _C(]Tb2
Pr{|Ap —AIH > by Sl%exp( T )
( 7o) G A7 (17| + br)°

T
+ 12 exp <—00—> . (B.70)
' (R

Proof. First note that since by > 0, then

N N 2
Pr <HAT - ATHF > br) = Pr (HAT - ATHF > b%)

lr lr
= Pr ( Z Z (Gijr — aij,T)2 > b%]) )

j=1 i=1
and using the probability bound result, (B.59), and setting m; = 1/l7, we have

lr lr
A R 9 B
Pr (HAT — ATHF > bT> < E 1 E 1 Pr (‘aij,T — amT\ > ZTQb%)
j=1 i=

lr I

= Z Z Pr (|(All'j’T — aij,T| > l;le)
j=1 i=1
< l% sup [PI‘ (|CALij’T — aij,T| > l;le)} .
ij=1,2,. 17
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Hence by (B.68) we obtain (B.69). To establish (B.70) define the events
—1 A At —1
= {182 - o, <1) i - {37 -], o)
and note that by (2.15) of Berk (1974) if A7 holds we have

|A7'[I7 |Ar - Aq|,

HA;l e i . (B.71)
C A A - A,
Hence
Al A H
Pr (BT ‘AT) < Pr H - Hf " : L > br
L[| A7 ], |[Ar - Ac],
X by
—Pr H _ ) . (B.72)
( Fo AR (A7 ] + br)

Note also that

Pr (BT) Pr ({BT N .AT} U {BT N Ag}) PI’ BT|.AT) Pr (.AT) + Pr (BT|-’4T) Pr (.AC)

(B.73)
Furthermore
Pr (Af) = Pr (|| A7, [Ar — ar| >1)
_ A — ~1| ¢
(o], 147
and by (B.69) we have
T
Pr (A$) < I3 exp ( —) :
| Az 5
Using the above result and (B.72) in (B.73), we now have
A br
Pr(Br) < Pr( |Ar— Aq|| > 7 . Pr (A
o0 <00 (e 4, > g, ) 9
T
+ Pr (Br|AS) 12 —Cp——5— | .
e e (o
Furthermore, since Pr (A7) < 1 and Pr (BT\A%) < 1 then
J— A 71 _1 A bT
e = ([ a2, =) < oo ], i)

T
+1exp | -Co——— | .
! ( ”HAFH?@)

Result (B.70) now follows if we apply (B.69) to the first term on the RHS of the above. m
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Lemma A17 Let Ar = (a;;1) be a lp X lp matriz and Ap = (Gijr) be an estimator of Ar.

Let HA;lHF > 0 and suppose that for some s > 0, any by > 0 and some finite positive constant
CO;
sup Pr (|a;;r — air| > br) < exp [ Co (Thr )s/ S+2)} .
1,3
Then
s/(s+2)
.1 . ) —Cy (Thr)
(i -4, n) o ) 09

2 Ts/(+2)
+ l7 exp —COH _1Hs/s+2)ls/(s+2) :

Proof. First note that since by > 0, then

N N 2
Pr (HAT - ATHF > bT) —Pr (HAT - ATH > b%)

I
ZZ azyT az]T >b2]

7j=1 =1

=Pr

and using the probability bound result, (B.59), and setting m; = 1/I2%, we have

Pr(HAT—ATHF >br) < ;;Pr g — agrl” > 7262) (B.75)
lr
= ZZPI‘ ‘aij ang‘ >l bT)
7j=1 =1

A ) p/0+)
<12 sup [Pr (|agr — aiyr| > I5'br)] = G exp ( Co TS/(S+1)—ZS/(5+2) .

i t
To establish (B.74) define the events
—1
Ar = {47l
and note that by (2.15) of Berk (1974) if A7 holds we have

ATHF < 1} and By = {HA;I - A;lH > bT}

A7

Ar— A,

I
F

A;l — A;lH <

L[l A7 ]| Ar - A,
Hence

- )
Pr(Br|Ar) <Pr

> by

L- Az

Ar]
F

br
1Azl (A7 + br)

e [ar- a], >
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Note also that
Pr(Br) = Pr ({Br N Ar} U {Br N AS}) = Pr (Br|Ar) Pr (Ar) + Pr (Br|AS) Pr (Af)
Furthermore
Pr (A7) = Pr (|| 47|, |Ar - As | >1)

=Pr ([ ar - |, > 47']).

and by (B.75) we have

e T/ (+2)
Pr (A$) < 7. exp ( O,y T4/ +1)l8/(72)> = exp < HA 1HS/ 512) s/(s+2)> :

Using the above result, we now have

. by
PrBr) =P (”“‘T ~ 41|, > AT bT>) Fr{Ar)
7s/(s42)
+ Pr (Br|A) exp ” _1Hs/(5+2) e .

Furthermore, since Pr (A7) < 1 and Pr (Br|A$) < 1 then

o . b
Pr(B;) = Pr HA 1—A*1H>b §Pr<HA A H S Ul )
Br) =Pr ([ Ar" - a7t > br) AT AT (AT, + o)
Ts/(s+2)
FeR T AT e )

Result (B.74) now follows if we apply (B.75) to the first term on the RHS of the above. m

Lemma A18 Let S, and S, respectively, be T' X l,r and T' X I, matrices of observations
ON Sait, and Spit, for i = 1,2,.. 0y, t = 1,2,....T, and suppose that {s.i, St} are either
non-stochastic and bounded, or random with finite 8" order moments. Consider the sample

covariance matrizc 2(11, = T1S!S, and denote its expectations by X, = T FE (S.Sy). Let
Zijt = Sa,itShjt — E (Sa,itsb,jt) )

and suppose that

T T
sup | Y > Blzijezije)| = O(T). (B.76)
R S
Then,
E Hﬁ) -3 L O larlor (B.77)
ab ab P — T . .




If, in addition,

T T T T
Sup [Z Z Z Z E(zijﬁtzij,t/zi/j/’szi/j@s/)] = O (Tz) y (B78)

7'7.771/7-7/ t=1 t'/=1 s=1 s'=1

then
E Hiab - 2ab

Proof. We first note that E(z;;,2i;¢) and E (2202 5%y s) €xist since by assumption

{Sat, Sv.it} have finite 8" order moments. The (i, j) element of S — S is given by

@ij,T = T_l Z Zijﬂg, (BSO)
and hence
la,7 o1 lar b T T
E HEQb - ab ZZE z]T = T_QZZZZE<ZUJZU¢')
i=1 j=1 i=1 j=1 t=1 t'=1
] T T
T”A[zzw%%ﬂf
LI t=1 =1
and (B.77) follows from (B.76). Similarly,
4 la,7 v, 2
Hzab — Zab) = D2
i=1 j=1

la o la7 o

= E E E am Tal’]/ T-

=1 j=14=175=1

But using (B.80) we have

T T T
2 =74 o s
Qij, Taz’]’ T = ZijtZig,t! gl %l s
t=1 t'=1

s=1 s/=1

T T T
-4
=T g E E g ZijtLig,t! Zil s il 5 s

T
t=1 /=1 s=1 s'=1
and

lar b lor lbr T T T T

i 30 30 3)3)3) 3) ) Y IEHETERI»

i=1 j=1i=1j'=1 t=1 t/=1 s=1 s'=1
[T T T T

E Hzab - ab

l 12
aTbT ZZZZE Zij tZigt Zil ' s Zil §! S)

t=1 t/=1 s=1 s/'=1

sup
7] /L 7]

Result (B.79) now follows from (B.78). =
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Remark 1 It is clear that conditions (B.76) and (B.78) are met under Assumption 3 that
requires zy to be a martingale difference process. But it is easily seen that condition (B.76)
also follows if we assume that s, and sy are stationary processes with finite 8-th moments,
since the product of stationary processes is also a stationary process under a certain additional
cross-moment conditions (Wecker (1978)). The results of the lemma also follow readily if we

assume that s, ;; and s, jy are independently distributed for all i # j and all t and t'.

Lemma A19 Consider the data generating process (6) with k signal variables, k* pseudo-signal
variables, and n—k —k* noise variables. Let ff?s) be the number of variables selected at the stage
s of the OCMT procedure and suppose that conditions of Lemma A10 hold. Let k* = © (nf)
for some 0 < € < min{1,k1/3}, where Ky is the positive constant that defines the rate for
T = ©(n"™) in Lemma A10. Let Dy, be the event that the number of variables selected in
the first s stages of OCMT is smaller than or equal to Iy, where ly = ©(n”) and v satisfies
€ < v < k1/3. Then there exist constants Cy, Cy > 0 such that for any 0 < »x < 1, any 65 > 0,
and any j > 0, it follows that

Pr (kgy —k— k" > jID,1r) <

n—k—k {exp [_M} + exp(—C’oTcl)} (B8

fors=1,2,... k.

Proof. By convention, the number of variables selected at the stage zero of OCMT is zero.
Conditioning on D,_; r allows the application of Lemma A10. We drop the conditioning nota-

tion in the rest of the proof to simplify notations. Then, by Markov’s inequality

B (ke — k — k)

Pr () —k =k > j) < J e
But
B (e, - ZE[S> (i #0)
=S m[ G0+ 3 B[R0 e o).

i=k+k*+1

<k+k+ Z E[I (B £ 0) 0o ]
i=k+k*+1

—_—

where we have used I, (3; # 0) < 1. Moreover,

E [Ty (5 7 0) 01,9 = 0] = Pr ([ts,.,,| > e (0,8 18:) = 0)
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fori =k+k*+1,k+k*+2,...,n, and using (B.51) of Lemma A10, we have (for some 0 < > < 1
and Co, Cl > 0)

»c;, (n, 0s)

2 :| -+ eXp(-CoTcl>.

sup Pr (‘%Ti (s)‘ > ¢p (1, 65) |9i,(s) = 0) < exp [_
i>k+k* N

Hence,

»c (n,dy)

E (AE)S)) —k—k<(n-k-Fk) {exp {—p—

5 } —l—exp(—C’oTcl)},

and therefore (using this result in (B.82))

N « . n—*k—k* %62 (nv 65)
Pr (k;(s) —k—-kKk"> j) < f {exp [—pT] + exp(—COTCI)} ,

as desired. =

Lemma A20 Consider the data generating process (6) with k signal, k* pseudo-signal, and
n — k — k* noise variables. Let Ty, be the event that the OCMT procedure stops after k stages
or less, and suppose that conditions of Lemma A10 hold. Let k* = & (n) for some 0 < € <
min {1, k1/3}, where ky is the positive constant that defines the rate for T = © (n"*) in Lemma
A10. Moreover, let 6 > 0 and 6 > 0 denote the critical value exponents for stage 1 and
subsequent stages of the OCMT procedure, respectively. Then,

Pr(7;) =140 (n""")+ 0 (n") + O [nexp (—Con“**)] (B.83)
for some Cy,Cy >0, any > in 0 < <1, and any v in e < v < K1 /3.

Proof. Consider the event Dy, = {ff(j) < lp,j7 =1,2,....k} for k > 1, which is the event
that the number of variables selected in the first k stages of OCMT is smaller than or equal to

l7 = ©(n”), where v lies in the interval € < v < k1/3. Such a v exists since by assumption
0 <e<min{l,x;/3}. We have Pr(7;) =1 — Pr(7), and

Pr () = Pr (Z|Dy.r) Pr (Dir) + Pr (T¢|Df r) Pr (Df 1)
< Pr(Z|Dyr) + Pr (D,;T) ,

Therefore,
Pr(T;) > 1 — Pr(Z|Der) — Pr (D5 1) - (B.84)

We note that

o~

~

o T 7.0 lT
Pr (Dk,T) 2 Pr |:( (1) S ?> N <k7(2) S z
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where IQ:E’S) is the number of variables selected in the s-th stage of OCMT and D = {/2:0) <
lr,j=1,2,...,s} for s =1,2,..., k. Hence

S0 ! Yo ! ¢
Pr (Djr) < Pr (< %) 0 (Ko < [ D) 1
kT) > .
7 N (lfok) < %T Dk—l,T)
Furthermore
o ! "o ! ¢
- ;

N (k(k) S s Dk*l,T)

_ Py (lf(ol) > %) U (/2302) > % Dl,T) U
U <Aok) > % ’Dkfl’T)

k
. L lr
S Pr (k(l) > E) + ZPI‘ (k(s) > E DS_I’T> .
s=2
Since k is finite and 0 < € < v, there exists T such that for all T' > Ty we have Ir/k > k + k¥,
and we can apply (B.81) of Lemma A19 (for j = ir/k — k — k* > 0), to obtain

7.0 [ 7.0 * ! *
Pr(k(1)>%)—Pr( 0y —k—k >%—k—k>

A 2 (0§

g
for some Cy, C; > 0 and any 0 < s < 1. Noting that for 0 < e < v,
n—k—k* 1w
%T—k——k* =0 (n ) y (B.85)

and using also result (i7) of Lemma A2, we obtain

Pr <l%2’1) > l—T) =0 (") +0 [n'Vexp (—CoT™)] .

k
Ds—l,T)
n—k—k* »ct (n,0%)
) {exp l_pT] *eXp(_C‘)T%}

=0 (W) £ 0 [0 exp (—CoT)]

Similarly,

- DS_LT) :Pr(l%fs)—k—k*>%—k—k*

where the critical value exponent in the higher stages (s > 1) of OCMT (6*) could differ from
the one in the first stage (J). So, overall

k
c 7.0 It 2 7.0 It
Pr (Dk),T) S Pr (k(l) > E) + — Pr ( (s) > E DS].,T)

=0 (") +0 (') + 0 [ exp (—CoTY)], (B.86)
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for some Cp,C; > 0, any > in 0 < » < 1, and any v in € < v < k1/3. Next, consider
Pr (7| Dk 1), and note that

Pr (7| Dr,r) = Pr (T |Der, Li) Pr(Li|Dir) + Pr (L | Dy, Lf) Pr(Li| D)
S Pr (%C‘Dkg*, £k> + Pr(ﬁlehT), (B87)

where Pr (7,°|Dyr, L) is the probability that a noise variable will be selected in a stage of
OCMT that includes as regressors all signal variables, conditional on the event that fewer than
l7 variables are selected in the first £ steps of OCMT. Note that the event 7,| Dy 1, L, can only
occur if OCMT selects some pseudo-signal and/or some noise variables in stage k£ + 1. But the
net effect coefficient of signal variables in stage k£ 4+ 1 must be zero when all signal variables
were selected in earlier stages (s = 1,2,...,k), namely 0; 41y =0fori =k +1,k+2,... k+k*.
Moreover, 0; (,41) = 0 also for i =k + k* + 1,k + k* + 2, ..., n, since the net effect coefficient of

noise variables is always zero (in any stage). Therefore, we have

Pr (7;:|Dk,T;£k) S i Pr [t

i=k+1

J)i,(k-i,-l) > Cp <n’ 5*) ‘67;7(’64-1) = 07 Dk,T] .

Note that the number of regressors in the regressions involving the ¢ statistics t, i1 does not
exceed Ir = © (n”), for v in the interval 0 < € < v < x;/3 and hence I = o(T"/?) as required
by the conditions of Lemma A10. Using (B.51) of Lemma A10, we have

_ 2 ,5*
Pr(T¢|Dir. £2) < (n— k) exp [%]

+ (n— k) exp (—CoT") . (B.88)

for some Cp, Cy > 0 and any 0 < »r < 1. By Lemma A2, exp [—3c2(n,6%)/2] = & (n=7"), for
any 0 < s < 1, and noting that n — k < n we obtain

Pr(T¢|Dyr, Lx) = O (n* ) + O [nexp (—CoT™)] . (B.89)

Consider next the second term of (B.87), Pr(L{|Dy.r), and recall that £, = NF_,L; ) where
L U _1Bij,i=1,2,.... k. Hence L, = ﬂ _1B5;, and
Pr (L ,| Te, Der) = Pr (NS_B5 ;| Th, D) =
¢1|77€,DkT) Pr 2|811,779;Dk,T)
By 5| By QHBH,’]}C,D,CT) X ... X
Pr( el By NN By, T, Dir) -

But by Proposition 1 we are guaranteed that for some 1 < j <k, 6; (;) # 0. Therefore,
PI’( ‘ 4J— 1m mBZl’%’DkT)_ ( j‘B] 1m mlea %O%aDkT>
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and by (B.52) of Lemma A10,
Pr (Bf]| B, N ..NB5y 0y # 0, T, D) = O [exp (—C’OTCI)] ,
for some Cjy, C; > 0. Therefore, for some j € {1,2,...,k} and Cy, C; > 0,

Pr (Lik‘ 77,3, Dk,T) S Pr (Bz]‘ Bic,j—l N...N Bf,l’ Qiy(j) 7é 0, 77.3, Dk,T)
= O [exp (—COTcl)} : (B.90)

Noting that & is finite and
Pr (L§| Ty, Dir) = Pr (UL, L5| T, Dir)

k
< Pr(L5| 7, D),

i=1

it follows, using (B.90), that
Pr (L] Ty, Diz) = O [exp (—CoT™)], (B.91)
for some Cy, C; > 0. Using (B.89) and (B.91) in (B.87) now gives®
Pr (Z¢|Dyr) = O (n' ") + O [nexp (—CoTY)] . (B.92)
Using (B.86) and (B.92) in (B.84), yields

Pr (I]-];J) —14+0 (nl—l/—%5> +0 (nl—u—%é*) +0 [TLl_V exp (—C[)TCI)]
+0 (nl_”‘s*) + O [nexp (—C’QTC?’)] ,

for some Cy, C1,C3,C3 > 0 and any » in 0 < 2 < 1, and any v in € < v < k;/3. But
O (n*=7*") is dominated by O (n'="), and O [n'~" exp (—CoT“")] is dominated by O [nexp (—C>2T)],

since v > ¢ > 0. Hence,
Pr(7;) =1+0 (n"")+ 0 (n") + O [nexp (—CoT“")],

for some Cp,Cy > 0, any » in 0 < » < 1, and any v in € < v < k1/3. This result in turn
establishes (B.83), noting that 7' = & (n"!). =

Lemma A21 Suppose that the data generating process (DGP) is given by

y = X - + u, (B.93)
Tx1  Txk+l pyix1  Tx1

where w = (uy, Uy, ...,ur), E(u) =0, E(uu') = 01y, 0 < 02 < oo, I is a T x T identity

matriz, X = (77, Xg) = (T, ®1, X2, ..., k) includes a T x 1 column of ones, T, and T x 1

>We have dropped the term O [exp (—C’oTcl)], which is dominated by O [n exp (—C’OTcl)].
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vectors of observations, ®; = (T, Ti, ..., Tir) , on the signal variables i = 1,2, ...k, and the
elements of B are bounded. Consider the regression model
=S -4 B.94
T:Zl Txly lpx1 +T§1’ (B.94)
where S = (s) = (81, S2..., 81,), with s; = (sj1, Sj2, ...,sz)', forj =1,2,...,lp, Denote the least
squares estimator of 8 in the regression model (B.94), by o & , and the associated T x 1 vector of

least squares residuals, by 1 = y—SS, and set B, = (,6' (/S 1) . Denote the eigenvalues of
Yo =FE(T7'S'S) by 1 < po < ... <y, and assume that the following conditions hold:

i pti = O (lp), i = lp—=M+1, lp—M+2, ..., Iy, for some finite M, sup;<;<;,. s s < Co < 00,
for some Cy > 0, and infi<;;, p; > C1 > 0, for some C; > 0.

ii. Regressors are uncorrelated with the errors, E (sju;) = 0 = E (zvus), forallt =1,2...,T,
i=1,2,..,k, and j = 1,2,....lp, sy have finite 8" order moments, and Zijt = SitSjt —
E (sisji) satisfies conditions (B.76) and (B.78) of Lemma A18. Moreover, zj;, = si%j; —
E (syxji) satisfies condition (B.76) of Lemma A18.

Suppose that 13./T — 0, as Iy and T — oo, Then, if S contains X

Fo=T'a|> =02+ 0 1 o) G 0, i’ B.95
a = ||U.|| =0+ U ﬁ + 0y T3/2 + T ) ( )

Js- e, -0, (1) +0. (). (.96

But if one or more columns of X are not contained in S, then

and

F,=0"+0,(1), (B.97)

H O (I7) + O, (ZZQ) +0, (5/_2) 40, (lT) (B.98)

Proof. Let 3,, = S'S /T, and recall that by assumption matrices X, = F (T~'S’S) and 3.,
are positive definite. Let A,, = 37! — X! and using (2.15) of Berk (1974), note that

and

=37 |12

- 2ss
F

HAssH < - (B.99)
P ||2;£HFHZSS—ESS
F

We focus on the individual terms on the right side of (B.99) to establish a bound, in probability,
ASS

for

. The assumptions on eigenvalues of ¥, in this lemma are the same as in Lemma A14
F
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with the only exception that O (.) terms are used instead of & (.). Using the same arguments
as in the proof of (B.64) and (B.65) of Lemma A14, it follows that

[Zssllp = O (lr) (B.100)

and

|53, =0 (Vi) (B.101)

Moreover, note that (i,j)-th element of <285 — 285>, Zijt = SuSjt — E (susj), satisfies the

1) ~0 (%) , (B.102)

Ess - 23ss

conditions of Lemma A18, which establishes

E (Hiss - 2)ss

A 5\ 11/2
and therefore, using £ HZSS — s ‘ < {E < )} , and the fact that L;—convergence
F F

implies convergence in probability, we have.

‘ Zss - z}ss
F

_o, (1) B.103
(%) (5.103)

13/2
=0, T _ 7
F VT

S

Using (B.101) and (B.103), it now follows that

st_sl 2ss - Ess

I

3/2
and since by assumption % — 0, then

1
(1= 122 B - =

)2 =0,(1). (B.104)

Now using (B.103), (B.104), and (B.101) in (B.99), we have

|a.| =00, (l—\/TT) 0,(1) = 0, (%) | (B105)
and hence
H (s;s)‘l = |54, < |A., =L =0 (%) +o, (V). (B106)

Further, since by the assumption F (s;u;) = 0, then HSIT”Hi =0, (l%), and

Iy
o {5 o
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Consider now the T' x 1 vector of residuals, u from the regression model (B.94) and note that

under (B.93) it can be written as
it = M,y= M,u+M,Xf, where M, = I, — S(S'S)"' §". (B.108)
In the case where X is a sub-set of S, M, X3 = 0, and
Fp =T a)” = T '/ Myu=T"v"u— (T"'u'S) (T7'S'S) ™" (T"'S"u). (B.109)

2

Also since u; are serially uncorrelated with zero means and variance ¢, we have

T '"wu=0*+0, (T’1/2) ,

and
S/ ||?

T

|crrus) (r1s8) ™ (12s)| < ‘

(7).

-1,/ —1g/q) 1 —1q/ l%’ l;ﬂ

)

F

F F

which in view of (B.106) and (B.107) yields

The result (B.95) now follows using the above results in (B.109). Now consider the case where
S does not contain X, and note from (B.108) that

Fy = T '/Mu+T 8 X'M, X3 + 2T 8'X'M,u. (B.110)

Since M is an idempotent matrix then

X'X
T

7 xMXBl, < (3 ) 8= BEB 40, (1) = 0,0)

Similarly,

T8 X'Mu=T"'8X"u— (T7'@X'S) (T7'S'S) ™" (T"'S'u)

1/2 lT l?’/g

The result (B.97) now follows if we use the above results in (B.110) and recalling that the
probability order of T~'u/'M,u is given by (B.95). Consider now the least squares estimator of
6 and note that under (B.93) it can be written as

6 =(S'S)"'S'y=(S'S) 'S'’X3 + (S'S) "' Su. (B.111)

Suppose that X is included as the first k£ + 1 columns of S, ar}d denote the remaining I — k — 1
columns of S by W. Also partition § accordingly as (5/ 5 ) , where 8, is the (k+1) x 1 vector

) T w
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of estimated coefficients associated with X. Note also that in this case S (8'S)™' §’X = X, and
we have

S =XB+ S (S'S) ' S,

or

X (8.~ 8) + W (8,-0, 4 1) =S(8'9)'S'n,

which can be written more compactly as S (5 — ,80) = S (S'S)"! S'u, where 3, = (8, O;T_k_l),.
Premultiplying both sides by S’, and noting that S’S is invertible yields

6 —B,=(S'S)"'Su,

(7)

with the norm of § — B, given by

()" () =

Now using (B.106) and (B.107) it readily follows that

o, -0 () o (F) 3112

as required. Finally, in the case where one or more columns of X are not included in S, consider

F

J5- o, -|

AGF)

the decomposition
§— B, = (3 - 5*) (0. — By). (B.113)

where §, = ¥ '3,,.3, and X, = E (T'S'X). When at least one of the columns of X does not
belong to S, then 4, #3y. To investigate the probability order of the first term of the above,
using (B.111), we note that

§-6,= (2;12%—2;;2“) B+ (S'S)" S,

where 3,, = T7'8'X. But 3'3,,-3.'%,, = A A, + A2, + XA, where A,, =
3. — .., and, as before, A,, = 331 — 1. Hence

(51550308, < a.
F

155 | A

oA

181+ A

Il

Esx
Nl 18]

Using Lemma A18 by setting S, = S (lor = Ir) and Sy = X (I, = k + 1), we also have, by

(B.77),
=0 (@) . (B.114)

AS.Z‘

- Hgsw - Esx
F
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Atso A =0, (B/VT) by (B105), |2, = O (Vi) , by (BAOD), [ Ball, = O (Vin),
18]l = O (1) . Therefore

|(s25mm.) 8], -0, (87 0, ()~ (svT) 0 (Vi) w0 (vir) o ()
o () o (5) o (L)

Therefore, also using (B.112), overall we have

‘“— =0, <lf:>+0 (l;/;>+0 (\l/%)

Finally, using (B.113)
|- 8], <]

where ||3,]| = O (1), since 3, contains finite (k + 1) number of bounded nonzero elements, and

6.1 = [ 25 Zua |
< |[Z3 5 1Bl -

12 = O (VIr) by (B.101), and ||Z,,|| = O (VIr). Hence, in the case where at least one

of the columns of X does not belong to S, we have

H O (ir) + O, (l;p)ﬂ) (%)H} (\Z/TT)

which completes the proof of (B.98). =

B. Proof of Theorem 3

We proceed as in the proof of (B.52) in Lemma A10. We have that

z; My
T_1/2£B;qu T1/2 ( T 9) N T1/29i - cp (n,(S)

Pr

> ¢, (n,0)| <Pr

/ _ - Oe(T\Ou: Oe(TV\Ou: 1+4d
\/ (ee/T) (Mez2) (T)Tai,(7) (T)0; () r
‘ot : . _TY26;] cp(n,9) /216, cp(n,9) T/216,| cp(n,9)
We distinguish two cases: ERSE— Trdr Te )T D) < Ty e Trdy
1/2 [ =Mgn
T (Tq - 9) /20, ¢ (n,9)
Pr + > =
Te,(T) 0, (T) Oc(1)0ui(r)| 1 4dr
1/2 [ =Mgn
TV (Tq - 9) /20, ¢y (n,9)
1—-Pr + < ,
Oe,(T) Oz, (T) Oe,(T)0x;,(T) 1+dr
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and, by Lemma A12

z/ M,
T1/2 ( - n_ (9) . Tl/Q@i _ ¢ (n,0)

Pr <
e (T) 0w, (T) O (T)Ta; (T) 1+ dr
1/2 ( =Mgn
T ( T 9) TV210,] ¢, (n,d)
<Pr > -2
e (T) 0, (T) Oe(1)0ai(ry  L+dr

while, if Tl < 9) 1,0 (B.150) of Lemma F4,

Te (T)0a;, (1) — 1+dr

x/ M,
T1/2 < . n_ 0) . T1/29i N ¢ (n,(s)

Pr
Te (T)0x; (T) Oe (T)0w; (T) 1+dr
TL/2 <—mil\;qn - 9) ¢, (n,9) T1/2 16,]
S Pl" > 4 ) _ 2
Te(T)Oa; (T) L+dpr  Oe(r)0,(T)

T1/2|9’L‘ > Cp(nvé)

We further note that since ¢, (n,d) — oo,
Te (T) %y, (T) Itdr

implies T2 |0;| > Cs, for some

C5 > 0. Then, noting that m’Man — 0 is the average of a martingale difference process, by

Lemma A6, for some positive constants, C, Cy, C3, Cy, C5, and, for any ¢ > 0, we have

zn: Pr T PeMy | ¢, (n,0)| <O zn: I (ﬁei > 02)
i=k+1 \/(e’e/T) (fc%l‘:/;qfci> i=k+1

+Cs i I (\/TQZ < C'4> exp [_ 111(77,)05] 7

1=k+1

=0 Y 1(VT6 > o) +o(n™) + 0 [exp(~CT)] (B.115)
i=k+1
since exp [—1In(n)5] = o(n?), which follows by noting that CyIn(n)'/? = o (C In(n)), for any
Co,C1 > 0. As a result, the crucial term for the behaviour of FPR,, 1 is the first term on
the RHS of (B.115). Consider now the above probability bound under the two specifications
assumed for 6; as given by (4) and (5). Under (4), for any ¢ > 0,

z”: Pr T e M,y > ¢, (n,0)| <C 2": I (\/Tg’ > Ci) +o(n'™Y).
i=k+1 \/(e/e/T) (_mél\;qwi> i=k+1

for some Cy,C; > 0, ¢ = k+ 1,...,n. So we need to determine the limiting property of
Sl <\/T o' > Ci). Then, without loss of generality, consider ¢ = [n¢], T = n"*, ¢ € [0, 1],
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k1 > 0. Then, VT = \/TQT(W"“C = o(1) for all k1,¢ > 0. Therefore,

C, Z 1 (ﬁQZ > C’b/C’i> = o(n%),
i=k+1
for all ¢ > 0. This implies that under (4), 6; = C;¢', |o| < 1, and ¢, (n,d) = O [In(n)"/?], we
have
E|FPR, 7| =on* ')+ 0 [exp(—nc‘))} ,
for all ¢ > 0. Similarly, under (5), §; = C;i~", and setting i = [n%], T' = n"1, {, k; > 0, we have
VT, = T~/s)0+1/2 We need —(1/k1)¢y+1/2 < 0 or ¢ > —2—. Then,

2k 1y

% S (VTo; > cyjci) = 0 (T) -0 <n1>

i=k+1

So
E|FPR, 7| =o0(1), (B.116)

as long as 2r7 %y > Lorif v > 5.
k1

Remark B1 Note that if k1 = 1, then the condition for (B.116) requires that v > .

C. Some results for the case where either noise variables are mixing,
or both signal/pseudo-signal and noise variables are mixing

When only noise variables are mixing, all the results of the main paper go through since we
can use the results obtained under (D1)-(D3) of Lemma D2 to replace Lemma AG6.

As discussed in Section 4.2, some weak results can be obtained if both signal /pseudo-signal
and noise variables are mixing processes, but only if ¢, (n) is allowed to grow faster than under
the assumption of a martingale difference. This case is covered under (D4) of Lemma D2 and
(B.140)-(B.141) of Lemma D3. There, it is shown that, for sufficiently large constants Cy — Cj
for Assumption 4, the martingale difference bound which is given by exp [—%%cﬁ (n)] in Lemma

s/ (5+2)}, for some Cy > 0, where s is the exponent

A6 is replaced by the bound exp [—C4cp (n)
in the probability tail in Assumption 4. It is important to note here that this bound seems
to be relatively sharp (see, e.g., Roussas (1996)), under our assumptions, and so we need to
understand its implications for our analysis. We abstract from the constant C); which can

further deteriorate rates. Given (see result (i) of Lemma A2),

am=o{[n (4]},
{5

34

it follows that

exp | —¢, (n)s/(s+2)} =0




Let f (n) = 2pexp(n®). Then,

s/2(s+2)
o ()] e

To obtain the same bound as for the martingale difference case, we need to find a sequence

{a,}, such that n“ = O (In(n)). Setting n“® = In(n), it follows that a,, = In (In(n)) /CInn.

Further, setting C' = s/2(s +2), we have a,, = 2+200M) “which Jeads to the following choice

slnn
for f(n
f( ) 2(5+2) In(In(n))

f(n)=2pexp <nT) ~ 2pexp <1n(n) 2(5:2)) .

»(n) =0 [ln <exp (ln(n)2(5:2)>>] =0 <1n(n) 2(Ss+2)> :

Then,

C

2(s+2)

which for n = O (T"), C; > 0, implies that c,(n) = O (ln(T) s >, and so, ¢,(n) = o (T?),
for all C5 > 0, as long as s > 0.

We need to understand the implications of this result. For example, setting s = 2 which
corresponds to the normal case gives exp (In(n)*) which makes the calculation of ®~* (1 — %)
numerically problematic for n > 25. The fast rate at which f (n) grows basically implies that
we need s — oo which corresponds to f (n) = 2pexp (In(n)?). Even then, the analysis becomes
problematic for large n. s — oo corresponds for all practical purposes to assuming boundedness
for ;. As a result, while the case of mixing z; can be analysed theoretically, its practical
implications are limited. On the other hand our Monte Carlo study in Section 5 suggests that
setting f (n) = f (n,8) = n’, § > 1 provides quite good results for autoregressive x; in small

samples.

D. Lemmas for mixing results

We consider the following assumptions that replace Assumption 3.

Assumption D1 z;, i = 1,2,....k + k*, are martingale difference processes with respect to
FiEs, U FFt, where FP, and F™ are defined in Assumption 3. wxy, i = 1,2,....k + k* are
independent of iy, t = k+k +1,k+k"+2,...,n. E (mitxjt — E (zyxj) }Fffl) =0,i,j =
1,2, k4+k* xy,i=k+Ek*+1,k+ k"4 2,...,n, are heterogeneous strongly mizring processes
with mixing coefficients given by oy = Cyt for some Cyy such that sup, ,Cyy < 0o and some
0<¢é< 1. Elrgug | Fio1] =0, fori=1,2,....,n, and all t.

Assumption D2 x;, i =1,2,....k+ k* are independent of vy, 1 = k+k*+ 1, k+Ek*+2,....n.
Tit, 1 = 1,2,...,n, are heterogeneous strongly mixing processes with mixing coefficients given by
ayr = Ciy&t for some Cy such that sup; , Cyy < 00 and some 0 < § < 1. E[vyu; |[F_1] =0, for
1=1,2,....,n, and all t.
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Lemma D1 Let & be a sequence of zero mean, mixing random variables with exponential
mixing coefficients given by ¢ = agp”®, 0 < < 1, agp < 00, k = 1,.... Assume, further,
that Pr (|&| > a) < Coexp[—Chra®], s > 1. Then, for some Cy,C5 > 0, each 0 < 6 < 1 and
vp > €T, A > (1+0)/2,

T
Pr ( PR
t=1

Proof. We reconsider the proof of Theorem 3.5 of White and Wooldridge (1991) relaxing the
assumption of stationarity. Define wy; = &I(z; < Dr) and vy = & — w; where Dy will be
defined below. Using Theorem 3.4 of White and Wooldridge (1991), which does not assume

stationarity, we have that constants Cy and (' in the statement of the present Lemma can be

> UT) < Cyexp [— (CgUTT_(1+5)/2)5/(5+1)]

chosen sufficiently large such that

Pr ( Zwt—E(wt)

for some Cy, Cs > 0, rather than

pr(_

T
Z wy — E (wy)
t=1
for some Cg, C7 > 0, which uses Theorem 3.3 of White and Wooldridge (1991). We explore the
effects this change has on the final rate. We revisit the analysis of the bottom half of page 489
of White and Wooldridge (1991). We need to determine D such that

D s 1/q -C T—(1+6)/2
' fow (0 (3) )] e[ =25—

for some C' > 0. Take logs and we have

1 D S _ T7(1+5)/2
mern) - (3) e (5) ==,

(B.117)

—CyupT~(149)/2
Dy

> UT> < Cyexp [

—Cu T2
1) =G [T
T

or

Dy 22 (Ci) In (v7'T) + —Cﬁff;ﬁ? D,
For this it suffices that 2qCuy
TaRD, 2 2°qIn (vy'T) (B.118)
and 2qCy
Di 2 ey (B.119)
Set 254C' 1/(s+1)
Dy = <ﬁ) ,
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so that (B.119) holds with equality. But since vy > €T, A > (1+4)/2, (B.118) holds. Therefore,

25qCup ( 25qCup )S/(s+1)
2 )

C,T+8)/2 Dy, - C,T0+6)/

and the desired result follows. =

Remark D1 The above lemma shows how one can relax the boundedness assumption in Theo-
rem 3.4 of White and Wooldridge (1991) to obtain an exponential inequality for heterogeneous
mixing processes with exponentially declining tail probabilities. Note that neither Theorem 3.4
of White and Wooldridge (1991) which deals with heterogeneity nor Theorem 3.5 of White and
Wooldridge (1991) which deals with stationary mixing processes is sufficient for handling the

heterogeneous mixing processes we consider.

Remark D2 [t is important for the rest of the lemmas in this supplement, and in particular,
the results obtained under (D4) of Lemma D2, to also note that Lemma 2 of Dendramis et al.
(2015) provides the result of Lemma D1 when § = 0.

Lemma D2 Let z, ¢, = (q1.4, G2t -, qlT,t)/, and u; be sequences of random variables and sup-
pose that there exist finite positive constants Cy and Cy, and s > 0 such that sup, Pr (|z;| > a) <
Coexp (—Cia?), sup;; Pr (|gi¢| > ) < Coexp (—Cia?), and sup, Pr (us| > o) < Coexp (—Cha®),

foralla > 0. Let £y = 7 S L E(q.q,) be a nonsingular matriz such that 0 < (D2 Sup-

pose that Assumption 5 holds for x; and q,, and denote the corresponding projection U“gsiduals
defined by (11) as uyy = T4 —Yop 74 Let @y = (Up1, Up 2, -, Up,r) denote the T x 1 LS residual
vector of the regression of x; on q,. Let F, = FF UF!, Fl =0 ({q~t}i:1) and assume either
(D1) E (ux,tut — fgut| Fro1 U ﬁq_l) =0, where fizy: = E(ugut), ©p and uy are martingale dif-
ference processes, q, is an exponentially mizing process, and (p = o(T?), for all X > 1/2, or
(D2) E (umut — fgut| Fro1 U .7-";1_1) = 0, where gyt = E(ugiur), ue is a martingale difference
processes, x; and q, are exponentially mixing processes, and (r = o(T?), for all X > 1/2, or
(D3) x4, uy and q, are exponentially mixing processes, and (r = o(T*), for all X > 1, or (D4)
x4, up and q, are exponentially mixing processes, and (r = o(T?), for all A > 1/2. Then, we
have the following. If (D1) or (D2) hold, then, for any m in the range 0 < w < 1, there exist

finite positive constants Cy and C4, such that

T 2 2
—(1—
Pr ( thu,f — E(xyu)| > CT) < exp % + exp [—CoT“] (B.120)
t=1 wa:u,l,T
and
T 2 -2
—(1 -
Pr ( > g gty — flpug| > §T> < exp # +exp [-CoT], (B.121)
t=1 zu, T
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as long as ly = o(T3), where wm =7 Zt L [(xtut — E(xtut))2] , wiuvT = %ZL E [(uwvtut — umu,t)Q] .
If (D3) holds

T
Pr < thut — E(zyug)| > QT) < exp [—C’OTcl] , (B.122)
t=1
for some Cy,Cy > 0, and
T
Pr < Zﬁmut — fgut| > CT> < exp [—C’OTCI] , (B.123)
t=1

for some Cy, Cy > 0, as long as lp = o(T*?). Finally, if (D4) holds,

T
Pr (
t=1

Z Tl — E(xtut)

for some Cy,Cy > 0, and

.

for some Cy, Cy,Cy, C3 > 0, as long as lp = o(T?).

> <T> < Crexp [~y (GT2)"™] (B.124)

T

E Uy Ut — Hgu,t

t=1

> CT) S CQ exp |:—03 (QTT_1/2)S/(S+2):| + exp [—C()Tcl} s (B125)

Proof. We first prove the lemma under (D1) and then modify the derivations to establish that
the results also hold under (D2)-(D4). The assumptions of the lemma state that there exists a

regression model underlying 4, , which is denoted by

- ﬁ;qt + um,t

A~

for some | x 1 vector, B,. Denoting u, = (uy1,Us2,...,Us7), W = (U1, U, ..., ur), Xy =

! (QIQ)7 Q - (q17 qs; .-, ql)? and q; = <Qi17 qi2y -+ qiT)/7 we have
W u=u,u— (T*IU;Q) 2;; (Qu) = u, u— (Tﬁlu'xQ) (2;]1 — 2;;) (Q'u) +
(T, Q) =, (Qu)

Noting that, since u; is a martingale difference process with respect to o ({us}s Lo e Yy {ast D

by Lemma A4,
—(1 —m)*¢F
It therefore suffices to show that
1 o _
Pr( (T’U,;Q> <2qq1 — zqql) (Qu)| > gT) < exp [~CoT“"] (B.127)
and .
Pr (‘ <TufEQ> Y., (Qu)| > gT) <exp [—CoT“] (B.128)
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We explore (B.126) and (B.127). We start with (B.126). We have by Lemma A1l that, for

some sequence p,°
1 - /
P (| (7 )(2 Z) ()| > &) <

re([ el ) e > ) <vn (55 -39 - )«
Pr([[v,Qllz |Qu z > 7T) (B.130)

We consider the first term of the RHS of (B.130). Note that for all 1 <i,j <.

“(

since ¢;1qjt — F(girq;e) 1s a mixing process and sup, Pr(|gi4| > a) < Cyexp (—Cia®), s > 0.
Then, by Lemma F3,

> <T> < exp(—Cy (TV2¢)™), (B.131)

T
Z qitqjt — QZtth)]
t=1

) - 5/2(s+2) -8/ (542)
o (H(EQJ )| > ) < I exp S e |
5;/(s+2 s/(s+2) HZ HS/ (s+1) (HE 1| (CST)
F T
Ts/2(s+2)
17 exp | —Co ”2 Hs/(s+2) ls/(s+2 ) -

s/(s+2)
T2

et 2521 (1521, + &)

5/(5+2)
1/2
7 exp | —Co <||ET—>

I

13 exp

We now consider the second term of the RHS of (B.130). By (B.12), we have

Pr (||, Qll, |Qullp > 67T) < Pr (||w,Qll > 8°T"2) + Pr (| Qull, > 8/°T'2)

6In what follows we use
Pr(|AB| > ¢) < Pr(|A]|B| > ¢) (B.129)

where A and B are random variables. To see this note that |AB| < |A||B|. Further note that for any random
variables A7 > 0 and As > 0 for which Ay > A; the occurrence of the event {A4; > ¢}, for any constant ¢ > 0,
implies the occurrence of the event {Ay > ¢}. Therefore, Pr (A2 > ¢) > Pr(A; > ¢) proving the result.
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2
Note that ||Q'u|% = ZéTzl (ZL thut> , and

Pr (IQull > (0r1)"?) = Pr (IQull} > 6:7)
Iy [ /T 2
orT
<3| (Sum) -2
j=1 t=1
lr | T
=D _Pr| > auu
j=1 || t=1

Noting further that ¢;;u; and ¢;;u,; are martingale difference processes satisfying a result of the

usual form we obtain

5L2T1/2 —Cs
Pr(||u;Q||F>6¥2T”2)SZTPr<|u;qi|>Tll—/2 ngeXp< )

T lr

or

T by

SY2p1/2 5T ¥+
Pr(||u;Q||F>5;/2T1/2)ngPr<|u;qi|>Tll—/2 < Iy exp ( T> :

. . 55/ 2T1/2 - , 1/2r1 /2
depending on the order of magnitude of ~77—, and a similar result for Pr <|| Qull, > 0,°T > .
T
Therefore,
Pr (|u, Q| |Qu » > 67T) < exp [-CoT“"]. (B.132)
We wish to derive conditions for /7 under which T%r , T , and 2Z are
! e I o R e P

of larger, polynomial in 7', order than % Then, the factors in Iz in (B.26) and (B.132) are
negligible. We let (p = T, Iy = T, ||Eq_q1HF = l%,,/2 = T%? and 67 = T, where a > 0, can be
chosen freely. This is a complex analysis and we simplify it by considering relevant values for

our setting and, in particular, A > 1/2, A < 1/2+¢, for all ¢ > 1/2, and d < 1. We have

T1/2<T —0 (T1/2+,\—a—2d) +0 (T1/2—3d/2) 7 (B.133)
oply ||Eq_q1HF <H2¢;¢I1HF + g_;)

T1/2 B

W _0 (T1/2 3d/2) ’ (B.134)
aq Il p
clS_; — 0 (177, (B.135)
and 2

CTT 0 (TQ)\—l) =0 (cInT). (B.136)

Clearly d < 1/3. Setting v = 1/3, ensures all conditions are satisfied. Since X_!

norm order than 5];11 — X1 (B.128) follows similarly proving the result under (D1). For (D2)

qq

is of lower
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and (D3) we proceed as follows. Under (D3), noting that u; is a mixing process, then by Lemma
D1, we have that (B.126) is replaced by

Pr(|u.ul > Cr) < exp [—Co (T*(lﬂ”/?gT)S/(S“)}

, (B.137)

else, under (D2), we have again that (B.126) holds. Further, by a similar analysis to that above,
it is easily seen that, under (D2),

s/(s+2)
—C§ T-/254/2
Pr([|u,Qllp [|Qul ; > 07T) < Ipexp ( T) +lrexp | —Co <—l1/2T :

lr b

and under (D3),

/ / T7§/25T s/2(s+2)
P (ol Qe > 6r7) < 2oy | ~Co (£ 0) .

Tl/QCT T1/2

Under (D2), we wish to derive conditions for /3 under which =
(b2), " seiela], (15, ) ol

2
and ‘;—; are of larger, polynomial in 7', order than %T But this is the same requirement to that un-

der (D1). Under (D3), we wish to derive conditions for /7 under which TU%r ,
(DL Under (D3) ' srclmaal ([, )
ﬁ, ?—; and (T‘l/ 2CT) 42 re of positive polynomial in 7', order. But again the same
qq || p'T
conditions are needed as for (D1) and (D2). Finally, we consider (D4). But, noting Remark
D2, the only difference to (D3) is that (; > T'/2, rather than (; > T. Then, as long as

(T_I/QCT)S/(SH) — 00 the result follows. m

Lemma D3 Let y;, fort =1,2,...,T, be given by the data generating process (6) and suppose
that u; and @, = (14, Tog, .., Tnt)' Satisfy Assumptions 2-4. Let @, = (qu.s, oty -, Qips) cONtain
a constant and a subset of x,;, and let n, = wgﬂtﬁb + ug, where @y, is ky X 1 dimenstonal vector
of signal variables that do not belong to q.,, with the associated coefficients, B,. Assume that
Y = %ZtT:lE(q,tqft) and f]qq = Q'Q/T are both invertible, where Q = (q,., qy., ..., q,.)
and q; = (¢, Gias .-, qir)’, for i = 1,2,....lp. Moreover, let ly = o(T*) and suppose that
Assumption 5 holds for x; and q.,, where x; is a generic element of {x1s, Tay, ..., Tni} that does
not belong to q,. Denote the corresponding projection residuals defined by (11) as uz; =
Tt — Voo 94, and the projection residuals of yi on (@, x:) as er = yi — Yypur(dy, vt)'. Define
z = (21,72, 27), Yy = (Y1,Y2, - yr), € = (e, e9,....,er), M, = Ir — Q(Q'Q)~'Q/, and
6 =FE (T '2'M,X,) 3,, where Xy, is T xk, matriz of observations on xy;. Finally, ¢, (n,d) is
such that ¢, (n,d) = o (\/T) Then, under Assumption D1,for any 7 in the range 0 < m < 1,
dr > 0 and bounded in T, and for some C;,c > 0 fori=0,1,

2
—(1-m) Uz,(T)ai,(T)CIQJ (n,0)
2 (1 + dT)2 wge,T

+ exp (—C’OTcl) ,

Prlt.| > ¢, (n,0) |0 = 0] <exp [ (B.138)
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where
T-122'M,y

e (=3)

Uzv(T) =E(Tee), Ui,(T) = E (T 'z'M,z),

and

meT__ZE U’Itnt

Under of = 0® and/or E (u2,) = 02, = 02, for allt =1,2,....T,

—(1=m)2c(n,é
Pr([t,] > ¢, (n,8) [0 = 0] < exp [ = (1j d;j)(z ’ 1

+ exp (—CoTcl) .

In the case where 6 > 0, and assuming that there exists Ty such that for oll T > Ty, Ap —
¢y (n,0) /\/T > 0, where A\ =0/ (amﬁ(T)ae,(T)), then for dr > 0 and bounded in T and some C;
>0,7=0,1,2, we have

Pr(|t,] > ¢, (n,0) |0 # 0] > 1 —exp (—CoT“") . (B.139)
Under Assumption D2, for some Cy, Cy,Cy > 0,
Pr|t,| > ¢, (n,8) |0 = 0] < exp |—Che, (n, 5)8/“*2)] +exp (—CoT) (B.140)

and

Pr([t.| > ¢, (n,6)|0 #0] > 1 —exp (—CoT"). (B.141)

Proof. We start under Assumption D1 and in the end note the steps that differ under As-
sumption D2. We recall that the DGP, given by (7), can be written as

y=atr+ XpB+u =arr + X8, + Xp 8, + u

where X, is a subset of Q. Recall that Q, = (Q,xz), M, = Ir — Q(Q'Q)AQ’, M, =
I, — Qx(Q;Qm)_lQ;. Then, M,X, = 0, and let M, X, = (Zpg1, Zpg,2, ---, Togr)'- Then,

L T'V2eMy  TV2a'M X8, N T-122'M,u

Jleem (22) fieerm (282) - fieerm (mm)'

Let 0 = E (T '2'M,X}) By, 1 = Xp8y, +u, n = (01,72, ...,nr) , and write (B.53) as

VT0 72 (£5m —g)

e eem )

42




First consider the case where # = 0, and note that in this case

T1/2 z'Myx —1/2 z'Myn
T T

r =

(e'e/T)

Now by (B.46) of Lemma A9 and (B.121) of Lemma D2, we have

T1/2 <w/1\7/{qw>1/2 a:ll\j/fqn
Pr(|t;| > ¢, (n,0)|0 =0] =Pr

>c,(n,0)0=0| < (B.142)

T ¢ (1, 0)
O-e,(T) 1+ dT

+ exp (—C()Tcl) .

, ~1/2
Then, by Lemma F1, under Assumption D1 and defining a(X 7 ) = <%) x'M, where

a(X 7) is exogenous to y;, a(X 1) a(X 1) =1 and by (B.121) of Lemma D2, we have,

—(1—7)2‘73@) i( (n J)
2 (1 + dT) ze,T
+ exp (—C’OTcl)

Pr(lt.| > ¢, (n,0) |0 = 0] <exp [ (B.143)

where
xeT__ZE Uact77t ZE[xt wbtﬁb+ut):|7

and u,;, being the error in the regression of x; on Q, is defined by (11). Since by assumption

u, are distributed independently of u,; and x;;, then

W2 = —ZE[ (wh80)°] + 7 S F (12) B (o).

where @}, , 3, is the t-th element of M, X;/3,. Furthermore £ [ (9 (mbq Bs) } =E(u2,) E (wgqiﬁb)z =

( a:,t) BL,E (mbq,t%q,t) By, noting that under 6 = 0, u,; and x;; are independently distributed.
Hence

T
reT_TZ wbqtmbqt ﬂb ZE

Similarly
agm =E(I'ee)=E(T'fMyn) = E [T (XuB, + u) My, (X458, + u)]

/ — / 1
= BLE (T7' XMy Xy) By + = > E (u})



and since under § = 0, = being a noise variable will be distributed independently of X, then
E(T'X)M_.X;) = E(T7'X;M,X}), and we have

1 T
o2y = BE (T XIM,X,) B, + 7= > E (i)
t=1

1 <& 1z
t=1 t=1

Using (B.55) and (B.56), it is now easily seen that if either E (u2,) = 02, or E (uf) = o2, for

all t, then we have w?, ; = o7 ) o2 (7> and hence

—(1- 7T)2 012, (n,d)
2(1+ dy)?

Pr(|t,] > ¢, (n,0)]0 =0] <exp [ +exp (—CoT“) .

giving a rate that does not depend on error variances. Next, we consider 6 # 0. By (B.45) of
Lemma A9, for dr > 0,

T-122'M,y

e (222)

We then have

Pr

> ¢, (n,0) §Pr(

Tl/Qm’qu‘ S (n,9)

_ C1
1+dT>+exp( o).

Te,(T)0,(T)

ey (MR- 0)  pegne 1
= + +

Ue,(T)O'x,(T) O-e,(T)O-I,(T) O-ev(T)o-xv(T) O-ev(T)O-'rv(T)
P (S g) g
— + .
Oe,(T)0,(T) Oe,(T)O0,(T)
Then
1/2 [ £'Mgn
T ( T _9> T'/%9 ¢y (n,9)
Pr + >
Oe(T)0x,(T) Oe,(T)0x,(T) 1+dr
T C I R
1 py T N =0 <cp(n,5)

Oe(T)0x,(T) Oe(1)0z)| ~ 1+drp

We note that, by Lemma A12,

1/2 ('Mgn
T ( T 9)+ V%9 <cp(n,(5)

Pr <
Oe(T)Ta,(T) Te(T)Ta,(T) 1+dr
1/2 ('Mgn )
o (I (=7 -0 _ T ()
- Oe (T)0x,(T) Oe(T)0zT)y 1 +dr
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But (T'2'M,n — ) is the average of a martingale difference process and so

x' M,
(0| ke )

Pr (B.144)
Oe(T)0x,(T) Oe(T)0zT)y  1+dp
T1/2 9 9 5 5/(s+2)
<o (rn (22t t)y)
O (T)0z,(T) + dr
So overall
T-122'"M
Pr T VY > ¢, (n,6)| >1—exp (—=CoT)

Jleer) (2282)

e[ (o (Tt
Oe (T)0,(T) 1+dr

Finally, we note the changes needed to the above arguments when Assumption D2 holds,
rather than D1. (B.140) follows if in (B.142) we use (B.125) of Lemma D2 rather than (B.121)
and, in (B.143), we use Lemma F2 rather than Lemma F1 and, again, we use (B.125) of
Lemma D2 rather than (B.121). (B.140) follows again by using (B.125) of Lemma D2 rather
than (B.121). =

Remark D3 We note that the above proof makes use of Lemmas F1 and F2. Alternatively
one can use (B.45) of Lemma A9 in (B.142)-(B.143), rather that (B.46) of Lemma A9 and use
the same line of proof as that provided in Lemma A10. However, we consider this line of proof

as Lemmas F1 and F2 are of independent interest.

E. Lemmas for the deterministic case

Lemmas E1 and E2 provide the necessary justification for the case where x; are bounded

deterministic sequences, by replacing Lemmas A6 and A10.

Lemma E1 Let xy, i = 1,2,...,n, be a set of bounded deterministic sequences and u; satisfy

Assumption 2 and condition (10) of Assumption 4, and consider the data generating process

(6) with k signal variables x1;, T, ..., Tpe-  Let @, = (G, Gogs -, Qips) contain a constant
and a subset of T, = (¢, Top, ..., xnt)' . Let my = xpBp + wyy, where xzy, contains all sig-
nals that do not belong to q,. Let ¥,, = Q' Q/T be invertible for all T, and HE;;HFF =

O(\/E); where Q = (q1-7q2-""7qlT~) and q; = (qi17Qi27"'aQiT)/7 fOTZ. = 172a"'7lT' Sup_
pose that Assumption 5 holds for x; and q,, and u; and q,. Let u,,r be as in (11), such

Ly R . A .
w < C < o0, and let Gy, = (Ug; 1, Usy 25 ooy Ug, 1) = My, & =

(Tir, Tizs ooy Tir)'s By = (U1, U2y ooy W) = Mym, m = (01,025 s r), My = Ir—Q(Q'Q) ™ Q,

that sup; limy_,
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ft = FFUFY, fame = B (g ptine | Fior), @210 = 251 B [(wam — E (i |Fie1))?] and
WanT = F LS E [(tg, ung — uxm,t)ﬂ. Then, for any m in the range 0 < m < 1, we have,

under Assumption 3,

T
Pr <
t=1

Z e — B (2 |[Fio1)
where ¢r = O (T*), and (s +1)/(s+2) > X If (s+1)/(s +2) < A,

T
Pr (
t=1

for some Cy > 0. If it is further assumed that lr = O (Td), for some A and d such that d < 1/3,
and 1/2 < X< (s+1)/(s+2), then

T
Pr < Z (axi,tun,t - M$i777t)
t=1

for some Cy, Cy,Cy > 0. Otherwise, if A > (s +1)/(s + 2),

T
Pr § (U:qu,tun,t - Nmm,t)
t=1

for some Cy, Cy,Cy > 0.

> CT) < exp

_(1_—7%] 7 (B.145)

2
2Twy 1 r

E (iUitnt ’-7:7&71)

> <T) < exp |[~Co¢y/ Y]

—(1-n)°¢
2Tw?

J:mT

~+ exp (—C’chl) .

> CT) < Cyexp

> §T> < exp [—C’ (S/(S+ ] +exp (—CoT“)

Proof. Note that all results used in this proof hold both for sequences and triangular ar-
rays. (B.145) follows immediately given our assumptions and Lemma A3. We proceed to
prove the rest of the lemma. Note that now @, is a bounded deterministic vector and

Uy, = (Ug, 1, Uz, 2, - Uy, 1) & segment of dimension T of its limit. We first note that

T T
Z (Ui Ut — M) Z faine = Uy, Mgty — Z Hoain,t
t=1 t=1
T
-1 -1
- Z (uﬂﬂi,tu%t - /‘wm,t) - (T U;ZQ) qu (Q,uﬂ) )
t=1

where ©, = (U1, Uy 2, ..., Up,r) and w, = (Uy1,Ug2, ..., Uy ). By (B.59) and for any 0 < m; < 1

such that 37 m; = 1,we have
> CT) <Pr ( > 7T1CT>

T
Pr ( Z (U it — fhant)
t=1

+Pr ((T7'u,,Q) 3, (Q'u,)| > malr) .

T
Z (ﬁ’xi,tﬁ’nzt - ,u:rm,t)
t=1
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Also applying (B.60) to the last term of the above we obtain

Pr(|(T7"w;,Q) 2y (Quy)| > matr)
< Pr (|2l 1774, QL Qg > 7

< Pr (HE(;;”F > W§§T> + Pr (T_l Hu;leHF ”QIUUHF - 7T25T)

- G /
< e (Il > 57 )+ P (I @l > )
+Pr (| Q| > (mabr)?).

where d7 > 0 is a deterministic sequence. In what follows we set dr = O (¢%), with 0 < o < A,
so that (r/d7 is rising in T'. Overall

.

<Pr

T
Dl gty = fians)

t=1

g CT) (B.146)
T _ C

Z (umu%t - “xn,t) > 7T1CT) + Pr <||qu1HF = ;TT>

t=1

+ Pr (1Quy > (mabrT)?) + Pr (||, Q> (madrT)?)

We consider the four terms of the above, and note that since by assumption {g;u,.} are
martingale difference sequences and satisfy the required probability bound conditions of Lemma

A4, and {g;tu,,;} are bounded sequences, then for some C, ¢ > 0 we have’
sup Pr <||q;un|| > (7T25TT)1/2> <exp (—CoT“")

and as long as lr = o (d7),
Pr([[4,Qlly > (mdrT)"?) =0

2
Also, since ||Q’u77||fm = ZzT:l (Zthl C]jtut> ;

Pr (| Q. > (m20r1)"?)

— Pr (||Q'un||; > 7r26TT>
I T 2
7T2(5TT
<3| (S - 22
7=1 t=1
I T
j=1 t=1

Y

7T2(5TT 1/2
>
I
"The required probability bound on u,; follows from the probability bound assumptions on x; and on g,
for i =1,2,...,1lp, even if [ — oco. See also Lemma A5.
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which upon using (B.22) yields (for some C, ¢ > 0)
Pr(1Qu > (m20rT)?) < lrexp (~CT*), Pr (I1Qua| > (madrT)") = 0.
Further, it is easy to see that
7r
Pr (”Eq_quF = ;_TCT) =0
¢r

im0 But as long as I = o (Tl/ 3), there exists a sequence dr such that
Tt

Cr/or — o0, Iy = o (1) and 6‘;—7{/2 — 00 as required, establishing the required result. m
T'T

as long as p

Lemma E2 Let y;, fort =1,2,...,T, be given by the data generating process (6) and suppose
that ®.; = (T14, Taty .., Tny) are bounded deterministic sequences, and uy satisfy Assumption
2 and condition (10) of Assumption 4. Let q, = (qi.¢, 2.4, Qips) contain a constant and a
subset of Tne = (11, Toty ..., Tnt), and let my = @B + ur, where Ty, is ky, X 1 dimensional
vector of signal variables that do not belong to q,. Assume that ¥,, = Q'Q/T is invertible
for all T, and qu_qlup =0 (\/E), where Q = (q,., 4., ..., q,,..) and q;. = (qi1, Gz, ..., Gi7)', for
1= 1,2,....lp. Moreover, let Il = 0(T1/4) and suppose that Assumption 5 holds for x; and
q., and u; and q,. Define T = (z1, 79, ...,x7), Y= (y1, Y2, ., yr), M, = Ir — Q(Q'Q)'Q/,
and 0 = T‘lm’Mqu,Bb, where X, is T' X ky, matriz of observations on x,. Let uy, v be as in

i
i |

(11), such that sup; ; limy .o *—=A— < C < 0o. Let e = (e1,¢€q,...,er)" be the T' X 1 vector

of residuals in the linear regression model of y; on q, and x;. Then, for any 7™ in the range
0<7m<1,dr >0 and bounded in T, and for some C; >0 fori=0,1,

2
—(1—m) UZ,(T)Ui(T)C;% (n,d)
2 (1 + dT)2 wiuyT

+ exp (—COTcl) ,

Pr(lta] > ¢ (n,0) [0 = 0] < exp [

where
T-122'M,y

e (222)

037(T) and Ui,(T) are defined by (B.39) and (B.34), and

by =

2

T
2 _ l 2 2
wxu,T - T O4t0¢ 5
t=1

Under o = 0% and/or 02, = o2 for allt =1,2,...,T,

Pr[|t,| > ¢, (n,d) |0 = 0] < exp [— (1-m)c (n,é)]

2(1+ dy)?
~+ exp (—C’oTcl) .
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for some Cy,Cy > 0. In the case where 0 > 0, and assuming that c, (n,8) = o(\/T), then for
dr > 0 and some C; > 0, 1= 0,1, we have

Pr(|t,] > ¢, (n,0) |0 #0] > 1 —exp (—CoT“").
Proof. The model for y can be written as
y=atr + XpBt+u=arr + X0, + Xp8, + u

where 71 is a T'x 1 vector of ones, X, is a subset of Q. Let Q, = (Q,xz), M, = I-QQQ)'qQ,
M, = Ir — Q.(Q.Q.) 'Q.. Then, M, X, = 0. M,X; = (Zp,1, Tpg2, -, Togr)'- Then,

. T-122'M,y B T-122'M, X, 3, n T-122'M,u

\/(e e/T) (quw> \/(e’e/T) (‘“‘/ITW) \/(e e/T) < 'qu>'

n=XB,+uw, 1= 1 nr)

Let

9 - T_lwquXb/Bb,

n'M,.n M,z
0-37(T) =L (e/e/T) =FE (Tq> ) 0-57(T) =E ( Tq )

and write (B.53) as

t, = VT6 n T2 [2'M, n— E (2'M,n)]
\/(e’e/T) (—wll\;qm) \/(e’e/T) <wlMTq$>
#'M,n— E (&'Myn) = [#'M, u— E <w’M wl,
M,X,3,) (M, X -
(M, b5b>T( XoBy) _ =7 Z :z:bq 1,3,, = Zazbt Ul?,(T)'

t=1

Then, we consider two cases: % =60 =0 and 6 # 0. We consider each in turn. First,

we consider § = 0 and note that

T2 [2'M, u— E (z'M,u)]

Jleer) (228)

ly =

By Lemma A9, we have

T-122'M,n

Jleern) (232)

T‘1/2m’Mq77‘ _ % (n,9)

Pr(|t.| > ¢, (n,0) |0 =0] = Pr

o

> ¢, (n,0)|0=0] <

1+4+dr

) + exp (—COTCI) .

Ox,(T)%¢,(T)
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By Lemma E1, it then follows that,

Pr[t,| > ¢, (n,d)|0 = 0] <exp [_(1_7T) 03( T) w(T (” 5)]

(1 +dT) a:eT
+ exp (—COTcl)

where wg&T = % thl E [(u%mt)ﬂ. Note that, by independence of u; with u,; and x;,; we

have .
1
M——ZE wnm)’] = 7 DB [, (@4,,8)° | + B (1) E (uf).
t=1

By the deterministic nature of z;;, and under homoscedasticity for r, it follows that o (T)ai ) =

2
Wi and so

Pr(t] > ¢, (n,6) |0 = 0] < exp [— (1-m)2e2 (n,(;)]

2(1+dr)”
+ exp (—CoTcl) .

giving a rate that does not depend on variances. Next, we consider 6 # 0. By Lemma A9, for
dr > 0,

T-122'M,y

(e (222)

Pr

—1/2
> ¢, (n,0) §PI(T quy'>cp(n,5)>

1+dr

Te,(T)T,(T)

+ exp (—C’OTCI) .

We then have

T-2x'Myy T Y22'M,u T'/29
a9 _ ¢z 4
Oe(T)0z,(T) Oe,(T)0x,(T) Oe,(T)0z,(T)
Then,

T-122'M,u N /20

o

_ o (n,é))

Te(T)0x,(T) Oe,(T)0a,(T) 1+dr
1P <‘T1/2T_1/2:c’Mqu N V%9 <% (n,(s)) |
Oe(T)0z,(T) Oe,(T)0z,(T) 1+dr

We note that

—1/2 .1 1/2
Pr(T quu+ T/20 Scp(n,5)>
Oe (T)0,(T) Oe (T)0x,(T) 1+ dp
< Pr ( T-122'M,u - V20 ¢ (n,&)) ‘
Oe (T)Tx,(T) Oe(T)0x(T) 1+dp
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But T '2'M,u is the average of a martingale difference process and so

1/2 w’Mqu>
| G

Oe (T)0x,(T) Oe(TY0uT) 1 +dp

s/(s+2)
—C (T1/2 < T1/2‘0| . Cp (TL, 6))) )
Oc(r)0uyr)  1+dr

Pr

<exp (—CoT“") + exp

So overall,

T—122'M,y

e (22=)

Pr

> ¢, (n,0)| >1—exp (—CoT“")
_C (T1/2 ( T1/2 ’9’ B Cp (n’ 5)))5/(5"!‘2)
Oe(T)0z,(T) 14+ dr .

F. Supplementary lemmas for Sections B and C of the online theory
supplement

— exp

Lemma F1 Suppose that uy, t = 1,2,....,T, is a martingale difference process with respect to

F | and with constant variance o>

, and there exist constants Cy,C7 > 0 and s > 0 such that
Pr(|u:| > a) < Coexp (—Cha®), for all « > 0. Let X7 = (%1, 1, X1y 2,5 - Tip1), Where Ty, 4 is
an ly X 1 dimensional vector of random variables, with probability measure given by P(Xr),
and assume

E(uw|Fp) =0, forallt=1,2,...,T, (B.147)

where Ff. = 0 (Tip1, Tip 2 5 - Tipr). Further assume that there exist functions
a(Xr) = [01(X 1), 09(X 1), . ar(X )] such that 0 < supy, a(X 1) a(X7) < gr, for some

sequence gr > 0. Then,
—¢7
Pr > (p | <exp 5 )
2gTO'

Proof. Define Ar= {‘Zthl ay (X r)ug| > CT}. Then,

Z (X 7)uy

t=1

Pr(Ag) — / Pr (A |72) P(X 1) < sup Pr (Ap | F2) /
XT XT X

u
But, by (B.147) and Lemma A3

P(Xr) = sup Pr (Ar |F7)

T

¢
Pr (Ar |Fr) <
HANTT S e (202 >, a%<XT>>
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But

sup exp _C% < exp ( _C% >
X7 2023 2(Xp) ) T 29702 )’

proving the result.

Lemma F2 Suppose that vy, t = 1,2,...,7T, is a zero mean mixing random variable with ex-
ponential mizing coefficients given by ¢ = agr®, 0 < ¢ < 1, ag, < o0, k = 1,..., with

2 and there exist sufficiently large constants Cy, C; > 0 and s > 0 such that

constant variance o
Pr(Jut| > a) < Cyexp (—=Cha®), for all @« > 0. Let X7 = (101, Tip 2, -, Tip1), Where Ty, ¢ is
an lr x 1 dimensional vector of random variables, with probability measure given by P(Xr).
Further assume that there exist functions

a(X 1) = [on(X7), 09(X ), ..., ar(X )] such that 0 < SUPx . a(Xr) (X)) < gr, for some

sequence gr > 0. Then,
s/(s+1)
(r
> gT S €xXp | — 1/2
dr 9

Pr (
Proof. Define AT:{)Zthl ay (X p)ug| > CT} and consider F7 = 0 (Xip1, Tip 25y TipT) -

Then,

T

Z (X r)uy

t=1

Pr(Ar) = /X Pr(Ar|F7) P(X ) < s;(lpPr (Ar|F7) /X P(X 1) = supPr (Ar|F7)

T X

But, using Lemma 2 of Dendramis et al. (2015) we can choose Cy, C; such that

s/(s+1)
Pr(Ar |Ff) <exp |— T_CT ,
a4/ > i1 03 (Xr)
and
o/ (s1) s/(s+1)
—Cr Cr
supexp |— <exp |— s ,
xr o/ Y 0F(X 1) Ir 7

thus establishing the desired result. m

Lemma F3 Let Ar = (a;jr) be a lr X Ip matriz and A = (G;jr) be an estimator of Ar. Let

HAFHF > 0 and suppose that for some s > 0, any by > 0 and Cy > 0

sup Pr (’dij,T - Cliij’ > bT) < exp <_CO (Tl/ng)S/(s+2)> '
0,J
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Then

o

A;l — A

712 )/ 6H2)
) < 2 exp ( - —Co (170 XGE (B.148)

(s+2) HA 1Hs/ (s+2) HA;IHF"H)T

Ts/2(s+2)
12 exp
+ir ( HA 1HS/ (s+2) s/(8+2)>’

where |Al| denotes the Frobenius norm of A.

Proof. First note that since by > 0, then

Pr< A

N 2
ATHF > bT) —Pr (HAT - ATH > b%)

(iz (Gijr — agjr) >b2]),

7j=1 =1
and using the probability bound result, (B.59), and setting m; = 1/l7, we have

Iy
Pr (||Ar - Aq|| > br) < ZZPr sz — arl® > 17262) (B.149)
j=1 i=1
I
= ZZPI’ ‘aij aUT\ >l 1bT)
Jj=1 =1
2 1 2 2 1)bs/(s+2)
<lF sgp [Pr (laz‘j7T —aiir| >l bT)] =liexp | —Cp T3/t lS/(8+2) )

To establish (B.148) define the events

Ar={1A7' ],

~—1 _
ATHF < 1} and By = {HAT - ATlH > bT}
and note that by (2.15) of Berk (1974) if Ar holds we have

L AR,

T T

- Az, |Ar - Ar|
Hence

A7

d
T |lF

A1)
Pr (BT ‘.AT> < Pr " £ > by
L= |[A7 ) [ Ar - ax],

:Pr< A

br
> 1Azl (1A + bT)) |
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Note also that
Pr (Br) = Pr ({Br N Az} U {Br N AS}) = Pr (Br|Ar) Pr (A7) + Pr (Br|AS) Pr (A) .
Furthermore
Pr (A7) = Pr (A7), [Ar - ar| >1)
=Pr ([[4r - ar], > fla],")

and by (B.149) we have

s bs/(s+2) Ts/2(s+2)
Pr (A7) < 7 exp ( CoT*™ +2)ls/(TZ) - P HA 1H8/ (s+2) s/(s+2)

t

Using the above result, we now have

. by
Pr(By) < Pr (”AT — ATHF > HA_lHF (||A—1||F n bT)) Pr(Ar)
Ts/2(s+2)
+ Pr (Br|AS) exp( ”A YRR SH)) .

Furthermore, since Pr (A7) < 1 and Pr (BﬂAg) < 1 then

R br
> <Pr <HAT - ATHF > ||A:F1HF (HACFIHF +bT)>

Ts/2(s+2)
T exp ||A 1”8/ (s+2) s/(s+2) )

Result (B.148) now follows if we apply (B.149) to the first term on the RHS of the above. m

Pr (By) = Pr (HA; _ A

Lemma F4 Consider the scalar random variable X, and the constants B and C. Then, if
C >|B| >0,
Pr(|IX+B|>C)<Pr(|X|>C-|BJ). (B.150)

Proof. The result follows by noting that | X + B| < |X|+ |B|. =
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